Spring for Apache Kafka

Gary Russell, Artem Bilan, Biju Kunjummen, Jay Bryant, Soby Chacko, Tomaz

Fernandes

Version 2.9.0-M1

Table of Contents

1. Preface
2. What’s new?
2.1. What’s New in 2.9 Since 2.8
2.1.1. Kafka Client Version
3. Introduction
3.1. Quick Tour
3.1.1. Compatibility
3.1.2. Getting Started

Spring Boot Consumer App
Spring Boot Producer App
With Java Configuration (No Spring Boot)

4. Reference
4.1. Using Spring for Apache Kafka
4.1.1. Connecting to Kafka

Factory Listeners

4.1.2. Configuring Topics
4.1.3. Sending Messages

Using KafkaTemplate

Using RoutingKafkaTemplate

Using DefaultKafkaProducerFactory
Using ReplyingKafkaTemplate

Reply Type Message<?>
Aggregating Multiple Replies

4.1.4. Receiving Messages

Message Listeners

Message Listener Containers
Manually Committing Offsets
@Kafkalistener Annotation

Obtaining the Consumer group.id
Container Thread Naming
@KafkalListener as a Meta Annotation
@KafkalListener on a Class
@Kafkalistener Attribute Modification
@Kafkalistener Lifecycle Management
@Kafkalistener @Payload Validation
Rebalancing Listeners

Forwarding Listener Results using @SendTo
Filtering Messages

© J 1 U1 U1 W W W

= = R = R = N = T =2 T 2 S 2 TS 2 T Y NGt G SO 0 S J'C S N S N S N N N N S S N S ey
S O R WN R O © © 0 © © N O O 0 I © 0o O O U R R

Retrying Deliveries
Starting @Kafkalistener s in Sequence
Using KafkaTemplate to Receive

4.1.5. Listener Container Properties

4.1.6. Application Events
Detecting Idle and Non-Responsive Consumers
Event Consumption

4.1.7. Topic/Partition Initial Offset

4.1.8. Seeking to a Specific Offset

4.1.9. Container factory

4.1.10. Thread Safety

4.1.11. Monitoring
Monitoring Listener Performance
Monitoring KafkaTemplate Performance
Micrometer Native Metrics

4.1.12. Transactions
Overview
Using KafkaTransactionManager
Transaction Synchronization
Using Consumer-Initiated Transactions
KafkaTemplate Local Transactions
transactionIdPrefix
KafkaTemplate Transactional and non-Transactional Publishing
Transactions with Batch Listeners

4.1.13. Exactly Once Semantics

4.1.14. Wiring Spring Beans into Producer/Consumer Interceptors

4.1.15. Pausing and Resuming Listener Containers
4.1.16. Pausing and Resuming Partitions on Listener Containers
4.1.17. Serialization, Deserialization, and Message Conversion
Overview
String serialization
JSON
Delegating Serializer and Deserializer
Retrying Deserializer
Spring Messaging Message Conversion
Using ErrorHandlingDeserializer
Payload Conversion with Batch Listeners

ConversionService Customization

Adding custom HandlerMethodArgumentResolver to @KafkalListener

4.1.18. Message Headers
4.1.19. Null Payloads and Log Compaction of 'Tombstone' Records

71
71
73
73
79
82
83
84
85
91
92
92
93
93
93
95
95
96
96
97
97
97
98
98
100
101
104
107
107
107
108
109
114
117
117
121
124
125
126
127
131

4.1.20. Handling Exceptions 132

Listener Error Handlers 132
Container Error Handlers 135
DefaultErrorHandler 136
Conversion Errors with Batch Error Handlers 140
Retrying Complete Batches 141
Container Stopping Error Handlers 141
Delegating Error Handler 141
Logging Error Handler 141
Using Different Common Error Handlers for Record and Batch Listeners 141
Common Error Handler Summery 142
Legacy Error Handlers and Their Replacements 142
After-rollback Processor 143
Delivery Attempts Header 145
Listener Info Header 146
Publishing Dead-letter Records 146
Managing Dead Letter Record Headers 150
ExponentialBackOffWithMaxRetries Implementation 151
4.1.21. JAAS and Kerberos 152
4.1.22. Producer and Consumer Record Logging 152
4.2. Apache Kafka Streams Support 152
4.2.1. Basics 153
4.2.2. Spring Management 153
4.2.3. KafkaStreams Micrometer Support 156
4.2.4. Streams JSON Serialization and Deserialization 156
4.2.5. Using KafkaStreamBrancher 156
4.2.6. Configuration 157
4.2.7. Header Enricher 158
4.2.8. MessagingTransformer 158
4.2.9. Recovery from Deserialization Exceptions 159
4.2.10. Kafka Streams Example 160
4.3. Testing Applications 163
4.3.1. KafkaTestUtils 163
4.3.2. JUnit 163
4.3.3. Configuring Topics 165
4.3.4. Using the Same Broker(s) for Multiple Test Classes 166
4.3.5. @EmbeddedKafka Annotation 168
4.3.6. @EmbeddedKafka Annotation with JUnit5 170
4.3.7. Embedded Broker in @SpringBootTest Annotations 171
JUnit4 Class Rule 171

@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean 172

4.3.8. Hamcrest Matchers

4.3.9. Assert] Conditions

4.3.10. Example

4.4. Non-Blocking Retries

4.4.1. How The Pattern Works

4.4.2. Back Off Delay Precision
Overview and Guarantees
Tuning the Delay Precision

4.4.3. Configuration
Using the @RetryableTopic annotation
Using RetryTopicConfiguration beans
Configuring Global Settings and Features

4.4.4. Features
BackOff Configuration
Single Topic Fixed Delay Retries
Global timeout
Exception Classifier
Include and Exclude Topics
Topics AutoCreation

Failure Header Management

4.4.5. Combining Blocking and Non-Blocking Retries

4.4.6. Topic Naming
Retry Topics and DIt Suffixes
Appending the Topic’s Index or Delay
Custom naming strategies
4.4.7. DIt Strategies
DIt Processing Method
DLT Failure Behavior
Configuring No DLT
4.4.8. Specifying a ListenerContainerFactory

4.4.9. Accessing Topics' Information at Runtime

4.4.10. Changing KafkaBackOffException Logging Level

5. Tips, Tricks and Examples
5.1. Manually Assigning All Partitions

5.2. Examples of Kafka Transactions with Other Transaction Managers

5.3. Customizing the JsonSerializer and JsonDeserializer

6. Other Resources
Appendix A: Override Spring Boot Dependencies
Appendix B: Change History
B.1. What’s New in 2.8 Since 2.7
B.1.1. Kafka Client Version

173
174
176
178
178
179
179
179
180
180
181
182
183
183
184
185
186
187
187
188
189
190
191
191
192
193
193
195
196
196
197
198
199
199
200
203
204
205
208
208
208

B.1.2. Package Changes 208

B.1.3. Out of Order Manual Commits 208
B.1.4. @Kafkalistener Changes 208
B.1.5. KafkaTemplate Changes 209
B.1.6. CommonErrorHandler Added 209
B.1.7. Listener Container Changes 209
B.1.8. Serializer/Deserializer Changes 209
B.1.9. DeadlLetterPublishingRecover Changes 209
B.1.10. Retryable Topics Changes 209
B.2. Changes between 2.6 and 2.7 210
B.2.1. Kafka Client Version 210
B.2.2. Non-Blocking Delayed Retries Using Topics 210
B.2.3. Listener Container Changes 210
B.2.4. @KafkalListener Changes 210
B.2.5. DeadlLetterPublishingRecover Changes 211
B.2.6. ChainedKafkaTransactionManager is Deprecated 211
B.2.7. ReplyingKafkaTemplate Changes 211
B.2.8. Kafka Streams Changes 211
B.2.9. KafkaAdmin Changes 211
B.2.10. MessageConverter Changes 211
B.2.11. Sequencing @Kafkalistener s 211
B.2.12. ExponentialBackOffWithMaxRetries 212
B.2.13. Conditional Delegating Error Handlers 212
B.3. Changes between 2.5 and 2.6 212
B.3.1. Kafka Client Version 212
B.3.2. Listener Container Changes 212
B.3.3. @KafkaListener Changes 212
B.3.4. ErrorHandler Changes 212
B.3.5. Producer Factory Changes 213
B.4. Changes between 2.4 and 2.5 213
B.4.1. Consumer/Producer Factory Changes 213
B.4.2. StreamsBuilderFactoryBean Changes 213
B.4.3. Kafka Client Version 213
B.4.4. Class/Package Changes 213
B.4.5. Delivery Attempts Header 213
B.4.6. @KafkaListener Changes 213
B.4.7. Listener Container Changes 214
B.4.8. KafkaTemplate Changes 214
B.4.9. Kafka String Serializer/Deserializer 215
B.4.10. JsonDeserializer 215

B.4.11. Delegating Serializer/Deserializer 215

B.4.12. Testing Changes 215

B.5. Changes between 2.3 and 2.4 215
B.5.1. Kafka Client Version 215
B.5.2. ConsumerAwareRebalanceListener 215
B.5.3. GenericErrorHandler 215
B.5.4. KafkaTemplate 215
B.5.5. AggregatingReplyingKafkaTemplate 216
B.5.6. Listener Container 216
B.5.7. @KafkaListener 216
B.5.8. Kafka Streams 216

B.6. Changes Between 2.2 and 2.3 216
B.6.1. Tips, Tricks and Examples 216
B.6.2. Kafka Client Version 216
B.6.3. Class/Package Changes 216
B.6.4. Configuration Changes 217
B.6.5. Producer and Consumer Factory Changes 217
B.6.6. Listener Container Changes 217
B.6.7. ErrorHandler Changes 218
B.6.8. TopicBuilder 218
B.6.9. Kafka Streams Changes 218
B.6.10. JSON Component Changes 219
B.6.11. ReplyingKafkaTemplate 219
B.6.12. AggregatingReplyingKafkaTemplate 219
B.6.13. Transaction Changes 219
B.6.14. New Delegating Serializer/Deserializer 219
B.6.15. New Retrying Deserializer 220

B.7. Changes Between 2.1 and 2.2 220
B.7.1. Kafka Client Version 220
B.7.2. Class and Package Changes 220
B.7.3. After Rollback Processing 220
B.7.4. ConcurrentKafkalistenerContainerFactory Changes 220
B.7.5. Listener Container Changes 220
B.7.6. @KafkaListener Changes 221
B.7.7. Header Mapping Changes 221
B.7.8. Embedded Kafka Changes 221
B.7.9. JsonSerializer/Deserializer Enhancements 221
B.7.10. Kafka Streams Changes 222
B.7.11. Transactional ID 222

B.8. Changes Between 2.0 and 2.1 222
B.8.1. Kafka Client Version 222

B.8.2. JSON Improvements 222

B.8.3. Container Stopping Error Handlers 222

B.8.4. Pausing and Resuming Containers 223
B.8.5. Stateful Retry 223
B.8.6. Client ID 223
B.8.7. Logging Offset Commits 223
B.8.8. Default @KafkaHandler 223
B.8.9. ReplyingKafkaTemplate 223
B.8.10. ChainedKafkaTransactionManager 223
B.8.11. Migration Guide from 2.0 223
B.9. Changes Between 1.3 and 2.0 223
B.9.1. Spring Framework and Java Versions 223
B.9.2. @KafkalListener Changes 224
B.9.3. Message Listeners 224
B.9.4. Using ConsumerAwareRebalancelistener 224
B.10. Changes Between 1.2 and 1.3 224
B.10.1. Support for Transactions 224
B.10.2. Support for Headers 224
B.10.3. Creating Topics 224
B.10.4. Support for Kafka Timestamps 224
B.10.5. @Kafkalistener Changes 224
B.10.6. @EmbeddedKafka Annotation 225
B.10.7. Kerberos Configuration 225
B.11. Changes Between 1.1 and 1.2 225
B.12. Changes Between 1.0 and 1.1 225
B.12.1. Kafka Client 225
B.12.2. Batch Listeners 225
B.12.3. Null Payloads 225
B.12.4. Initial Offset 225

B.12.5. Seek 225

o This documentation is also available as HTML.

© 2016 - 2021 VMware, Inc.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

https://docs.spring.io/spring-kafka/docs/2.9.0-M1/reference/html/index.html

Chapter 1. Preface

The Spring for Apache Kafka project applies core Spring concepts to the development of Kafka-
based messaging solutions. We provide a “template” as a high-level abstraction for sending

messages. We also provide support for Message-driven POJOs.

Chapter 2. What’s new?

2.1. What’s New in 2.9 Since 2.8

This section covers the changes made from version 2.8 to version 2.9. For changes in earlier
version, see Change History.

2.1.1. Kafka Client Version

This version requires the 3.1.0 kafka-clients

Chapter 3. Introduction

This first part of the reference documentation is a high-level overview of Spring for Apache Kafka
and the underlying concepts and some code snippets that can help you get up and running as
quickly as possible.

3.1. Quick Tour

Prerequisites: You must install and run Apache Kafka. Then you must put the Spring for Apache
Kafka (spring-kafka) JAR and all of its dependencies on your class path. The easiest way to do that is
to declare a dependency in your build tool.

If you are not using Spring Boot, declare the spring-kafka jar as a dependency in your project.

Maven

<dependency>
<groupld>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>2.9.0-M1</version>

</dependency>

Gradle

compile 'org.springframework.kafka:spring-kafka:2.9.0-M1"

When using Spring Boot, (and you haven’t used start.spring.io to create your
project), omit the version and Boot will automatically bring in the correct version
that is compatible with your Boot version:

Maven
<dependency>
<groupId>org.springframework.kafka</groupId>

<artifactId>spring-kafka</artifactId>
</dependency>

Gradle

compile 'org.springframework.kafka:spring-kafka'

However, the quickest way to get started is to use start.spring.io (or the wizards in Spring Tool Suits
and Intellij IDEA) and create a project, selecting 'Spring for Apache Kafka' as a dependency.

https://start.spring.io

3.1.1. Compatibility
This quick tour works with the following versions:

* Apache Kafka Clients 3.0.x
* Spring Framework 5.3.x

* Minimum Java version: 8

3.1.2. Getting Started

The simplest way to get started is to use start.spring.io (or the wizards in Spring Tool Suits and
Intellij IDEA) and create a project, selecting 'Spring for Apache Kafka' as a dependency. Refer to the
Spring Boot documentation for more information about its opinionated auto configuration of the
infrastructure beans.

Here is a minimal consumer application.

Spring Boot Consumer App

https://start.spring.io
https://docs.spring.io/spring-boot/docs/current/reference/html/messaging.html#messaging.kafka

Example 1. Application

Java

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public NewTopic topic() {
return TopicBuilder.name("topic1")
.partitions(10)
.replicas(1)
.build();

(id = "myId", topics = "topicl")
public void listen(String in) {
System.out.println(in);
}

Kotlin

@SpringBootApplication
class Application {

@Bean
fun topic() = NewTopic("topic1", 10, 1)

@KafkalListener(id = "myId", topics = ["topic1"])
fun listen(value: String?) {
println(value)
}
}

fun main(args: Array<String>) = runApplication<Application>(*args)

Example 2. application.properties

spring.kafka.consumer.auto-offset-reset=earliest

The NewTopic bean causes the topic to be created on the broker; it is not needed if the topic already
exists.

Spring Boot Producer App

Example 3. Application

Java

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public NewTopic topic() {
return TopicBuilder.name("topic1")
.partitions(10)
.replicas(1)
.build();

public ApplicationRunner runner(KafkaTemplate<String, String> template) {
return args -> {
template.send("topic1", "test");

b

Kotlin

@SpringBootApplication
class Application {

@Bean
fun topic() = NewTopic("topic1", 10, 1)

@Bean
fun runner(template: KafkaTemplate<String?, String?>) =
ApplicationRunner { template.send("topic1", "test") }

companion object {
@JvmStatic
fun main(args: Array<String>) = runApplication<Application>(*args)

With Java Configuration (No Spring Boot)

Spring for Apache Kafka is designed to be used in a Spring Application Context. For

o example, if you create the listener container yourself outside of a Spring context,
not all functions will work unless you satisfy all of the ---Aware interfaces that the
container implements.

Here is an example of an application that does not use Spring Boot; it has both a Consumer and
Producer.

Example 4. Without Boot
Java
public class Sender {

public static void main(String[] args) {
AnnotationConfigApplicationContext context = new
AnnotationConfigApplicationContext(Config.class);
context.qgetBean(Sender.class).send("test", 42);

}
private final KafkaTemplate<Integer, String> template;

public Sender(KafkaTemplate<Integer, String> template) {
this.template = template;

}

public void send(String toSend, int key) {
this.template.send("topic1", key, toSend);
}

}
public class Listener {

(id = "listen1", topics = "topic1")
public void listen1(String in) {
System.out.println(in);
}

public class Config {

ConcurrentKafkalistenerContainerFactory<Integer, String>
kafkalistenerContainerFactory(ConsumerFactory<Integer,
String> consumerFactory) {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory);
return factory;

public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerProps());

}

10

private Map<String, Object> consumerProps() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, "group");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,

IntegerDeserializer.class);

props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,

StringDeserializer.class);

props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
/] ...
return props;

public Sender sender(KafkaTemplate<Integer, String> template) {
return new Sender(template);

}

public Listener listener() {
return new Listener();

}

public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(senderProps());

}

private Map<String, Object> senderProps() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.LINGER_MS_CONFIG, 10);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer

.class);

props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer

.class);

//...
return props;

public KafkaTemplate<Integer, String> kafkaTemplate(ProducerFactory<Integer,

String> producerFactory) {

Kotlin

return new KafkaTemplate<Integer, String>(producerFactory);

}

12

class Sender(private val template: KafkaTemplate<Int, String>) {

fun send(toSend: String, key: Int) {
template.send("topic1", key, toSend)

}
}

class Listener {

@Kafkalistener(id = "listen1", topics = ["topic1"])
fun listen1(‘in‘: String) {

println(‘in')
}

}

@Configuration
@EnableKafka
class Config {

@Bean
fun kafkalistenerContainerFactory(consumerFactory: ConsumerFactory<Int,
String>) =
ConcurrentKafkalListenerContainerFactory<Int, String>().also {
it.consumerFactory = consumerFactory }

@Bean
fun consumerFactory() = DefaultKafkaConsumerFactory<Int,
String>(consumerProps)

val consumerProps = mapOf(

ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG to "localhost:9092",
ConsumerConfig.GROUP_ID_CONFIG to "group",
ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG to

IntegerDeserializer::class.java,
ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG to

StringDeserializer::class.java,
ConsumerConfig.AUTO_OFFSET_RESET_CONFIG to "earliest"

)

@Bean
fun sender(template: KafkaTemplate<Int, String>) = Sender(template)

@Bean
fun listener() = Listener()

@Bean

fun producerFactory() = DefaultKafkaProducerFactory<Int, String>(senderProps)

val senderProps = mapOf(
ProducerConfig.BOOTSTRAP_SERVERS_CONFIG to "localhost:9092",
ProducerConfig.LINGER_MS_CONFIG to 10,
ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG to
IntegerSerializer::class.java,
ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG to
StringSerializer::class.java

)

@Bean
fun kafkaTemplate(producerFactory: ProducerFactory<Int, String>) =
KafkaTemplate(producerFactory)

}

As you can see, you have to define several infrastructure beans when not using Spring Boot.

13

Chapter 4. Reference

This part of the reference documentation details the various components that comprise Spring for
Apache Kafka. The main chapter covers the core classes to develop a Kafka application with Spring.

4.1. Using Spring for Apache Kafka

This section offers detailed explanations of the various concerns that impact using Spring for
Apache Kafka. For a quick but less detailed introduction, see Quick Tour.

4.1.1. Connecting to Kafka

* KafkaAdmin - see Configuring Topics
* ProducerFactory - see Sending Messages

» ConsumerFactory - see Receiving Messages

Starting with version 2.5, each of these extends KafkaResourceFactory. This allows changing the
bootstrap servers at runtime by adding a Supplier<String> to their configuration:
setBootstrapServersSupplier(() »). This will be called for all new connections to get the list of
servers. Consumers and Producers are generally long-lived. To close existing Producers, call reset()
on the DefaultKafkaProducerFactory. To close existing Consumers, call stop() (and then start()) on
the KafkalistenerEndpointRegistry and/or stop() and start() on any other listener container beans.

For convenience, the framework also provides an ABSwitchCluster which supports two sets of
bootstrap servers; one of which is active at any time. Configure the ABSwitchCluster and add it to the
producer and consumer factories, and the KafkaAdmin, by calling setBootstrapServersSupplier().
When you want to switch, call primary() or secondary() and call reset() on the producer factory to
establish new connection(s); for consumers, stop() and start() all listener containers. When using
@KafkalListener s, stop() and start() the KafkalListenerEndpointRegistry bean.

See the Javadocs for more information.

Factory Listeners

Starting with version 2.5, the DefaultKafkaProducerFactory and DefaultKafkaConsumerFactory can be
configured with a Listener to receive notifications whenever a producer or consumer is created or
closed.

14

Producer Factory Listener
interface Listener<k, V> {

default void producerAdded(String id, Producer<K, V> producer) {
}

default void producerRemoved(String id, Producer<K, V> producer) {

}

Consumer Factory Listener
interface Listener<K, V> {

default void consumerAdded(String id, Consumer<K, V> consumer) {

}

default void consumerRemoved(String id, Consumer<K, V> consumer) {

}

In each case, the id is created by appending the client-id property (obtained from the metrics()
after creation) to the factory beanName property, separated by ..

These listeners can be used, for example, to create and bind a Micrometer KafkaClientMetrics
instance when a new client is created (and close it when the client is closed).

The framework provides listeners that do exactly that; see Micrometer Native Metrics.

4.1.2. Configuring Topics

If you define a KafkaAdmin bean in your application context, it can automatically add topics to the
broker. To do so, you can add a NewTopic @Bean for each topic to the application context. Version 2.3
introduced a new class TopicBuilder to make creation of such beans more convenient. The
following example shows how to do so:

15

Java

16

public KafkaAdmin admin() {
Map<String, Object> configs = new HashMap<>();
configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
return new KafkaAdmin(configs);

public NewTopic topicl() {
return TopicBuilder.name("thing1")
.partitions(10)
.replicas(3)
.compact()
.build();

public NewTopic topic2() {
return TopicBuilder.name("thing2")
.partitions(10)
.replicas(3)
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build();

public NewTopic topic3() {
return TopicBuilder.name("thing3")
.assignReplicas(®, Arrays.asList(2, 1))
.assignReplicas(1, Arrays.asList(1, 2))
.assignReplicas(2, Arrays.aslList(2, 0))
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build();

Kotlin

@Bean
fun admin() = KafkaAdmin(mapOf(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG to
"localhost:9092"))

@Bean
fun topic1() =
TopicBuilder.name("thing1")
.partitions(10)
.replicas(3)
.compact()
.build()

©Bean
fun topic2() =
TopicBuilder.name("thing2")
.partitions(10)
.replicas(3)
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build()

@Bean
fun topic3() =
TopicBuilder.name("thing3")

.assignReplicas(@, Arrays.asList(@, 1))
.assignReplicas(1, Arrays.asList(1, 2))
.assignReplicas(2, Arrays.aslList(2, 0))
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build()

Starting with version 2.6, you can omit .partitions() and/or replicas() and the broker defaults will
be applied to those properties. The broker version must be at least 2.4.0 to support this feature - see
KIP-464.

17

https://cwiki.apache.org/confluence/display/KAFKA/KIP-464%3A+Defaults+for+AdminClient%23createTopic

Java

public NewTopic topic4() {
return TopicBuilder.name("defaultBoth")
.build();

public NewTopic topich() {
return TopicBuilder.name("defaultPart")
.replicas(1)
.build();

public NewTopic topic6() {
return TopicBuilder.name("defaultRepl")

.partitions(3)
.build();
}
Kotlin
@Bean

fun topic4()

TopicBuilder.name("defaultBoth").build()

@Bean
fun topich()

TopicBuilder.name("defaultPart").replicas(1).build()

@Bean
fun topic6()

TopicBuilder.name("defaultRepl").partitions(3).build()

Starting with version 2.7, you can declare multiple NewTopic s in a single KafkaAdmin.NewTopics bean
definition:

18

Java

public KafkaAdmin.NewTopics topics456() {
return new NewTopics(
TopicBuilder.name("defaultBoth")
.build(),
TopicBuilder.name("defaultPart")
.replicas(1)
.build(),
TopicBuilder.name("defaultRepl")
.partitions(3)
.build());

Kotlin

©Bean
fun topics456() = KafkaAdmin.NewTopics(
TopicBuilder.name("defaultBoth")
.build(),
TopicBuilder.name("defaultPart")
.replicas(1)
.build(),
TopicBuilder.name("defaultRepl")
.partitions(3)
.build()

o When using Spring Boot, a KafkaAdmin bean is automatically registered so you only
need the NewTopic (and/or NewTopics) @Bean s.

By default, if the broker is not available, a message is logged, but the context continues to load. You
can programmatically invoke the admin’s initialize() method to try again later. If you wish this
condition to be considered fatal, set the admin’s fatalIfBrokerNotAvailable property to true. The
context then fails to initialize.

If the broker supports it (1.0.0 or higher), the admin increases the number of
o partitions if it is found that an existing topic has fewer partitions than the
NewTopic.numPartitions.

Starting with version 2.7, the KafkaAdmin provides methods to create and examine topics at runtime.

* createOrModifyTopics

* describeTopics

For more advanced features, you can use the AdminClient directly. The following example shows

19

how to do so:

private KafkaAdmin admin;

AdminClient client = AdminClient.create(admin.getConfigurationProperties());

client.close();

4.1.3. Sending Messages

This section covers how to send messages.

Using KafkaTemplate

This section covers how to use KafkaTemplate to send messages.

Overview

The KafkaTemplate wraps a producer and provides convenience methods to send data to Kafka
topics. The following listing shows the relevant methods from KafkaTemplate:

20

ListenableFuture<SendResult<K, V>> sendDefault(V data);
ListenableFuture<SendResult<K, V>> sendDefault(K key, V data);
ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, K key, V data);

ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, Long timestamp,
K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, V data);
ListenableFuture<SendResult<K, V>> send(String topic, K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, K key, V
data);

ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, Long
timestamp, K key, V data);

ListenableFuture<SendResult<K, V>> send(ProducerRecord<K, V> record);
ListenableFuture<SendResult<K, V>> send(Message<?> message);
Map<MetricName, ? extends Metric> metrics();

List<PartitionInfo> partitionsFor(String topic);

<T> T execute(ProducerCallback<K, V, T> callback);

// Flush the producer.

void flush();

interface ProducerCallback<K, V, T> {

T doInKafka(Producer<K, V> producer);

See the Javadoc for more detail.
The sendDefault API requires that a default topic has been provided to the template.

The API takes in a timestamp as a parameter and stores this timestamp in the record. How the user-
provided timestamp is stored depends on the timestamp type configured on the Kafka topic. If the
topic is configured to use CREATE_TIME, the user specified timestamp is recorded (or generated if not
specified). If the topic is configured to use LOG_APPEND_TIME, the user-specified timestamp is ignored
and the broker adds in the local broker time.

21

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/core/KafkaTemplate.html

The metrics and partitionsFor methods delegate to the same methods on the underlying Producer.
The execute method provides direct access to the underlying Producer.

To use the template, you can configure a producer factory and provide it in the template’s
constructor. The following example shows how to do so:

public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());

}

public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.
class);
// See https://kafka.apache.org/documentation/#producerconfigs for more
properties
return props;

}

public KafkaTemplate<Integer, String> kafkaTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory());

}

Starting with version 2.5, you can now override the factory’s ProducerConfig properties to create
templates with different producer configurations from the same factory.

public KafkaTemplate<String, String> stringTemplate(ProducerFactory<String,
String> pf) {
return new KafkaTemplate<>(pf);

}

public KafkaTemplate<String, byte[]> bytesTemplate(ProducerFactory<String, byte[]>
pf) {
return new KafkaTemplate<>(pf,
Collections.singletonMap(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
ByteArraySerializer.class));

}

22

https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/Producer.html
https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/Producer.html

Note that a bean of type ProducerFactory<?, 7> (such as the one auto-configured by Spring Boot) can
be referenced with different narrowed generic types.

You can also configure the template by using standard <bean/> definitions.
Then, to use the template, you can invoke one of its methods.

When you use the methods with a Message<?> parameter, the topic, partition, and key information is
provided in a message header that includes the following items:

» KafkaHeaders.TOPIC

e KafkaHeaders.PARTITION ID

e KafkaHeaders.MESSAGE_KEY

» KafkaHeaders.TIMESTAMP

The message payload is the data.

Optionally, you can configure the KafkaTemplate with a ProducerListener to get an asynchronous
callback with the results of the send (success or failure) instead of waiting for the Future to
complete. The following listing shows the definition of the ProducerListener interface:

public interface ProducerlListener<K, V> {

void onSuccess(ProducerRecord<K, V> producerRecord, RecordMetadata
recordMetadata);

void onError(ProducerRecord<K, V> producerRecord, RecordMetadata
recordMetadata,
Exception exception);

By default, the template is configured with a LoggingProducerListener, which logs errors and does
nothing when the send is successful.

For convenience, default method implementations are provided in case you want to implement
only one of the methods.

Notice that the send methods return a ListenableFuture<SendResult>. You can register a callback
with the listener to receive the result of the send asynchronously. The following example shows
how to do so:

23

ListenableFuture<SendResult<Integer, String>> future = template.send("myTopic",

"something");
future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {

public void onSuccess(SendResult<Integer, String> result) {

}

public void onFailure(Throwable ex) {

}

1)

SendResult has two properties, a ProducerRecord and RecordMetadata. See the Kafka API
documentation for information about those objects.

The Throwable in onFailure can be cast to a KafkaProducerException; its failedProducerRecord
property contains the failed record.

Starting with version 2.5, you can use a KafkaSendCallback instead of a ListenableFutureCallback,
making it easier to extract the failed ProducerRecord, avoiding the need to cast the Throwable:

ListenableFuture<SendResult<Integer, String>> future = template.send("topic", 1,
"thing");
future.addCallback(new KafkaSendCallback<Integer, String>() {

public void onSuccess(SendResult<Integer, String> result) {

}

public void onFailure(KafkaProducerException ex) {
ProducerRecord<Integer, String> failed = ex.getFailedProducerRecord();

1

You can also use a pair of lambdas:

24

ListenableFuture<SendResult<Integer, String>> future = template.send("topic", 1,
"thing");
future.addCallback(result -> {

}, (KafkaFailureCallback<Integer, String>) ex -> {
ProducerRecord<Integer, String> failed = ex.getFailedProducerRecord();

1)

If you wish to block the sending thread to await the result, you can invoke the future’s get()
method; using the method with a timeout is recommended. You may wish to invoke flush() before
waiting or, for convenience, the template has a constructor with an autoFlush parameter that
causes the template to flush() on each send. Flushing is only needed if you have set the linger.ms
producer property and want to immediately send a partial batch.

Examples

This section shows examples of sending messages to Kafka:

25

Example 5. Non Blocking (Async)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

ListenableFuture<SendResult<Integer, String>> future = template.send(record);

future.addCallback(new KafkaSendCallback<Integer, String>() {

public void onSuccess(SendResult<Integer, String> result) {
handleSuccess(data);

}

public void onFailure(KafkaProducerException ex) {
handleFailure(data, record, ex);

}
1)

Blocking (Sync)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

try {
template.send(record).get(10, TimeUnit.SECONDS);
handleSuccess(data);

}

catch (ExecutionException e) {
handleFailure(data, record, e.getCause());

}

catch (TimeoutException | InterruptedException e) {
handleFailure(data, record, e);

}

Note that the cause of the ExecutionException is KafkaProducerException

failedProducerRecord property.

Using RoutingKafkaTemplate

with

the

Starting with version 2.5, you can use a RoutingKafkaTemplate to select the producer at runtime,

based on the destination topic name.

26

o The routing template does not support transactions, execute, flush, or metrics

operations because the topic is not known for those operations.

The template requires a map of java.util.regex.Pattern to ProducerFactory<Object,

Object>

instances. This map should be ordered (e.g. a LinkedHashMap) because it is traversed in order; you

should add more specific patterns at the beginning.

The following simple Spring Boot application provides an example of how to use the same template

to send to different topics, each using a different value serializer.

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public RoutingKafkaTemplate routingTemplate(GenericApplicationContext context,

ProducerFactory<Object, Object> pf) {

// Clone the PF with a different Serializer, register with Spring for
shutdown

Map<String, Object> configs = new HashMap<>(pf.getConfigurationProperties

));
configs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

ByteArraySerializer.class);
DefaultKafkaProducerFactory<Object, Object> bytesPF = new
DefaultKafkaProducerFactory<>(configs);
context.registerBean(DefaultKafkaProducerFactory.class, "bytesPF",
bytesPF);

Map<Pattern, ProducerFactory<Object, Object>> map = new LinkedHashMap<>();

map.put(Pattern.compile("two"), bytesPF);

map.put(Pattern.compile(".+"), pf); // Default PF with StringSerializer

return new RoutingKafkaTemplate(map);

public ApplicationRunner runner(RoutingKafkaTemplate routingTemplate) {
return args -> {
routingTemplate.send("one", "thing1");
routingTemplate.send("two", "thing2".getBytes());

b

27

The corresponding @Kafkalistener s for this example are shown in Annotation Properties.

For another technique to achieve similar results, but with the additional capability of sending
different types to the same topic, see Delegating Serializer and Deserializer.

Using DefaultKafkaProducerFactory

As seen in Using KafkaTemplate, a ProducerFactory is used to create the producer.

When not using Transactions, by default, the DefaultKafkaProducerFactory creates a singleton
producer used by all clients, as recommended in the KafkaProducer javadocs. However, if you call
flush() on the template, this can cause delays for other threads using the same producer. Starting
with version 2.3, the DefaultKafkaProducerFactory has a new property producerPerThread. When set
to true, the factory will create (and cache) a separate producer for each thread, to avoid this issue.

When producerPerThread is true, user code must call closeThreadBoundProducer() on

o the factory when the producer is no longer needed. This will physically close the
producer and remove it from the ThreadlLocal. Calling reset() or destroy() will not
clean up these producers.

Also see KafkaTemplate Transactional and non-Transactional Publishing.

When creating a DefaultKafkaProducerFactory, key and/or value Serializer classes can be picked up
from configuration by calling the constructor that only takes in a Map of properties (see example in
Using KafkaTemplate), or Serializer instances may be passed to the DefaultKafkaProducerFactory
constructor (in which case all Producer s share the same instances). Alternatively you can provide
Supplier<Serializer> s (starting with version 2.3) that will be used to obtain separate Serializer
instances for each Producer:

public ProducerFactory<Integer, CustomValue> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs(), null, () -> new
CustomValueSerializer());

}

public KafkaTemplate<Integer, CustomValue> kafkaTemplate() {
return new KafkaTemplate<Integer, CustomValue>(producerFactory());

}

Starting with version 2.5.10, you can now update the producer properties after the factory is
created. This might be useful, for example, if you have to update SSL key/trust store locations after
a credentials change. The changes will not affect existing producer instances; call reset() to close
any existing producers so that new producers will be created using the new properties. NOTE: You
cannot change a transactional producer factory to non-transactional, and vice-versa.

Two new methods are now provided:

28

void updateConfigs(Map<String, Object> updates);

void removeConfig(String configKey);

Starting with version 2.8, if you provide serializers as objects (in the constructor or via the setters),
the factory will invoke the configure() method to configure them with the configuration properties.

Using ReplyingKafkaTemplate

Version 2.1.3 introduced a subclass of KafkaTemplate to provide request/reply semantics. The class is
named ReplyingKafkaTemplate and has two additional methods; the following shows the method
signatures:

RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record);

RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record,
Duration replyTimeout);

(Also see Request/Reply with Message<?> s).

The result is a ListenableFuture that is asynchronously populated with the result (or an exception,
for a timeout). The result also has a sendFuture property, which is the result of calling
KafkaTemplate.send(). You can use this future to determine the result of the send operation.

If the first method is used, or the replyTimeout argument is null, the template’s defaultReplyTimeout
property is used (5 seconds by default).

The following Spring Boot application shows an example of how to use the feature:

29

30

public class KRequestingApplication {

public static void main(String[] args) {
SpringApplication.run(KRequestingApplication.class, args).close();
}

public ApplicationRunner runner(ReplyingKafkaTemplate<String, String, String>
template) {
return args -> {
ProducerRecord<String, String> record = new ProducerRecord<>(
"kRequests", "foo");
RequestReplyFuture<String, String, String> replyFuture = template
.sendAndReceive(record);
SendResult<String, String> sendResult = replyFuture.getSendFuture()
.get(10, TimeUnit.SECONDS);
System.out.println("Sent ok: " + sendResult.getRecordMetadata());
ConsumerRecord<String, String> consumerRecord = replyFuture.get(10,
TimeUnit.SECONDS);
System.out.println("Return value:

+ consumerRecord.value());

};

public ReplyingKafkaTemplate<String, String, String> replyingTemplate(
ProducerFactory<String, String> pf,
ConcurrentMessagelListenerContainer<String, String> repliesContainer) {

return new ReplyingKafkaTemplate<>(pf, repliesContainer);

public ConcurrentMessagelistenerContainer<String, String> repliesContainer(
ConcurrentKafkalistenerContainerFactory<String, String>
containerFactory) {

ConcurrentMessagelistenerContainer<String, String> repliesContainer =
containerFactory.createContainer("kReplies");

repliesContainer.getContainerProperties().setGroupId("repliesGroup”);

repliesContainer.setAutoStartup(false);

return repliesContainer;

public NewTopic kRequests() {
return TopicBuilder.name("kRequests")
.partitions(10)
.replicas(2)

.build();

public NewTopic kReplies() {
return TopicBuilder.name("kReplies")
.partitions(10)
.replicas(2)
.build();

Note that we can use Boot’s auto-configured container factory to create the reply container.

If a non-trivial deserializer is being used for replies, consider using an ErrorHandlingDeserializer
that delegates to your configured deserializer. When so configured, the RequestReplyFuture will be
completed exceptionally and you can catch the ExecutionException, with the
DeserializationException in its cause property.

Starting with version 2.6.7, in addition to detecting DeserializationException s, the template will call
the replyErrorChecker function, if provided. If it returns an exception, the future will be completed
exceptionally.

Here is an example:

31

template.setReplyErrorChecker(record -> {
Header error = record.headers().lastHeader("serverSentAnError");
if (error != null) {
return new MyException(new String(error.value()));

}
else {

return null;
}

b

RequestReplyFuture<Integer, String, String> future = template.sendAndReceive
(record);
try {
future.getSendFuture().get(10, TimeUnit.SECONDS); // send ok
ConsumerRecord<Integer, String> consumerRecord = future.get(10, TimeUnit
.SECONDS);

}
catch (InterruptedException e) {

+
catch (ExecutionException e) {
if (e.getCause instanceof MyException) {

}
}

catch (TimeoutException e) {

}

The template sets a header (named KafkaHeaders.CORRELATION_ID by default), which must be echoed
back by the server side.

In this case, the following @KafkalListener application responds:

32

@SpringBootApplication
public class KReplyingApplication {

public static void main(String[] args) {
SpringApplication.run(KReplyingApplication.class, args);
}

@Kafkalistener(id="server", topics = "kRequests")

@SendTo // use default replyTo expression

public String listen(String in) {
System.out.println("Server received:
return in.toUpperCase();

+1n);
}

@Bean
public NewTopic kRequests() {
return TopicBuilder.name("kRequests")
.partitions(10)
.replicas(2)
.build();
}

@Bean // not required if Jackson is on the classpath
public MessagingMessageConverter simpleMapperConverter() {
MessagingMessageConverter messagingMessageConverter = new
MessagingMessageConverter();
messagingMessageConverter.setHeaderMapper(new SimpleKafkaHeaderMapper());
return messagingMessageConverter;

The @Kafkalistener infrastructure echoes the correlation ID and determines the reply topic.

See Forwarding Listener Results using @SendTo for more information about sending replies. The
template uses the default header KafKaHeaders.REPLY_TOPIC to indicate the topic to which the reply
goes.

Starting with version 2.2, the template tries to detect the reply topic or partition from the
configured reply container. If the container is configured to listen to a single topic or a single
TopicPartitionOffset, it is used to set the reply headers. If the container is configured otherwise, the
user must set up the reply headers. In this case, an INFO log message is written during initialization.
The following example uses KafkaHeaders.REPLY_TOPIC:

33

record.headers().add(new RecordHeader (KafkaHeaders.REPLY_TOPIC, "kReplies"
.getBytes()));

When you configure with a single reply TopicPartitionOffset, you can use the same reply topic for
multiple templates, as long as each instance listens on a different partition. When configuring with
a single reply topic, each instance must use a different group.id. In this case, all instances receive
each reply, but only the instance that sent the request finds the correlation ID. This may be useful
for auto-scaling, but with the overhead of additional network traffic and the small cost of
discarding each unwanted reply. When you use this setting, we recommend that you set the
template’s sharedReplyTopic to true, which reduces the logging level of unexpected replies to DEBUG
instead of the default ERROR.

The following is an example of configuring the reply container to use the same shared reply topic:

public ConcurrentMessagelistenerContainer<String, String> replyContainer(
ConcurrentKafkalListenerContainerFactory<String, String> containerFactory)

{

ConcurrentMessagelistenerContainer<String, String> container =
containerFactory.createContainer("topic2");

container.getContainerProperties().setGroupId(UUID.randomUUID().toString());
// unique

Properties props = new Properties();

props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest"); // so
the new group doesn't get old replies

container.getContainerProperties().setKafkaConsumerProperties(props);

return container;

If you have multiple client instances and you do not configure them as discussed
in the preceding paragraph, each instance needs a dedicated reply topic. An
alternative is to set the KafkaHeaders.REPLY_PARTITION and use a dedicated partition

o for each instance. The Header contains a four-byte int (big-endian). The server must
use this header to route the reply to the correct partition (@KafkalListener does
this). In this case, though, the reply container must not use Kafka’s group
management feature and must be configured to listen on a fixed partition (by
using a TopicPartitionOffset in its ContainerProperties constructor).

The DefaultKafkaHeaderMapper requires Jackson to be on the classpath (for the

o @KafkalListener). If it is not available, the message converter has no header mapper,
so you must configure a MessagingMessageConverter with a SimpleKafkaHeaderMapper,
as shown earlier.

34

By default, 3 headers are used:

» KafkaHeaders.CORRELATION_ID - used to correlate the reply to a request
» KafkaHeaders.REPLY_TOPIC - used to tell the server where to reply
» KafkaHeaders.REPLY_PARTITION - (optional) used to tell the server which partition to reply to

These header names are used by the @Kafkalistener infrastructure to route the reply.

Starting with version 2.3, you can customize the header names - the template has 3 properties
correlationHeaderName, replyTopicHeaderName, and replyPartitionHeaderName. This is useful if your
server is not a Spring application (or does not use the @Kafkalistener).

Request/Reply with Message<?> s

Version 2.7 added methods to the ReplyingKafkaTemplate to send and receive spring-messaging 's
Message<?> abstraction:

RequestReplyMessageFuture<K, V> sendAndReceive(Message<?> message);

<P> RequestReplyTypedMessageFuture<K, V, P> sendAndReceive(Message<?> message,
ParameterizedTypeReference<P> returnType);

These will use the template’s default replyTimeout, there are also overloaded versions that can take
a timeout in the method call.

Use the first method if the consumer’s Deserializer or the template’s MessageConverter can convert
the payload without any additional information, either via configuration or type metadata in the
reply message.

Use the second method if you need to provide type information for the return type, to assist the
message converter. This also allows the same template to receive different types, even if there is no
type metadata in the replies, such as when the server side is not a Spring application. The following
is an example of the latter:

35

Example 6. Template Bean

Java

ReplyingKafkaTemplate<String, String, String> template(
ProducerFactory<String, String> pf,
ConcurrentKafkalListenerContainerFactory<String, String> factory) {

ConcurrentMessagelistenerContainer<String, String> replyContainer =
factory.createContainer("replies");
replyContainer.getContainerProperties().setGroupId("request.replies”);
ReplyingKafkaTemplate<String, String, String> template =
new ReplyingKafkaTemplate<>(pf, replyContainer);
template.setMessageConverter(new ByteArrayJsonMessageConverter());
template.setDefaultTopic("requests");
return template;

Kotlin

@Bean
fun template(
pf: ProducerFactory<String?, String>?,
factory: ConcurrentKafkalistenerContainerFactory<String?, String?>
): ReplyingKafkaTemplate<String?, String, String?> {
val replyContainer = factory.createContainer("replies")
replyContainer.containerProperties.groupld = "request.replies"”
val template = ReplyingKafkaTemplate(pf, replyContainer)
template.messageConverter = ByteArrayJsonMessageConverter()
template.defaultTopic = "requests"
return template

36

Example 7. Using the template
Java

RequestReplyTypedMessageFuture<String, String, Thing> futurel =
template.sendAndReceive(MessageBuilder.withPayload("“getAThing").build(),
new ParameterizedTypeReference<Thing>() { });
log.info(futurel.getSendFuture().get(10, TimeUnit.SECONDS).getRecordMetadata()
.toString());
Thing thing = futurel.get(10, TimeUnit.SECONDS).getPayload();
log.info(thing.toString());

RequestReplyTypedMessageFuture<String, String, List<Thing>> future2 =
template.sendAndReceive(MessageBuilder.withPayload("getThings").build(),
new ParameterizedTypeReference<List<Thing>>() { });
log.info(future2.getSendFuture().get(10, TimeUnit.SECONDS).getRecordMetadata()
.toString());
List<Thing> things = future2.get(10, TimeUnit.SECONDS).getPayload();
things.forEach(thing1l -> log.info(thingl.toString()));

Kotlin

val futurel: RequestReplyTypedMessageFuture<String?, String?, Thing?>? =
template.sendAndReceive(MessageBuilder.withPayload("getAThing").build(),
object : ParameterizedTypeReference<Thing?>() {})
log.info(futurel1?.sendFuture?.qet(10,
TimeUnit.SECONDS)?.recordMetadata?.toString())
val thing = future1?.get(10, TimeUnit.SECONDS)?.payload
log.info(thing.toString())

val future2: RequestReplyTypedMessageFuture<String?, String?, List<Thing?>7?>?7 =
template.sendAndReceive(MessageBuilder.withPayload("getThings").build(),
object : ParameterizedTypeReference<List<Thing?>?>() {})
log.info(future2?.sendFuture?.qget(10,
TimeUnit.SECONDS)?.recordMetadata.toString())
val things = future2?.get(10, TimeUnit.SECONDS)?.payload
things?.forEach(Consumer { thing1: Thing? -> log.info(thingl.toString()) })

Reply Type Message<?>

When the @Kafkalistener returns a Message<?>, with versions before 2.5, it was necessary to
populate the reply topic and correlation id headers. In this example, we use the reply topic header
from the request:

37

(id = "requestor", topics = "request")

public Message<?> messageReturn(String in) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.TOPIC, replyTo)
.setHeader (KafkaHeaders.MESSAGE_KEY, 42)
.setHeader (KafkaHeaders.CORRELATION ID, correlation)
.build();

This also shows how to set a key on the reply record.

Starting with version 2.5, the framework will detect if these headers are missing and populate them
with the topic - either the topic determined from the @SendTo value or the incoming
KafkaHeaders.REPLY_TOPIC header (if present). It will also echo the incoming
KafkaHeaders.CORRELATION_ID and KafkaHeaders.REPLY_PARTITION, if present.

(id = "requestor", topics = "request")
// default REPLY_TOPIC header
public Message<?> messageReturn(String in) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.MESSAGE KEY, 42)
.build();

Aggregating Multiple Replies

The template in Using ReplyingKafkaTemplate is strictly for a single request/reply scenario. For cases
where multiple receivers of a single message return a reply, you can use the
AggregatingReplyingKafkaTemplate. This is an implementation of the client-side of the Scatter-Gather
Enterprise Integration Pattern.

Like the ReplyingKafkaTemplate, the AggregatingReplyingKafkaTemplate constructor takes a producer
factory and a listener container to receive the replies; it has a third parameter
BiPredicate<List<ConsumerRecord<K, R>>, Boolean> releaseStrategy which is consulted each time a
reply is received; when the predicate returns true, the collection of ConsumerRecord s is used to
complete the Future returned by the sendAndReceive method.

There is an additional property returnPartialOnTimeout (default false). When this is set to true,
instead of completing the future with a KafkaReplyTimeoutException, a partial result completes the
future normally (as long as at least one reply record has been received).

Starting with version 2.3.5, the predicate is also called after a timeout (if returnPartialOnTimeout is
true). The first argument is the current list of records; the second is true if this call is due to a
timeout. The predicate can modify the list of records.

38

https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html

AggregatingReplyingKafkaTemplate<Integer, String, String> template =
new AggregatingReplyingKafkaTemplate<>(producerFactory, container,
coll -> coll.size() == releaseSize);

RequestReplyFuture<Integer, String, Collection<ConsumerRecord<Integer, String>>>
future =

template.sendAndReceive(record);
future.getSendFuture().get(10, TimeUnit.SECONDS); // send ok
ConsumerRecord<Integer, Collection<ConsumerRecord<Integer, String>>>
consumerRecord =

future.qget(30, TimeUnit.SECONDS);

Notice that the return type is a ConsumerRecord with a value that is a collection of ConsumerRecord s.
The "outer" ConsumerRecord is not a "real" record, it is synthesized by the template, as a holder for
the actual reply records received for the request. When a normal release occurs (release strategy
returns true), the topic is set to aggregatedResults; if returnPartialOnTimeout is true, and timeout
occurs (and at least one reply record has been received), the topic is set to
partialResultsAfterTimeout. The template provides constant static variables for these "topic" names:

/**

* Pseudo topic name for the "outer" {@link ConsumerRecords} that has the
aggregated

* results in its value after a normal release by the release strategy.

*/

public static final String AGGREGATED_RESULTS_TOPIC = "aggregatedResults";

/**

* Pseudo topic name for the "outer" {@link ConsumerRecords} that has the
aggregated

* results in its value after a timeout.

*/

public static final String PARTIAL_RESULTS_AFTER_TIMEOUT_TOPIC =
"partialResultsAfterTimeout";

The real ConsumerRecord s in the Collection contain the actual topic(s) from which the replies are
received.

39

The listener container for the replies MUST be configured with AckMode.MANUAL or
AckMode .MANUAL_IMMEDIATE; the consumer property enable.auto.commit must be
false (the default since version 2.3). To avoid any possibility of losing messages,

o the template only commits offsets when there are zero requests outstanding, i.e.
when the last outstanding request is released by the release strategy. After a
rebalance, it is possible for duplicate reply deliveries; these will be ignored for any
in-flight requests; you may see error log messages when duplicate replies are
received for already released replies.

If you use an ErrorHandlingDeserializer with this aggregating template, the
framework will not automatically detect DeserializationException s. Instead, the
record (with a null value) will be returned intact, with the deserialization

o exception(s) in headers. It is recommended that applications call the utility method
ReplyingKafkaTemplate.checkDeserialization() method to determine if a
deserialization exception occurred. See its javadocs for more information. The
replyErrorChecker is also not called for this aggregating template; you should
perform the checks on each element of the reply.

4.1.4. Receiving Messages

You can receive messages by configuring a MessagelistenerContainer and providing a message
listener or by using the @Kafkalistener annotation.

Message Listeners

When you use a message listener container, you must provide a listener to receive data. There are
currently eight supported interfaces for message listeners. The following listing shows these
interfaces:

40

public interface Messagelistener<K, V> { @
void onMessage(ConsumerRecord<K, V> data);
}
public interface AcknowledgingMessagelistener<K, V> { @
void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment);

}

public interface ConsumerAwareMessagelistener<K, V> extends Messagelistener<K, V>

{®
void onMessage(ConsumerRecord<K, V> data, Consumer<?, 7> consumer);

}

public interface AcknowledgingConsumerAwareMessagelistener<K, V> extends
Messagelistener<K, V> { @

void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

}
public interface BatchMessagelistener<K, V> { ®
void onMessage(List<ConsumerRecord<K, V>> data);
}
public interface BatchAcknowledgingMessagelistener<K, V> { ®

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment

)
}

public interface BatchConsumerAwareMessagelistener<K, V> extends
BatchMessagelListener<K, V> { @

void onMessage(List<ConsumerRecord<K, V>> data, Consumer<?, 7> consumer);

}

public interface BatchAcknowledgingConsumerAwareMessagelistener<K, V> extends
BatchMessagelistener<K, V> {

41

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods.

® Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods. Access to the Consumer object is provided.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods. Access to
the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods.

@ Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch. Access to the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods. Access to the
Consumer object is provided.

o The Consumer object is not thread-safe. You must only invoke its methods on the
thread that calls the listener.

You should not execute any Consumer<?, 7> methods that affect the consumer’s
o positions and or committed offsets in your listener; the container needs to manage
such information.

Message Listener Containers

Two MessagelistenerContainer implementations are provided:

» KafkaMessageListenerContainer

» ConcurrentMessagelistenerContainer

42

The KafkaMessagelListenerContainer receives all message from all topics or partitions on a single
thread. The ConcurrentMessageListenerContainer delegates to one or more
KafkaMessagelListenerContainer instances to provide multi-threaded consumption.

Starting with version 2.2.7, you can add a RecordInterceptor to the listener container; it will be
invoked before calling the listener allowing inspection or modification of the record. If the
interceptor returns null, the listener is not called. Starting with version 2.7, it has additional
methods which are called after the listener exits (normally, or by throwing an exception). Also,
starting with version 2.7, there is now a BatchInterceptor, providing similar functionality for Batch
Listeners. In addition, the ConsumerAwareRecordInterceptor (and BatchInterceptor) provide access to
the Consumer<?, 7>. This might be used, for example, to access the consumer metrics in the
interceptor.

You should not execute any methods that affect the consumer’s positions and or
o committed offsets in these interceptors; the container needs to manage such
information.

If the interceptor mutates the record (by creating a new one), the topic, partition,
o and offset must remain the same to avoid unexpected side effects such as record
loss.

The CompositeRecordInterceptor and CompositeBatchInterceptor can be used to invoke multiple
interceptors.

By default, starting with version 2.8, when using transactions, the interceptor is invoked before the
transaction has started. You can set the listener container’s interceptBeforeTx property to false to
invoke the interceptor after the transaction has started instead.

Starting with versions 2.3.8, 2.4.6, the ConcurrentMessagelListenerContainer now supports Static
Membership when the concurrency is greater than one. The group.instance.id is suffixed with -n
with n starting at 1. This, together with an increased session.timeout.ms, can be used to reduce
rebalance events, for example, when application instances are restarted.

Using KafkalessagelListenerContainer

The following constructor is available:

public KafkaMessagelistenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

It receives a ConsumerFactory and information about topics and partitions, as well as other
configuration, in a ContainerProperties object. ContainerProperties has the following constructors:

43

https://kafka.apache.org/documentation/#static_membership
https://kafka.apache.org/documentation/#static_membership

public ContainerProperties(TopicPartitionOffset... topicPartitions)
public ContainerProperties(String... topics)

public ContainerProperties(Pattern topicPattern)

The first constructor takes an array of TopicPartitionOffset arguments to explicitly instruct the
container about which partitions to use (using the consumer assign() method) and with an optional
initial offset. A positive value is an absolute offset by default. A negative value is relative to the
current last offset within a partition by default. A constructor for TopicPartitionOffset that takes an
additional boolean argument is provided. If this is true, the initial offsets (positive or negative) are
relative to the current position for this consumer. The offsets are applied when the container is
started. The second takes an array of topics, and Kafka allocates the partitions based on the
group.id property — distributing partitions across the group. The third uses a regex Pattern to select
the topics.

To assign a Messagelistener to a container, you can use the ContainerProps.setMessagelistener
method when creating the Container. The following example shows how to do so:

ContainerProperties containerProps = new ContainerProperties("topic1"”, "topic2");
containerProps.setMessagelistener(new Messagelistener<Integer, String>() {

});
DefaultKafkaConsumerFactory<Integer, String> cf =

new DefaultKafkaConsumerFactory<>(consumerProps());
KafkaMessagelistenerContainer<Integer, String> container =

new KafkaMessagelListenerContainer<>(cf, containerProps);
return container;

Note that when creating a DefaultKafkaConsumerFactory, using the constructor that just takes in the
properties as above means that key and value Deserializer classes are picked up from
configuration. Alternatively, Deserializer instances may be passed to the
DefaultKafkaConsumerFactory constructor for key and/or value, in which case all Consumers share
the same instances. Another option is to provide Supplier<Deserializer> s (starting with version 2.3)
that will be used to obtain separate Deserializer instances for each Consumer:

44

DefaultKafkaConsumerFactory<Integer, CustomValue> cf =

new DefaultKafkaConsumerFactory<>(consumerProps(), null,
() -> new CustomValueDeserializer());
KafkaMessagelListenerContainer<Integer, String> container =

new KafkaMessagelistenerContainer<>(cf, containerProps);
return container;

Refer to the Javadoc for ContainerProperties for more information about the various properties that
you can set.

Since version 2.1.1, a new property called logContainerConfig is available. When true and INFO
logging is enabled each listener container writes a log message summarizing its configuration
properties.

By default, logging of topic offset commits is performed at the DEBUG logging level. Starting with
version 2.1.2, a property in ContainerProperties called commitLoglLevel lets you specify the log level
for these messages. For example, to change the log level to INFO, you can use
containerProperties.setCommitLoglevel(LogIfLevelEnabled.Level.INFO);.

Starting with version 2.2, a new container property called missingTopicsFatal has been added
(default: false since 2.3.4). This prevents the container from starting if any of the configured topics
are not present on the broker. It does not apply if the container is configured to listen to a topic
pattern (regex). Previously, the container threads looped within the consumer.poll() method
waiting for the topic to appear while logging many messages. Aside from the logs, there was no
indication that there was a problem.

As of version 2.8, a new container property authExceptionRetryInterval has been introduced. This
causes the container to retry fetching messages after getting any AuthenticationException or
AuthorizationException from the KafkaConsumer. This can happen when, for example, the configured
user is denied access to read a certain topic or credentials are incorrect. Defining
authExceptionRetryInterval allows the container to recover when proper permissions are granted.

o By default, no interval is configured - authentication and authorization errors are
considered fatal, which causes the container to stop.

Starting with version 2.8, when creating the consumer factory, if you provide deserializers as
objects (in the constructor or via the setters), the factory will invoke the configure() method to
configure them with the configuration properties.

Using ConcurrentMessagelistenerContainer

The single constructor is similar to the KafkalistenerContainer constructor. The following listing
shows the constructor’s signature:

45

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/listener/ContainerProperties.html

public ConcurrentMessagelistenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

It also has a concurrency property. For example, container.setConcurrency(3) creates three
KafkaMessagelListenerContainer instances.

For the first constructor, Kafka distributes the partitions across the consumers using its group
management capabilities.

When listening to multiple topics, the default partition distribution may not be
what you expect. For example, if you have three topics with five partitions each
and you want to use concurrency=15, you see only five active consumers, each
assigned one partition from each topic, with the other 10 consumers being idle.
This is because the default Kafka PartitionAssignor is the RangeAssignor (see its
Javadoc). For this scenario, you may want to consider using the RoundRobinAssignor
instead, which distributes the partitions across all of the consumers. Then, each
consumer is assigned one topic or partition. To change the PartitionAssignor, you
can set the partition.assignment.strategy consumer property

o (ConsumerConfigs.PARTITION_ASSIGNMENT _STRATEGY_CONFIG) in the properties provided
to the DefaultKafkaConsumerFactory.

When using Spring Boot, you can assign set the strategy as follows:

spring.kafka.consumer.properties.partition.assignment.strategy=\
org.apache.kafka.clients.consumer.RoundRobinAssignor

When the container properties are configured with TopicPartitionOffset s, the
ConcurrentMessagelListenerContainer distributes the TopicPartitionOffset instances across the
delegate KafkaMessagelListenerContainer instances.

If, say, six TopicPartitionOffset instances are provided and the concurrency is 3; each container gets
two partitions. For five TopicPartitionOffset instances, two containers get two partitions, and the
third gets one. If the concurrency is greater than the number of TopicPartitions, the concurrency is
adjusted down such that each container gets one partition.

The client.id property (if set) is appended with -n where n is the consumer
o instance that corresponds to the concurrency. This is required to provide unique
names for MBeans when JMX is enabled.

Starting with version 1.3, the MessagelListenerContainer provides access to the metrics of the
underlying KafkaConsumer. In the case of ConcurrentMessagelListenerContainer, the metrics() method
returns the metrics for all the target KafkaMessagelListenerContainer instances. The metrics are
grouped into the Map<MetricName, ? extends Metric> by the client-id provided for the underlying

46

KafkaConsumer.

Starting with version 2.3, the ContainerProperties provides an idleBetweenPolls option to let the
main loop in the listener container to sleep between KafkaConsumer.poll() calls. An actual sleep
interval is selected as the minimum from the provided option and difference between the
max.poll.interval.ms consumer config and the current records batch processing time.

Committing Offsets

Several options are provided for committing offsets. If the enable.auto.commit consumer property is
true, Kafka auto-commits the offsets according to its configuration. If it is false, the containers
support several AckMode settings (described in the next list). The default AckMode is BATCH. Starting
with version 2.3, the framework sets enable.auto.commit to false unless explicitly set in the
configuration. Previously, the Kafka default (true) was used if the property was not set.

The consumer poll() method returns one or more ConsumerRecords. The MessagelListener is called for
each record. The following lists describes the action taken by the container for each AckMode (when
transactions are not being used):

* RECORD: Commit the offset when the listener returns after processing the record.
* BATCH: Commit the offset when all the records returned by the pol1() have been processed.

* TIME: Commit the offset when all the records returned by the poll() have been processed, as
long as the ackTime since the last commit has been exceeded.

* COUNT: Commit the offset when all the records returned by the poll() have been processed, as
long as ackCount records have been received since the last commit.

* COUNT_TIME: Similar to TIME and COUNT, but the commit is performed if either condition is true.

* MANUAL: The message listener is responsible to acknowledge() the Acknowledgment. After that, the
same semantics as BATCH are applied.

o MANUAL_IMMEDIATE: Commit the offset immediately when the Acknowledgment.acknowledge()
method is called by the listener.

When using transactions, the offset(s) are sent to the transaction and the semantics are equivalent
to RECORD or BATCH, depending on the listener type (record or batch).

MANUAL, and MANUAL _IMMEDIATE require the listener to be an
AcknowledgingMessagelistener or a BatchAcknowledgingMessagelistener. See Message
Listeners.

Depending on the syncCommits container property, the commitSync() or commitAsync() method on the
consumer is used. syncCommits is true by default; also see setSyncCommitTimeout. See
setCommitCallback to get the results of asynchronous commits; the default callback is the
LoggingCommitCallback which logs errors (and successes at debug level).

Because the listener container has it’s own mechanism for committing offsets, it prefers the Kafka
ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG to be false. Starting with version 2.3, it unconditionally
sets it to false unless specifically set in the consumer factory or the container’s consumer property
overrides.

47

The Acknowledgment has the following method:

public interface Acknowledgment {

void acknowledge();

This method gives the listener control over when offsets are committed.

Starting with version 2.3, the Acknowledgment interface has two additional methods nack(long sleep)
and nack(int index, long sleep). The first one is used with a record listener, the second with a
batch listener. Calling the wrong method for your listener type will throw an I11legalStateException.

If you want to commit a partial batch, using nack(), When using transactions, set
o the AckMode to MANUAL; invoking nack() will send the offsets of the successfully
processed records to the transaction.

o nack() can only be called on the consumer thread that invokes your listener.

With a record listener, when nack() is called, any pending offsets are committed, the remaing
records from the last poll are discarded, and seeks are performed on their partitions so that the
failed record and unprocessed records are redelivered on the next poll(). The consumer thread
can be paused before redelivery, by setting the sleep argument. This is similar functionality to
throwing an exception when the container is configured with a DefaultErrorHandler.

When using a batch listener, you can specify the index within the batch where the failure occurred.
When nack() is called, offsets will be committed for records before the index and seeks are
performed on the partitions for the failed and discarded records so that they will be redelivered on
the next poll().

See Container Error Handlers for more information.

When using partition assignment via group management, it is important to ensure
o the sleep argument (plus the time spent processing records from the previous poll)
is less than the consumer max.poll.interval.ms property.

Listener Container Auto Startup

The listener containers implement SmartlLifecycle, and autoStartup is true by default. The
containers are started in a late phase (Integer.MAX-VALUE - 100). Other components that implement
SmartLifecycle, to handle data from listeners, should be started in an earlier phase. The - 100
leaves room for later phases to enable components to be auto-started after the containers.

48

Manually Committing Offsets

Normally, when using AckMode.MANUAL or AckMode.MANUAL_IMMEDIATE, the acknowledgments must be
acknowledged in order, because Kafka does not maintain state for each record, only a committed
offset for each group/partition. Starting with version 2.8, you can now set the container property
asyncAcks, which allows the acknowledgments for records returned by the poll to be acknowledged
in any order. The listener container will defer the out-of-order commits until the missing
acknowledgments are received. The consumer will be paused (no new records delivered) until all
the offsets for the previous poll have been committed.

While this feature allows applications to process records asynchronously, it should
o be understood that it increases the possibility of duplicate deliveries after a
failure.

@Kafkalistener Annotation

The oKafkalistener annotation is used to designate a bean method as a listener for a listener
container. The bean is wrapped in a MessagingMessagelListenerAdapter configured with various
features, such as converters to convert the data, if necessary, to match the method parameters.

You can configure most attributes on the annotation with SpEL by using #{---} or property
placeholders (${::-}). See the Javadoc for more information.

Record Listeners

The @Kafkalistener annotation provides a mechanism for simple POJO listeners. The following
example shows how to use it:

public class Listener {

(id = "foo", topics = "myTopic", clientIdPrefix = "myClientId")
public void listen(String data) {

}

This mechanism requires an @EnableKafka annotation on one of your @Configuration classes and a
listener container factory, which is used to configure the underlying
ConcurrentMessagelListenerContainer. By default, a bean with name kafkalistenerContainerFactory is
expected. The following example shows how to use ConcurrentMessagelListenerContainer:

49

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/annotation/KafkaListener.html

public class KafkaConfig {

KafkalListenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setConcurrency(3);
factory.getContainerProperties().setPollTimeout(3000);
return factory;

public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());

}

public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka
.getBrokersAsString());

return props;

Notice that, to set container properties, you must use the getContainerProperties() method on the
factory. It is used as a template for the actual properties injected into the container.

Starting with version 2.1.1, you can now set the client.id property for consumers created by the
annotation. The clientIdPrefix is suffixed with -n, where n is an integer representing the container
number when using concurrency.

Starting with version 2.2, you can now override the container factory’s concurrency and autoStartup
properties by using properties on the annotation itself. The properties can be simple values,
property placeholders, or SpEL expressions. The following example shows how to do so:

50

(id = "myListener", topics = "myTopic",
autoStartup = "${listen.auto.start:true}", concurrency =
"${listen.concurrency:3}")
public void listen(String data) {

}

Explicit Partition Assignment

You can also configure POJO listeners with explicit topics and partitions (and, optionally, their
initial offsets). The following example shows how to do so:

(id = "thing2", topicPartitions =

{ (topic = "topic1", partitions = { "0", "1" }),
(topic = "topic2", partitions = "0",
partitionOffsets = (partition = "1", initialOffset =
"100"))
})

public void listen(ConsumerRecord<?, ?> record) {

}

You can specify each partition in the partitions or partition0ffsets attribute but not both.

As with most annotation properties, you can use SpEL expressions; for an example of how to
generate a large list of partitions, see Manually Assigning All Partitions.

Starting with version 2.5.5, you can apply an initial offset to all assigned partitions:

(id = "thing3", topicPartitions =
{ (topic = "topic1", partitions = { "0", "1" },
partitionOffsets = (partition = "*", initialOffset =
"0"))
})

public void listen(ConsumerRecord<?, ?> record) {

}

The * wildcard represents all partitions in the partitions attribute. There must only be one
@Partition0ffset with the wildcard in each @TopicPartition.

In addition, when the listener implements ConsumerSeekAware, onPartitionsAssigned is now called,

31

even when using manual assignment. This allows, for example, any arbitrary seek operations at
that time.

Starting with version 2.6.4, you can specify a comma-delimited list of partitions, or partition ranges:

(id = "pp", autoStartup = "false",
topicPartitions = (topic = "topic1",
partitions = "0-5, 7, 10-15"))
public void process(String in) {

}

The range is inclusive; the example above will assign partitions 0, 1, 2, 3, 4, 5, 7, 10, 11, 12,
13, 14, 15.

The same technique can be used when specifying initial offsets:

(id = "thing3", topicPartitions =
{ (topic = "topic1",
partitionOffsets = (partition = "0-5", initialOffset
- |l®|l))
1))

public void listen(ConsumerRecord<?, ?> record) {

}

The initial offset will be applied to all 6 partitions.

Manual Acknowledgment

When using manual AckMode, you can also provide the listener with the Acknowledgment. The
following example also shows how to use a different container factory.

(id = "cat", topics = "myTopic",
containerFactory = "kafkaManualAckListenerContainerFactory")
public void listen(String data, Acknowledgment ack) {

ack.acknowledge();

Consumer Record Metadata

Finally, metadata about the record is available from message headers. You can use the following

32

header names to retrieve the headers of the message:

* KafkaHeaders.OFFSET

KafkaHeaders.RECEIVED_MESSAGE _KEY

KafkaHeaders.RECEIVED _TOPIC

KafkaHeaders.RECEIVED PARTITION_ID

KafkaHeaders.RECEIVED_TIMESTAMP

KafkaHeaders.TIMESTAMP_TYPE

Starting with version 2.5 the RECEIVED_MESSAGE_KEY is not present if the incoming record has a null
key; previously the header was populated with a null value. This change is to make the framework
consistent with spring-messaging conventions where null valued headers are not present.

The following example shows how to use the headers:

(id = "qux", topicPattern = "myTopicl")
public void listen(String foo,
(name = KafkaHeaders.RECEIVED_MESSAGE_KEY, required = false)
Integer key,
(KafkaHeaders.RECEIVED_PARTITION_ID) int partition,
(KafkaHeaders.RECEIVED_TOPIC) String topic,
(KafkaHeaders.RECEIVED_TIMESTAMP) long ts
) {

Starting with version 2.5, instead of using discrete headers, you can receive record metadata in a
ConsumerRecordMetadata parameter.

(...)

public void listen(String str, ConsumerRecordMetadata meta) {

}

This contains all the data from the ConsumerRecord except the key and value.

Batch Listeners

Starting with version 1.1, you can configure @Kafkalistener methods to receive the entire batch of
consumer records received from the consumer poll. To configure the listener container factory to
create batch listeners, you can set the batchListener property. The following example shows how to
do so:

33

public KafkalistenerContainerFactory<?, 7> batchFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setBatchListener(true); // <<<<<<<LLLLLLLLLLLLLLLLLKL
return factory;

Starting with version 2.8, you can override the factory’s batchListener propery

o using the batch property on the eKafkalistener annotation. This, together with the
changes to Container Error Handlers allows the same factory to be used for both
record and batch listeners.

The following example shows how to receive a list of payloads:

(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list) {

}

The topic, partition, offset, and so on are available in headers that parallel the payloads. The
following example shows how to use the headers:

(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list,

(KafkaHeaders.RECEIVED_MESSAGE_KEY) List<Integer> keys,

(KafkaHeaders.RECEIVED_PARTITION_ID) List<Integer> partitions,

(KafkaHeaders.RECEIVED_TOPIC) List<String> topics,

(KafkaHeaders.OFFSET) List<Long> offsets) {

Alternatively, you can receive a List of Message<?> objects with each offset and other details in each
message, but it must be the only parameter (aside from optional Acknowledgment, when using
manual commits, and/or Consumer<?, 7> parameters) defined on the method. The following example
shows how to do so:

54

@Kafkalistener(id = "listMsg", topics = "myTopic", containerFactory =
"batchFactory")
public void listen14(List<Message<?>> list) {

}

@Kafkalistener(id = "listMsgAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen15(List<Message<?>> list, Acknowledgment ack) {

}

@Kafkalistener(id = "listMsgAckConsumer", topics = "myTopic", containerFactory
"batchFactory")

public void listen16(List<Message<?>> list, Acknowledgment ack, Consumer<?, 7>
consumer) {

}

No conversion is performed on the payloads in this case.

@Kafkalistener(id = "listCRs", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list) {

}

@Kafkalistener(id = "listCRsAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list, Acknowledgment

{
}

Starting with version 2.2, the listener can receive the complete ConsumerRecords<?,
returned by the pol1l() method, letting the listener access additional methods, such as partitions()
(which returns the TopicPartition instances in the list) and records(TopicPartition) (which gets

If the BatchMessagingMessageConverter is configured with a RecordMessageConverter, you can also add
a generic type to the Message parameter and the payloads are converted. See Payload Conversion
with Batch Listeners for more information.

You can also receive a list of ConsumerRecord<?, 7> objects, but it must be the only parameter (aside
from optional Acknowledgment, when using manual commits and Consumer<?, 7> parameters) defined
on the method. The following example shows how to do so:

ack)

7> object

55

selective records). Again, this must be the only parameter (aside from optional Acknowledgment,
when using manual commits or Consumer<?, 7> parameters) on the method. The following example
shows how to do so:

(id = "pollResults", topics = "myTopic", containerFactory =
"batchFactory")
public void pollResults(ConsumerRecords<?, 7> records) {

}

If the container factory has a RecordFilterStrategy configured, it is ignored for
ConsumerRecords<?, 7> listeners, with a WARN log message emitted. Records can only

o be filtered with a batch listener if the <List<?>> form of listener is used. By default,
records are filtered one-at-a-time; starting with version 2.8, you can override
filterBatch to filter the entire batch in one call.

Annotation Properties

Starting with version 2.0, the id property (if present) is used as the Kafka consumer group.id
property, overriding the configured property in the consumer factory, if present. You can also set
groupId explicitly or set idIsGroup to false to restore the previous behavior of using the consumer
factory group.id.

You can use property placeholders or SpEL expressions within most annotation properties, as the
following example shows:

(topics = "${some.property}")

(topics = "#{someBean.someProperty}",
groupld = "#{someBean.someProperty}.group")

Starting with version 2.1.2, the SpEL expressions support a special token: __listener. It is a pseudo
bean name that represents the current bean instance within which this annotation exists.

Consider the following example:

36

public Listener listener1() {
return new Listener("topic1");

}

public Listener listener2() {
return new Listener("topic2");

}

Given the beans in the previous example, we can then use the following:

public class Listener {
private final String topic;

public Listener(String topic) {
this.topic = topic;
}

(topics = "#{__listener.topic}",
groupId = "#{__listener.topic}.group")
public void listen(...) {

}

public String getTopic() {
return this.topic;

}

If, in the unlikely event that you have an actual bean called __listener, you can change the
expression token byusing the beanRef attribute. The following example shows how to do so:

(beanRef = "__x", topics = "#{__x.topic}",
groupld = "#{__x.topic}.group")

Starting with version 2.2.4, you can specify Kafka consumer properties directly on the annotation,
these will override any properties with the same name configured in the consumer factory. You
cannot specify the group.id and client.id properties this way; they will be ignored; use the groupId
and clientIdPrefix annotation properties for those.

57

The properties are specified as individual strings with the normal Java Properties file format:
foo:bar, foo=bar, or foo bar.

(topics = "myTopic", groupId = "group", properties = {
"max.poll.interval.ms:60000",
ConsumerConfig.MAX_POLL_RECORDS_CONFIG + "=100"

}

The following is an example of the corresponding listeners for the example in Using
RoutingKafkaTemplate.

(id = "one", topics = "one")
public void listen1(String in) {
System.out.println("1: " + in);
}

(id = "two", topics = "two",
properties =
"value.deserializer:org.apache.kafka.common.serialization.ByteArrayDeserializer")
public void listen2(byte[] in) {
System.out.println("2: " + new String(in));
¥

Obtaining the Consumer group.id

When running the same listener code in multiple containers, it may be useful to be able to
determine which container (identified by its group.id consumer property) that a record came from.

You can call KafkaUtils.getConsumerGroupId() on the listener thread to do this. Alternatively, you
can access the group id in a method parameter.

(id = "bar", topicPattern = "${topicTwo:annotated2}", exposeGroupIld
= "${always:true}")
public void listener(String foo,
(KafkaHeaders.GROUP_ID) String groupId) {

This is available in record listeners and batch listeners that receive a List<?> of
o records. It is not available in a batch listener that receives a ConsumerRecords<?, 7>
argument. Use the KafkaUtils mechanism in that case.

38

Container Thread Naming

Listener containers currently use two task executors, one to invoke the consumer and another that
is used to invoke the listener when the kafka consumer property enable.auto.commit is false. You
can provide custom executors by setting the consumerExecutor and listenerExecutor properties of
the container’s ContainerProperties. When using pooled executors, be sure that enough threads are
available to handle the concurrency across all the containers in which they are used. When using
the ConcurrentMessagelistenerContainer, a thread from each is used for each consumer (
concurrency).

If you do not provide a consumer executor, a SimpleAsyncTaskExecutor is used. This executor creates
threads with names similar to <beanName>-C-1 (consumer thread). For the
ConcurrentMessageListenerContainer, the <beanName> part of the thread name becomes <beanName>-m,
where m represents the consumer instance. n increments each time the container is started. So, with
a bean name of container, threads in this container will be named container-0-C-1, container-1-C-1
etc., after the container is started the first time; container-0-C-2, container-1-C-2 etc., after a stop
and subsequent start.

@Kafkalistener as a Meta Annotation

Starting with version 2.2, you can now use @Kafkalistener as a meta annotation. The following
example shows how to do so:

(ElementType.METHOD)
(RetentionPolicy.RUNTIME)

public MyThreeConsumersListener {

Kafkalistener.class, attribute = "id")

(annotation
String id();

(annotation = Kafkalistener.class, attribute = "topics")

String[] topics();

(annotation = Kafkalistener.class, attribute = "concurrency")
String concurrency() default "3";

You must alias at least one of topics, topicPattern, or topicPartitions (and, usually, id or groupId
unless you have specified a group.id in the consumer factory configuration). The following example
shows how to do so:

39

@MyThreeConsumersListener(id = "my.group”, topics = "my.topic")
public void listen1(String in) {

}

@KafkalListener on a Class

When you use @KafkalListener at the class-level, you must specify @KafkaHandler at the method level.
When messages are delivered, the converted message payload type is used to determine which
method to call. The following example shows how to do so:

@Kafkalistener(id = "multi", topics = "myTopic")
static class MultilistenerBean {

@KafkaHandler
public void listen(String foo) {

}

@KafkaHandler
public void listen(Integer bar) {

}

@KafkaHandler (isDefault = true)
public void listenDefault(Object object) {

}

Starting with version 2.1.3, you can designate a @KafkaHandler method as the default method that is
invoked if there is no match on other methods. At most, one method can be so designated. When
using @KafkaHandler methods, the payload must have already been converted to the domain object
(so the match can be performed). Use a custom deserializer, the JsonDeserializer, or the
JsonMessageConverter with its TypePrecedence set to TYPE_ID. See Serialization, Deserialization, and
Message Conversion for more information.

Due to some limitations in the way Spring resolves method arguments, a default
o @KafkaHandler = cannot receive discrete headers; it must use the

ConsumerRecordMetadata as discussed in Consumer Record Metadata.

For example:

60

(isDefault = true)
public void listenDefault(Object object, (KafkaHeaders.RECEIVED_TOPIC)
String topic) {

}

This won’t work if the object is a String; the topic parameter will also get a reference to object.

If you need metadata about the record in a default method, use this:

(isDefault = true)
void listen(Object in, (KafkaHeaders.RECORD_METADATA)
ConsumerRecordMetadata meta) {
String topic = meta.topic();

@Kafkalistener Attribute Modification

Starting with version 2.7.2, you can now programmatically modify annotation attributes before the
container is created. To do SO, add one or more
KafkalistenerAnnotationBeanPostProcessor.AnnotationEnhancer to the application context.
AnnotationEnhancer is a BiFunction<Map<String, Object>, AnnotatedElement, Map<String, Object>
and must return a map of attributes. The attribute values can contain SpEL and/or property
placeholders; the enhancer is called before any resolution is performed. If more than one enhancer
is present, and they implement Ordered, they will be invoked in order.

o AnnotationEnhancer bean definitions must be declared static because they are
required very early in the application context’s lifecycle.

An example follows:

61

public static AnnotationEnhancer groupIdEnhancer() {
return (attrs, element) -> {
attrs.put("groupId”, attrs.get("id") + + (element instanceof Class
? ((Class<?>) element).getSimpleName()
: ((Method) element).getDeclaringClass().getSimpleName()
+ "." 4+ ((Method) element).getName()));

return attrs;

};

@Kafkalistener Lifecycle Management

The listener containers created for @Kafkalistener annotations are not beans in the application
context. Instead, they are registered with an infrastructure bean of type
KafkalListenerEndpointRegistry. This bean is automatically declared by the framework and manages
the containers' lifecycles; it will auto-start any containers that have autoStartup set to true. All
containers created by all container factories must be in the same phase. See Listener Container Auto
Startup for more information. You can manage the lifecycle programmatically by using the registry.
Starting or stopping the registry will start or stop all the registered containers. Alternatively, you
can get a reference to an individual container by using its id attribute. You can set autoStartup on
the annotation, which overrides the default setting configured into the container factory. You can
get a reference to the bean from the application context, such as auto-wiring, to manage its
registered containers. The following examples show how to do so:

(id = "myContainer", topics = "myTopic", autoStartup = "false")
public void listen(...) { ... }

private KafkalistenerEndpointRegistry registry;

this.registry.getListenerContainer("myContainer").start();

The registry only maintains the life cycle of containers it manages; containers declared as beans are
not managed by the registry and can be obtained from the application context. A collection of
managed containers can be obtained by calling the registry’s getlListenerContainers() method.
Version 2.2.5 added a convenience method getAllListenerContainers(), which returns a collection
of all containers, including those managed by the registry and those declared as beans. The
collection returned will include any prototype beans that have been initialized, but it will not

62

initialize any lazy bean declarations.

@Kafkalistener @Payload Validation

Starting with version 2.2, it is now easier to add a Validator to validate @Kafkalistener @Payload
arguments. Previously, you had to configure a custom DefaultMessageHandlerMethodFactory and add
it to the registrar. Now, you can add the validator to the registrar itself. The following code shows
how to do so:

public class Config implements KafkalListenerConfigurer {

public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)

registrar.setValidator(new MyValidator());
}

o When you use Spring Boot with the validation starter, a LocalValidatorFactoryBean
is auto-configured, as the following example shows:

public class Config implements KafkalListenerConfigurer {

private LocalValidatorFactoryBean validator;

public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)

registrar.setValidator(this.validator);

}

The following examples show how to validate:

63

public static class Validated(Class {

@Max(10)
private int bar;

public int getBar() {
return this.bar;

}

public void setBar(int bar) {
this.bar = bar;

}

@Kafkalistener(id="validated", topics = "annotated35", errorHandler =
"validationErrorHandler",

containerFactory = "kafkalsonListenerContainerFactory")
public void validatedlListener(@Payload @Valid Validated(Class val) {

}

@Bean
public KafkalListenerErrorHandler validationErrorHandler() {
return (m, e) -> {

};

Starting with version 2.5.11, validation now works on payloads for @KafkaHandler methods in a
class-level listener. See @KafkalListener on a Class.

Rebalancing Listeners

ContainerProperties has a property called consumerRebalancelistener, which takes an
implementation of the Kafka client’s ConsumerRebalancelistener interface. If this property is not
provided, the container configures a logging listener that logs rebalance events at the INFO level.
The framework also adds a sub-interface ConsumerAwareRebalancelistener. The following listing
shows the ConsumerAwareRebalancelistener interface definition:

64

public interface ConsumerAwareRebalancelistener extends ConsumerRebalancelistener

{

void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer, Collection
<TopicPartition> partitions);

void onPartitionsRevokedAfterCommit(Consumer<?, 7> consumer, Collection
<TopicPartition> partitions);

void onPartitionsAssigned(Consumer<?, ?> consumer, Collection<TopicPartition>
partitions);

void onPartitionsLost(Consumer<?, 7> consumer, Collection<TopicPartition>
partitions);

}

Notice that there are two callbacks when partitions are revoked. The first is called immediately. The
second is called after any pending offsets are committed. This is useful if you wish to maintain
offsets in some external repository, as the following example shows:

containerProperties.setConsumerRebalancelistener(new
ConsumerAwareRebalancelistener() {

public void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions) {
// acknowledge any pending Acknowledgments (if using manual acks)

}

public void onPartitionsRevokedAfterCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions) {
/] ...
store(consumer.position(partition));
/] ...

public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
/] ...
consumer.seek(partition, offsetTracker.getOffset() + 1);
/] ...

b

65

Starting with version 2.4, a new method onPartitionsLost() has been added
(similar to a method with the same name in ConsumerRebalancelister). The default
implementation on ConsumerRebalancelister simply calls onPartionsRevoked. The
default implementation on ConsumerAwareRebalancelistener does nothing. When
supplying the listener container with a custom listener (of either type), it is

o important that your implementation not call onPartitionsRevoked from
onPartitionsLost. If you implement ConsumerRebalancelListener you should override
the default method. This is because the listener container will call its own
onPartitionsRevoked from its implementation of onPartitionsLost after calling the
method on your implementation. If you implementation delegates to the default
behavior, onPartitionsRevoked will be called twice each time the Consumer calls that
method on the container’s listener.

Forwarding Listener Results using @SendTo

Starting with version 2.0, if you also annotate a @KafkalListener with a @SendTo annotation and the
method invocation returns a result, the result is forwarded to the topic specified by the @SendTo.

The @SendTo value can have several forms:

» @SendTo("someTopic") routes to the literal topic

» @SendTo("#{someExpression}") routes to the topic determined by evaluating the expression once
during application context initialization.

* @SendTo("!{someExpression}") routes to the topic determined by evaluating the expression at
runtime. The #root object for the evaluation has three properties:

o request: The inbound ConsumerRecord (or ConsumerRecords object for a batch listener))
o source: The org.springframework.messaging.Message<?> converted from the request.
o result: The method return result.
* @SendTo (no properties): This is treated as !{source.headers["kafka_replyTopic']} (since version
2.1.3).

Starting with versions 2.1.11 and 2.2.1, property placeholders are resolved within @SendTo values.

The result of the expression evaluation must be a String that represents the topic name. The
following examples show the various ways to use @SendTo:

66

@Kafkalistener(topics = "annotated21")
@SendTo("!{request.value()}") // runtime SpEL
public String replyinglListener(String in) {

}

@Kafkalistener(topics = "${some.property:annotated22}")
@SendTo("#{myBean.replyTopic}") // config time SpEL
public Collection<String> replyingBatchListener(List<String> in) {

}

@Kafkalistener(topics = "annotated23", errorHandler = "replyErrorHandler")
@SendTo("annotated23reply") // static reply topic definition
public String replyinglListenerWithErrorHandler(String in) {

}

@Kafkalistener(topics = "annotated25")
@SendTo("annotated25reply1")
public class MultiListenerSendTo {

@KafkaHandler
public String foo(String in) {

}

@KafkaHandler

@SendTo("!{"'annotated25reply2'}")

public String bar(@Payload(required = false) KafkaNull nul,
@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) int key) {

In order to support @SendTo, the listener container factory must be provided with a
KafkaTemplate (in its replyTemplate property), which is used to send the reply. This

o should be a KafkaTemplate and not a ReplyingKafkaTemplate which is used on the
client-side for request/reply processing. When using Spring Boot, boot will auto-
configure the template into the factory; when configuring your own factory, it
must be set as shown in the examples below.

Starting with version 2.2, you can add a ReplyHeadersConfigurer to the listener container factory.

This is consulted to determine which headers you want to set in the reply message. The following
example shows how to add a ReplyHeadersConfigurer:

67

public ConcurrentKafkalistenerContainerFactory<Integer, String>

kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =

new ConcurrentKafkalistenerContainerFactory<>();

factory.setConsumerFactory(cf());
factory.setReplyTemplate(template());
factory.setReplyHeadersConfigurer((k, v) -> k.equals(“cat"));
return factory;

You can also add more headers if you wish. The following example shows how to do so:

public ConcurrentKafkalistenerContainerFactory<Integer, String>
kafkalListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(cf());
factory.setReplyTemplate(template());
factory.setReplyHeadersConfigurer(new ReplyHeadersConfigurer() {

public boolean shouldCopy(String headerName, Object headerValue) {
return false;

}

public Map<String, Object> additionalHeaders() {
return Collections.singletonMap("qux", "fiz");

}
1

return factory;

When you use @SendTo, you must configure the ConcurrentKafkalListenerContainerFactory with a
KafkaTemplate in its replyTemplate property to perform the send.

Unless you use request/reply semantics only the simple send(topic, value) method

o is used, so you may wish to create a subclass to generate the partition or key. The
following example shows how to do so:

68

public KafkaTemplate<String, String> myReplyingTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory()) {

public ListenableFuture<SendResult<String, String>> send(String topic,
String data) {
return super.send(topic, partitionForData(data), keyForData(data),
data);

If the listener method returns Message<?> or Collection<Message<?>>, the listener
method is responsible for setting up the message headers for the reply. For
example, when handling a request from a ReplyingKafkaTemplate, you might do the
following:

(id = "messageReturned", topics = "someTopic")
public Message<?> listen(String in, (KafkaHeaders
o .REPLY_TOPIC) byte[] replyTo,
(KafkaHeaders.CORRELATION_ID) byte[] correlation) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.TOPIC, replyTo)
.setHeader (KafkaHeaders.MESSAGE_KEY, 42)
.setHeader (KafkaHeaders.CORRELATION ID, correlation)
.setHeader ("someOtherHeader"”, "someValue")
.build();

When using request/reply semantics, the target partition can be requested by the sender.

69

You can annotate a @Kafkalistener method with @SendTo even if no result is
returned. This is to allow the configuration of an errorHandler that can forward
information about a failed message delivery to some topic. The following example
shows how to do so:

(id = "voidlListenerWithReplyingErrorHandler", topics
= "someTopic",
errorHandler = "voidSendToErrorHandler")
("failures")
public void voidListenerWithReplyingErrorHandler(String in) {
o throw new RuntimeException("fail");
}

public KafkalistenerErrorHandler voidSendToErrorHandler() {
return (m, e) -> {
return ... // some information about the failure and input
data

};

See Handling Exceptions for more information.

If a listener method returns an Iterable, by default a record for each element as
the value is sent. Starting with version 2.3.5, set the splitIterables property on

e @Kafkalistener to false and the entire result will be sent as the value of a single
ProducerRecord. This requires a suitable serializer in the reply template’s producer
configuration. However, if the reply is Iterable<Message<?>> the property is
ignored and each message is sent separately.

Filtering Messages

In certain scenarios, such as rebalancing, a message that has already been processed may be
redelivered. The framework cannot know whether such a message has been processed or not. That
is an application-level function. This is known as the Idempotent Receiver pattern and Spring
Integration provides an implementation of it.

The Spring for Apache Kafka project also provides some assistance by means of the
FilteringMessagelistenerAdapter class, which can wrap your Messagelistener. This class takes an
implementation of RecordFilterStrategy in which you implement the filter method to signal that a
message is a duplicate and should be discarded. This has an additional property called
ackDiscarded, which indicates whether the adapter should acknowledge the discarded record. It is
false by default.

When you use @Kafkalistener, set the RecordFilterStrategy (and optionally ackDiscarded) on the
container factory so that the listener is wrapped in the appropriate filtering adapter.

70

https://www.enterpriseintegrationpatterns.com/patterns/messaging/IdempotentReceiver.html
https://docs.spring.io/spring-integration/reference/html/#idempotent-receiver

In addition, a FilteringBatchMessagelistenerAdapter is provided, for when you use a batch message
listener.

The FilteringBatchMessagelistenerAdapter is ignored if your @Kafkalistener
o receives a ConsumerRecords<?, 7> instead of List<ConsumerRecord<?, 7>>, because
ConsumerRecords is immutable.

Starting with version 2.8.4, you can override the listener container factory’s default
RecordFilterStrategy by using the filter property on the listener annotations.

@Kafkalistener(id = "filtered", topics = "topic", filter = "differentFilter")
public void listen(Thing thing) {

Retrying Deliveries

See the DefaultErrorHandler in Handling Exceptions.

Starting @Kafkalistener s in Sequence

A common use case is to start a listener after another listener has consumed all the records in a
topic. For example, you may want to load the contents of one or more compacted topics into
memory before processing records from other topics. Starting with version 2.7.3, a new component
ContainerGroupSequencer has been introduced. It uses the @Kafkalistener containerGroup property to
group containers together and start the containers in the next group, when all the containers in the
current group have gone idle.

It is best illustrated with an example.

71

(id = "listen1", topics = "topic1", containerGroup = "g1",
concurrency = "2")
public void listen1(String in) {
}

(id = "listen2", topics = "topic2", containerGroup = "g1",
concurrency = "2")
public void listen2(String in) {
}

(id = "listen3", topics = "topic3", containerGroup = "g2",
concurrency = "2")
public void listen3(String in) {
}

(id = "listen4", topics = "topic4", containerGroup = "g2",

concurrency = "2")
public void listen4(String in) {
¥

ContainerGroupSequencer sequencer(KafkalistenerEndpointRegistry registry) {
return new ContainerGroupSequencer(registry, 5000, "g1", "g2");

}

Here, we have 4 listeners in two groups, g1 and g2.

During application context initialization, the sequencer, sets the autoStartup property of all the
containers in the provided groups to false. It also sets the idleEventInterval for any containers
(that do not already have one set) to the supplied value (5000ms in this case). Then, when the
sequencer is started by the application context, the containers in the first group are started. As
ListenerContainerIdleEvent s are received, each individual child container in each container is
stopped. When all child containers in a ConcurrentMessagelListenerContainer are stopped, the parent
container is stopped. When all containers in a group have been stopped, the containers in the next
group are started. There is no limit to the number of groups or containers in a group.

By default, the containers in the final group (92 above) are not stopped when they go idle. To modify
that behavior, set stopLastGroupWhenIdle to true on the sequencer.

As an aside; previously, containers in each group were added to a bean of type
Collection<MessagelistenerContainer> with the bean name being the containerGroup. These
collections are now deprecated in favor of beans of type ContainerGroup with a bean name that is
the group name, suffixed with .group; in the example above, there would be 2 beans g1.group and
g2.group. The Collection beans will be removed in a future release.

72

Using KafkaTemplate to Receive

This section covers how to use KafkaTemplate to receive messages.

Starting with version 2.8, the template has four receive() methods:

ConsumerRecord<K, V> receive(String topic, int partition, long offset);

ConsumerRecord<K, V> receive(String topic, int partition, long offset, Duration
pollTimeout);

ConsumerRecords<K, V> receive(Collection<TopicPartition0ffset> requested);

ConsumerRecords<K, V> receive(Collection<TopicPartitionOffset> requested, Duration
pollTimeout);

As you can see, you need to know the partition and offset of the record(s) you need to retrieve; a
new Consumer is created (and closed) for each operation.

With the last two methods, each record is retrieved individually and the results assembled into a
ConsumerRecords object. When creating the TopicPartitionOffset s for the request, only positive,
absolute offsets are supported.

4.1.5. Listener Container Properties

Table 1. ContainerProperties Properties
Property Default Description

ackCount 1 The number of records before
committing pending offsets when the
ackMode is COUNT or COUNT _TIME.

adviceChain null A chain of Advice objects (e.g.
MethodInterceptor around advice)
wrapping the message listener, invoked
in order.

ackMode BATCH Controls how often offsets are
committed - see Committing Offsets.

ackOnError false [DEPRECATED in favor of
ErrorHandler.isAckAfterHandle()]

ackTime 5000 The time in milliseconds after which
pending offsets are committed when the
ackMode is TIME or COUNT_TIME.

73

Property

assignmentCommitOption

authExceptionRetryInterval

clientId

checkDeserExWhenKeyNull

checkDeserExWhenValueNull

commitCallback

commitlLoglLevel

74

Default
LATEST ONLY NO TX

null

(empty string)

false

false

null

DEBUG

Description

Whether or not to commit the initial
position on assignment; by default, the
initial offset will only be committed if

the
ConsumerConfig.AUTO_OFFSET_RESET_CONFIG

is latest and it won’t run in a
transaction even if there is a transaction

manager present. See the javadocs for
ContainerProperties.AssignmentCommitOpt

ion for more information about the
available options.

When not null, a Duration to sleep
between polls when an
AuthenticationException or
AuthorizationException is thrown by the
Kafka client. When null, such exceptions
are considered fatal and the container
will stop.

A prefix for the client.id consumer
property. Overrides the consumer
factory client.id property; in a
concurrent container, -n is added as a
suffix for each consumer instance.

Set to true to always check for a
DeserializationException header when a
null key is received. Useful when the
consumer code cannot determine that
an ErrorHandlingDeserializer has been
configured, such as when using a
delegating deserializer.

Set to true to always check for a
DeserializationException header when a
null value is received. Useful when the
consumer code cannot determine that
an ErrorHandlingDeserializer has been
configured, such as when using a
delegating deserializer.

When present and syncCommits is false a
callback invoked after the commit
completes.

The logging level for logs pertaining to
committing offsets.

Property

consumerRebalancelListener

consumerStartTimout

consumerTaskExecutor

deliveryAttemptHeader

eosMode

fixTx0ffsets

groupld

Default
null

30s

SimpleAsyncTaskExecut
or

false

V2

false

null

Description

A rebalance listener; see Rebalancing
Listeners.

The time to wait for the consumer to
start before logging an error; this might
happen if, say, you use a task executor
with insufficient threads.

A task executor to run the consumer
threads. The default executor creates
threads named <name>-C-n; with the
KafkaMessagelListenerContainer, the name
is the bean name; with the
ConcurrentMessagelListenerContainer the
name is the bean name suffixed with -n
where n is incremented for each child
container.

See Delivery Attempts Header.

Exactly Once Semantics mode; see
Exactly Once Semantics.

When consuming records produced by a
transactional producer, and the
consumer is positioned at the end of a
partition, the lag can incorrectly be
reported as greater than zero, due to the
pseudo record used to indicate
transaction commit/rollback and,
possibly, the presence of rolled-back
records. This does not functionally affect
the consumer but some users have
expressed concern that the "lag" is non-
zero. Set this property to true and the
container will correct such mis-reported
offsets. The check is performed before
the next poll to avoid adding significant
complexity to the commit processing. At
the time of writing, the lag will only be
corrected if the consumer is configured
with isolation.level=read_committed and
max.poll.records is greater than 1. See
KAFKA-10683 for more information.

Overrides the consumer group.id
property; automatically set by the
@Kafkalistener id or groupld property.

75

https://issues.apache.org/jira/browse/KAFKA-10683

Property
idleBeforeDataMultiplier

idleBetweenPolls

idleEventInterval

idlePartitionEventInterval

kafkaConsumerProperties

logContainerConfig

messagelistener

micrometerEnabled

missingTopicsFatal

monitorInterval

noPol1Threshold

76

Default
5.0

null

null

None

false

null

true

false

30s

3.0

Description

Multiplier for idleEventInterval thatis
applied before any records are received.
After a record is received, the multiplier
is no longer applied. Available since
version 2.8.

Used to slow down deliveries by sleeping
the thread between polls. The time to
process a batch of records plus this
value must be less than the
max.poll.interval.ms consumer
property.

When set, enables publication of
ListenerContainerIdleEvent s, see
Application Events and Detecting Idle
and Non-Responsive Consumers. Also
see idleBeforeDataMultiplier.

When set, enables publication of
ListenerContainerIdlePartitionEvent s,
see Application Events and Detecting
Idle and Non-Responsive Consumers.

Used to override any arbitrary consumer
properties configured on the consumer
factory.

Set to true to log at INFO level all
container properties.

The message listener.

Whether or not to maintain Micrometer
timers for the consumer threads.

When true prevents the container from
starting if the confifgured topic(s) are
not present on the broker.

How often to check the state of the
consumer threads for
NonResponsiveConsumerEvent s. See
noPol1Threshold and pollTimeout.

Multiplied by pol1TimeQOut to determine
whether to publish a
NonResponsiveConsumerEvent. See
monitorInterval.

Property
onlylLogRecordMetadata

pollTimeout

scheduler

shutdownTimeout

stopContainerWhenFenced

stopImmediate

subBatchPerPartition

syncCommitTimeout

syncCommits

topics topicPattern
topicPartitions

transactionManager

Default

false

5000

ThreadPoolTaskSchedul
er

10000

false

false

See desc.

null

true

n/a

null

Description

Set to false to log the complete consumer
record (in error, debug logs etc) instead
of just topic-partition@offset.
Deprecated. Replaced by
KafkaUtils.setConsumerRecordFormatter.

The timeout passed into Consumer.poll().

A scheduler on which to run the
consumer monitor task.

The maximum time in ms to block the
stop() method until all consumers stop
and before publishing the container
stopped event.

Stop the listener container if a
ProducerFencedException is thrown. See
After-rollback Processor for more
information.

When the container is stopped, stop
processing after the current record
instead of after processing all the
records from the previous poll.

When using a batch listener, if this is
true, the listener is called with the
results of the poll split into sub batches,
one per partition. Default false except
when using transactions with

EOSMode .ALPHA - see Exactly Once
Semantics.

The timeout to use when syncCommits is
true. When not set, the container will
attempt to determine the
default.api.timeout.ms consumer
property and use that; otherwise it will
use 60 seconds.

Whether to use sync or async commits
for offsets; see commitCallback.

The configured topics, topic pattern or
explicitly assigned topics/partitions.
Mutually exclusive; at least one must be
provided; enforced by
ContainerProperties constructors.

See Transactions.

77

Table 2. AbstractListenerContainer Properties

Property Default

afterRollbackProcessor DefaultAfterRollbackProces

sor

applicationEventPublish application context
er

batchErrorHandler See desc.
batchInterceptor null
beanName bean name
commonErrorHandler See desc.
containerProperties ContainerProperties
errorHandler See desc.
genericErrorHandler See desc.
groupId See desc.
interceptBeforeTx true
listenerId See desc.
listenerInfo null
pauseRequested (read only)
recordInterceptor null

78

Description

An AfterRollbackProcessor to invoke after a
transaction is rolled back.

The event publisher.

Deprecated - see commonErrorHandler.

Set a BatchInterceptor to call before
invoking the batch listener; does not apply
to record listeners. Also see
interceptBeforeTx.

The bean name of the container; suffixed
with -n for child containers.

DefaultErrorHandler or null when a
transactionManager is provided when a
DefaultAfterRollbackProcessor is used. See
Container Error Handlers.

The container properties instance.
Deprecated - see commonErrorHandler.
Deprecated - see commonErrorHandler.

The containerProperties.groupld, if present,
otherwise the group.id property from the
consumer factory.

Determines whether the recordInterceptor
is called before or after a transaction starts.

The bean name for user-configured
containers or the id attribute of
@KafkalListener s.

A value to populate in the
KafkaHeaders.LISTENER_INFO header. With
@Kafkalistener, this value is obtained from
the info attribute. This header can be used
in various places, such as a
RecordInterceptor, RecordFilterStrategy and
in the listener code itself.

True if a consumer pause has been
requested.

Set a RecordInterceptor to call before
invoking the record listener; does not apply
to batch listeners. Also see
interceptBeforeTx.

Property Default Description

topicCheckTimeout 30s When the missingTopicsFatal container
property is true, how long to wait, in
seconds, for the describeTopics operation to

complete.
Table 3. KafkaMessagelListenerContainer Properties
Property Default Description
assignedPartitions (read The partitions currently assigned to this container
only) (explicitly or not).
assignedPartitionsByClientI (read The partitions currently assigned to this container
d only) (explicitly or not).
clientIdSuffix null Used by the concurrent container to give each child

container’s consumer a unique client.1id.

containerPaused n/a True if pause has been requested and the consumer has
actually paused.

Table 4. ConcurrentMessagelistenerContainer Properties

Property Default Description

alwaysClientIdSuffix true Set to false to suppress adding a suffix to the client.id
consumer property, when the concurrency is only 1.

assignedPartitions (read The aggregate of partitions currently assigned to this

only) container’s child KafkaMessagelListenerContainer s

(explicitly or not).

assignedPartitionsByClientI (read The partitions currently assigned to this container’s child

d only) KafkaMessagelListenerContainer s (explicitly or not), keyed

by the child container’s consumer’s client.id property.

concurrency 1 The number of child KafkaMessageListenerContainer s to
manage.
containerPaused n/a True if pause has been requested and all child containers'

consumer has actually paused.

containers n/a A reference to all child KafkaMessagelListenerContainer s.

4.1.6. Application Events

The following Spring application events are published by listener containers and their consumers:
* ConsumerStartingEvent - published when a consumer thread is first started, before it starts
polling.
* ConsumerStartedEvent - published when a consumer is about to start polling.

* ConsumerFailedToStartEvent - published if no ConsumerStartingEvent is published within the
consumerStartTimeout container property. This event might signal that the configured task

79

executor has insufficient threads to support the containers it is used in and their concurrency.
An error message is also logged when this condition occurs.

ListenerContainerIdleEvent: published when no messages have been received in idleInterval (if
configured).

ListenerContainerNoLongerIdleEvent: published when a record is consumed after previously
publishing a ListenerContainerIdleEvent.

ListenerContainerPartitionIdleEvent: published when no messages have been received from
that partition in idlePartitionEventInterval (if configured).

ListenerContainerPartitionNoLongerIdleEvent: published when a record is consumed from a
partition that has previously published a ListenerContainerPartitionIdleEvent.

NonResponsiveConsumerEvent: published when the consumer appears to be blocked in the poll
method.

ConsumerPartitionPausedEvent: published by each consumer when a partition is paused.
ConsumerPartitionResumedEvent: published by each consumer when a partition is resumed.
ConsumerPausedEvent: published by each consumer when the container is paused.
ConsumerResumedEvent: published by each consumer when the container is resumed.
ConsumerStoppingEvent: published by each consumer just before stopping.
ConsumerStoppedEvent: published after the consumer is closed. See Thread Safety.

ContainerStoppedEvent: published when all consumers have stopped.

By default, the application context’s event multicaster invokes event listeners on

o the calling thread. If you change the multicaster to use an async executor, you
must not invoke any Consumer methods when the event contains a reference to the
consumer.

The ListenerContainerIdleEvent has the following properties:

source: The listener container instance that published the event.

container: The listener container or the parent listener container, if the source container is a
child.

id: The listener ID (or container bean name).
idleTime: The time the container had been idle when the event was published.

topicPartitions: The topics and partitions that the container was assigned at the time the event
was generated.

consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

paused: Whether the container is currently paused. See Pausing and Resuming Listener
Containers for more information.

The ListenerContainerNoLongerIdleEvent has the same properties, except idleTime and paused.

80

The ListenerContainerPartitionIdleEvent has the following properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

* id: The listener ID (or container bean name).
 idleTime: The time partition consumption had been idle when the event was published.
» topicPartition: The topic and partition that triggered the event.

» consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

* paused: Whether that partition consumption is currently paused for that consumer. See Pausing

and Resuming Listener Containers for more information.

The ListenerContainerPartitionNoLongerIdleEvent has the same properties, except idleTime and
paused.

The NonResponsiveConsumerEvent has the following properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e id: The listener ID (or container bean name).
* timeSincelastPoll: The time just before the container last called pol1().

* topicPartitions: The topics and partitions that the container was assigned at the time the event
was generated.

» consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

* paused: Whether the container is currently paused. See Pausing and Resuming Listener

Containers for more information.

The ConsumerPausedEvent, ConsumerResumedEvent, and ConsumerStopping events have the following
properties:
 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e partitions: The TopicPartition instances involved.

The ConsumerPartitionPausedEvent, ConsumerPartitionResumedEvent events have the following
properties:

» source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

81

e partition: The TopicPartition instance involved.

The ConsumerStartingEvent, ConsumerStartingEvent, ConsumerFailedToStartEvent,
ConsumerStoppedEvent and ContainerStoppedEvent events have the following properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a

child.

All containers (whether a child or a parent) publish ContainerStoppedEvent. For a parent container,
the source and container properties are identical.

In addition, the ConsumerStoppedEvent has the following additional property:

* reason
> NORMAL - the consumer stopped normally (container was stopped).
o ERROR - a java.lang.Error was thrown.

o FENCED - the transactional producer was fenced and the stopContainerWhenFenced container
property is true.

o AUTH - an AuthenticationException or AuthorizationException was thrown and the
authExceptionRetryInterval is not configured.

o NO_OFFSET - there is no offset for a partition and the auto.offset.reset policy is none.

You can use this event to restart the container after such a condition:

if (event.getReason.equals(Reason.FENCED)) {
event.getSource(MessagelistenerContainer.class).start();

}

Detecting Idle and Non-Responsive Consumers

While efficient, one problem with asynchronous consumers is detecting when they are idle. You
might want to take some action if no messages arrive for some period of time.

You can configure the listener container to publish a ListenerContainerIdleEvent when some time
passes with no message delivery. While the container is idle, an event is published every
idleEventInterval milliseconds.

To configure this feature, set the idleEventInterval on the container. The following example shows
how to do so:

82

public KafkaMessageListenerContainer(ConsumerFactory<String, String>
consumerFactory) {

ContainerProperties containerProps = new ContainerProperties("topicl1",
topic2");

containerProps.setIdleEventInterval(60000L);

KafkaMessagelistenerContainer<String, String> container = new
KafKaMessagelistenerContainer<>(...);
return container;

}

The following example shows how to set the idleEventInterval for a @Kafkalistener:

public ConcurrentKafkalistenerContainerFactory kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<String, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.getContainerProperties().setIdleEventInterval(60000L);

return factory;

In each of these cases, an event is published once per minute while the container is idle.

If, for some reason, the consumer poll() method does not exit, no messages are received and idle
events cannot be generated (this was a problem with early versions of the kafka-clients when the
broker wasn’t reachable). In this case, the container publishes a NonResponsiveConsumerEvent if a poll
does not return within 3x the pollTimeout property. By default, this check is performed once every
30 seconds in each container. You can modify this behavior by setting the monitorInterval (default
30 seconds) and noPollThreshold (default 3.0) properties in the ContainerProperties when
configuring the listener container. The noPol1Threshold should be greater than 1.0 to avoid getting
spurious events due to a race condition. Receiving such an event lets you stop the containers, thus
waking the consumer so that it can stop.

Starting with version 2.6.2, if a container has published a ListenerContainerIdleEvent, it will publish
a ListenerContainerNoLongerIdleEvent when a record is subsequently received.

Event Consumption

You can capture these events by implementing ApplicationlListener —either a general listener or
one narrowed to only receive this specific event. You can also use @EventListener, introduced in
Spring Framework 4.2.

83

The next example combines @KafkalListener and @EventListener into a single class. You should
understand that the application listener gets events for all containers, so you may need to check the
listener ID if you want to take specific action based on which container is idle. You can also use the
@EventListener condition for this purpose.

See Application Events for information about event properties.

The event is normally published on the consumer thread, so it is safe to interact with the Consumer
object.

The following example uses both @Kafkalistener and @EventListener:

public class Listener {

@KafkalListener(id = "qux", topics = "annotated")
public void listen4(@Payload String foo, Acknowledgment ack) {

}

@EventListener(condition = "event.listenerId.startsWith('qux-")")
public void eventHandler(ListenerContainerIdleEvent event) {

}

Event listeners see events for all containers. Consequently, in the preceding
example, we narrow the events received based on the listener ID. Since containers

o created for the @Kafkalistener support concurrency, the actual containers are
named id-n where the n is a unique value for each instance to support the
concurrency. That is why we use startsWith in the condition.

If you wish to use the idle event to stop the lister container, you should not call
container.stop() on the thread that calls the listener. Doing so causes delays and
o unnecessary log messages. Instead, you should hand off the event to a different
thread that can then stop the container. Also, you should not stop() the container
instance if it is a child container. You should stop the concurrent container instead.
Current Positions when Idle
Note that you can obtain the current positions when idle is detected by implementing

ConsumerSeekAware in your listener. See onIdleContainer() in Seeking to a Specific Offset.

4.1.7. Topic/Partition Initial Offset

There are several ways to set the initial offset for a partition.

84

When manually assigning partitions, you can set the initial offset (if desired) in the configured
TopicPartitionOffset arguments (see Message Listener Containers). You can also seek to a specific
offset at any time.

When you use group management where the broker assigns partitions:
» For a new group.id, the initial offset is determined by the auto.offset.reset consumer property

(earliest or latest).

» For an existing group ID, the initial offset is the current offset for that group ID. You can,
however, seek to a specific offset during initialization (or at any time thereafter).

4.1.8. Seeking to a Specific Offset

In order to seek, your listener must implement ConsumerSeekAware, which has the following
methods:

void registerSeekCallback(ConsumerSeekCallback callback);

void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback);

void onPartitionsRevoked(Collection<TopicPartition> partitions)

void onIdleContainer(Map<TopicPartition, Long> assignments, ConsumerSeekCallback
callback);

The registerSeekCallback is called when the container is started and whenever partitions are
assigned. You should use this callback when seeking at some arbitrary time after initialization. You
should save a reference to the callback. If you use the same listener in multiple containers (or in a
ConcurrentMessagelListenerContainer), you should store the callback in a ThreadLocal or some other
structure keyed by the listener Thread.

When using group management, onPartitionsAssigned is called when partitions are assigned. You
can use this method, for example, for setting initial offsets for the partitions, by calling the callback.
You can also use this method to associate this thread’s callback with the assigned partitions (see the
example below). You must use the callback argument, not the one passed into registerSeekCallback.
Starting with version 2.5.5, this method is called, even when using manual partition assignment.

onPartitionsRevoked is called when the container is stopped or Kafka revokes assignments. You
should discard this thread’s callback and remove any associations to the revoked partitions.

The callback has the following methods:

85

void seek(String topic, int partition, long offset);

void seekToBeginning(String topic, int partition);

void seekToBeginning(Collection=<TopicPartitions> partitions);

void seekToEnd(String topic, int partition);

void seekToEnd(Collection=<TopicPartitions> partitions);

void seekRelative(String topic, int partition, long offset, boolean toCurrent);
void seekToTimestamp(String topic, int partition, long timestamp);

void seekToTimestamp(Collection<TopicPartition> topicPartitions, long timestamp);

seekRelative was added in version 2.3, to perform relative seeks.

» offset negative and toCurrent false - seek relative to the end of the partition.
» offset positive and toCurrent false - seek relative to the beginning of the partition.
» offset negative and toCurrent true - seek relative to the current position (rewind).

» offset positive and toCurrent true - seek relative to the current position (fast forward).

The seekToTimestamp methods were also added in version 2.3.

When seeking to the same timestamp for multiple partitions in the onIdleContainer
or onPartitionsAssigned methods, the second method is preferred because it is

o more efficient to find the offsets for the timestamps in a single call to the
consumer’s offsetsForTimes method. When called from other locations, the
container will gather all timestamp seek requests and make one call to
offsetsForTimes.

You can also perform seek operations from onIdleContainer() when an idle container is detected.
See Detecting Idle and Non-Responsive Consumers for how to enable idle container detection.

The seekToBeginning method that accepts a collection is useful, for example, when

o processing a compacted topic and you wish to seek to the beginning every time the
application is started:

86

public class MyListener implements ConsumerSeekAware {

public void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {

callback.seekToBeginning(assignments.keySet());
}

To arbitrarily seek at runtime, use the callback reference from the registerSeekCallback for the
appropriate thread.

Here is a trivial Spring Boot application that demonstrates how to use the callback; it sends 10
records to the topic; hitting <Enter> in the console causes all partitions to seek to the beginning.

87

88

public class SeekExampleApplication {

public static void main(String[] args) {
SpringApplication.run(SeekExampleApplication.class, args);
}

public ApplicationRunner runner(Listener listener, KafkaTemplate<String,
String> template) {
return args -> {

IntStream.range(@, 10).forEach(i -> template.send(
new ProducerRecord<>("seekExample", i % 3, "foo", "bar")));

while (true) {
System.in.read();
listener.seekToStart();

public NewTopic topic() {
return new NewTopic("seekExample", 3, (short) 1);

}

class Listener implements ConsumerSeekAware {

private static final Logger logger = LoggerFactory.getlLogger(Listener.class);

private final ThreadlLocal<ConsumerSeekCallback> callbackForThread = new
ThreadlLocal<>();
private final Map<TopicPartition, ConsumerSeekCallback> callbacks = new

ConcurrentHashMap<>();

public void registerSeekCallback(ConsumerSeekCallback callback) {
this.callbackForThread.set(callback);

}

public void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {
assignments.keySet().forEach(tp -> this.callbacks.put(tp, this
.callbackForThread.qget()));
}

public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
partitions.forEach(tp -> this.callbacks.remove(tp));
this.callbackForThread.remove();

public void onIdleContainer(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {
}

(id = "seekExample", topics = "seekExample", concurrency = "3")
public void listen(ConsumerRecord<String, String> in) {
logger.info(in.toString());
}

public void seekToStart() {
this.callbacks.forEach((tp, callback) -> callback.seekToBeginning(tp.
topic(), tp.partition()));
}

To make things simpler, version 2.3 added the AbstractConsumerSeekAware class, which keeps track of
which callback is to be used for a topic/partition. The following example shows how to seek to the
last record processed, in each partition, each time the container goes idle. It also has methods that
allow arbitrary external calls to rewind partitions by one record.

89

public class SeekTolLastOnIdlelListener extends AbstractConsumerSeekAware {

(id = "seekOnIdle", topics = "seekOnIdle")
public void listen(String in) {

}

public void onIdleContainer(Map<org.apache.kafka.common.TopicPartition, Long>
assignments,
ConsumerSeekCallback callback) {

assignments.keySet().forEach(tp -> callback.seekRelative(tp.topic(),
tp.partition(), -1, true));
}

/**
* Rewind all partitions one record.
*
/
public void rewindAl1OneRecord() {
getSeekCallbacks()
.forEach((tp, callback) ->
callback.seekRelative(tp.topic(), tp.partition(), -1, true));

}

/**
* Rewind one partition one record.
*/
public void rewindOnePartitionOneRecord(String topic, int partition) {
getSeekCallbackFor(new org.apache.kafka.common.TopicPartition(topic,
partition))
.seekRelative(topic, partition, -1, true);

}

Version 2.6 added convenience methods to the abstract class:

» seekToBeginning() - seeks all assigned partitions to the beginning
* seekToEnd() - seeks all assigned partitions to the end

* seekToTimestamp(long time) - seeks all assigned partitions to the offset represented by that
timestamp.

Example:

90

public class MyListener extends AbstractConsumerSeekAware {

(...)
void listn(...) {

public class SomeQtherBean {

MyListener listener;

void someMethod() {
this.listener.seekToTimestamp(System.currentTimeMillis - 60_000);

4.1.9. Container factory

As discussed in @KafkalListener Annotation, a ConcurrentKafkalistenerContainerFactory is used to
create containers for annotated methods.

Starting with version 2.2, you can wuse the same factory to create any
ConcurrentMessagelistenerContainer. This might be useful if you want to create several containers
with similar properties or you wish to use some externally configured factory, such as the one
provided by Spring Boot auto-configuration. Once the container is created, you can further modify
its properties, many of which are set by using container.getContainerProperties(). The following
example configures a ConcurrentMessagelListenerContainer:

public ConcurrentMessagelistenerContainer<String, String>(
ConcurrentKafkalListenerContainerFactory<String, String> factory) {

ConcurrentMessagelistenerContainer<String, String> container =
factory.createContainer("topic1", "topic2");

container.setMessagelListener(m -> { ... });

return container;

91

Containers created this way are not added to the endpoint registry. They should be
o created as @Bean definitions so that they are registered with the application
context.

Starting with version 2.3.4, you can add a ContainerCustomizer to the factory to further configure
each container after it has been created and configured.

public KafkalistenerContainerFactory<?, 7> kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.setContainerCustomizer(container -> { /* customize the container */ }

)i
return factory;
}
4.1.10. Thread Safety

When using a concurrent message listener container, a single listener instance is invoked on all
consumer threads. Listeners, therefore, need to be thread-safe, and it is preferable to use stateless
listeners. If it is not possible to make your listener thread-safe or adding synchronization would
significantly reduce the benefit of adding concurrency, you can use one of a few techniques:

* Use n containers with concurrency=1 with a prototype scoped MessagelListener bean so that each
container gets its own instance (this is not possible when using @KafkalListener).

* Keep the state in ThreadlLocal<?> instances.

* Have the singleton listener delegate to a bean that is declared in SimpleThreadScope (or a similar
scope).

To facilitate cleaning up thread state (for the second and third items in the preceding list), starting
with version 2.2, the listener container publishes a ConsumerStoppedEvent when each thread exits.
You can consume these events with an ApplicationListener or @EventlListener method to remove
ThreadlLocal<?> instances or remove() thread-scoped beans from the scope. Note that
SimpleThreadScope does not destroy beans that have a destruction interface (such as DisposableBean),
so you should destroy() the instance yourself.

By default, the application context’s event multicaster invokes event listeners on
o the calling thread. If you change the multicaster to use an async executor, thread
cleanup is not effective.

4.1.11. Monitoring

92

Monitoring Listener Performance

Starting with version 2.3, the listener container will automatically create and update Micrometer
Timer s for the listener, if Micrometer is detected on the class path, and a single MeterRegistry is
present in the application context. The timers can be disabled by setting the ContainerProperty
micrometerEnabled to false.

Two timers are maintained - one for successful calls to the listener and one for failures.
The timers are named spring.kafka.listener and have the following tags:

e name : (container bean name)
e result: success or failure

» exception:none or ListenerExecutionFailedException

You can add additional tags using the ContainerProperties micrometerTags property.

o With the concurrent container, timers are created for each thread and the name tag
is suffixed with -n where n is @ to concurrency-1.

Monitoring KafkaTemplate Performance

Starting with version 2.5, the template will automatically create and update Micrometer Timer s for
send operations, if Micrometer is detected on the class path, and a single MeterRegistry is present in
the application context. The timers can be disabled by setting the template’s micrometerEnabled
property to false.

Two timers are maintained - one for successful calls to the listener and one for failures.
The timers are named spring.kafka.template and have the following tags:

* name : (template bean name)
e result: success or failure

* exception : none or the exception class name for failures

You can add additional tags using the template’s micrometerTags property.

Micrometer Native Metrics

Starting with version 2.5, the framework provides Factory Listeners to manage a Micrometer
KafkaClientMetrics instance whenever producers and consumers are created and closed.

To enable this feature, simply add the listeners to your producer and consumer factories:

93

public ConsumerFactory<String, String> myConsumerFactory() {
Map<String, Object> configs = consumerConfigs();

DefaultKafkaConsumerFactory<String, String> cf = new
DefaultKafkaConsumerFactory<>(configs);

cf.addListener(new MicrometerConsumerListener<String, String>(meterRegistry(),
Collections.singletonlList(new ImmutableTag("customTag",
"customTagValue"))));

return cf;

public ProducerFactory<String, String> myProducerFactory() {
Map<String, Object> configs = producerConfigs();
configs.put(ProducerConfig.CLIENT_ID_CONFIG, "myClientId");

DefaultKafkaProducerFactory<String, String> pf = new
DefaultKafkaProducerFactory<>(configs);

pf.addListener(new MicrometerProducerListener<String, String>(meterRegistry(),
Collections.singletonlList(new ImmutableTag("customTag",
"customTagValue"))));

return pf;

The consumer/producer id passed to the listener is added to the meter’s tags with tag name
spring.id.

An example of obtaining one of the Kafka metrics

double count = this.meterRegistry.get("kafka.producer.node.incoming.byte.total")
.tag("customTag", "customTagValue")
.tag("spring.id", "myProducerFactory.myClientId-1")
.functionCounter ()
.count()

A similar listener is provided for the StreamsBuilderFactoryBean - see KafkaStreams Micrometer
Support.

94

4.1.12. Transactions

This section describes how Spring for Apache Kafka supports transactions.

Overview

The 0.11.0.0 client library added support for transactions. Spring for Apache Kafka adds support in
the following ways:

* KafkaTransactionManager: Used with normal Spring transaction support (@Transactional,
TransactionTemplate etc).

» Transactional KafkaMessagelListenerContainer
 Local transactions with KafkaTemplate

* Transaction synchronization with other transaction managers

Transactions are enabled by providing the DefaultKafkaProducerFactory with a transactionIdPrefix.
In that case, instead of managing a single shared Producer, the factory maintains a cache of
transactional producers. When the user calls close() on a producer, it is returned to the cache for
reuse instead of actually being closed. The transactional.id property of each producer is
transactionIdPrefix + n, where n starts with @ and is incremented for each new producer, unless the
transaction is started by a listener container with a record-based listener. In that case, the
transactional.id is <transactionIdPrefix>.<group.id>.<topic>.<partition>. This is to properly
support fencing zombies, as described here. This new behavior was added in versions 1.3.7, 2.0.6,
2.1.10, and 2.2.0. If you wish to revert to the previous behavior, you can set the
producerPerConsumerPartition property on the DefaultKafkaProducerFactory to false.

While transactions are supported with batch listeners, by default, zombie fencing
is not supported because a batch may contain records from multiple topics or
partitions. However, starting with version 2.3.2, zombie fencing is supported if you
set the container property subBatchPerPartition to true. In that case, the batch

o listener is invoked once per partition received from the last poll, as if each poll
only returned records for a single partition. This is true by default since version
2.5 when transactions are enabled with EOSMode.ALPHA; set it to false if you are
using transactions but are not concerned about zombie fencing. Also see Exactly
Once Semantics.

Also see transactionIdPrefix.

With Spring Boot, it is only necessary to set the spring.kafka.producer.transaction-id-prefix
property - Boot will automatically configure a KafkaTransactionManager bean and wire it into the
listener container.

95

https://www.confluent.io/blog/transactions-apache-kafka/

Starting with version 2.5.8, you can now configure the maxAge property on the
producer factory. This is useful when using transactional producers that might lay

o idle for the broker’s transactional.id.expiration.ms. With current kafka-clients,
this can cause a ProducerFencedException without a rebalance. By setting the maxAge
to less than transactional.id.expiration.ms, the factory will refresh the producer if
it is past it’s max age.

Using KafkaTransactionManager

The KafkaTransactionManager is an implementation of Spring Framework’s
PlatformTransactionManager. It is provided with a reference to the producer factory in its
constructor. If you provide a custom producer factory, it must support transactions. See
ProducerFactory.transactionCapable().

You can use the KafkaTransactionManager with normal Spring transaction support (@Transactional,
TransactionTemplate, and others). If a transaction is active, any KafkaTemplate operations performed
within the scope of the transaction use the transaction’s Producer. The manager commits or rolls
back the transaction, depending on success or failure. You must configure the KafkaTemplate to use
the same ProducerFactory as the transaction manager.

Transaction Synchronization

This section refers to producer-only transactions (transactions not started by a listener container);
see Using Consumer-Initiated Transactions for information about chaining transactions when the
container starts the transaction.

If you want to send records to kafka and perform some database updates, you can use normal
Spring transaction management with, say, a DataSourceTransactionManager.

public void process(List<Thing> things) {
things.forEach(thing -> this.kafkaTemplate.send("topic", thing));
updateDb(things);

The interceptor for the @Transactional annotation starts the transaction and the KafkaTemplate will
synchronize a transaction with that transaction manager; each send will participate in that
transaction. When the method exits, the database transaction will commit followed by the Kafka
transaction. If you wish the commits to be performed in the reverse order (Kafka first), use nested
@Transactional methods, with the outer method configured to use the DataSourceTransactionManager,
and the inner method configured to use the KafkaTransactionManager.

See Examples of Kafka Transactions with Other Transaction Managers for examples of an
application that synchronizes JDBC and Kafka transactions in Kafka-first or DB-first configurations.

96

Starting with versions 2.5.17, 2.6.12, 2.7.9 and 2.8.0, if the commit fails on the
synchronized transaction (after the primary transaction has committed), the

o exception will be thrown to the caller. Previously, this was silently ignored (logged
at debug). Applications should take remedial action, if necessary, to compensate
for the committed primary transaction.

Using Consumer-Initiated Transactions

The ChainedKafkaTransactionManager is now deprecated, since version 2.7; see the javadocs for its
super class ChainedTransactionManager for more information. Instead, use a KafkaTransactionManager
in the container to start the Kafka transaction and annotate the listener method with
@Transactional to start the other transaction.

See Examples of Kafka Transactions with Other Transaction Managers for an example application
that chains JDBC and Kafka transactions.

KafkaTemplate Local Transactions

You can use the KafkaTemplate to execute a series of operations within a local transaction. The
following example shows how to do so:

boolean result = template.executeInTransaction(t -> {
t.sendDefault("thing1", "thing2");
t.sendDefault("cat", "hat");
return true;

1)

The argument in the callback is the template itself (this). If the callback exits normally, the
transaction is committed. If an exception is thrown, the transaction is rolled back.

o If there is a KafkaTransactionManager (or synchronized) transaction in process, it is
not used. Instead, a new "nested" transaction is used.

transactionIdPrefix

As mentioned in the overview, the producer factory is configured with this property to build the
producer transact