Spring LDA

Spring LDAP - Reference Documentation

MattiasArthursson, UlrikSandberg, EricDalquist, KeithBarlow

Copyright ©

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

please define productname in your docbook file!

Table of Contents

1= 7= Lo %

I 191 (oo 18 ot o o KPP PSP PP PRPP 1

R 0 V=] V1 PP UPPR PRI 1

1.2, PACKAGING OVEIVIEWeiiiiiiiiii ettt et e et e e et e e e e b e e e et e e e eran s 3

R R o T 2= To L= (U 1 4

org.springframework.transaction.COMPeNSatiNgc..oieuuiiiiiiiiiieee e 4

Org.SpringframeWOorK.Idapi i 4

0rg.springframework.Idap.COIeociiuii e 4

org.springframework.1dap.COre.SUPPOITcuu i 4

org.springframework.1dap.core.Simple ..o 5

org.springframework.ldap.poolcoooiii 5

org.springframework.1dap.pool.factory ... 5

org.springframework.ldap.pool.validationcccoooiiiiiiiiii 5

0rg.springframework.ldap.SUPPOIT ... cou e e 5

org.springframework.ldap.authentication ... 5

org.springframework.Idap.CONTIrOloviiiiiiii e 5

org.springframework.ldap.filter ... 5

org.springframework.ldap.transaction.Compensatingcc.uiveeuiiieiiieiiiieei e, 6

org.springframework.ldap.transaction.compensating.managercccoeveeviveeiiierennennnn 6

org.springframework.ldap.transaction.compensating.SUPPOItccvveviiieiiieiiineeiineennn, 6

org.springframework.1dap.ldif ... 6

org.springframework.Idap.Idif.batChcooiiiii 6

org.springframework.ldap.ldif.parSer ..o 6

org.springframework.1dap.Idif. SUPPOItc..iiiii e 6

org.springframework.ldap.Odm 6

U o] o Lo o A RPN 7

A =T L (o @ o 1= =1 1 o] o SRR 8

2.1. Search and Lookup Using AttribULESMAaPPETciieiiiiiiiiiiee e 8

2.2. BUilding DYNamIiC FiltEISuiieiiiiii e e e e e e e 9

2.3. Building Dynamic Distinguished NamMESccouiiiiiiiiiii e 10

2.4, Binding and UNDINAINGuuuiiiiiie et eeeea e eees 11

3] o T To T = - PPN 11

UNDINAING DALA .. .ceeiiiie e et et et e e e e e e e e ean s 12

2.5, MOGITYING ettt 12

Modifying USING bl NAiii 12

Modifying using modi f YAt t ri DUt €S ... 13

2.6. SAMPIE APPICALIONS ...t et e eaaan 13

3. Simpler Attribute Access and Manipulation with DirContextAdaptercccovvvviveiiiieiiiieeiieeennn. 14

1 70 I [o To [F{od 1 o] o R PP TPPIN 14

3.2. Search and Lookup Using CONtEXIMAPPEToiiiiiiieiiiiieeeeei e 14

The ADStraCtCONtEXIMAPPETcivi it ee et e e e e e e e e et e e et e e eanaaees 15

3.3. Binding and Modifying Using DirConteXtAdapLerc..iiiiuiiiiiiiiiiee e 15

BINAING .. 15

/0o 113/ o 16

3.4. A Complete PersonDan ClasSoccuuiiiiiiiiiiiiiie e 17

4. Adding Missing Overloaded APl Methodsuoiiiiiiiiiiiii e 20

4.1. Implementing Custom Search Methodsccccoiiiiiiiiiii e, 20
Spring LDAP - Reference

Documentation i

please define productname in your docbook file!

4.2. Implementing Other Custom Context Methodsc.coiviiiiiiii e 21

5. Processing the DIFCONTEXEc.uuiiii ittt et e e e et e et e e e e e ea e e ea e eeanaes 23
5.1. Custom DirContext Pre/POSIPrOCESSINGeieuriiiiiiie ettt 23

5.2. Implementing a Request Control DirConteXtPrOCESSOrccvvveviiieeiiieeiieeeiieeaeeeaieens 23

5.3. Paged Search RESUILS ...t et e e e e 24

6. TranSACHON SUPPOITieitiietiii ettt ettt e et e et et e et et e e et et e e e e ab e e e enbanas 26
L [11 (o To [11 1o] o I PSPPI 26

6.2, CONTIQUIATION ...ttt et e et e et e e e e e e e eanns 26

6.3. JDBC Transaction INtEGrationoceeuuiiiiiiiiie ettt eeeens 27

6.4. LDAP Compensating Transactions EXplainedccoveiiiiiiiiiiiii i 28
RENAMING STFALEQIES ...uieeiiiii et e e e e e e e 29

A= (Y= RS IS 1V o] o Lo o APPSR 30
7.1, SIMPIeLdapTemMPIALE ..o 30

T o] o1 iTe [0 =11 [o] o I PP PT PP 31
8.1. ContextSource CONfIQUIALIONiiiiiii et 31
LDAP SEIVEI URLS ...ttt ettt et ettt e e e e eeas 31

Base LDAP Path ... 31
DirContext AUtNENTICALIONcouuiiii e e e e e e e e eanaeees 31

Custom DirContext Authentication ProCeSSINGcccvuvveveuieiiiiieiiieeeiiieeineeaieenens 32

Custom Principal and Credentials Managementcccoovviiiiiiineiiineiieeeieeenn, 32

Default AUtRENTICALIONovee e 33

Native Java LDAP POOING ...cc.uiiiiiiiiiei et e e e e e e e e e 34
Advanced ContextSource COonfIQUIatiONvoiuuiiiiiiiiiieeie e e 34

Alternate CONEXIFACIONYuuiiiiiii i eeaens 34

(O101S (o] 4 T BT (O] o 1=t 1 = Tox (o] Y/ 34

Custom DirContext Environment Propertiescoooviiiiiiiiiiiieec e, 35

8.2. LdapTemplate CONfIQUIALIONuiiiiiuiieiiii e 35
Ignoring PartialRESUREXCEPLIONScvvvniiiiieii e e e e e e e anns 35

8.3. Obtaining a reference to the base LDAP path ..o 35

(S I o To] 10T BST U] o] oo AN PSP P T TPPPRTR 37
LS [11 (o To [11 1o] o PSPPSR 37

9.2. DIrContext Validationocouuiiiiii et 37

9.3, POOI PrOPEITIES ...ttt ettt et et et e e e 37

1S I @] T [= 4o) o 39
Validation ConfigUIationocoeuiiiii e e 40

0.5, KNOWN ISSUBS ...tiiiii ittt e e et e et et e et e e e e et e et e et e en e et eannas 41
CUSIOM AULNENTICALION ...oeevtieiiii et e e e a e 41

10. User Authentication using Spring LDAP ... 42
10.1. BaSiC AULNENTICALIONuuieeiie e e e e e et e e e ean s 42
10.2. Performing Operations on the Authenticated Contextcccevvviiiiiiiiieiii e, 43
10.3. Retrieving the Authentication EXCEPLIONccouuiiiiiiiii e 44
10.4. USE SPIiNG SECUIMLY ..eeitinieiiiiie ettt ettt et e e e e e eaa e e eenens 45

B I - V= T o P 46
R [a1 o T [U T o] I PSPPSR 46
11.2. ODJEeCt REPIESENTALIONiiiiiiieiiii ettt ettt e e e e n e e eaanns 46
O T I T= N =T =) PSP 46
11.4. Schema Validation ...t e e eaans 47
11.5. Spring BatCh INtEGrationu.iiiiiiiiiiiiiii e e e e e e eaa e 47

12. Object-Directory Mapping (ODM)c.uiiiiiiiiie e e e e e e e e et e e e aan s 48
D2 I [a1 e Lo VT o] I PSPPSR 48

Spring LDAP - Reference
Documentation iii

please define productname in your docbook file!

2 @ T [3117/ = T = o =T 48
R T Y o T] = o] 1= 49
12.4. TYPE CONVEISION ..ttt ettt ettt ettt e et e et e et et e e e e et e e e e et e e e eata s 49
2 ST (= o] U 1T N 52
R T U111 = 53
13.1. Incremental Retrieval of Multi-Valued Attributescoooviiiiiiii e 53

Spring LDAP - Reference
Documentation iv

please define productname in your docbook file!

Preface

The Java Naming and Directory Interface (JNDI) is for LDAP programming what Java Database
Connectivity (JDBC) is for SQL programming. There are several similarities between JDBC and JNDI/
LDAP (Java LDAP). Despite being two completely different APIs with different pros and cons, they share
a number of less flattering characteristics:

» They require extensive plumbing code, even to perform the simplest of tasks.

» All resources need to be correctly closed, no matter what happens.

» Exception handling is difficult.

The above points often lead to massive code duplication in common usages of the APIs. As we all
know, code duplication is one of the worst code smells. All in all, it boils down to this: JDBC and LDAP
programming in Java are both incredibly dull and repetitive.

Spring JDBC, a part of the Spring framework, provides excellent utilities for simplifying SQL
programming. We need a similar framework for Java LDAP programming.

Spring LDAP - Reference
Documentation Y,

please define productname in your docbook file!

1. Introduction

1.1. Overview

Spring LDAP (http://www.springframework.org/ldap) is a library for simpler LDAP programming
in Java, built on the same principles as the JdbcTemplate in Spring JDBC. It completely
eliminates the need to worry about creating and closing LdapCont ext and looping through
Nani ngEnuner at i on. It also provides a more comprehensive unchecked Exception hierarchy, built on
Spring's Dat aAccessExcept i on. As a bonus, it also contains classes for dynamically building LDAP
filters and DNs (Distinguished Names), LDAP attribute management, and client-side LDAP transaction
management.

Consider, for example, a method that should search some storage for all persons and return their names
in a list. Using JDBC, we would create a connection and execute a query using a statement. We would
then loop over the result set and retrieve the column we want, adding it to a list. In contrast, using Java
LDAP, we would create a context and perform a search using a search filter. We would then loop over
the resulting naming enumeration and retrieve the attribute we want, adding it to a list.

The traditional way of implementing this person name search method in Java LDAP looks like this,
where the code marked as bold actually performs tasks related to the business purpose of the method:

Spring LDAP - Reference
Documentation 1

http://www.springframework.org/ldap
http://static.springframework.org/spring/docs/current/api/org/springframework/jdbc/core/JdbcTemplate.html

please define productname in your docbook file!

package com exanpl e. dao;

public class Traditional PersonDaol npl inpl enents PersonDao {
public List getAllPersonNanmes() {
Hasht abl e env = new Hasht abl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, "com sun.jndi. | dap.LdapC xFactory");
env. put (Cont ext . PROVI DER_URL, "I dap://| ocal host: 389/ dc=exanpl e, dc=cont') ;

Di r Cont ext ctx;
try {

ctx = new I nitial DrContext(env);
} catch (Nam ngException e) {

t hrow new Runti neException(e);

Li nkedLi st list = new LinkedLi st ();

Nami ngEnuneration results = null;

try {
Sear chControl s controls = new SearchControl s();
control s. set Sear chScope(Sear chCont r ol s. SUBTREE_SCOPE) ;
results = ctx.search("", "(objectclass=person)", controls);

while (results.hasMre()) {
Sear chResul t searchResult = (SearchResult) results.next();
Attributes attributes = searchResult.getAttributes();
Attribute attr = attributes.get("cn");
String cn = (String) attr.get();
l'ist.add(cn);
}
} catch (NaneNot FoundException e) {
/'l The base context was not found.
/1 Just clean up and exit.
} catch (Nam ngException e) {
t hrow new Runti neException(e);
} finally {
if (results !'=null) {
try {
results. close();
} catch (Exception e) {
/1 Never mind this.

}
}
if (ctx !'=null) {
try {
ctx.close();
} catch (Exception e) {
/1 Never mind this.
}
}

}

return list;

By using the Spring LDAP classes At t ri but esMapper and LdapTenpl at e, we get the exact same
functionality with the following code:

Spring LDAP - Reference
Documentation 2

please define productname in your docbook file!

package com exanpl e. dao

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl ate

public void setLdapTenpl at e(LdapTenpl ate | dapTenpl ate) {
this.| dapTenpl ate = | dapTenpl at e

}

public List getAllPersonNanmes() {
return | dapTenpl at e. sear ch(
""", "(objectcl ass=person)"
new AttributesMapper () {
public Object mapFromAttributes(Attributes attrs)
throws Nam ngException {
return attrs.get("cn").get();

1)

The amount of boiler-plate code is significantly less than in the traditional example. The LdapTenpl at e
version of the search method performs the search, maps the attributes to a string using the given
At tri but esMapper, collects the strings in an internal list, and finally returns the list.

Note that the Per sonDaol npl code simply assumes that it has an LdapTenpl at e instance, rather
than looking one up somewhere. It provides a set method for this purpose. There is nothing Spring-
specific about this "Inversion of Control". Anyone that can create an instance of Per sonDaol npl can
also set the LdapTenpl at e on it. However, Spring provides a very flexible and easy way of achieving
this. The Spring container can be told to wire up an instance of LdapTenpl at e with its required
dependencies and inject it into the Per sonDao instance. This wiring can be defined in various ways,
but the most common is through XML:

<beans>
<bean i d="cont ext Sour ce"
cl ass="org. spri ngframewor k. | dap. core. support. LdapCont ext Sour ce" >

<property name="url" val ue="|dap://| ocal host: 389" />
<property nanme="base" val ue="dc=exanpl e, dc=comt' />
<property nanme="userDn" val ue="cn=Manager" />
<property nanme="password" val ue="secret" />

</ bean>

<bean i d="|dapTenpl ate" cl ass="org. spri ngframework. | dap. core. LdapTenpl at e" >
<constructor-arg ref="cont ext Source" />
</ bean>

<bean i d="personDao" cl ass="com exanpl e. dao. Per sonDaol npl ">
<property nanme="I|dapTenpl ate" ref="IdapTenpl ate" />
</ bean>
</ beans>

1.2. Packaging overview

At a minimum, to use Spring LDAP you need:

* spring-ldap-core (the Spring LDAP library)

 spring-core (miscellaneous utility classes used internally by the framework)
 spring-beans (contains interfaces and classes for manipulating Java beans)

Spring LDAP - Reference
Documentation 3

http://static.springframework.org/spring/docs/current/reference/beans.html
http://static.springframework.org/spring/docs/current/reference/beans.html

please define productname in your docbook file!

« commons-logging (a simple logging facade, used internally)
» commons-lang (misc utilities, used internally)

In addition to the required dependencies the following optional dependencies are required for certain
functionality:

* spring-context (If your application is wired up using the Spring Application Context - adds the ability for
application objects to obtain resources using a consistent API. Definitely needed if you are planning
on using the BaseLdapPathBeanPostProcessor.)

 spring-tx (If you are planning to use the client side compensating transaction support)
* spring-jdbc (If you are planning to use the client side compensating transaction support)

 |dapbp (Sun LDAP Booster Pack - if you will use the LDAP v3 Server controls integration and you're
not using Javab or higher)

» commons-pool (If you are planning to use the pooling functionality)

 spring-batch (If you are planning to use the LDIF parsing functionality together with Spring Batch)

1.3. Package structure

This section provides an overview of the logical package structure of the Spring LDAP codebase. The
dependencies for each package are clearly noted.

Figure 1.1. Spring LDAP package structure

org.springframework.transaction.compensating

The transaction.compensating package contains the generic compensating transaction support. This is
not LDAP-specific or INDI-specific in any way.
» Dependencies: commons-logging

org.springframework.ldap

The Idap package contains the exceptions of the library. These exceptions form an unchecked hierarchy
that mirrors the NamingException hierarchy.
» Dependencies: spring-core

org.springframework.ldap.core

The Idap.core package contains the central abstractions of the library. These abstractions include

AuthenticationSource, ContextSource, DirContextProcessor, and NameClassPairCallbackHandler.

This package also contains the central class LdapTemplate, plus various mappers and executors.

» Dependencies: Idap, |dap.support, spring-beans, spring-core, spring-tx, commons-lang, commons-
logging

org.springframework.ldap.core.support

The Idap.core.support package contains supporting implementations of some of the core interfaces.
» Dependencies: Idap, Idap.core, Idap.support, spring-core, spring-beans, spring-context, commons-
lang, commons-logging

Spring LDAP - Reference
Documentation 4

please define productname in your docbook file!

org.springframework.ldap.core.simple

The Idap.core.simple package contains Java5-specific parts of Spring LDAP. It's mainly a simplification
layer that takes advantage of the generics support in Javab, in order to get typesafe context mappers
as well as typesafe search and lookup methods.

» Dependencies: Idap.core

org.springframework.ldap.pool

The Idap.pool package contains support for detailed pool configuration on a per-ContextSource basis.
Pooling support is provided by PoolingContextSource which can wrap any ContextSource and pool both
read-only and read-write DirContext objects. Jakarta Commons-Pool is used to provide the underlying
pool implementation.

» Dependencies: Idap.core, commons-lang, commons-pool

org.springframework.ldap.pool.factory

The Idap.pool.factory package contains the actual pooling context source and other classes for context

creation.

» Dependencies: Idap, Idap.core, |dap.pool, Idap.pool.validation, spring-beans, spring-tx, commons-
lang, commons-logging, commons-pool

org.springframework.ldap.pool.validation

The Idap.pool.validation package contains the connection validation support.
» Dependencies: Idap.pool, commons-lang, commons-logging

org.springframework.ldap.support

The Idap.support package contains supporting utilities, like the exception translation mechanism.
» Dependencies: Idap, spring-core, commons-lang, commons-logging

org.springframework.ldap.authentication

The Idap.authentication package contains an implementation of the AuthenticationSource interface that
can be used if the user should be allowed to read some information even though not logged in.
» Dependencies: Idap.core, spring-beans, commons-lang

org.springframework.ldap.control

The Idap.control package contains an abstract implementation of the DirContextProcessor interface that

can be used as a basis for processing RequestControls and ResponseControls. There is also a concrete

implementation that handles paged search results and one that handles sorting. The LDAP Booster

Pack is used to get support for controls, unless Java5 is used.

» Dependencies: Idap, Idap.core, LDAP booster pack (optional), spring-core, commons-lang,
commons-logging

org.springframework.ldap.filter

The Idap.filter package contains the Filter abstraction and several implementations of it.
» Dependencies: Idap.core, spring-core, commons-lang

Spring LDAP - Reference
Documentation 5

http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/

please define productname in your docbook file!

org.springframework.ldap.transaction.compensating

The ldap.transaction.compensating package contains the core LDAP-specific implementation of

compensating transactions.

» Dependencies: Idap.core, Idap.core.support, transaction.compensating, spring-core, commons-lang,
commons-logging

org.springframework.ldap.transaction.compensating.manager

The Ildap.transaction.compensating.manager package contains the core implementation classes for

client-side compensating transactions.

» Dependencies: Idap, Idap.core, Idap.support, Idap.transaction.compensating,
Idap.transaction.compensating.support, transaction.compensating, spring-tx, spring-jdbc, spring-
orm, commons-logging

org.springframework.ldap.transaction.compensating.support

The Idap.transaction.compensating.support package contains useful helper classes for client-side
compensating transactions.
» Dependencies: Idap.core, Idap.transaction.compensating

org.springframework.ldap.Idif

The Idap.|dif package provides support for parsing LDIF files.
» Dependencies: Idap.core
org.springframework.ldap.ldif.batch

The ldap.ldif.batch package provides the classes necessary to use the LDIF parser in the Spring Batch
framework.

» Dependencies: Idap.core, Idap.Idif.parser, spring-batch, spring-core, spring-beans, commons-logging
org.springframework.ldap.ldif.parser
The Idap.Idif.parser package provides the parser classes and interfaces.

» Dependencies: Idap.core, Idap.schema, Idap.Idif, Idap.ldif.support, spring-core, spring-beans,
commons-lang, commons-logging

org.springframework.ldap.ldif.support

The Idap.ldif.support package provides the necessary auxiliary classes utilized by the LDIF Parser.
» Dependencies: Idap.core, Idap.ldif, commons-lang, commons-logging
org.springframework.ldap.odm

The Idap.odm package provides the classes and interfaces enabling annotation based object-directory
mapping.

» Dependencies: Idap, Idap.core, Idap.core.simple, Idap.filter, spring-beans, commons-cli, commons-
logging, freemarker

Spring LDAP - Reference
Documentation 6

please define productname in your docbook file!

For the exact list of jar dependencies, see the Spring LDAP Maven2 Project Object Model (POM) files
in the source tree.

1.4. Support

Spring LDAP 1.3 is supported on Spring 2.0 and later.

The community support forum is located at http://forum.springframework.org, and the project web page
is http://www.springframework.org/ldap.

Spring LDAP - Reference
Documentation 7

http://forum.springframework.org
http://www.springframework.org/ldap

please define productname in your docbook file!

2. Basic Operations

2.1. Search and Lookup Using AttributesMapper

In this example we will use an At t ri but esMapper to easily build a List of all common names of all
person objects.

package com exanpl e. dao;

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

public void setLdapTenpl at e(LdapTenpl ate | dapTenpl ate) {
this.|dapTenpl ate = | dapTenpl at g;

}

public List getAllPersonNanes() {
return | dapTenpl at e. sear ch(
""", "(objectcl ass=person)",
new AttributesMapper () {
public Object mapFromAttri butes(Attributes attrs)
t hrows Nami ngException {
return attrs.get("cn").get();

1)

}
Example 2.1 AttributesMapper that returns a single attribute

The inline implementation of Attri but esMapper just gets the desired attribute value from the
At tri but es and returns it. Internally, LdapTenpl at e iterates over all entries found, calling the given
Attri but esMapper for each entry, and collects the results in a list. The list is then returned by the
sear ch method.

Note that the At tri but esMapper implementation could easily be modified to return a full Per son
object:

Spring LDAP - Reference
Documentation 8

please define productname in your docbook file!

package com exanpl e. dao;

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

private class PersonAttributesMapper inplenments AttributesMapper {
public Object mapFromAttributes(Attributes attrs) throws Nam ngException {
Person person = new Person();
person. set Ful | Name((String)attrs.get("cn").get());
person. set Last Name((String)attrs.get("sn").get());
per son. set Description((String)attrs.get("description").get());
return person;

}

public List getAllPersons() {
return | dapTenpl ate. search("", "(objectclass=person)", new
PersonAttri but esMapper());

}

}
Example 2.2 AttributesMapper that returns a Person object

If you have the distinguished name (dn) that identifies an entry, you can retrieve the entry directly,
without searching for it. This is called a lookup in Java LDAP. The following example shows how a
lookup results in a Person object:

package com exanpl e. dao;

public class PersonDaol npl inpl enents PersonDao {
private LdapTenpl ate | dapTenpl at e;

public Person findPerson(String dn) {
return (Person) | dapTenpl ate. | ookup(dn, new PersonAttributesMapper());

}
}

Example 2.3 A lookup resulting in a Person object

This will look up the specified dn and pass the found attributes to the supplied At t ri but esMapper,
in this case resulting in a Per son object.

2.2. Building Dynamic Filters

We can build dynamic filters to use in searches, using the classes from the
org.springframework. | dap.filter package. Let's say that we want the following filter:
(&(obj ect cl ass=per son) (sn=?)), where we want the ? to be replaced with the value of the
parameter | ast Nanme. This is how we do it using the filter support classes:

Spring LDAP - Reference
Documentation 9

please define productname in your docbook file!

package com exanpl e. dao;

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

public List getPersonNanesByLast Name(String | astNane) {
AndFilter filter = new AndFilter();
filter.and(new Equal sFilter("objectclass", "person"));
filter.and(new Equal sFilter("sn", |astNane));
return | dapTenpl at e. sear ch(
'", filter.encode(),
new Attri but esMapper () {
public Object mapFromAttri butes(Attributes attrs)
throws Nam ngException {
return attrs.get("cn").get();

1)

}
Example 2.4 Building a search filter dynamically

To perform a wildcard search, it's possible to use the Whi t espaceW | dcardsFil ter:

AndFilter filter = new AndFilter();
filter.and(new Equal sFilter("objectclass", "person"));
filter.and(new WitespaceW Il dcardsFilter("cn", cn));

Example 2.5 Building a wildcard search filter

© Note

In addition to simplifying building of complex search filters, the Fi | t er classes also provide
proper escaping of any unsafe characters. This prevents "ldap injection”, where a user might use
such characters to inject unwanted operations into your LDAP operations.

2.3. Building Dynamic Distinguished Names

The standard Name interface represents a generic name, which is basically an ordered sequence of
components. The Nane interface also provides operations on that sequence; e.g., add or r enove.
LdapTemplate provides an implementation of the Name interface: Di st i ngui shedNane. Using this
class will greatly simplify building distinguished names, especially considering the sometimes complex
rules regarding escapings and encodings. As with the Fi | t er classes this helps preventing potentially
malicious data being injected into your LDAP operations.

The following example illustrates how Di sti ngui shedNane can be used to dynamically construct a
distinguished name:

Spring LDAP - Reference
Documentation 10

http://download.oracle.com/javase/1.5.0/docs/api/javax/naming/Name.html

please define productname in your docbook file!

package com exanpl e. dao;

i mport org.springfranework. | dap. core. support. Di stingui shedNane;
i mport javax. nam ng. Name;

public class PersonDaol npl inplenments PersonDao {
public static final String BASE DN = "dc=exanpl e, dc=cont';

protected Nane buil dDn(Person p) {
Di stingui shedName dn = new Di sti ngui shedNane(BASE_DN) ;
dn. add("c", p.getCountry());
dn. add("ou", p.get Conmpany());
dn. add("cn", p.getFullnane());
return dn;

}
Example 2.6 Building a distinguished name dynamically

Assuming that a Person has the following attributes:

country Sweden
conmpany Some Company
ful | name Some Person

The code above would then result in the following distinguished name:

cn=Sone Person, ou=Sone Conpany, c=Sweden, dc=exanple, dc=com

In Java 5, there is an implementation of the Name interface: LdapName. If you are in the Java 5 world,

you might as well use LdapNane. However, you may still use Di st i ngui shedNane if you so wish.

2.4. Binding and Unbinding

Binding Data

Inserting data in Java LDAP is called binding. In order to do that, a distinguished name that
uniquely identifies the new entry is required. The following example shows how data is bound using

LdapTemplate:

Spring LDAP - Reference
Documentation

11

http://download.oracle.com/javase/1.5.0/docs/api/javax/naming/ldap/LdapName.html

please define productname in your docbook file!

package com exanpl e. dao;

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

public void create(Person p) {

Narme dn = bui |l dDn(p);

| dapTenpl at e. bi nd(dn, null, buildAttributes(p));
}

private Attributes buildAttributes(Person p) {
Attributes attrs = new BasicAttributes();
Basi cAttribute ocattr = new Basi cAttribute("objectclass");
ocattr.add("top");
ocattr.add("person");
attrs. put(ocattr);
attrs.put("cn", "Some Person");
attrs. put("sn", "Person");
return attrs;

}
Example 2.7 Binding data using Attributes

The Attributes building is--while dull and verbose--sufficient for many purposes. It is, however, possible
to simplify the binding operation further, which will be described in Chapter 3, Simpler Attribute Access
and Manipulation with DirContextAdapter.

Unbinding Data
Removing data in Java LDAP is called unbinding. A distinguished name (dn) is required to identify

the entry, just as in the binding operation. The following example shows how data is unbound using
LdapTemplate:

package com exanpl e. dao;

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

public void del ete(Person p) {
Narme dn = bui |l dDn(p);
| dapTenpl at e. unbi nd(dn);
}

Example 2.8 Unbinding data

2.5. Modifying
In Java LDAP, data can be modified in two ways: either using rebind or modifyAttributes.
Modifying using r ebi nd

A rebind is a very crude way to modify data. It's basically an unbi nd followed by a bi nd. It looks
like this:

Spring LDAP - Reference
Documentation 12

please define productname in your docbook file!

package com exanpl e. dao;

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

public voi d update(Person p) {
Nanme dn = buil dDn(p);
| dapTenpl at e. rebi nd(dn, null, buildAttributes(p));
}

Example 2.9 Modifying using rebind

Modifying using nodi f yAttri but es

If only the modified attributes should be replaced, there is a method called nodi f yAtt ri but es that
takes an array of modifications:

package com exanpl e. dao;

public class PersonDaol npl inplements PersonDao {
private LdapTenpl ate | dapTenpl at e;

public voi d updateDescription(Person p) {
Nane dn = bui |l dDn(p);
Attribute attr = new BasicAttribute("description", p.getDescription())
Modi ficationltemitem = new Mdificationlten(D rContext. REPLACE_ATTRI BUTE, attr);
| dapTenpl ate. nodi fyAttri butes(dn, new Mddificationlten]] {iten});

}
Example 2.10 Modifying using modifyAttributes

Building At t ri but es and Modi fi cati onl t emarrays is a lot of work, but as you will see in Chapter 3,
Simpler Attribute Access and Manipulation with DirContextAdapter, the update operations can be
simplified.

2.6. Sample applications

It is recommended that you review the Spring LDAP sample applications included in the release
distribution for best-practice illustrations of the features of this library. A description of each sample is
provided below:

1. spring-ldap-person - the sample demonstrating most features.

2. spring-ldap-article - the sample application that was written to accompany a java.net article about
Spring LDAP.

Spring LDAP - Reference
Documentation 13

http://today.java.net/pub/a/today/2006/04/18/ldaptemplate-java-ldap-made-simple.html

please define productname in your docbook file!

3. Simpler Attribute Access and Manipulation with
DirContextAdapter

3.1. Introduction

A little-known--and probably underestimated--feature of the Java LDAP API is the ability to register a
Di r Ooj ect Fact ory to automatically create objects from found contexts. One of the reasons why it
is seldom used is that you will need an implementation of Di r Cbj ect Fact or y that creates instances
of a meaningful implementation of Di r Cont ext. The Spring LDAP library provides the missing
pieces: a default implementation of Di r Cont ext called Di r Cont ext Adapt er, and a corresponding
implementation of Di r Obj ect Fact ory called Def aul t Di r Cbj ect Fact ory. Used together with
Def aul t Di r Cbj ect Fact ory, the Di r Cont ext Adapt er can be a very powerful tool.

3.2. Search and Lookup Using ContextMapper

The Def aul t Di r Cbj ect Fact ory is registered with the Cont ext Sour ce by default, which means
that whenever a context is found in the LDAP tree, its At t r i but es and Distinguished Name (DN) will
be used to construct a Di r Cont ext Adapt er . This enables us to use a Cont ext Mapper instead of
an At t ri but esMapper to transform found values:

package com exanpl e. dao;
public class PersonDaol npl inplenments PersonDao {

private static class PersonContext Mapper inpl enents Context Mapper {
publ i c Obj ect mapFronCont ext (Cbject ctx) {
Di r Cont ext Adapt er context = (DirContext Adapter)ctx;
Person p = new Person();
p. set Ful | Nane(context.getStringAttribute("cn"));
p. set Last Nane(context.getStringAttribute("sn"));
p. set Descri ption(context.getStringAttribute("description"));
return p;

}

publ i c Person findByPri maryKey(
String nanme, String conpany, String country) {
Narme dn = bui |l dDn(name, conpany, country);
return | dapTenpl at e. | ookup(dn, new Per sonCont ext Mapper ());

}
Example 3.1 Searching using a ContextMapper

The above code shows that it is possible to retrieve the attributes directly by name, without
having to go through the Attri butes and Basi cAttri bute classes. This is particularly useful
when working with multi-value attributes. Extracting values from multi-value attributes normally
requires looping through a Nanmi ngEnurner at i on of attribute values returned from the Attri but es
implementation. The Di r Cont ext Adapt er can do this for you, using the get Stri ngAttri but es()
or get Gbj ect Attri but es() methods:

Spring LDAP - Reference
Documentation 14

please define productname in your docbook file!

private static class PersonContext Mapper inplements Context Mapper {
public Object napFrontCont ext (Object ctx) {
Di r Cont ext Adapt er context = (DirCont ext Adapter)ctx;
Person p = new Person();
p. set Ful | Nane(context.getStringAttribute("cn"));
p. set Last Nane(context.getStringAttri bute("sn"));
p. set Descri ption(context.getStringAttribute("description"));
/1 The rol eNanes property of Person is an String array
p. set Rol eNanes(context.get StringAttri butes("rol eNanes"));
return p;

}
Example 3.2 Getting multi-value attribute values using get Stri ngAttri but es()

The AbstractContextMapper

Spring LDAP provides an abstract base implementation of Context Mapper,
Abst r act Cont ext Mapper . This automatically takes care of the casting of the supplied Obj ect
parameter to Di r Cont exCOper at i ons. The Per sonCont ext Mapper above can thus be re-written as
follows:

private static class PersonContext Mapper extends Abstract Cont ext Mapper {
public Object doMapFrontCont ext (Di r Cont ext Operations ctx) {
Person p = new Person();
p. set Ful | Nane(context.getStringAttribute("cn"));
p. set Last Nane(context.getStringAttribute("sn"));
p. set Descri ption(context.getStringAttribute("description"));
return p;

}
Example 3.3 Using an AbstractContextMapper

3.3. Binding and Modifying Using DirContextAdapter

While very useful when extracting attribute values, Di r Cont ext Adapt er is even more powerful for
hiding attribute details when binding and modifying data.

Binding

This is an example of an improved implementation of the create DAO method. Compare it with the
previous implementation in the section called “Binding Data”.

Spring LDAP - Reference
Documentation 15

please define productname in your docbook file!

package com exanpl e. dao;
public class PersonDaol npl inplenments PersonDao {

public void create(Person p) {
Narme dn = bui | dDn(p);
Di r Cont ext Adapt er context = new Di r Cont ext Adapt er (dn) ;

context.set AttributeVal ues("objectclass", new String[] {"top", "person"});
context.setAttributeVal ue("cn", p.getFullnane());

context.setAttributeVal ue("sn", p.getlLastnanme());

context.set AttributeVal ue("description", p.getDescription());

| dapTenpl at e. bi nd(cont ext);

}
Example 3.4 Binding using Di r Cont ext Adapt er

Note that we use the Di r Cont ext Adapt er instance as the second parameter to bind, which should
be a Cont ext . The third parameter is nul | , since we're not using any At t ri but es.

Also note the use of the set Attri buteVal ues() method when setting the obj ectcl ass
attribute values. The obj ect cl ass attribute is multi-value, and similar to the troubles of extracting
muti-value attribute data, building multi-value attributes is tedious and verbose work. Using the
set Attri but eVal ues() mehtod you can have Di r Cont ext Adapt er handle that work for you.

Modifying

The code for a rebind would be pretty much identical to Example 3.4, “Binding using
Di r Cont ext Adapt er”, except that the method called would be rebi nd. As we saw in the
section called “Modifying using nodi f yAttri but es” a more correct approach would be to build a
Modi fi cati onlt emarray containing the actual modifications you want to do. This would require you
to determine the actual modifications compared to the data present in the LDAP tree. Again, this is
something that Di r Cont ext Adapt er can help you with; the Di r Cont ext Adapt er has the ability to
keep track of its modified attributes. The following example takes advantage of this feature:

package com exanpl e. dao;
public class PersonDaol npl inplenments PersonDao {

public voi d update(Person p) {
Nane dn = bui | dDn(p);
Di r Cont ext Oper ati ons context = | dapTenpl at e. | ookupCont ext (dn) ;

context.set Attri buteVal ues("objectclass", new String[] {"top", "person'});
context.setAttributeVal ue("cn", p.getFullnane());

context.setAttributeVal ue("sn", p.getlLastnane());

context.set Attri buteVal ue("description", p.getDescription());

| dapTenpl at e. nodi f yAttri but es(cont ext);

}
Example 3.5 Modifying using Di r Cont ext Adapt er

When no mapper is passed to a | dapTenpl at e. | ookup() operation, the result will be a
Di r Cont ext Adapt er instance. While the | ookup method returns an Obj ect, the convenience

Spring LDAP - Reference
Documentation 16

please define productname in your docbook file!

method | ookupCont ext method automatically casts the return value to a Di r Cont ext Qper ati ons
(the interface that Di r Cont ext Adapt er implements.

The observant reader will see that we have duplicated code in the cr eat e and updat e methods. This
code maps from a domain object to a context. It can be extracted to a separate method:

}

package com exanpl e. dao;

public class PersonDaol npl inplements PersonDao {

private LdapTenpl ate | dapTenpl at e;

public void create(Person p) {

}

Nane dn = bui |l dDn(p);

Di r Cont ext Adapt er context = new Di r Cont ext Adapt er (dn) ;
mapToCont ext (p, context);

| dapTenpl at e. bi nd(cont ext) ;

public voi d update(Person p) {

}

Narme dn = bui |l dDn(p);

Di r Cont ext Oper ati ons context = | dapTenpl at e. | ookupCont ext (dn);
mapToCont ext (person, context);

| dapTenpl at e. modi f yAttri but es(context);

protected void mapToCont ext (Person p, DirContextOperations context) ({

context.set Attri buteVal ues("objectclass", new String[] {"top", "person"});
context.setAttributeVal ue("cn", p.getFull Nane());

context.setAttributeVal ue("sn", p.getlLastNane());

context.setAttributeVal ue("description", p.getDescription());

Example 3.6 Binding and modifying using DirContextAdapter

3.4. A Complete PersonDao Class

To illustrate the power of Spring LDAP, here is a complete Person DAO implementation for LDAP in
just 68 lines:

Spring LDAP - Reference
Documentation

17

please define productname in your docbook file!

package com exanpl e. dao;
import java.util.List;

i nport javax. nami ng. Nane;
i mport javax. nam ng. Nam ngExcepti on;
i mport javax.nam ng.directory.Attributes;

i mport org.springframework. | dap.core. Attri but esMapper;

i mport org. springframework. | dap. core. Cont ext Mapper ;

i nport org.springfranework. | dap. core. LdapTenpl at e;

i mport org. springframework. | dap. core. Di r Cont ext Adapt er;

i mport org.springframework. | dap. core. support. D stingui shedNane;

i nport org.springfranework.|dap.filter.AndFilter;

i mport org.springframework. | dap.filter.Equal sFilter;

i mport org.springframework. | dap.filter.WitespaceW ! dcardsFilter;

public class PersonDaol npl inplenments PersonDao {
private LdapTenpl ate | dapTenpl at e;

public void setLdapTenpl at e(LdapTenpl ate | dapTenpl ate) {
this.| dapTenpl ate = | dapTenpl at e;

public void create(Person person) {
Di r Cont ext Adapt er context = new Di r Cont ext Adapt er (bui | dDn(per son));
mapToCont ext (person, context);
| dapTenpl at e. bi nd(cont ext) ;

public voi d updat e(Person person) {
Nane dn = bui | dDn(person);
Di r Cont ext Oper ati ons context = | dapTenpl ate. | ookupCont ext (dn);
mapToCont ext (per son, context);
| dapTenpl at e. nodi fyAttri but es(context);

public void del et e(Person person) {
| dapTenpl at e. unbi nd(bui | dDn(person));

public Person findByPrinmaryKey(String nane, String conpany, String country) {
Narme dn = bui |l dDn(nanme, conpany, country);
return (Person) |dapTenpl ate. | ookup(dn, get Context Mapper());

public List findByNane(String nane) {
AndFilter filter = new AndFilter();
filter.and(new Equal sFilter("objectclass", "person")).and(new
Whi t espaceW | dcardsFil ter("cn", nane));
return | dapTenpl at e. search(Di sti ngui shedNarme. EMPTY_PATH, filter.encode(),
get Cont ext Mapper ());

}

public List findAI() {
Equal sFilter filter = new Equal sFilter("objectclass", "person");
return | dapTenpl at e. search(Di sti ngui shedNarme. EMPTY_PATH, filter.encode(),
get Cont ext Mapper ());

}

protect ed Cont ext Mapper get Cont ext Mapper () {
return new PersonCont ext Mapper () ;

protected Nane buil dDn(Person person) {
return buil dDn(person. get Ful | nane(), person. get Conpany(), person.getCountry());

mrmoat arcrtard NMarmas it | ATYAZ S vt s £l o mnanrne CE ri M AAPY A M Ctrinmmn ~iirmt rvwN T

please define productname in your docbook file!

Note

In several cases the Distinguished Name (DN) of an object is constructed using properties of the
object. E.g. in the above example, the country, company and full name of the Per son are used
in the DN, which means that updating any of these properties will actually require moving the
entry in the LDAP tree using the r enanme() operation in addition to updating the Attri but e
values. Since this is highly implementation specific this is something you'll need to keep track of
yourself - either by disallowing the user to change these properties or performing the r enane()
operation in your updat e() method if needed.

Spring LDAP - Reference
Documentation 19

please define productname in your docbook file!

4. Adding Missing Overloaded APl Methods

4.1. Implementing Custom Search Methods

While LdapTenpl at e contains several overloaded versions of the most common operations in
Di r Cont ext , we have not provided an alternative for each and every method signature, mostly because
there are so many of them. We have, however, provided a means to call whichever Di r Cont ext method
you want and still get the benefits that LdapTemplate provides.

Let's say that you want to call the following Di r Cont ext method:

Nam ngEnuner ati on search(Nanme nane, String filterExpr, bject[] filterArgs, SearchControls
ctls)

There is no corresponding overloaded method in LdapTemplate. The way to solve this is to use a custom
Sear chExecut or implementation:

public interface SearchExecutor {
publ i ¢ Nami ngEnunerati on execut eSearch(Di rContext ctx) throws Nami ngException;

}

In your custom executor, you have access to a Dir Cont ext object, which you use to call
the method you want. You then provide a handler that is responsible for mapping attributes
and collecting the results. You can for example use one of the available implementations of
Col | ecti ngNaned assPai r Cal | backHandl er, which will collect the mapped results in an internal
list. In order to actually execute the search, you call the sear ch method in LdapTemplate that takes an
executor and a handler as arguments. Finally, you return whatever your handler has collected.

package com exanpl e. dao;
public class PersonDaol npl inplenments PersonDao {

public List search(final Nane base, final String filter, final String[] parans,
final SearchControls ctls) {
Sear chExecut or executor = new Sear chExecutor () {
publ i ¢ Nami ngEnuner ati on execut eSearch(Di rContext ctx) {
return ctx.search(base, filter, parans, ctls);
}
0%

Col | ecti ngNaned assPai r Cal | backHandl er handl er =
new Attri but esMapper Cal | backHandl er (new PersonAttri but esMapper());

| dapTenpl at e. sear ch(execut or, handl er);
return handl er.getList();

}

Example 4.1 A custom search method using SearchExecutor and AttributesMapper

If you prefer the Cont ext Mapper to the Att ri but esMapper, this is what it would look like:

Spring LDAP - Reference
Documentation 20

please define productname in your docbook file!

package com exanpl e. dao;
public class PersonDaol npl inplenments PersonDao {

public List search(final Nane base, final String filter, final String[] parans,
final SearchControls ctls) {
Sear chExecut or executor = new Sear chExecutor() {
publ i ¢ Nami ngEnuner ati on execut eSear ch(Di r Context ctx) {
return ctx.search(base, filter, paranms, ctls);
}
H

Col | ecti ngNanmed assPai r Cal | backHandl er handl er =
new Cont ext Mapper Cal | backHandl er (new Per sonCont ext Mapper ());

| dapTenpl at e. sear ch(execut or, handl er);
return handl er. getList();

}
Example 4.2 A custom search method using SearchExecutor and ContextMapper

© Note

When using the Cont ext Mapper Cal | backHandl er you must make sure that you have called
set Ret ur ni ngQbj Fl ag(true) onyour Sear chCont r ol s instance.

4.2. Implementing Other Custom Context Methods

In the same manner as for custom sear ch methods, you can actually execute any method in
Di r Cont ext by using a Cont ext Execut or .

public interface ContextExecutor {
public Object executeWthContext (D rContext ctx) throws Nami ngExcepti on;

}

When implementing a custom Context Executor, you can choose between using the
execut eReadOnl y() or the execut eReadWite() method. Let's say that we want to call this
method:

Obj ect | ookupLi nk(Name nane)

It's available in Di r Cont ext , but there is no matching method in LdapTenpl at e. It's a lookup method,
so it should be read-only. We can implement it like this:

Spring LDAP - Reference
Documentation 21

please define productname in your docbook file!

package com exanpl e. dao;
public class PersonDaol npl inplenments PersonDao {

public Object |ookupLink(final Nane nane) {
Cont ext Execut or executor = new Cont ext Executor () {
public Obj ect executeWthContext(DirContext ctx) {
return ctx.l|ookupLi nk(nane);
}
b

return | dapTenpl at e. execut eReadOnl y(execut or) ;

In the same manner you can execute a read-write operation using the execut eReadW i t e() method.

Example 4.3 A custom DirContext method using ContextExecutor

Spring LDAP - Reference
Documentation

22

please define productname in your docbook file!

5. Processing the DirContext

5.1. Custom DirContext Pre/Postprocessing

In some situations, one would like to perform operations on the Di r Cont ext before and after the search
operation. The interface that is used for this is called Di r Cont ext Pr ocessor:

public interface DirContextProcessor {
public void preProcess(DirContext ctx) throws Nami ngException;
public void postProcess(DirContext ctx) throws Nanmi ngExcepti on;

The LdapTenpl at e class has a search method that takes a Di r Cont ext Pr ocessor :

public void search(SearchExecutor se, NameCd assPair Cal | backHandl er handl er,
Di r Cont ext Processor processor) throws DataAccessException;

Before the search operation, the pr ePr ocess method is called on the given Di r Cont ext Pr ocessor
instance. After the search has been executed and the resulting Nam ngEnuner ati on has been
processed, the post Process method is called. This enables a user to perform operations on the
Di r Cont ext to be used in the search, and to check the Di r Cont ext when the search has been
performed. This can be very useful for example when handling request and response controls.

There are also a few convenience methods for those that don't need a custom Sear chExecut or :

public void search(Nane base, String filter,
SearchControl s controls, Naned assPair Cal | backHandl er handl er, D rCont ext Processor
processor)

public void search(String base, String filter,
SearchControls controls, Named assPair Cal | backHandl er handl er, Di r Cont ext Processor
processor)

public void search(Nane base, String filter,
SearchControls controls, AttributesMapper nmapper, DirContextProcessor processor)

public void search(String base, String filter,
SearchControls controls, AttributesMapper mapper, DirContextProcessor processor)

public void search(Nane base, String filter,
SearchControls controls, ContextMpper mapper, DirContextProcessor processor)

public void search(String base, String filter,
SearchControls controls, ContextMapper mapper, DirContextProcessor processor)

5.2. Implementing a Request Control DirContextProcessor

The LDAPv3 protocol uses Controls to send and receive additional data to affect
the behavior of predefined operations. In order to simplify the implementation of
a request control DirContextProcessor, Spring LDAP provides the base class
Abst r act Request Cont r ol Di r Cont ext Processor . This class handles the retrieval of the current
request controls from the LdapCont ext , calls a template method for creating a request control, and
adds it to the LdapCont ext . All you have to do in the subclass is to implement the template method

Spring LDAP - Reference
Documentation 23

please define productname in your docbook file!

cr eat eRequest Cont r ol , and of course the post Pr ocess method for performing whatever you need
to do after the search.

publ i c abstract class Abstract Request Control Di r Cont ext Processor inpl enents
Di r Cont ext Processor {

public void preProcess(DirContext ctx) throws Nam ngException {

}

public abstract Control createRequestControl ();

A typical Di r Cont ext Pr ocessor will be similar to the following:

package com exanpl e. control;

public class M/Cool Request Control extends Abstract Request Control Di r Cont ext Processor {
private static final boolean CRI TI CAL_CONTROL = true;
private MyCool Cooki e cooki e;

publ i ¢ MyCool Cooki e get Cooki e() {
return cooki e;

}

public Control createRequestControl () {
return new SoneCool Control (cooki e. get Cooki e(), CRITI CAL_CONTRQOL);

}

public voi d postProcess(DirContext ctx) throws Nam ngException {
LdapCont ext | dapCont ext = (LdapContext) ctx;
Control [] responseControls = | dapCont ext. get ResponseControl s();

for (int i = 0; i < responseControls.length; i++) {
if (responseControls[i] instanceof SoneCool ResponseControl) {
SonmeCool ResponseControl control = (SomeCool ResponseControl)

responseControl s[i];
t hi s. cooki e = new MyCool Cooki e(control . get Cookie());

}

}
Example 5.1 A request control DirContextProcessor implementation

© Note

Make sure you use LdapCont ext Sour ce when you use Controls. The Cont r ol interface is
specific for LDAPv3 and requires that LdapCont ext is used instead of Di r Cont ext . If an
Abst ract Request Cont rol Di r Cont ext Pr ocessor subclass is called with an argument that
is not an LdapCont ext , it will throw an | | | egal Ar gunent Excepti on.

5.3. Paged Search Results

Some searches may return large numbers of results. When there is no easy way to filter out a smaller
amount, it would be convenient to have the server return only a certain number of results each time
it is called. This is known as paged search results. Each "page" of the result could then be displayed
at the time, with links to the next and previous page. Without this functionality, the client must either

Spring LDAP - Reference
Documentation 24

http://download.oracle.com/javase/1.5.0/docs/api/javax/naming/ldap/Control.html

please define productname in your docbook file!

manually limit the search result into pages, or retrieve the whole result and then chop it into pages of
suitable size. The former would be rather complicated, and the latter would be consuming unnecessary
amounts of memory.

Some LDAP servers have support for the PagedResul t sCont r ol , which requests that the results of
a search operation are returned by the LDAP server in pages of a specified size. The user controls the
rate at which the pages are returned, simply by the rate at which the searches are called. However, the
user must keep track of a cookie between the calls. The server uses this cookie to keep track of where
it left off the previous time it was called with a paged results request.

Spring LDAP provides support for paged results by leveraging the concept for pre- and
postprocessing of an LdapCont ext that was discussed in the previous sections. It does so
by providing two classes: PagedResul t sRequest Control and PagedResul t sCooki e. The
PagedResul t sRequest Cont r ol class creates a PagedResul t sCont r ol with the requested page
size and adds it to the LdapCont ext . After the search, it gets the PagedResul t sResponseCont r ol
and retrieves two pieces of information from it: the estimated total result size and a cookie. This
cookie is a byte array containing information that the server needs the next time it is called with a
PagedResul t sContr ol . In order to make it easy to store this cookie between searches, Spring LDAP
provides the wrapper class PagedResul t sCooki e.

Below is an example of how the paged search results functionality may be used:

publ i c PagedResul t get Al | Per sons(PagedResul t sCooki e cookie) {
PagedResul t sRequest Control control = new PagedResul t sRequest Control (PAGE_SI ZE, cooki e);
SearchControl s searchControls = new SearchControl s();
sear chControl s. set Sear chScope(Sear chCont r ol s. SUBTREE_SCOPE) ;

Li st persons = | dapTenpl ate. search("", "objectclass=person", searchControls, control);

return new PagedResul t (persons, control.getCookie());

}
Example 5.2 Paged results using PagedResul t sRequest Cont r ol

In the first call to this method, nul I will be supplied as the cookie parameter. On subsequent
calls the client will need to supply the cookie from the last search (returned wrapped in
the PagedResult) each time the method is called. When the actual cookie is null (i.e.
pagedResul t . get Cooki e() . get Cooki e() returns nul |), the last batch has been returned from
the search.

Spring LDAP - Reference
Documentation 25

please define productname in your docbook file!

6. Transaction Support

6.1. Introduction

Programmers used to working with relational databases coming to the LDAP world often express
surprise to the fact that there is no notion of transactions. It is not specified in the protocol, and thus
no servers support it. Recognizing that this may be a major problem, Spring LDAP provides support for
client-side, compensating transactions on LDAP resources.

LDAP transaction support is provided by Context SourceTransacti onManager, a
Pl at f or MTr ansact i onManager implementation that manages Spring transaction support for LDAP
operations. Along with its collaborators it keeps track of the LDAP operations performed in a transaction,
making record of the state before each operation and taking steps to restore the initial state should the
transaction need to be rolled back.

In addition to the actual transaction management, Spring LDAP transaction support also makes sure that
the same Di r Cont ext instance will be used throughout the same transaction, i.e. the Di r Cont ext
will not actually be closed until the transaction is finished, allowing for more efficient resources usage.

© Note

Itis important to note that while the approach used by Spring LDAP to provide transaction support
is sufficient for many cases it is by no means "real" transactions in the traditional sense. The
server is completely unaware of the transactions, so e.g. if the connection is broken there will
be no hope to rollback the transaction. While this should be carefully considered it should also
be noted that the alternative will be to operate without any transaction support whatsoever; this
is pretty much as good as it gets.

© Note

The client side transaction support will add some overhead in addition to the work required by the
original operations. While this overhead should not be something to worry about in most cases,
if your application will not perform several LDAP operations within the same transaction (e.g. a
nodi f yAtt ri but es followed by ar ebi nd), or if transaction synchronization with a JDBC data
source is not required (see below) there will be nothing to gain by using the LDAP transaction
support.

@ Note

While the default setup will work fine for most simple use cases, some more complex scenarios
will require additional configuration; more specifically if you will be creating or deleting subtrees
within transactions, you will need to use an alternative TenpEnt r yRenam ngSt r at egy, as
described in the section called “Renaming Strategies” below

6.2. Configuration

Configuring Spring LDAP transactions should look very familiar if you're used to configuring Spring
transactions. You will create a Transacti onManager instance and wrap your target object
using a Transact i onProxyFact or yBean. In addition to this, you will also need to wrap your
Cont ext Sour ce in a Tr ansact i onAwar eCont ext Sour cePr oxy.

Spring LDAP - Reference
Documentation 26

please define productname in your docbook file!

<beans>

<bean i d="cont ext Sour ceTar get "
cl ass="org. spri ngframewor k. | dap. core. support. LdapCont ext Sour ce" >
<property name="url" val ue="|dap://| ocal host: 389" />
<property nanme="base" val ue="dc=exanpl e, dc=comt' />
<property nanme="userDn" val ue="cn=Manager" />
<property nanme="password" val ue="secret" />
</ bean>

<bean i d="cont ext Sour ce"

ass="org. springframework. | dap.transacti on. conpensat i ng. manager . Transact i onAwar eCont ext Sour cePr oxy" >
<constructor-arg ref="contextSourceTarget" />
</ bean>

c

<bean i d="|dapTenpl ate" cl ass="org. spri ngframework. | dap. core. LdapTenpl at e" >
<constructor-arg ref="context Source" />
</ bean>

<bean id="transacti onManager"

cl ass="org. springfranmework. | dap. transacti on. conpensati ng. manager . Cont ext Sour ceTr ansact i onManager " >
<property nanme="cont ext Source" ref="context Source" />
</ bean>

<bean i d="nyDat aAccessCbhj ect Target" cl ass="com exanpl e. MyDat aAccessChj ect ">
<property nanme="I|dapTenpl ate" ref="IdapTenpl ate" />
</ bean>

<bean i d="nyDat aAccessObj ect "

cl ass="org. springframework. transaction.interceptor. Transacti onProxyFact oryBean" >
<property name="transacti onManager" ref="transacti onManager" />
<property nanme="target" ref="nyDataAccessChjectTarget" />
<property nanme="transacti onAttributes">
<pr ops>
<prop key="*">PROPAGATI ON_REQUI RES_NEW/ pr op>
</ pr ops>
</ property>
</ bean>

In a real world example you would probably apply the transactions on the service object level rather
than the DAO level; the above serves as an example to demonstrate the general idea.

@ Note
You'll notice that the actual Cont ext Source and DAO instances get ids with a "Target"
suffix. The beans you will actually refer to are the Proxies that are created around the targets;
cont ext Sour ce and nyDat aAccess(Cbj ect

6.3. JDBC Transaction Integration

A common use case when working against LDAP is that some of the data is stored in the LDAP tree,
but other data is stored in a relational database. In this case, transaction support becomes even more
important, since the update of the different resources should be synchronized.

Spring LDAP - Reference
Documentation 27

please define productname in your docbook file!

While actual XA transactions is not supported, support is provided to
conceptually wrap JDBC and LDAP access within the same transaction using the
Cont ext Sour ceAndDat aSour ceTr ansact i onManager . A Dat aSour ce and a Cont ext Sour ce
is supplied to the Cont ext Sour ceAndDat aSour ceTr ansact i onManager , which will then manage
the two transactions, virtually as if they were one. When performing a commit, the LDAP part
of the operation will always be performed first, allowing both transactions to be rolled back
should the LDAP commit fail. The JDBC part of the transaction is managed exactly as in
Dat aSour ceTr ansact i onManager , except that nested transactions is not supported.

© Note

Once again it should be noted that the provided support is all client side. The wrapped transaction
is not an XA transaction. No two-phase as such commit is performed, as the LDAP server will
be unable to vote on its outcome. Once again, however, for the majority of cases the supplied
support will be sufficient.

6.4. LDAP Compensating Transactions Explained

Spring LDAP manages compensating transactions by making record of the state in the LDAP tree before
each modifying operation (bi nd, unbi nd, r ebi nd, nodi f yAtt ri but es, and r enane).

This enables the system to perform compensating operations should the transaction need to be rolled
back. In many cases the compensating operation is pretty straightforward. E.g. the compensating
rollback operation for a bi nd operation will quite obviously be to unbind the entry. Other operations
however require a different, more complicated approach because of some particular characteristics of
LDAP databases. Specifically, it is not always possible to get the values of all At t ri but es of an entry,
making the above strategy insufficient for e.g. an unbi nd operation.

This is why each modifying operation performed within a Spring LDAP managed transaction is internally
split up in four distinct operations - a recording operation, a preparation operation, a commit operation,
and a rollback operation. The specifics for each LDAP operation is described in the table below:

Table 6.1.

LDAP Operation Recording Preparation Commit Rollback

bi nd Make record of Bind the entry. No operation. Unbind the
the DN of the entry using the
entry to bind. recorded DN.

renane Make record of Rename the No operation. Rename the entry
the original and entry. back to its original
target DN. DN.

unbi nd Make record of Rename the entry Unbind the Rename the
the original DN to the temporary temporary entry. entry from the
and calculate a location. temporary
temporary DN. location back to

its original DN.

rebi nd Make record Rename the entry Bind the new Rename the
of the original to a temporary Attributes at entry from the
DN and the new location. the original DN, temporary

Attributes,

and unbind the

Documentation

Spring LDAP - Reference

28

please define productname in your docbook file!

LDAP Operation Recording Preparation Commit Rollback
and calculate a original entry from location back to
temporary DN. its temporary its original DN.

location.

nodi f yAtt ri but eMake record of Perform the No operation. Perform a
the DN of the nodi f yAttri butes nmodi f yAttri butes
entry to modify operation. operation using
and calculate the calculated
compensating compensating
Modi fi cati onltens Modi fi cationltermns.
for the
modifications to
be done.

A more detailed description of the internal workings of the Spring LDAP transaction support is available
in the javadocs.

Renaming Strategies

As described in the table above, the transaction management of some operations require the original
entry affected by the operation to be temporarily renamed before the actual modification can be
made in the commit. The manner in which the temporary DN of the entry is calculated is managed
by a TenpEnt r yRenam ngSt r at egy supplied to the Cont ext Sour ceTr ansact i onManager . Two
implementations are supplied with Spring LDAP, but if specific behaviour is required a custom
implementation can easily be implemented by the user. The provided TenpEnt r yRenam ngSt r at egy
implementations are:

» Def aul t TenpEnt r yRenam ngSt r at egy (the default). Adds a suffix to the least significant part of
the entry DN. E.g. for the DN cn=j ohn doe, ou=user s, this strategy would return the temporary
DN cn=j ohn doe_t enp, ou=users. The suffix is configurable using the t enpSuf f i x property

» Di fferent SubtreeTenpEnt ryRenani ngSt r at egy. Takes the least significant part of the DN
and appends a subtree DN to this. This makes all temporary entries be placed at a specific location
in the LDAP tree. The temporary subtree DN is configured using the subt r eeNode property. E.g., if
subt r eeNode is ou=t enpEnt ri es and the original DN of the entry is cn=j ohn doe, ou=users,
the temporary DN will be cn=j ohn doe, ou=t enpEntri es. Note that the configured subtree node
needs to be present in the LDAP tree.

© Note

There are some situations where the Defaul t TenpEntryRenam ngStrategy will
not work. E.g. if your are planning to do recursive deletes youll need to use
Di f f erent Subt reeTenpEnt r yRenam ngStr at egy. This is because the recursive delete
operation actually consists of a depth-first delete of each node in the sub tree
individually. Since it is not allowed to rename an entry that has any children, and
Def aul t TenpEnt r yRenani ngSt r at egy would leave each node in the same subtree (with a
different name) in stead of actually removing it, this operation would fail. When in doubt, use
Di f f er ent Subt r eeTenpEnt r yRenam ngStr at egy.

Spring LDAP - Reference
Documentation 29

please define productname in your docbook file!

/. Java 5 Support

7.1. SimpleLdapTemplate

As of version 1.3 Spring LDAP includes the spring-ldap-core-tiger.jar distributable, which adds a thin
layer of Java 5 functionality on top of Spring LDAP.

The Sinpl eLdapTenpl ate class adds search and lookup methods that take a
Par anmet er i zedCont ext Mapper , adding generics support to these methods.

Par anet ri zedCont ext Mapper is atyped version of Cont ext Mapper , which simplifies working with
searches and lookups:

public List<Person> getAll Persons(){
return sinpleLdapTenpl ate. search("", "(objectclass=person)",
new Par anet er i zedCont ext Mapper <Per son>() {
publ i ¢ Person mapFronCont ext (Cbj ect ctx) {
Di r Cont ext Adapt er adapter = (DirContext Adapter) ctx;
Person person = new Person();
/1 Fill the domain object with data fromthe DirContext Adapter

return person;

Example 7.1 Using Par anet er i zedCont ext Mapper

Spring LDAP - Reference
Documentation 30

please define productname in your docbook file!

8. Configuration

8.1. ContextSource Configuration

There are several properties in Abst r act Cont ext Sour ce (superclass of Di r Cont ext Sour ce and
LdapCont ext Sour ce) that can be used to modify its behaviour.

LDAP Server URLs

The URL of the LDAP server is specified using the url property. The URL should be in the
format | dap: // nyserver. exanpl e. com 389. For SSL access, use the | daps protocol and the
appropriate port, e.g. | daps:// nmyserver. exanpl e. com 636

It is possible to configure multiple alternate LDAP servers using the ur | s property. In this case, supply
all server urls in a String array to the ur | s property.

Base LDAP path

It is possible to specify the root context for all LDAP operations using the base property of
Abst r act Cont ext Sour ce. When a value has been specified to this property, all Distinguished Names
supplied to and received from LDAP operations will be relative to the LDAP path supplied. This can
significantly simplify working against the LDAP tree; however there are several occations when you
will need to have access to the base path. For more information on this, please refer to Section 8.3,
“Obtaining a reference to the base LDAP path”

DirContext Authentication

When Di r Cont ext instances are created to be used for performing operations on an LDAP server
these contexts often need to be authenticated. There are different options for configuring this using
Spring LDAP, described in this chapter.

© Note

This section refers to authenticating contexts in the core functionality of the Cont ext Sour ce
- to construct Di r Cont ext instances for use by LdapTenpl at e. LDAP is commonly used for
the sole purpose of user authentication, and the Cont ext Sour ce may be used for that as well.
This process is discussed in Chapter 10, User Authentication using Spring LDAP.

Authenticated contexts are created for both read-only and read-write operations by default. You specify
user Dn and passwor d of the LDAP user to be used for authentication on the Cont ext Sour ce.

© Note

The user Dn needs to be the full Distinguished Name (DN) of the user from the root of the LDAP
tree, regardless of whether a base LDAP path has been supplied to the Cont ext Sour ce.

Some LDAP server setups allow anonymous read-only access. If you want to use anonymous Contexts
for read-only operations, set the anonynmousReadOnl y property to t r ue.

Spring LDAP - Reference
Documentation 31

please define productname in your docbook file!

Custom DirContext Authentication Processing

The default authentication mechanism used in Spring LDAP is SIMPLE authentication. This means that
in the user DN (as specified to the user Dn property) and the credentials (as specified to the passwor d)
are set in the Hashtable sent to the Di r Cont ext implementation constructor.

There are many occasions when this processing is not sufficient. For instance, LDAP Servers are
commonly set up to only accept communication on a secure TLS channel; there might be a need to use
the particular LDAP Proxy Auth mechanism, etc.

It is possible to specify an alternative authentication mechanism by supplying a
Di r Cont ext Aut henti cati onStrategy implementation to the ContextSource in the
configuration.

TLS

Spring LDAP provides two different configuration options for LDAP servers requiring
TLS secure channel communication: Def aul t Tl sDi r Cont ext Aut henti cati onStrat egy and
Ext er nal Tl sDi r Cont ext Aut henti cati onStr at egy. Both these implementations will negotiate
a TLS channel on the target connection, but they differ in the actual authentication
mechanism. Whereas the Def aul t TlI sDi r Cont ext Aut henti cati onSt r at egy will apply SIMPLE
authentication on the secure channel (using the specified userDn and password), the
Ext er nal Di r Cont ext Aut henti cati onStrategy will use EXTERNAL SASL authentication,
applying a client certificate configured using system properties for authentication.

Since different LDAP server implementations respond differently to explicit shutdown of the TLS channel
(some servers require the connection be shutdown gracefully; others do not support it), the TLS
Di r Cont ext Aut henti cati onSt r at egy implementations support specifying the shutdown behavior
using the shut downTl sGr acef ul | y parameter. If this property is setto f al se (the default), no explicit
TLS shutdown will happen; if it is t r ue, Spring LDAP will try to shutdown the TLS channel gracefully
before closing the target context.

© Note

When working with TLS connections you need to make sure that the native LDAP Pooling
functionality is turned off. As of release 1.3, the default setting is off. For earlier versions, simply
set the pool ed property to f al se. This is particularly important if shut downTl sG aceful | y
is set to f al se. However, since the TLS channel negotiation process is quite expensive, great
performance benefits will be gained by using the Spring LDAP Pooling Support, described in
Chapter 9, Pooling Support.

Custom Principal and Credentials Management

While the user name (i.e. user DN) and password used for creating an authenticated Cont ext are
static by default - the ones set on the Cont ext Source on startup will be used throughout the
lifetime of the Cont ext Sour ce - there are however several cases in which this is not the desired
behaviour. A common scenario is that the principal and credentials of the current user should be used
when executing LDAP operations for that user. The default behaviour can be modified by supplying
a custom Aut henti cat i onSour ce implementation to the Cont ext Sour ce on startup, instead of
explicitly specifying the user Dn and passwor d. The Aut hent i cat i onSour ce will be queried by the
Cont ext Sour ce for principal and credentials each time an authenticated Cont ext is to be created.

Spring LDAP - Reference
Documentation 32

please define productname in your docbook file!

If you are using Spring Security you can make sure the principal and credentials of the currently
logged in user is used at all times by configuring your Cont ext Sour ce with an instance of the

SpringSecurityAut henti cati onSour ce shipped with Spring Security.

<beans>

<bean i d="cont ext Sour ce"
cl ass="org. spri ngframewor k. | dap. core. support. LdapCont ext Sour ce" >
<property name="url" val ue="Idap://I ocal host: 389" />
<property nanme="base" val ue="dc=exanpl e, dc=cont' />
<property nanme="aut henticati onSource" ref="springSecurityAuthenticati onSource" />
</ bean>

<bean i d="springSecurityAuthenticationSource"
cl ass="org. springframewor k. security.|dap. SpringSecurityAuthenticati onSource" />

</ beans>

Example 8.1 The Spring bean definition for a SpringSecurityAuthenticationSource

© Note

We don't specify any userDn or password to our Context Source when using an
Aut hent i cati onSour ce - these properties are needed only when the default behaviour is

used.

© Note

When using the Spri ngSecuri t yAut henti cati onSour ce you need to use Spring Security's

LdapAut henti cati onProvi der to authenticate the users against LDAP.

Default Authentication

When using Spri ngSecuri t yAut henti cati onSour ce, authenticated contexts will only be possible
to create once the user is logged in using Spring Security. To use default authentication information

when no user is logged in, use the Def aul t Val uesAut henti cat i onSour ceDecor at or:

Spring LDAP - Reference
Documentation

33

http://springsecurity.org

please define productname in your docbook file!

<beans>

<bean i d="cont ext Sour ce"
cl ass="org. spri ngframewor k. | dap. core. support. LdapCont ext Sour ce" >
<property name="url" val ue="|dap://| ocal host: 389" />
<property nanme="base" val ue="dc=exanpl e, dc=comt' />
<property nanme="aut henti cati onSource" ref="authenticationSource" />
</ bean>

<bean i d="aut henti cati onSource"

cl ass="org. spri ngframewor k. | dap. aut henti cati on. Def aul t Val uesAut henti cati onSour ceDecor at or" >
<property name="target" ref="springSecurityAuthenticationSource" />
<property nanme="def aul t User" val ue="cn=nyDef aul t User" />
<property nanme="def aul t Password" val ue="pass" />
</ bean>

<bean i d="springSecurityAuthenticationSource"
cl ass="org. springframework. security.|dap. SpringSecurityAuthenticati onSource" />

</ beans>

Example 8.2 Configuring a DefaultValuesAuthenticationSourceDecorator
Native Java LDAP Pooling

The internal Java LDAP provider provides some very basic pooling capabilities. This LDAP connection
pooling can be turned on/off using the pool ed flag on Abst r act Cont ext Sour ce. The default value
is f al se (since release 1.3), i.e. the native Java LDAP pooling will be turned on. The configuration of
LDAP connection pooling is managed using Syst emproperties, so this needs to be handled manually,
outside of the Spring Context configuration. Details of the native pooling configuration can be found here.

© Note

There are several serious deficiencies in the built-in LDAP connection pooling, which is why
Spring LDAP provides a more sophisticated approach to LDAP connection pooling, described
in Chapter 9, Pooling Support. If pooling functionality is required, this is the recommended
approach.

© Note

Regardless of the pooling configuration, the Cont ext Sour ce#get Context (String
principal, String credential s) method will always explicitly not use native Java LDAP
Pooling, in order for reset passwords to take effect as soon as possible.

Advanced ContextSource Configuration
Alternate ContextFactory

It is possible to configure the ContextFactory that the ContextSource is to use
when creating Contexts using the contextFactory property. The default value is
com sun. j ndi .| dap. LdapCt xFact ory.

Custom DirObjectFactory

As described in Chapter 3, Simpler Attribute Access and Manipulation with DirContextAdapter, a
Di r Obj ect Fact ory can be used to translate the At tri but es of found Contexts to a more useful
Di r Cont ext implementation. This can be configured using the di r Qbj ect Fact ory property. You
can use this property if you have your own, custom Di r Obj ect Fact or y implementation.

Spring LDAP - Reference
Documentation 34

http://java.sun.com/products/jndi/tutorial/ldap/connect/config.html

please define productname in your docbook file!

The default value is Def aul t Di r Cbj ect Fact ory.
Custom DirContext Environment Properties

In some cases the user might want to specify additional environment setup properties in addition to the
ones directly configurable from Abst r act Cont ext Sour ce. Such properties should be set in a Map
and supplied to the baseEnvi r onnent Pr operti es property.

8.2. LdapTemplate Configuration

Ignoring PartialResultExceptions

Some Active Directory (AD) servers are unable to automatically following referrals, which
often leads to a Parti al Resul t Excepti on being thrown in searches. You can specify that
Parti al Resul t Excepti on is to be ignored by setting the i gnoreParti al Resul t Excepti on
property to t r ue.

© Note

This causes all referrals to be ignored, and no notice will be given that a
Parti al Resul t Excepti on has been encountered. There is currently no way of manually
following referrals using LdapTemplate.

8.3. Obtaining a reference to the base LDAP path

As described above, a base LDAP path may be supplied to the Cont ext Sour ce, specifying the root
in the LDAP tree to which all operations will be relative. This means that you will only be working with
relative distinguished names throughout your system, which is typically rather handy. There are however
some cases in which you will need to have access to the base path in order to be able to construct
full DNs, relative to the actual root of the LDAP tree. One example would be when working with LDAP
groups (e.g. gr oupOf Nanes objectclass), in which case each group member attribute value will need
to be the full DN of the referenced member.

For that reason, Spring LDAP has a mechanism by which any Spring controlled bean may be supplied
the base path on startup. For beans to be notified of the base path, two things need to be in place:
First of all, the bean that wants the base path reference needs to implement the BaseLdapPat hAwar e
interface. Secondly, a BaseLdapPat hBeanPost Processor needs to be defined in the application
context

package com exanpl e. servi ce;
public class PersonService inmplements PersonService, BaselLdapPat hAware {
private Di stingui shedNane basePat h;

public void set BaseLdapPat h(Di sti ngui shedNane basePat h) {
this. basePath = basePat h;

}

private Di stingui shedName get Ful | Per sonDn(Per son person) {
return new Di stingui shedName(basePat h). append(person. getDn());

}

}
Example 8.3 Implementing BaselLdapPat hAwar e

Spring LDAP - Reference
Documentation 35

please define productname in your docbook file!

<beans>

<bean i d="cont ext Sour ce"
cl ass="org. spri ngframewor k. | dap. core. support. LdapCont ext Sour ce" >
<property name="url" val ue="|dap://| ocal host: 389" />
<property nanme="base" val ue="dc=exanpl e, dc=comt' />
<property nanme="aut henti cati onSource" ref="authenticationSource" />
</ bean>

<bean cl ass="org. spri ngframewor k. | dap. core. support . BaseLdapPat hBeanPost Processor" />
</ beans>

Example 8.4 Specifying a BaseLdapPat hBeanPost Pr ocessor in your Appl i cat i onCont ext

The default behaviour of the BaselLdapPat hBeanPost Processor is to use the base path of the
single defined BaselLdapPat hSour ce (Abst r act Cont ext Sour ce)in the Appl i cati onCont ext .
If more than one BaselLdapPat hSour ce is defined, you will need to specify which one to use with the
baselLdapPat hSour ceNane property.

Spring LDAP - Reference
Documentation 36

please define productname in your docbook file!

9. Pooling Support

9.1. Introduction

Pooling LDAP connections helps mitigate the overhead of creating a new LDAP connection for each
LDAP interaction. While _Java LDAP pooling support exists it is limited in its configuration options
and features, such as connection validation and pool maintenance. Spring LDAP provides support for
detailed pool configuration on a per- Cont ext Sour ce basis.

Pooling support is provided by Pool i ngCont ext Sour ce which can wrap any Cont ext Sour ce and
pool both read-only and read-write Di r Cont ext objects. Jakarta Commons-Pool is used to provide
the underlying pool implementation.

9.2. DirContext Validation

Validation of pooled connections is the primary motivation for using a custom pooling library versus
the JDK provided LDAP pooling functionality. Validation allows pooled Di r Cont ext connections to be
checked to ensure they are still properly connected and configured when checking them out of the pool,
in to the pool or while idle in the pool

The Dir Cont ext Val i dat or interface is used by the Pool i ngCont ext Sour ce for validation
and Def aul t Di r Cont ext Val i dat or is provided as the default validation implementation.
Def aul t Di r Cont ext Val i dat or does a Di r Cont ext . search(String, String,
SearchControl s) , with an empty name, a filter of " obj ect cl ass=*" and Sear chControl s
set to limit a single result with the only the objectclass attribute and a 500ms timeout. If the returned
Nam ngEnurmer at i on has results the Di r Cont ext passes validation, if no results are returned or an
exception is thrown the Di r Cont ext fails validation. The Def aul t Di r Cont ext Val i dat or should
work with no configuration changes on most LDAP servers and provide the fastest way to validate the
Di r Cont ext .

9.3. Pool Properties

The following properties are available on the Pool i ngCont ext Sour ce for configuration of the
DirContext pool. The cont ext Sour ce property must be set and the di r Cont ext Val i dat or property
must be set if validation is enabled, all other properties are optional.

Table 9.1. Pooling Configuration Properties

Parameter Default Description

cont ext Sour ce nul | The Cont ext Sour ce

implementation to get

Di r Cont ext s from to
populate the pool.

di r Cont ext Val i dat or nul | The Di r Cont ext Val i dat or
implementation to use when
validating connections. This
is required if t est OnBor r ow
,testOnReturn, or

Spring LDAP - Reference
Documentation 37

http://java.sun.com/products/jndi/tutorial/ldap/connect/pool.html
http://commons.apache.org/pool/index.html

please define productname in your docbook file!

Parameter

Default

Description

t est Wi | el dl e options are
settotrue.

maxActi ve

maxTot al

The maximum number of active
connections of each type (read-
only|read-write) that can be
allocated from this pool at the
same time, or non-positive for
no limit.

The overall maximum number
of active connections (for all
types) that can be allocated
from this pool at the same time,
or non-positive for no limit.

max| dl e

m nldle

maxWai t

The maximum number of active
connections of each type (read-
only|read-write) that can remain
idle in the pool, without extra
ones being released, or non-
positive for no limit.

The minimum number of active
connections of each type (read-
only|read-write) that can remain
idle in the pool, without extra
ones being created, or zero to
create none.

The maximum number of
milliseconds that the pool

will wait (when there are no
available connections) for a
connection to be returned
before throwing an exception,
or non-positive to wait
indefinitely.

whenExhaust edAct i on

1 (BLOCK)

Specifies the behaviour when
the pool is exhausted.

» The FAIL (0)
option will throw a
NoSuchEl ement Excepti on
when the pool is exhausted.

e The BLOCK (1) option
will wait until a new
object is available. If
maxWai t is positive a

Spring LDAP - Reference
Documentation

38

please define productname in your docbook file!

Parameter Default Description

NoSuchEl erent Excepti on
is thrown if no new object is
available after the max\Wai t
time expires.

e The GROW (2) option will
create and return a new
object (essentially making
maxAct i ve meaningless).

t est OnBor r ow fal se The indication of whether
objects will be validated before
being borrowed from the pool. If
the object fails to validate, it will
be dropped from the pool, and
an attempt to borrow another
will be made.

test OnRet urn fal se The indication of whether
objects will be validated before
being returned to the pool.

testWileldle fal se The indication of whether
objects will be validated by the
idle object evictor (if any). If an
object fails to validate, it will be
dropped from the pool.

ti meBet weenEvi cti onRunsM k1L s The number of milliseconds to
sleep between runs of the idle
object evictor thread. When
non-positive, no idle object
evictor thread will be run.

nunTest sPer Evi cti onRun 3 The number of objects to
examine during each run of
the idle object evictor thread (if

any).

m nEvi ctabl el dl eTimreM | 1| 4000 * 60 * 30 The minimum amount of time
an object may sit idle in the pool
before it is eligible for eviction
by the idle object evictor (if

any).

9.4. Configuration

Configuring pooling should look very familiar if you're used to Jakarta Commons-Pool or Commons-
DBCP. You will first create a normal Cont ext Sour ce then wrap it in a Pool i ngCont ext Sour ce .

Spring LDAP - Reference
Documentation 39

please define productname in your docbook file!

<beans>

<bean i d="cont ext Sour ce"
cl ass="org. spri ngframewor k. | dap. pool . f act ory. Pool i ngCont ext Sour ce" >
<property nanme="cont ext Source" ref="context SourceTarget" />
</ bean>

<bean i d="cont ext Sour ceTar get "
cl ass="org. spri ngframewor k. | dap. core. support. LdapCont ext Sour ce" >

<property name="url" val ue="|dap://| ocal host: 389" />
<property nanme="base" val ue="dc=exanpl e, dc=comt' />
<property nanme="userDn" val ue="cn=Manager" />
<property nanme="password" val ue="secret" />
<property nanme="pool ed" val ue="fal se"/>

</ bean>

</ beans>

In a real world example you would probably configure the pool options and enable connection validation;
the above serves as an example to demonstrate the general idea.

© Note

Ensure that the pool ed property is set to f al se on any Cont ext Sour ce that will be wrapped
in a Pool i ngCont ext Sour ce . The Pool i ngCont ext Sour ce must be able to create new
connections when needed and if pool ed is set to t r ue that may not be possible.

@ Note

You'll notice that the actual Cont ext Sour ce gets an id with a "Target" suffix. The bean you will
actually refer to is the Pool i ngCont ext Sour ce that wraps the target cont ext Sour ce

Validation Configuration

Adding validation and a few pool configuration tweaks to the above example is straight forward. Inject
a Di r Cont ext Val i dat or and set when validation should occur and the pool is ready to go.

Spring LDAP - Reference
Documentation 40

please define productname in your docbook file!

<beans>

<bean i d="cont ext Sour ce"
cl ass="org. spri ngframewor k. | dap. pool . f act ory. Pool i ngCont ext Sour ce" >
<property nanme="cont ext Source" ref="context SourceTarget" />
<property nanme="di r Cont ext Val i dator" ref="dirContextValidator" />
<property nanme="t est OnBorrow' val ue="true" />
<property nanme="testWileldle" value="true" />
</ bean>

<bean i d="dir Cont ext Val i dat or "
cl ass="org. spri ngframewor k. | dap. pool . val i dati on. Def aul t Di r Cont ext Val i dator" />

<bean i d="cont ext Sour ceTar get "
cl ass="org. spri ngf ramewor k. | dap. core. support. LdapCont ext Sour ce" >

<property name="url" val ue="|dap://| ocal host: 389" />
<property nanme="base" val ue="dc=exanpl e, dc=comt' />
<property nanme="userDn" val ue="cn=Manager" />
<property nanme="password" val ue="secret" />
<property nanme="pool ed" val ue="fal se"/>

</ bean>

</ beans>

The above example will test each Di r Cont ext before it is passed to the client application and test
Di r Cont ext s that have been sitting idle in the pool.

9.5. Known Issues

Custom Authentication

The PoolingCont ext Source assumes that all DirContext objects retrieved from
Cont ext Sour ce. get ReadOnl yCont ext () will have the same environment and likewise that
all Di rCont ext objects retrieved from Cont ext Sour ce. get ReadW it eContext () will have
the same environment. This means that wrapping a LdapCont ext Sour ce configured with an
Aut hent i cati onSour ce in a Pool i ngCont ext Sour ce will not function as expected. The pool
would be populated using the credentials of the first user and unless new connections were needed
subsequent context requests would not be filled for the user specified by the Aut hent i cat i onSour ce
for the requesting thread.

Spring LDAP - Reference
Documentation 41

please define productname in your docbook file!

10. User Authentication using Spring LDAP

10.1. Basic Authentication

While the core functionality of the Cont ext Sour ce is to provide Di r Cont ext instances for use
by LdapTenpl at e, it may also be used for authenticating users against an LDAP server. The
get Context (principal, <credentials) method of Context Source will do exactly that;
construct a Di r Cont ext instance according to the Cont ext Sour ce configuration, authenticating the
context using the supplied principal and credentials. A custom authenticate method could look like this:

publ i c bool ean authenticate(String userDn, String credentials) {
DirContext ctx = null;
try {
ctx = context Sour ce. get Cont ext (userDn, credential s);
return true;
} catch (Exception e) {
/'l Context creation failed - authentication did not succeed
| ogger.error("Login failed", e);
return fal se;
} finally {
/1 1t is inmperative that the created DirContext instance is always cl osed
LdapUti | s. cl oseCont ext (ct x) ;
}
}

The userDn supplied to the aut hent i cat e method needs to be the full DN of the user to authenticate
(regardless of the base setting on the Cont ext Sour ce). You will typically need to perform an LDAP
search based on e.g. the user name to get this DN:

private String getDnForUser(String uid) {
Filter f = new Equal sFilter("uid", uid);
List result = | dapTenpl ate. search(D sti ngui shedName. EMPTY_PATH, f.toString(),
new Abst ract Cont ext Mapper () {
protected Object doMapFrontont ext (Di r Cont ext Oper ati ons ctx) {
return ctx.get Namrel nNanespace() ;

}
i
if(result.size() !=1) {
throw new Runti meException("User not found or not unique");

}

return (String)result.get(0);
}
There are some drawbacks to this approach. The user is forced to concern herself with the DN of the
user, she can only search for the user's uid, and the search always starts at the root of the tree (the
empty path). A more flexible method would let the user specify the search base, the search filter, and
the credentials. Spring LDAP 1.3.0 introduced new authenticate methods in LdapTemplate that provide
this functionality:

e bool ean authenticate(Nane base, String filter, String password);
* bool ean authenticate(String base, String filter, String password);

Using one of these methods, authentication becomes as simple as this:

Spring LDAP - Reference
Documentation 42

please define productname in your docbook file!

‘ bool ean aut henti cated = | dapTenpl at e. aut henticate("", "(uid=john.doe)", "secret");

Example 10.1 Authenticating a user using Spring LDAP.

© Note

As described in below, some setups may require additional operations to be performed in order
for actual authentication to occur. See Section 10.2, “Performing Operations on the Authenticated
Context” for details.

@ Tip

Don't write your own custom authenticate methods. Use the ones provided in Spring LDAP 1.3.x.

10.2. Performing Operations on the Authenticated Context

Some authentication schemes and LDAP servers require some operation to be performed on the created
Di r Cont ext instance for the actual authentication to occur. You should test and make sure how your
server setup and authentication schemes behave; failure to do so might result in that users will be
admitted into your system regardless of the DN/credentials supplied. This is a naive implementation
of an authenticate method where a hard-coded | ookup operation is performed on the authenticated
context:

publ i c bool ean authenticate(String userDn, String credentials) {
DirContext ctx = null;

try {
ctx = cont ext Sour ce. get Cont ext (userDn, credential s);
/| Take care here - if a base was specified on the Context Source

/1 that needs to be renmoved fromthe user DN for the | ookup to succeed.
ct x. | ookup(userDn);
return true;
} catch (Exception e) {
/] Context creation failed - authentication did not succeed
| ogger.error("Login failed", e);
return fal se;
} finally {
[/l It is inperative that the created DirContext instance is always cl osed
LdapUti | s. cl oseCont ext (ct x) ;

}

}

It would be better if the operation could be provided as an implementation of a callback interface, thus
not limiting the operation to always be a | ookup. Spring LDAP 1.3.0 introduced the callback interface
Aut hent i cat edLdapEnt r yCont ext Cal | back and a few corresponding aut hent i cat e methods:

* boolean authenticate(Nane base, String filter, String password,
Aut hent i cat edLdapEnt r yCont ext Cal | back cal | back) ;

 boolean authenticate(String base, String filter, String password,
Aut hent i cat edLdapEnt r yCont ext Cal | back cal | back) ;

This opens up for any operation to be performed on the authenticated context:

Spring LDAP - Reference
Documentation 43

please define productname in your docbook file!

Aut hent i cat edLdapEnt r yCont ext Cal | back cont ext Cal | back = new
Aut hent i cat edLdapEnt r yCont ext Cal | back() {
public void executeWthContext(DirContext ctx, LdapEntryldentification
| dapEntryl dentification) {
try {
ctx. | ookup(!l dapEntryldentification.getRelativeDn());
}
catch (Nami ngException e) {
throw new Runti meException("Failed to | ookup " +
| dapEntryl dentification.getRelativeDn(), e);
}
}
b

| dapTenpl at e. aut henti cate("", "(uid=john.doe)", "secret", contextCall back));

Example 10.2 Performing an LDAP operation on the authenticated context using Spring LDAP.

10.3. Retrieving the Authentication Exception

So far, the methods have only been able to tell the user whether or not the authentication succeeded.
There has been no way of retrieving the actual exception. Spring LDAP 1.3.1 introduced the
Aut henti cati onError Cal | back and a few more aut hent i cat e methods:

e boolean authenticate(Nane base, String filter, String password,
Aut henti cati onError Cal | back errorCall back);

* boolean authenticate(String base, String filter, String password,
Aut henti cati onErrorCal | back errorCall back);

* bool ean aut henti cat e(Nane base, String filter,
String password, Aut hent i cat edLdapEnt r yCont ext Cal | back cal | back,
Aut henti cati onErrorCal | back errorCall back);

* bool ean aut henticate(String base, String filter,
String password, Aut hent i cat edLdapEnt r yCont ext Cal | back cal | back,
Aut henti cati onErrorCal | back errorCall back);

A convenient collecting implementation of the error callback interface is also provided:

public final class CollectingAuthenticationErrorCallback inplenents
Aut henti cati onError Cal | back {
private Exception error;

public voi d execute(Exception e) {
this.error = eg;

}

public Exception getError() {
return error;

}

}

The code needed for authenticating a user and retrieving the authentication exception in case of an
error boils down to this:

Spring LDAP - Reference
Documentation 44

please define productname in your docbook file!

i mport org.springframework. | dap. core. support. Col | ecti ngAut henti cati onError Cal | back;

Col | ecti ngAut henti cati onErrorCal | back errorCall back = new
Col | ecti ngAut henti cati onError Cal | back();
bool ean result = | dapTenpl ate. aut henticate("", filter.toString(), "invalidpassword",
error Cal | back) ;
if (lresult) {
Exception error = errorCallback.getError();
/1 error is likely of type org.springfranmework.|dap. Aut henti cati onException

}
Example 10.3 Authenticating a user and retrieving the authentication exception.

10.4. Use Spring Security

While the approach above may be sufficient for simple authentication scenarios, requirements in this
area commonly expand rapidly. There is a multitude of aspects that apply, including authentication,
authorization, web integration, user context management, etc. If you suspect that the requirements might
expand beyond just simple authentication, you should definitely consider using Spring Security for your
security purposes instead. It is a full-blown, mature security framework addressing the above aspects
as well as several others.

Spring LDAP - Reference
Documentation 45

http://static.springsource.org/spring-security/site/

please define productname in your docbook file!

11. LDIF Parsing

11.1 Introduction

LDAP Directory Interchange Format (LDIF) files are the standard medium for describing directory data
in a flat file format. The most common uses of this format include information transfer and archival.
However, the standard also defines a way to describe modifications to stored data in a flat file format.
LDIFs of this later type are typically referred to as changetype or modify LDIFs.

The org.springframework.ldap.ldif package provides classes needed to parse LDIF files and deserialize
them into tangible objects. The LdifParser is the main class of the org.springframework.ldap.|dif package
and is capable of parsing files that are RFC 2849 compliant. This class reads lines from a resource
and assembles them into an LdapAttributes object. The LdifParser currently ignores changetype LDIF
entries as their usefulness in the context of an application has yet to be determined.

11.2 Object Representation

Two classes in the org.springframework.ldap.core package provide the means to represent an LDIF
in code:

» LdapAttribute - Extends javax.naming.directory.BasicAttribute adding support for LDIF options as
defined in RFC2849.

» LdapAttributes - Extends javax.naming.directory.BasicAttributes adding specialized support for DNs.

LdapAttribute objects represent options as a Set<String>. The DN support added to the LdapAttributes
object employs the org.springframework.ldap.core.DistinguishedName class.

11.3 The Parser

The Parser interface provides the foundation for operation and employs three supporting policy
definitions:

» SeparatorPolicy - establishes the mechanism by which lines are assembled into attributes.
« AttributeValidationPolicy - ensures that attributes are correctly structured prior to parsing.
» Specification - provides a mechanism by which object structure can be validated after assembly.

The default implementations of these interfaces are the org.springframework.ldap.ldif.parser.LdifParser,
the org.springframework.ldap.ldif.support.SeparatorPolicy, and the
org.springframework.ldap.ldif.support.DefaultAttributeValidationPolicy, and the
org.springframework.ldap.schema.DefaultSchemaSpecification respectively. Together, these 4 classes
parse a resource line by line and translate the data into LdapAttributes objects.

The SeparatorPolicy determines how individual lines read from the source file should be interpreted
as the LDIF specification allows attributes to span multiple lines. The default policy assess lines in the
context of the order in which they were read to determine the nature of the line in consideration. control
attributes and changetype records are ignored.

The DefaultAttributeValidationPolicy uses REGEX expressions to ensure each attribute conforms
to a valid attribute format according to RFC 2849 once parsed. If an attribute fails validation, an
InvalidAttributeFormatException is logged and the record is skipped (the parser returns null).

Spring LDAP - Reference
Documentation 46

please define productname in your docbook file!

11.4 Schema Validation

A mechanism for validating parsed objects against a schema and is available via the Specification
interface in the org.springframework.ldap.schema package. The DefaultSchemaSpecification does
not do any validation and is available for instances where records are known to be valid and not
required to be checked. This option saves the performance penalty that validation imposes. The
BasicSchemaSpecification applies basic checks such as ensuring DN and object class declarations
have been provided. Currently, validation against an actual schema requires implementation of the
Specification interface.

11.5 Spring Batch Integration

While the LdifParser can be employed by any application that requires parsing of LDIF files, Spring
offers a batch processing framework that offers many file processing utilities for parsing delimited files
such as CSV. The org.springframework.ldap.ldif.batch package offers the classes necessary for using
the LdifParser as a valid configuration option in the Spring Batch framework.

There are 5 classes in this package which offer three basic use cases:

» Use Case 1: Read LDIF records from a file and return an LdapAttributes object.

* Use Case 2: Read LDIF records from a file and map records to Java objects (POJOSs).
» Use Case 3: Write LDIF records to a file.

The first use case is accomplished with the LdifReader. This class
extends Spring Batch's AbstractitemCountingltemSteamiltemReader and implements its
ResourceAwareltemReaderltemStream. It fits naturally into the framework and can be used to read
LdapAttributes objects from a file.

The MappingLdifReader can be used to map LDIF objects directly to any POJO. This class requires an
implementation of the RecordMapper interface be provided. This implementation should implement the
logic for mapping objects to POJOs.

The RecordCallbackHandler can be implemented and provided to either reader. This handler can be
used to operate on skipped records. Consult the Spring Batch documentation for more information.

The last member of this package, the LdifAggregator, can be used to write LDIF records to a file. This
class simply invokes the toString() method of the LdapAttributes object.

Spring LDAP - Reference
Documentation 47

please define productname in your docbook file!

12. Object-Directory Mapping (ODM)

12.1. Introduction

Relational mapping frameworks like Hibernate and JPA have offered developers the ability to
use annotations to map database tables to Java objects for some time. The Spring Framework
LDAP project now offers the same ability with respect to directories through the use of the
or g. spri ngfranmewor k. | dap. odmpackage (sometimes abbreviated as 0. s. | . odn).

12.2. OdmManager

The org. springfranmewor k. | dap. odm Odnivanager interface, and its implementation, is the
central class in the ODM package. The Qdnivanager orchestrates the process of reading objects from
the directory and mapping the data to annotated Java object classes. This interface provides access to
the underlying directory instance through the following methods:

e <T> T read(d ass<T> clazz, Nane dn)
 void create((Cbject entry)
e voi d updat e(Obj ect entry)
e voi d del ete(Chject entry)

e <T> Li st<T> findAl | (O ass<T> clazz, Nanme base, SearchControl s
searchControl s)

e <T> Li st<T> search(d ass<T> cl azz, Nane base, String filter, SearchControls
searchControl s)

A reference to an implementation of this interface can be obtained through
the org. springfranework. | dap. odm core. i npl . Gdmvanager | npl Fact or yBean. A basic
configuration of this factory would be as follows:

<beans>

<bean i d="odnManager"
cl ass="org. spri ngframewor k. | dap. odm cor e. i npl . Gdmvanager | npl Fact or yBean" >
<property name="converterManager" ref="converterManager" />
<property nanme="cont ext Source" ref="context Source" />
<property name="nmanagedd asses">
<set >
<val ue>com exanpl e. dao. Si npl ePer son</ val ue>
</ set>
</ property>
</ bean>

</ beans>

Example 12.1 Configuring the OdmManager Factory

The factory requires the list of entity classes to be managed by the Gdnivanager to be explicitly declared.
These classes should be properly annotated as defined in the next section. The conver t er Manager
referenced in the above definition is described in Section 12.4, “Type Conversion”.

Spring LDAP - Reference
Documentation 48

please define productname in your docbook file!

12.3. Annotations

Entity classes managed by the GdnmVanager are required to be annotated with the annotations in the
org. springfranmewor k. | dap. odm annot at i ons package. The available annotations are:

e @ntry - Class level annotation indicating the obj ect C ass definitions to which the entity maps.
(required)

e @d - Indicates the entity DN; the field declaring this attribute must be a derivative of the
j avax. nam ng. Nane class. (required)

e @\ttribute - Indicates the mapping of a directory attribute to the object class field.
e @Transi ent - Indicates the field is not persistent and should be ignored by the Cdmivanager .

The @ntry and @ d attributes are required to be declared on managed classes. @nt ry is used to
specify which object classes the entity maps too. All object classes for which fields are mapped are
required to be declared. Also, in order for a directory entry to be considered a match to the managed
entity, all object classes declared by the directory entry must match be declared by in the @ntry
annotation.

The @ d annotation is used to map the distinguished name of the entry to a field. The field must be an
instance of j avax. nam ng. Nane or a subclass of it.

The @At t ri but e annotation is used to map object class fields to entity fields. @A\t t r i but e is required
to declare the name of the object class property to which the field maps and may optionally declare
the syntax OID of the LDAP attribute, to guarantee exact matching. @\t tri but e also provides the
type declaration which allows you to indicate whether the attribute is regarded as binary based or string
based by the LDAP JNDI provider.

The @t ansi ent annotation is used to indicate the field should be ignored by the Gdmvanager and

not mapped to an underlying LDAP property.

12.4. Type Conversion

The GdnManager relies on the org. spri ngfranmewor k. | dap. odm t ypeconver si on package
to convert LDAP attributes to Java fields. The main interface in this class is
the org. springfranework.| dap. odm typeconversi on. Convert er Manager. The default
Convert er Manager implementation uses the following algorithm when parsing objects to convert
fields:

1. Try to find and use a Convert er registered for the f r onCl ass, synt ax and t oCl ass and use it.
2. If this fails, then if the t 0T ass i sAssi gnabl eFr omthe f r onCl ass then just assign it.

3. Ifthis fails try to find and use a Convert er registered for the f r onCl ass and the t oCl ass ignoring
the syntax.

4. If this fails then throw a Convert er Excepti on.

Implementations of the ConverterManager interface can be obtained from the
o.s.|l.odm typeconversion.inpl.Convert Manager Fact or yBean. The factory bean requires
converter configurations to be declared in the bean configuration.

The converterConfig property accepts a set of ConverterConfig classes, each
one defining some conversion logic. A converter config is an instance

Spring LDAP - Reference
Documentation 49

please define productname in your docbook file!

ofo.s.|.odm typeconversion.inpl.ConverterManager Fact or yBean. Convert er Confi g.
The config defines a set of source classes, the set of target classes, and an implementation
of the org. spri ngf ranmewor k. | dap. odm t ypeconver si on. i npl . Convert er interface which
provides the logic to convert from the f r onCl ass to thet 0T ass. A sample configuration is provided
in the following example:

Spring LDAP - Reference
Documentation 50

please define productname in your docbook file!

<bean id="fronStringConverter"

cl ass="org. spri ngframewor k.| dap. odm t ypeconversi on. i npl . converters. FronStri ngConverter" /
>
<bean i d="toStri ngConverter"
cl ass="org. spri ngframewor k. | dap. odm t ypeconversi on. i npl . converters. ToStri ngConverter" /
>
<bean i d="converter Manager"
cl ass="org. spri ngframewor k. | dap. odm t ypeconver si on. i npl . Convert er Manager Fact or yBean" >
<property nanme="converter Confi g">
<set >
<bean cl ass="org. spri ngframewor k.| dap. odm \
typeconversi on. i npl . Convert er Manager Fact or yBean$Convert er Confi g" >
<property nanme="fronCl asses" >
<set >
<val ue>j ava. | ang. Stri ng</ val ue>
</ set>
</ property>
<property nanme="toC asses">
<set >
<val ue>j ava. | ang. Byt e</ val ue>
<val ue>j ava. | ang. Short </ val ue>
<val ue>j ava. | ang. | nt eger </ val ue>
<val ue>j ava. | ang. Long</ val ue>
<val ue>j ava. | ang. Fl oat </ val ue>
<val ue>j ava. | ang. Doubl e</ val ue>
<val ue>j ava. | ang. Bool ean</ val ue>
</ set>
</ property>
<property nanme="converter" ref="fronttri ngConverter" />
</ bean>
<bean cl ass="org. spri ngframewor k. | dap. odm \
typeconversi on. i mpl . Convert er Manager Fact or yBean$Convert er Confi g" >
<property nanme="fronCl asses">
<set >
<val ue>j ava. | ang. Byt e</ val ue>
<val ue>j ava. | ang. Short </ val ue>
<val ue>j ava. | ang. | nt eger </ val ue>
<val ue>j ava. | ang. Long</ val ue>
<val ue>j ava. | ang. Fl oat </ val ue>
<val ue>j ava. | ang. Doubl e</ val ue>
<val ue>j ava. | ang. Bool ean</ val ue>
</ set>
</ property>
<property nanme="toCl asses" >
<set >
<val ue>j ava. | ang. Stri ng</ val ue>
</ set>
</ property>
<property nanme="converter" ref="toStri ngConverter" />
</ bean>
</ set>
</ property>
</ bean>

Example 12.2 Configuring the Converter Manager Factory

Spring LDAP - Reference
Documentation

51

please define productname in your docbook file!

12.5. Execution

After all components are configured, directory interaction can be achieved through a reference to the
Qdmvanager , as shown in this example:

public class App {
private static Log | og = LogFactory. get Log(App. cl ass);
private static final SearchControls searchControls =
new Sear chCont r ol s(Sear chCont rol s. SUBTREE_SCOPE, 100, 10000, null, true, false);
public static void main(String[] args) {
try {
Appl i cati onCont ext context = new
C assPat hXm Appl i cati onCont ext ("appl i cati onCont ext.xm ") ;
Qdmvanager manager = (CGdmVanager) context. get Bean("odmvanager");
Li st <Si npl ePer son> peopl e = manager . sear ch(Si npl ePer son. cl ass,
new Di sti ngui shedNane("dc=exanpl e, dc=cont'), "uid=*", searchControls);
| og.info("People found: " + people.size());
for (SinplePerson person : people) {
| og.info(person);
}
} catch (Exception e) {
e.printStackTrace();

}
Example 12.3 Execution

Spring LDAP - Reference
Documentation 52

please define productname in your docbook file!

13. Utilities

13.1. Incremental Retrieval of Multi-Valued Attributes

When there are a very large number of attribute values (>1500) for a specific attribute, Active Directory
will typically refuse to return all these values at once. Instead the attribute values will be returned
according to the Incremental Retrieval of Multi-valued Properties method. This requires the calling part
to inspect the returned attribute for specific markers and, if necessary, make additional lookup requests
until all values are found.

Spring LDAP's
org. springframework. | dap. core. support. Defaul tlncrenental Attri but esMapper
helps working with this kind of attributes, as follows:

Attributes attrs = Defaul tlncremental Attri buteMapper. | ookupAttributes(ldapTenpl ate, theDn,
new Object[]{"oneAttribute", "anotherAttribute"});

This will parse any returned attribute range markers and make repeated requests as necessary until all
values for all requested attributes have been retrieved.

Spring LDAP - Reference
Documentation 53

http://www.watersprings.org/pub/id/draft-kashi-incremental-00.txt

	Spring LDAP - Reference Documentation
	Table of Contents
	Preface
	1. Introduction
	1.1. Overview
	1.2. Packaging overview
	1.3. Package structure
	org.springframework.transaction.compensating
	org.springframework.ldap
	org.springframework.ldap.core
	org.springframework.ldap.core.support
	org.springframework.ldap.core.simple
	org.springframework.ldap.pool
	org.springframework.ldap.pool.factory
	org.springframework.ldap.pool.validation
	org.springframework.ldap.support
	org.springframework.ldap.authentication
	org.springframework.ldap.control
	org.springframework.ldap.filter
	org.springframework.ldap.transaction.compensating
	org.springframework.ldap.transaction.compensating.manager
	org.springframework.ldap.transaction.compensating.support
	org.springframework.ldap.ldif
	org.springframework.ldap.ldif.batch
	org.springframework.ldap.ldif.parser
	org.springframework.ldap.ldif.support
	org.springframework.ldap.odm

	1.4. Support

	2. Basic Operations
	2.1. Search and Lookup Using AttributesMapper
	2.2. Building Dynamic Filters
	2.3. Building Dynamic Distinguished Names
	2.4. Binding and Unbinding
	Binding Data
	Unbinding Data

	2.5. Modifying
	Modifying using rebind
	Modifying using modifyAttributes

	2.6. Sample applications

	3. Simpler Attribute Access and Manipulation with DirContextAdapter
	3.1. Introduction
	3.2. Search and Lookup Using ContextMapper
	The AbstractContextMapper

	3.3. Binding and Modifying Using DirContextAdapter
	Binding
	Modifying

	3.4. A Complete PersonDao Class

	4. Adding Missing Overloaded API Methods
	4.1. Implementing Custom Search Methods
	4.2. Implementing Other Custom Context Methods

	5. Processing the DirContext
	5.1. Custom DirContext Pre/Postprocessing
	5.2. Implementing a Request Control DirContextProcessor
	5.3. Paged Search Results

	6. Transaction Support
	6.1. Introduction
	6.2. Configuration
	6.3. JDBC Transaction Integration
	6.4. LDAP Compensating Transactions Explained
	Renaming Strategies

	7. Java 5 Support
	7.1. SimpleLdapTemplate

	8. Configuration
	8.1. ContextSource Configuration
	LDAP Server URLs
	Base LDAP path
	DirContext Authentication
	Custom DirContext Authentication Processing
	TLS

	Custom Principal and Credentials Management
	Default Authentication

	Native Java LDAP Pooling
	Advanced ContextSource Configuration
	Alternate ContextFactory
	Custom DirObjectFactory
	Custom DirContext Environment Properties

	8.2. LdapTemplate Configuration
	Ignoring PartialResultExceptions

	8.3. Obtaining a reference to the base LDAP path

	9. Pooling Support
	9.1. Introduction
	9.2. DirContext Validation
	9.3. Pool Properties
	9.4. Configuration
	Validation Configuration

	9.5. Known Issues
	Custom Authentication

	10. User Authentication using Spring LDAP
	10.1. Basic Authentication
	10.2. Performing Operations on the Authenticated Context
	10.3. Retrieving the Authentication Exception
	10.4. Use Spring Security

	11. LDIF Parsing
	11.1 Introduction
	11.2 Object Representation
	11.3 The Parser
	11.4 Schema Validation
	11.5 Spring Batch Integration

	12. Object-Directory Mapping (ODM)
	12.1. Introduction
	12.2. OdmManager
	12.3. Annotations
	12.4. Type Conversion
	12.5. Execution

	13. Utilities
	13.1. Incremental Retrieval of Multi-Valued Attributes

