Spring for Apache Kafka

Gary Russell, Artem Bilan, Biju Kunjummen, Jay Bryant, Soby Chacko, Tomaz

Fernandes

Version 3.0.14-SNAPSHOT

Table of Contents

1. Preface
2. What’s new?
2.1. What’s New in 3.0 Since 2.9
2.1.1. Kafka Client Version
2.1.2. Exactly Once Semantics
2.1.3. Observation
2.1.4. Native Images
2.1.5. Global Single Embedded Kafka
2.1.6. Retryable Topics Changes
2.1.7. Listener Container Changes
2.1.8. KafkaTemplate Changes
2.1.9. ReplyingKafkaTemplate Changes
2.1.10. @KafkalListener Changes
2.1.11. KafkaHeaders Changes
2.1.12. Testing Changes
2.2. JsonDeserializer (Since 3.0.12)
3. Introduction
3.1. Quick Tour
3.1.1. Compatibility
3.1.2. Getting Started
Spring Boot Consumer App
Spring Boot Producer App
With Java Configuration (No Spring Boot)
4. Reference
4.1. Using Spring for Apache Kafka
4.1.1. Connecting to Kafka
Factory Listeners
4.1.2. Configuring Topics
4.1.3. Sending Messages
Using KafkaTemplate
Using RoutingKafkaTemplate
Using DefaultKafkaProducerFactory
Using ReplyingKafkaTemplate
Reply Type Message<?>
Aggregating Multiple Replies
4.1.4. Receiving Messages
Message Listeners
Message Listener Containers

© 9 9 9 o o U gk kR R R0 WwWWw W W W W N

B R W W WN NN N R R R R
W Rk, Rk O 00 O © 9 N N IO O o o =

Manually Committing Offsets 50

@Kafkalistener Annotation 50
Obtaining the Consumer group.id 60
Container Thread Naming 60
@Kafkalistener as a Meta Annotation 61
@Kafkalistener on a Class 61
@Kafkalistener Attribute Modification 63
@KafkalListener Lifecycle Management 63
@Kafkalistener @Payload Validation 64
Rebalancing Listeners 66
Forwarding Listener Results using @SendTo 68
Filtering Messages 72
Retrying Deliveries 73
Starting @Kafkalistener s in Sequence 73
Using KafkaTemplate to Receive 75
4.1.5. Listener Container Properties 75
4.1.6. Dynamically Creating Containers 82
MessageListener Implementations 82
Prototype Beans 84
4.1.7. Application Events 86
Detecting Idle and Non-Responsive Consumers 89
Event Consumption 90
4.1.8. Topic/Partition Initial Offset 91
4.1.9. Seeking to a Specific Offset 92
4.1.10. Container factory 98
4.1.11. Thread Safety 99
4.1.12. Monitoring 99
Monitoring Listener Performance 100
Monitoring KafkaTemplate Performance 100
Micrometer Native Metrics 100
Micrometer Observation 102
4.1.13. Transactions 102
Overview 102
Using KafkaTransactionManager 103
Transaction Synchronization 103
Using Consumer-Initiated Transactions 104
KafkaTemplate Local Transactions 104
transactionIdPrefix 105
KafkaTemplate Transactional and non-Transactional Publishing 105
Transactions with Batch Listeners 105

4.1.14. Exactly Once Semantics 107

4.1.15. Wiring Spring Beans into Producer/Consumer Interceptors
4.1.16. Producer Interceptor Managed in Spring
4.1.17. Pausing and Resuming Listener Containers
4.1.18. Pausing and Resuming Partitions on Listener Containers
4.1.19. Serialization, Deserialization, and Message Conversion
Overview
String serialization
JSON
Delegating Serializer and Deserializer
Retrying Deserializer
Spring Messaging Message Conversion
Using ErrorHandlingDeserializer
Payload Conversion with Batch Listeners
ConversionService Customization
Adding custom HandlerMethodArgumentResolver to @KafkalListener
4.1.20. Message Headers
4.1.21. Null Payloads and Log Compaction of 'Tombstone' Records
4.1.22. Handling Exceptions
Listener Error Handlers
Container Error Handlers
Back Off Handlers
DefaultErrorHandler
Conversion Errors with Batch Error Handlers
Retrying Complete Batches
Container Stopping Error Handlers
Delegating Error Handler
Logging Error Handler
Using Different Common Error Handlers for Record and Batch Listeners
Common Error Handler Summary
Legacy Error Handlers and Their Replacements
After-rollback Processor
Delivery Attempts Header
Listener Info Header
Publishing Dead-letter Records
Managing Dead Letter Record Headers
ExponentialBackOffWithMaxRetries Implementation
4.1.23. JAAS and Kerberos
4.2. Non-Blocking Retries
4.2.1. How The Pattern Works
4.2.2. Back Off Delay Precision

Overview and Guarantees

107
110
112
114
114
114
115
116
121
124
124
128
132
133
134
135
139
140
141
142
143
143
148
148
149
149
149
149
149
150
150
153
154
155
158
160
160
160
161
162
162

4.2.3. Configuration 162

Using the @RetryableTopic annotation 162
Using RetryTopicConfiguration beans 163
Configuring Global Settings and Features 165
4.2.4. Programmatic Construction 167
4.2.5. Features 169
BackOff Configuration 169
Global timeout 171
Exception Classifier 171
Include and Exclude Topics 172
Topics AutoCreation 173
Failure Header Management 174
Custom DeadLetterPublishingRecoverer 175
4.2.6. Combining Blocking and Non-Blocking Retries 176
4.2.7. Accessing Delivery Attempts 177
4.2.8. Topic Naming 178
Retry Topics and DIt Suffixes 178
Appending the Topic’s Index or Delay 179
Single Topic for Fixed Delay Retries 179
Single Topic for maxInterval Exponential Delay 180
Custom naming strategies 181
4.2.9. Multiple Listeners, Same Topic(s) 182
4.2.10. DIt Strategies 183
DIt Processing Method 183
DLT Failure Behavior 185
Configuring No DLT 186
4.2.11. Specifying a ListenerContainerFactory 186
4.2.12. Accessing Topics' Information at Runtime 187
4.2.13. Changing KafkaBackOffException Logging Level 188
4.3. Apache Kafka Streams Support 188
4.3.1. Basics 188
4.3.2. Spring Management 189
4.3.3. KafkaStreams Micrometer Support 192
4.3.4. Streams JSON Serialization and Deserialization 192
4.3.5. Using KafkaStreamBrancher 192
4.3.6. Configuration 193
4.3.7. Header Enricher 194
4.3.8. MessagingProcessor 195
4.3.9. Recovery from Deserialization Exceptions 195
4.3.10. Kafka Streams Example 196

4.4. Testing Applications 199

4.4.1. KafkaTestUtils
4.4.2. JUnit
4.4.3. Configuring Topics
4.4.4. Using the Same Broker(s) for Multiple Test Classes
4.4.5. @EmbeddedKafka Annotation
4.4.6. @EmbeddedKafka Annotation with JUnit5
4.4.7. Embedded Broker in @SpringBootTest Annotations
JUnit4 Class Rule
@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean
4.4.8. Hamcrest Matchers
4.4.9. Assert] Conditions
4.4.10. Example
4.4.11. Mock Consumer and Producer
5. Tips, Tricks and Examples
5.1. Manually Assigning All Partitions
5.2. Examples of Kafka Transactions with Other Transaction Managers
5.3. Customizing the JsonSerializer and JsonDeserializer
6. Other Resources
Appendix A: Override Spring Boot Dependencies
Appendix B: Micrometer Observation Documentation
B.1. Observability - Metrics
B.1.1. Listener Observation
B.1.2. Template Observation
B.2. Observability - Spans
B.2.1. Listener Observation Span
B.2.2. Template Observation Span
B.3. Observability - Conventions
Appendix C: Native Images
Appendix D: Change History
D.1. What’s New in 2.9 since 2.8
D.1.1. Kafka Client Version
D.1.2. Error Handler Changes
D.1.3. Listener Container Changes
D.1.4. Header Mapper Changes
D.1.5. KafkaTemplate Changes
D.1.6. ReplyingKafkaTemplate Changes
D.2. What’s New in 2.8 Since 2.7
D.2.1. Kafka Client Version
D.2.2. Package Changes
D.2.3. Out of Order Manual Commits
D.2.4. @KafkalListener Changes

199
199
202
202
204
207
208
208
209
210
211
213
215
218
218
219
222
223
224
226
226
226
226
227
227
227
228
229
230
230
230
230
230
230
230
230
231
231
231
231
231

D.2.5. KafkaTemplate Changes
D.2.6. CommonErrorHandler Added
D.2.7. Listener Container Changes
D.2.8. Serializer/Deserializer Changes
D.2.9. DeadlLetterPublishingRecover Changes
D.2.10. Retryable Topics Changes
D.3. Changes between 2.6 and 2.7
D.3.1. Kafka Client Version
D.3.2. Non-Blocking Delayed Retries Using Topics
D.3.3. Listener Container Changes
D.3.4. @KafkalListener Changes
D.3.5. DeadlLetterPublishingRecover Changes
D.3.6. ChainedKafkaTransactionManager is Deprecated
D.3.7. ReplyingKafkaTemplate Changes
D.3.8. Kafka Streams Changes
D.3.9. KafkaAdmin Changes
D.3.10. MessageConverter Changes
D.3.11. Sequencing @KafkalListener s
D.3.12. ExponentialBackOffWithMaxRetries
D.3.13. Conditional Delegating Error Handlers
D.4. Changes between 2.5 and 2.6
D.4.1. Kafka Client Version
D.4.2. Listener Container Changes
D.4.3. @KafkaListener Changes
D.4.4. ErrorHandler Changes
D.4.5. Producer Factory Changes
D.5. Changes between 2.4 and 2.5
D.5.1. Consumer/Producer Factory Changes
D.5.2. StreamsBuilderFactoryBean Changes
D.5.3. Kafka Client Version
D.5.4. Class/Package Changes
D.5.5. Delivery Attempts Header
D.5.6. @KafkaListener Changes
D.5.7. Listener Container Changes
D.5.8. KafkaTemplate Changes
D.5.9. Kafka String Serializer/Deserializer
D.5.10. JsonDeserializer
D.5.11. Delegating Serializer/Deserializer
D.5.12. Testing Changes
D.6. Changes between 2.3 and 2.4
D.6.1. Kafka Client Version

232
232
232
232
232
232
233
233
233
233
233
234
234
234
234
234
234
234
234
235
235
235
235
235
235
235
236
236
236
236
236
236
236
237
237
237
237
238
238
238
238

D.6.2. ConsumerAwareRebalanceListener 238

D.6.3. GenericErrorHandler 238
D.6.4. KafkaTemplate 238
D.6.5. AggregatingReplyingKafkaTemplate 238
D.6.6. Listener Container 239
D.6.7. @KafkaListener 239
D.6.8. Kafka Streams 239
D.7. Changes Between 2.2 and 2.3 239
D.7.1. Tips, Tricks and Examples 239
D.7.2. Kafka Client Version 239
D.7.3. Class/Package Changes 239
D.7.4. Configuration Changes 239
D.7.5. Producer and Consumer Factory Changes 240
D.7.6. Listener Container Changes 240
D.7.7. ErrorHandler Changes 241
D.7.8. TopicBuilder 241
D.7.9. Kafka Streams Changes 241
D.7.10. JSON Component Changes 241
D.7.11. ReplyingKafkaTemplate 242
D.7.12. AggregatingReplyingKafkaTemplate 242
D.7.13. Transaction Changes 242
D.7.14. New Delegating Serializer/Deserializer 242
D.7.15. New Retrying Deserializer 242
D.8. Changes Between 2.1 and 2.2 242
D.8.1. Kafka Client Version 243
D.8.2. Class and Package Changes 243
D.8.3. After Rollback Processing 243
D.8.4. ConcurrentKafkalistenerContainerFactory Changes 243
D.8.5. Listener Container Changes 243
D.8.6. @KafkaListener Changes 244
D.8.7. Header Mapping Changes 244
D.8.8. Embedded Kafka Changes 244
D.8.9. JsonSerializer/Deserializer Enhancements 244
D.8.10. Kafka Streams Changes 245
D.8.11. Transactional ID 245
D.9. Changes Between 2.0 and 2.1 245
D.9.1. Kafka Client Version 245
D.9.2. JSON Improvements 245
D.9.3. Container Stopping Error Handlers 245
D.9.4. Pausing and Resuming Containers 245

D.9.5. Stateful Retry 245

D.9.6. Client ID 246

D.9.7. Logging Offset Commits 246
D.9.8. Default @KafkaHandler 246
D.9.9. ReplyingKafkaTemplate 246
D.9.10. ChainedKafkaTransactionManager 246
D.9.11. Migration Guide from 2.0 246
D.10. Changes Between 1.3 and 2.0 246
D.10.1. Spring Framework and Java Versions 246
D.10.2. KafkalListener Changes 246
D.10.3. Message Listeners 246
D.10.4. Using ConsumerAwareRebalancelistener 247
D.11. Changes Between 1.2 and 1.3 247
D.11.1. Support for Transactions 247
D.11.2. Support for Headers 247
D.11.3. Creating Topics 247
D.11.4. Support for Kafka Timestamps 247
D.11.5. eKafkalListener Changes 247
D.11.6. @EmbeddedKafka Annotation 247
D.11.7. Kerberos Configuration 247
D.12. Changes Between 1.1 and 1.2 248
D.13. Changes Between 1.0 and 1.1 248
D.13.1. Kafka Client 248
D.13.2. Batch Listeners 248
D.13.3. Null Payloads 248
D.13.4. Initial Offset 248

D.13.5. Seek 248

o This documentation is also available as HTML.

© 2016 - 2023 VMware, Inc.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

https://docs.spring.io/spring-kafka/docs/3.0.14-SNAPSHOT/reference/html/index.html

Chapter 1. Preface

The Spring for Apache Kafka project applies core Spring concepts to the development of Kafka-
based messaging solutions. We provide a “template” as a high-level abstraction for sending

messages. We also provide support for Message-driven POJOs.

Chapter 2. What’s new?

2.1. What’s New in 3.0 Since 2.9

This section covers the changes made from version 2.9 to version 3.0. For changes in earlier
version, see Change History.

2.1.1. Kafka Client Version

This version requires the 3.3.1 kafka-clients.

2.1.2. Exactly Once Semantics

EOSMode . V1 (aka ALPHA) is no longer supported.
o When using transactions, the minimum broker version is 2.5.

See Exactly Once Semantics and KIP-447 for more information.

2.1.3. Observation

Enabling observation for timers and tracing using Micrometer is now supported. See Micrometer
Observation for more information.

2.1.4. Native Images

Support for creating native images is provided. See Native Images for more information.

2.1.5. Global Single Embedded Kafka

The embedded Kafka (EmbeddedKafkaBroker) can now be start as a single global instance for the
whole test plan. See Using the Same Broker(s) for Multiple Test Classes for more information.

2.1.6. Retryable Topics Changes

This feature is no longer considered experimental (as far as its API is concerned), the feature itself
has been supported since 2.7, but with a greater than normal possibility of breaking API changes.

The bootstrapping of Non-Blocking Retries infrastructure beans has changed in this release to avoid
some timing problems that occurred in some application regarding application initialization.

You can now set a different concurrency for the retry containers; by default, the concurrency is the
same as the main container.

@RetryableTopic can now be used as a meta-annotation on custom annotations, including support
for @AliasFor properties.

See Configuration for more information.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-447%3A+Producer+scalability+for+exactly+once+semantics

The default replication factor for the retry topics is now -1 (use broker default). If your broker is
earlier that version 2.4, you will now need to explicitly set the property.

You can now configure multiple @RetryableTopic listeners on the same topic in the same application
context. Previously, this was not possible. See Multiple Listeners, Same Topic(s) for more
information.

There are breaking API changes in RetryTopicConfigurationSupport; specifically, if you override the
bean definition methods for destinationTopicResolver, kafkaConsumerBackoffManager and/or
retryTopicConfigurer; these methods now require an ObjectProvider<RetryTopicComponentFactory>
parameter.

2.1.7. Listener Container Changes

Events related to consumer authentication and authorization failures are now published by the
container. See Application Events for more information.

You can now customize the thread names used by consumer threads. See Container Thread Naming
for more information.

The container property restartAfterAuthException has been added. See Listener Container
Properties for more information.

2.1.8. KafkaTemplate Changes

The futures returned by this class are now CompletableFuture s instead of ListenableFuture s. See
Using KafkaTemplate.

2.1.9. ReplyingKafkaTemplate Changes

The futures returned by this class are now CompletableFuture s instead of ListenableFuture s. See
Using ReplyingKafkaTemplate and Request/Reply with Message<?> s.

2.1.10. eKafkalListener Changes

You can now use a custom correlation header which will be echoed in any reply message. See the
note at the end of Using ReplyingKafkaTemplate for more information.

You can now manually commit parts of a batch before the entire batch is processed. See
Committing Offsets for more information.

2.1.11. KafkaHeaders Changes

Four constants in KafkaHeaders that were deprecated in 2.9.x have now been removed.

» Instead of MESSAGE KEY, use KEY.
» Instead of PARTITION_ID, use PARTITION

Similarly, RECEIVED_MESSAGE _KEY is replaced by RECEIVED_KEY and RECEIVED_PARTITION_ID is replaced
by RECEIVED_PARTITION.

2.1.12. Testing Changes

Version 3.0.7 introduced a MockConsumerFactory and MockProducerFactory. See Mock Consumer and
Producer for more information.

Starting with version 3.0.10, the embedded Kafka broker, by default, sets the Spring Boot property
spring.kafka.bootstrap-servers to the address(es) of the embedded broker(s).

2.2. JsonDeserializer (Since 3.0.12)

When a deserialization exception occurs, the SerializationException message no longer contains
the data with the form Canit deserialize data [[123, 34, 98, 97, 122, --; an array of numerical
values for each data byte is not useful and can be verbose for large data. When used with an
ErrorHandlingDeserializer, the DeserializationException sent to the error handler contains the data
property which contains the raw data that could not be deserialized. When not used with an
ErrorHandlingDeserializer, the KafkaConsumer will continually emit exceptions for the same record
showing the topic/partition/offset and the cause thrown by Jackson.

Chapter 3. Introduction

This first part of the reference documentation is a high-level overview of Spring for Apache Kafka
and the underlying concepts and some code snippets that can help you get up and running as
quickly as possible.

3.1. Quick Tour

Prerequisites: You must install and run Apache Kafka. Then you must put the Spring for Apache
Kafka (spring-kafka) JAR and all of its dependencies on your class path. The easiest way to do that is
to declare a dependency in your build tool.

If you are not using Spring Boot, declare the spring-kafka jar as a dependency in your project.

Maven

<dependency>
<groupld>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>3.0.14-SNAPSHOT</version>
</dependency>

Gradle

compile 'org.springframework.kafka:spring-kafka:3.0.14-SNAPSHOT'

When using Spring Boot, (and you haven’t used start.spring.io to create your
project), omit the version and Boot will automatically bring in the correct version
that is compatible with your Boot version:

Maven
<dependency>
<groupId>org.springframework.kafka</groupId>

<artifactId>spring-kafka</artifactId>
</dependency>

Gradle

compile 'org.springframework.kafka:spring-kafka'

However, the quickest way to get started is to use start.spring.io (or the wizards in Spring Tool Suits
and Intellij IDEA) and create a project, selecting 'Spring for Apache Kafka' as a dependency.

https://start.spring.io

3.1.1. Compatibility
This quick tour works with the following versions:

* Apache Kafka Clients 3.3.x
* Spring Framework 6.0.x

* Minimum Java version: 17

3.1.2. Getting Started

The simplest way to get started is to use start.spring.io (or the wizards in Spring Tool Suits and
Intellij IDEA) and create a project, selecting 'Spring for Apache Kafka' as a dependency. Refer to the
Spring Boot documentation for more information about its opinionated auto configuration of the
infrastructure beans.

Here is a minimal consumer application.

Spring Boot Consumer App

https://start.spring.io
https://docs.spring.io/spring-boot/docs/current/reference/html/messaging.html#messaging.kafka

Example 1. Application

Java

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public NewTopic topic() {
return TopicBuilder.name("topic1")
.partitions(10)
.replicas(1)
.build();

(id = "myId", topics = "topicl")
public void listen(String in) {
System.out.println(in);
}

Kotlin

@SpringBootApplication
class Application {

@Bean
fun topic() = NewTopic("topic1", 10, 1)

@KafkalListener(id = "myId", topics = ["topic1"])
fun listen(value: String?) {
println(value)
}
}

fun main(args: Array<String>) = runApplication<Application>(*args)

Example 2. application.properties

spring.kafka.consumer.auto-offset-reset=earliest

The NewTopic bean causes the topic to be created on the broker; it is not needed if the topic already
exists.

Spring Boot Producer App

Example 3. Application

Java

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public NewTopic topic() {
return TopicBuilder.name("topic1")
.partitions(10)
.replicas(1)
.build();

public ApplicationRunner runner(KafkaTemplate<String, String> template) {
return args -> {
template.send("topic1", "test");

b

Kotlin

@SpringBootApplication
class Application {

@Bean
fun topic() = NewTopic("topic1", 10, 1)

@Bean
fun runner(template: KafkaTemplate<String?, String?>) =
ApplicationRunner { template.send("topic1", "test") }

companion object {

@JvmStatic
fun main(args: Array<String>) = runApplication<Application>(*args)

10

With Java Configuration (No Spring Boot)

Spring for Apache Kafka is designed to be used in a Spring Application Context. For

o example, if you create the listener container yourself outside of a Spring context,
not all functions will work unless you satisfy all of the ---Aware interfaces that the
container implements.

Here is an example of an application that does not use Spring Boot; it has both a Consumer and
Producer.

11

Example 4. Without Boot
Java
public class Sender {

public static void main(String[] args) {
AnnotationConfigApplicationContext context = new
AnnotationConfigApplicationContext(Config.class);
context.qgetBean(Sender.class).send("test", 42);

}
private final KafkaTemplate<Integer, String> template;

public Sender(KafkaTemplate<Integer, String> template) {
this.template = template;

}

public void send(String toSend, int key) {
this.template.send("topic1", key, toSend);
}

}
public class Listener {

(id = "listen1", topics = "topic1")
public void listen1(String in) {
System.out.println(in);
}

public class Config {

ConcurrentKafkalistenerContainerFactory<Integer, String>
kafkalistenerContainerFactory(ConsumerFactory<Integer,
String> consumerFactory) {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory);
return factory;

public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerProps());

}

12

private Map<String, Object> consumerProps() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, "group");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,

IntegerDeserializer.class);

props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,

StringDeserializer.class);

props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
/] ...
return props;

public Sender sender(KafkaTemplate<Integer, String> template) {
return new Sender(template);

}

public Listener listener() {
return new Listener();

}

public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(senderProps());

}

private Map<String, Object> senderProps() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.LINGER_MS_CONFIG, 10);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer

.class);

props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer

.class);

//...
return props;

public KafkaTemplate<Integer, String> kafkaTemplate(ProducerFactory<Integer,

String> producerFactory) {

Kotlin

return new KafkaTemplate<Integer, String>(producerFactory);

}

14

class Sender(private val template: KafkaTemplate<Int, String>) {

fun send(toSend: String, key: Int) {
template.send("topic1", key, toSend)

}
}

class Listener {

@Kafkalistener(id = "listen1", topics = ["topic1"])
fun listen1(‘in‘: String) {

println(‘in')
}

}

@Configuration
@EnableKafka
class Config {

@Bean
fun kafkalistenerContainerFactory(consumerFactory: ConsumerFactory<Int,
String>) =
ConcurrentKafkalListenerContainerFactory<Int, String>().also {
it.consumerFactory = consumerFactory }

@Bean
fun consumerFactory() = DefaultKafkaConsumerFactory<Int,
String>(consumerProps)

val consumerProps = mapOf(

ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG to "localhost:9092",
ConsumerConfig.GROUP_ID_CONFIG to "group",
ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG to

IntegerDeserializer::class.java,
ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG to

StringDeserializer::class.java,
ConsumerConfig.AUTO_OFFSET_RESET_CONFIG to "earliest"

)

@Bean
fun sender(template: KafkaTemplate<Int, String>) = Sender(template)

@Bean
fun listener() = Listener()

@Bean

fun producerFactory() = DefaultKafkaProducerFactory<Int, String>(senderProps)

val senderProps = mapOf(
ProducerConfig.BOOTSTRAP_SERVERS_CONFIG to "localhost:9092",
ProducerConfig.LINGER_MS_CONFIG to 10,
ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG to
IntegerSerializer::class.java,
ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG to
StringSerializer::class.java

)

@Bean
fun kafkaTemplate(producerFactory: ProducerFactory<Int, String>) =
KafkaTemplate(producerFactory)

}

As you can see, you have to define several infrastructure beans when not using Spring Boot.

15

Chapter 4. Reference

This part of the reference documentation details the various components that comprise Spring for
Apache Kafka. The main chapter covers the core classes to develop a Kafka application with Spring.

4.1. Using Spring for Apache Kafka

This section offers detailed explanations of the various concerns that impact using Spring for
Apache Kafka. For a quick but less detailed introduction, see Quick Tour.

4.1.1. Connecting to Kafka

* KafkaAdmin - see Configuring Topics
* ProducerFactory - see Sending Messages

» ConsumerFactory - see Receiving Messages

Starting with version 2.5, each of these extends KafkaResourceFactory. This allows changing the
bootstrap servers at runtime by adding a Supplier<String> to their configuration:
setBootstrapServersSupplier(() »). This will be called for all new connections to get the list of
servers. Consumers and Producers are generally long-lived. To close existing Producers, call reset()
on the DefaultKafkaProducerFactory. To close existing Consumers, call stop() (and then start()) on
the KafkalistenerEndpointRegistry and/or stop() and start() on any other listener container beans.

For convenience, the framework also provides an ABSwitchCluster which supports two sets of
bootstrap servers; one of which is active at any time. Configure the ABSwitchCluster and add it to the
producer and consumer factories, and the KafkaAdmin, by calling setBootstrapServersSupplier().
When you want to switch, call primary() or secondary() and call reset() on the producer factory to
establish new connection(s); for consumers, stop() and start() all listener containers. When using
@KafkalListener s, stop() and start() the KafkalListenerEndpointRegistry bean.

See the Javadocs for more information.

Factory Listeners

Starting with version 2.5, the DefaultKafkaProducerFactory and DefaultKafkaConsumerFactory can be
configured with a Listener to receive notifications whenever a producer or consumer is created or
closed.

16

Producer Factory Listener
interface Listener<k, V> {

default void producerAdded(String id, Producer<K, V> producer) {
}

default void producerRemoved(String id, Producer<K, V> producer) {

}

Consumer Factory Listener
interface Listener<K, V> {

default void consumerAdded(String id, Consumer<K, V> consumer) {

}

default void consumerRemoved(String id, Consumer<K, V> consumer) {

}

In each case, the id is created by appending the client-id property (obtained from the metrics()
after creation) to the factory beanName property, separated by ..

These listeners can be used, for example, to create and bind a Micrometer KafkaClientMetrics
instance when a new client is created (and close it when the client is closed).

The framework provides listeners that do exactly that; see Micrometer Native Metrics.

4.1.2. Configuring Topics

If you define a KafkaAdmin bean in your application context, it can automatically add topics to the
broker. To do so, you can add a NewTopic @Bean for each topic to the application context. Version 2.3
introduced a new class TopicBuilder to make creation of such beans more convenient. The
following example shows how to do so:

17

Java

18

public KafkaAdmin admin() {
Map<String, Object> configs = new HashMap<>();
configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
return new KafkaAdmin(configs);

public NewTopic topicl() {
return TopicBuilder.name("thing1")
.partitions(10)
.replicas(3)
.compact()
.build();

public NewTopic topic2() {
return TopicBuilder.name("thing2")
.partitions(10)
.replicas(3)
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build();

public NewTopic topic3() {
return TopicBuilder.name("thing3")
.assignReplicas(®, Arrays.asList(2, 1))
.assignReplicas(1, Arrays.asList(1, 2))
.assignReplicas(2, Arrays.aslList(2, 0))
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build();

Kotlin

@Bean
fun admin() = KafkaAdmin(mapOf(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG to
"localhost:9092"))

@Bean
fun topic1() =
TopicBuilder.name("thing1")
.partitions(10)
.replicas(3)
.compact()
.build()

©Bean
fun topic2() =
TopicBuilder.name("thing2")
.partitions(10)
.replicas(3)
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build()

@Bean
fun topic3() =
TopicBuilder.name("thing3")

.assignReplicas(@, Arrays.asList(@, 1))
.assignReplicas(1, Arrays.asList(1, 2))
.assignReplicas(2, Arrays.aslList(2, 0))
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build()

Starting with version 2.6, you can omit partitions() and/or replicas() and the broker defaults will
be applied to those properties. The broker version must be at least 2.4.0 to support this feature - see
KIP-464.

19

https://cwiki.apache.org/confluence/display/KAFKA/KIP-464%3A+Defaults+for+AdminClient%23createTopic

Java

public NewTopic topic4() {
return TopicBuilder.name("defaultBoth")
.build();

public NewTopic topich() {
return TopicBuilder.name("defaultPart")
.replicas(1)
.build();

public NewTopic topic6() {
return TopicBuilder.name("defaultRepl")

.partitions(3)
.build();
}
Kotlin
@Bean

fun topic4()

TopicBuilder.name("defaultBoth").build()

@Bean
fun topich()

TopicBuilder.name("defaultPart").replicas(1).build()

@Bean
fun topic6()

TopicBuilder.name("defaultRepl").partitions(3).build()

Starting with version 2.7, you can declare multiple NewTopic s in a single KafkaAdmin.NewTopics bean
definition:

20

Java

public KafkaAdmin.NewTopics topics456() {
return new NewTopics(
TopicBuilder.name("defaultBoth")
.build(),
TopicBuilder.name("defaultPart")
.replicas(1)
.build(),
TopicBuilder.name("defaultRepl")
.partitions(3)
.build());

Kotlin

©Bean
fun topics456() = KafkaAdmin.NewTopics(
TopicBuilder.name("defaultBoth")
.build(),
TopicBuilder.name("defaultPart")
.replicas(1)
.build(),
TopicBuilder.name("defaultRepl")
.partitions(3)
.build()

o When using Spring Boot, a KafkaAdmin bean is automatically registered so you only
need the NewTopic (and/or NewTopics) @Bean s.

By default, if the broker is not available, a message is logged, but the context continues to load. You
can programmatically invoke the admin’s initialize() method to try again later. If you wish this
condition to be considered fatal, set the admin’s fatalIfBrokerNotAvailable property to true. The
context then fails to initialize.

If the broker supports it (1.0.0 or higher), the admin increases the number of
o partitions if it is found that an existing topic has fewer partitions than the
NewTopic.numPartitions.

Starting with version 2.7, the KafkaAdmin provides methods to create and examine topics at runtime.

* createOrModifyTopics

* describeTopics

For more advanced features, you can use the AdminClient directly. The following example shows

21

how to do so:

private KafkaAdmin admin;

AdminClient client = AdminClient.create(admin.getConfigurationProperties());

client.close();

Starting with versions 2.9.10, 3.0.9, you can provide a Predicate<NewTopic> which can be used to
determine whether a particular NewTopic bean should be considered for creation or modification.
This is useful, for example, if you have multiple KafkaAdmin instances pointing to different clusters
and you wish to select those topics that should be created or modified by each admin.

admin.setCreateOrModifyTopic(nt -> !nt.name().equals("dontCreateThisOne"));

4.1.3. Sending Messages

This section covers how to send messages.

Using KafkaTemplate

This section covers how to use KafkaTemplate to send messages.

Overview

The KafkaTemplate wraps a producer and provides convenience methods to send data to Kafka
topics. The following listing shows the relevant methods from KafkaTemplate:

22

CompletableFuture<SendResult<K,
CompletableFuture<SendResult<K,
CompletableFuture<SendResult<K,

CompletableFuture<SendResult<K,
K key, V data);

CompletableFuture<SendResult<K,
CompletableFuture<SendResult<K,

CompletableFuture<SendResult<K,
data);

CompletableFuture<SendResult<K,
timestamp, K key, V data);

CompletableFuture<SendResult<K,

CompletableFuture<SendResult<K,

V>>

V>>

V>>

V>>

V>>

V>>

V>>

V>>

V>>

V>>

sendDefault(V data);
sendDefault(K key, V data);
sendDefault(Integer partition, K key, V data);

sendDefault(Integer partition, Long timestamp,

send(String topic, V data);
send(String topic, K key, V data);

send(String topic, Integer partition, K key, V

send(String topic, Integer partition, Long

send(ProducerRecord<K, V> record);

send(Message<?> message);

Map<MetricName, ? extends Metric> metrics();

List<PartitionInfo> partitionsFor(String topic);

<T> T execute(ProducerCallback<K, V, T> callback);

// Flush the producer.

void flush();

interface ProducerCallback<K, V, T> {

T doInKafka(Producer<K, V> producer);

See the Javadoc for more detail.

In version 3.0, the methods that previously returned ListenableFuture have been
o changed to return CompletableFuture. To facilitate the migration, the 2.9 version
added a method usingCompletableFuture() which provided the same methods with

CompletableFuture return types; this method is no longer available.

The sendDefault API requires that a default topic has been provided to the template.

23

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/core/KafkaTemplate.html

The API takes in a timestamp as a parameter and stores this timestamp in the record. How the user-
provided timestamp is stored depends on the timestamp type configured on the Kafka topic. If the
topic is configured to use CREATE_TIME, the user specified timestamp is recorded (or generated if not
specified). If the topic is configured to use LOG_APPEND_TIME, the user-specified timestamp is ignored
and the broker adds in the local broker time.

The metrics and partitionsFor methods delegate to the same methods on the underlying Producer.
The execute method provides direct access to the underlying Producer.

To use the template, you can configure a producer factory and provide it in the template’s
constructor. The following example shows how to do so:

public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());

}

public Map<String, Object> producerConfigs() {

Map<String, Object> props = new HashMap<>();

props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class
)i

props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.
class);

// See https://kafka.apache.org/documentation/#producerconfigs for more
properties

return props;

}

public KafkaTemplate<Integer, String> kafkaTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory());

}

Starting with version 2.5, you can now override the factory’s ProducerConfig properties to create
templates with different producer configurations from the same factory.

24

https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/Producer.html
https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/Producer.html

public KafkaTemplate<String, String> stringTemplate(ProducerFactory<String,
String> pf) {
return new KafkaTemplate<>(pf);

}

public KafkaTemplate<String, byte[]> bytesTemplate(ProducerFactory<String, byte[]>
pf) {
return new KafkaTemplate<>(pf,
Collections.singletonMap(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
ByteArraySerializer.class));

}

Note that a bean of type ProducerFactory<?, 7> (such as the one auto-configured by Spring Boot) can
be referenced with different narrowed generic types.

You can also configure the template by using standard <bean/> definitions.
Then, to use the template, you can invoke one of its methods.

When you use the methods with a Message<?> parameter, the topic, partition, and key information is
provided in a message header that includes the following items:

» KafkaHeaders.TOPIC

» KafkaHeaders.PARTITION

* KafkaHeaders.KEY

» KafkaHeaders.TIMESTAMP

The message payload is the data.

Optionally, you can configure the KafkaTemplate with a ProducerlListener to get an asynchronous
callback with the results of the send (success or failure) instead of waiting for the Future to
complete. The following listing shows the definition of the ProducerListener interface:

25

public interface ProducerListener<K, V> {

void onSuccess(ProducerRecord<K, V> producerRecord, RecordMetadata
recordMetadata);

void onError(ProducerRecord<K, V> producerRecord, RecordMetadata
recordMetadata,
Exception exception);

By default, the template is configured with a LoggingProducerListener, which logs errors and does
nothing when the send is successful.

For convenience, default method implementations are provided in case you want to implement
only one of the methods.

Notice that the send methods return a CompletableFuture<SendResult>. You can register a callback
with the listener to receive the result of the send asynchronously. The following example shows
how to do so:

CompletableFuture<SendResult<Integer, String>> future = template.send("myTopic",
"something");
future.whenComplete((result, ex) -> {

1)

SendResult has two properties, a ProducerRecord and RecordMetadata. See the Kafka API
documentation for information about those objects.

The Throwable can be cast to a KafkaProducerException; its failedProducerRecord property contains
the failed record.

If you wish to block the sending thread to await the result, you can invoke the future’s get()
method; using the method with a timeout is recommended. If you have set a linger.ms, you may
wish to invoke flush() before waiting or, for convenience, the template has a constructor with an
autoFlush parameter that causes the template to flush() on each send. Flushing is only needed if
you have set the linger.ms producer property and want to immediately send a partial batch.

Examples

This section shows examples of sending messages to Kafka:

26

Example 5. Non Blocking (Async)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

CompletableFuture<SendResult<Integer, String>> future = template.send(record);
future.whenComplete((result, ex) -> {
if (ex == null) {

handleSuccess(data);

}

else {
handleFailure(data, record, ex);

}

DE
}
Blocking (Sync)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

try {
template.send(record).get(10, TimeUnit.SECONDS);
handleSuccess(data);

}

catch (ExecutionException e) {
handleFailure(data, record, e.getCause());

}

catch (TimeoutException | InterruptedException e) {
handleFailure(data, record, e);

}

Note that the cause of the ExecutionException is KafkaProducerException with the
failedProducerRecord property.

Using RoutingKafkaTemplate

Starting with version 2.5, you can use a RoutingKafkaTemplate to select the producer at runtime,
based on the destination topic name.

o The routing template does not support transactions, execute, flush, or metrics
operations because the topic is not known for those operations.

The template requires a map of java.util.regex.Pattern to ProducerFactory<Object, Object>

instances. This map should be ordered (e.g. a LinkedHashMap) because it is traversed in order; you
should add more specific patterns at the beginning.

27

The following simple Spring Boot application provides an example of how to use the same template
to send to different topics, each using a different value serializer.

@SpringBootApplication
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

@Bean
public RoutingKafkaTemplate routingTemplate(GenericApplicationContext context,
ProducerFactory<Object, Object> pf) {

// Clone the PF with a different Serializer, register with Spring for
shutdown

Map<String, Object> configs = new HashMap<>(pf.getConfigurationProperties
0);

configs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
ByteArraySerializer.class);

DefaultKafkaProducerFactory<Object, Object> bytesPF = new
DefaultKafkaProducerFactory<>(configs);

context.registerBean(DefaultKafkaProducerFactory.class, "bytesPF",
bytesPF);

Map<Pattern, ProducerFactory<Object, Object>> map = new LinkedHashMap<>();
map.put(Pattern.compile("two"), bytesPF);

map.put(Pattern.compile(".+"), pf); // Default PF with StringSerializer
return new RoutingKafkaTemplate(map);

}

@Bean
public ApplicationRunner runner(RoutingKafkaTemplate routingTemplate) {
return args -> {
routingTemplate.send("one", "thing1");
routingTemplate.send("two", "thing2".qgetBytes());
h

The corresponding @Kafkalistener s for this example are shown in Annotation Properties.

For another technique to achieve similar results, but with the additional capability of sending
different types to the same topic, see Delegating Serializer and Deserializer.

28

Using DefaultKafkaProducerFactory

As seen in Using KafkaTemplate, a ProducerFactory is used to create the producer.

When not using Transactions, by default, the DefaultKafkaProducerFactory creates a singleton
producer used by all clients, as recommended in the KafkaProducer javadocs. However, if you call
flush() on the template, this can cause delays for other threads using the same producer. Starting
with version 2.3, the DefaultKafkaProducerFactory has a new property producerPerThread. When set
to true, the factory will create (and cache) a separate producer for each thread, to avoid this issue.

When producerPerThread is true, user code must call closeThreadBoundProducer() on

o the factory when the producer is no longer needed. This will physically close the
producer and remove it from the ThreadLocal. Calling reset() or destroy() will not
clean up these producers.

Also see KafkaTemplate Transactional and non-Transactional Publishing.

When creating a DefaultKafkaProducerFactory, key and/or value Serializer classes can be picked up
from configuration by calling the constructor that only takes in a Map of properties (see example in
Using KafkaTemplate), or Serializer instances may be passed to the DefaultKafkaProducerFactory
constructor (in which case all Producer s share the same instances). Alternatively you can provide
Supplier<Serializer> s (starting with version 2.3) that will be used to obtain separate Serializer
instances for each Producer:

public ProducerFactory<Integer, CustomValue> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs(), null, () -> new
CustomValueSerializer());

}

public KafkaTemplate<Integer, CustomValue> kafkaTemplate() {
return new KafkaTemplate<Integer, CustomValue>(producerFactory());

}

Starting with version 2.5.10, you can now update the producer properties after the factory is
created. This might be useful, for example, if you have to update SSL key/trust store locations after
a credentials change. The changes will not affect existing producer instances; call reset() to close
any existing producers so that new producers will be created using the new properties. NOTE: You
cannot change a transactional producer factory to non-transactional, and vice-versa.

Two new methods are now provided:

29

void updateConfigs(Map<String, Object> updates);

void removeConfig(String configKey);

Starting with version 2.8, if you provide serializers as objects (in the constructor or via the setters),
the factory will invoke the configure() method to configure them with the configuration properties.

Using ReplyingKafkaTemplate

Version 2.1.3 introduced a subclass of KafkaTemplate to provide request/reply semantics. The class is
named ReplyingKafkaTemplate and has two additional methods; the following shows the method
signatures:

RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record);

RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record,
Duration replyTimeout);

(Also see Request/Reply with Message<?> s).

The result is a CompletableFuture that is asynchronously populated with the result (or an exception,
for a timeout). The result also has a sendFuture property, which is the result of calling
KafkaTemplate.send(). You can use this future to determine the result of the send operation.

In version 3.0, the futures returned by these methods (and their sendFuture
o properties) have been changed to CompletableFuture s instead of ListenableFuture
S.

If the first method is used, or the replyTimeout argument is null, the template’s defaultReplyTimeout
property is used (5 seconds by default).

Starting with version 2.8.8, the template has a new method waitForAssignment. This is useful if the
reply container is configured with auto.offset.reset=1atest to avoid sending a request and a reply
sent before the container is initialized.

When using manual partition assignment (no group management), the duration
o for the wait must be greater than the container’s pollTimeout property because the

notification will not be sent until after the first poll is completed.

The following Spring Boot application shows an example of how to use the feature:

30

public class KRequestingApplication {

public static void main(String[] args) {
SpringApplication.run(KRequestingApplication.class, args).close();
}

public ApplicationRunner runner(ReplyingKafkaTemplate<String, String, String>
template) {
return args -> {
if (!template.waitForAssignment(Duration.ofSeconds(10))) {
throw new IllegalStateException("Reply container did not
initialize");
}
ProducerRecord<String, String> record = new ProducerRecord<>(
"kRequests", "foo");
RequestReplyFuture<String, String, String> replyFuture = template
.sendAndReceive(record);
SendResult<String, String> sendResult = replyFuture.getSendFuture()
.get (10, TimeUnit.SECONDS);
System.out.println("Sent ok: " + sendResult.getRecordMetadata());
ConsumerRecord<String, String> consumerRecord = replyFuture.get(10,
TimeUnit.SECONDS);
System.out.println("Return value:

n

+ consumerRecord.value());

};

public ReplyingKafkaTemplate<String, String, String> replyingTemplate(
ProducerFactory<String, String> pf,
ConcurrentMessagelListenerContainer<String, String> repliesContainer) {

return new ReplyingKafkaTemplate<>(pf, repliesContainer);

public ConcurrentMessagelistenerContainer<String, String> repliesContainer(
ConcurrentKafkalistenerContainerFactory<String, String>
containerFactory) {

ConcurrentMessagelistenerContainer<String, String> repliesContainer =
containerFactory.createContainer("kReplies");

repliesContainer.getContainerProperties().setGroupId("repliesGroup");

repliesContainer.setAutoStartup(false);

return repliesContainer;

31

public NewTopic kRequests() {
return TopicBuilder.name("kRequests")
.partitions(10)
.replicas(2)
.build();

public NewTopic kReplies() {
return TopicBuilder.name("kReplies")
.partitions(10)
.replicas(2)
.build();

Note that we can use Boot’s auto-configured container factory to create the reply container.

If a non-trivial deserializer is being used for replies, consider using an ErrorHandlingDeserializer
that delegates to your configured deserializer. When so configured, the RequestReplyFuture will be
completed exceptionally and you can catch the ExecutionException, with the
DeserializationException in its cause property.

Starting with version 2.6.7, in addition to detecting DeserializationException s, the template will call
the replyErrorChecker function, if provided. If it returns an exception, the future will be completed
exceptionally.

Here is an example:

32

template.setReplyErrorChecker(record -> {
Header error = record.headers().lastHeader("serverSentAnError");
if (error != null) {
return new MyException(new String(error.value()));

}
else {

return null;
}

b

RequestReplyFuture<Integer, String, String> future = template.sendAndReceive
(record);
try {
future.getSendFuture().get(10, TimeUnit.SECONDS); // send ok
ConsumerRecord<Integer, String> consumerRecord = future.get(10, TimeUnit
.SECONDS);

}
catch (InterruptedException e) {

+
catch (ExecutionException e) {
if (e.getCause instanceof MyException) {

}
}

catch (TimeoutException e) {

}

The template sets a header (named KafkaHeaders.CORRELATION_ID by default), which must be echoed
back by the server side.

In this case, the following @KafkalListener application responds:

33

@SpringBootApplication
public class KReplyingApplication {

public static void main(String[] args) {
SpringApplication.run(KReplyingApplication.class, args);
}

@Kafkalistener(id="server", topics = "kRequests")

@SendTo // use default replyTo expression

public String listen(String in) {
System.out.println("Server received:
return in.toUpperCase();

+1n);
}

@Bean
public NewTopic kRequests() {
return TopicBuilder.name("kRequests")
.partitions(10)
.replicas(2)
.build();
}

@Bean // not required if Jackson is on the classpath
public MessagingMessageConverter simpleMapperConverter() {
MessagingMessageConverter messagingMessageConverter = new
MessagingMessageConverter();
messagingMessageConverter.setHeaderMapper(new SimpleKafkaHeaderMapper());
return messagingMessageConverter;

The @Kafkalistener infrastructure echoes the correlation ID and determines the reply topic.

See Forwarding Listener Results using @SendTo for more information about sending replies. The
template uses the default header KafKaHeaders.REPLY_TOPIC to indicate the topic to which the reply
goes.

Starting with version 2.2, the template tries to detect the reply topic or partition from the
configured reply container. If the container is configured to listen to a single topic or a single
TopicPartitionOffset, it is used to set the reply headers. If the container is configured otherwise, the
user must set up the reply headers. In this case, an INFO log message is written during initialization.
The following example uses KafkaHeaders.REPLY_TOPIC:

34

record.headers().add(new RecordHeader (KafkaHeaders.REPLY_TOPIC, "kReplies"
.getBytes()));

When you configure with a single reply TopicPartitionOffset, you can use the same reply topic for
multiple templates, as long as each instance listens on a different partition. When configuring with
a single reply topic, each instance must use a different group.id. In this case, all instances receive
each reply, but only the instance that sent the request finds the correlation ID. This may be useful
for auto-scaling, but with the overhead of additional network traffic and the small cost of
discarding each unwanted reply. When you use this setting, we recommend that you set the
template’s sharedReplyTopic to true, which reduces the logging level of unexpected replies to DEBUG
instead of the default ERROR.

The following is an example of configuring the reply container to use the same shared reply topic:

public ConcurrentMessagelistenerContainer<String, String> replyContainer(
ConcurrentKafkalListenerContainerFactory<String, String> containerFactory)

{

ConcurrentMessagelistenerContainer<String, String> container =
containerFactory.createContainer("topic2");

container.getContainerProperties().setGroupId(UUID.randomUUID().toString());
// unique

Properties props = new Properties();

props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest"); // so
the new group doesn't get old replies

container.getContainerProperties().setKafkaConsumerProperties(props);

return container;

If you have multiple client instances and you do not configure them as discussed
in the preceding paragraph, each instance needs a dedicated reply topic. An
alternative is to set the KafkaHeaders.REPLY_PARTITION and use a dedicated partition

o for each instance. The Header contains a four-byte int (big-endian). The server must
use this header to route the reply to the correct partition (@KafkalListener does
this). In this case, though, the reply container must not use Kafka’s group
management feature and must be configured to listen on a fixed partition (by
using a TopicPartitionOffset in its ContainerProperties constructor).

The DefaultKafkaHeaderMapper requires Jackson to be on the classpath (for the

o @KafkalListener). If it is not available, the message converter has no header mapper,
so you must configure a MessagingMessageConverter with a SimpleKafkaHeaderMapper,
as shown earlier.

35

By default, 3 headers are used:

» KafkaHeaders.CORRELATION_ID - used to correlate the reply to a request
» KafkaHeaders.REPLY_TOPIC - used to tell the server where to reply
» KafkaHeaders.REPLY_PARTITION - (optional) used to tell the server which partition to reply to

These header names are used by the @Kafkalistener infrastructure to route the reply.

Starting with version 2.3, you can customize the header names - the template has 3 properties
correlationHeaderName, replyTopicHeaderName, and replyPartitionHeaderName. This is useful if your
server is not a Spring application (or does not use the @Kafkalistener).

Conversely, if the requesting application is not a spring application and puts
correlation information in a different header, starting with version 3.0, you can

o configure a custom correlationHeaderName on the listener container factory and
that header will be echoed back. Previously, the listener had to echo custom
correlation headers.

Request/Reply with Message<?> s

Version 2.7 added methods to the ReplyingKafkaTemplate to send and receive spring-messaging 's
Message<?> abstraction:

RequestReplyMessageFuture<K, V> sendAndReceive(Message<?> message);

<P> RequestReplyTypedMessageFuture<K, V, P> sendAndReceive(Message<?> message,
ParameterizedTypeReference<P> returnType);

These will use the template’s default replyTimeout, there are also overloaded versions that can take
a timeout in the method call.

In version 3.0, the futures returned by these methods (and their sendFuture
o properties) have been changed to CompletableFuture s instead of ListenableFuture
S.

Use the first method if the consumer’s Deserializer or the template’s MessageConverter can convert
the payload without any additional information, either via configuration or type metadata in the
reply message.

Use the second method if you need to provide type information for the return type, to assist the
message converter. This also allows the same template to receive different types, even if there is no
type metadata in the replies, such as when the server side is not a Spring application. The following
is an example of the latter:

36

Example 6. Template Bean

Java

ReplyingKafkaTemplate<String, String, String> template(
ProducerFactory<String, String> pf,
ConcurrentKafkalListenerContainerFactory<String, String> factory) {

ConcurrentMessagelistenerContainer<String, String> replyContainer =
factory.createContainer("replies");
replyContainer.getContainerProperties().setGroupId("request.replies”);
ReplyingKafkaTemplate<String, String, String> template =
new ReplyingKafkaTemplate<>(pf, replyContainer);
template.setMessageConverter(new ByteArrayJsonMessageConverter());
template.setDefaultTopic("requests");
return template;

Kotlin

@Bean
fun template(
pf: ProducerFactory<String?, String>?,
factory: ConcurrentKafkalistenerContainerFactory<String?, String?>
): ReplyingKafkaTemplate<String?, String, String?> {
val replyContainer = factory.createContainer("replies")
replyContainer.containerProperties.groupld = "request.replies"”
val template = ReplyingKafkaTemplate(pf, replyContainer)
template.messageConverter = ByteArrayJsonMessageConverter()
template.defaultTopic = "requests"
return template

37

Example 7. Using the template
Java

RequestReplyTypedMessageFuture<String, String, Thing> futurel =
template.sendAndReceive(MessageBuilder.withPayload("“getAThing").build(),
new ParameterizedTypeReference<Thing>() { });
log.info(futurel.getSendFuture().get(10, TimeUnit.SECONDS).getRecordMetadata()
.toString());
Thing thing = futurel.get(10, TimeUnit.SECONDS).getPayload();
log.info(thing.toString());

RequestReplyTypedMessageFuture<String, String, List<Thing>> future2 =
template.sendAndReceive(MessageBuilder.withPayload("getThings").build(),
new ParameterizedTypeReference<List<Thing>>() { });
log.info(future2.getSendFuture().get(10, TimeUnit.SECONDS).getRecordMetadata()
.toString());
List<Thing> things = future2.get(10, TimeUnit.SECONDS).getPayload();
things.forEach(thing1l -> log.info(thingl.toString()));

Kotlin

val futurel: RequestReplyTypedMessageFuture<String?, String?, Thing?>? =
template.sendAndReceive(MessageBuilder.withPayload("getAThing").build(),
object : ParameterizedTypeReference<Thing?>() {})
log.info(futurel1?.sendFuture?.qet(10,
TimeUnit.SECONDS)?.recordMetadata?.toString())
val thing = future1?.get(10, TimeUnit.SECONDS)?.payload
log.info(thing.toString())

val future2: RequestReplyTypedMessageFuture<String?, String?, List<Thing?>7?>?7 =
template.sendAndReceive(MessageBuilder.withPayload("getThings").build(),
object : ParameterizedTypeReference<List<Thing?>?>() {})
log.info(future2?.sendFuture?.qget(10,
TimeUnit.SECONDS)?.recordMetadata.toString())
val things = future2?.get(10, TimeUnit.SECONDS)?.payload
things?.forEach(Consumer { thing1: Thing? -> log.info(thingl.toString()) })

Reply Type Message<?>

When the @Kafkalistener returns a Message<?>, with versions before 2.5, it was necessary to
populate the reply topic and correlation id headers. In this example, we use the reply topic header
from the request:

38

(id = "requestor", topics = "request")

public Message<?> messageReturn(String in) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.TOPIC, replyTo)
.setHeader (KafkaHeaders.KEY, 42)
.setHeader (KafkaHeaders.CORRELATION ID, correlation)
.build();

This also shows how to set a key on the reply record.

Starting with version 2.5, the framework will detect if these headers are missing and populate them
with the topic - either the topic determined from the @SendTo value or the incoming
KafkaHeaders.REPLY_TOPIC header (if present). It will also echo the incoming
KafkaHeaders.CORRELATION_ID and KafkaHeaders.REPLY_PARTITION, if present.

(id = "requestor", topics = "request")
// default REPLY_TOPIC header
public Message<?> messageReturn(String in) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.KEY, 42)
.build();

Aggregating Multiple Replies

The template in Using ReplyingKafkaTemplate is strictly for a single request/reply scenario. For cases
where multiple receivers of a single message return a reply, you can use the
AggregatingReplyingKafkaTemplate. This is an implementation of the client-side of the Scatter-Gather
Enterprise Integration Pattern.

Like the ReplyingKafkaTemplate, the AggregatingReplyingKafkaTemplate constructor takes a producer
factory and a listener container to receive the replies; it has a third parameter
BiPredicate<List<ConsumerRecord<K, R>>, Boolean> releaseStrategy which is consulted each time a
reply is received; when the predicate returns true, the collection of ConsumerRecord s is used to
complete the Future returned by the sendAndReceive method.

There is an additional property returnPartialOnTimeout (default false). When this is set to true,
instead of completing the future with a KafkaReplyTimeoutException, a partial result completes the
future normally (as long as at least one reply record has been received).

Starting with version 2.3.5, the predicate is also called after a timeout (if returnPartialOnTimeout is
true). The first argument is the current list of records; the second is true if this call is due to a
timeout. The predicate can modify the list of records.

39

https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html

AggregatingReplyingKafkaTemplate<Integer, String, String> template =
new AggregatingReplyingKafkaTemplate<>(producerFactory, container,
coll -> coll.size() == releaseSize);

RequestReplyFuture<Integer, String, Collection<ConsumerRecord<Integer, String>>>
future =

template.sendAndReceive(record);
future.getSendFuture().get(10, TimeUnit.SECONDS); // send ok
ConsumerRecord<Integer, Collection<ConsumerRecord<Integer, String>>>
consumerRecord =

future.qget(30, TimeUnit.SECONDS);

Notice that the return type is a ConsumerRecord with a value that is a collection of ConsumerRecord s.
The "outer" ConsumerRecord is not a "real" record, it is synthesized by the template, as a holder for
the actual reply records received for the request. When a normal release occurs (release strategy
returns true), the topic is set to aggregatedResults; if returnPartialOnTimeout is true, and timeout
occurs (and at least one reply record has been received), the topic is set to
partialResultsAfterTimeout. The template provides constant static variables for these "topic" names:

/**

* Pseudo topic name for the "outer" {@link ConsumerRecords} that has the
aggregated

* results in its value after a normal release by the release strategy.

*/

public static final String AGGREGATED_RESULTS_TOPIC = "aggregatedResults";

/**

* Pseudo topic name for the "outer" {@link ConsumerRecords} that has the
aggregated

* results in its value after a timeout.

*/

public static final String PARTIAL_RESULTS_AFTER_TIMEOUT_TOPIC =
"partialResultsAfterTimeout";

The real ConsumerRecord s in the Collection contain the actual topic(s) from which the replies are
received.

40

The listener container for the replies MUST be configured with AckMode.MANUAL or
AckMode .MANUAL_IMMEDIATE; the consumer property enable.auto.commit must be
false (the default since version 2.3). To avoid any possibility of losing messages,

o the template only commits offsets when there are zero requests outstanding, i.e.
when the last outstanding request is released by the release strategy. After a
rebalance, it is possible for duplicate reply deliveries; these will be ignored for any
in-flight requests; you may see error log messages when duplicate replies are
received for already released replies.

If you use an ErrorHandlingDeserializer with this aggregating template, the
framework will not automatically detect DeserializationException s. Instead, the
record (with a null value) will be returned intact, with the deserialization

o exception(s) in headers. It is recommended that applications call the utility method
ReplyingKafkaTemplate.checkDeserialization() method to determine if a
deserialization exception occurred. See its javadocs for more information. The
replyErrorChecker is also not called for this aggregating template; you should
perform the checks on each element of the reply.

4.1.4. Receiving Messages

You can receive messages by configuring a MessagelistenerContainer and providing a message
listener or by using the @Kafkalistener annotation.

Message Listeners

When you use a message listener container, you must provide a listener to receive data. There are
currently eight supported interfaces for message listeners. The following listing shows these
interfaces:

41

42

public interface Messagelistener<K, V> { @
void onMessage(ConsumerRecord<K, V> data);
}
public interface AcknowledgingMessagelistener<K, V> { @
void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment);

}

public interface ConsumerAwareMessagelistener<K, V> extends Messagelistener<K, V>

{®
void onMessage(ConsumerRecord<K, V> data, Consumer<?, 7> consumer);

}

public interface AcknowledgingConsumerAwareMessagelistener<K, V> extends
Messagelistener<K, V> { @

void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

}
public interface BatchMessagelistener<K, V> { ®
void onMessage(List<ConsumerRecord<K, V>> data);
}
public interface BatchAcknowledgingMessagelistener<K, V> { ®

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment

)
}

public interface BatchConsumerAwareMessagelistener<K, V> extends
BatchMessagelListener<K, V> { @

void onMessage(List<ConsumerRecord<K, V>> data, Consumer<?, 7> consumer);

}

public interface BatchAcknowledgingConsumerAwareMessagelistener<K, V> extends
BatchMessagelistener<K, V> {

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods.

® Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods. Access to the Consumer object is provided.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods. Access to
the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods.

@ Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch. Access to the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods. Access to the
Consumer object is provided.

o The Consumer object is not thread-safe. You must only invoke its methods on the
thread that calls the listener.

You should not execute any Consumer<?, 7> methods that affect the consumer’s
o positions and or committed offsets in your listener; the container needs to manage
such information.

Message Listener Containers

Two MessagelistenerContainer implementations are provided:

» KafkaMessageListenerContainer

» ConcurrentMessagelistenerContainer

The KafkaMessagelListenerContainer receives all message from all topics or partitions on a single
thread. The ConcurrentMessageListenerContainer delegates to one or more
KafkaMessagelListenerContainer instances to provide multi-threaded consumption.

Starting with version 2.2.7, you can add a RecordInterceptor to the listener container; it will be
invoked before calling the listener allowing inspection or modification of the record. If the
interceptor returns null, the listener is not called. Starting with version 2.7, it has additional
methods which are called after the listener exits (normally, or by throwing an exception). Also,
starting with version 2.7, there is now a BatchInterceptor, providing similar functionality for Batch
Listeners. In addition, the ConsumerAwareRecordInterceptor (and BatchInterceptor) provide access to
the Consumer<?, 7>. This might be used, for example, to access the consumer metrics in the
interceptor.

You should not execute any methods that affect the consumer’s positions and or
o committed offsets in these interceptors; the container needs to manage such
information.

If the interceptor mutates the record (by creating a new one), the topic, partition,
o and offset must remain the same to avoid unexpected side effects such as record
loss.

The CompositeRecordInterceptor and CompositeBatchInterceptor can be used to invoke multiple
interceptors.

By default, starting with version 2.8, when using transactions, the interceptor is invoked before the
transaction has started. You can set the listener container’s interceptBeforeTx property to false to
invoke the interceptor after the transaction has started instead. Starting with version 2.9, this will
apply to any transaction manager, not just KafkaAwareTransactionManager s. This allows, for example,
the interceptor to participate in a JDBC transaction started by the container.

Starting with versions 2.3.8, 2.4.6, the ConcurrentMessagelistenerContainer now supports Static
Membership when the concurrency is greater than one. The group.instance.id is suffixed with -n
with n starting at 1. This, together with an increased session.timeout.ms, can be used to reduce
rebalance events, for example, when application instances are restarted.

Using KafkalessagelListenerContainer

The following constructor is available:

public KafkaMessagelListenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

It receives a ConsumerFactory and information about topics and partitions, as well as other
configuration, in a ContainerProperties object. ContainerProperties has the following constructors:

44

https://kafka.apache.org/documentation/#static_membership
https://kafka.apache.org/documentation/#static_membership

public ContainerProperties(TopicPartitionOffset... topicPartitions)
public ContainerProperties(String... topics)

public ContainerProperties(Pattern topicPattern)

The first constructor takes an array of TopicPartitionOffset arguments to explicitly instruct the
container about which partitions to use (using the consumer assign() method) and with an optional
initial offset. A positive value is an absolute offset by default. A negative value is relative to the
current last offset within a partition by default. A constructor for TopicPartitionOffset that takes an
additional boolean argument is provided. If this is true, the initial offsets (positive or negative) are
relative to the current position for this consumer. The offsets are applied when the container is
started. The second takes an array of topics, and Kafka allocates the partitions based on the
group.id property — distributing partitions across the group. The third uses a regex Pattern to select
the topics.

To assign a Messagelistener to a container, you can use the ContainerProps.setMessagelistener
method when creating the Container. The following example shows how to do so:

ContainerProperties containerProps = new ContainerProperties("topic1"”, "topic2");
containerProps.setMessagelistener(new Messagelistener<Integer, String>() {

});
DefaultKafkaConsumerFactory<Integer, String> cf =

new DefaultKafkaConsumerFactory<>(consumerProps());
KafkaMessagelistenerContainer<Integer, String> container =

new KafkaMessagelListenerContainer<>(cf, containerProps);
return container;

Note that when creating a DefaultKafkaConsumerFactory, using the constructor that just takes in the
properties as above means that key and value Deserializer classes are picked up from
configuration. Alternatively, Deserializer instances may be passed to the
DefaultKafkaConsumerFactory constructor for key and/or value, in which case all Consumers share
the same instances. Another option is to provide Supplier<Deserializer> s (starting with version 2.3)
that will be used to obtain separate Deserializer instances for each Consumer:

45

DefaultKafkaConsumerFactory<Integer, CustomValue> cf =

new DefaultKafkaConsumerFactory<>(consumerProps(), null,
() -> new CustomValueDeserializer());
KafkaMessagelListenerContainer<Integer, String> container =

new KafkaMessagelistenerContainer<>(cf, containerProps);
return container;

Refer to the Javadoc for ContainerProperties for more information about the various properties that
you can set.

Since version 2.1.1, a new property called logContainerConfig is available. When true and INFO
logging is enabled each listener container writes a log message summarizing its configuration
properties.

By default, logging of topic offset commits is performed at the DEBUG logging level. Starting with
version 2.1.2, a property in ContainerProperties called commitLoglLevel lets you specify the log level
for these messages. For example, to change the log level to INFO, you can use
containerProperties.setCommitLoglevel(LogIfLevelEnabled.Level.INFO);.

Starting with version 2.2, a new container property called missingTopicsFatal has been added
(default: false since 2.3.4). This prevents the container from starting if any of the configured topics
are not present on the broker. It does not apply if the container is configured to listen to a topic
pattern (regex). Previously, the container threads looped within the consumer.poll() method
waiting for the topic to appear while logging many messages. Aside from the logs, there was no
indication that there was a problem.

As of version 2.8, a new container property authExceptionRetryInterval has been introduced. This
causes the container to retry fetching messages after getting any AuthenticationException or
AuthorizationException from the KafkaConsumer. This can happen when, for example, the configured
user is denied access to read a certain topic or credentials are incorrect. Defining
authExceptionRetryInterval allows the container to recover when proper permissions are granted.

o By default, no interval is configured - authentication and authorization errors are
considered fatal, which causes the container to stop.

Starting with version 2.8, when creating the consumer factory, if you provide deserializers as
objects (in the constructor or via the setters), the factory will invoke the configure() method to
configure them with the configuration properties.

Using ConcurrentMessagelistenerContainer

The single constructor is similar to the KafkalistenerContainer constructor. The following listing
shows the constructor’s signature:

46

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/listener/ContainerProperties.html

public ConcurrentMessagelistenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

It also has a concurrency property. For example, container.setConcurrency(3) creates three
KafkaMessagelListenerContainer instances.

For the first constructor, Kafka distributes the partitions across the consumers using its group
management capabilities.

When listening to multiple topics, the default partition distribution may not be
what you expect. For example, if you have three topics with five partitions each
and you want to use concurrency=15, you see only five active consumers, each
assigned one partition from each topic, with the other 10 consumers being idle.
This is because the default Kafka PartitionAssignor is the RangeAssignor (see its
Javadoc). For this scenario, you may want to consider using the RoundRobinAssignor
instead, which distributes the partitions across all of the consumers. Then, each
consumer is assigned one topic or partition. To change the PartitionAssignor, you
can set the partition.assignment.strategy consumer property

o (ConsumerConfigs.PARTITION_ASSIGNMENT _STRATEGY_CONFIG) in the properties provided
to the DefaultKafkaConsumerFactory.

When using Spring Boot, you can assign set the strategy as follows:

spring.kafka.consumer.properties.partition.assignment.strategy=\
org.apache.kafka.clients.consumer.RoundRobinAssignor

When the container properties are configured with TopicPartitionOffset s, the
ConcurrentMessagelListenerContainer distributes the TopicPartitionOffset instances across the
delegate KafkaMessagelListenerContainer instances.

If, say, six TopicPartitionOffset instances are provided and the concurrency is 3; each container gets
two partitions. For five TopicPartitionOffset instances, two containers get two partitions, and the
third gets one. If the concurrency is greater than the number of TopicPartitions, the concurrency is
adjusted down such that each container gets one partition.

The client.id property (if set) is appended with -n where n is the consumer
o instance that corresponds to the concurrency. This is required to provide unique
names for MBeans when JMX is enabled.

Starting with version 1.3, the MessagelListenerContainer provides access to the metrics of the
underlying KafkaConsumer. In the case of ConcurrentMessagelListenerContainer, the metrics() method
returns the metrics for all the target KafkaMessagelListenerContainer instances. The metrics are
grouped into the Map<MetricName, ? extends Metric> by the client-id provided for the underlying

47

KafkaConsumer.

Starting with version 2.3, the ContainerProperties provides an idleBetweenPolls option to let the
main loop in the listener container to sleep between KafkaConsumer.poll() calls. An actual sleep
interval is selected as the minimum from the provided option and difference between the
max.poll.interval.ms consumer config and the current records batch processing time.

Committing Offsets

Several options are provided for committing offsets. If the enable.auto.commit consumer property is
true, Kafka auto-commits the offsets according to its configuration. If it is false, the containers
support several AckMode settings (described in the next list). The default AckMode is BATCH. Starting
with version 2.3, the framework sets enable.auto.commit to false unless explicitly set in the
configuration. Previously, the Kafka default (true) was used if the property was not set.

The consumer poll() method returns one or more ConsumerRecords. The MessagelListener is called for
each record. The following lists describes the action taken by the container for each AckMode (when
transactions are not being used):

* RECORD: Commit the offset when the listener returns after processing the record.
* BATCH: Commit the offset when all the records returned by the pol1() have been processed.

* TIME: Commit the offset when all the records returned by the poll() have been processed, as
long as the ackTime since the last commit has been exceeded.

* COUNT: Commit the offset when all the records returned by the poll() have been processed, as
long as ackCount records have been received since the last commit.

* COUNT_TIME: Similar to TIME and COUNT, but the commit is performed if either condition is true.

* MANUAL: The message listener is responsible to acknowledge() the Acknowledgment. After that, the
same semantics as BATCH are applied.

o MANUAL_IMMEDIATE: Commit the offset immediately when the Acknowledgment.acknowledge()
method is called by the listener.

When using transactions, the offset(s) are sent to the transaction and the semantics are equivalent
to RECORD or BATCH, depending on the listener type (record or batch).

MANUAL, and MANUAL _IMMEDIATE require the listener to be an
AcknowledgingMessagelistener or a BatchAcknowledgingMessagelistener. See Message
Listeners.

Depending on the syncCommits container property, the commitSync() or commitAsync() method on the
consumer is used. syncCommits is true by default; also see setSyncCommitTimeout. See
setCommitCallback to get the results of asynchronous commits; the default callback is the
LoggingCommitCallback which logs errors (and successes at debug level).

Because the listener container has it’s own mechanism for committing offsets, it prefers the Kafka
ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG to be false. Starting with version 2.3, it unconditionally
sets it to false unless specifically set in the consumer factory or the container’s consumer property
overrides.

48

The Acknowledgment has the following method:

public interface Acknowledgment {

void acknowledge();

This method gives the listener control over when offsets are committed.

Starting with version 2.3, the Acknowledgment interface has two additional methods nack(long sleep)
and nack(int index, long sleep). The first one is used with a record listener, the second with a
batch listener. Calling the wrong method for your listener type will throw an I11legalStateException.

If you want to commit a partial batch, using nack(), When using transactions, set
o the AckMode to MANUAL; invoking nack() will send the offsets of the successfully
processed records to the transaction.

o nack() can only be called on the consumer thread that invokes your listener.

o nack() is not allowed when using Out of Order Commits.

With a record listener, when nack() is called, any pending offsets are committed, the remaining
records from the last poll are discarded, and seeks are performed on their partitions so that the
failed record and unprocessed records are redelivered on the next poll(). The consumer can be
paused before redelivery, by setting the sleep argument. This is similar functionality to throwing an
exception when the container is configured with a DefaultErrorHandler.

When using a batch listener, you can specify the index within the batch where the failure occurred.
When nack() is called, offsets will be committed for records before the index and seeks are
performed on the partitions for the failed and discarded records so that they will be redelivered on
the next poll().

See Container Error Handlers for more information.

The consumer is paused during the sleep so that we continue to poll the broker to
keep the consumer alive. The actual sleep time, and its resolution, depends on the
o container’s pollTimeout which defaults to 5 seconds. The minimum sleep time is
equal to the pollTimeout and all sleep times will be a multiple of it. For small sleep
times or, to increase its accuracy, consider reducing the container’s pollTimeout.

Starting with version 3.0.10, batch listeners can commit the offsets of parts of the batch, using
acknowledge(index) on the Acknowledgment argument. When this method is called, the offset of the
record at the index (as well as all previous records) will be committed. Calling acknowledge() after a
partial batch commit is performed will commit the offsets of the remainder of the batch. The
following limitations apply:

49

AckMode .MANUAL _IMMEDIATE is required

The method must be called on the listener thread
e The listener must consume a List rather than the raw ConsumerRecords
* The index must be in the range of the list’s elements

* The index must be larger than that used in a previous call

These restrictions are enforced and the method will throw an IllegalArgumentException or
I1legalStateException, depending on the violation.

Listener Container Auto Startup

The listener containers implement SmartlLifecycle, and autoStartup is true by default. The
containers are started in a late phase (Integer.MAX-VALUE - 100). Other components that implement
SmartLifecycle, to handle data from listeners, should be started in an earlier phase. The - 100
leaves room for later phases to enable components to be auto-started after the containers.

Manually Committing Offsets

Normally, when using AckMode.MANUAL or AckMode.MANUAL_IMMEDIATE, the acknowledgments must be
acknowledged in order, because Kafka does not maintain state for each record, only a committed
offset for each group/partition. Starting with version 2.8, you can now set the container property
asyncAcks, which allows the acknowledgments for records returned by the poll to be acknowledged
in any order. The listener container will defer the out-of-order commits until the missing
acknowledgments are received. The consumer will be paused (no new records delivered) until all
the offsets for the previous poll have been committed.

While this feature allows applications to process records asynchronously, it should
o be understood that it increases the possibility of duplicate deliveries after a
failure.

@Kafkalistener Annotation

The oKafkalistener annotation is used to designate a bean method as a listener for a listener
container. The bean is wrapped in a MessagingMessagelListenerAdapter configured with various
features, such as converters to convert the data, if necessary, to match the method parameters.

You can configure most attributes on the annotation with SpEL by using #{:-*} or property
placeholders (${::-}). See the Javadoc for more information.

Record Listeners

The @Kafkalistener annotation provides a mechanism for simple POJO listeners. The following
example shows how to use it:

50

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/annotation/KafkaListener.html

public class Listener {

(id = "foo", topics = "myTopic", clientIdPrefix = "myClientId")
public void listen(String data) {

}

This mechanism requires an @EnableKafka annotation on one of your @Configuration classes and a
listener container factory, which is used to configure the underlying
ConcurrentMessagelListenerContainer. By default, a bean with name kafkalistenerContainerFactory is
expected. The following example shows how to use ConcurrentMessagelListenerContainer:

public class KafkaConfig {

KafkalListenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setConcurrency(3);
factory.getContainerProperties().setPollTimeout(3000);
return factory;

public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());

}

public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka
.getBrokersAsString());

return props;

31

Notice that, to set container properties, you must use the getContainerProperties() method on the
factory. It is used as a template for the actual properties injected into the container.

Starting with version 2.1.1, you can now set the client.id property for consumers created by the
annotation. The clientIdPrefix is suffixed with -n, where n is an integer representing the container
number when using concurrency.

Starting with version 2.2, you can now override the container factory’s concurrency and autoStartup
properties by using properties on the annotation itself. The properties can be simple values,
property placeholders, or SpEL expressions. The following example shows how to do so:

(id = "myListener", topics = "myTopic",
autoStartup = "${listen.auto.start:true}", concurrency =
"${listen.concurrency:3}")
public void listen(String data) {

}

Explicit Partition Assignment

You can also configure POJO listeners with explicit topics and partitions (and, optionally, their
initial offsets). The following example shows how to do so:

(id = "thing2", topicPartitions =

{ (topic = "topic1", partitions = { "@", "1" }),
(topic = "topic2", partitions = "0@",
partitionOffsets = (partition = "1", initialOffset =
"100"))
})

public void listen(ConsumerRecord<?, ?> record) {

}

You can specify each partition in the partitions or partitionOffsets attribute but not both.

As with most annotation properties, you can use SpEL expressions; for an example of how to
generate a large list of partitions, see Manually Assigning All Partitions.

Starting with version 2.5.5, you can apply an initial offset to all assigned partitions:

32

(id = "thing3", topicPartitions =
{ (topic = "topic1", partitions = { "0", "1" },
partitionOffsets = (partition = "*", initialOffset =
"0"))
})

public void listen(ConsumerRecord<?, ?> record) {

}

The * wildcard represents all partitions in the partitions attribute. There must only be one
@Partition0ffset with the wildcard in each @TopicPartition.

In addition, when the listener implements ConsumerSeekAware, onPartitionsAssigned is now called,
even when using manual assignment. This allows, for example, any arbitrary seek operations at
that time.

Starting with version 2.6.4, you can specify a comma-delimited list of partitions, or partition ranges:

(id = "pp", autoStartup = "false",
topicPartitions = (topic = "topicl",
partitions = "0-5, 7, 10-15"))
public void process(String in) {

}

The range is inclusive; the example above will assign partitions @, 1, 2, 3, 4, 5, 7, 10, 11, 12,
13, 14, 15.

The same technique can be used when specifying initial offsets:

(id = "thing3", topicPartitions =
{ (topic = "topicl",
partitionOffsets = (partition = "0-5", initialOffset
= "0")
1))

public void listen(ConsumerRecord<?, ?> record) {

}

The initial offset will be applied to all 6 partitions.

33

Manual Acknowledgment

When using manual AckMode, you can also provide the listener with the Acknowledgment. The
following example also shows how to use a different container factory.

(id = "cat", topics = "myTopic",
containerFactory = "kafkaManualAckListenerContainerFactory")
public void listen(String data, Acknowledgment ack) {

ack.acknowledge();

Consumer Record Metadata

Finally, metadata about the record is available from message headers. You can use the following
header names to retrieve the headers of the message:

e KafkaHeaders.OFFSET
e KafkaHeaders.RECEIVED KEY

KafkaHeaders.RECEIVED_TOPIC

KafkaHeaders.RECEIVED_PARTITION

KafkaHeaders.RECEIVED_TIMESTAMP

KafkaHeaders.TIMESTAMP_TYPE

Starting with version 2.5 the RECEIVED_KEY is not present if the incoming record has a null key;
previously the header was populated with a null value. This change is to make the framework
consistent with spring-messaging conventions where null valued headers are not present.

The following example shows how to use the headers:

(id = "qux", topicPattern = "myTopic1")
public void listen(String foo,
(name = KafkaHeaders.RECEIVED_KEY, required = false) Integer key,
(KafkaHeaders.RECEIVED_PARTITION) int partition,
(KafkaHeaders.RECEIVED_TOPIC) String topic,
(KafkaHeaders.RECEIVED_TIMESTAMP) long ts
) {

Parameter annotations (@Payload, @Header) must be specified on the concrete
o implementation of the listener method; they will not be detected if they are
defined on an interface.

54

Starting with version 2.5, instead of using discrete headers, you can receive record metadata in a
ConsumerRecordMetadata parameter.

(...)

public void listen(String str, ConsumerRecordMetadata meta) {

}

This contains all the data from the ConsumerRecord except the key and value.

Batch Listeners

Starting with version 1.1, you can configure @Kafkalistener methods to receive the entire batch of
consumer records received from the consumer poll.

o Non-Blocking Retries are not supported with batch listeners.

To configure the listener container factory to create batch listeners, you can set the batchListener
property. The following example shows how to do so:

public KafkalListenerContainerFactory<?> batchFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setBatchListener(true); // <<<<<<<<<LLLLLLLLLLLLLLLL
return factory;

Starting with version 2.8, you can override the factory’s batchlListener propery

o using the batch property on the @Kafkalistener annotation. This, together with the
changes to Container Error Handlers allows the same factory to be used for both
record and batch listeners.

Starting with version 2.9.6, the container factory has separate setters for the

o recordMessageConverter and batchMessageConverter properties. Previously, there
was only one property messageConverter which applied to both record and batch
listeners.

The following example shows how to receive a list of payloads:

55

(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list) {

}

The topic, partition, offset, and so on are available in headers that parallel the payloads. The
following example shows how to use the headers:

(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list,

(KafkaHeaders.RECEIVED_KEY) List<Integer> keys,

(KafkaHeaders.RECEIVED_PARTITION) List<Integer> partitions,

(KafkaHeaders.RECEIVED_TOPIC) List<String> topics,

(KafkaHeaders.OFFSET) List<Long> offsets) {

Alternatively, you can receive a List of Message<?> objects with each offset and other details in each
message, but it must be the only parameter (aside from optional Acknowledgment, when using
manual commits, and/or Consumer<?, 7> parameters) defined on the method. The following example
shows how to do so:

(id = "listMsg", topics = "myTopic", containerFactory =
"batchFactory")
public void listen14(List<Message<?>> list) {

}

(id = "listMsqgAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen15(List<Message<?>> list, Acknowledgment ack) {

}

(id = "listMsqgAckConsumer", topics = "myTopic", containerFactory =
"batchFactory")
public void listen16(List<Message<?>> list, Acknowledgment ack, Consumer<?, 7>
consumer) {

}

No conversion is performed on the payloads in this case.

36

If the BatchMessagingMessageConverter is configured with a RecordMessageConverter, you can also add
a generic type to the Message parameter and the payloads are converted. See Payload Conversion
with Batch Listeners for more information.

You can also receive a list of ConsumerRecord<?, 7> objects, but it must be the only parameter (aside
from optional Acknowledgment, when using manual commits and Consumer<?, 7> parameters) defined
on the method. The following example shows how to do so:

(id = "listCRs", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list) {

}

(id = "listCRsAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list, Acknowledgment ack)

{

Starting with version 2.2, the listener can receive the complete ConsumerRecords<?, 7> object
returned by the pol1l() method, letting the listener access additional methods, such as partitions()
(which returns the TopicPartition instances in the list) and records(TopicPartition) (which gets
selective records). Again, this must be the only parameter (aside from optional Acknowledgment,
when using manual commits or Consumer<?, 7> parameters) on the method. The following example
shows how to do so:

(id = "pollResults", topics = "myTopic", containerFactory =
"batchFactory")
public void pollResults(ConsumerRecords<?, ?> records) {

}

If the container factory has a RecordFilterStrategy configured, it is ignored for
ConsumerRecords<?, 7> listeners, with a WARN log message emitted. Records can only

o be filtered with a batch listener if the <List<?>> form of listener is used. By default,
records are filtered one-at-a-time; starting with version 2.8, you can override
filterBatch to filter the entire batch in one call.

Annotation Properties

Starting with version 2.0, the id property (if present) is used as the Kafka consumer group.id
property, overriding the configured property in the consumer factory, if present. You can also set

57

groupId explicitly or set idIsGroup to false to restore the previous behavior of using the consumer

factory group.id.

You can use property placeholders or SpEL expressions within most annotation properties, as the
following example shows:

"${some.property}")

(topics

(topics = "#{someBean.someProperty}",
groupIld = "#{someBean.someProperty}.group")

Starting with version 2.1.2, the SpEL expressions support a special token: __Tistener. It is a pseudo
bean name that represents the current bean instance within which this annotation exists.

Consider the following example:

public Listener listener1() {
return new Listener("topicl1");

}

public Listener listener2() {
return new Listener("topic2");

}

Given the beans in the previous example, we can then use the following:

38

public class Listener {
private final String topic;

public Listener(String topic) {
this.topic = topic;
}

(topics = "#{__listener.topic}",
groupld = "#{__listener.topic}.group")
public void listen(...) {

}

public String getTopic() {
return this.topic;

}

If, in the unlikely event that you have an actual bean called __listener, you can change the
expression token byusing the beanRef attribute. The following example shows how to do so:

(beanRef = "__x", topics = "#{__x.topic}",

groupIld = "#{__x.topic}.group")

Starting with version 2.2.4, you can specify Kafka consumer properties directly on the annotation,
these will override any properties with the same name configured in the consumer factory. You
cannot specify the group.id and client.id properties this way; they will be ignored; use the groupId
and clientIdPrefix annotation properties for those.

The properties are specified as individual strings with the normal Java Properties file format:
foo:bar, foo=bar, or foo bar.

(topics = "myTopic", groupld = "group", properties = {
"max.poll.interval.ms:60000",
ConsumerConfig.MAX_POLL_RECORDS_CONFIG + "=100"

1))

The following is an example of the corresponding listeners for the example in Using
RoutingKafkaTemplate.

39

(id = "one", topics = "one")
public void listen1(String in) {
System.out.println("1: " + in);

}

(id = "two", topics = "two",
properties =
"value.deserializer:org.apache.kafka.common.serialization.ByteArrayDeserializer")
public void listen2(byte[] in) {
System.out.println("2: " + new String(in));
}

Obtaining the Consumer group.id

When running the same listener code in multiple containers, it may be useful to be able to
determine which container (identified by its group.id consumer property) that a record came from.

You can call KafkaUtils.getConsumerGroupId() on the listener thread to do this. Alternatively, you
can access the group id in a method parameter.

(id = "bar", topicPattern = "${topicTwo:annotated2}", exposeGroupld
= "${always:true}")
public void listener(String foo,

(KafkaHeaders.GROUP_ID) String groupId) {

This is available in record listeners and batch listeners that receive a List<?> of
o records. It is not available in a batch listener that receives a ConsumerRecords<?, 7>
argument. Use the KafkaUtils mechanism in that case.

Container Thread Naming

A TaskExecutor is used to invoke the consumer and the listener. You can provide a custom executor
by setting the consumerExecutor property of the container’s ContainerProperties. When using pooled
executors, be sure that enough threads are available to handle the concurrency across all the
containers in which they are used. When using the ConcurrentMessagelistenerContainer, a thread
from the executor is used for each consumer (concurrency).

If you do not provide a consumer executor, a SimpleAsyncTaskExecutor is used for each container.
This executor creates threads with names similar to <beanName>-C-<n>. For the
ConcurrentMessageListenerContainer, the <beanName> part of the thread name becomes <beanName>-m,
where m represents the consumer instance. n increments each time the container is started. So, with
a bean name of container, threads in this container will be named container-0-C-1, container-1-C-1

60

etc., after the container is started the first time; container-0-C-2, container-1-C-2 etc., after a stop
and subsequent start.

Starting with version 3.0.1, you can now change the name of the thread, regardless of which
executor is used. Set the AbstractMessagelistenerContainer.changeConsumerThreadName property to
true and the AbstractMessagelistenerContainer.threadNameSupplier will be invoked to obtain the
thread name. This is a Function<MessagelistenerContainer, String>, with the default
implementation returning container.getlListenerId().

@Kafkalistener as a Meta Annotation

Starting with version 2.2, you can now use @Kafkalistener as a meta annotation. The following
example shows how to do so:

(ElementType.METHOD)
(RetentionPolicy.RUNTIME)

public MyThreeConsumersListener {

(annotation = Kafkalistener.class, attribute = "id")
String id();

(annotation = Kafkalistener.class, attribute = "topics")

String[] topics();

(annotation = Kafkalistener.class, attribute
String concurrency() default "3";

"concurrency")

You must alias at least one of topics, topicPattern, or topicPartitions (and, usually, id or groupId
unless you have specified a group.id in the consumer factory configuration). The following example
shows how to do so:

(id = "my.group”, topics = "my.topic")
public void listen1(String in) {

}

@Kafkalistener on a Class

When you use @Kafkalistener at the class-level, you must specify @KafkaHandler at the method level.
When messages are delivered, the converted message payload type is used to determine which
method to call. The following example shows how to do so:

61

@Kafkalistener(id = "multi", topics = "myTopic")
static class MultilistenerBean {

@KafkaHandler
public void listen(String foo) {

}

@KafkaHandler
public void listen(Integer bar) {

}

@KafkaHandler (isDefault = true)
public void listenDefault(Object object) {

}

Starting with version 2.1.3, you can designate a @KafkaHandler method as the default method that is
invoked if there is no match on other methods. At most, one method can be so designated. When
using @KafkaHandler methods, the payload must have already been converted to the domain object
(so the match can be performed). Use a custom deserializer, the JsonDeserializer, or the
JsonMessageConverter with its TypePrecedence set to TYPE_ID. See Serialization, Deserialization, and

Message Conversion for more information.
Due to some limitations in the way Spring resolves method arguments, a default
o @KafkaHandler cannot receive discrete headers; it must use the

ConsumerRecordMetadata as discussed in Consumer Record Metadata.

For example:

@KafkaHandler (isDefault = true)
public void listenDefault(Object object, @Header(KafkaHeaders.RECEIVED_TOPIC)
String topic) {

}

This won’t work if the object is a String; the topic parameter will also get a reference to object.

If you need metadata about the record in a default method, use this:

62

(isDefault = true)
void listen(Object in, (KafkaHeaders.RECORD_METADATA)
ConsumerRecordMetadata meta) {
String topic = meta.topic();

@Kafkalistener Attribute Modification

Starting with version 2.7.2, you can now programmatically modify annotation attributes before the
container is created. To do SO, add one or more
KafkalistenerAnnotationBeanPostProcessor.AnnotationEnhancer to the application context.
AnnotationEnhancer is a BiFunction<Map<String, Object>, AnnotatedElement, Map<String, Object>
and must return a map of attributes. The attribute values can contain SpEL and/or property
placeholders; the enhancer is called before any resolution is performed. If more than one enhancer
is present, and they implement Ordered, they will be invoked in order.

o AnnotationEnhancer bean definitions must be declared static because they are
required very early in the application context’s lifecycle.

An example follows:

public static AnnotationEnhancer groupIdEnhancer() {
return (attrs, element) -> {
attrs.put("groupId", attrs.get("id") + "." + (element instanceof Class
? ((Class<?>) element).getSimpleName()
: ((Method) element).getDeclaringClass().getSimpleName()
+ "." + ((Method) element).getName()));
return attrs;

+;

@KafkalListener Lifecycle Management

The listener containers created for @Kafkalistener annotations are not beans in the application
context. Instead, they are registered with an infrastructure bean of type
KafkalListenerEndpointRegistry. This bean is automatically declared by the framework and manages
the containers' lifecycles; it will auto-start any containers that have autoStartup set to true. All
containers created by all container factories must be in the same phase. See Listener Container Auto
Startup for more information. You can manage the lifecycle programmatically by using the registry.
Starting or stopping the registry will start or stop all the registered containers. Alternatively, you
can get a reference to an individual container by using its id attribute. You can set autoStartup on
the annotation, which overrides the default setting configured into the container factory. You can

63

get a reference to the bean from the application context, such as auto-wiring, to manage its
registered containers. The following examples show how to do so:

(id = "myContainer", topics = "myTopic", autoStartup = "false")
public void listen(...) { ... }

private KafkalistenerEndpointRegistry registry;

this.registry.getlListenerContainer("myContainer").start();

The registry only maintains the life cycle of containers it manages; containers declared as beans are
not managed by the registry and can be obtained from the application context. A collection of
managed containers can be obtained by calling the registry’s getlListenerContainers() method.
Version 2.2.5 added a convenience method getAllListenerContainers(), which returns a collection
of all containers, including those managed by the registry and those declared as beans. The
collection returned will include any prototype beans that have been initialized, but it will not
initialize any lazy bean declarations.

Endpoints registered after the application context has been refreshed will start
immediately, regardless of their autoStartup property, to comply with the
SmartLifecycle contract, where autoStartup is only considered during application

o context initialization. An example of late registration is a bean with a
@KafkalListener in prototype scope where an instance is created after the context is
initialized. Starting with version 2.8.7, you can set the registry’s
alwaysStartAfterRefresh property to false and then the container’s autoStartup
property will define whether or not the container is started.

@Kafkalistener @Payload Validation

Starting with version 2.2, it is now easier to add a Validator to validate @Kafkalistener @Payload
arguments. Previously, you had to configure a custom DefaultMessageHandlerMethodFactory and add
it to the registrar. Now, you can add the validator to the registrar itself. The following code shows
how to do so:

64

public class Config implements KafkalListenerConfigurer {

public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)

registrar.setValidator(new MyValidator());
}

o When you use Spring Boot with the validation starter, a LocalValidatorFactoryBean
is auto-configured, as the following example shows:

public class Config implements KafkalListenerConfigurer {

private LocalValidatorFactoryBean validator;

public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)

registrar.setValidator(this.validator);

}

The following examples show how to validate:

65

public static class Validated(Class {

@Max(10)
private int bar;

public int getBar() {
return this.bar;

}

public void setBar(int bar) {
this.bar = bar;

}

@Kafkalistener(id="validated", topics = "annotated35", errorHandler =
"validationErrorHandler",

containerFactory = "kafkalsonListenerContainerFactory")
public void validatedlListener(@Payload @Valid Validated(Class val) {

}

@Bean
public KafkalListenerErrorHandler validationErrorHandler() {
return (m, e) -> {

};

Starting with version 2.5.11, validation now works on payloads for @KafkaHandler methods in a
class-level listener. See @KafkalListener on a Class.

Rebalancing Listeners

ContainerProperties has a property called consumerRebalancelistener, which takes an
implementation of the Kafka client’s ConsumerRebalancelistener interface. If this property is not
provided, the container configures a logging listener that logs rebalance events at the INFO level.
The framework also adds a sub-interface ConsumerAwareRebalancelistener. The following listing
shows the ConsumerAwareRebalancelistener interface definition:

66

public interface ConsumerAwareRebalancelistener extends ConsumerRebalancelistener

{

void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer, Collection
<TopicPartition> partitions);

void onPartitionsRevokedAfterCommit(Consumer<?, 7> consumer, Collection
<TopicPartition> partitions);

void onPartitionsAssigned(Consumer<?, ?> consumer, Collection<TopicPartition>
partitions);

void onPartitionsLost(Consumer<?, 7> consumer, Collection<TopicPartition>
partitions);

}

Notice that there are two callbacks when partitions are revoked. The first is called immediately. The
second is called after any pending offsets are committed. This is useful if you wish to maintain
offsets in some external repository, as the following example shows:

containerProperties.setConsumerRebalancelistener(new
ConsumerAwareRebalancelistener() {

public void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions) {
// acknowledge any pending Acknowledgments (if using manual acks)

}

public void onPartitionsRevokedAfterCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions) {
/] ...
store(consumer.position(partition));
/] ...

public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
/] ...
consumer.seek(partition, offsetTracker.getOffset() + 1);
/] ...

b

67

Starting with version 2.4, a new method onPartitionsLost() has been added
(similar to a method with the same name in ConsumerRebalancelister). The default
implementation on ConsumerRebalancelister simply calls onPartionsRevoked. The
default implementation on ConsumerAwareRebalancelistener does nothing. When
supplying the listener container with a custom listener (of either type), it is

o important that your implementation not call onPartitionsRevoked from
onPartitionsLost. If you implement ConsumerRebalancelListener you should override
the default method. This is because the listener container will call its own
onPartitionsRevoked from its implementation of onPartitionsLost after calling the
method on your implementation. If you implementation delegates to the default
behavior, onPartitionsRevoked will be called twice each time the Consumer calls that
method on the container’s listener.

Forwarding Listener Results using @SendTo

Starting with version 2.0, if you also annotate a @KafkalListener with a @SendTo annotation and the
method invocation returns a result, the result is forwarded to the topic specified by the @SendTo.

The @SendTo value can have several forms:

» @SendTo("someTopic") routes to the literal topic

» @SendTo("#{someExpression}") routes to the topic determined by evaluating the expression once
during application context initialization.

* @SendTo("!{someExpression}") routes to the topic determined by evaluating the expression at
runtime. The #root object for the evaluation has three properties:

o request: The inbound ConsumerRecord (or ConsumerRecords object for a batch listener))
o source: The org.springframework.messaging.Message<?> converted from the request.
o result: The method return result.
* @SendTo (no properties): This is treated as !{source.headers["kafka_replyTopic']} (since version
2.1.3).

Starting with versions 2.1.11 and 2.2.1, property placeholders are resolved within @SendTo values.

The result of the expression evaluation must be a String that represents the topic name. The
following examples show the various ways to use @SendTo:

68

@Kafkalistener(topics = "annotated21")
@SendTo("!{request.value()}") // runtime SpEL
public String replyinglListener(String in) {

}

@Kafkalistener(topics = "${some.property:annotated22}")
@SendTo("#{myBean.replyTopic}") // config time SpEL
public Collection<String> replyingBatchListener(List<String> in) {

}

@Kafkalistener(topics = "annotated23", errorHandler = "replyErrorHandler")
@SendTo("annotated23reply") // static reply topic definition
public String replyinglListenerWithErrorHandler(String in) {

}

@Kafkalistener(topics = "annotated25")
@SendTo("annotated25reply1")
public class MultiListenerSendTo {

@KafkaHandler
public String foo(String in) {

}

@KafkaHandler

@SendTo("!{"'annotated25reply2'}")

public String bar(@Payload(required = false) KafkaNull nul,
@Header (KafkaHeaders.RECEIVED_KEY) int key) {

In order to support @SendTo, the listener container factory must be provided with a
KafkaTemplate (in its replyTemplate property), which is used to send the reply. This

o should be a KafkaTemplate and not a ReplyingKafkaTemplate which is used on the
client-side for request/reply processing. When using Spring Boot, boot will auto-
configure the template into the factory; when configuring your own factory, it
must be set as shown in the examples below.

Starting with version 2.2, you can add a ReplyHeadersConfigurer to the listener container factory.

This is consulted to determine which headers you want to set in the reply message. The following
example shows how to add a ReplyHeadersConfigurer:

69

public ConcurrentKafkalistenerContainerFactory<Integer, String>

kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =

new ConcurrentKafkalistenerContainerFactory<>();

factory.setConsumerFactory(cf());
factory.setReplyTemplate(template());
factory.setReplyHeadersConfigurer((k, v) -> k.equals(“cat"));
return factory;

You can also add more headers if you wish. The following example shows how to do so:

public ConcurrentKafkalistenerContainerFactory<Integer, String>
kafkalListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(cf());
factory.setReplyTemplate(template());
factory.setReplyHeadersConfigurer(new ReplyHeadersConfigurer() {

public boolean shouldCopy(String headerName, Object headerValue) {
return false;

}

public Map<String, Object> additionalHeaders() {
return Collections.singletonMap("qux", "fiz");

}
1

return factory;

When you use @SendTo, you must configure the ConcurrentKafkalListenerContainerFactory with a
KafkaTemplate in its replyTemplate property to perform the send. Spring Boot will automatically wire
in its auto configured template (or any if a single instance is present).

Unless you use request/reply semantics only the simple send(topic, value) method

is used, so you may wish to create a subclass to generate the partition or key. The
following example shows how to do so:

70

public KafkaTemplate<String, String> myReplyingTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory()) {

public CompletableFuture<SendResult<String, String>> send(String topic,
String data) {
return super.send(topic, partitionForData(data), keyForData(data),
data);

If the listener method returns Message<?> or Collection<Message<?>>, the listener
method is responsible for setting up the message headers for the reply. For
example, when handling a request from a ReplyingKafkaTemplate, you might do the
following:

(id = "messageReturned", topics = "someTopic")
public Message<?> listen(String in, (KafkaHeaders
o .REPLY_TOPIC) byte[] replyTo,
(KafkaHeaders.CORRELATION_ID) byte[] correlation) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.TOPIC, replyTo)
.setHeader (KafkaHeaders.KEY, 42)
.setHeader (KafkaHeaders.CORRELATION ID, correlation)
.setHeader ("someOtherHeader"”, "someValue")
.build();

When using request/reply semantics, the target partition can be requested by the sender.

71

You can annotate a @Kafkalistener method with @SendTo even if no result is
returned. This is to allow the configuration of an errorHandler that can forward
information about a failed message delivery to some topic. The following example
shows how to do so:

(id = "voidlListenerWithReplyingErrorHandler", topics
= "someTopic",
errorHandler = "voidSendToErrorHandler")
("failures")
public void voidListenerWithReplyingErrorHandler(String in) {
o throw new RuntimeException("fail");
}

public KafkalistenerErrorHandler voidSendToErrorHandler() {
return (m, e) -> {
return ... // some information about the failure and input
data

};

See Handling Exceptions for more information.

If a listener method returns an Iterable, by default a record for each element as
the value is sent. Starting with version 2.3.5, set the splitIterables property on

e @Kafkalistener to false and the entire result will be sent as the value of a single
ProducerRecord. This requires a suitable serializer in the reply template’s producer
configuration. However, if the reply is Iterable<Message<?>> the property is
ignored and each message is sent separately.

Filtering Messages

In certain scenarios, such as rebalancing, a message that has already been processed may be
redelivered. The framework cannot know whether such a message has been processed or not. That
is an application-level function. This is known as the Idempotent Receiver pattern and Spring
Integration provides an implementation of it.

The Spring for Apache Kafka project also provides some assistance by means of the
FilteringMessagelistenerAdapter class, which can wrap your Messagelistener. This class takes an
implementation of RecordFilterStrategy in which you implement the filter method to signal that a
message is a duplicate and should be discarded. This has an additional property called
ackDiscarded, which indicates whether the adapter should acknowledge the discarded record. It is
false by default.

When you use @Kafkalistener, set the RecordFilterStrategy (and optionally ackDiscarded) on the
container factory so that the listener is wrapped in the appropriate filtering adapter.

72

https://www.enterpriseintegrationpatterns.com/patterns/messaging/IdempotentReceiver.html
https://docs.spring.io/spring-integration/reference/html/#idempotent-receiver

In addition, a FilteringBatchMessagelistenerAdapter is provided, for when you use a batch message
listener.

The FilteringBatchMessagelistenerAdapter is ignored if your @Kafkalistener
o receives a ConsumerRecords<?, 7> instead of List<ConsumerRecord<?, 7>>, because
ConsumerRecords is immutable.

Starting with version 2.8.4, you can override the listener container factory’s default
RecordFilterStrategy by using the filter property on the listener annotations.

@Kafkalistener(id = "filtered", topics = "topic", filter = "differentFilter")
public void listen(Thing thing) {

Retrying Deliveries

See the DefaultErrorHandler in Handling Exceptions.

Starting @Kafkalistener s in Sequence

A common use case is to start a listener after another listener has consumed all the records in a
topic. For example, you may want to load the contents of one or more compacted topics into
memory before processing records from other topics. Starting with version 2.7.3, a new component
ContainerGroupSequencer has been introduced. It uses the @Kafkalistener containerGroup property to
group containers together and start the containers in the next group, when all the containers in the
current group have gone idle.

It is best illustrated with an example.

73

(id = "listen1", topics = "topic1", containerGroup = "g1",
concurrency = "2")
public void listen1(String in) {
}

(id = "listen2", topics = "topic2", containerGroup = "g1",
concurrency = "2")
public void listen2(String in) {
}

(id = "listen3", topics = "topic3", containerGroup = "g2",
concurrency = "2")
public void listen3(String in) {
}

(id = "listen4", topics = "topic4", containerGroup = "g2",

concurrency = "2")
public void listen4(String in) {
¥

ContainerGroupSequencer sequencer(KafkalistenerEndpointRegistry registry) {
return new ContainerGroupSequencer(registry, 5000, "g1", "g2");

}

Here, we have 4 listeners in two groups, g1 and g2.

During application context initialization, the sequencer, sets the autoStartup property of all the
containers in the provided groups to false. It also sets the idleEventInterval for any containers
(that do not already have one set) to the supplied value (5000ms in this case). Then, when the
sequencer is started by the application context, the containers in the first group are started. As
ListenerContainerIdleEvent s are received, each individual child container in each container is
stopped. When all child containers in a ConcurrentMessagelListenerContainer are stopped, the parent
container is stopped. When all containers in a group have been stopped, the containers in the next
group are started. There is no limit to the number of groups or containers in a group.

By default, the containers in the final group (92 above) are not stopped when they go idle. To modify
that behavior, set stopLastGroupWhenIdle to true on the sequencer.

As an aside; previously, containers in each group were added to a bean of type
Collection<MessagelistenerContainer> with the bean name being the containerGroup. These
collections are now deprecated in favor of beans of type ContainerGroup with a bean name that is
the group name, suffixed with .group; in the example above, there would be 2 beans g1.group and
g2.group. The Collection beans will be removed in a future release.

74

Using KafkaTemplate to Receive

This section covers how to use KafkaTemplate to receive messages.

Starting with version 2.8, the template has four receive() methods:

ConsumerRecord<K, V> receive(String topic, int partition, long offset);

ConsumerRecord<K, V> receive(String topic, int partition, long offset, Duration

pollTimeout);

ConsumerRecords<K, V> receive(Collection<TopicPartition0ffset> requested);

ConsumerRecords<K, V> receive(Collection<TopicPartitionOffset> requested, Duration

pollTimeout);

As you can see, you need to know the partition and offset of the record(s) you need to retrieve; a

new Consumer is created (and closed) for each operation.

With the last two methods, each record is retrieved individually and the results assembled into a
ConsumerRecords object. When creating the TopicPartitionOffset s for the request, only positive,

absolute offsets are supported.

4.1.5. Listener Container Properties

Table 1. ContainerProperties Properties

Property Default
ackCount 1
adviceChain null
ackMode BATCH
ackTime 5000

Description

The number of records before
committing pending offsets when the
ackMode is COUNT or COUNT _TIME.

A chain of Advice objects (e.g.
MethodInterceptor around advice)
wrapping the message listener, invoked
in order.

Controls how often offsets are
committed - see Committing Offsets.

The time in milliseconds after which
pending offsets are committed when the
ackMode is TIME or COUNT_TIME.

75

Property

assignmentCommitOption

asyncAcks

authExceptionRetryInterval

clientId

checkDeserExWhenKeyNull

checkDeserExWhenValueNull

commitCallback

76

Default
LATEST ONLY NO TX

false

null

(empty string)

false

false

null

Description

Whether or not to commit the initial
position on assignment; by default, the
initial offset will only be committed if

the
ConsumerConfig.AUTO_OFFSET_RESET_CONFIG

is latest and it won’t run in a
transaction even if there is a transaction

manager present. See the javadocs for
ContainerProperties.AssignmentCommitOpt

ion for more information about the
available options.

Enable out-of-order commits (see
Manually Committing Offsets); the
consumer is paused and commits are
deferred until gaps are filled.

When not null, a Duration to sleep
between polls when an
AuthenticationException or
AuthorizationException is thrown by the
Kafka client. When null, such exceptions
are considered fatal and the container
will stop.

A prefix for the client.id consumer
property. Overrides the consumer
factory client.id property; in a
concurrent container, -n is added as a
suffix for each consumer instance.

Set to true to always check for a
DeserializationException header when a
null key is received. Useful when the
consumer code cannot determine that
an ErrorHandlingDeserializer has been
configured, such as when using a
delegating deserializer.

Set to true to always check for a
DeserializationException header when a
null value is received. Useful when the
consumer code cannot determine that
an ErrorHandlingDeserializer has been
configured, such as when using a
delegating deserializer.

When present and syncCommits is false a
callback invoked after the commit
completes.

Property

offsetAndMetadataProvider

commitlLoglevel

consumerRebalancelistener

consumerStartTimout

consumer TaskExecutor

deliveryAttemptHeader

eosMode

Default
null

DEBUG

null

30s

SimpleAsyncTaskExecut
or

false

V2

Description

A provider for 0f fsetAndMetadata; by
default, the provider creates an offset
and metadata with empty metadata. The
provider gives a way to customize the
metadata.

The logging level for logs pertaining to
committing offsets.

A rebalance listener; see Rebalancing
Listeners.

The time to wait for the consumer to
start before logging an error; this might
happen if, say, you use a task executor
with insufficient threads.

A task executor to run the consumer
threads. The default executor creates
threads named <name>-C-n; with the
KafkaMessagelListenerContainer, the name
is the bean name; with the
ConcurrentMessagelListenerContainer the
name is the bean name suffixed with -n
where n is incremented for each child
container.

See Delivery Attempts Header.

Exactly Once Semantics mode; see
Exactly Once Semantics.

77

Property
fixTx0ffsets

groupId

idleBeforeDataMultiplier

idleBetweenPolls

idleEventInterval

idlePartitionEventInterval

78

Default

false

null

5.0

null

null

Description

When consuming records produced by a
transactional producer, and the
consumer is positioned at the end of a
partition, the lag can incorrectly be
reported as greater than zero, due to the
pseudo record used to indicate
transaction commit/rollback and,
possibly, the presence of rolled-back
records. This does not functionally affect
the consumer but some users have
expressed concern that the "lag" is non-
zero. Set this property to true and the
container will correct such mis-reported
offsets. The check is performed before
the next poll to avoid adding significant
complexity to the commit processing. At
the time of writing, the lag will only be
corrected if the consumer is configured
with isolation.level=read_committed and
max.poll.records is greater than 1. See
KAFKA-10683 for more information.

Overrides the consumer group.id
property; automatically set by the
@KafkalListener id or groupId property.

Multiplier for idleEventInterval thatis
applied before any records are received.
After a record is received, the multiplier
is no longer applied. Available since
version 2.8.

Used to slow down deliveries by sleeping
the thread between polls. The time to
process a batch of records plus this
value must be less than the
max.poll.interval.ms consumer
property.

When set, enables publication of
ListenerContainerIdleEvent s, see
Application Events and Detecting Idle
and Non-Responsive Consumers. Also
see idleBeforeDataMultiplier.

When set, enables publication of
ListenerContainerIdlePartitionEvent s,
see Application Events and Detecting
Idle and Non-Responsive Consumers.

https://issues.apache.org/jira/browse/KAFKA-10683

Property

kafkaConsumerProperties

logContainerConfig

messagelistener

micrometerEnabled

micrometerTags

micrometerTagsProvider

missingTopicsFatal

monitorInterval

noPol1Threshold

onlyLogRecordMetadata

pauseImmediate

pollTimeout

pollTimeoutWhilePaused

restartAfterAuthExceptions

Default

None

false

null

true

empty

null

false

30s

3.0

false

false

5000

100

false

Description

Used to override any arbitrary consumer
properties configured on the consumer
factory.

Set to true to log at INFO level all
container properties.

The message listener.

Whether or not to maintain Micrometer
timers for the consumer threads.

A map of static tags to be added to
micrometer metrics.

A function that provides dynamic tags,
based on the consumer record.

When true prevents the container from
starting if the confifgured topic(s) are
not present on the broker.

How often to check the state of the
consumer threads for
NonResponsiveConsumerEvent s. See
noPol1Threshold and pollTimeout.

Multiplied by pol1TimeQut to determine
whether to publish a
NonResponsiveConsumerEvent. See
monitorInterval.

Set to false to log the complete consumer
record (in error, debug logs etc) instead
of just topic-partition@offset

When the container is paused, stop
processing after the current record
instead of after processing all the
records from the previous poll; the
remaining records are retained in
memory and will be passed to the
listener when the container is resumed.

The timeout passed into Consumer.poll()
in milliseconds.

The timeout passed into Consumer.poll()
(in milliseconds) when the container is
in a paused state.

True to restart the container if it is
stopped due to
authorization/authentication exceptions.

79

Property

scheduler

shutdownTimeout

stopContainerWhenFenced

stopImmediate

subBatchPerPartition

syncCommitTimeout

syncCommits

topics topicPattern
topicPartitions

transactionManager

Default

ThreadPoolTaskSchedul
er

10000

false

false

See desc.

null

true

n/a

null

Table 2. AbstractListenerContainer Properties

Property

afterRollbackProcessor

applicationEventPublish application context

er

batchErrorHandler

80

See desc.

Description

A scheduler on which to run the
consumer monitor task.

The maximum time in ms to block the
stop() method until all consumers stop
and before publishing the container
stopped event.

Stop the listener container if a
ProducerFencedException is thrown. See
After-rollback Processor for more
information.

When the container is stopped, stop
processing after the current record
instead of after processing all the
records from the previous poll.

When using a batch listener, if this is
true, the listener is called with the
results of the poll split into sub batches,
one per partition. Default false.

The timeout to use when syncCommits is
true. When not set, the container will
attempt to determine the
default.api.timeout.ms consumer
property and use that; otherwise it will
use 60 seconds.

Whether to use sync or async commits
for offsets; see commitCallback.

The configured topics, topic pattern or
explicitly assigned topics/partitions.
Mutually exclusive; at least one must be
provided; enforced by
ContainerProperties constructors.

See Transactions.

Description

DefaultAfterRollbackProces An AfterRollbackProcessor to invoke after a

transaction is rolled back.

The event publisher.

Deprecated - see commonErrorHandler.

Property

batchInterceptor

beanName

commonErrorHandler

containerProperties
errorHandler
genericErrorHandler

groupId

interceptBeforeTx

listenerId

listenerInfo

pauseRequested

recordInterceptor

topicCheckTimeout

Default
null

bean name

See desc.

ContainerProperties

See desc.
See desc.

See desc.

true

See desc.

null

(read only)

null

30s

Table 3. KafkaMessagelistenerContainer Properties

Description

Set a BatchInterceptor to call before
invoking the batch listener; does not apply
to record listeners. Also see
interceptBeforeTx.

The bean name of the container; suffixed
with -n for child containers.

DefaultErrorHandler or null when a
transactionManager is provided when a
DefaultAfterRollbackProcessor is used. See
Container Error Handlers.

The container properties instance.
Deprecated - see commonErrorHandler.
Deprecated - see commonErrorHandler.

The containerProperties.groupld, if present,
otherwise the group.id property from the
consumer factory.

Determines whether the recordInterceptor
is called before or after a transaction starts.

The bean name for user-configured
containers or the id attribute of
@Kafkalistener s.

A value to populate in the
KafkaHeaders.LISTENER_INFO header. With
@Kafkalistener, this value is obtained from
the info attribute. This header can be used
in various places, such as a
RecordInterceptor, RecordFilterStrategy and
in the listener code itself.

True if a consumer pause has been
requested.

Set a RecordInterceptor to call before
invoking the record listener; does not apply
to batch listeners. Also see
interceptBeforeTx.

When the missingTopicsFatal container
property is true, how long to wait, in
seconds, for the describeTopics operation to
complete.

81

Property Default

assignedPartitions (read
only)
assignedPartitionsByClientI (read
d only)
clientIdSuffix null
containerPaused n/a

Description

The partitions currently assigned to this container
(explicitly or not).

The partitions currently assigned to this container
(explicitly or not).

Used by the concurrent container to give each child
container’s consumer a unique client.id.

True if pause has been requested and the consumer has
actually paused.

Table 4. ConcurrentMessagelListenerContainer Properties

Property Default

alwaysClientIdSuffix true

assignedPartitions (read
only)

assignedPartitionsByClientI (read

d only)
concurrency 1
containerPaused n/a
containers n/a

Description

Set to false to suppress adding a suffix to the client.id
consumer property, when the concurrency is only 1.

The aggregate of partitions currently assigned to this
container’s child KafkaMessagelListenerContainer s
(explicitly or not).

The partitions currently assigned to this container’s child
KafkaMessagelListenerContainer s (explicitly or not), keyed
by the child container’s consumer’s client.id property.

The number of child KafkaMessageListenerContainer s to
manage.

True if pause has been requested and all child containers'
consumer has actually paused.

A reference to all child KafkaMessagelListenerContainer s.

4.1.6. Dynamically Creating Containers

There are several techniques that can be used to create listener containers at runtime. This section

explores some of those techniques.

MessageListener Implementations

If you implement your own listener directly, you can simply use the container factory to create a

raw container for that listener:

82

Example 8. User Listener
Java

public class MyListener implements Messagelistener<String, String> {

public void onMessage(ConsumerRecord<String, String> data) {
/] ...

}

private ConcurrentMessagelistenerContainer<String, String> createContainer(
ConcurrentKafkalistenerContainerFactory<String, String> factory, String
topic, String group) {

ConcurrentMessagelistenerContainer<String, String> container = factory
.createContainer(topic);

container.getContainerProperties().setMessagelistener(new MyListener());

container.getContainerProperties().setGroupId(group);

container.setBeanName(group);

container.start();

return container;

Kotlin
class MylListener : Messagelistener<String?, String?> {

override fun onMessage(data: ConsumerRecord<String?, String?>) {
// ...
}

private fun createContainer(
factory: ConcurrentKafkalistenerContainerFactory<String, String>, topic:
String, group: String
): ConcurrentMessagelistenerContainer<String, String> {
val container = factory.createContainer(topic)
container.containerProperties.messagelListener = MyListener()
container.containerProperties.groupld = group
container.beanName = group
container.start()
return container

Prototype Beans

Containers for methods annotated with @KafkalListener can be created dynamically by declaring the
bean as prototype:

84

Example 9. Prototype
Java
public class MyPojo {
private final String id;
private final String topic;

public MyPojo(String id, String topic) {
this.id = id;
this.topic = topic;

}

public String getId() {
return this.id;

}

public String getTopic() {
return this.topic;

}

@KafkalListener(id = "#{__listener.id}", topics = "#{__

public void listen(String in) {
System.out.println(in);

}

}

@Bean
@Scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE)
MyPojo pojo(String id, String topic) {

return new MyPojo(id, topic);

}

applicationContext.getBean(MyPojo.class, "one", "topic2");
applicationContext.getBean(MyPojo.class, "two", "topic3");

listener.topic}")

85

Kotlin
class MyPojo(id: String?, topic: String?) {

@KafkalListener(id = "#{__listener.id}", topics = ["#{__listener.topics}"])
fun listen(‘in‘: String?) {

println(‘in')
}

@Bean

@Scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE)

fun pojo(id: String?, topic: String?): MyPojo {
return MyPojo(id, topic)

¥

applicationContext.getBean(MyPojo::class.java, "one", arrayOf("topic2"))
applicationContext.getBean(MyPojo::class.java, "two", arrayOf("topic3"))

Listeners must have wunique IDs. Starting with version 2.8.9, the

o KafkalistenerEndpointRegistry has a new method
unregisterListenerContainer(String id) to allow you to re-use an id. Unregistering
a container does not stop() the container, you must do that yourself.

4.1.7. Application Events

The following Spring application events are published by listener containers and their consumers:

86

ConsumerStartingEvent - published when a consumer thread is first started, before it starts
polling.

ConsumerStartedEvent - published when a consumer is about to start polling.

ConsumerFailedToStartEvent - published if no ConsumerStartingEvent is published within the
consumerStartTimeout container property. This event might signal that the configured task
executor has insufficient threads to support the containers it is used in and their concurrency.
An error message is also logged when this condition occurs.

ListenerContainerIdleEvent: published when no messages have been received in idleInterval (if
configured).

ListenerContainerNoLongerIdleEvent: published when a record is consumed after previously
publishing a ListenerContainerIdleEvent.

ListenerContainerPartitionIdleEvent: published when no messages have been received from
that partition in idlePartitionEventInterval (if configured).

ListenerContainerPartitionNoLongerIdleEvent: published when a record is consumed from a
partition that has previously published a ListenerContainerPartitionIdleEvent.

NonResponsiveConsumerEvent: published when the consumer appears to be blocked in the poll

method.
» ConsumerPartitionPausedEvent: published by each consumer when a partition is paused.
* ConsumerPartitionResumedEvent: published by each consumer when a partition is resumed.
* ConsumerPausedEvent: published by each consumer when the container is paused.
* ConsumerResumedEvent: published by each consumer when the container is resumed.
» ConsumerStoppingEvent: published by each consumer just before stopping.
* ConsumerStoppedEvent: published after the consumer is closed. See Thread Safety.

* ConsumerRetryAuthEvent: published when authentication or authorization of a consumer fails
and is being retried.

* ConsumerRetryAuthSuccessfulEvent: published when authentication or authorization has been
retried successfully. Can only occur when there has been a ConsumerRetryAuthEvent before.

* ContainerStoppedEvent: published when all consumers have stopped.

By default, the application context’s event multicaster invokes event listeners on

o the calling thread. If you change the multicaster to use an async executor, you
must not invoke any Consumer methods when the event contains a reference to the
consumer.

The ListenerContainerIdleEvent has the following properties:

* source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

¢ id: The listener ID (or container bean name).
* idleTime: The time the container had been idle when the event was published.

» topicPartitions: The topics and partitions that the container was assigned at the time the event
was generated.

» consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

* paused: Whether the container is currently paused. See Pausing and Resuming Listener
Containers for more information.

The ListenerContainerNoLongerIdleEvent has the same properties, except idleTime and paused.
The ListenerContainerPartitionIdleEvent has the following properties:

» source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

¢ id: The listener ID (or container bean name).

 idleTime: The time partition consumption had been idle when the event was published.

87

* topicPartition: The topic and partition that triggered the event.

» consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

* paused: Whether that partition consumption is currently paused for that consumer. See Pausing

and Resuming Listener Containers for more information.

The ListenerContainerPartitionNoLongerIdleEvent has the same properties, except idleTime and
paused.

The NonResponsiveConsumerEvent has the following properties:

* source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e id: The listener ID (or container bean name).
» timeSincelastPoll: The time just before the container last called poll().

* topicPartitions: The topics and partitions that the container was assigned at the time the event
was generated.

» consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

* paused: Whether the container is currently paused. See Pausing and Resuming Listener

Containers for more information.

The ConsumerPausedEvent, ConsumerResumedEvent, and ConsumerStopping events have the following
properties:
» source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e partitions: The TopicPartition instances involved.

The ConsumerPartitionPausedEvent, ConsumerPartitionResumedEvent events have the following
properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e partition: The TopicPartition instance involved.
The ConsumerRetryAuthEvent event has the following properties:

* source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

88

* reason
o AUTHENTICATION - the event was published because of an authentication exception.
o AUTHORIZATION - the event was published because of an authorization exception.
The ConsumerStartingEvent, ConsumerStartingEvent, ConsumerFailedToStartEvent,
ConsumerStoppedEvent, ConsumerRetryAuthSuccessfulEvent and ContainerStoppedEvent events have the
following properties:
 source: The listener container instance that published the event.
» container: The listener container or the parent listener container, if the source container is a

child.

All containers (Whether a child or a parent) publish ContainerStoppedEvent. For a parent container,
the source and container properties are identical.

In addition, the ConsumerStoppedEvent has the following additional property:

* reason
> NORMAL - the consumer stopped normally (container was stopped).
> ERROR - a java.lang.Error was thrown.

o FENCED - the transactional producer was fenced and the stopContainerWhenFenced container
property is true.

o AUTH - an AuthenticationException or AuthorizationException was thrown and the
authExceptionRetryInterval is not configured.

o NO_OFFSET - there is no offset for a partition and the auto.offset.reset policy is none.

You can use this event to restart the container after such a condition:

if (event.getReason.equals(Reason.FENCED)) {
event.getSource(MessagelistenerContainer.class).start();

}

Detecting Idle and Non-Responsive Consumers

While efficient, one problem with asynchronous consumers is detecting when they are idle. You
might want to take some action if no messages arrive for some period of time.

You can configure the listener container to publish a ListenerContainerIdleEvent when some time
passes with no message delivery. While the container is idle, an event is published every
idleEventInterval milliseconds.

To configure this feature, set the idleEventInterval on the container. The following example shows
how to do so:

89

public KafkaMessageListenerContainer(ConsumerFactory<String, String>
consumerFactory) {

ContainerProperties containerProps = new ContainerProperties("topicl1",
topic2");

containerProps.setIdleEventInterval(60000L);

KafkaMessagelistenerContainer<String, String> container = new
KafKaMessagelistenerContainer<>(...);
return container;

}

The following example shows how to set the idleEventInterval for a @Kafkalistener:

public ConcurrentKafkalistenerContainerFactory kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<String, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.getContainerProperties().setIdleEventInterval(60000L);

return factory;

In each of these cases, an event is published once per minute while the container is idle.

If, for some reason, the consumer poll() method does not exit, no messages are received and idle
events cannot be generated (this was a problem with early versions of the kafka-clients when the
broker wasn’t reachable). In this case, the container publishes a NonResponsiveConsumerEvent if a poll
does not return within 3x the pollTimeout property. By default, this check is performed once every
30 seconds in each container. You can modify this behavior by setting the monitorInterval (default
30 seconds) and noPollThreshold (default 3.0) properties in the ContainerProperties when
configuring the listener container. The noPol1Threshold should be greater than 1.0 to avoid getting
spurious events due to a race condition. Receiving such an event lets you stop the containers, thus
waking the consumer so that it can stop.

Starting with version 2.6.2, if a container has published a ListenerContainerIdleEvent, it will publish
a ListenerContainerNoLongerIdleEvent when a record is subsequently received.

Event Consumption

You can capture these events by implementing ApplicationlListener —either a general listener or
one narrowed to only receive this specific event. You can also use @EventListener, introduced in
Spring Framework 4.2.

90

The next example combines @KafkalListener and @EventListener into a single class. You should
understand that the application listener gets events for all containers, so you may need to check the
listener ID if you want to take specific action based on which container is idle. You can also use the
@EventListener condition for this purpose.

See Application Events for information about event properties.

The event is normally published on the consumer thread, so it is safe to interact with the Consumer
object.

The following example uses both @Kafkalistener and @EventListener:

public class Listener {

(id = "qux", topics = "annotated")
public void Tistend(String foo, Acknowledgment ack) {

(condition = "event.listenerId.startsWith('qux-')")
public void eventHandler(ListenerContainerIdleEvent event) {

Event listeners see events for all containers. Consequently, in the preceding
example, we narrow the events received based on the listener ID. Since containers

o created for the @Kafkalistener support concurrency, the actual containers are
named id-n where the n is a unique value for each instance to support the
concurrency. That is why we use startsWith in the condition.

If you wish to use the idle event to stop the lister container, you should not call
container.stop() on the thread that calls the listener. Doing so causes delays and
o unnecessary log messages. Instead, you should hand off the event to a different
thread that can then stop the container. Also, you should not stop() the container
instance if it is a child container. You should stop the concurrent container instead.
Current Positions when Idle
Note that you can obtain the current positions when idle is detected by implementing

ConsumerSeekAware in your listener. See onIdleContainer() in Seeking to a Specific Offset.

4.1.8. Topic/Partition Initial Offset

There are several ways to set the initial offset for a partition.

91

When manually assigning partitions, you can set the initial offset (if desired) in the configured
TopicPartitionOffset arguments (see Message Listener Containers). You can also seek to a specific
offset at any time.

When you use group management where the broker assigns partitions:
» For a new group.id, the initial offset is determined by the auto.offset.reset consumer property

(earliest or latest).

» For an existing group ID, the initial offset is the current offset for that group ID. You can,
however, seek to a specific offset during initialization (or at any time thereafter).

4.1.9. Seeking to a Specific Offset

In order to seek, your listener must implement ConsumerSeekAware, which has the following
methods:

void registerSeekCallback(ConsumerSeekCallback callback);

void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback);

void onPartitionsRevoked(Collection<TopicPartition> partitions)

void onIdleContainer(Map<TopicPartition, Long> assignments, ConsumerSeekCallback
callback);

The registerSeekCallback is called when the container is started and whenever partitions are
assigned. You should use this callback when seeking at some arbitrary time after initialization. You
should save a reference to the callback. If you use the same listener in multiple containers (or in a
ConcurrentMessagelListenerContainer), you should store the callback in a ThreadLocal or some other
structure keyed by the listener Thread.

When using group management, onPartitionsAssigned is called when partitions are assigned. You
can use this method, for example, for setting initial offsets for the partitions, by calling the callback.
You can also use this method to associate this thread’s callback with the assigned partitions (see the
example below). You must use the callback argument, not the one passed into registerSeekCallback.
Starting with version 2.5.5, this method is called, even when using manual partition assignment.

onPartitionsRevoked is called when the container is stopped or Kafka revokes assignments. You
should discard this thread’s callback and remove any associations to the revoked partitions.

The callback has the following methods:

92

void seek(String topic, int partition, long offset);

void seekToBeginning(String topic, int partition);

void seekToBeginning(Collection=<TopicPartitions> partitions);

void seekToEnd(String topic, int partition);

void seekToEnd(Collection=<TopicPartitions> partitions);

void seekRelative(String topic, int partition, long offset, boolean toCurrent);
void seekToTimestamp(String topic, int partition, long timestamp);

void seekToTimestamp(Collection<TopicPartition> topicPartitions, long timestamp);

seekRelative was added in version 2.3, to perform relative seeks.

» offset negative and toCurrent false - seek relative to the end of the partition.
» offset positive and toCurrent false - seek relative to the beginning of the partition.
» offset negative and toCurrent true - seek relative to the current position (rewind).

» offset positive and toCurrent true - seek relative to the current position (fast forward).

The seekToTimestamp methods were also added in version 2.3.

When seeking to the same timestamp for multiple partitions in the onIdleContainer
or onPartitionsAssigned methods, the second method is preferred because it is

o more efficient to find the offsets for the timestamps in a single call to the
consumer’s offsetsForTimes method. When called from other locations, the
container will gather all timestamp seek requests and make one call to
offsetsForTimes.

You can also perform seek operations from onIdleContainer() when an idle container is detected.
See Detecting Idle and Non-Responsive Consumers for how to enable idle container detection.

The seekToBeginning method that accepts a collection is useful, for example, when

o processing a compacted topic and you wish to seek to the beginning every time the
application is started:

93

public class MyListener implements ConsumerSeekAware {

public void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {

callback.seekToBeginning(assignments.keySet());
}

To arbitrarily seek at runtime, use the callback reference from the registerSeekCallback for the
appropriate thread.

Here is a trivial Spring Boot application that demonstrates how to use the callback; it sends 10
records to the topic; hitting <Enter> in the console causes all partitions to seek to the beginning.

94

public class SeekExampleApplication {

public static void main(String[] args) {
SpringApplication.run(SeekExampleApplication.class, args);
}

public ApplicationRunner runner(Listener listener, KafkaTemplate<String,
String> template) {
return args -> {

IntStream.range(@, 10).forEach(i -> template.send(
new ProducerRecord<>("seekExample", i % 3, "foo", "bar")));

while (true) {
System.in.read();
listener.seekToStart();

public NewTopic topic() {
return new NewTopic("seekExample", 3, (short) 1);

}

class Listener implements ConsumerSeekAware {

private static final Logger logger = LoggerFactory.getlLogger(Listener.class);

private final ThreadlLocal<ConsumerSeekCallback> callbackForThread = new
ThreadlLocal<>();
private final Map<TopicPartition, ConsumerSeekCallback> callbacks = new

ConcurrentHashMap<>();

public void registerSeekCallback(ConsumerSeekCallback callback) {
this.callbackForThread.set(callback);

}

public void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {
assignments.keySet().forEach(tp -> this.callbacks.put(tp, this
.callbackForThread.qget()));
}

95

public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
partitions.forEach(tp -> this.callbacks.remove(tp));
this.callbackForThread.remove();

public void onIdleContainer(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {
}

(id = "seekExample", topics = "seekExample", concurrency = "3")
public void listen(ConsumerRecord<String, String> in) {
logger.info(in.toString());
}

public void seekToStart() {
this.callbacks.forEach((tp, callback) -> callback.seekToBeginning(tp.
topic(), tp.partition()));
}

To make things simpler, version 2.3 added the AbstractConsumerSeekAware class, which keeps track of
which callback is to be used for a topic/partition. The following example shows how to seek to the
last record processed, in each partition, each time the container goes idle. It also has methods that
allow arbitrary external calls to rewind partitions by one record.

96

public class SeekTolLastOnIdlelListener extends AbstractConsumerSeekAware {

(id = "seekOnIdle", topics = "seekOnIdle")
public void listen(String in) {

}

public void onIdleContainer(Map<org.apache.kafka.common.TopicPartition, Long>
assignments,
ConsumerSeekCallback callback) {

assignments.keySet().forEach(tp -> callback.seekRelative(tp.topic(),
tp.partition(), -1, true));
}

/**
* Rewind all partitions one record.
*
/
public void rewindAl1OneRecord() {
getSeekCallbacks()
.forEach((tp, callback) ->
callback.seekRelative(tp.topic(), tp.partition(), -1, true));

}

/**
* Rewind one partition one record.
*/
public void rewindOnePartitionOneRecord(String topic, int partition) {
getSeekCallbackFor(new org.apache.kafka.common.TopicPartition(topic,
partition))
.seekRelative(topic, partition, -1, true);

}

Version 2.6 added convenience methods to the abstract class:

» seekToBeginning() - seeks all assigned partitions to the beginning
* seekToEnd() - seeks all assigned partitions to the end

* seekToTimestamp(long time) - seeks all assigned partitions to the offset represented by that
timestamp.

Example:

97

public class MyListener extends AbstractConsumerSeekAware {

(...)
void listn(...) {

public class SomeQtherBean {

MyListener listener;

void someMethod() {
this.listener.seekToTimestamp(System.currentTimeMillis - 60_000);

4.1.10. Container factory

As discussed in @KafkalListener Annotation, a ConcurrentKafkalistenerContainerFactory is used to
create containers for annotated methods.

Starting with version 2.2, you can wuse the same factory to create any
ConcurrentMessagelistenerContainer. This might be useful if you want to create several containers
with similar properties or you wish to use some externally configured factory, such as the one
provided by Spring Boot auto-configuration. Once the container is created, you can further modify
its properties, many of which are set by using container.getContainerProperties(). The following
example configures a ConcurrentMessagelListenerContainer:

public ConcurrentMessagelistenerContainer<String, String>(
ConcurrentKafkalListenerContainerFactory<String, String> factory) {

ConcurrentMessagelistenerContainer<String, String> container =
factory.createContainer("topic1", "topic2");

container.setMessagelListener(m -> { ... });

return container;

98

Containers created this way are not added to the endpoint registry. They should be
o created as @Bean definitions so that they are registered with the application
context.

Starting with version 2.3.4, you can add a ContainerCustomizer to the factory to further configure
each container after it has been created and configured.

public KafkalistenerContainerFactory<?> kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.setContainerCustomizer(container -> { /* customize the container */ }

)i
return factory;
}
4.1.11. Thread Safety

When using a concurrent message listener container, a single listener instance is invoked on all
consumer threads. Listeners, therefore, need to be thread-safe, and it is preferable to use stateless
listeners. If it is not possible to make your listener thread-safe or adding synchronization would
significantly reduce the benefit of adding concurrency, you can use one of a few techniques:

* Use n containers with concurrency=1 with a prototype scoped MessagelListener bean so that each
container gets its own instance (this is not possible when using @KafkalListener).

* Keep the state in ThreadlLocal<?> instances.

* Have the singleton listener delegate to a bean that is declared in SimpleThreadScope (or a similar
scope).

To facilitate cleaning up thread state (for the second and third items in the preceding list), starting
with version 2.2, the listener container publishes a ConsumerStoppedEvent when each thread exits.
You can consume these events with an ApplicationListener or @EventlListener method to remove
ThreadlLocal<?> instances or remove() thread-scoped beans from the scope. Note that
SimpleThreadScope does not destroy beans that have a destruction interface (such as DisposableBean),
so you should destroy() the instance yourself.

By default, the application context’s event multicaster invokes event listeners on
o the calling thread. If you change the multicaster to use an async executor, thread
cleanup is not effective.

4.1.12. Monitoring

99

Monitoring Listener Performance

Starting with version 2.3, the listener container will automatically create and update Micrometer
Timer s for the listener, if Micrometer is detected on the class path, and a single MeterRegistry is
present in the application context. The timers can be disabled by setting the ContainerProperty
micrometerEnabled to false.

Two timers are maintained - one for successful calls to the listener and one for failures.
The timers are named spring.kafka.listener and have the following tags:

e name : (container bean name)
e result: success or failure

» exception:none or ListenerExecutionFailedException
You can add additional tags using the ContainerProperties micrometerTags property.

Starting with versions 2.9.8, 3.0.6, you can provide a function in ContainerProperties
micrometerTagsProvider; the function receives the ConsumerRecord<?, 7> and returns tags which can
be based on that record, and merged with any static tags in micrometerTags.

o With the concurrent container, timers are created for each thread and the name tag
is suffixed with -n where n is @ to concurrency-1.
Monitoring KafkaTemplate Performance

Starting with version 2.5, the template will automatically create and update Micrometer Timer s for
send operations, if Micrometer is detected on the class path, and a single MeterRegistry is present in
the application context. The timers can be disabled by setting the template’s micrometerEnabled
property to false.

Two timers are maintained - one for successful calls to the listener and one for failures.
The timers are named spring.kafka.template and have the following tags:

* name : (template bean name)
e result: success or failure

» exception : none or the exception class name for failures
You can add additional tags using the template’s micrometerTags property.

Starting with versions 2.9.8, 3.0.6, you can provide a
KafkaTemplate.setMicrometerTagsProvider (Function<ProducerRecord<?, 7>, Map<String, String>>)
property; the function receives the ProducerRecord<?, 7> and returns tags which can be based on
that record, and merged with any static tags in micrometerTags.

Micrometer Native Metrics

Starting with version 2.5, the framework provides Factory Listeners to manage a Micrometer

100

KafkaClientMetrics instance whenever producers and consumers are created and closed.

To enable this feature, simply add the listeners to your producer and consumer factories:

public ConsumerFactory<String, String> myConsumerFactory() {
Map<String, Object> configs = consumerConfigs();

DefaultKafkaConsumerFactory<String, String> cf = new
DefaultKafkaConsumerFactory<>(configs);

cf.addListener(new MicrometerConsumerListener<String, String>(meterRegistry(),
Collections.singletonlList(new ImmutableTag("customTag",
"customTagValue"))));

return cf;

public ProducerFactory<String, String> myProducerFactory() {
Map<String, Object> configs = producerConfigs();
configs.put(ProducerConfig.CLIENT_ID_CONFIG, "myClientId");

DefaultKafkaProducerFactory<String, String> pf = new
DefaultKafkaProducerFactory<>(configs);

pf.addListener(new MicrometerProducerListener<String, String>(meterRegistry(),
Collections.singletonList(new ImmutableTag("customTag",
"customTagValue"))));

return pf;

The consumer/producer id passed to the listener is added to the meter’s tags with tag name
spring.id.

An example of obtaining one of the Kafka metrics

double count = this.meterRegistry.get("kafka.producer.node.incoming.byte.total")
.tag("customTag", "customTagValue")
.tag("spring.id", "myProducerFactory.myClientId-1")
.functionCounter()
.count()

A similar listener is provided for the StreamsBuilderFactoryBean - see KafkaStreams Micrometer
Support.

101

Micrometer Observation

Using Micrometer for observation is now supported, since version 3.0, for the KafkaTemplate and
listener containers.

Set observationEnabled to true on the KafkaTemplate and ContainerProperties to enable observation;
this will disable Micrometer Timers because the timers will now be managed with each
observation.

Refer to Micrometer Tracing for more information.

To add tags to timers/traces, configure a custom KafkaTemplateObservationConvention or
KafkalListenerObservationConvention to the template or listener container, respectively.

The default implementations add the bean.name tag for template observations and listener.id tag
for containers.

You can either subclass DefaultKafkaTemplateObservationConvention or
DefaultKafkalistenerObservationConvention or provide completely new implementations.

See Micrometer Observation Documentation for details of the default observations that are
recorded.

Starting with version 3.0.6, you can add dynamic tags to the timers and traces, based on
information in the consumer or producer records. To do so, add a custom
KafkalistenerObservationConvention and/or KafkaTemplateObservationConvention to the listener
container properties or KafkaTemplate respectively. The record property in both observation
contexts contains the ConsumerRecord or ProducerRecord respectively.

4.1.13. Transactions

This section describes how Spring for Apache Kafka supports transactions.

Overview

The 0.11.0.0 client library added support for transactions. Spring for Apache Kafka adds support in
the following ways:

» KafkaTransactionManager: Used with normal Spring transaction support (@Transactional,
TransactionTemplate etc).

» Transactional KafkaMessagelListenerContainer

Local transactions with KafkaTemplate

» Transaction synchronization with other transaction managers

Transactions are enabled by providing the DefaultKafkaProducerFactory with a transactionIdPrefix.
In that case, instead of managing a single shared Producer, the factory maintains a cache of
transactional producers. When the user calls close() on a producer, it is returned to the cache for
reuse instead of actually being closed. The transactional.id property of each producer is
transactionIdPrefix + n, where n starts with @ and is incremented for each new producer. In

102

https://micrometer.io/docs/tracing

previous versions of Spring for Apache Kafka, the transactional.id was generated differently for
transactions started by a listener container with a record-based listener, to support fencing
zombies, which is not necessary any more, with EOSMode.V2 being the only option starting with 3.0.
For applications running with multiple instances, the transactionIdPrefix must be unique per
instance.

Also see Exactly Once Semantics.
Also see transactionIdPrefix.

With Spring Boot, it is only necessary to set the spring.kafka.producer.transaction-id-prefix
property - Boot will automatically configure a KafkaTransactionManager bean and wire it into the
listener container.

Starting with version 2.5.8, you can now configure the maxAge property on the
producer factory. This is useful when using transactional producers that might lay

o idle for the broker’s transactional.id.expiration.ms. With current kafka-clients,
this can cause a ProducerFencedException without a rebalance. By setting the maxAge
to less than transactional.id.expiration.ms, the factory will refresh the producer if
it is past it’s max age.

Using KafkaTransactionManager

The KafkaTransactionManager is an implementation of Spring Framework’s
PlatformTransactionManager. It is provided with a reference to the producer factory in its
constructor. If you provide a custom producer factory, it must support transactions. See
ProducerFactory.transactionCapable().

You can use the KafkaTransactionManager with normal Spring transaction support (@Transactional,
TransactionTemplate, and others). If a transaction is active, any KafkaTemplate operations performed
within the scope of the transaction use the transaction’s Producer. The manager commits or rolls
back the transaction, depending on success or failure. You must configure the KafkaTemplate to use
the same ProducerFactory as the transaction manager.

Transaction Synchronization

This section refers to producer-only transactions (transactions not started by a listener container);
see Using Consumer-Initiated Transactions for information about chaining transactions when the
container starts the transaction.

If you want to send records to kafka and perform some database updates, you can use normal
Spring transaction management with, say, a DataSourceTransactionManager.

103

public void process(List<Thing> things) {
things.forEach(thing -> this.kafkaTemplate.send("topic", thing));
updateDb(things);

The interceptor for the @Transactional annotation starts the transaction and the KafkaTemplate will
synchronize a transaction with that transaction manager; each send will participate in that
transaction. When the method exits, the database transaction will commit followed by the Kafka
transaction. If you wish the commits to be performed in the reverse order (Kafka first), use nested
@Transactional methods, with the outer method configured to use the DataSourceTransactionManager,
and the inner method configured to use the KafkaTransactionManager.

See Examples of Kafka Transactions with Other Transaction Managers for examples of an
application that synchronizes JDBC and Kafka transactions in Kafka-first or DB-first configurations.

Starting with versions 2.5.17, 2.6.12, 2.7.9 and 2.8.0, if the commit fails on the
synchronized transaction (after the primary transaction has committed), the

o exception will be thrown to the caller. Previously, this was silently ignored (logged
at debug). Applications should take remedial action, if necessary, to compensate
for the committed primary transaction.

Using Consumer-Initiated Transactions

The ChainedKafkaTransactionManager is now deprecated, since version 2.7; see the javadocs for its
super class ChainedTransactionManager for more information. Instead, use a KafkaTransactionManager
in the container to start the Kafka transaction and annotate the listener method with
@Transactional to start the other transaction.

See Examples of Kafka Transactions with Other Transaction Managers for an example application
that chains JDBC and Kafka transactions.

KafkaTemplate Local Transactions

You can use the KafkaTemplate to execute a series of operations within a local transaction. The
following example shows how to do so:

boolean result = template.executeInTransaction(t -> {
t.sendDefault("thing1", "thing2");
t.sendDefault("cat", "hat");
return true;

H;

The argument in the callback is the template itself (this). If the callback exits normally, the

104

transaction is committed. If an exception is thrown, the transaction is rolled back.

o If there is a KafkaTransactionManager (or synchronized) transaction in process, it is
not used. Instead, a new "nested" transaction is used.

transactionIdPrefix

With EOSMode.V2 (aka BETA), the only supported mode, it is no longer necessary to use the same
transactional.id, even for consumer-initiated transactions; in fact, it must be unique on each
instance the same as for producer-initiated transactions. This property must have a different value
on each application instance.

KafkaTemplate Transactional and non-Transactional Publishing

Normally, when a KafkaTemplate is transactional (configured with a transaction-capable producer
factory), transactions are required. The transaction can be started by a TransactionTemplate, a
@Transactional method, calling executeInTransaction, or by a listener container, when configured
with a KafkaTransactionManager. Any attempt to use the template outside the scope of a transaction
results in the template throwing an I1legalStateException. Starting with version 2.4.3, you can set
the template’s allowNonTransactional property to true. In that case, the template will allow the
operation to run without a transaction, by calling the ProducerFactory s
createNonTransactionalProducer () method; the producer will be cached, or thread-bound, as normal
for reuse. See Using DefaultKafkaProducerFactory.

Transactions with Batch Listeners

When a listener fails while transactions are being used, the AfterRollbackProcessor is invoked to
take some action after the rollback occurs. When using the default AfterRollbackProcessor with a
record listener, seeks are performed so that the failed record will be redelivered. With a batch
listener, however, the whole batch will be redelivered because the framework doesn’t know which
record in the batch failed. See After-rollback Processor for more information.

When using a batch listener, version 2.4.2 introduced an alternative mechanism to deal with
failures while processing a batch; the BatchToRecordAdapter. When a container factory with
batchListener set to true is configured with a BatchToRecordAdapter, the listener is invoked with one
record at a time. This enables error handling within the batch, while still making it possible to stop
processing the entire batch, depending on the exception type. A default BatchToRecordAdapter is
provided, that can be configured with a standard ConsumerRecordRecoverer such as the
DeadLetterPublishingRecoverer. The following test case configuration snippet illustrates how to use
this feature:

105

public static class TestListener {
final List<String> values = new ArraylList<>();

(id = "batchRecordAdapter"”, topics = "test")
public void listen(String data) {
values.add(data);
if ("bar".equals(data)) {
throw new RuntimeException("reject partial");

}

public static class Config {

ConsumerRecord<?, 7> failed;

public TestlListener test() {
return new TestlListener();

}

public ConsumerFactory<?, 7> consumerFactory() {
return mock(ConsumerFactory.class);

}

public ConcurrentKafkalistenerContainerFactory<String, String>

kafkalListenerContainerFactory() {

ConcurrentKafkalistenerContainerFactory factory = new
ConcurrentKafkalistenerContainerFactory();

factory.setConsumerFactory(consumerFactory());

factory.setBatchListener(true);

factory.setBatchToRecordAdapter(new DefaultBatchToRecordAdapter<>((record,
ex) > |

this.failed = record;
1)

return factory;

106

4.1.14. Exactly Once Semantics

You can provide a listener container with a KafkaAwareTransactionManager instance. When so
configured, the container starts a transaction before invoking the listener. Any KafkaTemplate
operations performed by the listener participate in the transaction. If the listener successfully
processes the record (or multiple records, when using a BatchMessagelListener), the container sends
the offset(s) to the transaction by wusing producer.send0ffsetsToTransaction()), before the
transaction manager commits the transaction. If the listener throws an exception, the transaction is
rolled back and the consumer is repositioned so that the rolled-back record(s) can be retrieved on
the next poll. See After-rollback Processor for more information and for handling records that
repeatedly fail.

Using transactions enables Exactly Once Semantics (EOS).

This means that, for a read»>process-write sequence, it is guaranteed that the sequence is completed
exactly once. (The read and process are have at least once semantics).

Spring for Apache Kafka version 3.0 and later only supports EOSMode. V2:

* V2 - aka fetch-offset-request fencing (since version 2.5)
o This requires the brokers to be version 2.5 or later.

With mode V2, it is not necessary to have a producer for each group.id/topic/partition because
consumer metadata is sent along with the offsets to the transaction and the broker can determine if
the producer is fenced using that information instead.

Refer to KIP-447 for more information.

V2 was previously BETA; the EOSMode has been changed to align the framework with KIP-732.

4.1.15. Wiring Spring Beans into Producer/Consumer Interceptors

Apache Kafka provides a mechanism to add interceptors to producers and consumers. These
objects are managed by Kafka, not Spring, and so normal Spring dependency injection won’t work
for wiring in dependent Spring Beans. However, you can manually wire in those dependencies
using the interceptor config() method. The following Spring Boot application shows how to do this
by overriding boot’s default factories to add some dependent bean into the configuration
properties.

107

https://cwiki.apache.org/confluence/display/KAFKA/KIP-447%3A+Producer+scalability+for+exactly+once+semantics
https://cwiki.apache.org/confluence/display/KAFKA/KIP-732%3A+Deprecate+eos-alpha+and+replace+eos-beta+with+eos-v2

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public ConsumerFactory<?, 7> kafkaConsumerFactory(SomeBean someBean) {

Map<String, Object> consumerProperties = new HashMap<>();

// consumerProperties.put(..., ...)

/] ...

consumerProperties.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,
MyConsumerInterceptor.class.getName());

consumerProperties.put("some.bean", someBean);

return new DefaultKafkaConsumerFactory<>(consumerProperties);

public ProducerFactory<?, 7> kafkaProducerFactory(SomeBean someBean) {
Map<String, Object> producerProperties = new HashMap<>();
// producerProperties.put(..., ...)
/] ...
Map<String, Object> producerProperties = properties
.buildProducerProperties();
producerProperties.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
MyProducerInterceptor.class.getName());
producerProperties.put("some.bean", someBean);
DefaultKafkaProducerFactory<?, 7> factory = new
DefaultKafkaProducerFactory<>(producerProperties);
return factory;

}

public SomeBean someBean() {
return new SomeBean();

}

(id = "kgk897", topics = "kgh897")
public void listen(String in) {
System.out.println("Received " + in);

}

public ApplicationRunner runner(KafkaTemplate<String, String> template) {
return args -> template.send("kgh897", "test");
}

108

public NewTopic kRequests() {
return TopicBuilder.name("kgh897")
.partitions(1)
.replicas(1)
.build();

public class SomeBean {

public void someMethod(String what) {
System.out.println(what + " in my foo bean");

}

public class MyProducerInterceptor implements ProducerInterceptor<String, String>

{

private SomeBean bean;

@0verride
public void configure(Map<String, 7> configs) {
this.bean = (SomeBean) configs.get("some.bean");

}

@0verride
public ProducerRecord<String, String> onSend(ProducerRecord<String, String>
record) {
this.bean.someMethod("producer interceptor");
return record;

}

@0verride
public void onAcknowledgement(RecordMetadata metadata, Exception exception) {

}

@0verride
public void close() {
}

109

public class MyConsumerInterceptor implements ConsumerInterceptor<String, String>

{

private SomeBean bean;

public void configure(Map<String, 7> configs) {
this.bean = (SomeBean) configs.get("some.bean");

}

public ConsumerRecords<String, String> onConsume(ConsumerRecords<String,
String> records) {
this.bean.someMethod("consumer interceptor");
return records;

public void onCommit(Map<TopicPartition, OffsetAndMetadata> offsets) {
}

public void close() {
}

Result:

producer interceptor in my foo bean
consumer interceptor in my foo bean
Received test

4.1.16. Producer Interceptor Managed in Spring

Starting with version 3.0.0, when it comes to a producer interceptor, you can let Spring manage it
directly as a bean instead of providing the class name of the interceptor to the Apache Kafka
producer configuration. If you go with this approach, then you need to set this producer interceptor
on KafkaTemplate. Following is an example using the same MyProducerInterceptor from above, but
changed to not use the internal config property.

110

public class MyProducerInterceptor implements ProducerInterceptor<String, String>

{

private final SomeBean bean;

public MyProducerInterceptor(SomeBean bean) {
this.bean = bean;

}

public void configure(Map<String, 7> configs) {

}

public ProducerRecord<String, String> onSend(ProducerRecord<String, String>
record) {
this.bean.someMethod("producer interceptor");
return record;

public void onAcknowledgement(RecordMetadata metadata, Exception exception) {

}

public void close() {
}

@Bean
public MyProducerInterceptor myProducerInterceptor(SomeBean someBean) {
return new MyProducerInterceptor(someBean);

}

@Bean
public KafkaTemplate<String, String> kafkaTemplate(ProducerFactory<String, String>
pf, MyProducerInterceptor myProducerInterceptor) {

KafkaTemplate<String, String> kafkaTemplate = new KafkaTemplate<String,
String>(pf);

kafkaTemplate.setProducerInterceptor(myProducerInterceptor);

}

Right before the records are sent, the onSend method of the producer interceptor is invoked. Once

111

the server sends an acknowledgement on publishing the data, then the onAcknowledgement method is
invoked. The onAcknowledgement is called right before the producer invokes any user callbacks.

If you have multiple such producer interceptors managed through Spring that need to be applied
on the KafkaTemplate, you need to use CompositeProducerInterceptor instead.
CompositeProducerInterceptor allows individual producer interceptors to be added in order. The
methods from the underlying ProducerInterceptor implementations are invoked in the order as
they were added to the CompositeProducerInterceptor.

4.1.17. Pausing and Resuming Listener Containers

Version 2.1.3 added pause() and resume() methods to listener containers. Previously, you could
pause a consumer within a ConsumerAwareMessagelistener and resume it by listening for a
ListenerContainerIdleEvent, which provides access to the Consumer object. While you could pause a
consumer in an idle container by using an event listener, in some cases, this was not thread-safe,
since there is no guarantee that the event listener is invoked on the consumer thread. To safely
pause and resume consumers, you should use the pause and resume methods on the listener
containers. A pause() takes effect just before the next poll(); a resume() takes effect just after the
current poll() returns. When a container is paused, it continues to pol1l() the consumer, avoiding a
rebalance if group management is being used, but it does not retrieve any records. See the Kafka
documentation for more information.

Starting with version 2.1.5, you can call isPauseRequested() to see if pause() has been called.
However, the consumers might not have actually paused yet. isConsumerPaused() returns true if all
Consumer instances have actually paused.

In addition (also since 2.1.5), ConsumerPausedEvent and ConsumerResumedEvent instances are published
with the container as the source property and the TopicPartition instances involved in the
partitions property.

Starting with version 2.9, a new container property pauseImmediate, when set to true, causes the
pause to take effect after the current record is processed. By default, the pause takes effect when all
of the records from the previous poll have been processed. See [pauseImmediate].

The following simple Spring Boot application demonstrates by using the container registry to get a
reference to a @Kafkalistener method’s container and pausing or resuming its consumers as well as
receiving the corresponding events:

112

@SpringBootApplication
public class Application implements ApplicationlListener<KafkaEvent> {

public static void main(String[] args) {
SpringApplication.run(Application.class, args).close();

}

@0verride

public void onApplicationEvent(KafkaEvent event) {
System.out.println(event);

}

@Bean
public ApplicationRunner runner(KafkalListenerEndpointRegistry registry,
KafkaTemplate<String, String> template) {
return args -> {
template.send("pause.resume.topic", "thing1");
Thread.sleep(10_000);
System.out.println("pausing");
registry.getListenerContainer("pause.resume").pause();
Thread.sleep(10_000);
template.send("pause.resume.topic", "thing2");
Thread.sleep(10_000);
System.out.println("resuming");
registry.getlListenerContainer("pause.resume").resume();
Thread.sleep(10_000);
I
}

@Kafkalistener(id = "pause.resume", topics = "pause.resume.topic")
public void listen(String in) {

System.out.println(in);
}

@Bean
public NewTopic topic() {
return TopicBuilder.name("pause.resume.topic")
.partitions(2)
.replicas(1)
.build();

The following listing shows the results of the preceding example:

113

partitions assigned: [pause.resume.topic-1, pause.resume.topic-0]

thing1

pausing

ConsumerPausedEvent [partitions=[pause.resume.topic-1, pause.resume.topic-0]]
resuming

ConsumerResumedEvent [partitions=[pause.resume.topic-1, pause.resume.topic-0]]
thing2

4.1.18. Pausing and Resuming Partitions on Listener Containers

Since version 2.7 you can pause and resume the consumption of specific partitions assigned to that
consumer by using the pausePartition(TopicPartition topicPartition) and
resumePartition(TopicPartition topicPartition) methods in the listener containers. The pausing
and resuming takes place respectively before and after the poll() similar to the pause() and
resume() methods. The isPartitionPauseRequested() method returns true if pause for that partition
has been requested. The isPartitionPaused() method returns true if that partition has effectively
been paused.

Also since version 2.7 ConsumerPartitionPausedEvent and ConsumerPartitionResumedEvent instances
are published with the container as the source property and the TopicPartition instance.

4.1.19. Serialization, Deserialization, and Message Conversion

Overview

Apache Kafka provides a high-level API for serializing and deserializing record values as well as
their keys. It is present with the org.apache.kafka.common.serialization.Serializer<T> and
org.apache.kafka.common.serialization.Deserializer<T> abstractions with some built-in
implementations. Meanwhile, we can specify serializer and deserializer classes by using Producer or
Consumer configuration properties. The following example shows how to do so:

props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class
)i

props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.
class);

props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);

For more complex or particular cases, the KafkaConsumer (and, therefore, KafkaProducer) provides
overloaded constructors to accept Serializer and Deserializer instances for keys and values,
respectively.

When you use this API, the DefaultKafkaProducerFactory and DefaultKafkaConsumerFactory also

114

provide properties (through constructors or setter methods) to inject custom Serializer and
Deserializer instances into the target Producer or Consumer. Also, you can pass in
Supplier<Serializer> or Supplier<Deserializer> instances through constructors - these Supplier s
are called on creation of each Producer or Consumer.

String serialization

Since version 2.5, Spring for Apache Kafka provides ToStringSerializer and
ParseStringDeserializer classes that use String representation of entities. They rely on methods
toString and some Function<String> or BiFunction<String, Headers> to parse the String and
populate properties of an instance. Usually, this would invoke some static method on the class, such
as parse:

ToStringSerializer<Thing> thingSerializer = new ToStringSerializer<>();

//...

ParseStringDeserializer<Thing> deserializer = new ParseStringDeserializer<>(Thing
1iparse);

By default, the ToStringSerializer is configured to convey type information about the serialized
entity in the record Headers. You can disable this by setting the addTypeInfo property to false. This
information can be used by ParseStringDeserializer on the receiving side.

* ToStringSerializer.ADD_TYPE_INFO_HEADERS (default true): You can set it to false to disable this
feature on the ToStringSerializer (sets the addTypeInfo property).

ParseStringDeserializer<Object> deserializer = new ParseStringDeserializer<>((str,
headers) -> {
byte[] header = headers.lastHeader(ToStringSerializer.VALUE_TYPE).value();
String entityType = new String(header);

if (entityType.contains("Thing")) {
return Thing.parse(str);

}
else {

// ...parsing logic
}

1)

You can configure the Charset used to convert String to/from byte[] with the default being UTF-8.

You can configure the deserializer with the name of the parser method using ConsumerConfig
properties:

* ParseStringDeserializer.KEY_PARSER

115

o ParseStringDeserializer.VALUE_PARSER

The properties must contain the fully qualified name of the class followed by the method name,
separated by a period .. The method must be static and have a signature of either (String, Headers)
or (String).

A ToFromStringSerde is also provided, for use with Kafka Streams.

JSON

Spring for Apache Kafka also provides JsonSerializer and JsonDeserializer implementations that
are based on the Jackson JSON object mapper. The JsonSerializer allows writing any Java object as
a JSON byte[]. The JsonDeserializer requires an additional Class<?> targetType argument to allow
the deserialization of a consumed byte[] to the proper target object. The following example shows
how to create a JsonDeserializer:

JsonDeserializer<Thing> thingDeserializer = new JsonDeserializer<>(Thing.class);

You can customize both JsonSerializer and JsonDeserializer with an ObjectMapper. You can also
extend them to implement some particular configuration logic in the configure(Map<String, 7>
configs, boolean isKey) method.

Starting with version 2.3, all the JSON-aware components are configured by default with a
JacksonUtils.enhancedObjectMapper() instance, which comes with the
MapperFeature.DEFAULT_VIEW_INCLUSION and DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES
features disabled. Also such an instance is supplied with well-known modules for custom data
types, such a Java time and Kotlin support. See JacksonUtils.enhancedObjectMapper() JavaDocs for
more information. This method also registers a
org.springframework.kafka.support.JacksonMimeTypeModule for org.springframework.util.MimeType
objects serialization into the plain string for inter-platform compatibility over the network. A
JacksonMimeTypeModule can be registered as a bean in the application context and it will be auto-
configured into the Spring Boot ObjectMapper instance.

Also starting with version 2.3, the JsonDeserializer provides TypeReference-based constructors for
better handling of target generic container types.

Starting with version 2.1, you can convey type information in record Headers, allowing the handling
of multiple types. In addition, you can configure the serializer and deserializer by using the
following Kafka properties. They have no effect if you have provided Serializer and Deserializer
instances for KafkaConsumer and KafkaProducer, respectively.

Configuration Properties

* JsonSerializer.ADD_TYPE_INFO_HEADERS (default true): You can set it to false to disable this
feature on the JsonSerializer (sets the addTypeInfo property).

» JsonSerializer.TYPE_MAPPINGS (default empty): See Mapping Types.

» JsonDeserializer.USE_TYPE_INFO_HEADERS (default true): You can set it to false to ignore headers

116

https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto.spring-mvc.customize-jackson-objectmapper
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto.spring-mvc.customize-jackson-objectmapper
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto.spring-mvc.customize-jackson-objectmapper

set by the serializer.

e JsonDeserializer.REMOVE _TYPE_INFO_HEADERS (default true): You can set it to false to retain
headers set by the serializer.

» JsonDeserializer.KEY_DEFAULT_TYPE: Fallback type for deserialization of keys if no header
information is present.

» JsonDeserializer.VALUE_DEFAULT_TYPE: Fallback type for deserialization of values if no header
information is present.

» JsonDeserializer.TRUSTED_PACKAGES (default java.util, java.lang): Comma-delimited list of
package patterns allowed for deserialization. * means deserialize all.

* JsonDeserializer.TYPE_MAPPINGS (default empty): See Mapping Types.
* JsonDeserializer.KEY_TYPE_METHOD (default empty): See Using Methods to Determine Types.
» JsonDeserializer.VALUE_TYPE_METHOD (default empty): See Using Methods to Determine Types.

Starting with version 2.2, the type information headers (if added by the serializer) are removed by
the deserializer. You can revert to the previous behavior by setting the removeTypeHeaders property
to false, either directly on the deserializer or with the configuration property described earlier.

See also Customizing the JsonSerializer and JsonDeserializer.

Starting with version 2.8, if you construct the serializer or deserializer
programmatically as shown in Programmatic Construction, the above properties

o will be applied by the factories, as long as you have not set any properties
explicitly (using set*() methods or using the fluent API). Previously, when creating
programmatically, the configuration properties were never applied; this is still the
case if you explicitly set properties on the object directly.

Mapping Types

Starting with version 2.2, when using JSON, you can now provide type mappings by using the
properties in the preceding list. Previously, you had to customize the type mapper within the
serializer and deserializer. Mappings consist of a comma-delimited list of token:className pairs. On
outbound, the payload’s class name is mapped to the corresponding token. On inbound, the token
in the type header is mapped to the corresponding class name.

The following example creates a set of mappings:

117

senderProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, JsonSerializer.
class);

senderProps.put(JsonSerializer.TYPE_MAPPINGS, "cat:com.mycat.Cat,
hat:com.myhat.hat");

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
JsonDeserializer.class);
consumerProps.put(JsonDeSerializer.TYPE_MAPPINGS, "cat:com.yourcat.(Cat,
hat:com.yourhat.hat");

o The corresponding objects must be compatible.

If you use Spring Boot, you can provide these properties in the application.properties (or yaml)
file. The following example shows how to do so:

spring.kafka.producer.value-
serializer=org.springframework.kafka.support.serializer.JsonSerializer
spring.kafka.producer.properties.spring.json.type.mapping=cat:com.mycat.Cat,hat:co
m.myhat.Hat

118

https://docs.spring.io/spring-boot/docs/current/reference/html/messaging.html#messaging.kafka

You can perform only simple configuration with properties. For more advanced
configuration (such as using a custom ObjectMapper in the serializer and
deserializer), you should use the producer and consumer factory constructors that
accept a pre-built serializer and deserializer. The following Spring Boot example
overrides the default factories:

public ConsumerFactory<String, Thing> kafkaConsumerFactory
(JsonDeserializer customValueDeserializer) {
Map<String, Object> properties = new HashMap<>();

// properties.put(..., ...)
/] ...
o return new DefaultKafkaConsumerFactory<>(properties,

new StringDeserializer(), customValueDeserializer);

public ProducerFactory<String, Thing> kafkaProducerFactory
(JsonSerializer customValueSerializer) {

return new DefaultKafkaProducerFactory<>(properties
.buildProducerProperties(),
new StringSerializer(), customValueSerializer);

}

Setters are also provided, as an alternative to using these constructors.

Starting with version 2.2, you can explicitly configure the deserializer to use the supplied target
type and ignore type information in headers by using one of the overloaded constructors that have
a boolean useHeadersIfPresent (which is true by default). The following example shows how to do
so:

DefaultKafkaConsumerFactory<Integer, Cat1> cf = new DefaultKafkaConsumerFactory<>
(props,
new IntegerDeserializer(), new JsonDeserializer<>(Cat1.class, false));

Using Methods to Determine Types

Starting with version 2.5, you can now configure the deserializer, via properties, to invoke a
method to determine the target type. If present, this will override any of the other techniques
discussed above. This can be useful if the data is published by an application that does not use the
Spring serializer and you need to deserialize to different types depending on the data, or other
headers. Set these properties to the method name - a fully qualified class name followed by the
method name, separated by a period .. The method must be declared as public static, have one of

119

three signatures (String topic, byte[] data, Headers headers), (byte[] data, Headers headers) or
(byte[] data) and return a Jackson JavaType.

* JsonDeserializer.KEY_TYPE_METHOD : spring.json.key.type.method
* JsonDeserializer.VALUE_TYPE_METHOD : spring.json.value.type.method

You can use arbitrary headers or inspect the data to determine the type.

Example
JavaType thing1Type = TypeFactory.defaultInstance().constructType(Thingl.class);
JavaType thing2Type = TypeFactory.defaultInstance().constructType(Thing2.class);
public static JavaType thingOneOrThingTwo(byte[] data, Headers headers) {
// {"thisIsAFieldInThing1":"value", ...

if (data[21] == '"1") {
return thing1Type;

}
else {

return thing2Type;
}

For more sophisticated data inspection consider using JsonPath or similar but, the simpler the test
to determine the type, the more efficient the process will be.

The following is an example of creating the deserializer programmatically (when providing the
consumer factory with the deserializer in the constructor):

JsonDeserializer<Object> deser = new JsonDeserializer<>()
.trustedPackages("*")
.typeResolver (SomeClass::thing1Thing2JavaTypeForTopic);

public static JavaType thing1Thing2JavaTypeForTopic(String topic, byte[] data,
Headers headers) {

}

Programmatic Construction

When constructing the serializer/deserializer programmatically for use in the producer/consumer
factory, since version 2.3, you can use the fluent API, which simplifies configuration.

120

public ProducerFactory<MyKeyType, MyValueType> pf() {
Map<String, Object> props = new HashMap<>();
// props.put(..., ...)
/] ...
DefaultKafkaProducerFactory<MyKeyType, MyValueType> pf = new
DefaultKafkaProducerFactory<>(props,
new JsonSerializer<MyKeyType>()
.forKeys()
.noTypeInfo(),
new JsonSerializer<MyValueType>()
.noTypeInfo());
return pf;

public ConsumerFactory<MyKeyType, MyValueType> cf() {
Map<String, Object> props = new HashMap<>();
// props.put(..., ...)
/] ...
DefaultKafkaConsumerFactory<MyKeyType, MyValueType> cf = new
DefaultKafkaConsumerFactory<>(props,
new JsonDeserializer<>(MyKeyType.class)
.forKeys()
.ignoreTypeHeaders(),
new JsonDeserializer<>(MyValueType.class)
.ignoreTypeHeaders());
return cf;

To provide type mapping programmatically, similar to Using Methods to Determine Types, use the
typeFunction property.

Example
JsonDeserializer<Object> deser = new JsonDeserializer<>()

.trustedPackages("*")
.typeFunction(MyUtils::thingOneOrThingTwo);

Alternatively, as long as you don’t use the fluent API to configure properties, or set them using
set*() methods, the factories will configure the serializer/deserializer using the configuration
properties; see Configuration Properties.

Delegating Serializer and Deserializer

121

Using Headers

Version 2.3 introduced the DelegatingSerializer and DelegatingDeserializer, which allow
producing and consuming records with different key and/or value types. Producers must set a
header DelegatingSerializer.VALUE_SERIALIZATION_SELECTOR to a selector value that is used to select
which serializer to use for the value and DelegatingSerializer.KEY_SERIALIZATION_SELECTOR for the
key; if a match is not found, an I11legalStateException is thrown.

For incoming records, the deserializer uses the same headers to select the deserializer to use; if a
match is not found or the header is not present, the raw byte[] is returned.

You can configure the map of selector to Serializer / Deserializer via a constructor, or you can
configure it via Kafka producer/consumer properties with the keys
DelegatingSerializer.VALUE_SERIALIZATION_SELECTOR_CONFIG and
DelegatingSerializer.KEY_SERIALIZATION_SELECTOR_CONFIG. For the serializer, the producer property
can be a Map<String, Object> where the key is the selector and the value is a Serializer instance, a
serializer (Class or the class name. The property can also be a String of comma-delimited map
entries, as shown below.

For the deserializer, the consumer property can be a Map<String, Object> where the key is the
selector and the value is a Deserializer instance, a deserializer Class or the class name. The
property can also be a String of comma-delimited map entries, as shown below.

To configure using properties, use the following syntax:

producerProps.put(DelegatingSerializer.VALUE_SERIALIZATION_SELECTOR_CONFIG,
"thing1:com.example.MyThing1Serializer, thing2:com.example.MyThing2Serializer

")

consumerProps.put(DelegatingDeserializer.VALUE_SERIALIZATION_SELECTOR_CONFIG,
"thing1:com.example.MyThing1Deserializer,
thing2:com.example.MyThing2Deserializer")

Producers would then set the DelegatingSerializer.VALUE_SERIALIZATION_SELECTOR header to thingT
or thing2.

This technique supports sending different types to the same topic (or different topics).

Starting with version 2.5.1, it is not necessary to set the selector header, if the type
(key or value) is one of the standard types supported by Serdes (Long, Integer, etc).

o Instead, the serializer will set the header to the class name of the type. It is not
necessary to configure serializers or deserializers for these types, they will be
created (once) dynamically.

For another technique to send different types to different topics, see Using RoutingKafkaTemplate.

122

By Type

Version 2.8 introduced the DelegatingByTypeSerializer.

public ProducerFactory<Integer, Object> producerFactory(Map<String, Object>
config) {
return new DefaultKafkaProducerFactory<>(config,
null, new DelegatingByTypeSerializer(Map.of(
byte[].class, new ByteArraySerializer(),
Bytes.class, new BytesSerializer(),
String.class, new StringSerializer())));

Starting with version 2.8.3, you can configure the serializer to check if the map key is assignable
from the target object, useful when a delegate serializer can serialize sub classes. In this case, if
there are amiguous matches, an ordered Map, such as a LinkedHashMap should be provided.

By Topic

Starting with version 2.8, the DelegatingByTopicSerializer and DelegatingByTopicDeserializer allow
selection of a serializer/deserializer based on the topic name. Regex Pattern s are used to lookup the
instance to use. The map can be configured using a constructor, or via properties (a comma
delimited list of pattern:serializer).

producerConfigs.put(DelegatingByTopicSerializer.VALUE_SERIALIZATION_TOPIC_CONFIG,
“topic[0-4]:" + ByteArraySerializer.class.getName()

+ ", topic[5-9]:" + StringSerializer.class.getName());

ConsumerConfigs.put(DelegatingByTopicDeserializer.VALUE_SERIALIZATION_TOPIC_CONFIG

I

"topic[0-4]:" + ByteArrayDeserializer.class.getName()

+ ", topic[5-9]:" + StringDeserializer.class.getName());

Use KEY_SERIALIZATION_TOPIC_CONFIG when using this for keys.

123

@Bean
public ProducerFactory<Integer, Object> producerFactory(Map<String, Object>
config) {
return new DefaultKafkaProducerFactory<>(config,
new IntegerSerializer(),
new DelegatingByTopicSerializer(Map.of(
Pattern.compile("topic[0-4]"), new ByteArraySerializer(),
Pattern.compile("topic[5-9]"), new StringSerializer())),
new JsonSerializer<Object>()); // default

You can specify a default serializer/deserializer to use when there is no pattern match using
DelegatingByTopicSerialization.KEY_SERIALIZATION_TOPIC_DEFAULT and
DelegatingByTopicSerialization.VALUE_SERIALIZATION_TOPIC_DEFAULT.

An additional property DelegatingByTopicSerialization.CASE_SENSITIVE (default true), when set to
false makes the topic lookup case insensitive.

Retrying Deserializer

The RetryingDeserializer uses a delegate Deserializer and RetryTemplate to retry deserialization
when the delegate might have transient errors, such a network issues, during deserialization.

ConsumerFactory cf = new DefaultKafkaConsumerFactory(myConsumerConfigs,
new RetryingDeserializer(myUnreliableKeyDeserializer, retryTemplate),
new RetryingDeserializer(myUnreliableValueDeserializer, retryTemplate));

Refer to the spring-retry project for configuration of the RetryTemplate with a retry policy, back off
policy, etc.

Spring Messaging Message Conversion

Although the Serializer and Deserializer API is quite simple and flexible from the low-level Kafka
Consumer and Producer perspective, you might need more flexibility at the Spring Messaging level,
when using either @KafkalListener or Spring Integration’s Apache Kafka Support. To let you easily
convert to and from org.springframework.messaging.Message, Spring for Apache Kafka provides a
MessageConverter abstraction with the MessagingMessageConverter implementation and its
JsonMessageConverter (and subclasses) customization. You can inject the MessageConverter into a
KafkaTemplate instance directly and by using AbstractKafkalistenerContainerFactory bean definition
for the @Kafkalistener.containerFactory() property. The following example shows how to do so:

124

https://github.com/spring-projects/spring-retry
https://docs.spring.io/spring-integration/docs/current/reference/html/kafka.html#kafka

public KafkalistenerContainerFactory<?> kafkalsonListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setRecordMessageConverter(new JsonMessageConverter());
return factory;

(topics = "jsonData",
containerFactory = "kafkalsonListenerContainerFactory")
public void jsonListener(Cat cat) {

}

When using Spring Boot, simply define the converter as a @Bean and Spring Boot auto configuration
will wire it into the auto-configured template and container factory.

When you use a @Kafkalistener, the parameter type is provided to the message converter to assist
with the conversion.

This type inference can be achieved only when the @Kafkalistener annotation is

o declared at the method level. With a class-level @Kafkalistener, the payload type is
used to select which @KafkaHandler method to invoke, so it must already have been
converted before the method can be chosen.

125

On the consumer side, you can configure a JsonMessageConverter; it can handle
ConsumerRecord values of type byte[], Bytes and String so should be used in
conjunction with a ByteArrayDeserializer, BytesDeserializer or
StringDeserializer. (byte[] and Bytes are more efficient because they avoid an
unnecessary byte[] to String conversion). You can also configure the specific
subclass of JsonMessageConverter corresponding to the deserializer, if you so wish.

On the producer side, when you wuse Spring Integration or the
KafkaTemplate.send(Message<?> message) method (see Using KafkaTemplate), you
must configure a message converter that is compatible with the configured Kafka

o Serializer.

* StringJsonMessageConverter with StringSerializer
* BytesJsonMessageConverter with BytesSerializer

» ByteArrayJsonMessageConverter with ByteArraySerializer

Again, using byte[] or Bytes is more efficient because they avoid a String to byte[]
conversion.

For convenience, starting with version 2.3, the framework also provides a
StringOrBytesSerializer which can serialize all three value types so it can be used
with any of the message converters.

Starting with version 2.7.1, message payload conversion can be delegated to a spring-messaging
SmartMessageConverter; this enables conversion, for example, to be based on the
MessageHeaders.CONTENT_TYPE header.

The KafkaMessageConverter.fromMessage() method 1is called for outbound
conversion to a ProducerRecord with the message payload in the
ProducerRecord.value() property. The KafkaMessageConverter.toMessage() method is
called for inbound conversion from ConsumerRecord with the payload being the
ConsumerRecord.value() property. The SmartMessageConverter.toMessage() method is

o called to create a new outbound Message<?> from the Message passed
to fromMessage() " (usually by KafkaTemplate.send(Message<?> msg)). Similarly, in
the KafkaMessageConverter.toMessage() method, after the converter has created a
new Message<?> from the ConsumerRecord, the SmartMessageConverter.fromMessage()
method is called and then the final inbound message is created with the newly
converted payload. In either case, if the SmartMessageConverter returns null, the
original message is used.

When the default converter is used in the KafkaTemplate and listener container factory, you
configure the SmartMessageConverter by calling setMessagingConverter() on the template and via the
contentMessageConverter property on @Kafkalistener methods.

Examples:

126

template.setMessagingConverter (mySmartConverter);

(id = "withSmartConverter", topics = "someTopic",
contentTypeConverter = "mySmartConverter")
public void smart(Thing thing) {

}

Using Spring Data Projection Interfaces

Starting with version 2.1.1, you can convert JSON to a Spring Data Projection interface instead of a
concrete type. This allows very selective, and low-coupled bindings to data, including the lookup of
values from multiple places inside the JSON document. For example the following interface can be
defined as message payload type:

interface SomeSample {

({ "$.username", "$.user.name" })
String getUsername();

(id="projection.listener", topics = "projection")
public void projection(SomeSample in) {
String username = in.getUsername();

Accessor methods will be used to lookup the property name as field in the received JSON document
by default. The @JsonPath expression allows customization of the value lookup, and even to define
multiple JSON Path expressions, to lookup values from multiple places until an expression returns
an actual value.

To enable this feature, use a ProjectingMessageConverter configured with an appropriate delegate
converter (used for outbound conversion and converting non-projection interfaces). You must also
add spring-data:spring-data-commons and com.jayway.jsonpath:json-path to the class path.

When used as the parameter to a @Kafkalistener method, the interface type is automatically passed
to the converter as normal.

127

Using ErrorHandlingDeserializer

When a deserializer fails to deserialize a message, Spring has no way to handle the problem,
because it occurs before the poll() returns. To solve this problem, the ErrorHandlingDeserializer
has been introduced. This deserializer delegates to a real deserializer (key or value). If the delegate
fails to deserialize the record content, the ErrorHandlingDeserializer returns a null value and a
DeserializationException in a header that contains the cause and the raw bytes. When you use a
record-level Messagelistener, if the ConsumerRecord contains a DeserializationException header for
either the key or value, the container’s ErrorHandler is called with the failed ConsumerRecord. The
record is not passed to the listener.

Alternatively, you can configure the ErrorHandlingDeserializer to create a custom value by
providing a failedDeserializationFunction, which is a Function<FailedDeserializationInfo, T>.This
function is invoked to create an instance of T, which is passed to the listener in the usual fashion.
An object of type FailedDeserializationInfo, which contains all the contextual information is
provided to the function. You can find the DeserializationException (as a serialized Java object) in
headers. See the Javadoc for the ErrorHandlingDeserializer for more information.

You can use the DefaultKafkaConsumerFactory constructor that takes key and value Deserializer
objects and wire in appropriate ErrorHandlingDeserializer instances that you have configured with
the proper delegates. Alternatively, you can use consumer configuration properties (which are used
by the ErrorHandlingDeserializer) to instantiate the delegates. The property names are
ErrorHandlingDeserializer.KEY_DESERIALIZER_CLASS and
ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS. The property value can be a class or class
name. The following example shows how to set these properties:

... // other props

props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
ErrorHandlingDeserializer.class);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, ErrorHandlingDeserializer
.class);

props.put(ErrorHandlingDeserializer.KEY_DESERIALIZER_CLASS, JsonDeserializer.
class);

props.put(JsonDeserializer.KEY_DEFAULT_TYPE, "com.example.MyKey")
props.put(ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS, JsonDeserializer
.class.getName());

props.put(JsonDeserializer.VALUE_DEFAULT_TYPE, "com.example.MyValue")
props.put(JsonDeserializer.TRUSTED_PACKAGES, "com.example")

return new DefaultKafkaConsumerFactory<>(props);

The following example uses a failedDeserializationFunction.

128

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/support/serializer/ErrorHandlingDeserializer.html

public class BadFoo extends Foo {
private final FailedDeserializationInfo failedDeserializationInfo;

public BadFoo(FailedDeserializationInfo failedDeserializationInfo) {
this.failedDeserializationInfo = failedDeserializationInfo;

}

public FailedDeserializationInfo getFailedDeserializationInfo() {
return this.failedDeserializationInfo;

}
}

public class FailedFooProvider implements Function<FailedDeserializationInfo, Foo>

{

public Foo apply(FailedDeserializationInfo info) {
return new BadFoo(info);

}

The preceding example uses the following configuration:

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
ErrorHandlingDeserializer.class);
consumerProps.put(ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS,
JsonDeserializer.class);
consumerProps.put(ErrorHandlingDeserializer.VALUE_FUNCTION, FailedFooProvider
.class);

If the consumer is configured with an ErrorHandlingDeserializer it is important to
configure the KafkaTemplate and its producer with a serializer that can handle

o normal objects as well as raw byte[] values, which result from deserialization
exceptions. The generic value type of the template should be Object. One technique
is to use the DelegatingByTypeSerializer; an example follows:

129

public ProducerFactory<String, Object> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfiguration(), new
StringSerializer(),

new DelegatingByTypeSerializer(Map.of(byte[].class, new ByteArraySerializer(),
MyNormalObject.class, new JsonSerializer<Object>())));

public KafkaTemplate<String, Object> kafkaTemplate() {
return new KafkaTemplate<>(producerFactory());

}

When using an ErrorHandlingDeserializer with a batch listener, you must check for the
deserialization exceptions in message headers. When used with a DefaultBatchErrorHandler, you
can use that header to determine which record the exception failed on and communicate to the
error handler via a BatchListenerFailedException.

130

(id = "test", topics = "test")
void listen(List<Thing> in, (KafkaHeaders.BATCH_CONVERTED _HEADERS) List<
Map<String, Object>> headers) {

for (int i = 0; 1 < in.size(); i++) {
Thing thing = in.get(i);
if (thing == null
&& headers.get(i).get(SerializationUtils
.VALUE_DESERIALIZER_EXCEPTION_HEADER) != null) {
try {
DeserializationException deserEx = SerializationUtils
.byteArrayToDeserializationException(this.logger,
headers.qget(i).get(SerializationUtils
.VALUE_DESERIALIZER_EXCEPTION_HEADER));
if (deserEx != null) {
logger.error(deserEx, "Record at index

+ i+ " could not be

deserialized");
}
}
catch (Exception ex) {
logger.error(ex, "Record at index " + i + " could not be
deserialized");

}

throw new BatchListenerFailedException("“Deserialization”, deserEx, 1);

}

process(thing);

SerializationUtils.byteArrayToDeserializationException() can be used to convert the header to a
DeserializationException

When consuming List<ConsumerRecord<?, 7>, SerializationUtils.getExceptionFromHeader() is used
instead:

131

(id = "kgh2036", topics = "kgh2036")
void listen(List<ConsumerRecord<String, Thing>> in) {
for (int i = 0; i < in.size(); i++) {
ConsumerRecord<String, Thing> rec = in.get(i);
if (rec.value() == null) {
DeserializationException deserEx = SerializationUtils
.getExceptionFromHeader(rec,
SerializationUtils.VALUE_DESERIALIZER_EXCEPTION_HEADER, this
.logger);
if (deserEx != null) {
logger.error(deserEx, "Record at offset " + rec.offset() +
not be deserialized");
throw new BatchListenerFailedException("Deserialization"”, deserEx,

could

1),
}
}

process(rec.value());

If you are also using a DeadlLetterPublishingRecoverer, the record published for a
DeserializationException will have a record.value() of type byte[]; this should not

o be serialized. Consider using a DelegatingByTypeSerializer configured to use a

ByteArraySerializer for byte[] and the normal serializer (Json, Avro, etc) for all

other types.

Payload Conversion with Batch Listeners

You can also use a JsonlMessageConverter within a BatchMessagingMessageConverter to convert batch
messages when you use a batch listener container factory. See Serialization, Deserialization, and

Message Conversion and Spring Messaging Message Conversion for more information.

By default, the type for the conversion is inferred from the listener argument. If you configure the
JsonMessageConverter with a Defaultlackson2TypeMapper that has its TypePrecedence set to TYPE_ID
(instead of the default INFERRED), the converter uses the type information in headers (if present)
instead. This allows, for example, listener methods to be declared with interfaces instead of
concrete classes. Also, the type converter supports mapping, so the deserialization can be to a
different type than the source (as long as the data is compatible). This is also useful when you use
class-level @Kafkalistener instances where the payload must have already been converted to

determine which method to invoke. The following example creates beans that use this method:

132

public KafkalistenerContainerFactory<?> kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setBatchListener(true);
factory.setBatchMessageConverter(new BatchMessagingMessageConverter(converter

0));

return factory;

}

public JsonMessageConverter converter() {
return new JsonMessageConverter();

}

Note that, for this to work, the method signature for the conversion target must be a container
object with a single generic parameter type, such as the following:

(topics = "blc1")
public void listen(List<Foo> foos, (KafkaHeaders.OFFSET) List<Long>
offsets) {

}

Note that you can still access the batch headers.

If the batch converter has a record converter that supports it, you can also receive a list of messages
where the payloads are converted according to the generic type. The following example shows how
to do so:

(topics = "ble3", groupId = "blc3")
public void listen1(List<Message<Foo>> foolMessages) {

}

ConversionService Customization

Starting with version 2.1.1, the org.springframework.core.convert.ConversionService used by the
default o.s.messaging.handler.annotation.support.MessageHandlerMethodFactory to resolve
parameters for the invocation of a listener method is supplied with all beans that implement any of
the following interfaces:

133

» org.springframework.core.convert.converter.Converter
* org.springframework.core.convert.converter.GenericConverter

» org.springframework.format.Formatter

This lets you further customize listener deserialization without changing the default configuration
for ConsumerFactory and KafkalListenerContainerFactory

Setting a custom MessageHandlerMethodFactory on the
KafkalistenerEndpointRegistrar through a KafkalistenerConfigurer bean disables
this feature.

Adding custom HandlerMethodArgumentResolver to @Kafkalistener

Starting with version 2.4.2 you are able to add your own HandlerMethodArgumentResolver and resolve
custom method parameters. All you need is to implement KafkalListenerConfigurer and use method
setCustomMethodArgumentResolvers() from class KafkalListenerEndpointRegistrar.

class CustomKafkaConfig implements KafkalistenerConfigurer {

public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)

registrar.setCustomMethodArgumentResolvers(
new HandlerMethodArgumentResolver() {

public boolean supportsParameter(MethodParameter parameter) {

return CustomMethodArgument.class.isAssignableFrom(parameter
.getParameterType());

}

public Object resolveArgument(MethodParameter parameter, Message<
7> message) {

return new CustomMethodArgument(

message.getHeaders().get(KafkaHeaders.RECEIVED_TOPIC,
String.class)

)

You can also completely replace the framework’s argument resolution by adding a custom

134

MessageHandlerMethodFactory to the KafkalListenerEndpointRegistrar bean. If you do this, and your
application needs to handle tombstone records, with a null value() (e.g. from a compacted topic),
you should add a KafkaNullAwarePayloadArgumentResolver to the factory; it must be the last resolver
because it supports all types and can match arguments without a @Payload annotation. If you are
using a DefaultMessageHandlerMethodFactory, set this resolver as the last custom resolver; the factory
will ensure that this resolver will be used before the standard PayloadMethodArgumentResolver,
which has no knowledge of KafkaNull payloads.

See also Null Payloads and Log Compaction of 'Tombstone' Records.

4.1.20. Message Headers

The 0.11.0.0 client introduced support for headers in messages. As of version 2.0, Spring for Apache
Kafka now supports mapping these headers to and from spring-messaging MessageHeaders.

Previous versions mapped ConsumerRecord and ProducerRecord to spring-messaging

o Message<?>, where the value property is mapped to and from the payload and other
properties (topic, partition, and so on) were mapped to headers. This is still the
case, but additional (arbitrary) headers can now be mapped.

Apache Kafka headers have a simple API, shown in the following interface definition:

public interface Header {
String key();

byte[] value();

The KafkaHeaderMapper strategy is provided to map header entries between Kafka Headers and
MessageHeaders. Its interface definition is as follows:

public interface KafkaHeaderMapper {
void fromHeaders(MessageHeaders headers, Headers target);

void toHeaders(Headers source, Map<String, Object> target);

The SimpleKafkaHeaderMapper maps raw headers as byte[], with configuration options for
conversion to String values.

135

The DefaultKafkaHeaderMapper maps the key to the MessageHeaders header name and, in order to
support rich header types for outbound messages, JSON conversion is performed. A “special”
header (with a key of spring_json_header_types) contains a JSON map of <key>:<type>. This header is
used on the inbound side to provide appropriate conversion of each header value to the original

type.

On the inbound side, all Kafka Header instances are mapped to MessageHeaders. On the outbound
side, by default, all MessageHeaders are mapped, except id, timestamp, and the headers that map to
ConsumerRecord properties.

You can specify which headers are to be mapped for outbound messages, by providing patterns to
the mapper. The following listing shows a number of example mappings:

public DefaultKafkaHeaderMapper() { @

}

public DefaultKafkaHeaderMapper(ObjectMapper objectMapper) { @

}

public DefaultKafkaHeaderMapper(String... patterns) { ®

}

public DefaultKafkaHeaderMapper(ObjectMapper objectMapper, String... patterns) {
@

® Uses a default Jackson ObjectMapper and maps most headers, as discussed before the
example.

@ Uses the provided Jackson ObjectMapper and maps most headers, as discussed before the
example.

® Uses a default Jackson ObjectMapper and maps headers according to the provided patterns.

@ Uses the provided Jackson ObjectMapper and maps headers according to the provided
patterns.

Patterns are rather simple and can contain a leading wildcard (), a trailing wildcard, or both
(for example, .cat.*). You can negate patterns with a leading !. The first pattern that matches a
header name (whether positive or negative) wins.

When you provide your own patterns, we recommend including !id and !timestamp, since these
headers are read-only on the inbound side.

136

By default, the mapper deserializes only classes in java.lang and java.util. You
can trust other (or all) packages by adding trusted packages with the
addTrustedPackages method. If you receive messages from untrusted sources, you
may wish to add only those packages you trust. To trust all packages, you can use

mapper.addTrustedPackages("*").

Mapping String header values in a raw form is useful when communicating with

systems that are not aware of the mapper’s JSON format.

Starting with version 2.2.5, you can specify that certain string-valued headers should not be
mapped using JSON, but to/from a raw byte[]. The AbstractKafkaHeaderMapper has new properties;
mapAllStringsOut when set to true, all string-valued headers will be converted to byte[] using the
charset property (default UTF-8). In addition, there is a property rawMappedHeaders, which is a map of

header name :

boolean; if the map contains a header name, and the header contains a String value,

it will be mapped as a raw byte[] using the charset. This map is also used to map raw incoming
byte[] headers to String using the charset if, and only if, the boolean in the map value is true. If the
boolean is false, or the header name is not in the map with a true value, the incoming header is
simply mapped as the raw unmapped header.

The following test case illustrates this mechanism.

public void testSpecificStringConvert() {

DefaultKafkaHeaderMapper mapper = new DefaultKafkaHeaderMapper();

Map<String, Boolean> rawMappedHeaders = new HashMap<>();
rawMappedHeaders.put("thisOnesAString", true);
rawMappedHeaders.put("thisOnesBytes", false);

mapper .setRawMappedHeaders(rawMappedHeaders);
Map<String, Object> headersMap = new HashMap<>();
headersMap.put("thisOnesAString", "thing1");
headersMap.put("thisOnesBytes", "thing2");
headersMap.put("alwaysRaw", "thing3".getBytes());
MessageHeaders headers = new MessageHeaders(headersMap);
Headers target = new RecordHeaders();

mapper . fromHeaders(headers, target);
assertThat(target).containsExactlyInAnyOrder(

new RecordHeader ("thisOnesAString", "thing1".getBytes()),

new RecordHeader ("thisOnesBytes", "thing2".getBytes()),
new RecordHeader("alwaysRaw", "thing3".getBytes()));
headersMap.clear();
mapper .toHeaders(target, headersMap);
assertThat(headersMap).contains(
entry("thisOnesAString", "thing1"),
entry("thisOnesBytes", "thing2".getBytes()),
entry("alwaysRaw", "thing3".getBytes()));

137

Both header mappers map all inbound headers, by default. Starting with version 2.8.8, the patterns,
can also applied to inbound mapping. To create a mapper for inbound mapping, use one of the
static methods on the respective mapper:

public static DefaultKafkaHeaderMapper forInboundOnlyWithMatchers(String...
patterns) {

}

public static DefaultKafkaHeaderMapper forInboundOnlyWithMatchers(ObjectMapper
objectMapper, String... patterns) {
}

public static SimpleKafkaHeaderMapper forInboundOnlyWithMatchers(String...
patterns) {
}

For example:

DefaultKafkaHeaderMapper inboundMapper = DefaultKafkaHeaderMapper
.forInboundOnlyWithMatchers("!abc*", "*");

This will exclude all headers beginning with abc and include all others.

By default, the DefaultKafkaHeaderMapper is wused in the MessagingMessageConverter and
BatchMessagingMessageConverter, as long as Jackson is on the class path.

With the batch converter, the converted headers are available in the
KafkaHeaders.BATCH_CONVERTED_HEADERS as a List<Map<String, Object>> where the map in a position
of the list corresponds to the data position in the payload.

If there is no converter (either because Jackson is not present or it is explicitly set to null), the
headers from the consumer record are provided unconverted in the KafkaHeaders.NATIVE_HEADERS
header. This header is a Headers object (or a List<Headers> in the case of the batch converter), where
the position in the list corresponds to the data position in the payload).

Certain types are not suitable for JSON serialization, and a simple toString()
serialization might be preferred for these types. The DefaultKafkaHeaderMapper has
o a method called addToStringClasses() that lets you supply the names of classes that
should be treated this way for outbound mapping. During inbound mapping, they
are mapped as String. By default, only org.springframework.util.MimeType and
org.springframework.http.MediaType are mapped this way.

138

Starting with version 2.3, handling of String-valued headers is simplified. Such
headers are no longer JSON encoded, by default (i.e. they do not have enclosing "+

e " added). The type is still added to the JSON_TYPES header so the receiving system
can convert back to a String (from byte[]). The mapper can handle (decode)
headers produced by older versions (it checks for a leading "); in this way an
application using 2.3 can consume records from older versions.

To be compatible with earlier versions, set encodeStrings to true, if records

o produced by a version using 2.3 might be consumed by applications using earlier
versions. When all applications are using 2.3 or higher, you can leave the property
at its default value of false.

MessagingMessageConverter converter() {
MessagingMessageConverter converter = new MessagingMessageConverter();
DefaultKafkaHeaderMapper mapper = new DefaultKafkaHeaderMapper();
mapper.setEncodeStrings(true);
converter.setHeaderMapper (mapper);
return converter;

If using Spring Boot, it will auto configure this converter bean into the auto-configured
KafkaTemplate; otherwise you should add this converter to the template.

4.1.21. Null Payloads and Log Compaction of 'Tombstone' Records

When you use Log Compaction, you can send and receive messages with null payloads to identify
the deletion of a key.

You can also receive null values for other reasons, such as a Deserializer that might return null
when it cannot deserialize a value.

To send a null payload by using the KafkaTemplate, you can pass null into the value argument of the
send() methods. One exception to this is the send(Message<?> message) variant. Since spring-
messaging Message<?> cannot have a null payload, you can use a special payload type called
KafkaNull, and the framework sends null. For convenience, the static KafkaNull.INSTANCE is
provided.

When you use a message listener container, the received ConsumerRecord has a null value().

To configure the @KafkalListener to handle null payloads, you must use the @Payload annotation with
required = false. If it is a tombstone message for a compacted log, you usually also need the key so
that your application can determine which key was “deleted”. The following example shows such a
configuration:

139

https://kafka.apache.org/documentation/#compaction

@Kafkalistener(id = "deletablelistener", topics = "myTopic")
public void listen(@Payload(required = false) String value, @Header(KafkaHeaders
.RECEIVED_KEY) String key) {

// value == null represents key deletion

}

When you use a class-level eKafkalistener with multiple @KafkaHandler methods, some additional
configuration is needed. Specifically, you need a @KafkaHandler method with a KafkaNull payload.
The following example shows how to configure one:

@Kafkalistener(id = "multi", topics = "myTopic")
static class MultilistenerBean {

@KafkaHandler
public void listen(String cat) {

}

@KafkaHandler
public void listen(Integer hat) {

}

@KafkaHandler
public void delete(@Payload(required = false) KafkaNull nul, @Header
(KafkaHeaders.RECEIVED_KEY) int key) {

}

Note that the argument is null, not KafkaNull.

(r) See Manually Assigning All Partitions.

This feature requires the use of a KafkaNullAwarePayloadArgumentResolver which the
o framework will configure when using the default MessageHandlerMethodFactory.

When wusing a custom MessageHandlerMethodFactory, see Adding custom

HandlerMethodArgumentResolver to @Kafkalistener.

4.1.22. Handling Exceptions

This section describes how to handle various exceptions that may arise when you use Spring for
Apache Kafka.

140

Listener Error Handlers

Starting with version 2.0, the @Kafkalistener annotation has a new attribute: errorHandler.

You can use the errorHandler to provide the bean name of a KafkalistenerErrorHandler
implementation. This functional interface has one method, as the following listing shows:

public interface KafkalistenerErrorHandler {

Object handleError(Message<?> message, ListenerExecutionFailedException
exception) throws Exception;

}

You have access to the spring-messaging Message<?> object produced by the message converter and
the exception that was thrown by the listener, which is wrapped in a
ListenerExecutionFailedException. The error handler can throw the original or a new exception,
which is thrown to the container. Anything returned by the error handler is ignored.

Starting with version 2.7, you can set the rawRecordHeader property on the
MessagingMessageConverter and BatchMessagingMessageConverter which causes the raw
ConsumerRecord to be added to the converted Message<?> in the KafkaHeaders.RAW_DATA header. This is
useful, for example, if you wish to use a DeadlLetterPublishingRecoverer in a listener error handler.
It might be used in a request/reply scenario where you wish to send a failure result to the sender,
after some number of retries, after capturing the failed record in a dead letter topic.

KafkalListenerErrorHandler eh(DeadlLetterPublishingRecoverer recoverer) {
return (msg, ex) -> {
if (msg.getHeaders().get(KafkaHeaders.DELIVERY_ATTEMPT, Integer.class) >
9) {
recoverer.accept(msg.getHeaders().get(KafkaHeaders.RAW_DATA,
ConsumerRecord.class), ex);
return "FAILED";
}

throw ex;

};

It has a sub-interface (ConsumerAwarelListenerErrorHandler) that has access to the consumer object,
through the following method:

141

Object handleError(Message<?> message, ListenerExecutionFailedException exception,
Consumer<?, ?> consumer);

Another sub-interface (ManualAckListenerErrorHandler) provides access to the Acknowledgment object
when using manual AckMode s.

Object handleError(Message<?> message, ListenerExecutionFailedException exception,
Consumer<?, 7> consumer, Acknowledgment ack);

In either case, you should NOT perform any seeks on the consumer because the container would be
unaware of them.

Container Error Handlers

Starting with version 2.8, the legacy ErrorHandler and BatchErrorHandler interfaces have been
superseded by a new CommonErrorHandler. These error handlers can handle errors for both record
and batch listeners, allowing a single listener container factory to create containers for both types
of listener. CommonErrorHandler implementations to replace most legacy framework error handler
implementations are provided and the legacy error handlers deprecated. The legacy interfaces are
still supported by listener containers and listener container factories; they will be deprecated in a
future release.

See Migrating Custom Legacy Error Handler Implementations to CommonErrorHandler for
information to migrate custom error handlers to CommonErrorHandler.

When transactions are being used, no error handlers are configured, by default, so that the
exception will roll back the transaction. Error handling for transactional containers are handled by
the AfterRollbackProcessor. If you provide a custom error handler when using transactions, it must
throw an exception if you want the transaction rolled back.

This interface has a default method isAckAfterHandle() which is called by the container to
determine whether the offset(s) should be committed if the error handler returns without throwing
an exception; it returns true by default.

Typically, the error handlers provided by the framework will throw an exception when the error is
not "handled" (e.g. after performing a seek operation). By default, such exceptions are logged by the
container at ERROR level. All of the framework error handlers extend KafkaExceptionLoglLevelAware
which allows you to control the level at which these exceptions are logged.

142

/**

* Set the level at which the exception thrown by this handler is logged.
* @param loglLevel the level (default ERROR).

*/

public void setlLoglevel(KafkaException.Level loglLevel) {

}

You can specify a global error handler to be used for all listeners in the container factory. The
following example shows how to do so:

public KafkalListenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalListenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.setCommonErrorHandler (myErrorHandler);

return factory;

By default, if an annotated listener method throws an exception, it is thrown to the container, and
the message is handled according to the container configuration.

The container commits any pending offset commits before calling the error handler.

If you are using Spring Boot, you simply need to add the error handler as a @Bean and Boot will add
it to the auto-configured factory.

Back Off Handlers

Error handlers such as the DefaultErrorHandler use a BackOff to determine how long to wait before
retrying a delivery. Starting with version 2.9, you can configure a custom BackOffHandler. The
default handler simply suspends the thread until the back off time passes (or the container is
stopped). The framework also provides the ContainerPausingBackOffHandler which pauses the
listener container until the back off time passes and then resumes the container. This is useful
when the delays are longer than the max.poll.interval.ms consumer property. Note that the
resolution of the actual back off time will be affected by the pol1Timeout container property.

DefaultErrorHandler

This new error handler replaces the SeekToCurrentErrorHandler and RecoveringBatchErrorHandler,
which have been the default error handlers for several releases now. One difference is that the

143

fallback behavior for batch listeners (When an exception other than a BatchListenerFailedException
is thrown) is the equivalent of the Retrying Complete Batches.

Starting with version 2.9, the DefaultErrorHandler can be configured to provide the
same semantics as seeking the unprocessed record offsets as discussed below, but
without actually seeking. Instead, the records are retained by the listener
container and resubmitted to the listener after the error handler exits (and after

o performing a single paused poll(), to keep the consumer alive; if Non-Blocking
Retries or a ContainerPausingBackOffHandler are being used, the pause may extend
over multiple polls). The error handler returns a result to the container that
indicates whether the current failing record can be resubmitted, or if it was
recovered and then it will not be sent to the listener again. To enable this mode, set
the property seekAfterError to false.

The error handler can recover (skip) a record that keeps failing. By default, after ten failures, the
failed record is logged (at the ERROR level). You can configure the handler with a custom recoverer
(BiConsumer) and a BackOff that controls the delivery attempts and delays between each. Using a
FixedBackOff with FixedBackOff.UNLIMITED_ATTEMPTS causes (effectively) infinite retries. The
following example configures recovery after three tries:

DefaultErrorHandler errorHandler =
new DefaultErrorHandler((record, exception) -> {
// recover after 3 failures, with no back off - e.g. send to a dead-letter
topic
}, new FixedBackOff(0OL, 2L));

To configure the listener container with a customized instance of this handler, add it to the
container factory.

For example, with the @Kafkalistener container factory, you can add DefaultErrorHandler as follows:

public ConcurrentKafkalistenerContainerFactory<String, String>
kafkalistenerContainerFactory() {
ConcurrentKafkalListenerContainerFactory<String, String> factory = new
ConcurrentKafkalistenerContainerFactory();
factory.setConsumerFactory(consumerFactory());
factory.getContainerProperties().setAckMode(AckMode.RECORD);
factory.setCommonErrorHandler (new DefaultErrorHandler(new FixedBackOff(1000L,
2L)));
return factory;

}

For a record listener, this will retry a delivery up to 2 times (3 delivery attempts) with a back off of

144

1 second, instead of the default configuration (FixedBackOff(0L, 9)). Failures are simply logged after
retries are exhausted.

As an example; if the poll returns six records (two from each partition 0, 1, 2) and the listener
throws an exception on the fourth record, the container acknowledges the first three messages by
committing their offsets. The DefaultErrorHandler seeks to offset 1 for partition 1 and offset 0 for
partition 2. The next pol1() returns the three unprocessed records.

If the AckMode was BATCH, the container commits the offsets for the first two partitions before calling
the error handler.

For a batch listener, the listener must throw a BatchListenerFailedException indicating which
records in the batch failed.

The sequence of events is:

¢ Commit the offsets of the records before the index.

* If retries are not exhausted, perform seeks so that all the remaining records (including the
failed record) will be redelivered.

* If retries are exhausted, attempt recovery of the failed record (default log only) and perform
seeks so that the remaining records (excluding the failed record) will be redelivered. The
recovered record’s offset is committed

 Ifretries are exhausted and recovery fails, seeks are performed as if retries are not exhausted.

Starting with version 2.9, the DefaultErrorHandler can be configured to provide the
same semantics as seeking the unprocessed record offsets as discussed above, but

o without actually seeking. Instead, error handler creates a new ConsumerRecords<?,
7> containing just the unprocessed records which will then be submitted to the
listener (after performing a single paused poll(), to keep the consumer alive). To
enable this mode, set the property seekAfterError to false.

The default recoverer logs the failed record after retries are exhausted. You can use a custom
recoverer, or one provided by the framework such as the DeadLetterPublishingRecoverer.

When using a POJO batch listener (e.g. List<Thing>), and you don’t have the full consumer record to
add to the exception, you can just add the index of the record that failed:

145

@Kafkalistener(id = "recovering", topics = "someTopic")
public void listen(List<Thing> things) {
for (int i = 0; i < records.size(); i++) {
try {
process(things.get(i));
}
catch (Exception e) {

throw new BatchListenerFailedException("Failed to process", 1);

}

When the container is configured with AckMode.MANUAL_IMMEDIATE, the error handler can be
configured to commit the offset of recovered records; set the commitRecovered property to true.

See also Publishing Dead-letter Records.

When using transactions, similar functionality is provided by the DefaultAfterRollbackProcessor.
See After-rollback Processor.

The DefaultErrorHandler considers certain exceptions to be fatal, and retries are skipped for such
exceptions; the recoverer is invoked on the first failure. The exceptions that are considered fatal, by
default, are:

* DeserializationException

* MessageConversionException

e ConversionException

MethodArgumentResolutionException

NoSuchMethodException

(lassCastException
since these exceptions are unlikely to be resolved on a retried delivery.

You can add more exception types to the not-retryable category, or completely replace the map of
classified exceptions. See the Javadocs for DefaultErrorHandler.addNotRetryableException() and
DefaultErrorHandler.set(Classifications() for more information, as well as those for the spring-
retry BinaryExceptionClassifier.

Here is an example that adds I1legalArqumentException to the not-retryable exceptions:

146

public DefaultErrorHandler errorHandler(ConsumerRecordRecoverer recoverer) {
DefaultErrorHandler handler = new DefaultErrorHandler(recoverer);
handler.addNotRetryableExceptions(IllegalArqumentException.class);
return handler;

The error handler can be configured with one or more RetrylListener s, receiving notifications of
retry and recovery progress. Starting with version 2.8.10, methods for batch listeners were added.

public interface RetrylListener {

void failedDelivery(ConsumerRecord<?, ?> record, Exception ex, int
deliveryAttempt);

default void recovered(ConsumerRecord<?, ?> record, Exception ex) {

}

default void recoveryFailed(ConsumerRecord<?, ?> record, Exception original,
Exception failure) {

}

default void failedDelivery(ConsumerRecords<?, 7> records, Exception ex, int
deliveryAttempt) {
}

default void recovered(ConsumerRecords<?, 7> records, Exception ex) {

}

default void recoveryFailed(ConsumerRecords<?, ?> records, Exception original,
Exception failure) {

}

See the javadocs for more information.

If the recoverer fails (throws an exception), the failed record will be included in
the seeks. If the recoverer fails, the BackOff will be reset by default and redeliveries

o will again go through the back offs before recovery is attempted again. To skip
retries after a recovery failure, set the error handler’s resetStateOnRecoveryFailure
to false.

147

You can provide the error handler with a BiFunction<ConsumerRecord<?, 7>, Exception, BackOff> to
determine the BackOff to use, based on the failed record and/or the exception:

handler.setBackOffFunction((record, ex) -> { ... });

If the function returns null, the handler’s default BackOff will be used.

Set resetStateOnExceptionChange to true and the retry sequence will be restarted (including the
selection of a new Back0ff, if so configured) if the exception type changes between failures. When
false (the default before version 2.9), the exception type is not considered.

Starting with version 2.9, this is now true by default.

Also see Delivery Attempts Header.

Conversion Errors with Batch Error Handlers

Starting with version 2.8, batch listeners can now properly handle conversion errors, when using a
MessageConverter with a ByteArrayDeserializer, a BytesDeserializer or a StringDeserializer, as well
as a DefaultErrorHandler. When a conversion error occurs, the payload is set to null and a
deserialization exception is added to the record headers, similar to the ErrorHandlingDeserializer. A
list of ConversionException s is available in the listener so the listener can throw a
BatchListenerFailedException indicating the first index at which a conversion exception occurred.

Example:

(id = "test", topics = "topic")
void listen(List<Thing> in, (KafkaHeaders.CONVERSION_FAILURES) List
<ConversionException> exceptions) {
for (int i = 0; 1 < in.size(); i++) {
Foo foo = in.get(i);
if (foo == null && exceptions.get(i) != null) {
throw new BatchListenerFailedException("Conversion error", exceptions

e, U

}

process(foo);

Retrying Complete Batches

This is now the fallback behavior of the DefaultErrorHandler for a batch listener where the listener
throws an exception other than a BatchListenerFailedException.

There is no guarantee that, when a batch is redelivered, the batch has the same number of records

148

and/or the redelivered records are in the same order. It is impossible, therefore, to easily maintain
retry state for a batch. The FallbackBatchErrorHandler takes a the following approach. If a batch
listener throws an exception that is not a BatchListenerFailedException, the retries are performed
from the in-memory batch of records. In order to avoid a rebalance during an extended retry
sequence, the error handler pauses the consumer, polls it before sleeping for the back off, for each
retry, and calls the listener again. If/when retries are exhausted, the ConsumerRecordRecoverer is
called for each record in the batch. If the recoverer throws an exception, or the thread is
interrupted during its sleep, the batch of records will be redelivered on the next poll. Before exiting,
regardless of the outcome, the consumer is resumed.

o This mechanism cannot be used with transactions.

While waiting for a BackOff interval, the error handler will loop with a short sleep until the desired
delay is reached, while checking to see if the container has been stopped, allowing the sleep to exit
soon after the stop() rather than causing a delay.

Container Stopping Error Handlers

The CommonContainerStoppingErrorHandler stops the container if the listener throws an exception.
For record listeners, when the AckMode is RECORD, offsets for already processed records are
committed. For record listeners, when the AckMode is any manual value, offsets for already
acknowledged records are committed. For record listeners, wWhen the AckMode is BATCH, or for batch
listeners, the entire batch is replayed when the container is restarted.

After the container stops, an exception that wraps the ListenerExecutionFailedException is thrown.
This is to cause the transaction to roll back (if transactions are enabled).

Delegating Error Handler

The CommonDelegatingErrorHandler can delegate to different error handlers, depending on the
exception type. For example, you may wish to invoke a DefaultErrorHandler for most exceptions, or
a CommonContainerStoppingErrorHandler for others.

Logging Error Handler

The CommonLoggingErrorHandler simply logs the exception; with a record listener, the remaining
records from the previous poll are passed to the listener. For a batch listener, all the records in the
batch are logged.

Using Different Common Error Handlers for Record and Batch Listeners

If you wish to use a different error handling strategy for record and batch listeners, the
CommonMixedErrorHandler is provided allowing the configuration of a specific error handler for each
listener type.

Common Error Handler Summary

e DefaultErrorHandler

» CommonContainerStoppingErrorHandler

149

» CommonDelegatingErrorHandler
* CommonLoggingErrorHandler

e CommonMixedErrorHandler

Legacy Error Handlers and Their Replacements

Legacy Error Handler Replacement

LoggingErrorHandler CommonLoggingErrorHandler
BatchLoggingErrorHandler CommonLoggingErrorHandler
ConditionalDelegatingErrorHandler DelegatingErrorHandler
ConditionalDelegatingBatchErrorHandler DelegatingErrorHandler
ContainerStoppingErrorHandler CommonContainerStoppingErrorHandler
ContainerStoppingBatchErrorHandler CommonContainerStoppingErrorHandler
SeekToCurrentErrorHandler DefaultErrorHandler
SeekToCurrentBatchErrorHandler No replacement, use DefaultErrorHandler with

an infinite BackOff.

RecoveringBatchErrorHandler DefaultErrorHandler

RetryingBatchErrorHandler No replacements - use DefaultErrorHandler and
throw an exception other than
BatchListenerFailedException.

Migrating Custom Legacy Error Handler Implementations to CommonErrorHandler

Refer to the javadocs in CommonErrorHandler.

To replace an ErrorHandler or ConsumerAwareErrorHandler implementation, you should implement
handleOne() and leave seeksAfterHandle() to return false (default). You should also implement
handleOtherException() - to handle exceptions that occur outside the scope of record processing (e.g.
consumer errors).

To replace a RemainingRecordsErrorHandler implementation, you should implement
handleRemaining() and override seeksAfterHandle() to return true (the error handler must perform
the necessary seeks). You should also implement handleOtherException() - to handle exceptions that
occur outside the scope of record processing (e.g. consumer errors).

To replace any BatchErrorHandler implementation, you should implement handleBatch() You should
also implement handleOtherException() - to handle exceptions that occur outside the scope of record
processing (e.g. consumer errors).

After-rollback Processor

When using transactions, if the listener throws an exception (and an error handler, if present,
throws an exception), the transaction is rolled back. By default, any unprocessed records (including
the failed record) are re-fetched on the next poll. This is achieved by performing seek operations in
the DefaultAfterRollbackProcessor. With a batch listener, the entire batch of records is reprocessed
(the container has no knowledge of which record in the batch failed). To modify this behavior, you

150

can configure the listener container with a custom AfterRollbackProcessor. For example, with a
record-based listener, you might want to keep track of the failed record and give up after some
number of attempts, perhaps by publishing it to a dead-letter topic.

Starting with version 2.2, the DefaultAfterRollbackProcessor can now recover (skip) a record that
keeps failing. By default, after ten failures, the failed record is logged (at the ERROR level). You can
configure the processor with a custom recoverer (BiConsumer) and maximum failures. Setting the
maxFailures property to a negative number causes infinite retries. The following example
configures recovery after three tries:

AfterRollbackProcessor<String, String> processor =
new DefaultAfterRollbackProcessor((record, exception) -> {
// recover after 3 failures, with no back off - e.g. send to a dead-letter
topic
}, new FixedBackOff(0L, 2L));

When you do not use transactions, you can achieve similar functionality by configuring a
DefaultErrorHandler. See Container Error Handlers.

Recovery is not possible with a batch listener, since the framework has no
knowledge about which record in the batch keeps failing. In such cases, the
application listener must handle a record that keeps failing.

See also Publishing Dead-letter Records.

Starting with version 2.2.5, the DefaultAfterRollbackProcessor can be invoked in a new transaction
(started after the failed transaction rolls back). Then, if you are wusing the
DeadLetterPublishingRecoverer to publish a failed record, the processor will send the recovered
record’s offset in the original topic/partition to the transaction. To enable this feature, set the
commitRecovered and kafkaTemplate properties on the DefaultAfterRollbackProcessor.

If the recoverer fails (throws an exception), the failed record will be included in
the seeks. Starting with version 2.5.5, if the recoverer fails, the BackOff will be reset

o by default and redeliveries will again go through the back offs before recovery is
attempted again. With earlier versions, the BackOff was not reset and recovery was
re-attempted on the next failure. To revert to the previous behavior, set the
processor’s resetStateOnRecoveryFailure property to false.

Starting with version 2.6, you can now provide the processor with a BiFunction<ConsumerRecord<?,
7>, Exception, BackOff> to determine the BackOff to use, based on the failed record and/or the
exception:

handler.setBackOffFunction((record, ex) -> { ... });

151

If the function returns null, the processor’s default BackOff will be used.

Starting with version 2.6.3, set resetStateOnExceptionChange to true and the retry sequence will be
restarted (including the selection of a new Back0ff, if so configured) if the exception type changes
between failures. By default, the exception type is not considered.

Starting with version 2.3.1, similar to the DefaultErrorHandler, the DefaultAfterRollbackProcessor
considers certain exceptions to be fatal, and retries are skipped for such exceptions; the recoverer
is invoked on the first failure. The exceptions that are considered fatal, by default, are:

* DeserializationException

* MessageConversionException

» ConversionException

MethodArgumentResolutionException

NoSuchMethodException

(lassCastException
since these exceptions are unlikely to be resolved on a retried delivery.

You can add more exception types to the not-retryable category, or completely replace the map of
classified exceptions. See the Javadocs for DefaultAfterRollbackProcessor.setClassifications() for
more information, as well as those for the spring-retry BinaryExceptionClassifier.

Here is an example that adds I1legalArqumentException to the not-retryable exceptions:

public DefaultAfterRollbackProcessor errorHandler(BiConsumer<ConsumerRecord<?, 7>,
Exception> recoverer) {

DefaultAfterRollbackProcessor processor = new DefaultAfterRollbackProcessor
(recoverer);

processor.addNotRetryableException(IllegalArgumentException.class);

return processor;

Also see Delivery Attempts Header.

152

With current kafka-clients, the container cannot detect whether a
ProducerFencedException is caused by a rebalance or if the producer’s
transactional.id has been revoked due to a timeout or expiry. Because, in most
cases, it is caused by a rebalance, the container does not call the
AfterRollbackProcessor (because it’s not appropriate to seek the partitions because
we no longer are assigned them). If you ensure the timeout is large enough to

o process each transaction and periodically perform an "empty" transaction (e.g. via
a ListenerContainerIdleEvent) you can avoid fencing due to timeout and expiry. Or,
you can set the stopContainerWhenFenced container property to true and the
container will stop, avoiding the loss of records. You can consume a
ConsumerStoppedEvent and check the Reason property for FENCED to detect this
condition. Since the event also has a reference to the container, you can restart the
container using this event.

Starting with version 2.7, while waiting for a BackOff interval, the error handler will loop with a
short sleep until the desired delay is reached, while checking to see if the container has been
stopped, allowing the sleep to exit soon after the stop() rather than causing a delay.

Starting with version 2.7, the processor can be configured with one or more RetrylListener s,
receiving notifications of retry and recovery progress.

public interface RetrylListener {

void failedDelivery(ConsumerRecord<?, ?> record, Exception ex, int
deliveryAttempt);

default void recovered(ConsumerRecord<?, 7> record, Exception ex) {

}

default void recoveryFailed(ConsumerRecord<?, ?> record, Exception original,
Exception failure) {

}

See the javadocs for more information.

Delivery Attempts Header

The following applies to record listeners only, not batch listeners.

Starting with version 2.5, when using an ErrorHandler or AfterRollbackProcessor that implements
DeliveryAttemptAware, it is possible to enable the addition of the KafkaHeaders.DELIVERY_ATTEMPT
header (kafka_deliveryAttempt) to the record. The value of this header is an incrementing integer
starting at 1. When receiving a raw ConsumerRecord<?, 7> the integer isin a byte[4].

153

int delivery = ByteBuffer.wrap(record.headers()
.lastHeader(KafkaHeaders.DELIVERY _ATTEMPT).value())
.getInt()

When using @Kafkalistener with the DefaultKafkaHeaderMapper or SimpleKafkaHeaderMapper, it can be
obtained by adding @Header(KafkaHeaders.DELIVERY_ATTEMPT) int delivery as a parameter to the
listener method.

To enable population of this header, set the container property deliveryAttemptHeader to true. It is
disabled by default to avoid the (small) overhead of looking up the state for each record and adding
the header.

The DefaultErrorHandler and DefaultAfterRollbackProcessor support this feature.

Listener Info Header

In some cases, it is useful to be able to know which container a listener is running in.

Starting with version 2.8.4, you can now set the listenerInfo property on the listener container, or
set the info attribute on the @Kafkalistener annotation. Then, the container will add this in the
Kafkalistener.LISTENER_INFO header to all incoming messages; it can then be used in record
interceptors, filters, etc., or in the listener itself.

(id = "something", topic = "topic", filter = "someFilter",
info = "this is the something listener")
public void listen2(Thing thing,
(KafkaHeaders.LISTENER_INFO) String listenerInfo) {

When used in a RecordInterceptor or RecordFilterStrategy implementation, the header is in the
consumer record as a byte array, converted using the KafkalistenerAnnotationBeanPostProcessor 's
charSet property.

The header mappers also convert to String when creating MessageHeaders from the consumer
record and never map this header on an outbound record.

For POJO batch listeners, starting with version 2.8.6, the header is copied into each member of the
batch and is also available as a single String parameter after conversion.

154

(id = "list2", topics = "someTopic", containerFactory =
"batchFactory",
info = "info for batch")
public void listen(List<Thing> list,
(KafkaHeaders.RECEIVED_KEY) List<Integer> keys,
(KafkaHeaders.RECEIVED_PARTITION) List<Integer> partitions,
(KafkaHeaders.RECEIVED_TOPIC) List<String> topics,
(KafkaHeaders.OFFSET) List<Long> offsets,
(KafkaHeaders.LISTENER_INFO) String info) {

If the batch listener has a filter and the filter results in an empty batch, you will
o need to add required = false to the @Header parameter because the info is not
available for an empty batch.

If you receive List<Message<Thing>> the info is in the KafkaHeaders.LISTENER_INFO header of each
Message<?>.

See Batch Listeners for more information about consuming batches.

Publishing Dead-letter Records

You can configure the DefaultErrorHandler and DefaultAfterRollbackProcessor with a record
recoverer when the maximum number of failures is reached for a record. The framework provides
the DeadlLetterPublishingRecoverer, which publishes the failed message to another topic. The
recoverer requires a KafkaTemplate<Object, Object>, which is used to send the record. You can also,
optionally, configure it with a BiFunction<ConsumerRecord<?, 7>, Exception, TopicPartition>, which
is called to resolve the destination topic and partition.

By default, the dead-letter record is sent to a topic named <originalTopic>.DLT (the

o original topic name suffixed with .DLT) and to the same partition as the original
record. Therefore, when you use the default resolver, the dead-letter topic must
have at least as many partitions as the original topic.

If the returned TopicPartition has a negative partition, the partition is not set in the ProducerRecord,
so the partition is selected by Kafka. Starting with version 2.2.4, any
ListenerExecutionFailedException (thrown, for example, when an exception is detected in a
@KafkalListener method) is enhanced with the groupId property. This allows the destination resolver
to use this, in addition to the information in the ConsumerRecord to select the dead letter topic.

The following example shows how to wire a custom destination resolver:

155

DeadlLetterPublishingRecoverer recoverer

new DeadlLetterPublishingRecoverer

(template,
(r, e) > {
if (e instanceof FooException) {
return new TopicPartition(r.topic() + ".Foo.failures", r.
partition());
}
else {
return new TopicPartition(r.topic() + ".other.failures", r
.partition());
}
1)

CommonErrorHandler errorHandler

new DefaultErrorHandler(recoverer, new

FixedBackOff(0L, 2L));

The record sent to the dead-letter topic is enhanced with the following headers:

Key

KafkaHeaders.
ListenerExecu

KafkaHeaders.
version 2.8).

KafkaHeaders.
KafkaHeaders

KafkaHeaders.
only).

KafkaHeaders.
errors only).

KafkaHeaders.
only).

KafkaHeaders.
KafkaHeaders
KafkaHeaders.
KafkaHeaders.
KafkaHeaders.
KafkaHeaders.

DLT_EXCEPTION_FQCN: The Exception class name (generally a

tionFailedException, but can be others).

DLT_EXCEPTION_CAUSE_FQCN: The Exception cause class name, if present (since

DLT_EXCEPTION_STACKTRACE: The Exception stack trace.

.DLT_EXCEPTION_MESSAGE: The Exception message.

DLT_KEY_EXCEPTION_FQCN: The Exception class name (key deserialization errors

DLT_KEY_EXCEPTION_STACKTRACE: The Exception stack trace (key deserialization

DLT_KEY_EXCEPTION_MESSAGE: The Exception message (key deserialization errors

DLT_ORIGINAL_TOPIC: The original topic.

.DLT_ORIGINAL_PARTITION: The original partition.

DLT_ORIGINAL_OFFSET: The original offset.

DLT_ORIGINAL_TIMESTAMP: The original timestamp.

DLT_ORIGINAL_TIMESTAMP_TYPE: The original timestamp type.
DLT_ORIGINAL_CONSUMER_GROUP: The original consumer group that failed to process

the record (since version 2.8).

exceptions

are only caused by DeserializationException s so there is no

DLT_KEY_EXCEPTION_CAUSE_FQCN.

There are two mechanisms to add more headers.

156

1. Subclass the recoverer and override createProducerRecord() - call super.createProducerRecord()
and add more headers.

2. Provide a BiFunction to receive the consumer record and exception, returning a Headers object;
headers from there will be copied to the final producer record; also see Managing Dead Letter
Record Headers. Use setHeadersFunction() to set the BiFunction.

The second is simpler to implement but the first has more information available, including the
already assembled standard headers.

Starting with version 2.3, when used in conjunction with an ErrorHandlingDeserializer, the
publisher will restore the record value(), in the dead-letter producer record, to the original value
that failed to be deserialized. Previously, the value() was null and user code had to decode the
DeserializationException from the message headers. In addition, you can provide multiple
KafkaTemplate s to the publisher; this might be needed, for example, if you want to publish the
byte[] from a DeserializationException, as well as values using a different serializer from records
that were deserialized successfully. Here is an example of configuring the publisher with
KafkaTemplate s that use a String and byte[] serializer:

public DeadlLetterPublishingRecoverer publisher(KafkaTemplate<?, ?> stringTemplate,
KafkaTemplate<?, 7> bytesTemplate) {

Map<Class<?>, KafkaTemplate<?, 7>> templates = new LinkedHashMap<>();
templates.put(String.class, stringTemplate);
templates.put(byte[].class, bytesTemplate);

return new DeadlLetterPublishingRecoverer(templates);

The publisher uses the map keys to locate a template that is suitable for the value() about to be
published. A LinkedHashMap is recommended so that the keys are examined in order.

When publishing null values, when there are multiple templates, the recoverer will look for a
template for the Void class; if none is present, the first template from the values().iterator() will
be used.

Since 2.7 you can use the setFaillfSendResultIsError method so that an exception is thrown when
message publishing fails. You can also set a timeout for the verification of the sender success with
setWaitForSendResultTimeout.

If the recoverer fails (throws an exception), the failed record will be included in
the seeks. Starting with version 2.5.5, if the recoverer fails, the BackOff will be reset

o by default and redeliveries will again go through the back offs before recovery is
attempted again. With earlier versions, the BackOff was not reset and recovery was
re-attempted on the next failure. To revert to the previous behavior, set the error
handler’s resetStateOnRecoveryFailure property to false.

157

Starting with version 2.6.3, set resetStateOnExceptionChange to true and the retry sequence will be
restarted (including the selection of a new BackOff, if so configured) if the exception type changes
between failures. By default, the exception type is not considered.

Starting with version 2.3, the recoverer can also be used with Kafka Streams - see Recovery from
Deserialization Exceptions for more information.

The ErrorHandlingDeserializer adds the deserialization exception(s) in headers
ErrorHandlingDeserializer.VALUE_DESERIALIZER_EXCEPTION_HEADER and
ErrorHandlingDeserializer.KEY_DESERIALIZER_EXCEPTION_HEADER (using java serialization). By default,
these headers are not retained in the message published to the dead letter topic. Starting with
version 2.7, if both the key and value fail deserialization, the original values of both are populated
in the record sent to the DLT.

If incoming records are dependent on each other, but may arrive out of order, it may be useful to
republish a failed record to the tail of the original topic (for some number of times), instead of
sending it directly to the dead letter topic. See this Stack Overflow Question for an example.

The following error handler configuration will do exactly that:

public ErrorHandler eh(KafkaOperations<String, String> template) {
return new DefaultErrorHandler(new DeadlLetterPublishingRecoverer(template,
(rec, ex) -> {
org.apache.kafka.common.header.Header retries = rec.headers()
.lastHeader("retries");
if (retries == null) {
retries = new RecordHeader("retries", new byte[] { 1 });
rec.headers().add(retries);

}

else {
retries.value()[0]++;

}

return retries.value()[0] > 5
? new TopicPartition("topic.DLT", rec.partition())
: new TopicPartition("topic", rec.partition());
}), new FixedBackOff(0L, 0L));

Starting with version 2.7, the recoverer checks that the partition selected by the destination
resolver actually exists. If the partition is not present, the partition in the ProducerRecord is set to
null, allowing the KafkaProducer to select the partition. You can disable this check by setting the
verifyPartition property to false.

Managing Dead Letter Record Headers

Referring to Publishing Dead-letter Records above, the DeadlLetterPublishingRecoverer has two
properties used to manage headers when those headers already exist (such as when reprocessing a

158

https://stackoverflow.com/questions/64646996

dead letter record that failed, including when using Non-Blocking Retries).

 appendOriginalHeaders (default true)

* stripPreviousExceptionHeaders (default true since version 2.8)

Apache Kafka supports multiple headers with the same name; to obtain the "latest" value, you can
use headers.lastHeader (headerName); to get an iterator over multiple headers, use
headers.headers(headerName).iterator().

When repeatedly republishing a failed record, these headers can grow (and eventually cause
publication to fail due to a RecordToolargeException); this is especially true for the exception
headers and particularly for the stack trace headers.

The reason for the two properties is because, while you might want to retain only the last exception
information, you might want to retain the history of which topic(s) the record passed through for
each failure.

appendOriginalHeaders is applied to all headers named ORIGINAL while
stripPreviousExceptionHeaders is applied to all headers named EXCEPTION.

Starting with version 2.8.4, you now can control which of the standard headers will be added to the
output record. See the enum HeadersToAdd for the generic names of the (currently) 10 standard
headers that are added by default (these are not the actual header names, just an abstraction; the
actual header names are set up by the getHeaderNames() method which subclasses can override.

To exclude headers, use the excludeHeaders() method; for example, to suppress adding the
exception stack trace in a header, use:

DeadlLetterPublishingRecoverer recoverer = new DeadlLetterPublishingRecoverer
(template);
recoverer.excludeHeaders(HeaderNames.HeadersToAdd.EX STACKTRACE);

In addition, you can completely customize the addition of exception headers by adding an
ExceptionHeadersCreator; this also disables all standard exception headers.

DeadlLetterPublishingRecoverer recoverer = new DeadlLetterPublishingRecoverer
(template);
recoverer.setExceptionHeadersCreator((kafkaHeaders, exception, isKey, headerNames)
=3 {

kafkaHeaders.add(new RecordHeader(..., ...));
)5

Also starting with version 2.8.4, you can now provide multiple headers functions, via the
addHeadersFunction method. This allows additional functions to apply, even if another function has
already been registered, for example, when using Non-Blocking Retries.

159

Also see Failure Header Management with Non-Blocking Retries.

ExponentialBackOffWithMaxRetries Implementation

Spring Framework provides a number of BackOff implementations. By default, the
ExponentialBackOff will retry indefinitely; to give up after some number of retry attempts requires
calculating the maxElapsedTime. Since version 2.7.3, Spring for Apache Kafka provides the
ExponentialBackOffWithMaxRetries which is a subclass that receives the maxRetries property and
automatically calculates the maxElapsedTime, which is a little more convenient.

DefaultErrorHandler handler() {
ExponentialBackOffWithMaxRetries bo = new ExponentialBackOffWithMaxRetries(6);
bo.setInitialInterval(1_000L);
bo.setMultiplier(2.0);
bo.setMaxInterval(10_000L);
return new DefaultErrorHandler(myRecoverer, bo);

This will retry after 1, 2, 4, 8, 10, 10 seconds, before calling the recoverer.

4.1.23. JAAS and Kerberos

Starting with version 2.0, a KafkalaasLoginModuleInitializer class has been added to assist with
Kerberos configuration. You can add this bean, with the desired configuration, to your application
context. The following example configures such a bean:

public KafkalaasLoginModuleInitializer jaasConfig() throws IOException {
KafkalaasLoginModuleInitializer jaasConfig = new
KafkalaasLoginModuleInitializer();
jaasConfig.setControlFlag("REQUIRED");
Map<String, String> options = new HashMap<>();
options.put("useKeyTab", "true");
options.put("storeKey", "true");
options.put("keyTab", "/etc/security/keytabs/kafka_client.keytab");
options.put("principal”, "kafka-client-1@EXAMPLE.COM");
jaasConfig.setOptions(options);
return jaasConfig;

4.2. Non-Blocking Retries

Version 2.9 changed the mechanism to bootstrap infrastructure beans; see Configuration for the

160

two mechanisms that are now required to bootstrap the feature.

Achieving non-blocking retry / dlt functionality with Kafka usually requires setting up extra topics
and creating and configuring the corresponding listeners. Since 2.7 Spring for Apache Kafka offers
support for that via the @RetryableTopic annotation and RetryTopicConfiguration class to simplify
that bootstrapping.

o Non-blocking retries are not supported with Batch Listeners.

4.2.1. How The Pattern Works

If message processing fails, the message is forwarded to a retry topic with a back off timestamp.
The retry topic consumer then checks the timestamp and if it’s not due it pauses the consumption
for that topic’s partition. When it is due the partition consumption is resumed, and the message is
consumed again. If the message processing fails again the message will be forwarded to the next
retry topic, and the pattern is repeated until a successful processing occurs, or the attempts are
exhausted, and the message is sent to the Dead Letter Topic (if configured).

To illustrate, if you have a "main-topic" topic, and want to setup non-blocking retry with an
exponential backoff of 1000ms with a multiplier of 2 and 4 max attempts, it will create the main-
topic-retry-1000, main-topic-retry-2000, main-topic-retry-4000 and main-topic-dlt topics and
configure the respective consumers. The framework also takes care of creating the topics and
setting up and configuring the listeners.

o By using this strategy you lose Kafka’s ordering guarantees for that topic.
o You can set the AckMode mode you prefer, but RECORD is suggested.

o At this time this functionality doesn’t support class level @Kafkalistener
annotations

When using a manual AckMode with asyncAcks set to true, the DefaultErrorHandler must be
configured with seekAfterError set to false. Starting with versions 2.9.10, 3.0.8, this will be set to
true unconditionally for such configurations. With earlier versions, it was necessary to override the
RetryConfigurationSupport.configureCustomizers() method to set the property to true.

protected void configureCustomizers(CustomizersConfigurer customizersConfigurer) {
customizersConfigurer.customizeErrorHandler(eh -> eh.setSeekAfterError(false)

)i

}

In addition, before those versions, using the default (logging) DLT handler was not compatible with
any kind of manual AckMode, regardless of the asyncAcks property.

161

4.2.2. Back Off Delay Precision

Overview and Guarantees

All message processing and backing off is handled by the consumer thread, and, as such, delay
precision is guaranteed on a best-effort basis. If one message’s processing takes longer than the
next message’s back off period for that consumer, the next message’s delay will be higher than
expected. Also, for short delays (about 1s or less), the maintenance work the thread has to do, such
as committing offsets, may delay the message processing execution. The precision can also be
affected if the retry topic’s consumer is handling more than one partition, because we rely on
waking up the consumer from polling and having full pollTimeouts to make timing adjustments.

That being said, for consumers handling a single partition the message’s processing should occur
approximately at its exact due time for most situations.

o It is guaranteed that a message will never be processed before its due time.

4.2.3. Configuration

Starting with version 2.9, for default configuration, the @EnableKafkaRetryTopic annotation should
be used in a @Configuration annotated class. This enables the feature to bootstrap properly and
gives access to injecting some of the feature’s components to be looked up at runtime.

o It is not necessary to also add @EnableKafka, if you add this annotation, because
@EnableKafkaRetryTopic is meta-annotated with @EnableKafka.

Also, starting with that version, for more advanced configuration of the feature’s components and
global features, the RetryTopicConfigurationSupport class should be extended in a @Configuration
class, and the appropriate methods overridden. For more details refer to Configuring Global
Settings and Features.

By default, the containers for the retry topics will have the same concurrency as the main
container. Starting with version 3.0, you can set a different concurrency for the retry containers
(either on the annotation, or in RetryConfigurationBuilder).

o Only one of the above techniques can be used, and only one @Configuration class
can extend RetryTopicConfigurationSupport.
Using the oRetryableTopic annotation

To configure the retry topic and dlt for a @Kafkalistener annotated method, you just have to add the
@RetryableTopic annotation to it and Spring for Apache Kafka will bootstrap all the necessary topics
and consumers with the default configurations.

162

@RetryableTopic(kafkaTemplate = "myRetryableTopicKafkaTemplate")
@Kafkalistener(topics = "my-annotated-topic", groupId = "myGroupId")
public void processMessage(MyPojo message) {

// ... message processing

}

You can specify a method in the same class to process the dlt messages by annotating it with the
@D1tHandler annotation. If no DItHandler method is provided a default consumer is created which
only logs the consumption.

@D1tHandler
public void processMessage(MyPojo message) {
// ... message processing, persistence, etc

}

If you don’t specify a kafkaTemplate name a bean with name
defaultRetryTopicKafkaTemplate will be looked up. If no bean is found an exception
is thrown.

Starting with version 3.0, the @RetryableTopic annotation can be used as a meta-annotation on
custom annotations; for example:

@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@RetryableTopic

static @interface MetaAnnotatedRetryableTopic {

@AliasFor(attribute = "concurrency", annotation = RetryableTopic.class)
String parallelism() default "3";

Using RetryTopicConfiguration beans

You can also configure the non-blocking retry support by creating RetryTopicConfiguration beans in
a @Configuration annotated class.

163

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, Object>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.create(template);

This will create retry topics and a dlt, as well as the corresponding consumers, for all topics in
methods annotated with '@KafkaListener' using the default configurations. The KafkaTemplate
instance is required for message forwarding.

To achieve more fine-grained control over how to handle non-blocking retrials for each topic, more
than one RetryTopicConfiguration bean can be provided.

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.fixedBackOff(3000)
.maxAttempts(5)
.concurrency(1)
.includeTopics("my-topic", "my-other-topic")
.create(template);

public RetryTopicConfiguration myOtherRetryTopic(KafkaTemplate<String,
MyOtherPojo> template) {
return RetryTopicConfigurationBuilder
.newInstance()
.exponentialBackoff (1000, 2, 5000)
.maxAttempts(4)
.excludeTopics("my-topic", "my-other-topic")
.retryOn(MyException.class)
.create(template);

The retry topics' and dlt’s consumers will be assigned to a consumer group with a
group id that is the combination of the one with you provide in the groupld

o parameter of the @Kafkalistener annotation with the topic’s suffix. If you don’t
provide any they’ll all belong to the same group, and rebalance on a retry topic
will cause an unnecessary rebalance on the main topic.

164

If the consumer is configured with an ErrorHandlingDeserializer, to handle
deserilialization exceptions, it is important to configure the KafkaTemplate and its

o producer with a serializer that can handle normal objects as well as raw byte[]
values, which result from deserialization exceptions. The generic value type of the
template should be Object. One technique is to use the DelegatingByTypeSerializer;
an example follows:

public ProducerFactory<String, Object> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfiguration(), new
StringSerializer(),
new DelegatingByTypeSerializer(Map.of(byte[].class, new ByteArraySerializer(),
MyNormalObject.class, new JsonSerializer<Object>())));

public KafkaTemplate<String, Object> kafkaTemplate() {
return new KafkaTemplate<>(producerFactory());

}

Multiple @Kafkalistener annotations can be used for the same topic with or
without manual partition assignment along with non-blocking retries, but only
one configuration will be used for a given topic. It’s best to use a single

o RetryTopicConfiguration bean for configuration of such topics; if multiple
@RetryableTopic annotations are being used for the same topic, all of them should
have the same values, otherwise one of them will be applied to all of that topic’s
listeners and the other annotations' values will be ignored.

Configuring Global Settings and Features

Since 2.9, the previous bean overriding approach for configuring components has been removed
(without deprecation, due to the aforementioned experimental nature of the API). This does not
change the RetryTopicConfiguration beans approach - only infrastructure components'
configurations. Now the RetryTopicConfigurationSupport class should be extended in a (single)
@Configuration class, and the proper methods overridden. An example follows:

165

public class MyRetryTopicConfiguration extends RetryTopicConfigurationSupport {

protected void configureBlockingRetries(BlockingRetriesConfigurer
blockingRetries) {
blockingRetries
.retryOn(MyBlockingRetriesException.class,
MyOtherBlockingRetriesException.class)
.backOff(new FixedBackOff (3000, 3));

}

protected void manageNonBlockingFatalExceptions(List<Class<? extends
Throwable>> nonBlockingFatalExceptions) {
nonBlockingFatalExceptions.add(MyNonBlockingException.class);
}

protected void configureCustomizers(CustomizersConfigurer
customizersConfigurer) {
// Use the new 2.9 mechanism to avoid re-fetching the same records after a

pause

customizersConfigurer.customizeErrorHandler(eh -> {

eh.setSeekAfterError(false);
1)
}

}

When using this configuration approach, the @EnableKafkaRetryTopic annotation
o should not be used to prevent context failing to start due to duplicated beans. Use

the simple @EnableKafka annotation instead.

When autoCreateTopics is true, the main and retry topics will be created with the specified number
of partitions and replication factor. Starting with version 3.0, the default replication factor is -1,
meaning use the broker default. If your broker version is earlier than 2.4, you will need to set an
explicit value. To override these values for a particular topic (e.g. the main topic or DLT), simply
add a NewTopic @Bean with the required properties; that will override the auto creation properties.

166

By default, records are published to the retry topic(s) using the original partition of

o the received record. If the retry topics have fewer partitions than the main topic,

you should configure the framework appropriately; an example follows.

public class Config extends RetryTopicConfigurationSupport {

protected Consumer<DeadLetterPublishingRecovererFactory>
configureDeadlLetterPublishingContainerFactory() {
return dlprf -> dlprf.setPartitionResolver((cr, nextTopic) -> null);

}

The parameters to the function are the consumer record and the name of the next topic. You can
return a specific partition number, or null to indicate that the KafkaProducer should determine the
partition.

By default, all values of retry headers (number of attempts, timestamps) are retained when a
record transitions through the retry topics. Starting with version 2.9.6, if you want to retain just the
last value of these headers, use the configureDeadlLetterPublishingContainerFactory() method
shown above to set the factory’s retainAl1RetryHeaderValues property to false.

4.2.4. Programmatic Construction

The feature is designed to be used with @Kafkalistener; however, several users have requested
information on how to configure non-blocking retries programmatically. The following Spring Boot
application provides an example of how to do so.

167

168

public class Application extends RetryTopicConfigurationSupport {

public static void main(String[] args) {
SpringApplication.run(2Application.class, args);
}

RetryTopicConfiguration retryConfig(KafkaTemplate<String, String> template) {
return RetryTopicConfigurationBuilder.newInstance()
.maxAttempts(4)
.autoCreateTopicsWith(2, (short) 1)
.create(template);

TaskScheduler scheduler() {
return new ThreadPoolTaskScheduler();

}

(0)
SmartInitializingSingleton dynamicRetry(RetryTopicConfigurer configurer,
RetryTopicConfiquration config,
KafkalistenerAnnotationBeanPostProcessor<?, 7> bpp,
KafkalistenerContainerFactory<?> factory,
Listener listener, KafkalistenerEndpointRegistry registry) {

return () -> {
KafkalListenerEndpointRegistrar registrar = bpp.getEndpointRegistrar();
MethodKafkalistenerEndpoint<String, String> mainEndpoint = new
MethodKafkalistenerEndpoint<>();
EndpointProcessor endpointProcessor = endpoint -> {
// customize as needed (e.g. apply attributes to retry endpoints).
if (lendpoint.equals(mainEndpoint)) {
endpoint.setConcurrency(1);
}
// these are required
endpoint.setMessageHandlerMethodFactory(bpp
.getMessageHandlerMethodFactory());
endpoint.setTopics("topic");
endpoint.setId("id");
endpoint.setGroupId("group");
h
mainEndpoint.setBean(listener);
try {
mainEndpoint.setMethod(Listener.class.getDeclaredMethod("
onMessage", ConsumerRecord.class));

}

catch (NoSuchMethodException | SecurityException ex) {
throw new IllegalStateException(ex);

}

mainEndpoint.setConcurrency(2);
mainEndpoint.setTopics("topic");
mainEndpoint.setId("id");
mainEndpoint.setGroupId("group");
configurer.processMainAndRetryListeners(endpointProcessor,
mainEndpoint, config, registrar, factory,
"kafkalistenerContainerFactory");

};

ApplicationRunner runner(KafkaTemplate<String, String> template) {
return args -> {
template.send("topic", "test");
i

class Listener implements Messagelistener<String, String> {

public void onMessage(ConsumerRecord<String, String> record) {
System.out.println(KafkaUtils.format(record));
throw new RuntimeException("test");

Auto creation of topics will only occur if the configuration is processed before the
o application context is refreshed, as in the above example. To configure containers
at runtime, the topics will need to be created using some other technique.

4.2.5. Features

Most of the features are available both for the @RetryableTopic annotation and the
RetryTopicConfiguration beans.

BackOff Configuration

The BackOff configuration relies on the BackOffPolicy interface from the Spring Retry project.

It includes:

169

Fixed Back Off

* Exponential Back Off
* Random Exponential Back Off

Uniform Random Back Off
No Back Off

e Custom Back Off

(attempts = 5,
backoff = (delay = 1000, multiplier = 2, maxDelay = 5000))
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.TixedBackoff(3000)
.maxAttempts(4)
.create(template);

You can also provide a custom implementation of Spring Retry’s SleepingBackOffPolicy interface:

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.customBackOff(new MyCustomBackOffPolicy())
.maxAttempts(5)
.create(template);

o The default backoff policy is FixedBackOffPolicy with a maximum of 3 attempts
and 1000ms intervals.

170

There is a 30-second default maximum delay for the ExponentialBackOffPolicy. If
o your back off policy requires delays with values bigger than that, adjust the
maxDelay property accordingly.

o The first attempt counts against maxAttempts, so if you provide a maxAttempts value
of 4 there’ll be the original attempt plus 3 retries.

Global timeout

You can set the global timeout for the retrying process. If that time is reached, the next time the
consumer throws an exception the message goes straight to the DLT, or just ends the processing if
no DLT is available.

(backoff = (2000), timeout = 5000)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.fixedBackoff(2000)
.timeoutAfter(5000)
.create(template);

o The default is having no timeout set, which can also be achieved by providing -1 as
the timout value.

Exception Classifier

You can specify which exceptions you want to retry on and which not to. You can also set it to
traverse the causes to lookup nested exceptions.

171

(include = {MyRetryException.class, MyOtherRetryException.class},
traversingCauses = true)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
throw new RuntimeException(new MyRetryException()); // Will retry

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyOtherPojo>
template) {
return RetryTopicConfigurationBuilder

.newInstance()
.notRetryOn(MyDontRetryException.class)
.create(template);
}
o The default behavior is retrying on all exceptions and not traversing causes.

Since 2.8.3 there’s a global list of fatal exceptions which will cause the record to be sent to the DLT
without any retries. See DefaultErrorHandler for the default list of fatal exceptions. You can add or
remove exceptions to and from this list by overriding the configureNonBlockingRetries method in a
@Configuration class that extends RetryTopicConfigurationSupport. See Configuring Global Settings
and Features for more information.

protected void manageNonBlockingFatalExceptions(List<Class<? extends Throwable>>
nonBlockingFatalExceptions) {
nonBlockingFatalExceptions.add(MyNonBlockingException.class);

}

e To disable fatal exceptions' classification, just clear the provided list.

Include and Exclude Topics

You can decide which topics will and will not be handled by a RetryTopicConfiguration bean via the
.IncludeTopic(String topic), .includeTopics(Collection<String> topics) .excludeTopic(String topic) and
.excludeTopics(Collection<String> topics) methods.

172

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.includeTopics(List.of ("my-included-topic”, "my-other-included-topic"
)

.create(template);

public RetryTopicConfiguration myOtherRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.excludeTopic("my-excluded-topic")
.create(template);

o The default behavior is to include all topics.

Topics AutoCreation

Unless otherwise specified the framework will auto create the required topics using NewTopic beans
that are consumed by the KafkaAdmin bean. You can specify the number of partitions and the
replication factor with which the topics will be created, and you can turn this feature off. Starting
with version 3.0, the default replication factor is -1, meaning use the broker default. If your broker
version is earlier than 2.4, you will need to set an explicit value.

o Note that if you’re not using Spring Boot you’ll have to provide a KafkaAdmin bean
in order to use this feature.

173

(numPartitions = 2, replicationFactor = 3)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

(autoCreateTopics = false)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.autoCreateTopicsWith(2, 3)
.create(template);

public RetryTopicConfiguration myOtherRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.doNotAutoCreateRetryTopics()
.create(template);

By default the topics are autocreated with one partition and a replication factor of
o -1 (meaning use the broker default). If your broker version is earlier than 2.4, you
will need to set an explicit value.

Failure Header Management

When considering how to manage failure headers (original headers and exception headers), the
framework delegates to the DeadLetterPublishingRecover to decide whether to append or replace the
headers.

By default, it explicitly sets appendOriginalHeaders to false and leaves stripPreviousExceptionHeaders
to the default used by the DeadLetterPublishingRecover.

This means that only the first "original" and last exception headers are retained with the default
configuration. This is to avoid creation of excessively large messages (due to the stack trace header,
for example) when many retry steps are involved.

174

See Managing Dead Letter Record Headers for more information.

To reconfigure the framework to use different settings for these properties, configure a
DeadLetterPublishingRecoverer customizer by overriding the configureCustomizers method in a
@Configuration class that extends RetryTopicConfigurationSupport. See Configuring Global Settings
and Features for more details.

protected void configureCustomizers(CustomizersConfigurer customizersConfigurer) {
customizersConfigurer.customizeDeadlLetterPublishingRecoverer(dlpr -> {
dlpr.setAppendOriginalHeaders(true);
dlpr.setStripPreviousExceptionHeaders(false);

1)

Starting with version 2.8.4, if you wish to add custom headers (in addition to the retry information

headers added by the factory, you can add a headersFunction to the factory -
factory.setHeadersFunction((rec, ex) » { =+ })

By default, any headers added will be cumulative - Kafka headers can contain multiple values.
Starting with version 2.9.5, if the Headers returned by the function contains a header of type
DeadlLetterPublishingRecoverer.SingleRecordHeader, then any existing values for that header will be
removed and only the new single value will remain.

Custom DeadLetterPublishingRecoverer

As can be seen in Failure Header Management it is possible to customize the default
DeadLetterPublishingRecoverer instances created by the framework. However, for some use cases, it
is necessary to subclass the DeadletterPublishingRecoverer, for example to override
createProducerRecord() to modify the contents sent to the retry (or dead-letter) topics. Starting with
version 3.0.9, you can override the
RetryConfigurationSupport.configureDeadLetterPublishingContainerFactory() method to provide a
DeadLetterPublisherCreator instance, for example:

protected Consumer<DeadlLetterPublishingRecovererFactory>
configureDeadlLetterPublishingContainerFactory() {

return (factory) -> factory.setDeadlLetterPublisherCreator(
(templateResolver, destinationResolver) ->
new CustomDLPR(templateResolver, destinationResolver));

It is recommended that you use the provided resolvers when constructing the custom instance.

175

4.2.6. Combining Blocking and Non-Blocking Retries

Starting in 2.8.4 you can configure the framework to use both blocking and non-blocking retries in
conjunction. For example, you can have a set of exceptions that would likely trigger errors on the
next records as well, such as DatabaseAccessException, so you can retry the same record a few times
before sending it to the retry topic, or straight to the DLT.

To configure blocking retries, override the configureBlockingRetries method in a @Configuration
class that extends RetryTopicConfigurationSupport and add the exceptions you want to retry, along
with the BackOff to be used. The default BackOff is a FixedBackOff with no delay and 9 attempts. See
Configuring Global Settings and Features for more information.

protected void configureBlockingRetries(BlockingRetriesConfigurer blockingRetries)
{
blockingRetries
.retryOn(MyBlockingRetryException.class,
MyOtherBlockingRetryException.class)
.backOff(new FixedBackOff(3000, 5));
}

In combination with the global retryable topic’s fatal exceptions classification, you

o can configure the framework for any behavior you’d like, such as having some
exceptions trigger both blocking and non-blocking retries, trigger only one kind or
the other, or go straight to the DLT without retries of any kind.

Here’s an example with both configurations working together:

protected void configureBlockingRetries(BlockingRetriesConfigurer blockingRetries)
{
blockingRetries
.retryOn(ShouldRetryOnlyBlockingException.class,
ShouldRetryViaBothException.class)
.backOff(new FixedBackOff(50, 3));
¥

protected void manageNonBlockingFatalExceptions(List<Class<? extends Throwable>>

nonBlockingFatalExceptions) {
nonBlockingFatalExceptions.add(ShouldSkipBothRetriesException.class);

}

In this example:

176

* ShouldRetryOnlyBlockingException.class would retry only via blocking and, if all retries fail,
would go straight to the DLT.

* ShouldRetryViaBothException.class would retry via blocking, and if all blocking retries fail
would be forwarded to the next retry topic for another set of attempts.

* ShouldSkipBothRetriesException.class would never be retried in any way and would go straight
to the DLT if the first processing attempt failed.

Note that the blocking retries behavior is allowlist - you add the exceptions you do

o want to retry that way; while the non-blocking retries classification is geared
towards FATAL exceptions and as such is denylist - you add the exceptions you
don’t want to do non-blocking retries, but to send directly to the DLT instead.

o The non-blocking exception classification behavior also depends on the specific
topic’s configuration.

4.2.7. Accessing Delivery Attempts

To access blocking and non-blocking delivery attempts, add these headers to your @Kafkalistener
method signature:

(KafkaHeaders.DELIVERY_ATTEMPT) int blockingAttempts,
(name = RetryTopicHeaders.DEFAULT_HEADER_ATTEMPTS, required = false)
Integer nonBlockingAttempts

Blocking delivery attempts are only provided if you set ContainerProperties
[deliveryAttemptHeader] to true.

Note that the non blocking attempts will be null for the initial delivery.

Starting with version 3.0.10, a convenient KafkaMessageHeaderAccessor is provided to allow simpler
access to these headers; the accessor can be provided as a parameter for the listener method:

@RetryableTopic(backoff = @Backoff(...))
@Kafkalistener(id = "dh1", topics = "dh1")
void listen(Thing thing, KafkaMessageHeaderAccessor accessor) {

}

Use accessor.getBlockingRetryDeliveryAttempt() and
accessor.getNonBlockingRetryDeliveryAttempt() to get the values. The accessor will throw an
I1legalStateException if blocking retries are not enabled; for non-blocking retries, the accessor
returns 1 for the initial delivery.

177

4.2.8. Topic Naming

Retry topics and DLT are named by suffixing the main topic with a provided or default value,
appended by either the delay or index for that topic.

Examples:
"my-topic" - "my-topic-retry-0", "my-topic-retry-1", ..., "my-topic-dlt"

"my-other-topic" - "my-topic-myRetrySuffix-1000", "my-topic-myRetrySuffix-2000", ..., "my-topic-
myDItSuffix".

The default behavior is to create separate retry topics for each attempt, appended
o with an index value: retry-0, retry-1, ..., retry-n. Therefore, by default the number
of retry topics is the configured maxAttempts minus 1.

You can configure the suffixes, choose whether to append the attempt index or delay, use a single
retry topic when using fixed backoff, and use a single retry topic for the attempts with the
maxInterval when using exponential backoffs.

Retry Topics and DIt Suffixes

You can specify the suffixes that will be used by the retry and dlt topics.

(retryTopicSuffix = "-my-retry-suffix", dltTopicSuffix = "-my-dlt
-suffix")
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyOtherPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.retryTopicSuffix("-my-retry-suffix")
.d1tTopicSuffix("-my-dlt-suffix")
.create(template);

0 The default suffixes are "-retry" and "-dlt", for retry topics and dlt respectively.

178

Appending the Topic’s Index or Delay

You can either append the topic’s index or delay values after the suffix.

(topicSuffixingStrategy = TopicSuffixingStrategy
.SUFFIX_WITH_INDEX_VALUE)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.suffixTopicsWithIndexValues()
.create(template);

The default behavior is to suffix with the delay values, except for fixed delay
o configurations with multiple topics, in which case the topics are suffixed with the
topic’s index.

Single Topic for Fixed Delay Retries

If you’re using fixed delay policies such as FixedBackOffPolicy or NoBackOffPolicy you can use a
single topic to accomplish the non-blocking retries. This topic will be suffixed with the provided or
default suffix, and will not have either the index or the delay values appended.

o The previous FixedDelayStrategy is now deprecated, and can be replaced by
SameIntervalTopicReuseStrategy.

(backoff = (2000), fixedDelayTopicStrategy =
FixedDelayStrategy.SINGLE_TOPIC)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

179

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.fixedBackoff(3000)
.maxAttempts(5)
.useSingleTopicForFixedDelays()
.create(template);

o The default behavior is creating separate retry topics for each attempt, appended
with their index value: retry-0, retry-1, ...

Single Topic for maxInterval Exponential Delay

If you're using exponential backoff policy (ExponentialBackOffPolicy), you can use a single retry
topic to accomplish the non-blocking retries of the attempts whose delays are the configured
maxInterval.

This "final" retry topic will be suffixed with the provided or default suffix, and will have either the
index or the maxInterval value appended.

By opting to use a single topic for the retries with the maxInterval delay, it may
o become more viable to configure an exponential retry policy that keeps retrying
for a long time, because in this approach you do not need a large amount of topics.

The default behavior is to work with the number of retry topics equal to the configured maxAttempts
minus 1 and, when using exponential backoff, the retry topics are suffixed with the delay values,
with the last retry topic (corresponding to the maxInterval delay) being suffixed with an additional
index.

For instance, when configuring the exponential backoff with initialInterval=1000, multiplier=2,
and maxInterval=16000, in order to keep trying for one hour, one would need to configure
maxAttempts as 229, and by default the needed retry topics would be:

* -retry-1000

* -retry-2000

* -retry-4000

* -retry-8000

* -retry-16000-0

* -retry-16000-1

e -retry-16000-2

180

* -retry-16000-224

When using the strategy that reuses the retry topic for the same intervals, in the same
configuration above the needed retry topics would be:

e -retry-1000
* -retry-2000
* -retry-4000
* -retry-8000
* -retry-16000

This will be the default in a future release.

(attempts = 230,
backoff = (delay = 1000, multiplier = 2, maxDelay = 16000),
sameIntervalTopicReuseStrategy = SameIntervalTopicReuseStrategy.SINGLE_TOPIC)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<String, MyPojo>
template) {
return RetryTopicConfigurationBuilder

.newInstance()
.exponentialBackoff (1000, 2, 16000)
.maxAttempts(230)
.useSingleTopicForSameIntervals()
.create(template);

Custom naming strategies

More complex naming strategies can be accomplished by registering a bean that implements
RetryTopicNamesProviderFactory. The default implementation is
SuffixingRetryTopicNamesProviderFactory and a different implementation can be registered in the
following way:

181

protected RetryTopicComponentFactory createComponentFactory() {
return new RetryTopicComponentFactory() {

public RetryTopicNamesProviderFactory retryTopicNamesProviderFactory() {
return new CustomRetryTopicNamesProviderFactory();

}
};

As an example the following implementation, in addition to the standard suffix, adds a prefix to
retry/dl topics names:

public class CustomRetryTopicNamesProviderFactory implements
RetryTopicNamesProviderFactory {

public RetryTopicNamesProvider createRetryTopicNamesProvider(
DestinationTopic.Properties properties) {

if(properties.isMainEndpoint()) {
return new SuffixingRetryTopicNamesProvider(properties);

}
else {
return new SuffixingRetryTopicNamesProvider(properties) {
public String getTopicName(String topic) {
return "my-prefix-" + super.getTopicName(topic);
}
h
}

4.2.9. Multiple Listeners, Same Topic(s)
Starting with version 3.0, it is now possible to configure multiple listeners on the same topic(s). In

order to do this, you must use custom topic naming to isolate the retry topics from each other. This
is best shown with an example:

182

(...
retryTopicSuffix = "-listener1", dltTopicSuffix = "-listener1-dlt",

topicSuffixingStrategy = TopicSuffixingStrategy.SUFFIX_WITH_INDEX_VALUE)
(id = "listener1", groupId = "group1", topics = TWO_LISTENERS_TOPIC,
cen)
void listen1(String message, (KafkaHeaders.RECEIVED_TOPIC) String
receivedTopic) {

}
(...
retryTopicSuffix = "-listener2", dltTopicSuffix = "-listener2-dlt",
topicSuffixingStrategy = TopicSuffixingStrategy.SUFFIX_WITH_INDEX_VALUE)
(id = "listener2", groupld = "group2", topics = TWO_LISTENERS_TOPIC,
cen)
void listen2(String message, (KafkaHeaders.RECEIVED_TOPIC) String

receivedTopic) {

}

The topicSuffixingStrategy is optional. The framework will configure and use a separate set of
retry topics for each listener.

4.2.10. D1t Strategies

The framework provides a few strategies for working with DLTs. You can provide a method for DLT
processing, use the default logging method, or have no DLT at all. Also you can choose what
happens if DLT processing fails.

DIt Processing Method

You can specify the method used to process the DLT for the topic, as well as the behavior if that
processing fails.

To do that you can use the @D1tHandler annotation in a method of the class with the @RetryableTopic
annotation(s). Note that the same method will be used for all the @RetryableTopic annotated
methods within that class.

183

(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public void processMessage(MyPojo message) {
// ... message processing, persistence, etc

}

The DLT handler method can also be provided through the
RetryTopicConfigurationBuilder.dltHandlerMethod(String, String) method, passing as arguments
the bean name and method name that should process the DLT’s messages.

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.d1tHandlerMethod("myCustomD1tProcessor", "processDltMessage")
.create(template);

public class MyCustomDltProcessor {
private final MyDependency myDependency;

public MyCustomD1tProcessor(MyDependency myDependency) {
this.myDependency = myDependency;

}
public void processDltMessage(MyPojo message) {
// ... message processing, persistence, etc
}
}
o If no DLT handler is provided, the default
RetryTopicConfigurer.LoggingDltListenerHandlerMethod is used.

Starting with version 2.8, if you don’t want to consume from the DLT in this application at all,
including by the default handler (or you wish to defer consumption), you can control whether or
not the DLT container starts, independent of the container factory’s autoStartup property.

184

When using the @RetryableTopic annotation, set the autoStartDltHandler property to false; when
using the configuration builder, use autoStartD1tHandler (false) .

You can later start the DLT handler via the KafkalistenerEndpointRegistry.

DLT Failure Behavior

Should the DLT processing fail, there are two possible behaviors available: ALWAYS_RETRY_ON_ERROR
and FAIL_ON_ERROR.

In the former the record is forwarded back to the DLT topic so it doesn’t block other DLT records'
processing. In the latter the consumer ends the execution without forwarding the message.

(d1tProcessingFailureStrategy =
D1tStrategy.FAIL_ON_ERROR)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.d1tHandlerMethod("myCustomD1tProcessor", "processDltMessage")
.doNotRetryOnD1tFailure()
.create(template);

o The default behavior is to ALWAYS_RETRY_ON_ERROR.

Starting with version 2.8.3, ALWAYS_RETRY_ON_ERROR will NOT route a record back to

o the DLT if the record causes a fatal exception to be thrown, such as a
DeserializationException because, generally, such exceptions will always be
thrown.

Exceptions that are considered fatal are:

* DeserializationException
* MessageConversionException

» ConversionException

MethodArgumentResolutionException

NoSuchMethodException

185

» ClassCastException

You can add exceptions to and remove exceptions from this list using methods on the
DestinationTopicResolver bean.

See Exception Classifier for more information.

Configuring No DLT

The framework also provides the possibility of not configuring a DLT for the topic. In this case after
retrials are exhausted the processing simply ends.

(d1ltProcessingFailureStrategy =
D1tStrateqy.NO_DLT)
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder
.newInstance()
.doNotConfigureD1t()
.create(template);

4.2.11. Specifying a ListenerContainerFactory

By default the RetryTopic configuration will use the provided factory from the @Kafkalistener
annotation, but you can specify a different one to be used to create the retry topic and dlt listener
containers.

For the @RetryableTopic annotation you can provide the factory’s bean name, and using the
RetryTopicConfiguration bean you can either provide the bean name or the instance itself.

186

(listenerContainerFactory = "my-retry-topic-factory")
(topics = "my-annotated-topic")
public void processMessage(MyPojo message) {
// ... message processing

}

public RetryTopicConfiguration myRetryTopic(KafkaTemplate<Integer, MyPojo>
template,
ConcurrentKafkalListenerContainerFactory<Integer, MyPojo> factory) {

return RetryTopicConfigurationBuilder
.newInstance()
.listenerFactory(factory)
.create(template);

public RetryTopicConfiguration myOtherRetryTopic(KafkaTemplate<Integer, MyPojo>
template) {
return RetryTopicConfigurationBuilder

.newInstance()
.listenerFactory("my-retry-topic-factory")
.create(template);
}
o Since 2.8.3 you can use the same factory for retryable and non-retryable topics.

If you need to revert the factory configuration behavior to prior 2.8.3, you can override the
configureRetryTopicConfigurer = method of a @Configuration class that extends
RetryTopicConfigurationSupport as explained in Configuring Global Settings and Features and set
uselLegacyFactoryConfigurer to true, such as:

protected Consumer<RetryTopicConfigurer> configureRetryTopicConfigurer() {
return rtc -> rtc.uselegacyFactoryConfigurer(true);

}

4.2.12. Accessing Topics' Information at Runtime

Since 2.9, you can access information regarding the topic chain at runtime by injecting the provided
DestinationTopicContainer bean. This interface provides methods to look up the next topic in the
chain or the DLT for a topic if configured, as well as useful properties such as the topic’s name,

187

delay and type.

As a real-world use-case example, you can use such information so a console application can resend
a record from the DLT to the first retry topic in the chain after the cause of the failed processing,
e.g. bug / inconsistent state, has been resolved.

The DestinationTopic provided by the
DestinationTopicContainer#igetNextDestinationTopicFor() method corresponds to
o the next topic registered in the chain for the input topic. The actual topic the
message will be forwarded to may differ due to different factors such as exception
classification, number of attempts or single-topic fixed-delay strategies. Use the
DestinationTopicResolver interface if you need to weigh in these factors.

4.2.13. Changing KafkaBackOffException Logging Level

When a message in the retry topic is not due for consumption, a KafkaBackOffException is thrown.
Such exceptions are logged by default at DEBUG level, but you can change this behavior by setting an
error handler customizer in the ListenerContainerFactoryConfigurer in a @Configuration class.

For example, to change the logging level to WARN you might add:

protected void configureCustomizers(CustomizersConfigurer customizersConfigurer) {
customizersConfigurer.customizeErrorHandler(defaultErrorHandler ->
defaultErrorHandler.setlLoglevel(KafkaException.Level.WARN))

4.3. Apache Kafka Streams Support

Starting with version 1.1.4, Spring for Apache Kafka provides first-class support for Kafka Streams.
To use it from a Spring application, the kafka-streams jar must be present on classpath. It is an
optional dependency of the Spring for Apache Kafka project and is not downloaded transitively.

4.3.1. Basics

The reference Apache Kafka Streams documentation suggests the following way of using the API:

188

https://kafka.apache.org/documentation/streams

// Use the builders to define the actual processing topology, e.g. to specify
// from which input topics to read, which stream operations (filter, map, etc.)
// should be called, and so on.

StreamsBuilder builder = ...; // when using the Kafka Streams DSL

// Use the configuration to tell your application where the Kafka cluster is,
// which serializers/deserializers to use by default, to specify security
settings,

// and so on.

StreamsConfig config = ...;

KafkaStreams streams = new KafkaStreams(builder, config);

// Start the Kafka Streams instance
streams.start();

// Stop the Kafka Streams instance
streams.close();

So, we have two main components:

e StreamsBuilder: With an API to build KStream (or KTable) instances.

» KafkaStreams: To manage the lifecycle of those instances.

All KStream instances exposed to a KafkaStreams instance by a single StreamsBuilder
are started and stopped at the same time, even if they have different logic. In other

o words, all streams defined by a StreamsBuilder are tied with a single lifecycle
control. Once a KafkaStreams instance has been closed by streams.close(), it cannot
be restarted. Instead, a new KafkaStreams instance to restart stream processing
must be created.

4.3.2. Spring Management

To simplify using Kafka Streams from the Spring application context perspective and use the
lifecycle management through a container, the Spring for Apache Kafka introduces
StreamsBuilderFactoryBean. This is an AbstractFactoryBean implementation to expose a
StreamsBuilder singleton instance as a bean. The following example creates such a bean:

189

public FactoryBean<StreamsBuilder> myKStreamBuilder(KafkaStreamsConfiguration
streamsConfig) {
return new StreamsBuilderFactoryBean(streamsConfig);

}

o Starting with version 2.2, the stream configuration is now provided as a
KafkaStreamsConfiguration object rather than a StreamsConfig.

The StreamsBuilderFactoryBean also implements SmartlLifecycle to manage the lifecycle of an
internal KafkaStreams instance. Similar to the Kafka Streams API, you must define the KStream
instances before you start the KafkaStreams. That also applies for the Spring API for Kafka Stream:s.
Therefore, when you use default autoStartup = true on the StreamsBuilderFactoryBean, you must
declare KStream instances on the StreamsBuilder before the application context is refreshed. For
example, KStream can be a regular bean definition, while the Kafka Streams API is used without any
impacts. The following example shows how to do so:

public KStream<?, ?> kStream(StreamsBuilder kStreamBuilder) {
KStream<Integer, String> stream = kStreamBuilder.stream(STREAMING_TOPIC1);
// Fluent KStream API
return stream;

If you would like to control the lifecycle manually (for example, stopping and starting by some
condition), you can reference the StreamsBuilderFactoryBean bean directly by using the factory bean
(&) prefix. Since StreamsBuilderFactoryBean use its internal KafkaStreams instance, it is safe to stop
and restart it again. A new KafkaStreams is created on each start(). You might also consider using
different StreamsBuilderFactoryBean instances, if you would like to control the lifecycles for KStream
instances separately.

You also can specify KafkaStreams.Statelistener, Thread.UncaughtExceptionHandler, and
StateRestorelistener options on the StreamsBuilderFactoryBean, which are delegated to the internal
KafkaStreams instance. Also, apart from setting those options indirectly on
StreamsBuilderFactoryBean, starting with version 2.1.5, you can use a KafkaStreamsCustomizer
callback interface to configure an inner KafkaStreams instance. Note that KafkaStreamsCustomizer
overrides the options provided by StreamsBuilderFactoryBean. If you need to perform some
KafkaStreams operations directly, you can access that internal KafkaStreams instance by using
StreamsBuilderFactoryBean.getKafkaStreams(). You can autowire StreamsBuilderFactoryBean bean by
type, but you should be sure to use the full type in the bean definition, as the following example
shows:

190

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-factory-extension-factorybean

public StreamsBuilderFactoryBean myKStreamBuilder(KafkaStreamsConfiguration
streamsConfig) {
return new StreamsBuilderFactoryBean(streamsConfig);

}

private StreamsBuilderFactoryBean myKStreamBuilderFactoryBean;

Alternatively, you can add @Qualifier for injection by name if you use interface bean definition. The
following example shows how to do so:

public FactoryBean<StreamsBuilder> myKStreamBuilder(KafkaStreamsConfiguration
streamsConfig) {
return new StreamsBuilderFactoryBean(streamsConfig);

}

("&myKStreamBuilder")
private StreamsBuilderFactoryBean myKStreamBuilderFactoryBean;

Starting with version 2.4.1, the factory bean has a new property infrastructureCustomizer with type
KafkaStreamsInfrastructureCustomizer; this allows customization of the StreamsBuilder (e.g. to add a
state store) and/or the Topology before the stream is created.

public interface KafkaStreamsInfrastructureCustomizer {
void configureBuilder(StreamsBuilder builder);

void configureTopology(Topology topology);

Default no-op implementations are provided to avoid having to implement both methods if one is
not required.

A CompositeKafkaStreamsInfrastructureCustomizer is provided, for when you need to apply multiple
customizers.

191

4.3.3. KafkaStreams Micrometer Support

Introduced in version 2.5.3, you can configure a KafkaStreamsMicrometerListener to automatically
register micrometer meters for the KafkaStreams object managed by the factory bean:

streamsBuilderFactoryBean.addListener (new KafkaStreamsMicrometerListener
(meterRegistry,
Collections.singletonlList(new ImmutableTag("customTag", "customTagValue")

)));

4.3.4. Streams JSON Serialization and Deserialization

For serializing and deserializing data when reading or writing to topics or state stores in JSON
format, Spring for Apache Kafka provides a JsonSerde implementation that uses JSON, delegating to
the JsonSerializer and JsonDeserializer described in Serialization, Deserialization, and Message
Conversion. The JsonSerde implementation provides the same configuration options through its
constructor (target type or ObjectMapper). In the following example, we use the JsonSerde to serialize
and deserialize the Cat payload of a Kafka stream (the JsonSerde can be used in a similar fashion
wherever an instance is required):

stream.through(Serdes.Integer(), new JsonSerde<>((Cat.class), "cats");

When constructing the serializer/deserializer programmatically for use in the producer/consumer
factory, since version 2.3, you can use the fluent API, which simplifies configuration.

stream.through(new JsonSerde<>(MyKeyType.class)
.forKeys()
.noTypelnfo(),
new JsonSerde<>(MyValueType.class)
.noTypelInfo(),
"myTypes");

4.3.5. Using KafkaStreamBrancher

The KafkaStreamBrancher class introduces a more convenient way to build conditional branches on
top of KStream.

Consider the following example that does not use KafkaStreamBrancher:

192

KStream<String, String>[] branches = builder.stream("source").branch(
(key, value) -> value.contains("A"),
(key, value) -> value.contains("B"),
(key, value) -> true
)i
branches[0].to("A")
branches[1].to("B");
branches[2].to("C")

The following example uses KafkaStreamBrancher:

new KafkaStreamBrancher<String, String>()
.branch((key, value) -> value.contains("A"), ks -> ks.to("A"))
.branch((key, value) -> value.contains("B"), ks -> ks.to("B"))
//default branch should not necessarily be defined in the end of the chain!
.defaultBranch(ks -> ks.to("C"))
.onTopOf(builder.stream("source"));
//onTop0f method returns the provided stream so we can continue with method
chaining

4.3.6. Configuration

To configure the Kafka Streams environment, the StreamsBuilderFactoryBean requires a
KafkaStreamsConfiguration instance. See the Apache Kafka documentation for all possible options.

o Starting with version 2.2, the stream configuration is now provided as a
KafkaStreamsConfiguration object, rather than as a StreamsConfig

To avoid boilerplate code for most cases, especially when you develop microservices, Spring for
Apache Kafka provides the @EnableKafkaStreams annotation, which you should place on a
@Configuration class. All you need is to declare a KafkaStreamsConfiguration bean named
defaultKafkaStreamsConfig. A StreamsBuilderFactoryBean bean, named defaultKafkaStreamsBuilder, is
automatically declared in the application context. You can declare and use any additional
StreamsBuilderFactoryBean beans as well. You can perform additional customization of that bean, by
providing a bean that implements StreamsBuilderFactoryBeanConfigurer. If there are multiple such
beans, they will be applied according to their Ordered.order property.

By default, when the factory bean is stopped, the KafkaStreams.cleanUp() method is called. Starting
with version 2.1.2, the factory bean has additional constructors, taking a CleanupConfig object that
has properties to let you control whether the cleanUp() method is called during start() or stop() or
neither. Starting with version 2.7, the default is to never clean up local state.

193

https://kafka.apache.org/0102/documentation/#streamsconfigs

4.3.7. Header Enricher

Version 3.0 added the HeaderEnricherProcessor extension of ContextualProcessor; providing the
same functionality as the deprecated HeaderEnricher which implemented the deprecated
Transformer interface. This can be used to add headers within the stream processing; the header
values are SpEL expressions; the root object of the expression evaluation has 3 properties:

* record - the org.apache.kafka.streams.processor.api.Record (key, value, timestamp, headers)
* key - the key of the current record
* value - the value of the current record

» context - the ProcessorContext, allowing access to the current record metadata

The expressions must return a byte[] or a String (which will be converted to byte[] using UTF-8).

To use the enricher within a stream:

.process(() -> new HeaderEnricherProcessor(expressions))

The processor does not change the key or value; it simply adds headers.

o You need a new instance for each record.

.process(() -> new HeaderEnricherProcessor<..., ...>(expressionMap))
Here is a simple example, adding one literal header and one variable:

Map<String, Expression> headers = new HashMap<>();
headers.put("header1", new LiteralExpression("valuel"));
SpelExpressionParser parser = new SpelExpressionParser();
headers.put("header2", parser.parseExpression("record.timestamp() + " @' +
record.offset()"));
ProcessorSupplier supplier = () -> new HeaderEnricher<String, String> enricher =
new HeaderEnricher<>(headers);
KStream<String, String> stream = builder.stream(INPUT);
stream

.process(() -> supplier)

.to(OUTPUT);

194

4.3.8. MessagingProcessor

Version 3.0 added the MessagingProcessor extension of ContextualProcessor; providing the same
functionality as the deprecated MessagingTransformer which implemented the deprecated
Transformer interface. This allows a Kafka Streams topology to interact with a Spring Messaging
component, such as a Spring Integration flow. The transformer requires an implementation of
MessagingFunction.

@Functionallnterface
public interface MessagingFunction {

Message<?> exchange(Message<?> message);

Spring Integration automatically provides an implementation using its GatewayProxyFactoryBean. It
also requires a MessagingMessageConverter to convert the key, value and metadata (including
headers) to/from a Spring Messaging Message<?>. See [Calling a Spring Integration Flow from a
KStream] for more information.

4.3.9. Recovery from Deserialization Exceptions

Version 2.3 introduced the RecoveringDeserializationExceptionHandler which can take some action
when a deserialization exception occurs. Refer to the Kafka documentation about
DeserializationExceptionHandler, of which the RecoveringDeserializationExceptionHandler is an
implementation. The RecoveringDeserializationExceptionHandler is configured with a
ConsumerRecordRecoverer implementation. The framework provides the
DeadLetterPublishingRecoverer which sends the failed record to a dead-letter topic. See Publishing
Dead-letter Records for more information about this recoverer.

To configure the recoverer, add the following properties to your streams configuration:

195

https://docs.spring.io/spring-integration/docs/current/reference/html/kafka.html#streams-integration
https://docs.spring.io/spring-integration/docs/current/reference/html/kafka.html#streams-integration

(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public KafkaStreamsConfiguration kStreamsConfigs() {
Map<String, Object> props = new HashMap<>();

props.put(StreamsConfig.
DEFAULT_DESERTIALIZATION_EXCEPTION_HANDLER_CLASS_CONFIG,
RecoveringDeserializationExceptionHandler.class);
props.put(RecoveringDeserializationExceptionHandler
.KSTREAM_DESERIALIZATION_RECOVERER, recoverer());

return new KafkaStreamsConfiguration(props);

public DeadlLetterPublishingRecoverer recoverer() {
return new DeadLetterPublishingRecoverer(kafkaTemplate(),
(record, ex) -> new TopicPartition("recovererDLQ", -1));

Of course, the recoverer() bean can be your own implementation of ConsumerRecordRecoverer.

4.3.10. Kafka Streams Example

The following example combines all the topics we have covered in this chapter:

196

197

198

public static class KafkaStreamsConfig {

(name = KafkaStreamsDefaultConfiguration.
DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public KafkaStreamsConfiguration kStreamsConfigs() {

Map<String, Object> props = new HashMap<>();

props.put(StreamsConfig.APPLICATION_ID_CONFIG, "testStreams");

props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");

props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.Integer()
.getClass().getName());

props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String()
.getClass().getName());

props.put(StreamsConfig.DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG,
WallclockTimestampExtractor.class.getName());

return new KafkaStreamsConfiguration(props);

}

public StreamsBuilderFactoryBeanConfigurer configurer() {
return fb -> fb.setStatelListener((newState, oldState) -> {
System.out.println("State transition from " + oldState + " to " +
newState);
b
}

public KStream<Integer, String> kStream(StreamsBuilder kStreamBuilder) {
KStream<Integer, String> stream = kStreamBuilder.stream("streamingTopic1"
)i
stream
.mapValues((ValueMapper<String, String>) String::toUpperCase)
.groupByKey()
.windowedBy(TimeWindows.of(Duration.ofMillis(1000)))
.reduce((String valuel, String value2) -> valuel + value2,
Named.as("windowStore"))
.toStream()
.map((windowedId, value) -> new KeyValue<>(windowedId.key(),
value))
.filter((i, s) -> s.length() > 40)
.to("streamingTopic2");

stream.print(Printed.toSysOut());

return stream;

4.4. Testing Applications

The spring-kafka-test jar contains some useful utilities to assist with testing your applications.

4.4.1. KafkaTestUtils

0.s.kafka.test.utils.KafkaTestUtils provides a number of static helper methods to consume
records, retrieve various record offsets, and others. Refer to its Javadocs for complete details.

4.4.2. JUnit

0.s.kafka.test.utils.KafkaTestUtils also provides some static methods to set up producer and
consumer properties. The following listing shows those method signatures:

/**

* Set up test properties for an {@code <Integer, String>} consumer.

* @param group the group id.

* @param autoCommit the auto commit.

* @param embeddedKafka a {@link EmbeddedKafkaBroker} instance.

* @return the properties.

*/

public static Map<String, Object> consumerProps(String group, String autoCommit,
EmbeddedKafkaBroker embeddedKafka) { ... }

/**

* Set up test properties for an {@code <Integer, String>} producer.

* @param embeddedKafka a {@link EmbeddedKafkaBroker} instance.

* @return the properties.

*/

public static Map<String, Object> producerProps(EmbeddedKafkaBroker embeddedKafka)
{...}

Starting with version 2.5, the consumerProps method sets the
ConsumerConfig.AUTO_OFFSET_RESET_CONFIG to earliest. This is because, in most
cases, you want the consumer to consume any messages sent in a test case. The
ConsumerConfig default is 1atest which means that messages already sent by a test,
before the consumer starts, will not receive those records. To revert to the
previous behavior, set the property to latest after calling the method.

When using the embedded broker, it is generally best practice using a different
topic for each test, to prevent cross-talk. If this is not possible for some reason,
note that the consumeFromEmbeddedTopics method’s default behavior is to seek the
assigned partitions to the beginning after assignment. Since it does not have access
to the consumer properties, you must use the overloaded method that takes a
seekToEnd boolean parameter to seek to the end instead of the beginning.

199

https://docs.spring.io/spring-kafka/docs/current/api/org/springframework/kafka/test/utils/KafkaTestUtils.html

A JUnit 4 eRule wrapper for the EmbeddedKafkaBroker is provided to create an embedded Kafka and
an embedded Zookeeper server. (See @EmbeddedKafka Annotation for information about using
@EmbeddedKafka with JUnit 5). The following listing shows the signatures of those methods:

/**

* Create embedded Kafka brokers.

* @param count the number of brokers.

* @param controlledShutdown passed into TestUtils.createBrokerConfig.

* @param topics the topics to create (2 partitions per).

*/

public EmbeddedKafkaRule(int count, boolean controlledShutdown, String... topics)
{ ...}

/**

*

* Create embedded Kafka brokers.

* @param count the number of brokers.

* @param controlledShutdown passed into TestUtils.createBrokerConfig.

* @param partitions partitions per topic.

* @param topics the topics to create.

*/

public EmbeddedKafkaRule(int count, boolean controlledShutdown, int partitions,
String... topics) { ... }

The EmbeddedKafkaBroker class has a utility method that lets you consume for all the topics it created.
The following example shows how to use it:

Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT", "false",
embeddedKafka);
DefaultKafkaConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory
<Integer, String>(

consumerProps);
Consumer<Integer, String> consumer = cf.createConsumer();
embeddedKafka.consumeFromAl1EmbeddedTopics(consumer);

The KafkaTestUtils has some utility methods to fetch results from the consumer. The following
listing shows those method signatures:

200

/**
* Poll the consumer, expecting a single record for the specified topic.

* @param consumer the consumer.

* @param topic the topic.

* @return the record.

* @throws org.junit.ComparisonFailure if exactly one record is not received.

*/

public static <K, V> ConsumerRecord<K, V> getSingleRecord(Consumer<K, V> consumer,
String topic) { ... }

/**

* Poll the consumer for records.

* @param consumer the consumer.

* @return the records.

*/

public static <K, V> ConsumerRecords<K, V> getRecords(Consumer<K, V> consumer) {

.}

The following example shows how to use KafkaTestUtils:

template.sendDefault(@, 2, "bar");
ConsumerRecord<Integer, String> received = KafkaTestUtils.getSingleRecord(
consumer, "topic");

When the embedded Kafka and embedded Zookeeper server are started by the EmbeddedKafkaBroker,
a system property named spring.embedded.kafka.brokers is set to the address of the Kafka brokers
and a system property named spring.embedded.zookeeper.connect is set to the address of Zookeeper.
Convenient constants (EmbeddedKafkaBroker.SPRING_EMBEDDED_KAFKA_BROKERS and
EmbeddedKafkaBroker.SPRING_EMBEDDED_ZOOKEEPER_CONNECT) are provided for this property.

Instead of default spring.embedded.kafka.brokers system property, the address of the Kafka brokers
can be exposed to any arbitrary and convenient property. For this purpose a
spring.embedded.kafka.brokers.property (EmbeddedKafkaBroker.BROKER_LIST_PROPERTY) system
property can be set before starting an embedded Kafka. For example, with Spring Boot a
spring.kafka.bootstrap-servers configuration property is expected to be set for auto-configuring
Kafka client, respectively. So, before running tests with an embedded Kafka on random ports, we
can set spring.embedded.kafka.brokers.property=spring.kafka.bootstrap-servers as a system
property - and the EmbeddedKafkaBroker will use it to expose its broker addresses. This is now the
default value for this property (starting with version 3.0.10).

With the EmbeddedKafkaBroker.brokerProperties(Map<String, String>), you can provide additional
properties for the Kafka servers. See Kafka Config for more information about possible broker

201

https://kafka.apache.org/documentation/#brokerconfigs

properties.

4.4.3. Configuring Topics

The following example configuration creates topics called cat and hat with five partitions, a topic
called thing1 with 10 partitions, and a topic called thing2 with 15 partitions:

public class MyTests {

private static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1,
false, 5, "cat", "hat");

public void test() {
embeddedKafkaRule.getEmbeddedKafka()
.addTopics(new NewTopic("thing1", 10, (short) 1), new NewTopic(
"thing2", 15, (short) 1));

}

By default, addTopics will throw an exception when problems arise (such as adding a topic that
already exists). Version 2.6 added a new version of that method that returns a Map<String,
Exception>; the key is the topic name and the value is null for success, or an Exception for a failure.

4.4.4. Using the Same Broker(s) for Multiple Test Classes

You can use the same broker for multiple test classes with something similar to the following:

202

public final class EmbeddedKafkaHolder {

private static EmbeddedKafkaBroker embeddedKafka = new EmbeddedKafkaBroker (1,
false)
.brokerListProperty("spring.kafka.bootstrap-servers");

private static boolean started;

public static EmbeddedKafkaBroker getEmbeddedKafka() {
if (lstarted) {

try {
embeddedKafka.afterPropertiesSet();

+
catch (Exception e) {
throw new KafkaException("Embedded broker failed to start", e);

}

started = true;

}
return embeddedKafka;

}

private EmbeddedKafkaHolder() {
super();

}

This assumes a Spring Boot environment and the embedded broker replaces the bootstrap servers
property.

Then, in each test class, you can use something similar to the following:

static {
EmbeddedKafkaHolder.getEmbeddedKafka().addTopics("topic1”, "topic2");

}

private static final EmbeddedKafkaBroker broker = EmbeddedKafkaHolder
.getEmbeddedKafka();

If you are not using Spring Boot, you can obtain the bootstrap servers using
broker.getBrokersAsString().

203

The preceding example provides no mechanism for shutting down the broker(s)
when all tests are complete. This could be a problem if, say, you run your tests in a

o Gradle daemon. You should not use this technique in such a situation, or you
should use something to call destroy() on the EmbeddedKafkaBroker when your tests
are complete.

Starting with version 3.0, the framework exposes a GlobalEmbeddedKafkaTestExecutionListener for
the JUnit Platform; it is disabled by default. This requires JUnit Platform 1.8 or greater. The purpose
of this listener is to start one global EmbeddedKafkaBroker for the whole test plan and stop it at the
end of the plan. To enable this listener, and therefore have a single global embedded Kafka cluster
for all the tests in the project, the spring.kafka.global.embedded.enabled property must be set to true
via system properties or JUnit Platform configuration. In addition, these properties can be
provided:

* spring.kafka.embedded.count - the number of Kafka brokers to manage;

* spring.kafka.embedded.ports - ports (comma-separated value) for every Kafka broker to start, 0
if random port is a preferred; the number of values must be equal to the count mentioned
above;

* spring.kafka.embedded.topics - topics (comma-separated value) to create in the started Kafka
cluster;

* spring.kafka.embedded.partitions - number of partitions to provision for the created topics;

e spring.kafka.embedded.broker.properties.location - the location of the file for additional Kafka
broker configuration properties; the value of this property must follow the Spring resource
abstraction pattern.

Essentially these properties mimic some of the @EmbeddedKafka attributes.

See more information about configuration properties and how to provide them in the JUnit 5 User
Guide. For example, a spring.embedded.kafka.brokers.property=my.bootstrap-servers entry can be
added into a junit-platform.properties file in the testing classpath. Starting with version 3.0.10, the
broker automatically sets this to spring.kafka.bootstrap-servers, by default, for testing with Spring
Boot applications.

It is recommended to not combine a global embedded Kafka and per-test class in a
o single test suite. Both of them share the same system properties, so it is very likely
going to lead to unexpected behavior.

spring-kafka-test has transitive dependencies on junit-jupiter-api and junit-

o platform-launcher (the latter to support the global embedded broker). If you wish
to use the embedded broker and are NOT using JUnit, you may wish to exclude
these dependencies.

4.4.5. @dEmbeddedKafka Annotation

We generally recommend that you use the rule as a @ClassRule to avoid starting and stopping the
broker between tests (and use a different topic for each test). Starting with version 2.0, if you use

204

https://junit.org/junit5/docs/current/user-guide/#running-tests-config-params
https://junit.org/junit5/docs/current/user-guide/#running-tests-config-params

Spring’s test application context caching, you can also declare a EmbeddedKafkaBroker bean, so a
single broker can be used across multiple test classes. For convenience, we provide a test class-level
annotation called @EmbeddedKafka to register the EmbeddedKafkaBroker bean. The following example
shows how to use it:

205

(SpringRunner.class)

(partitions = 1,
topics = {
KafkaStreamsTests.STREAMING TOPICT,
KafkaStreamsTests.STREAMING _TOPIC2 })
public class KafkaStreamsTests {

private EmbeddedKafkaBroker embeddedKafka;

public void someTest() {
Map<String, Object> consumerProps = KafkaTestUtils.consumerProps(
"testGroup", "true", this.embeddedKafka);
consumerProps.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
ConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory<>
(consumerProps);
Consumer<Integer, String> consumer = cf.createConsumer();
this.embeddedKafka.consumeFromAnEmbeddedTopic(consumer, KafkaStreamsTests
.STREAMING_TOPIC2);
ConsumerRecords<Integer, String> replies = KafkaTestUtils.getRecords
(consumer);
assertThat(replies.count()).isGreaterThanOrEqualTo(1);
}

public static class KafkaStreamsConfiguration {

("${" + EmbeddedKafkaBroker.SPRING_EMBEDDED_KAFKA_BROKERS + "}")
private String brokerAddresses;

(name = KafkaStreamsDefaultConfiguration
.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public KafkaStreamsConfiguration kStreamsConfigs() {

Map<String, Object> props = new HashMap<>();

props.put(StreamsConfig.APPLICATION_ID_CONFIG, "testStreams");

props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, this.
brokerAddresses);

return new KafkaStreamsConfiguration(props);

}

Starting with version 2.2.4, you can also use the @EmbeddedKafka annotation to specify the Kafka

206

ports property.

The following example sets the topics, brokerProperties, and brokerPropertiesLocation attributes of
@EmbeddedKafka support property placeholder resolutions:

@TestPropertySource(locations = "classpath:/test.properties")
@EmbeddedKafka(topics = { "any-topic", "${kafka.topics.another-topic}" },
brokerProperties = { "log.dir=${kafka.broker.logs-dir}",
"listeners=PLAINTEXT://localhost:${kafka.broker.port}

n
I

"auto.create.topics.enable=${kafka.broker.topics-
enable:true}" },
brokerPropertiesLocation = "classpath:/broker.properties")

In the preceding example, the property placeholders ${kafka.topics.another-topic},
${kafka.broker.logs-dir}, and ${kafka.broker.port} are resolved from the Spring Environment. In
addition, the broker properties are loaded from the broker.properties classpath resource specified
by the brokerPropertiesLocation. Property placeholders are resolved for the
brokerPropertiesLocation URL and for any property placeholders found in the resource. Properties
defined by brokerProperties override properties found in brokerPropertiesLocation.

You can use the @EmbeddedKafka annotation with JUnit 4 or JUnit 5.

4.4.6. @EmbeddedKafka Annotation with JUnit5

Starting with version 2.3, there are two ways to use the @EmbeddedKafka annotation with JUnit5.
When used with the @SpringJunitConfig annotation, the embedded broker is added to the test
application context. You can auto wire the broker into your test, at the class or method level, to get
the broker address list.

When not using the spring test context, the EmbdeddedKafkaCondition creates a broker; the condition
includes a parameter resolver so you can access the broker in your test method...

@EmbeddedKafka
public class EmbeddedKafkaConditionTests {

@Test
public void test(EmbeddedKafkaBroker broker) {
String brokerList = broker.getBrokersAsString();

A stand-alone (not Spring test context) broker will be created if the class annotated with

207

@EmbeddedBroker is not also annotated (or meta annotated) with
ExtendedWith(SpringExtension.class). @SpringJunitConfig and @SpringBootTest are so meta
annotated and the context-based broker will be used when either of those annotations are also
present.

When there is a Spring test application context available, the topics and broker

o properties can contain property placeholders, which will be resolved as long as the
property is defined somewhere. If there is no Spring context available, these
placeholders won’t be resolved.

4.4.7. Embedded Broker in @SpringBootTest Annotations

Spring Initializr now automatically adds the spring-kafka-test dependency in test scope to the
project configuration.

If your application uses the Kafka binder in spring-cloud-stream and if you want to
use an embedded broker for tests, you must remove the spring-cloud-stream-test-
support dependency, because it replaces the real binder with a test binder for test
cases. If you wish some tests to use the test binder and some to use the embedded
broker, tests that use the real binder need to disable the test binder by excluding
the binder auto configuration in the test class. The following example shows how
to do so:

o (SpringRunner.class)

(properties = "spring.autoconfigure.exclude="
+

"org.springframework.cloud.stream.test.binder.TestSupportBinderAuto
Configuration")
public class MyApplicationTests {

}

There are several ways to use an embedded broker in a Spring Boot application test.
They include:

* JUnit4 Class Rule

¢ @EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean

JUnit4 Class Rule

The following example shows how to use a JUnit4 class rule to create an embedded broker:

208

https://start.spring.io/

@RunWith(SpringRunner.class)
@SpringBootTest
public class MyApplicationTests {

@ClassRule
public static EmbeddedKafkaRule broker = new EmbeddedKafkaRule(1,
false, "someTopic")
.brokerListProperty("spring.kafka.bootstrap-servers");

}

@Autowired
private KafkaTemplate<String, String> template;

@Test
public void test() {

}

Notice that, since this is a Spring Boot application, we override the broker list property to set Boot’s
property.

@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean

The following example shows how to use an @EmbeddedKafka Annotation to create an embedded
broker:

@RunWith(SpringRunner.class)
@EmbeddedKafka(topics = "someTopic",
bootstrapServersProperty = "spring.kafka.bootstrap-servers") // this is
now the default
public class MyApplicationTests {

@Autowired
private KafkaTemplate<String, String> template;

@Test
public void test() {

}

209

o The bootstrapServersProperty is automatically set to spring.kafka.bootstrap-
servers, by default, starting with version 3.0.10.

4.4.8. Hamcrest Matchers

The o.s.kafka.test.hamcrest.KafkaMatchers provides the following matchers:

210

/**

* @param key the key

* @param <K> the type.

* @return a Matcher that matches the key in a consumer record.

*/

public static <K> Matcher<ConsumerRecord<K, ?>> hasKey(K key) { ... }

/**

* @param value the value.

* @param <V> the type.

* @return a Matcher that matches the value in a consumer record.

*/

public static <V> Matcher<ConsumerRecord<?, V>> hasValue(V value) { ... }

/**

* @param partition the partition.

* @return a Matcher that matches the partition in a consumer record.

*/

public static Matcher<ConsumerRecord<?, 7>> hasPartition(int partition) { ... }

/**
* Matcher testing the timestamp of a {@link ConsumerRecord} assuming the topic
has been set with
* {@link org.apache.kafka.common.record.TimestampType#CREATE_TIME CreateTime}.
*
* @param ts timestamp of the consumer record.
* @return a Matcher that matches the timestamp in a consumer record.
*/
public static Matcher<ConsumerRecord<?, 7?>> hasTimestamp(long ts) {
return hasTimestamp(TimestampType.CREATE_TIME, ts);
}

/**

* Matcher testing the timestamp of a {@link ConsumerRecord}

* @param type timestamp type of the record

* @param ts timestamp of the consumer record.

* @return a Matcher that matches the timestamp in a consumer record.

*/

public static Matcher<ConsumerRecord<?, ?>> hasTimestamp(TimestampType type, long

ts) {

return new ConsumerRecordTimestampMatcher(type, ts);

}

4.4.9. Assert] Conditions

You can use the following Assert] conditions:

211

212

/**

* @param key the key

* @param <K> the type.

* @return a Condition that matches the key in a consumer record.

*/

public static <K> Condition<ConsumerRecord<K, 7>> key(K key) { ... }

/**

* @param value the value.

* @param <V> the type.

* @return a Condition that matches the value in a consumer record.

*/

public static <V> Condition<ConsumerRecord<?, V>> value(V value) { ... }

/**

* @param key the key.

* @param value the value.

@param <K> the key type.

@param <V> the value type.

* @return a Condition that matches the key in a consumer record.

* @since 2.2.12

*/

public static <K, V> Condition<ConsumerRecord<K, V>> keyValue(K key, V value) { .

.}

*
*

/**

* @param partition the partition.

* @return a Condition that matches the partition in a consumer record.

*/

public static Condition<ConsumerRecord<?, ?>> partition(int partition) { ... }

/**
* @param value the timestamp.
* @return a Condition that matches the timestamp value in a consumer record.
*/
public static Condition<ConsumerRecord<?, 7>> timestamp(long value) {
return new ConsumerRecordTimestampCondition(TimestampType.CREATE_TIME, value);

}

/**

* @param type the type of timestamp
* @param value the timestamp.
* @return a Condition that matches the timestamp value in a consumer record.
*/
public static Condition<ConsumerRecord<?, 7>> timestamp(TimestampType type, long
value) {
return new ConsumerRecordTimestampCondition(type, value);

}

4.4.10. Example

The following example brings together most of the topics covered in this chapter:

213

214

public class KafkaTemplateTests {

private static final String TEMPLATE_TOPIC = "templateTopic";

public static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1, true,
TEMPLATE _TOPIC);

public void testTemplate() throws Exception {
Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT",
"false",
embeddedKafka.getEmbeddedKafka());
DefaultKafkaConsumerFactory<Integer, String> cf =
new DefaultKafkaConsumerFactory<Integer, String>
(consumerProps);
ContainerProperties containerProperties = new ContainerProperties
(TEMPLATE_TOPIC);
KafkaMessagelListenerContainer<Integer, String> container =
new KafkaMessagelListenerContainer<>(cf,
containerProperties);
final BlockingQueue<ConsumerRecord<Integer, String>> records = new
LinkedBlockingQueue<>();
container.setupMessagelistener(new Messagelistener<Integer, String>() {

public void onMessage(ConsumerRecord<Integer, String> record) {
System.out.println(record);
records.add(record);

b
container.setBeanName("templateTests");
container.start();
ContainerTestUtils.waitForAssignment(container,
embeddedKafka.getEmbeddedKafka().
getPartitionsPerTopic());
Map<String, Object> producerProps =
KafkaTestUtils.producerProps(embeddedKafka
.getEmbeddedKafka());
ProducerFactory<Integer, String> pf =
new DefaultKafkaProducerFactory<Integer, String>
(producerProps);
KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf);
template.setDefaultTopic(TEMPLATE_TOPIC);
template.sendDefault("foo");
assertThat(records.poll(10, TimeUnit.SECONDS), hasValue("foo"));
template.sendDefault(@, 2, "bar");
ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit

.SECONDS);
assertThat(received, hasKey(2));
assertThat(received, hasPartition(0));
assertThat(received, hasValue("bar"));
template.send(TEMPLATE_TOPIC, @, 2, "baz");
received = records.poll(10, TimeUnit.SECONDS);
assertThat(received, hasKey(2));
assertThat(received, hasPartition(0));
assertThat(received, hasValue("baz"));

The preceding example uses the Hamcrest matchers. With Assert], the final part looks like the
following code:

assertThat(records.poll1(10, TimeUnit.SECONDS)).has(value("foo"));
template.sendDefault(@, 2, "bar");

ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit.SECONDS);
// using individual assertions

assertThat(received).has(key(2));
assertThat(received).has(value("bar"));
assertThat(received).has(partition(0));
template.send(TEMPLATE_TOPIC, @, 2, "baz");

received = records.poll(10, TimeUnit.SECONDS);

// using all0f()

assertThat(received).has(all0f(keyValue(2, "baz"), partition(0)));

4.4.11. Mock Consumer and Producer
The kafka-clients library provides MockConsumer and MockProducer classes for testing purposes.

If you wish to use these classes in some of your tests with listener containers or KafkaTemplate
respectively, starting with version 3.0.7, the framework now provides MockConsumerFactory and
MockProducerFactory implementations.

These factories can be used in the listener container and template instead of the default factories,
which require a running (or embedded) broker.

Here is an example of a simple implementation returning a single consumer:

215

ConsumerFactory<String, String> consumerFactory() {
MockConsumer<String, String> consumer = new MockConsumer<>(
OffsetResetStrateqy.EARLIEST);
TopicPartition topicPartition@ = new TopicPartition("topic", 0);
List<TopicPartition> topicPartitions = Arrays.asList(topicPartitiond);
Map<TopicPartition, Long> beginning0ffsets = topicPartitions.stream().collect
(Collectors
.toMap(Function.identity(), tp -> 0L));
consumer .updateBeginningOffsets(beginning0ffsets);
consumer.schedulePol1Task(() -> {
consumer .addRecord(
new ConsumerRecord<>("topic", @, 0L, 0L, TimestampType
.NO_TIMESTAMP_TYPE, 0, 0, null, "test1",
new RecordHeaders(), Optional.empty()));
consumer .addRecord(
new ConsumerRecord<>("topic", @, 1L, 0L, TimestampType
.NO_TIMESTAMP_TYPE, @, 0, null, "test2",
new RecordHeaders(), Optional.empty()));
3

return new MockConsumerFactory(() -> consumer);

If you wish to test with concurrency, the Supplier lambda in the factory’s constructor would need
create a new instance each time.

With the MockProducerFactory, there are two constructors; one to create a simple factory, and one to
create factory that supports transactions.

Here are examples:

216

ProducerFactory<String, String> nonTransFactory() {
return new MockProducerFactory<>(() ->
new MockProducer<>(true, new StringSerializer(), new StringSerializer
)));
}

ProducerFactory<String, String> transFactory() {
MockProducer<String, String> mockProducer =
new MockProducer<>(true, new StringSerializer(), new StringSerializer

();

mockProducer.initTransactions();
return new MockProducerFactory<String, String>((tx, id) -> mockProducer,
"defaultTxId");

}

Notice in the second case, the lambda is a BiFunction<Boolean, String> where the first parameter is
true if the caller wants a transactional producer; the optional second parameter contains the
transactional id. This can be the default (as provided in the constructor), or can be overridden by
the KafkaTransactionManager (or KafkaTemplate for local transactions), if so configured. The
transactional id is provided in case you wish to use a different MockProducer based on this value.

If you are using producers in a multi-threaded environment, the BiFunction should return multiple
producers (perhaps thread-bound using a ThreadLocal).

o Transactional MockProducer s must be initialized for transactions by calling
initTransaction().

217

Chapter 5. Tips, Tricks and Examples

5.1. Manually Assigning All Partitions

Let’s say you want to always read all records from all partitions (such as when using a compacted
topic to load a distributed cache), it can be useful to manually assign the partitions and not use
Kafka’s group management. Doing so can be unwieldy when there are many partitions, because
you have to list the partitions. It’s also an issue if the number of partitions changes over time,
because you would have to recompile your application each time the partition count changes.

The following is an example of how to use the power of a SpEL expression to create the partition
list dynamically when the application starts:

(topicPartitions = (topic = "compacted",
partitions = "#{@finder.partitions('compacted')}"),
partitionOffsets = (partition = "*", initialOffset =
"0")))
public void listen((KafkaHeaders.RECEIVED_MESSAGE_KEY) String key, String
payload) {
+

public PartitionFinder finder(ConsumerFactory<String, String> consumerFactory) {
return new PartitionFinder(consumerFactory);

}
public static class PartitionFinder {
private final ConsumerFactory<String, String> consumerFactory;

public PartitionFinder(ConsumerFactory<String, String> consumerFactory) {
this.consumerFactory = consumerFactory;

}

public String[] partitions(String topic) {
try (Consumer<String, String> consumer = consumerFactory.createConsumer())

{
return consumer.partitionsFor(topic).stream()
.map(pi -> "" + pi.partition())
.toArray(String[]::new);
}
}
+

218

Using this in conjunction with ConsumerConfig.AUTO_OFFSET_RESET_CONFIG=earliest will load all
records each time the application is started. You should also set the container’s AckMode to MANUAL to
prevent the container from committing offsets for a null consumer group. However, starting with
version 2.5.5, as shown above, you can apply an initial offset to all partitions; see Explicit Partition
Assignment for more information.

5.2. Examples of Kafka Transactions with Other
Transaction Managers

The following Spring Boot application is an example of chaining database and Kafka transactions.
The listener container starts the Kafka transaction and the @Transactional annotation starts the DB
transaction. The DB transaction is committed first; if the Kafka transaction fails to commit, the
record will be redelivered so the DB update should be idempotent.

219

220

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public ApplicationRunner runner(KafkaTemplate<String, String> template) {
return args -> template.executeInTransaction(t -> t.send("topic1", "test"
));
}

public DataSourceTransactionManager dstm(DataSource dataSource) {
return new DataSourceTransactionManager(dataSource);

}

public static class Listener {
private final JdbcTemplate jdbcTemplate;
private final KafkaTemplate<String, String> kafkaTemplate;

public Listener(JdbcTemplate jdbcTemplate, KafkaTemplate<String, String>
kafkaTemplate) {
this.jdbcTemplate = jdbcTemplate;
this.kafkaTemplate = kafkaTemplate;

(id = "group1", topics = "topicl")
("dstm")
public void listen1(String in) {
this.kafkaTemplate.send("topic2", in.toUpperCase());
this.jdbcTemplate.execute("insert into mytable (data) values (

"t i
£
}

(id = "group2", topics = "topic2")
public void listen2(String in) {
System.out.println(in);
}

public NewTopic topic1() {
return TopicBuilder.name("topic1").build();

public NewTopic topic2() {
return TopicBuilder.name("topic2").build();
}

spring.datasource.url=jdbc:mysql://localhost/integration?serverTimezone=UTC
spring.datasource.username=root
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver

spring.kafka.consumer.auto-offset-reset=earliest
spring.kafka.consumer.enable-auto-commit=false
spring.kafka.consumer.properties.isolation.level=read_committed

spring.kafka.producer.transaction-id-prefix=tx-

#logging.level.org.springframework.transaction=trace
#logging.level.org.springframework.kafka.transaction=debug
#1ogging.level.org.springframework.jdbc=debug

create table mytable (data varchar(20));

For producer-only transactions, transaction synchronization works:

("dstm")
public void someMethod(String in) {
this.kafkaTemplate.send("topic2", in.toUpperCase());
this.jdbcTemplate.execute("insert into mytable (data) values (

L]

+ _in+ lll)ll);

The KafkaTemplate will synchronize its transaction with the DB transaction and the commit/rollback
occurs after the database.

If you wish to commit the Kafka transaction first, and only commit the DB transaction if the Kafka
transaction is successful, use nested @Transactional methods:

221

("dstm")
public void someMethod(String in) {
this.jdbcTemplate.execute("insert into mytable (data) values (
sendToKafka(in);

+ _in+ |ll)ll);

("kafkaTransactionManager")
public void sendToKafka(String in) {
this.kafkaTemplate.send("topic2", in.toUpperCase());

}

5.3. Customizing the JsonSerializer and
JsonDeserializer

The serializer and deserializer support a number of cusomizations using properties, see JSON for
more information. The kafka-clients code, not Spring, instantiates these objects, unless you inject
them directly into the consumer and producer factories. If you wish to configure the (de)serializer
using properties, but wish to use, say, a custom ObjectMapper, simply create a subclass and pass the
custom mapper into the super constructor. For example:

public class CustomJsonSerializer extends JsonSerializer<Object> {

public CustomJsonSerializer() {
super (customizedObjectMapper());

}

private static ObjectMapper customizedObjectMapper() {
ObjectMapper mapper = JacksonUtils.enhancedObjectMapper();
mapper.disable(SerializationFeature .WRITE_DATES_AS_TIMESTAMPS);

return mapper;

222

Chapter 6. Other Resources

In addition to this reference documentation, we recommend a number of other resources that may
help you learn about Spring and Apache Kafka.

* Apache Kafka Project Home Page

» Spring for Apache Kafka Home Page

» Spring for Apache Kafka GitHub Repository

* Spring Integration GitHub Repository (Apache Kafka Module)

223

https://kafka.apache.org/
https://projects.spring.io/spring-kafka/
https://github.com/spring-projects/spring-kafka
https://github.com/spring-projects/spring-integration

Appendix A: Override Spring Boot
Dependencies

When using Spring for Apache Kafka in a Spring Boot application, the Apache Kafka dependency
versions are determined by Spring Boot’s dependency management. If you wish to use a different
version of kafka-clients or kafka-streams, and use the embedded kafka broker for testing, you need
to override their version used by Spring Boot dependency management; set the kafka.version

property.

o Default kafka-clients dependencies for Spring Boot 3.0.x and 3.1.x are 3.3.2 and
3.4.1 respectively.

Or, to use a different Spring for Apache Kafka version with a supported Spring Boot version, set the
spring-kafka.version property.

224

Maven

<properties>
<kafka.version>3.5.1</kafka.version>
<spring-kafka.version>3.0.14-SNAPSHOT</spring-kafka.version>
</properties>

<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>

</dependency>

<!-- optional - only needed when using kafka-streams -->

<dependency>
<groupIld>org.apache.kafka</groupIld>
<artifactId>kafka-streams</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka-test</artifactId>
<scope>test</scope>

</dependency>

Gradle

ext['kafka.version'] = '3.5.0'
ext['spring-kafka.version'] = '3.0.14-SNAPSHOT'

dependencies {

implementation 'org.springframework.kafka:spring-kafka'

implementation 'org.apache.kafka:kafka-streams' // optional - only needed when
using kafka-streams

testImplementation 'org.springframework.kafka:spring-kafka-test'

}

The test scope dependencies are only needed if you are using the embedded Kafka broker in tests.

225

Appendix B: Micrometer Observation
Documentation

B.1. Observability - Metrics

Below you can find a list of all metrics declared by this project.

B.1.1. Listener Observation

Observation for Apache Kafka listeners.

Metric name spring.kafka.listener (defined by convention class
KafkalistenerObservation$DefaultKafkalistenerObservationConvention). Type timer.

Metric name spring.kafka.listener.active (defined by convention class
KafkalistenerObservation$DefaultKafkalListenerObservationConvention). Type long task timer.

o KeyValues that are added after starting the Observation might be missing from the
*active metrics.

o Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

Name of the enclosing class KafkalListenerObservation.
o All tags must be prefixed with spring.kafka.listener prefix!

Table 5. Low cardinality Keys

Name Description

spring.kafka.listener.id (required) Listener id (or listener container bean name).

B.1.2. Template Observation

Observation for KafkaTemplates.

Metric name spring.kafka.template (defined by convention class
KafkaTemplateObservation$DefaultKafkaTemplateObservationConvention). Type timer.

Metric name spring.kafka.template.active (defined by convention class
KafkaTemplateObservation$DefaultKafkaTemplateObservationConvention). Type long task timer.

o KeyValues that are added after starting the Observation might be missing from the
*active metrics.

226

o Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

Name of the enclosing class KafkaTemplateObservation.
o All tags must be prefixed with spring.kafka.template prefix!

Table 6. Low cardinality Keys

Name Description

spring.kafka.template.name (required) Bean name of the template.

B.2. Observability - Spans

Below you can find a list of all spans declared by this project.

B.2.1. Listener Observation Span

Observation for Apache Kafka listeners.

Span name spring.kafka.listener (defined by convention class
KafkalistenerObservation$DefaultKafkalistenerObservationConvention).

Name of the enclosing class KafkalistenerObservation.
o All tags must be prefixed with spring.kafka.listener prefix!

Table 7. Tag Keys
Name Description
spring.kafka.listener.id (required) Listener id (or listener container bean name).

B.2.2. Template Observation Span

Observation for KafkaTemplates.

Span name spring.kafka.template (defined by convention class
KafkaTemplateObservation$DefaultKafkaTemplateObservationConvention).

Name of the enclosing class KafkaTemplateObservation.
o All tags must be prefixed with spring.kafka.template prefix!

Table 8. Tag Keys

Name Description

227

spring.kafka.template.name (required) Bean name of the template.

B.3. Observability - Conventions

Below you can find a list of all GlobalObservationConvention and ObservationConvention declared by
this project.

Table 9. ObservationConvention implementations

ObservationConvention Class Name Applicable ObservationContext Class Name
KafkalListenerObservation KafkaRecordReceiverContext

KafkalListenerObservation.DefaultKafkalistenerQ KafkaRecordReceiverContext
bservationConvention

KafkalListenerObservationConvention KafkaRecordReceiverContext
KafkaTemplateObservation KafkaRecordSenderContext

KafkaTemplateObservation.DefaultKafkaTemplateO KafkaRecordSenderContext
bservationConvention

KafkaTemplateObservationConvention KafkaRecordSenderContext

228

Appendix C: Native Images

Spring AOT native hints are provided to assist in developing native images for Spring applications

that use Spring for Apache Kafka, including hints for AVRO generated classes used in @Kafkalistener
S.

o spring-kafka-test (and, specifically, its EmbeddedKafkaBroker) is not supported in
native images.

Some examples can be seen in the spring-aot-smoke-tests GitHub repository.

229

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#aot
https://github.com/spring-projects/spring-aot-smoke-tests/tree/main/integration
https://github.com/spring-projects/spring-aot-smoke-tests/tree/main/integration

Appendix D: Change History

D.1. What’s New in 2.9 since 2.8

D.1.1. Kafka Client Version

This version requires the 3.2.0 kafka-clients.

D.1.2. Error Handler Changes

The DefaultErrorHandler can now be configured to pause the container for one poll and use the
remaining results from the previous poll, instead of seeking to the offsets of the remaining records.
See DefaultErrorHandler for more information.

The DefaultErrorHandler now has a BackOffHandler property. See Back Off Handlers for more
information.

D.1.3. Listener Container Changes

interceptBeforeTx now works with all transaction managers (previously it was only applied when a
KafkaAwareTransactionManager was used). See [interceptBeforeTx].

A new container property pauseImmediate is provided which allows the container to pause the
consumer after the current record is processed, instead of after all the records from the previous
poll have been processed. See [pauselmmediate].

Events related to consumer authentication and authorization

D.1.4. Header Mapper Changes

You can now configure which inbound headers should be mapped. Also available in version 2.8.8 or
later. See Message Headers for more information.

D.1.5. KafkaTemplate Changes

In 3.0, the futures returned by this class will be CompletableFuture s instead of ListenableFuture s.
See Using KafkaTemplate for assistance in transitioning when using this release.

D.1.6. ReplyingKafkaTemplate Changes

The template now provides a method to wait for assignment on the reply container, to avoid a race
when sending a request before the reply container is initialized. Also available in version 2.8.8 or
later. See Using ReplyingKafkaTemplate.

In 3.0, the futures returned by this class will be CompletableFuture s instead of ListenableFuture s.
See Using ReplyingKafkaTemplate and Request/Reply with Message<?> s for assistance in transitioning
when using this release.

230

D.2. What’s New in 2.8 Since 2.7

This section covers the changes made from version 2.7 to version 2.8. For changes in earlier
version, see Change History.

D.2.1. Kafka Client Version

This version requires the 3.0.0 kafka-clients

D.2.2. Package Changes

Classes and interfaces related to type mapping have been moved from --:support.converter to -
support.mapping.

» AbstractJavaTypeMapper

» ClassMapper

» DefaultJackson2JavaTypeMapper
* Jackson2JavaTypeMapper

D.2.3. Out of Order Manual Commits

The listener container can now be configured to accept manual offset commits out of order (usually
asynchronously). The container will defer the commit until the missing offset is acknowledged. See
Manually Committing Offsets for more information.

D.2.4. eKafkalListener Changes

It is now possible to specify whether the listener method is a batch listener on the method itself.
This allows the same container factory to be used for both record and batch listeners.

See Batch Listeners for more information.
Batch listeners can now handle conversion exceptions.
See Conversion Errors with Batch Error Handlers for more information.

RecordFilterStrategy, when used with batch listeners, can now filter the entire batch in one call.
See the note at the end of Batch Listeners for more information.

The @Kafkalistener annotation now has the filter attribute, to override the container factory’s
RecordFilterStrategy for just this listener.

The @Kafkalistener annotation now has the info attribute; this is used to populate the new listener
container property listenerInfo. This is then used to populate a KafkaHeaders.LISTENER_INFO header
in each record which can be used in RecordInterceptor, RecordFilterStrategy, or the listener itself.
See Listener Info Header and Abstract Listener Container Properties for more information.

231

D.2.5. KafkaTemplate Changes

You can now receive a single record, given the topic, partition and offset. See Using KafkaTemplate to
Receive for more information.

D.2.6. CommonErrorHandler Added

The legacy GenericErrorHandler and its sub-interface hierarchies for record an batch listeners have
been replaced by a new single interface CommonErrorHandler with implementations corresponding to
most legacy implementations of GenericErrorHandler. See Container Error Handlers and Migrating
Custom Legacy Error Handler Implementations to CommonErrorHandler for more information.

D.2.7. Listener Container Changes
The interceptBeforeTx container property is now true by default.

The authorizationExceptionRetryInterval property has been renamed to authExceptionRetryInterval
and now applies to AuthenticationException s in addition to AuthorizationException s previously.
Both exceptions are considered fatal and the container will stop by default, unless this property is
set.

See Using KafkaMessagelListenerContainer and Listener Container Properties for more information.

D.2.8. Serializer/Deserializer Changes

The DelegatingByTopicSerializer and DelegatingByTopicDeserializer are now provided. See
Delegating Serializer and Deserializer for more information.

D.2.9. DeadlLetterPublishingRecover Changes
The property stripPreviousExceptionHeaders is now true by default.
There are now several techniques to customize which headers are added to the output record.

See Managing Dead Letter Record Headers for more information.

D.2.10. Retryable Topics Changes

Now you can use the same factory for retryable and non-retryable topics. See Specifying a
ListenerContainerFactory for more information.

There’s now a manageable global list of fatal exceptions that will make the failed record go straight
to the DLT. Refer to Exception Classifier to see how to manage it.

You can now use blocking and non-blocking retries in conjunction. See Combining Blocking and
Non-Blocking Retries for more information.

The KafkaBackOffException thrown when using the retryable topics feature is now logged at
DEBUG level. See Changing KafkaBackOffException Logging Level if you need to change the logging
level back to WARN or set it to any other level.

232

D.3. Changes between 2.6 and 2.7

D.3.1. Kafka Client Version

This version requires the 2.7.0 kafka-clients. It is also compatible with the 2.8.0 clients, since
version 2.7.1; see Override Spring Boot Dependencies.

D.3.2. Non-Blocking Delayed Retries Using Topics

This significant new feature is added in this release. When strict ordering is not important, failed
deliveries can be sent to another topic to be consumed later. A series of such retry topics can be
configured, with increasing delays. See Non-Blocking Retries for more information.

D.3.3. Listener Container Changes

The onlyLogRecordMetadata container property is now true by default.
A new container property stopImmediate is now available.

See Listener Container Properties for more information.

Error handlers that use a BackOff between delivery attempts (e.g. SeekToCurrentErrorHandler and
DefaultAfterRollbackProcessor) will now exit the back off interval soon after the container is
stopped, rather than delaying the stop.

Error handlers and after rollback processors that extend FailedRecordProcessor can now be
configured with one or more RetrylListener s to receive information about retry and recovery
progress.

The RecordInterceptor now has additional methods called after the listener returns (normally, or by
throwing an exception). It also has a sub-interface ConsumerAwareRecordInterceptor. In addition,
there is now a BatchInterceptor for batch listeners. See Message Listener Containers for more
information.

D.3.4. eKafkalListener Changes

You can now validate the payload parameter of @KafkaHandler methods (class-level listeners). See
@Kafkalistener @Payload Validation for more information.

You can now set the rawRecordHeader property on the MessagingMessageConverter and
BatchMessagingMessageConverter which causes the raw ConsumerRecord to be added to the converted
Message<?>. This is useful, for example, if you wish to use a DeadlLetterPublishingRecoverer in a
listener error handler. See Listener Error Handlers for more information.

You can now modify @Kafkalistener annotations during application initialization. See
@Kafkalistener Attribute Modification for more information.

233

D.3.5. DeadLetterPublishingRecover Changes

Now, if both the key and value fail deserialization, the original values are published to the DLT.
Previously, the value was populated but the key DeserializationException remained in the headers.
There is a breaking API change, if you subclassed the recoverer and overrode the
createProducerRecord method.

In addition, the recoverer verifies that the partition selected by the destination resolver actually
exists before publishing to it.

See Publishing Dead-letter Records for more information.

D.3.6. ChainedKafkaTransactionManager is Deprecated

See Transactions for more information.

D.3.7. ReplyingKafkaTemplate Changes

There is now a mechanism to examine a reply and fail the future exceptionally if some condition
exists.

Support for sending and receiving spring-messaging Message<?> s has been added.

See Using ReplyingKafkaTemplate for more information.

D.3.8. Kafka Streams Changes

By default, the StreamsBuilderFactoryBean is now configured to not clean up local state. See
Configuration for more information.

D.3.9. KafkaAdmin Changes

New methods createOrModifyTopics and describeTopics have been added. KafkaAdmin.NewTopics has
been added to facilitate configuring multiple topics in a single bean. See Configuring Topics for
more information.

D.3.10. MessageConverter Changes

It is now possible to add a spring-messaging SmartMessageConverter to the MessagingMessageConverter,
allowing content negotiation based on the contentType header. See Spring Messaging Message
Conversion for more information.

D.3.11. Sequencing @Kafkalistener s

See Starting @Kafkalistener s in Sequence for more information.

D.3.12. ExponentialBackOffWithMaxRetries

A new BackOff implementation is provided, making it more convenient to configure the max retries.
See ExponentialBackOffWithMaxRetries Implementation for more information.

234

D.3.13. Conditional Delegating Error Handlers

These new error handlers can be configured to delegate to different error handlers, depending on
the exception type. See Delegating Error Handler for more information.

D.4. Changes between 2.5 and 2.6

D.4.1. Kafka Client Version

This version requires the 2.6.0 kafka-clients.

D.4.2. Listener Container Changes
The default EOSMode is now BETA. See Exactly Once Semantics for more information.

Various error handlers (that extend FailedRecordProcessor) and the DefaultAfterRollbackProcessor
now reset the BackOff if recovery fails. In addition, you can now select the BackOff to use based on
the failed record and/or exception.

You can now configure an adviceChain in the container properties. See Listener Container
Properties for more information.

When the container is configured to publish ListenerContainerIdleEvent s, it now publishes a
ListenerContainerNoLongerIdleEvent when a record is received after publishing an idle event. See
Application Events and Detecting Idle and Non-Responsive Consumers for more information.

D.4.3. @KafkaListener Changes

When using manual partition assignment, you can now specify a wildcard for determining which
partitions should be reset to the initial offset. In addition, if the listener implements
ConsumerSeekAware, onPartitionsAssigned() is called after the manual assignment. (Also added in
version 2.5.5). See Explicit Partition Assignment for more information.

Convenience methods have been added to AbstractConsumerSeekAware to make seeking easier. See
Seeking to a Specific Offset for more information.

D.4.4. ErrorHandler Changes

Subclasses of FailedRecordProcessor (e.g. SeekToCurrentErrorHandler, DefaultAfterRollbackProcessor,
RecoveringBatchErrorHandler) can now be configured to reset the retry state if the exception is a
different type to that which occurred previously with this record.

D.4.5. Producer Factory Changes

You can now set a maximum age for producers after which they will be closed and recreated. See
Transactions for more information.

You can now update the configuration map after the DefaultKafkaProducerFactory has been created.
This might be useful, for example, if you have to update SSL key/trust store locations after a

235

credentials change. See Using DefaultKafkaProducerFactory for more information.

D.5. Changes between 2.4 and 2.5

This section covers the changes made from version 2.4 to version 2.5. For changes in earlier
version, see Change History.

D.5.1. Consumer/Producer Factory Changes

The default consumer and producer factories can now invoke a callback whenever a consumer or
producer is created or closed. Implementations for native Micrometer metrics are provided. See
Factory Listeners for more information.

You can now change bootstrap server properties at runtime, enabling failover to another Kafka
cluster. See Connecting to Kafka for more information.

D.5.2. StreamsBuilderFactoryBean Changes

The factory bean can now invoke a callback whenever a KafkaStreams created or destroyed. An
Implementation for native Micrometer metrics is provided. See KafkaStreams Micrometer Support
for more information.

D.5.3. Kafka Client Version

This version requires the 2.5.0 kafka-clients.

D.5.4. Class/Package Changes

SeekUtils has been moved from the o.s.k.support package to o.s.k.listener.

D.5.5. Delivery Attempts Header

There is now an option to to add a header which tracks delivery attempts when using certain error
handlers and after rollback processors. See Delivery Attempts Header for more information.

D.5.6. @KafkaListener Changes

Default reply headers will now be populated automatically if needed when a @KafkalListener return
type is Message<?>. See Reply Type Message<?> for more information.

The KafkaHeaders.RECEIVED_MESSAGE _KEY is no longer populated with a null value when the incoming
record has a null key; the header is omitted altogether.

@Kafkalistener methods can now specify a ConsumerRecordMetadata parameter instead of using
discrete headers for metadata such as topic, partition, etc. See Consumer Record Metadata for more
information.

236

D.5.7. Listener Container Changes

The assignmentCommitOption container property is now LATEST_ONLY_NO_TX by default. See Listener
Container Properties for more information.

The subBatchPerPartition container property is now true by default when using transactions. See
Transactions for more information.

A new RecoveringBatchErrorHandler is now provided.
Static group membership is now supported. See Message Listener Containers for more information.

When incremental/cooperative rebalancing is configured, if offsets fail to commit with a non-fatal
RebalanceInProgressException, the container will attempt to re-commit the offsets for the partitions
that remain assigned to this instance after the rebalance is completed.

The default error handler is now the SeekToCurrentErrorHandler for record listeners and
RecoveringBatchErrorHandler for batch listeners. See Container Error Handlers for more
information.

You can now control the level at which exceptions intentionally thrown by standard error handlers
are logged. See Container Error Handlers for more information.

The getAssignmentsByClientId() method has been added, making it easier to determine which
consumers in a concurrent container are assigned which partition(s). See Listener Container
Properties for more information.

You can now suppress logging entire ConsumerRecord s in error, debug logs etc. See
onlylLogRecordMetadata in Listener Container Properties.

D.5.8. KafkaTemplate Changes

The KafkaTemplate can now maintain micrometer timers. See Monitoring for more information.

The KafkaTemplate can now be configured with ProducerConfig properties to override those in the
producer factory. See Using KafkaTemplate for more information.

A RoutingKafkaTemplate has now been provided. See Using RoutingKafkaTemplate for more
information.

You can now use KafkaSendCallback instead of ListenerFutureCallback to get a narrower exception,
making it easier to extract the failed ProducerRecord. See Using KafkaTemplate for more information.

D.5.9. Kafka String Serializer/Deserializer

New ToStringSerializer/StringDeserializer s as well as an associated SerDe are now provided. See
String serialization for more information.

D.5.10. JsonDeserializer

The JsonDeserializer now has more flexibility to determine the deserialization type. See Using

237

Methods to Determine Types for more information.

D.5.11. Delegating Serializer/Deserializer

The DelegatingSerializer can now handle "standard" types, when the outbound record has no
header. See Delegating Serializer and Deserializer for more information.

D.5.12. Testing Changes

The KafkaTestUtils.consumerProps() helper record now sets
ConsumerConfig.AUTO_OFFSET_RESET_CONFIG to earliest by default. See JUnit for more information.

D.6. Changes between 2.3 and 2.4

D.6.1. Kafka Client Version

This version requires the 2.4.0 kafka-clients or higher and supports the new incremental
rebalancing feature.

D.6.2. ConsumerAwareRebalanceListener

Like ConsumerRebalancelistener, this interface now has an additional method onPartitionsLost.
Refer to the Apache Kafka documentation for more information.

Unlike the ConsumerRebalancelListener, The default implementation does not call
onPartitionsRevoked. Instead, the listener container will call that method after it has called
onPartitionsLost; you should not, therefore, do the same when implementing
ConsumerAwareRebalanceListener.

See the IMPORTANT note at the end of Rebalancing Listeners for more information.

D.6.3. GenericErrorHandler

The isAckAfterHandle() default implementation now returns true by default.

D.6.4. KafkaTemplate

The KafkaTemplate now supports non-transactional publishing alongside transactional. See
KafkaTemplate Transactional and non-Transactional Publishing for more information.

D.6.5. AggregatingReplyingKafkaTemplate

The releaseStrategy is now a BiConsumer. It is now called after a timeout (as well as when records
arrive); the second parameter is true in the case of a call after a timeout.

See Aggregating Multiple Replies for more information.

238

D.6.6. Listener Container

The ContainerProperties provides an authorizationExceptionRetryInterval option to let the listener
container to retry after any AuthorizationException is thrown by the KafkaConsumer. See its JavaDocs
and Using KafkaMessagelListenerContainer for more information.

D.6.7. @KafkalListener

The @Kafkalistener annotation has a new property splitIterables; default true. When a replying
listener returns an Iterable this property controls whether the return result is sent as a single
record or a record for each element is sent. See Forwarding Listener Results using @SendTo for more
information

Batch listeners can now be configured with a BatchToRecordAdapter; this allows, for example, the
batch to be processed in a transaction while the listener gets one record at a time. With the default
implementation, a ConsumerRecordRecoverer can be used to handle errors within the batch, without
stopping the processing of the entire batch - this might be useful when using transactions. See
Transactions with Batch Listeners for more information.

D.6.8. Kafka Streams

The StreamsBuilderFactoryBean accepts a new property KafkaStreamsInfrastructureCustomizer. This
allows configuration of the builder and/or topology before the stream is created. See Spring
Management for more information.

D.7. Changes Between 2.2 and 2.3

This section covers the changes made from version 2.2 to version 2.3.

D.7.1. Tips, Tricks and Examples

A new chapter Tips, Tricks and Examples has been added. Please submit GitHub issues and/or pull
requests for additional entries in that chapter.

D.7.2. Kafka Client Version

This version requires the 2.3.0 kafka-clients or higher.

D.7.3. Class/Package Changes

TopicPartitionInitialOffset is deprecated in favor of TopicPartitionOffset.

D.7.4. Configuration Changes

Starting with version 2.3.4, the missingTopicsFatal container property is false by default. When this
is true, the application fails to start if the broker is down; many users were affected by this change;
given that Kafka is a high-availability platform, we did not anticipate that starting an application
with no active brokers would be a common use case.

239

D.7.5. Producer and Consumer Factory Changes

The DefaultKafkaProducerFactory can now be configured to create a producer per thread. You can
also provide Supplier<Serializer> instances in the constructor as an alternative to either
configured classes (which require no-arg constructors), or constructing with Serializer instances,
which are then shared between all Producers. See Using DefaultKafkaProducerFactory for more
information.

The same option is available with Supplier<Deserializer> instances in DefaultKafkaConsumerFactory.
See Using KafkaMessagelListenerContainer for more information.

D.7.6. Listener Container Changes

Previously, error handlers received ListenerExecutionFailedException (with the actual listener
exception as the cause) when the listener was invoked using a listener adapter (such as
@KafkalListener s). Exceptions thrown by native GenericMessagelistener s were passed to the error
handler unchanged. Now a ListenerExecutionFailedException is always the argument (with the
actual listener exception as the cause), which provides access to the container’s group.id property.

Because the listener container has it’s own mechanism for committing offsets, it prefers the Kafka
ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG to be false. It now sets it to false automatically unless
specifically set in the consumer factory or the container’s consumer property overrides.

The ackOnError property is now false by default.

It is now possible to obtain the consumer’s group.id property in the listener method. See Obtaining
the Consumer group.id for more information.

The container has a new property recordInterceptor allowing records to be inspected or modified
before invoking the listener. A CompositeRecordInterceptor is also provided in case you need to
invoke multiple interceptors. See Message Listener Containers for more information.

The ConsumerSeekAware has new methods allowing you to perform seeks relative to the beginning,
end, or current position and to seek to the first offset greater than or equal to a time stamp. See
Seeking to a Specific Offset for more information.

A convenience class AbstractConsumerSeekAware is now provided to simplify seeking. See Seeking to a
Specific Offset for more information.

The ContainerProperties provides an idleBetweenPolls option to let the main loop in the listener
container to sleep between KafkaConsumer.poll() calls. See its JavaDocs and Using
KafkaMessageListenerContainer for more information.

When using AckMode .MANUAL (or MANUAL_IMMEDIATE) you can now cause a redelivery by calling nack on
the Acknowledgment. See Committing Offsets for more information.

Listener performance can now be monitored using Micrometer Timer s. See Monitoring for more
information.

The containers now publish additional consumer lifecycle events relating to startup. See
Application Events for more information.

240

Transactional batch listeners can now support zombie fencing. See Transactions for more
information.

The listener container factory can now be configured with a ContainerCustomizer to further
configure each container after it has been created and configured. See Container factory for more
information.

D.7.7. ErrorHandler Changes

The SeekToCurrentErrorHandler now treats certain exceptions as fatal and disables retry for those,
invoking the recoverer on first failure.

The SeekToCurrentErrorHandler and SeekToCurrentBatchErrorHandler can now be configured to apply
a BackOff (thread sleep) between delivery attempts.

Starting with version 2.3.2, recovered records' offsets will be committed when the error handler
returns after recovering a failed record.

The DeadLetterPublishingRecoverer, when used in conjunction with an ErrorHandlingDeserializer,
now sets the payload of the message sent to the dead-letter topic, to the original value that could not
be deserialized. Previously, it was null and wuser code needed to extract the
DeserializationException from the message headers. See Publishing Dead-letter Records for more
information.

D.7.8. TopicBuilder

A new class TopicBuilder is provided for more convenient creation of NewTopic @Bean s for automatic
topic provisioning. See Configuring Topics for more information.

D.7.9. Kafka Streams Changes

You can now perform additional configuration of the StreamsBuilderFactoryBean created by
@EnableKafkaStreams. See Streams Configuration for more information.

A RecoveringDeserializationExceptionHandler is now provided which allows records with
deserialization errors to be recovered. It can be wused in conjunction with a
DeadLetterPublishingRecoverer to send these records to a dead-letter topic. See Recovery from
Deserialization Exceptions for more information.

The HeaderEnricher transformer has been provided, using SpEL to generate the header values. See
Header Enricher for more information.

The MessagingTransformer has been provided. This allows a Kafka streams topology to interact with
a spring-messaging component, such as a Spring Integration flow. See MessagingProcessor and See
[Calling a Spring Integration Flow from a KStream] for more information.

D.7.10. JSON Component Changes

Now all the JSON-aware components are configured by default with a Jackson ObjectMapper
produced by the JacksonUtils.enhancedObjectMapper(). The JsonDeserializer now provides

241

https://docs.spring.io/spring-integration/docs/current/reference/html/kafka.html#streams-integration
https://docs.spring.io/spring-integration/docs/current/reference/html/kafka.html#streams-integration

TypeReference-based constructors for better handling of target generic container types. Also a
JacksonMimeTypeModule has been introduced for serialization of org.springframework.util.MimeType
to plain string. See its JavaDocs and Serialization, Deserialization, and Message Conversion for
more information.

A ByteArrayJsonMessageConverter has been provided as well as a new super class for all Json
converters, JsonMessageConverter. Also, a StringOrBytesSerializer is now available; it can serialize
byte[], Bytes and String values in ProducerRecord s. See Spring Messaging Message Conversion for
more information.

The JsonSerializer, JsonDeserializer and JsonSerde now have fluent APIs to make programmatic
configuration simpler. See the javadocs, Serialization, Deserialization, and Message Conversion,
and Streams JSON Serialization and Deserialization for more informaion.

D.7.11. ReplyingKafkaTemplate

When a reply times out, the future is completed exceptionally with a KafkaReplyTimeoutException
instead of a KafkaException.

Also, an overloaded sendAndReceive method is now provided that allows specifying the reply
timeout on a per message basis.

D.7.12. AggregatingReplyingKafkaTemplate

Extends the ReplyingKafkaTemplate by aggregating replies from multiple receivers. See Aggregating
Multiple Replies for more information.

D.7.13. Transaction Changes

You can now override the producer factory’s transactionIdPrefix on the KafkaTemplate and
KafkaTransactionManager. See transactionIdPrefix for more information.

D.7.14. New Delegating Serializer/Deserializer

The framework now provides a delegating Serializer and Deserializer, utilizing a header to enable
producing and consuming records with multiple key/value types. See Delegating Serializer and
Deserializer for more information.

D.7.15. New Retrying Deserializer

The framework now provides a delegating RetryingDeserializer, to retry serialization when
transient errors such as network problems might occur. See Retrying Deserializer for more
information.

D.8. Changes Between 2.1 and 2.2

242

D.8.1. Kafka Client Version

This version requires the 2.0.0 kafka-clients or higher.

D.8.2. Class and Package Changes

The ContainerProperties class has been moved from org.springframework.kafka.listener.config to
org.springframework.kafka.listener.

The AckMode enum has been moved from AbstractMessagelistenerContainer to ContainerProperties.

The setBatchErrorHandler() and setErrorHandler() methods have been moved from
ContainerProperties to both AbstractMessagelistenerContainer and
AbstractKafkalistenerContainerFactory.

D.8.3. After Rollback Processing

A new AfterRollbackProcessor strategy is provided. See After-rollback Processor for more
information.

D.8.4. ConcurrentKafkalistenerContainerFactory Changes

You can now use the ConcurrentKafkalistenerContainerFactory to create and configure any
ConcurrentMessagelListenerContainer, not only those for @Kafkalistener annotations. See Container
factory for more information.

D.8.5. Listener Container Changes

A new container property (missingTopicsFatal) has been added. See Using
KafkaMessagelListenerContainer for more information.

A ConsumerStoppedEvent is now emitted when a consumer stops. See Thread Safety for more
information.

Batch listeners can optionally receive the complete ConsumerRecords<?, 7> object instead of a
List<ConsumerRecord<?, ?>.See Batch Listeners for more information.

The DefaultAfterRollbackProcessor and SeekToCurrentErrorHandler can now recover (skip) records
that keep failing, and, by default, does so after 10 failures. They can be configured to publish failed
records to a dead-letter topic.

Starting with version 2.2.4, the consumer’s group ID can be used while selecting the dead letter
topic name.

The ConsumerStoppingEvent has been added. See Application Events for more information.

The SeekToCurrentErrorHandler can now be configured to commit the offset of a recovered record
when the container is configured with AckMode.MANUAL_IMMEDIATE (since 2.2.4).

243

D.8.6. @KafkaListener Changes

You can now override the concurrency and autoStartup properties of the listener container factory
by setting properties on the annotation. You can now add configuration to determine which
headers (if any) are copied to a reply message. See @KafkalListener Annotation for more information.

You can now use @Kafkalistener as a meta-annotation on your own annotations. See @KafkalListener
as a Meta Annotation for more information.

It is now easier to configure a Validator for @Payload validation. See @Kafkalistener @Payload
Validation for more information.

You can now specify kafka consumer properties directly on the annotation; these will override any
properties with the same name defined in the consumer factory (since version 2.2.4). See
Annotation Properties for more information.

D.8.7. Header Mapping Changes

Headers of type MimeType and MediaType are now mapped as simple strings in the RecordHeader value.
Previously, they were mapped as JSON and only MimeType was decoded. MediaType could not be
decoded. They are now simple strings for interoperability.

Also, the DefaultKafkaHeaderMapper has a new addToStringClasses method, allowing the specification
of types that should be mapped by using toString() instead of JSON. See Message Headers for more
information.

D.8.8. Embedded Kafka Changes

The KafkaEmbedded class and its KafkaRule interface have been deprecated in favor of the
EmbeddedKafkaBroker and its JUnit 4 EmbeddedKafkaRule wrapper. The @EmbeddedKafka annotation now
populates an EmbeddedKafkaBroker bean instead of the deprecated KafkaEmbedded. This change allows
the use of @EmbeddedKafka in JUnit 5 tests. The @EmbeddedKafka annotation now has the attribute ports
to specify the port that populates the EmbeddedKafkaBroker. See Testing Applications for more
information.

D.8.9. JsonSerializer/Deserializer Enhancements
You can now provide type mapping information by using producer and consumer properties.

New constructors are available on the deserializer to allow overriding the type header information
with the supplied target type.

The JsonDeserializer now removes any type information headers by default.

You can now configure the JsonDeserializer to ignore type information headers by using a Kafka
property (since 2.2.3).

See Serialization, Deserialization, and Message Conversion for more information.

244

D.8.10. Kafka Streams Changes

The streams configuration bean must now be a KafkaStreamsConfiguration object instead of a
StreamsConfig object.

The StreamsBuilderFactoryBean has been moved from package ---core to ---config.

The KafkaStreamBrancher has been introduced for better end-user experience when conditional
branches are built on top of KStream instance.

See Apache Kafka Streams Support and Configuration for more information.

D.8.11. Transactional ID

When a transaction is started by the listener container, the transactional.id is now the
transactionIdPrefix appended with <group.id>.<topic>.<partition>. This change allows proper
fencing of zombies, as described here.

D.9. Changes Between 2.0 and 2.1

D.9.1. Kafka Client Version
This version requires the 1.0.0 kafka-clients or higher.

The 1.1.x client is supported natively in version 2.2.

D.9.2. JSON Improvements

The StringJsonMessageConverter and JsonSerializer now add type information in Headers, letting the
converter and JsonDeserializer create specific types on reception, based on the message itself
rather than a fixed configured type. See Serialization, Deserialization, and Message Conversion for
more information.

D.9.3. Container Stopping Error Handlers

Container error handlers are now provided for both record and batch listeners that treat any
exceptions thrown by the listener as fatal/ They stop the container. See Handling Exceptions for
more information.

D.9.4. Pausing and Resuming Containers

The listener containers now have pause() and resume() methods (since version 2.1.3). See Pausing
and Resuming Listener Containers for more information.

D.9.5. Stateful Retry

Starting with version 2.1.3, you can configure stateful retry. See Stateful Retry for more
information.

245

https://www.confluent.io/blog/transactions-apache-kafka/

D.9.6. Client ID

Starting with version 2.1.1, you can now set the client.id prefix on @KafkalListener. Previously, to
customize the client ID, you needed a separate consumer factory (and container factory) per
listener. The prefix is suffixed with -n to provide unique client IDs when you use concurrency.

D.9.7. Logging Offset Commits

By default, logging of topic offset commits is performed with the DEBUG logging level. Starting with
version 2.1.2, a new property in ContainerProperties called commitLogLevel lets you specify the log
level for these messages. See Using KafkaMessagelListenerContainer for more information.

D.9.8. Default @KafkaHandler

Starting with version 2.1.3, you can designate one of the @KafkaHandler annotations on a class-level
@KafkalListener as the default. See @Kafkalistener on a Class for more information.

D.9.9. ReplyingKafkaTemplate

Starting with version 2.1.3, a subclass of KafkaTemplate is provided to support request/reply
semantics. See Using ReplyingKafkaTemplate for more information.

D.9.10. ChainedKafkaTransactionManager

Version 2.1.3 introduced the ChainedKafkaTransactionManager. (It is now deprecated).

D.9.11. Migration Guide from 2.0

See the 2.0 to 2.1 Migration guide.

D.10. Changes Between 1.3 and 2.0

D.10.1. Spring Framework and Java Versions

The Spring for Apache Kafka project now requires Spring Framework 5.0 and Java 8.

D.10.2. @KafkalListener Changes

You can now annotate @Kafkalistener methods (and classes and @KafkaHandler methods) with
@SendTo. If the method returns a result, it is forwarded to the specified topic. See Forwarding
Listener Results using @SendTo for more information.

D.10.3. Message Listeners

Message listeners can now be aware of the Consumer object. See Message Listeners for more
information.

246

https://github.com/spring-projects/spring-kafka/wiki/Spring-for-Apache-Kafka-2.0-to-2.1-Migration-Guide

D.10.4. Using ConsumerAwareRebalancelistener

Rebalance listeners can now access the Consumer object during rebalance notifications. See
Rebalancing Listeners for more information.

D.11. Changes Between 1.2 and 1.3

D.11.1. Support for Transactions

The 0.11.0.0 client library added support for transactions. The KafkaTransactionManager and other
support for transactions have been added. See Transactions for more information.

D.11.2. Support for Headers

The 0.11.0.0 client library added support for message headers. These can now be mapped to and
from spring-messaging MessageHeaders. See Message Headers for more information.

D.11.3. Creating Topics

The 0.11.0.0 client library provides an AdminClient, which you can use to create topics. The
KafkaAdmin uses this client to automatically add topics defined as @Bean instances.

D.11.4. Support for Kafka Timestamps

KafkaTemplate now supports an API to add records with timestamps. New KafkaHeaders have been
introduced regarding timestamp support. Also, new KafkaConditions.timestamp() and
KafkaMatchers.hasTimestamp() testing utilities have been added. See Using KafkaTemplate,
@Kafkalistener Annotation, and Testing Applications for more details.

D.11.5. @KafkalListener Changes

You can now configure a KafkalListenerErrorHandler to handle exceptions. See Handling Exceptions
for more information.

By default, the @Kafkalistener id property is now used as the group.id property, overriding the
property configured in the consumer factory (if present). Further, you can explicitly configure the
groupId on the annotation. Previously, you would have needed a separate container factory (and
consumer factory) to use different group.id values for listeners. To restore the previous behavior of
using the factory configured group.id, set the idIsGroup property on the annotation to false.

D.11.6. @EmbeddedKafka Annotation

For convenience, a test class-level @EmbeddedKafka annotation is provided, to register KafkaEmbedded
as a bean. See Testing Applications for more information.

D.11.7. Kerberos Configuration

Support for configuring Kerberos is now provided. See JAAS and Kerberos for more information.

247

D.12. Changes Between 1.1 and 1.2

This version uses the 0.10.2.x client.

D.13. Changes Between 1.0 and 1.1

D.13.1. Kafka Client

This version uses the Apache Kafka 0.10.x.xX client.

D.13.2. Batch Listeners

Listeners can be configured to receive the entire batch of messages returned by the consumer.poll()
operation, rather than one at a time.

D.13.3. Null Payloads

Null payloads are used to “delete” keys when you use log compaction.

D.13.4. Initial Offset

When explicitly assigning partitions, you can now configure the initial offset relative to the current
position for the consumer group, rather than absolute or relative to the current end.

D.13.5. Seek

You can now seek the position of each topic or partition. You can use this to set the initial position
during initialization when group management is in use and Kafka assigns the partitions. You can
also seek when an idle container is detected or at any arbitrary point in your application’s
execution. See Seeking to a Specific Offset for more information.

248

	Spring for Apache Kafka
	Table of Contents
	Chapter 1. Preface
	Chapter 2. What’s new?
	2.1. What’s New in 3.0 Since 2.9
	2.1.1. Kafka Client Version
	2.1.2. Exactly Once Semantics
	2.1.3. Observation
	2.1.4. Native Images
	2.1.5. Global Single Embedded Kafka
	2.1.6. Retryable Topics Changes
	2.1.7. Listener Container Changes
	2.1.8. KafkaTemplate Changes
	2.1.9. ReplyingKafkaTemplate Changes
	2.1.10. @KafkaListener Changes
	2.1.11. KafkaHeaders Changes
	2.1.12. Testing Changes

	2.2. JsonDeserializer (Since 3.0.12)

	Chapter 3. Introduction
	3.1. Quick Tour
	3.1.1. Compatibility
	3.1.2. Getting Started
	Spring Boot Consumer App
	Spring Boot Producer App
	With Java Configuration (No Spring Boot)

	Chapter 4. Reference
	4.1. Using Spring for Apache Kafka
	4.1.1. Connecting to Kafka
	Factory Listeners

	4.1.2. Configuring Topics
	4.1.3. Sending Messages
	Using KafkaTemplate
	Using RoutingKafkaTemplate
	Using DefaultKafkaProducerFactory
	Using ReplyingKafkaTemplate
	Reply Type Message<?>
	Aggregating Multiple Replies

	4.1.4. Receiving Messages
	Message Listeners
	Message Listener Containers
	Manually Committing Offsets
	@KafkaListener Annotation
	Obtaining the Consumer group.id
	Container Thread Naming
	@KafkaListener as a Meta Annotation
	@KafkaListener on a Class
	@KafkaListener Attribute Modification
	@KafkaListener Lifecycle Management
	@KafkaListener @Payload Validation
	Rebalancing Listeners
	Forwarding Listener Results using @SendTo
	Filtering Messages
	Retrying Deliveries
	Starting @KafkaListener s in Sequence
	Using KafkaTemplate to Receive

	4.1.5. Listener Container Properties
	4.1.6. Dynamically Creating Containers
	MessageListener Implementations
	Prototype Beans

	4.1.7. Application Events
	Detecting Idle and Non-Responsive Consumers
	Event Consumption

	4.1.8. Topic/Partition Initial Offset
	4.1.9. Seeking to a Specific Offset
	4.1.10. Container factory
	4.1.11. Thread Safety
	4.1.12. Monitoring
	Monitoring Listener Performance
	Monitoring KafkaTemplate Performance
	Micrometer Native Metrics
	Micrometer Observation

	4.1.13. Transactions
	Overview
	Using KafkaTransactionManager
	Transaction Synchronization
	Using Consumer-Initiated Transactions
	KafkaTemplate Local Transactions
	transactionIdPrefix
	KafkaTemplate Transactional and non-Transactional Publishing
	Transactions with Batch Listeners

	4.1.14. Exactly Once Semantics
	4.1.15. Wiring Spring Beans into Producer/Consumer Interceptors
	4.1.16. Producer Interceptor Managed in Spring
	4.1.17. Pausing and Resuming Listener Containers
	4.1.18. Pausing and Resuming Partitions on Listener Containers
	4.1.19. Serialization, Deserialization, and Message Conversion
	Overview
	String serialization
	JSON
	Delegating Serializer and Deserializer
	Retrying Deserializer
	Spring Messaging Message Conversion
	Using ErrorHandlingDeserializer
	Payload Conversion with Batch Listeners
	ConversionService Customization
	Adding custom HandlerMethodArgumentResolver to @KafkaListener

	4.1.20. Message Headers
	4.1.21. Null Payloads and Log Compaction of 'Tombstone' Records
	4.1.22. Handling Exceptions
	Listener Error Handlers
	Container Error Handlers
	Back Off Handlers
	DefaultErrorHandler
	Conversion Errors with Batch Error Handlers
	Retrying Complete Batches
	Container Stopping Error Handlers
	Delegating Error Handler
	Logging Error Handler
	Using Different Common Error Handlers for Record and Batch Listeners
	Common Error Handler Summary
	Legacy Error Handlers and Their Replacements
	After-rollback Processor
	Delivery Attempts Header
	Listener Info Header
	Publishing Dead-letter Records
	Managing Dead Letter Record Headers
	ExponentialBackOffWithMaxRetries Implementation

	4.1.23. JAAS and Kerberos

	4.2. Non-Blocking Retries
	4.2.1. How The Pattern Works
	4.2.2. Back Off Delay Precision
	Overview and Guarantees

	4.2.3. Configuration
	Using the @RetryableTopic annotation
	Using RetryTopicConfiguration beans
	Configuring Global Settings and Features

	4.2.4. Programmatic Construction
	4.2.5. Features
	BackOff Configuration
	Global timeout
	Exception Classifier
	Include and Exclude Topics
	Topics AutoCreation
	Failure Header Management
	Custom DeadLetterPublishingRecoverer

	4.2.6. Combining Blocking and Non-Blocking Retries
	4.2.7. Accessing Delivery Attempts
	4.2.8. Topic Naming
	Retry Topics and Dlt Suffixes
	Appending the Topic’s Index or Delay
	Single Topic for Fixed Delay Retries
	Single Topic for maxInterval Exponential Delay
	Custom naming strategies

	4.2.9. Multiple Listeners, Same Topic(s)
	4.2.10. Dlt Strategies
	Dlt Processing Method
	DLT Failure Behavior
	Configuring No DLT

	4.2.11. Specifying a ListenerContainerFactory
	4.2.12. Accessing Topics' Information at Runtime
	4.2.13. Changing KafkaBackOffException Logging Level

	4.3. Apache Kafka Streams Support
	4.3.1. Basics
	4.3.2. Spring Management
	4.3.3. KafkaStreams Micrometer Support
	4.3.4. Streams JSON Serialization and Deserialization
	4.3.5. Using KafkaStreamBrancher
	4.3.6. Configuration
	4.3.7. Header Enricher
	4.3.8. MessagingProcessor
	4.3.9. Recovery from Deserialization Exceptions
	4.3.10. Kafka Streams Example

	4.4. Testing Applications
	4.4.1. KafkaTestUtils
	4.4.2. JUnit
	4.4.3. Configuring Topics
	4.4.4. Using the Same Broker(s) for Multiple Test Classes
	4.4.5. @EmbeddedKafka Annotation
	4.4.6. @EmbeddedKafka Annotation with JUnit5
	4.4.7. Embedded Broker in @SpringBootTest Annotations
	JUnit4 Class Rule
	@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean

	4.4.8. Hamcrest Matchers
	4.4.9. AssertJ Conditions
	4.4.10. Example
	4.4.11. Mock Consumer and Producer

	Chapter 5. Tips, Tricks and Examples
	5.1. Manually Assigning All Partitions
	5.2. Examples of Kafka Transactions with Other Transaction Managers
	5.3. Customizing the JsonSerializer and JsonDeserializer

	Chapter 6. Other Resources
	Appendix A: Override Spring Boot Dependencies
	Appendix B: Micrometer Observation Documentation
	B.1. Observability - Metrics
	B.1.1. Listener Observation
	B.1.2. Template Observation

	B.2. Observability - Spans
	B.2.1. Listener Observation Span
	B.2.2. Template Observation Span

	B.3. Observability - Conventions

	Appendix C: Native Images
	Appendix D: Change History
	D.1. What’s New in 2.9 since 2.8
	D.1.1. Kafka Client Version
	D.1.2. Error Handler Changes
	D.1.3. Listener Container Changes
	D.1.4. Header Mapper Changes
	D.1.5. KafkaTemplate Changes
	D.1.6. ReplyingKafkaTemplate Changes

	D.2. What’s New in 2.8 Since 2.7
	D.2.1. Kafka Client Version
	D.2.2. Package Changes
	D.2.3. Out of Order Manual Commits
	D.2.4. @KafkaListener Changes
	D.2.5. KafkaTemplate Changes
	D.2.6. CommonErrorHandler Added
	D.2.7. Listener Container Changes
	D.2.8. Serializer/Deserializer Changes
	D.2.9. DeadLetterPublishingRecover Changes
	D.2.10. Retryable Topics Changes

	D.3. Changes between 2.6 and 2.7
	D.3.1. Kafka Client Version
	D.3.2. Non-Blocking Delayed Retries Using Topics
	D.3.3. Listener Container Changes
	D.3.4. @KafkaListener Changes
	D.3.5. DeadLetterPublishingRecover Changes
	D.3.6. ChainedKafkaTransactionManager is Deprecated
	D.3.7. ReplyingKafkaTemplate Changes
	D.3.8. Kafka Streams Changes
	D.3.9. KafkaAdmin Changes
	D.3.10. MessageConverter Changes
	D.3.11. Sequencing @KafkaListener s
	D.3.12. ExponentialBackOffWithMaxRetries
	D.3.13. Conditional Delegating Error Handlers

	D.4. Changes between 2.5 and 2.6
	D.4.1. Kafka Client Version
	D.4.2. Listener Container Changes
	D.4.3. @KafkaListener Changes
	D.4.4. ErrorHandler Changes
	D.4.5. Producer Factory Changes

	D.5. Changes between 2.4 and 2.5
	D.5.1. Consumer/Producer Factory Changes
	D.5.2. StreamsBuilderFactoryBean Changes
	D.5.3. Kafka Client Version
	D.5.4. Class/Package Changes
	D.5.5. Delivery Attempts Header
	D.5.6. @KafkaListener Changes
	D.5.7. Listener Container Changes
	D.5.8. KafkaTemplate Changes
	D.5.9. Kafka String Serializer/Deserializer
	D.5.10. JsonDeserializer
	D.5.11. Delegating Serializer/Deserializer
	D.5.12. Testing Changes

	D.6. Changes between 2.3 and 2.4
	D.6.1. Kafka Client Version
	D.6.2. ConsumerAwareRebalanceListener
	D.6.3. GenericErrorHandler
	D.6.4. KafkaTemplate
	D.6.5. AggregatingReplyingKafkaTemplate
	D.6.6. Listener Container
	D.6.7. @KafkaListener
	D.6.8. Kafka Streams

	D.7. Changes Between 2.2 and 2.3
	D.7.1. Tips, Tricks and Examples
	D.7.2. Kafka Client Version
	D.7.3. Class/Package Changes
	D.7.4. Configuration Changes
	D.7.5. Producer and Consumer Factory Changes
	D.7.6. Listener Container Changes
	D.7.7. ErrorHandler Changes
	D.7.8. TopicBuilder
	D.7.9. Kafka Streams Changes
	D.7.10. JSON Component Changes
	D.7.11. ReplyingKafkaTemplate
	D.7.12. AggregatingReplyingKafkaTemplate
	D.7.13. Transaction Changes
	D.7.14. New Delegating Serializer/Deserializer
	D.7.15. New Retrying Deserializer

	D.8. Changes Between 2.1 and 2.2
	D.8.1. Kafka Client Version
	D.8.2. Class and Package Changes
	D.8.3. After Rollback Processing
	D.8.4. ConcurrentKafkaListenerContainerFactory Changes
	D.8.5. Listener Container Changes
	D.8.6. @KafkaListener Changes
	D.8.7. Header Mapping Changes
	D.8.8. Embedded Kafka Changes
	D.8.9. JsonSerializer/Deserializer Enhancements
	D.8.10. Kafka Streams Changes
	D.8.11. Transactional ID

	D.9. Changes Between 2.0 and 2.1
	D.9.1. Kafka Client Version
	D.9.2. JSON Improvements
	D.9.3. Container Stopping Error Handlers
	D.9.4. Pausing and Resuming Containers
	D.9.5. Stateful Retry
	D.9.6. Client ID
	D.9.7. Logging Offset Commits
	D.9.8. Default @KafkaHandler
	D.9.9. ReplyingKafkaTemplate
	D.9.10. ChainedKafkaTransactionManager
	D.9.11. Migration Guide from 2.0

	D.10. Changes Between 1.3 and 2.0
	D.10.1. Spring Framework and Java Versions
	D.10.2. @KafkaListener Changes
	D.10.3. Message Listeners
	D.10.4. Using ConsumerAwareRebalanceListener

	D.11. Changes Between 1.2 and 1.3
	D.11.1. Support for Transactions
	D.11.2. Support for Headers
	D.11.3. Creating Topics
	D.11.4. Support for Kafka Timestamps
	D.11.5. @KafkaListener Changes
	D.11.6. @EmbeddedKafka Annotation
	D.11.7. Kerberos Configuration

	D.12. Changes Between 1.1 and 1.2
	D.13. Changes Between 1.0 and 1.1
	D.13.1. Kafka Client
	D.13.2. Batch Listeners
	D.13.3. Null Payloads
	D.13.4. Initial Offset
	D.13.5. Seek

