Spring Mobile Reference Manual

Keith Donald
Roy Clarkson

Spring Mobile Reference Manual
by Keith Donald and Roy Clarkson

1.0.1.RELEASE

© SpringSource Inc., 2010-2012

Spring Mobile

Table of Contents

1. Spring Mobile Overview
1.1. Introduction

2. Spring Mobile Device Module
2.1. Introduction

22. How to géetocovveeeeee.

2.3. Device resolution
When to perform
DeviceResolverH

ANAIENTNEEIrCEPLONeveeeeiiieie et

DeviceResoIVErREQUESIFIITESuveeiiie e
Obtaining a reference to the CUTENt EVICEooeiiiiieeie e

Supported DeviceReso

Iver implementations ...

LiteDeVICERESDIVEY ..ot
2.4, Site PreferenCe MaNAgEMENToiuueii et e e st e e e e e e enreeeean

Indicating a site prefer

EIICE .

Site PrefEreNCE SLOMBOE . .ooiee e i ittt e e e r e e e e s e e reeeeaeas
Enabling site preference managementoooiiiiiiiieeiee e
Obtaining a reference to the current site preference ...,

2.5. Site switching

01D e RS (2L (e 1= TR

dotMobi SiteSwitcher
urlPath SiteSwitcher ..

1.0.1.RELEASE

Spring Mobile Reference Manual

Spring Mobile

1. Spring Mobile Overview

1.1 Introduction

Spring Mobile contains extensions to Spring MV C for developing mobile web applications. This
includes amodule for server-side mobile device detection.

1.0.1.RELEASE Spring Mobile Reference Manual 1

Spring Mobile

2. Spring Mobile Device Module

2.1 Introduction

Device detection is useful when requests by mobile devices need to be handled differently from requests
made by desktop browsers. The Spring Mobile Device module provides support for server-side device
detection. This support consists of adevice resolution framework, site preference management, and site
switcher.

2.2 How to get

To get the module, add the spring-mobile-device artifact to your classpath:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. nobi | e</ gr oupl d>
<artifactld>spring-nobile-device</artifactld>
<ver si on>${ or g. spri ngf ramewor k. nobi | e- ver si on} </ ver si on>
</ dependency>

If you are devel oping against amilestone version, such as 1.0.0.RC2, you will need to add thefollowing
repository in order to resolve the artifact:

<r eposi tory>
<i d>springsource-m | est one</i d>
<nanme>Spri ngSource M| estone Repository</name>
<url>http://repo.springsource.org/ mlestone</url>
</repository>

If you are testing out the latest nightly build version (e.g. 1.0.0.BUILD-SNAPSHOT), you will need
to add the following repository:

<r eposi tory>
<i d>spri ngsour ce- snapshot </i d>
<nanme>Spri ngSour ce Snapshot Repository</nane>
<url >http://repo.springsource. org/snapshot</url >
</repository>

2.3 Device resolution

Deviceresolution isthe process of introspecting aHT TP request to determine the device that originated
the request. It istypically achieved by analyzing the User-Agent header and other request headers.

At the most basic level, device resolution answers the question: "Is the client using a mobile or tablet
device?'. This answer enables your application to respond differently to mobile devices that have
small screens, or tablet device that has a touch interface. More sophisticated device resolvers are also

1.0.1.RELEASE Spring Mobile Reference Manual 2

Spring Mobile

capabl e of identifying specific device capabilities, such as screen size, manufacturer, model, or preferred
markup.

In Spring Mobile, the DeviceResolver interface defines the API for device resolution:

public interface DeviceResol ver {

Devi ce resol veDevi ce(Htt pSer vl et Request request);

The returned Device model s the result of device resolution:

public interface Device {

/**

* True if this device is not a nobile or tablet device
*/

bool ean i sNormal ();

/**

* True if this device is a nobile device such as an Apple i Phone or an Nexus One Android

* Coul d be used by a pre-handle interceptor to redirect the user to a dedicated npbile web site

* Could be used to apply a different page |ayout or stylesheet when the device is a nobile device
*/

bool ean i sMobi l e();

/**

* True if this device is a tablet device such as an Apple iPad or a Mdtorola Xoom

* Coul d be used by a pre-handle interceptor to redirect the user to a dedicated tablet web site

* Could be used to apply a different page |ayout or stylesheet when the device is a tablet device
*/

bool ean i sTabl et ();

As shown above, Device.isMobile() can be used to determineif the client is using amobile device, such
as a smart phone. Similarly, Device.isTablet() can be used to determine if the client is running on a
tablet device. Depending on the DeviceResolver in use, a Device may support being downcast to access
additional properties.

When to perform

Web applications should perform device resolution at the beginning of request processing, before any
request handler isinvoked. Thisensuresthe Device model can be made availablein request scope before
any processing occurs. Request handlers can then obtain the Device instance and use it to respond
differently based on its state.

By default, a LiteDeviceResolver is used for device resolution. You may plug-in another
DeviceResolver implementation by injecting a constructor argument.

1.0.1.RELEASE Spring Mobile Reference Manual 3

Spring Mobile

DeviceResolverHandlerinterceptor

Spring Mobile ships a HandlerInterceptor that, on preHandle, delegates to a DeviceResolver. The
resolved Device is indexed under a request attribute named ‘currentDevice', making it available to
handlers throughout request processing.

To enable, add the DeviceResolverHandlerlnterceptor to the list of interceptors defined in your
DispatcherServlet configuration:

<mvc:interceptors>

<I-- On pre-handle, resolve the device that originated the web request -->

<beans: bean cl ass="org. spri ngfranmewor k. nobi | e. devi ce. Devi ceResol ver Handl er I nt erceptor” />
</ mvc:interceptors>

DeviceResolverRequestFilter

Spring Mobile also ships with a Servlet Filter that delegates to the same DeviceResolver. As with the
HandlerInterceptor, the resolved Device is indexed under a request attribute named ‘currentDevice,
making it available to handlers throughout request processing.

To enable, add the DeviceResolverRequestFilter to your web.xml:

<filter>
<filter-name>devi ceResol ver RequestFilter</filter-name>
<filter-class>org.springframework. nobil e. devi ce. Devi ceResol ver RequestFilter</filter-class>
</filter>

Obtaining a reference to the current device

When you need to lookup the current Device in your code, you can do so in several ways. If you already
have a reference to a ServletReguest or Spring WebReguest, simply use DeviceUtils:

Devi ce currentDevice = Deviceltils. getCurrentDevi ce(servl et Request);

If you'd like to pass the current Device as an argument to one of your @Controller methods, configure
a DeviceWebArgumentResolver:

<mvc: annot ation-driven>
<nvc: ar gunent - r esol ver s>
<beans: bean cl ass="org. spri ngfranmewor k. nobi | e. devi ce. Devi ceWebAr gunent Resol ver" />
</ nvc: argunent - resol ver s>
</ nvc: annot ati on-dri ven>

Y ou can then inject the Device into your @Controllers as shown below:

@ontrol ler

1.0.1.RELEASE Spring Mobile Reference Manual 4

Spring Mobile

public class HomeController {
private static final Logger |ogger = LoggerFactory. getlLogger(HoneController.class);

@request Mappi ng("/")
public void honme(Devi ce device) {
if (device.isMbile()) {
| ogger.info("Hello nobile user!")
} else {
| ogger.info("Hello desktop user!");

}

Supported DeviceResolver implementations

Spring Moabile allows for the development of different DeviceResolver implementations that offer
varying levels of resolution capability. The first, and the default, is a LiteDeviceResolver that detects
the presence of a mobile device but does not detect specific capabilities.

LiteDeviceResolver

The default DeviceResolver implementation is based on the "lite" detection algorithm implemented as
part of the Wordpress Mobile Pack. Thisresolver only detects the presence of amobile or tablet device,
and does not detect specific capabilities. No specia configuration is required to enable this resolver,
simply configure a default DeviceResolverHandlerInterceptor and it will be enabled for you.

It is possible that the LiteDeviceResolver incorrectly identifies a User-Agent as a mobile device. The
LiteDeviceResolver provides a configuration option for setting a list of User-Agent keywords that
should resolve to a"norma" device, effectively overriding the default behavior. These keywords take
precedence over the mobileand tablet device detection keywords. Thefollowing exampleillustrates how
to set the normal keywords in the configuration of the DeviceResolverHandlerlnterceptor by injecting
aconstructor argument. In this case, User-Agents that contain "iphone" and "android" would no longer
resolve to a mobile device.

<mvc:interceptors>
<I-- Detects the client's Device -->
<beans: bean cl ass="org. spri ngframewor k. nobi | e. devi ce. Devi ceResol ver Handl er | nt er cept or " >
<beans: constructor-arg>
<beans: bean cl ass="org. spri ngfranmewor k. nobi | e. devi ce. Li t eDevi ceResol ver" >
<beans: constructor-arg>
<beans:|ist>
<beans: val ue>i phone</ beans: val ue>
<beans: val ue>andr oi d</ beans: val ue>
</ beans:|ist>
</ beans: construct or - ar g>
</ beans: bean>
</ beans: constructor - ar g>
</ beans: bean>
</nmvc:interceptors>

Alternatively, you may subclass the LiteDeviceResolver, and either set these values in the constructor,
or by calling the getNormal UserAgentK eywords() method.

1.0.1.RELEASE Spring Mobile Reference Manual 5

http://plugins.trac.wordpress.org/browser/wordpress-mobile-pack/trunk/plugins/wpmp_switcher/lite_detection.php
http://wordpress.org/extend/plugins/wordpress-mobile-pack

Spring Mobile

2.4 Site preference management

Device resolution is often used to determine which "site" will be served to the user. For example, a
mobile user may be served a"mobile site" that contains content optimized for display on asmall screen,
while a desktop user would be served the "normal site". Support for multiple sites can be achieved by
introspecting Device.isMobile() and varying controller and view rendering logic based on its value.

However, when an application supports multiple sites, allowing the user to switch between them, if
desired, isconsidered agood usability practice. For example, amobile user currently viewing the mobile
site may wish to access the normal site instead, perhaps because some content he or she would like to
access is not available through the mobile Ul.

Building on the deviceresolution system isafacility for thiskind of "user site preference management".
This facility allows the user to indicate if he or she prefers the mobile site or the normal site. The
indicated SitePreference may then be used to vary control and view rendering logic.

The SitePreferenceHandler interface defines the core service API for site preference management:

public interface SitePreferenceHandl er {

/**

* The nane of the request attribute that holds the current user's site preference val ue
*
/

final String CURRENT_SI TE_PREFERENCE_ATTRI BUTE = "current SitePreference"

/**

* Handl e the site preference aspect of the web request.

* | nmpl enentations should first check if the user has indicated a site preference

* |f so, the indicated site preference should be saved and renenbered for future requests

* |f no site preference has been indicated, an i nplenentation may derive a default site preference fro
* After handling, the user's site preference is returned and al so avail able as a request attribute nam
*/

SitePreference handl eSitePreference(HtpServl et Request request, H tpServl et Response response);

The resolved SitePreference is an enum value:

public enum SitePreference {

/**

* The user prefers the 'nornal' site
*/

NORMAL,

/**

* The user prefers the 'nobile' site

*/
MOBI LE {
publ i c bool ean isMbile() {
return true
}
b

1.0.1.RELEASE Spring Mobile Reference Manual 6

Spring Mobile

/**
* Tests if this is the 'nobile'" SitePreference
* Designed to support concise SitePreference bool ean expressions e.g. <c:if test="${currentSitePrefere
*/
publ i c bool ean i swbbile() {
return fal se

}

Spring Mobile provides a single SitePreferenceHandler implementation hamed
StandardSitePreferenceHandler, which should be suitable for most needs. It supports query-parameter-
based site preference indication, pluggabl e SitePreference storage, and may beenabled inaSpring MV C
application using a HandlerIntercepor. In addition, if no SitePreference has been explcitly indicated
by the user, a default will be derived based on the user's Device (MOBILE for mobile devices, and
NORMAL otherwise).

Indicating a site preference
The user may indicate a site preference by activating a link that submits the site_preference query

parameter:

Site: Normal | <a href="%${currentUrl}?site_preference=nol

Theindicated site preference is saved for the user in a SitePreferenceRepository, and made available as
arequest attribute named 'currentSitePreference’.

Site preference storage

Indicated site preferences are stored in a SitePreferenceRepository so they are remembered in future
requests made by the user. CookieSitePreferenceRepository is the default implementation and stores
the user's preference in a client-side cookie.

Enabling site preference management

To enable SitePreference management before requests are processed, add the
SitePreferenceHandl erl nterceptor to your DispatcherServlet configuration:

<mvc:interceptors>

<I-- On pre-handle, resolve the device that originated the web request -->
<beans: bean cl ass="org. spri ngframewor k. nobi | e. devi ce. Devi ceResol ver Handl er I nterceptor” />
<l-- On pre-handle, manage the user's site preference (declare after Devi ceResol verHandl erlnterceptor) -

<beans: bean cl ass="org. spri ngfranmewor k. nobi | e. devi ce. site. Si tePreferenceHandl erlnterceptor" />
</nmvc:interceptors>

By default, the interceptor will delegate to a StandardSitePreferenceHandler configured with a
CookieSitePreferenceRepository. You may plug-in another SitePreferenceHandler by injecting a
constructor argument. After the interceptor isinvoked, the SitePreference will be available as a request
attribute named ‘currentSitePreference’.

1.0.1.RELEASE Spring Mobile Reference Manual 7

Spring Mobile

Obtaining a reference to the current site preference

When you need to lookup the current SitePreference in your code, you can do so in several ways. If you
aready have areference to a ServletRequest or Spring WebRequest, simply use SitePreferenceUtils:

SitePreference sitePreference = SitePreferenceltils. getCurrentSitePreference(servl et Request);

If you'd like to pass the current SitePreference as an argument to one of your @Controller methods,
configure a SitePreferenceWebArgumentResolver:

<mvc: annot ati on-driven>
<nvc: ar gument - r esol ver s>
<beans: bean cl ass="org. spri ngfranmewor k. nobi | e. devi ce. Devi ceWebAr gunent Resol ver" />

</ nvc: argunent - r esol ver s>
</ mvc: annot ati on-dri ven>

Y ou can then inject the indicated SitePreference into your @Controllers as shown below:

@control |l er
public class HomeController {

@Request Mappi ng("/")
public String honme(SitePreference sitePreference, Mdel nodel) ({
if (sitePreference == SitePreference. MBI LE) {
/'l prepare nobile view for rendering
return "hone-nobile";
} else {
/'l prepare normal view for rendering
return "honme";

2.5 Site switching

Some applications may wishto host their "mobilesite" at adifferent domain fromtheir "normal site". For
example, Google will switch you to m.google.com if you access google.com from your mobile phone.

In Spring Mobile, you may use the SiteSwitcherHandlerInterceptor to redirect mobile users to a
dedicated mobile site. Users may also indicate a site preference; for example, a mobile user may still
wish to use 'normal’ site. Convenient static factory methods are provided that implement standard site
switching conventions.

mDot SiteSwitcher

Use the "mDot" factory method to construct a SiteSwitcher that redirects mobile users to m.
${ serverName} ; for example, m.myapp.com:

1.0.1.RELEASE Spring Mobile Reference Manual 8

<beans: bean cl ass="org. spri ngfranmewor k. nobi | e. devi ce. site. Si tePreferenceWbAr gunent Resol ver"

/>

Spring Mobile

<mvc:interceptors>

<l-- On pre-handle, resolve the device that originated the web request -->
<beans: bean cl ass="org. spri ngframewor k. mobi | e. devi ce. Devi ceResol ver Handl er I nterceptor” />
<l-- On pre-handle, redirects nobile users to "mnmyapp.cont (declare after Devi ceResol ver Handl erlnterce

<beans: bean cl ass="org. spri ngfranmewor k. nobi | e. devi ce. swi tcher. SiteSwi tcherHandl erlnterceptor” factory-m
<beans: constructor-arg val ue="nyapp. con' />
</ beans: bean>
</ nmvc:interceptors>

dotMobi SiteSwitcher

Use the "dotMobi" factory method to construct a SiteSwitcher that redirects mobile users to
$H{ serverName - lastDomain} .mobi; for example, myapp.mobi:

<mvc:interceptors>

<l-- On pre-handle, resolve the device that originated the web request -->
<beans: bean cl ass="org. spri ngfranmewor k. nobi | e. devi ce. Devi ceResol ver Handl er I nterceptor” />
<I-- On pre-handle, redirects nmobile users to "nyapp. mobi" (declare after Devi ceResol ver Handl er| nt er cept

<beans: bean cl ass="org. spri ngfranmewor k. nobi | e. devi ce. swi tcher. SiteSw t cher Handl er| nterceptor" factory-m
<beans: constructor-arg val ue="nyapp. cont' />
</ beans: bean>
</ mvc:interceptors>

urlPath SiteSwitcher

Use the "urlPath" factory method to construct a SiteSwitcher that redirects mobile users to
$H{ serverName} /${ mobilePath} ; for example, myapp.com/m/:

<mvc:interceptors>

<l-- On pre-handle, resolve the device that originated the web request -->
<beans: bean cl ass="org. spri ngframewor k. nobi | e. devi ce. Devi ceResol ver Handl er I nterceptor” />
<I-- On pre-handle, redirects nobile users to "nyapp.com n' (declare after Devi ceResol verHandl erlnterce

<beans: bean cl ass="org. spri ngfranmewor k. nobi | e. devi ce. switcher. SiteSw tcherHandl erl nterceptor" factory-m
<beans: constructor-arg val ue="/n' />
</ beans: bean>
</ mvc:interceptors>

You can aso specify the root path of the application in the "urlPath" factory method. The
following sample constructs a SiteSwitcher that redirects mobile users to ${ serverName} /${ rootPath} /
${ mobilePath} ; for example, myapp.com/showcase/m/:

<mvc:interceptors>

<l-- On pre-handle, resolve the device that originated the web request -->
<beans: bean cl ass="org. spri ngfranmewor k. nobi | e. devi ce. Devi ceResol ver Handl er I nterceptor” />
<I-- On pre-handle, redirects nobile users to "nyapp. com showcase/ m' (decl are after DeviceResol ver Handl

<beans: bean cl ass="org. spri ngfranmewor k. nobi | e. devi ce. switcher. SiteSw tcherHandl erl nterceptor" factory-m
<beans: constructor-arg val ue="/nm" />
<beans: constructor-arg val ue="/showcase" />

</ beans: bean>

1.0.1.RELEASE Spring Mobile Reference Manual 9

Spring Mobile

</nmvc:interceptors>

The"mDot", "dotMobi" and "urlPath" factory methods configure cookie-based SitePreference storage.
The cookie value will be shared across the mobile and normal site domains. Internally, the interceptor
delegatesto a SitePreferenceHandler, so thereis no need to register a SitePreferenceHandlerl nterceptor
when using the switcher.

See the JavaDoc of SiteSwitcherHandlerlnterceptor for additional optionswhen you need more control.
See the spring-mobile samples repository for runnable SiteSwitcher examples.

1.0.1.RELEASE Spring Mobile Reference Manual 10

https://github.com/SpringSource/spring-mobile-samples

	Spring Mobile Reference Manual
	Table of Contents
	1. Spring Mobile Overview
	1.1 Introduction

	2. Spring Mobile Device Module
	2.1 Introduction
	2.2 How to get
	2.3 Device resolution
	When to perform
	DeviceResolverHandlerInterceptor
	DeviceResolverRequestFilter

	Obtaining a reference to the current device
	Supported DeviceResolver implementations
	LiteDeviceResolver

	2.4 Site preference management
	Indicating a site preference
	Site preference storage
	Enabling site preference management
	Obtaining a reference to the current site preference

	2.5 Site switching
	mDot SiteSwitcher
	dotMobi SiteSwitcher
	urlPath SiteSwitcher

