Spring LDA

Reference Documentation

Version 1.1.2

December 2006

Copyright © 2005-2006 Mattias Arthursson, Ulrik Sandberg

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

(1=, =0 2SSO PPERPR
O I 1 oo [ot A o PP PPERR
L1, OVEIVIEBIW ..ottt ettt e+ttt e e e ekt e e e e a b bt oo ekttt e e e en bt e e e e e nbb e e e e e nnbe e e e e nnbneeeeann 1
1.2, PaCKBOING OVEIVIEIWeeiieiiiiiie ettt ettt e e e e ek e e e e et e e e e e e e e e e nne e e e e annne e e e e 2
1.3, PaCKAJE SLIUCIUIEeveiiieiei ittt e e e e e e e e e e e s ettt e e e e e e e s e s santbbeeeeeaeeseenssrnnes 3
1.3.1. 0rg.springframeWOork.ldapccueiiiiiiiieei e 3
1.3.2. org.springframework.|dap.SUPPOITuvvieiiee ittt e e e e e e e e e e eanes 3
1.3.3. org.springframework.|dap.support.authentiCationccccovveeeeeiiiieee e 3
1.3.4. org.springframework.ldap.SUppOrt.CONLIolccooeeeeiiiiei i 3
1.3.5. org.springframework.|dap.SUpPOrt.filtercooiiiiiiiiiiie e 3
1.3.6. org.springframework.ldap.utilcoooiiiiiiiii e 4
S o oo o AP 4
2. BASICOPENALIONSeeeiiiiiiiiee ettt ettt e e ettt e e e b et e e e st e et e e e bt et e e e e a b e e e e e R b e e e e e e e e e e nne e s
2.1. Search and Lookup Using AttributeSMapperccooooeieieiiiie e 5
2.2. BUIlAING DYNAMIC FITEIS ..ottt e e e s 6
2.3. Building Dynamic DistinguiShed NaMEScooiiiiiiiiiiiiie e 7
2.4. Binding and UNDINGINGcoooiiiiiiiiiie e e s e e e e s s et e e e e e e e e e nannrnees 8
241, BINOING DEIAveeeeiiiiiie ettt e e s e e s 8
2.4.2. UNDINAING DALAcvviiiiieiii e e e e e e e e s aaa e 8
P2 T Y oo 11 Y/ 1 oo O PP O PP PP PRP TP 8
2.5.1. Modifyingusing rebindcooooiiiii i 9
2.5.2. Modifying using ModifyATHDULESoviiiiiiii e 9
2.6. SAMPIE APPHICALIONSeeeiiieeeieeitei ettt e e e e e e ettt e e e e e e e s e nneeteeeeaaessaanteneeeaeaaeeeaansnennes 9
3. DirObjectFactory and Dir CONtEXTATAPLEruvviiiieeee e e e e aeees
R0 150 N 1 11 o [o 1 o o USRS 10
3.2. Search and Lookup Using CONEXIMADPENuuviiiiieeeiiiiiiiieieeeee e e eeiiiteee e e e e e e s s sianrnrereeaeeesananes 10
3.3. Binding and Modifying USing CONtEXIM@ADPEYceeiiiiiieeiiiiriee ettt 10
B.3.L BiNAING oo 10
1R 2 ¥ oo [1Y/ 1 oo PP PP POPPPPPPPPII 11
3.4. A Complete PersonNDan ClaSSuuuiiiiieeiiiiiiieiie e e e ettt e e e e e e et e e e e e e e s e sannneeereeaaeeeaannes 12
4. Adding Missing Overloaded APl Methodsoeeviiieiiiiiiiece e
4.1. Implementing Custom Search MEtNOUSccoiiiiiiiiiiiiee e 14
4.2. Implementing Other Custom Context MethOdSc.oociiiiiieiiie e, 15
5. Processing the DIrCONTEXEuueeiiiiiieieeiiii ettt e e s e e s e e e e st e e e s anbn e e e e e nnnneee s
5.1. Custom DirContext Pre/POSIPrOCESSINGccooiviiieieie e 16
5.2. Implementing a Request Control DirCoNtEXIPIOCESSONcvvveeiiiiciiiieiiee e 16
5.3. Paged SearCh RESUITSooiiiiiiiieiiii et e e s 17
L @001 Lo 8 =14 o o PSSP
6.1. ContextSOUrce CONFIGUIATONciiuieieeiiiieee e sttt e e et e e e et e e et e e e e e e s st e e e s anee e e e s annneee s 19
B.1.1. LDAP SEIVEN URLSoiiiiieiiiiiie ettt e et e e e st e e e et ee e s snnneeeeannneeeeas 19
B.1.2. AULNENLICALIONeiiiiieiie e e e e e e e e s et e e e e e e e e s snnrereeeeaeeas 19
B.1.3. POOIING «coeeii e 20
6.1.4. Advanced ContextSource Configurationccccccooeiciiiiiiriee e 20
6.2. LdapTemplate CONfIQUILIONccuurieiiiieee et e e s e e e s 21
6.2.1. Ignoring Partial RESUITEXCEPLIONSccooiciiiiiiieeee e e e 21
Spring LDAP (Version 1.1.2) ii

Preface

The Java Naming and Directory Interface (JNDI) is for LDAP programming what Java Database Connectivity
(JDBC) isfor SQL programming. There are severa similarities between JDBC and JNDI/LDAP (Java LDAP).
Despite being two completely different APIs with different pros and cons, they share a number of less flattering
characteristics:

» They require extensive plumbing code, even to perform the smplest of tasks.
» All resources need to be correctly closed, no matter what happens.
» Exception handling is difficult.

The above points often lead to massive code duplication in common usages of the APIs. Aswe all know, code
duplication is one of the worst code smells. All in all, it boils down to this. JDBC and LDAP programming in
Java are both incredibly dull and repetitive.

Spring JDBC, a part of the Spring framework, provides excellent utilities for simplifying SQL programming.
We need asimilar framework for Java LDAP programming.

Spring LDAP (Version 1.1.2) i

Chapter 1. Introduction

1.1. Overview

Spring-LDAP (http://www.springframework.org/ldap) is a library for ssimpler LDAP programming in Java,
built on the same principles as the JdbcTemplate in Spring JDBC. It completely eliminates the need to worry
about creating and closing LdapCont ext and looping through Nami ngEnuner ation. It also provides a more
comprehensive unchecked Exception hierarchy, built on Spring's Dat aAccessExcepti on. As a bonus, it also
contains classes for dynamically building LDAP filters and DNs (Distinguished Names).

Consider, for example, a method that should search some storage for all persons and return their namesin alist.
Using JDBC, we would create a connection and execute a query using a statement. We would then loop over
the result set and retrieve the column we want, adding it to a list. In contrast, using Java LDAP, we would
create a context and perform a search using a search filter. We would then loop over the resulting naming
enumeration and retrieve the attribute we want, adding it to alist.

The traditional way of implementing this person name search method in Java LDAP looks like this:

package com exanpl e. dao;

public class Traditional PersonDaol npl i npl enents PersonDao {
public List getAllPersonNanmes() {
Hasht abl e env = new Hasht abl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, "com sun.jndi. | dap.LdapC xFactory");
env. put (Cont ext. PROVI DER_URL, "I dap:/ /| ocal host: 389/ dc=exanpl e, dc=conl') ;

Di r Cont ext ctx;
try {

ctx = new InitialDirContext(env);
} catch (Nam ngException e) {

t hrow new Runti neException(e);

}

Li nkedLi st list = new LinkedList();

Nam ngEnuneration results = null;

try {
SearchControl s controls = new SearchControl s();
control s. set Sear chScope(Sear chCont r ol s. SUBTREE_SCOPE) ;
results = ctx.search("", "(objectclass=person)", controls);

while (results. hasMre()) {
SearchResult searchResult = (SearchResult) results.next();
Attributes attributes = searchResult.getAttributes();
Attribute attr = attributes.get("cn");
String cn = (String) attr.get();
l'ist.add(cn);

}

} catch (NameNot FoundException e) {
/1 The base context was not found.
/] Just clean up and exit.

} catch (Nam ngException e) {
t hrow new Runti neException(e);

} finally {
if (results !'=null) {

try {
results.close();
} catch (Exception e) {
/1 Never mnd this.
}

}
if (ctx !'=null) {
try {
ctx.close();
} catch (Exception e) {
/1 Never mnd this.
}

Spring LDAP (Version 1.1.2) 1

http://www.springframework.org/ldap
http://static.springframework.org/spring/docs/current/api/org/springframework/jdbc/core/JdbcTemplate.html

Introduction

}

return list;

By using the Spring LDAP At t ri but esMapper , we get the exact same functionality with the following code:

package com exanpl e. dao

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl ate

public void setlLdapTenpl at e(LdapTenpl ate | dapTenpl ate) {
this. | dapTenpl ate = | dapTenpl at e
}

public List getAl |l PersonNames() {
return | dapTenpl at e. sear ch(
"", "(objectclass=person)",
new Attri but esMapper() {
public Onject mapFromAttri butes(Attributes attrs)
t hrows Nam ngException {
return attrs.get("cn").get();

}
1)

1.2. Packaging overview

At aminimum, to use Spring LDAP you need:

e spring-ldap (the Spring LDAP library)

e spring-core (miscellaneous utility classes used internally by the framework)

* spring-beans (contains interfaces and classes for manipulating Java beans)

« gpring-dao (exception hierarchy enabling sophisticated error handling independent of the data access
approach in use)

» commons-logging (asimple logging facade, used internally)

» commons-lang (misc utilities, used internally)

« commons-collections (tools for working with collections, used internally)

If your application iswired up using the Spring ApplicationContext, you al so need:

* spring-context (adds the ability for application objects to obtain resources using a consistent API)

If you use the Acegi Aut hent i cat i onSour ce, You a so heed:

e acegi-security

Set up the required beansin your Spring context file and inject the LdapTenpl at e into your data access object:

<beans>

<bean i d="cont ext Source" cl ass="org. spri ngframework. | dap. support.LdapCont ext Sour ce" >
<property name="url" val ue="I|dap://I| ocal host: 389" />
<property name="base" val ue="dc=exanpl e, dc=cont' />
<property name="user Nane" val ue="cn=Manager" />
<property nanme="password" val ue="secret" />
</ bean>

<bean i d="I|dapTenpl ate" cl ass="org. spri ngframework. | dap. LdapTenpl ate" >

Spring LDAP (Version 1.1.2)

Introduction

<constructor-arg ref="context Source" />
</ bean>

<bean i d="nyDat aAccessObj ect" cl ass="com exanpl e. MyDat aAccessOhj ect" >
<property name="|dapTenpl ate" ref="I|dapTenpl ate" />
</ bean>

</ beans>

1.3. Package structure

This section provides an overview of the logica package structure of the Spring LDAP codebase. The
dependencies for each package are clearly noted. A package dependency noted as (optional) means that the
dependency is needed to compile the package but is optionally needed at runtime (depending on your use of the
package). For example, use of Spring LDAP together with Acegi Security entails use of the
org. acegi security package. Cyclic package dependencies are noted with (cycle). These are candidates for
removal in future releases.

1.3.1. org.springframework.ldap

The Idap package contains the central abstractions of the library. These abstractions include
AuthenticationSource, ContextSource, DirContextProcessor, and NameClassPairCallbackHandler. This
package also contains the central class LdapTemplate, plus various mappers and executors.

« Dependencies. |dap.support (cycle), spring-beans, spring-dao, commons-lang, commons-logging

1.3.2. org.springframework.ldap.support

The support package contains supporting implementations of the central interfaces as well as the
DirContextAdapter abstraction.

e Dependencies. Idap, Idap.util, spring-core, spring-beans, commons-lang, commons-collections,
commons-logging

1.3.3. org.springframework.ldap.support.authentication

The support.authentication package contains an implementation of the AuthenticationSource interface that can
be used with Acegi Security.

« Dependencies. |dap, acegi-security (optional), spring-beans, commons-lang, commons-logging

1.3.4. org.springframework.ldap.support.control

The support.control package contains an abstract implementation of the DirContextProcessor interface that can
be used as a basis for processing RequestControls and ResponseControls. There is also a concrete
implementation that handles paged search results. The LDAP Booster Pack is used to get support for controls.

« Dependencies: |dap, LDAP booster pack, spring-core, commons-logging

1.3.5. org.springframework.ldap.support.filter

Spring LDAP (Version 1.1.2) 3

http://www.acegisecurity.org/
http://java.sun.com/products/jndi/

Introduction

The support.filter package contains the Filter abstraction and several implementations of it.

* Dependencies. |dap.support, commons-lang

1.3.6. org.springframework.ldap.util

The util package contains utility classes that are used internally.

» Dependencies: none

For the exact list of jar dependencies, see the Spring LDAP lvy dependency manager descriptor located within
the Spring LDAP distribution at spri ng- | dap/ i vy. xmi

1.4. Support

Spring LDAP 1.2 is supported on Spring 1.2.8 or later.

The community support forum is located at http://forum.springframework.org, and the project web page is
http://www.springframework.org/ldap.

Spring LDAP (Version 1.1.2) 4

http://jayasoft.org/ivy
http://forum.springframework.org
http://www.springframework.org/ldap

Chapter 2. Basic Operations

2.1. Search and Lookup Using AttributesMapper

In this example we will use an At tri but esMapper to easily build a List of al common names of al person
objects.

Example 2.1. AttributesM apper that returnsa single attribute

package com exanpl e. dao;

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

public void setLdapTenpl at e(LdapTenpl ate | dapTenpl ate) {
this.| dapTenpl ate = | dapTenpl at e;

}

public List getAllPersonNanmes() {
return | dapTenpl at e. sear ch(
"(obj ectcl ass=person)",
new Attri but esMapper() {
public oject mapFromAttri butes(Attributes attrs)
t hrows Nam ngException {
return attrs.get("cn").get();

5)s

The inline implementation of At tri but esMapper just gets the desired attribute value from the At t ri but es and
returnsit. Internally, LdapTenpl at e iterates over all entries found, calling the given At t ri but esMapper for each
entry, and collectsthe resultsin alist. Thelist is then returned by the sear ch method.

Note that the At t ri but esMapper implementation could easily be modified to return afull Per son object:

Example 2.2. AttributesM apper that returns a Person object

package com exanpl e. dao;

public cl ass PersonDaol npl inpl enents PersonDao {
private LdapTenpl ate | dapTenpl at e;

private class PersonAttributesMapper inplenents AttributesMapper() {
public Object mapFromAttri butes(Attributes attrs) throws Nam ngException {
Person person = new Person();
person. set Ful | Nane((String)attrs.get("cn").get());
person. set Last Nane((String)attrs.get("sn").get());
person. setDescription((String)attrs.get("description").get());
return person;

}
}
public List getAllPersons() {

return | dapTenpl ate. search("", "(objectclass=person)", new PersonAttri butesMapper();
}

}

If you have the distinguished name (dn) that identifies an entry, you can retrieve the entry directly, without

Spring LDAP (Version 1.1.2) 5

Basic Operations

searching for it. Thisis called alookup in Java LDAP. The following example shows how alookup resultsin a
Person object:

Example 2.3. A lookup resulting in a Per son object

package com exanpl e. dao;

public class PersonDaol npl inplements PersonDao {
private LdapTenpl ate | dapTenpl at e;

public Person findPerson(String dn) {
return (Person) |dapTenpl ate.|ookup(dn, new PersonAttri butesMapper());
}

This will look up the specified dn and pass the found attributes to the supplied At t ri but esMapper , in this case
resulting in a Per son object.

2.2. Building Dynamic Filters

We can build dynamic filters to use in searches, wusing the «classes from the
org. springframework.|dap.support.filter package. Let's say that we want the following filter:
(& obj ect cl ass=per son) (sn=?)), Where we want the ? to be replaced with the value of the parameter
| ast Nanme. Thisis how we do it using the filter support classes:

Example 2.4. Building a sear ch filter dynamically

package com exanpl e. dao;

public cl ass PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

public List getPersonNanmesBylLast Name(String | astNanme) {
AndFilter filter = new AndFilter();
filter.and(new Equal sFilter("objectclass", "person"));
filter.and(new Equal sFilter("sn", |astNange));
return | dapTenpl at e. sear ch(
"", filter.encode(),
new Attri but esMapper () {
public Ooject mapFromAttri butes(Attributes attrs)
t hrows Nam ngException {
return attrs.get("cn").get();

5)s

To perform awildcard search, it's possible to use the Wi t espaceW | dcar dsFi |l ter:

Example 2.5. Building a wildcard search filter

AndFilter filter = new AndFilter();
filter.and(new Equal sFilter("objectclass", "person"));
filter.and(new WitespaceW I dcardsFilter("cn", cn));

Spring LDAP (Version 1.1.2) 6

Basic Operations

Note

In addition to simplifying building of complex search filters, theFi | t er classes also provide proper
escaping of any unsafe characters. This prevents "ldap injection”, where a user might use such
characters to inject unwanted operations into your LDAP operations.

2.3. Building Dynamic Distinguished Names

The standard Name interface represents a generic name, which is basically an ordered sequence of components.
The Nane interface also provides operations on that sequence; e.g., add or renove. LdapTemplate provides an
implementation of the Nane interface: Di stingui shedNane. Using this class will greatly simplify building
distinguished names, especially considering the sometimes complex rules regarding escapings and encodings.
As with the Filter classes this helps preventing potentially malicious data being injected into your LDAP
operations.

The following example illustrates how Distingui shedName can be used to dynamically construct a
distinguished name:

Example 2.6. Building a distinguished name dynamically

package com exanpl e. dao;

i nport org. springfranework. | dap. support. Di stingui shedNane;
i mport javax.nam ng. Nane;

public class PersonDaol npl inplenments PersonDao {
public static final String BASE DN = "dc=exanpl e, dc=cont';

protect ed Name buil dDn(Person p) {
Di stingui shedName dn = new Di sti ngui shedName(BASE_DN) ;
dn. add("c", p.getCountry());
dn. add("ou", p.getConmpany());
dn. add("cn", p.getFullnanme());
return dn;

Assuming that a Person has the following attributes:

country Sweden
conpany Some Company
ful | name Some Person

The code above would then result in the following distinguished name:

cn=Sonme Person, ou=Some Conpany, c=Sweden, dc=exanple, dc=com

In Java 5, there is an implementation of the Name interface: LdapName. If you are in the Java 5 world, you
might as well use LdapName. However, you may still use bi st i ngui shedNane if you so wish.

Spring LDAP (Version 1.1.2) 7

http://java.sun.com/j2se/1.5.0/docs/api/javax/naming/Name.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/naming/ldap/LdapName.html

Basic Operations

2.4. Binding and Unbinding

2.4.1. Binding Data

Inserting data in Java LDAP is called binding. In order to do that, a distinguished name that uniquely identifies
the new entry is required. The following example shows how datais bound using LdapTemplate:

Example 2.7. Binding data using Attributes

package com exanpl e. dao;

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

publ ic void create(Person p) {
Nane dn = buil dDn(p);
| dapTenpl at e. bi nd(dn, null, buildAttributes(p));

private Attributes buil dAttributes(Person p) {
Attributes attrs = new BasicAttributes();
Basi cAttribute ocattr = new Basi cAttribute("objectclass");
ocattr.add("top");
ocattr.add("person");
attrs. put(ocattr);
attrs.put("cn", "Some Person");
attrs. put("sn", "Person");
return attrs;

The Attributes building is—-while dull and verbose--sufficient for many purposes. It is, however, possible to

simplify the binding operation further, which will be described in Chapter 3, DirObjectFactory and
DirContextAdapter.

2.4.2. Unbinding Data

Removing data in Java LDAP is called unbinding. A distinguished name (dn) is required to identify the entry,
just asin the binding operation. The following example shows how data is unbound using LdapTemplate:

Example 2.8. Unbinding data

package com exanpl e. dao;

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

public void del ete(Person p) {
Nane dn = buil dDn(p);
| dapTenpl at e. unbi nd(dn) ;
}
}

2.5. Modifying

Spring LDAP (Version 1.1.2) 8

Basic Operations

In Java LDAP, data can be modified in two ways. either using rebind or modifyAttributes.

2.5.1. Modifying using r ebi nd

A rebi nd isavery crude way to modify data. It's basically an unbi nd followed by abi nd. It looks like this:

Example 2.9. Modifying using rebind

package com exanpl e. dao;

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

publ ic void update(Person p) {
Narme dn = bui | dDn(p);
| dapTenpl at e. rebi nd(dn, null, buil dAttributes(p));

}
}

2.5.2. Modifying using nodi fyAttri but es

If only the modified attributes should be replaced, there is a method called nodi fyAttri but es that takes an
array of modifications:

Example 2.10. M odifying using modifyAttributes

package com exanpl e. dao;

public cl ass PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

public void updateDescription(Person p) {
Name dn = buil dDn(p);
Attribute attr = new Basi cAttribute("description", p.getDescription())
Modi ficationltemitem = new Mdificationlten(DirContext. REPLACE_ATTRI BUTE, attr);
| dapTenpl at e. nodi fyAttri butes(dn, new Mdificationltenf] {iten});

}
}

Building Attributes and Mdificationltem arrays is a lot of work, but as you will see in Chapter 3,
DirObjectFactory and DirContextAdapter, the update operations can be simplified.

2.6. Sample applications

It is recommended that you review the Spring LDAP sample applications included in the release distribution for
best-practice illustrations of the features of thislibrary. A description of each sample is provided below:

1. spring-ldap-person - the sample demonstrating most features.

2. spring-ldap-article - the sample application that was written to accompany a java.net article about Spring
LDAP.

Spring LDAP (Version 1.1.2) 9

http://today.java.net/pub/a/today/2006/04/18/ldaptemplate-java-ldap-made-simple.html

Chapter 3. DirObjectFactory and DirContextAdapter

3.1. Introduction

A little-known--and probably underestimated--feature of the Java LDAP APl is the ability to register a
Di r Obj ect Fact ory to automatically create objects from found contexts. One of the reasons why it is seldom
used is that you will need an implementation of Di r Obj ect Factory that creates instances of a meaningful
implementation of DircContext. The Spring LDAP library provides the missing pieces. a default
implementation of DirContext caled DirContextAdapter, and a corresponding implementation of
Di r Obj ect Factory called Defaul t Di r Obj ect Factory. Used together with Def aul t Di r Qbj ect Factory, the
Di r Cont ext Adapt er can be avery powerful tool.

3.2. Search and Lookup Using ContextMapper

The Def aul t Di r Obj ect Fact ory is registered with the Cont ext Sour ce by default, which means that whenever a
context is found in the LDAP tree, its Att ri but es and Distinguished Name (DN) will be used to construct a
Di r Cont ext Adapt er. This enables us to use a Cont ext Mapper instead of an Attri but esMapper to transform
found values:

Example 3.1. Sear ching using a ContextM apper

package com exanpl e. dao;
public class PersonDaol npl inplenments PersonDao {

private static class PersonContext Mapper inplenents ContextMapper {
public Ooject mapFronmCont ext (Obj ect ctx) {
Di r Cont ext Adapt er context = (DirCont ext Adapter)ctx;
Person p = new Person();
p. set Ful | Name(context.getStringAttribute("cn"));
p. set Last Name(cont ext.getStringAttribute("sn"));
p. set Description(context.getStringAttribute("description"));
return p;
}
}

public Person findByPrimaryKey(
String nane, String conpany, String country) {
Nanme dn = buil dDn(name, conpany, country);
return | dapTenpl at e. | ookup(dn, new PersonCont ext Mapper ());

}

The above code shows that it is possible to retrieve the attributes directly by name, without having to go
through the At t ri but es and Basi cAt tri but e Classes.

3.3. Binding and Modifying Using ContextMapper

The DirContextAdapter can also be used to hide the Attributes when binding and modifying data.

3.3.1. Binding

Spring LDAP (Version 1.1.2) 10

DirObjectFactory and DirContextAdapter

This is an example of an improved implementation of the create DAO method. Compare it with the previous
implementation in Section 2.4.1, “Binding Data”.

Example 3.2. Binding using Dir ContextAdapter

package com exanpl e. dao;
public class PersonDaol npl inplenments PersonDao {
public void create(Person p) {

Nane dn = buil dDn(p);
Di r Cont ext Adapt er context = new Di r Cont ext Adapt er (dn);
context.setAttri buteVal ues("objectclass", new String[] {"top", "person"});
context.setAttributeVal ue("cn", p.getFullnane());
context.setAttributeVal ue("sn", p.getLastnane());
context.setAttributeVal ue("description”, p.getDescription());

| dapTenpl at e. bi nd(dn, context, null);

Note that we use the retrieved Di r Cont ext Adapter as the second parameter to bind, which should be a
Cont ext . The third parameter isnul | , Since we're hot using any At tri but es.

3.3.2. Modifying

The code for ar ebi nd would be pretty much identical to Example 3.2, except that the method called would be
rebi nd. However, let's say that you don't want to remove and re-create the entry, but instead update only the
attributes that have changed. The Di r Cont ext Adapt er has the ability to keep track of its modified attributes.
The following exampl e takes advantage of this feature:

Example 3.3. M odifying using Dir ContextAdapter

package com exanpl e. dao;
public class PersonDaol npl inplenments PersonDao {
public void update(Person p) {
Nane dn = buil dDn(p);
Di r Cont ext Adapt er context = (DirContext Adapter)| dapTenpl ate. | ookup(dn);
context.setAttri buteVal ues("objectclass", new String[] {"top", "person"});
context.setAttributeVal ue("cn", p.getFullnane());
context.setAttributeVal ue("sn", p.getLastnane());
context.setAttributeVal ue("description", p.getDescription());

| dapTenpl at e. nodi f yAttri butes(dn, context.getMdificationltens());

The observant reader will see that we have duplicated code in the cr eat e and updat e methods. This code maps
from a domain object to a context. It can be extracted to a separate method:

Example 3.4. Binding and modifying using Dir ContextAdapter

package com exanpl e. dao;

Spring LDAP (Version 1.1.2) 11

DirObjectFactory and DirContextAdapter

public class PersonDaol npl inpl enents PersonDao {
private LdapTenpl ate | dapTenpl at e;

public void create(Person p) {
Nane dn = buil dDn(p);
Di r Cont ext Adapt er context = new Di r Cont ext Adapt er (dn);
mapToCont ext (p, context);
| dapTenpl at e. bi nd(dn, context, null);

public void update(Person p) {
Name dn = buil dDn(p);
Di r Cont ext Adapt er cont ext = (DirContext Adapter)| dapTenpl at e. | ookup(dn);
mapToCont ext (per son, context);
| dapTenpl at e. nodi fyAttri but es(dn, context.get Modificationltens());
}

protected voi d mapToCont ext (Person p, DirContextAdapter context) {
context.setAttri buteVal ues("objectclass", new String[] {"top", "person"});
context.setAttributeVal ue("cn", p.getFull Nane());
context.setAttributeVal ue("sn", p.getLastNane());
context.setAttributeVal ue("description”, p.getDescription());

3.4. A Complete PersonDao Class

To illustrate the power of Spring LDAP, here is a complete Person DAO implementation for LDAP in just 68
lines:

Example 3.5. A complete PersonDao class

package com exanpl e. dao;
i nport java.util.List;

i mport j avax. nam ng. Nane;
i mport javax.nam ng. Nam ngExcepti on;
i nport javax.nam ng.directory. Attri butes;

i nport org.springfranework. | dap. Attri but esMapper;

i nport org. springfranework. | dap. Cont ext Mapper ;

i nport org. springfranework. | dap. LdapTenpl at e;

i nport org. springfranework. | dap. support. Di r Cont ext Adapt er;

i mport org.springframework. | dap. support. Di stingui shedNane;

i nport org. springfranework. | dap. support.filter.Equal sFilter;

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

public void setLdapTenpl at e(LdapTenpl ate | dapTenpl ate) {
this.| dapTenpl ate = | dapTenpl at g;
}

public void create(Person person) {
Di r Cont ext Adapt er cont ext = new Di r Cont ext Adapter ();
mapToCont ext (person, context);
| dapTenpl at e. bi nd(bui | dDn(person), context, null);

public void update(Person person) {
Narme dn = bui | dDn(person);
Di r Cont ext Adapt er context = (DirCont ext Adapter)| dapTenpl ate. | ookup(dn);
mapToCont ext (per son, context);
| dapTenpl at e. nodi f yAttri butes(dn, context.getMdificationltens());
}

public void del ete(Person person) {

Spring LDAP (Version 1.1.2) 12

DirObjectFactory and DirContextAdapter

| dapTenpl at e. unbi nd(bui | dDn(per son));
}

public Person findByPrinmaryKey(String name, String conmpany, String country) {
Narme dn = buil dDn(name, conpany, country);
return (Person) | dapTenpl ate. | ookup(dn, get ContextMapper());

}
public List findAl() {

Equal sFilter filter = new Equal sFilter("objectclass", "person");

return | dapTenpl at e. search(Di sti ngui shedNarme. EMPTY_PATH, filter.encode(), getContextMapper());
}

prot ect ed Cont ext Mapper get Cont ext Mapper () {
return new PersonCont ext Mapper () ;
}

protect ed Name buil dDn(Person person) {
return buil dDn(person. get Ful | nane(), person. get Conpany(), person.getCountry());

}

protected Nanme buildDn(String fullnane, String conpany, String country) {
Di sti ngui shedNanme dn = new Di sti ngui shedNane();
dn. add("c", country);
dn. add("ou", conpany);
dn. add("cn", fullnane);

return dn;

}

protected void mapToCont ext (Person person, DirContextAdapter context) {
context.setAttributeVal ues("objectclass"”, new String[] {"top", "person"});
context.setAttributeVal ue("cn", person.getFull Name());
context.setAttributeVal ue("sn", person.getlLastName());
context.setAttributeVal ue("description", person.getDescription());

}

private static class PersonContextMapper inplenments ContextMapper {
public oject mapFronCont ext (Obj ect ctx) {
Di r Cont ext Adapt er context = (DirContext Adapter)ctx;
Per son person = new Person();
person. set Ful | Nane(context. getStringAttribute("cn"));
per son. set Last Nane(context.getStringAttribute("sn"));
person. set Descri ption(context.getStringAttribute("description"));
return person;

Note

In several cases the Distinguished Name (DN) of an object is constructed using properties of the
object. E.g. in the above example, the country, company and full name of the Person are used in
the DN, which means that updating any of these properties will actually require moving the entry in
the LDAP tree using the renane() operation in addition to updating the Att ri but e values. Since
thisis highly implementation specific thisis something you'll need to keep track of yourself - either
by disallowing the user to change these properties or performing the renane() operation in your
updat e() method if needed.

Spring LDAP (Version 1.1.2) 13

Chapter 4. Adding Missing Overloaded API Methods

4.1. Implementing Custom Search Methods

While LdapTenpl at e contains several overloaded versions of the most common operations in Di r Cont ext , we
have not provided an alternative for each and every method signature, mostly because there are so many of
them. We have, however, provided a means to call whichever overloaded method you want. Let's say, for
example, that you want to use the following method:

Nam ngEnuner ati on search(Nanme nane, String filterExpr, Object[] filterArgs, SearchControls ctls)

The way to do thisis to use a custom Sear chExecut or implementation:

public interface SearchExecutor {
publ i ¢ Nami ngEnunerati on execut eSearch(Di rContext ctx) throws Nam ngException;
}

Example 4.1. A custom sear ch method using Sear chExecutor and AttributesM apper

package com exanpl e. dao;
public cl ass PersonDaol npl inplements PersonDao {
public List search(final Name base, final String filter, final String[] parans,
final SearchControls ctls) {
Sear chExecut or executor = new Sear chExecutor () {

publ i ¢ Nam ngEnunerati on execut eSearch(DirContext ctx) {
return ctx.search(base, filter, parans, ctls);
}

e

Naned assPai r Cal | backHandl er handl er =
| dapTenpl at e. new Attri but esMapper Cal | backHandl er (new Per sonAttri but esMapper());

return | dapTenpl at e. search(execut or, handl er);

If you prefer the Cont ext Mapper tothe At t ri but esMapper , thisiswhat it would look like:

Example 4.2. A custom sear ch method using Sear chExecutor and ContextM apper

package com exanpl e. dao;
public class PersonDaol npl inplenments PersonDao {

public List search(final Nanme base, final String filter, final String[] parans,
final SearchControls ctls) {
Sear chExecut or executor = new Sear chExecutor () {
publ i ¢ Nami ngEnunerati on execut eSearch(Di r Cont ext ctx) {
return ctx.search(base, filter, parans, ctls);
}

be

NameCl assPai r Cal | backHandl er handl er =
| dapTenpl at e. new Cont ext Mapper Cal | backHandl er (new Per sonCont ext Mapper ());

return | dapTenpl at e. search(execut or, handl er);

Spring LDAP (Version 1.1.2) 14

Adding Missing Overloaded APl Methods

Note

When using the LdapTenpl at e. Cont ext Mapper Cal | backHandl er you must make sure that you
have called set Ret ur ni ngQhj Fl ag(true) ONYoOUr Sear chCont r ol s instance.

4.2. Implementing Other Custom Context Methods

In the same manner as for custom sear ch methods, you can actually execute any method in Di r Cont ext by
using a Cont ext Execut or .

public interface ContextExecutor {
public Onject executeWthContext (D rContext ctx) throws Nam ngException;
}

When implementing a custom Cont ext Execut or , you can choose between using the execut eReadonl y() or the
execut eReadW i t e() method. Let's say that we want to call this method:

Obj ect | ookupLi nk(Name nane)

It's available in Di r Cont ext, but there is no matching method in LdapTenpl ate. It's a lookup method, so it
should be read-only. We can implement it like this:

Example 4.3. A custom Dir Context method using ContextExecutor

package com exanpl e. dao;
public cl ass PersonDaol npl inplenments PersonDao {

public Onject |ookupLink(final Name name) {
Cont ext Execut or executor = new Cont ext Executor () {
public Object executeWthContext(DirContext ctx) {
return ctx. | ookupLi nk(nane);
}

b
return | dapTenpl at e. execut eReadOnl y(execut or);

}
}

In the same manner you can execute a read-write operation using the execut eReadW i t e() method.

Spring LDAP (Version 1.1.2) 15

Chapter 5. Processing the DirContext

5.1. Custom DirContext Pre/Postprocessing

In some situations, one would like to perform operations on the Di r Cont ext before and after the search
operation. The interface that is used for thisis called Di r Cont ext Processor :

public interface DirContextProcessor {
public void preProcess(DirContext ctx) throws Nam ngException;
public void postProcess(DirContext ctx) throws Nam ngException;

The LdapTenpl at e class has a search method that takes a bi r Cont ext Pr ocessor :

public void search(SearchExecut or se, Named assPair Cal | backHandl er handl er,
Di r Cont ext Processor processor) throws DataAccessException;

Before the search operation, the preProcess method is called on the given Di r Cont ext Processor instance.
After the search has been executed and the resulting Nami ngEnuner at i on has been processed, the post Process
method is called. This enables a user to perform operations on the Di r Cont ext to be used in the search, and to
check the Di r Cont ext when the search has been performed. This can be very useful for example when handling
reguest and response controls.

There are also afew convenience methods for those that don't need a custom Sear chExecut or :

public void search(Name base, String filter,
SearchControl s controls, NaneC assPair Cal | backHandl er handl er, DirCont extProcessor processor)

public void search(String base, String filter,
SearchControl s controls, Named assPair Cal | backHandl er handl er, Dir Cont ext Processor processor)

public void search(Nanme base, String filter,
SearchControl s controls, AttributesMapper napper, Dir ContextProcessor processor)

public void search(String base, String filter,
SearchControls controls, AttributesMapper nmapper, Dir ContextProcessor processor)

public void search(Nanme base, String filter,
SearchControl s controls, ContextMapper mapper, DirContextProcessor processor)

public void search(String base, String filter,
SearchControl s controls, ContextMapper mapper, DirContextProcessor processor)

5.2. Implementing a Request Control DirContextProcessor

The LDAPv3 protocol uses Controls to send and receive additional data to affect the behavior of predefined
operations. In order to simplify the implementation of a request control bi r Cont ext Processor, Spring LDAP
provides the base class Abst r act Request Cont r ol Di r Cont ext Processor . This class handles the retrieval of the
current request controls from the LdapCont ext , calls atemplate method for creating a request control, and adds
it to the LdapContext. All you have to do in the subclass is to implement the template method
cr eat eRequest Cont rol , and of course the post Process method for performing whatever you need to do after
the search.

public abstract class Abstract Request Control Di r Cont ext Processor inplenents
Di r Cont ext Processor {

public void preProcess(DirContext ctx) throws Nam ngException {

Spring LDAP (Version 1.1.2) 16

Processing the DirContext

}

public abstract Control createRequestControl ();
}

Thisiswhat it can look like when you implement your own request control Di r Cont ext Pr ocessor :

Example5.1. A request control Dir ContextProcessor implementation

package com exanpl e. control;

public class MyCool Request Control extends Abstract Request Control Di r Cont ext Processor {
private static final bool ean CRI TI CAL_CONTROL = true;
private MyCool Cooki e cooki e;

publ i ¢ MyCool Cooki e get Cooki e() {
return cooki e;

}

public Control createRequestControl () {
return new SoneCool Control (cooki e. get Cooki e(), CRI TI CAL_CONTRQOL);

}

public void postProcess(DirContext ctx) throws Nam ngException {
LdapCont ext | dapCont ext = (LdapContext) ctx;
Control [] responseControls = | dapCont ext. get ResponseControl s();

for (int i =0; i < responseControls.length; i++) {
if (responseControls[i] instanceof SoneCool ResponseControl) {
SonmeCool ResponseControl control = (SoneCool ResponseControl) responseControl s[i];
thi s. cooki e = new MyCool Cooki e(control . get Cookie());
}
}
}
}

Note

Make sure you use LdapCont ext Sour ce When you use Controls. The cont rol _interface is specific
for LDAPv3 and requires that LdapContext is used instead of DirContext. If an
Abst r act Request Cont r ol Di r Cont ext Processor subclass is called with an argument that is not an
LdapCont ext , it will throw an 1 | | egal Ar gunent Except i on.

5.3. Paged Search Results

Some searches may return large numbers of results. When there is no easy way to filter out a smaller amount, it
would be convenient to have the server return only a certain number of results each time it is called. Thisis
known as paged search results. Each "page" of the result could then be displayed at the time, with links to the
next and previous page. Without this functionality, the client must either manually limit the search result into
pages, or retrieve the whole result and then chop it into pages of suitable size. The former would be rather
complicated, and the latter would be consuming unnecessary amounts of memory.

Some LDAP servers have support for the PagedResul t sCont rol , which requests that the results of a search
operation are returned by the LDAP server in pages of a specified size. The user controls the rate at which the
pages are returned, simply by the rate at which the searches are called. However, the user must keep track of a
cookie between the calls. The server uses this cookie to keep track of where it left off the previous time it was
called with a paged results request.

Spring LDAP (Version 1.1.2) 17

http://java.sun.com/j2se/1.5.0/docs/api/javax/naming/ldap/Control.html

Processing the DirContext

Spring LDAP provides support for paged results by leveraging the concept for pre- and postprocessing of an
LdapContext that was discussed in the previous sections. It does so by providing two classes:
PagedResul t sRequest Cont rol and PagedResul t sCooki e. The PagedResul t sRequest Control class creates a
PagedResul t sCont r ol With the requested page size and adds it to the LdapCont ext . After the search, it gets the
PagedResul t sResponseCont rol and retrieves two pieces of information from it: the estimated total result size
and a cookie. This cookie is a byte array containing information that the server needs the next time it is called
with a PagedResul t sCont rol . In order to make it easy to store this cookie between searches, Spring LDAP
provides the wrapper class PagedResul t sCooki e.

Thisis an example of how the paged search results functionality can be used:

Example 5.2. Example of an integration test for paged sear ch results

public class LdapTenpl at ePagedSear chl Test extends Test Case {
private LdapTenpl ate tested;

/! LDAP contains 5 persons matching the filter. Page size is 3.
/| Expects two batches of 3 and 2 persons respectively.
public void testPagedResult() {
Sear chControl s searchControls = new SearchControl s();
searchControl s. set Sear chScope(Sear chCont r ol s. SUBTREE_SCOPE) ;
String base = "dc=exanpl e, dc=coni';
String filter = "(&(objectcl ass=person) (cn=Sonme Person*))";
Per sonAttri but esMapper mapper = new PersonAttri but esMapper();
Col | ecti ngNamed assPai r Cal | backHandl er handl er =
tested. new Attri but esivapper Cal | backHandl er (mapper) ;

PagedResul t sRequest Control request Control;

request Control = new PagedResul t sRequest Control (3);

tested. search(base, filter, searchControls, handler, requestControl);
PagedResul t sCooki e cooki e = request Control . get Cookie();

assert Not Nul | (" Cooki e shoul d not be null yet", cookie.getCookie());
assert Equal s(3, call backHandl er.getList().size());

/| Prepare for second and | ast search

request Control = new PagedResul t sRequest Control (3, cookie);

tested. search(base, filter, searchControls, handler, requestControl);
cooki e = request Control . get Cooki e();

assertNul | ("Cookie should be null now', cookie.getCookie());

assert Equal s(5, callbackHandl er.getList().size());

Note

Important to note here is that we use the same Col | ecti ngNamed assPai r Cal | backHandl er for
both searches. This means that the results are appended to the same list. The second batch of two
are added to the first three, giving atotal of five after the second search.

Note

When using the PagedResul t sRequest Cont rol it is imperative that you keep track of the cookie
returned from an operation and supply the same instance to subsequent calls. This means that your
Dao method will typically need to wrap the result list together with the cookie in the value returned
to the higher tiers.

Spring LDAP (Version 1.1.2) 18

Chapter 6. Configuration

6.1. ContextSource Configuration

There are several properties in Abstract Cont ext Source (superclass of DirContextSource and
LdapCont ext Sour ce) that can be used to modify its behaviour.

6.1.1. LDAP Server URLs

The URL of the LDAP server is specified using the url property. The URL should be in the format
| dap: // nyser ver . exanpl e. com 389. For SSL access, use the | daps protocol and the appropriate port, e.g.
| daps: // myserver. exanpl e. com 636

It is possible to configure multiple alternate LDAP servers using the url's property. In this case, supply all
server urlsin a String array to theur | s property.

6.1.2. Authentication

Authenticated contexts are created for both read-only and read-write operations by default. You specify
user Name and passwor d of the LDAP user to be used for authentication on the Cont ext Sour ce.

Note
The user Nane needs to be the full Distinguished Name (DN) of the user.

Some LDAP server setups alow anonymous read-only access. If you want to use anonymous Contexts for
read-only operations, set the anonynousReadOnl y property tot r ue.

6.1.2.1. Custom Authentication Using Acegi

While the user name (i.e. user DN) and password used for creating an authenticated Cont ext are static by
default - the ones set on the ContextSource on startup will be used throughout the lifetime of the
Cont ext Sour ce - there are however several cases in which this is not the desired behaviour. A common
scenario is that the principal and credentials of the current user should be used when executing LDAP
operations for that user. The default behaviour can be modified by supplying a custom Aut hent i cat i onSour ce
implementation to the Cont ext Sour ce on startup, instead of explicitly specifying the user Name and passwor d.
The Aut hent i cati onSour ce Will be queried by the Cont ext Sour ce for principal and credentials each time an
authenticated Cont ext isto be created.

To use the authentication information of the currently logged in user using Acegi Security, use the
Acegi Aut henti cati onSour ce:

Example 6.1. The Spring bean definition for an AcegiAuthenticationSour ce

<beans>

<bean i d="cont ext Sour ce" cl ass="org. spri ngframework. | dap. support.LdapCont ext Sour ce" >
<property name="url" val ue="I|dap://I|ocal host: 389" />
<property name="base" val ue="dc=exanpl e, dc=cont' />
<property name="acegi Aut henti cati onSour ce" ref="authenticati onSource" />

</ bean>

Spring LDAP (Version 1.1.2) 19

http://acegisecurity.org/

Configuration

<bean i d="acegi Aut henti cati onSour ce"
cl ass="org. springfranmework. | dap. support. aut henti cati on. Acegi Aut henti cati onSource" />

</ beans>

Note

We don't specify any userName Or password tO Our ContextSource wWhen using an
Aut hent i cat i onSour ce - these properties are needed only when the default behaviour is used.

Note

When using the AcegiAuthenticationSource Yyou need to use Acegi's
LdapAut hent i cati onProvi der to authenticate the users against LDAP.

6.1.2.2. Default Authentication

When using Acegi Aut hent i cat i onSour ce, authenticated contexts will only be possible to create once the user
is logged in using Acegi. To use default authentication information when no user is logged in, use the
Def aul t Val uesAut henti cati onSour ceDecor at or :

Example 6.2. Configuring a DefaultValuesAuthenticationSour ceDecor ator

<beans>

<bean i d="cont ext Sour ce" cl ass="org. spri ngframework. | dap. support . LdapCont ext Sour ce" >
<property name="url" val ue="I|dap://I|ocal host: 389" />
<property nanme="base" val ue="dc=exanpl e, dc=cont' />
<property name="aut henti cati onSource" ref="authenticationSource" />

</ bean>

<bean i d="aut henti cati onSource"
cl ass="org. spri ngfranmewor k. | dap. support. Def aul t Val uesAut henti cati onSour ceDecor at or " >
<property name="target" ref="acegi Aut henticati onSource" />
<property nanme="def aul t User" val ue="cn=nyDef aul t User" />
<property nanme="defaul t Password" val ue="pass" />
</ bean>

<bean i d="acegi Aut henti cati onSour ce"
cl ass="org. springfranmewor k. | dap. support. aut henti cati on. Acegi Aut henti cati onSource" />

</ beans>

6.1.3. Pooling

LDAP connection pooling can be turned on/off using the pool ed flag. Default is t rue. The configuration of
LDAP connection pooling is managed using Syst emproperties, so this needs to be handled manually. Details of
pooling configuration can be found here.

6.1.4. Advanced ContextSource Configuration

6.1.4.1. Alternate ContextFactory

It is possible to configure the Cont ext Fact ory that the Cont ext Sour ce iS to use when creating Contexts using

Spring LDAP (Version 1.1.2) 20

http://java.sun.com/products/jndi/tutorial/ldap/connect/config.html

Configuration

the cont ext Fact ory property. The default valueiscom sun. j ndi . | dap. LdapCQt xFact ory.

6.1.4.2. Custom DirObjectFactory

As described in Chapter 3, DirObjectFactory and DirContextAdapter, a Di r Ovj ect Fact ory can be used to
trandate the Attributes of found Contexts to a more useful DirContext implementation. This can be
configured using the di r oj ect Fact ory property. You can use this property if you have your own, custom
Di r Obj ect Fact ory implementation.

The default value is Def aul t Di r Obj ect Fact ory.

6.1.4.3. Custom DirContext Environment Properties

In some cases the user might want to specify additional environment setup properties in addition to the ones
directly configurable from Abst r act Cont ext Sour ce. Such properties should be set in a vap and supplied to the
baseEnvi r onnent Pr operti es property.

6.2. LdapTemplate Configuration

6.2.1. Ignoring PartialResultExceptions

Some Active Directory (AD) servers are unable to automatically following referrals, which often leads to a
Parti al Resul t Exception being thrown in searches. You can specify that Parti al Resul t Exception isto be
ignored by setting the i gnor eParti al Resul t Except i on property totr ue.

Note

This causes all referrals to be ignored, and no notice will be given that aParti al Resul t Except i on
has been encountered. There is currently no way of manualy following referrals using
LdapTemplate.

Spring LDAP (Version 1.1.2) 21

	Spring LDAP
	Preface
	Chapter 1. Introduction
	1.1. Overview
	1.2. Packaging overview
	1.3. Package structure
	1.3.1. org.springframework.ldap
	1.3.2. org.springframework.ldap.support
	1.3.3. org.springframework.ldap.support.authentication
	1.3.4. org.springframework.ldap.support.control
	1.3.5. org.springframework.ldap.support.filter
	1.3.6. org.springframework.ldap.util

	1.4. Support

	Chapter 2. Basic Operations
	2.1. Search and Lookup Using AttributesMapper
	2.2. Building Dynamic Filters
	2.3. Building Dynamic Distinguished Names
	2.4. Binding and Unbinding
	2.4.1. Binding Data
	2.4.2. Unbinding Data

	2.5. Modifying
	2.5.1. Modifying using rebind
	2.5.2. Modifying using modifyAttributes

	2.6. Sample applications

	Chapter 3. DirObjectFactory and DirContextAdapter
	3.1. Introduction
	3.2. Search and Lookup Using ContextMapper
	3.3. Binding and Modifying Using ContextMapper
	3.3.1. Binding
	3.3.2. Modifying

	3.4. A Complete PersonDao Class

	Chapter 4. Adding Missing Overloaded API Methods
	4.1. Implementing Custom Search Methods
	4.2. Implementing Other Custom Context Methods

	Chapter 5. Processing the DirContext
	5.1. Custom DirContext Pre/Postprocessing
	5.2. Implementing a Request Control DirContextProcessor
	5.3. Paged Search Results

	Chapter 6. Configuration
	6.1. ContextSource Configuration
	6.1.1. LDAP Server URLs
	6.1.2. Authentication
	6.1.2.1. Custom Authentication Using Acegi
	6.1.2.2. Default Authentication

	6.1.3. Pooling
	6.1.4. Advanced ContextSource Configuration
	6.1.4.1. Alternate ContextFactory
	6.1.4.2. Custom DirObjectFactory
	6.1.4.3. Custom DirContext Environment Properties

	6.2. LdapTemplate Configuration
	6.2.1. Ignoring PartialResultExceptions

