Spring Mobile Reference Documentation
Table of Contents
	1. Spring Mobile Overview	Introduction

	2. Spring Mobile Device Module	Introduction
	How to get
	Device resolution	When to perform	DeviceResolverHandlerInterceptor
	DeviceResolverRequestFilter

	Obtaining a reference to the current device
	Supported DeviceResolver implementations	LiteDeviceResolver

	Site preference management	Indicating a site preference
	Site preference storage
	Enabling site preference management
	Obtaining a reference to the current site preference

	Site switching	mDot SiteSwitcher
	dotMobi SiteSwitcher
	Standard SiteSwitcher
	urlPath SiteSwitcher	Mobile Path
	Mobile Path and Root Path
	Mobile Path, Tablet Path, and Root Path
	Additional Configuration

	Device aware view management	Device aware view resolving
	Enabling device aware views
	Fallback resolution

Spring Mobile Reference Documentation

 Keith Donald

 Roy Clarkson

1.1.5.RELEASE

Copyright © 2010-2015

 Copies of this document may be made for your own use and for
 distribution to others, provided that you do not charge any fee for such
 copies and further provided that each copy contains this Copyright
 Notice, whether distributed in print or electronically.

Chapter 1. Spring Mobile Overview

 Introduction

 Spring Mobile contains extensions to Spring MVC for developing mobile web applications. This includes a
 module for server-side mobile device detection.

Chapter 2. Spring Mobile Device Module

 Introduction

 Device detection is useful when requests by mobile devices need to be handled differently from requests
 made by desktop browsers. The Spring Mobile Device module provides support for server-side device detection.
 This support consists of a device resolution framework, site preference management, site switcher, and view
 management.

How to get

 To get the module, add the spring-mobile-device artifact to your classpath:

<dependency>
 <groupId>org.springframework.mobile</groupId>
 <artifactId>spring-mobile-device</artifactId>
 <version>${org.springframework.mobile-version}</version>
</dependency>

 Release versions are available from the following repository:

<repository>
 <id>spring-repo</id>
 <name>Spring Repository</name>
 <url>http://repo.spring.io/release</url>
</repository>

 If you are developing against a milestone or release candidate, you will need to add the following
 repository in order to resolve the artifact:

<repository>
 <id>spring-milestone</id>
 <name>Spring Milestone Repository</name>
 <url>http://repo.spring.io/milestone</url>
</repository>

 If you are testing the latest snapshot build version, you will need to add the following repository:

<repository>
 <id>spring-snapshot</id>
 <name>Spring Snapshot Repository</name>
 <url>http://repo.spring.io/snapshot</url>
</repository>

 Device resolution

 Device resolution is the process of introspecting an HTTP request to determine the device that
 originated the request. It is typically achieved by analyzing the User-Agent header and other request headers.

 At the most basic level, device resolution answers the question: "Is the client using a mobile or tablet
 device?". This answer enables your application to respond differently to mobile devices that have small
 screens, or tablet devices that have a touch interface. More sophisticated device resolvers are also capable
 of identifying specific device capabilities, such as screen size, manufacturer, model, or preferred markup.

 In Spring Mobile, the DeviceResolver interface defines the API for device
 resolution:

public interface DeviceResolver {

 Device resolveDevice(HttpServletRequest request);

}

 The returned Device models the result of device resolution:

public interface Device {

 /**
 * True if this device is not a mobile or tablet device.
 */
 boolean isNormal();

 /**
 * True if this device is a mobile device such as an Apple iPhone or an
 * Android Nexus One. Could be used by a pre-handle interceptor to redirect
 * the user to a dedicated mobile web site. Could be used to apply a
 * different page layout or stylesheet when the device is a mobile device.
 */
 boolean isMobile();

 /**
 * True if this device is a tablet device such as an Apple iPad or a
 * Motorola Xoom. Could be used by a pre-handle interceptor to redirect
 * the user to a dedicated tablet web site. Could be used to apply a
 * different page layout or stylesheet when the device is a tablet device.
 */
 boolean isTablet();

 /**
 *
 * @return resolved DevicePlatform
 */
 DevicePlatform getDevicePlatform();

}

 As shown above, Device.isMobile() can be used to determine if the client is
 using a mobile device, such as a smart phone. Similarly, Device.isTablet() can be
 used to determine if the client is running on a tablet device. Additionally, the device platform may be
 determined by inspecting the Device.getDevicePlatform() property. Depending on the
 DeviceResolver in use, a Device may support
 being downcast to access additional properties.

 When to perform

 Web applications should perform device resolution at the beginning of request processing, before any
 request handler is invoked. This ensures the Device model can be made
 available in request scope before any processing occurs. Request handlers can then obtain the
 Device instance and use it to respond differently based on its state.

 By default, a LiteDeviceResolver is used for device resolution. You may
 plug-in another DeviceResolver implementation by injecting a constructor
 argument.

 DeviceResolverHandlerInterceptor

 Spring Mobile ships with a HandlerInterceptor that, on
 preHandle, delegates to a DeviceResolver. The
 resolved Device is indexed under a request attribute named
 'currentDevice', making it available to handlers throughout request processing.

 To enable, add the DeviceResolverHandlerInterceptor to the list of
 interceptors defined in your DispatcherServlet configuration:

<interceptors>
 <!-- On pre-handle, resolve the device that originated the web request -->
 <bean class="org.springframework.mobile.device.DeviceResolverHandlerInterceptor" />
</interceptors>

 Alternatively, you can add the DeviceResolverHandlerInterceptor using
 Spring's
 Java-based container configuration:

@Bean
public DeviceResolverHandlerInterceptor deviceResolverHandlerInterceptor() {
 return new DeviceResolverHandlerInterceptor();
}

@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(deviceResolverHandlerInterceptor());
}

 DeviceResolverRequestFilter

 As an alternative to the DeviceResolverHandlerInterceptor, Spring Mobile
 also ships with a Servlet Filter that delegates to a DeviceResolver.
 As with the HandlerInterceptor, the
 resolved Device is indexed under a request attribute named
 'currentDevice', making it available to handlers throughout request processing.

 To enable, add the DeviceResolverRequestFilter to your web.xml:

<filter>
 <filter-name>deviceResolverRequestFilter</filter-name>
 <filter-class>org.springframework.mobile.device.DeviceResolverRequestFilter</filter-class>
</filter>

 Obtaining a reference to the current device

 When you need to lookup the current Device in your code, you can do
 so in several ways. If you already have a reference to a ServletRequest or
 Spring WebRequest, simply use DeviceUtils:

Device currentDevice = DeviceUtils.getCurrentDevice(servletRequest);

 If you'd like to pass the current Device as an argument to one of
 your @Controller methods, configure a
 DeviceWebArgumentResolver:

<annotation-driven>
 <argument-resolvers>
 <bean class="org.springframework.mobile.device.DeviceWebArgumentResolver" />
 </argument-resolvers>
</annotation-driven>

 You can alternatively configure a DeviceHandlerMethodArgumentResolver using
 Java-based configuration:

@Bean
public DeviceHandlerMethodArgumentResolver deviceHandlerMethodArgumentResolver() {
 return new DeviceHandlerMethodArgumentResolver();
}

@Override
public void addArgumentResolvers(List<HandlerMethodArgumentResolver> argumentResolvers) {
 argumentResolvers.add(deviceHandlerMethodArgumentResolver());
}

 You can then inject the Device into your
 @Controllers as shown below:

@Controller
public class HomeController {

 private static final Logger logger = LoggerFactory.getLogger(HomeController.class);

 @RequestMapping("/")
 public void home(Device device) {
 if (device.isMobile()) {
 logger.info("Hello mobile user!");
 } else if (device.isTablet()) {
 logger.info("Hello tablet user!");
 } else {
 logger.info("Hello desktop user!");
 }
 }

}

 Supported DeviceResolver implementations

 Spring Mobile allows for the development of different DeviceResolver implementations that offer
 varying levels of resolution capability. The first, and the default, is a
 LiteDeviceResolver that detects the presence of a mobile device but does not detect
 specific capabilities.

 LiteDeviceResolver

 The default DeviceResolver implementation is based on the "lite"

 detection algorithm implemented as part of the
 Wordpress Mobile Pack
 . This resolver only detects the presence of a mobile or tablet device, and does
 not detect specific capabilities. No special configuration is required to enable this resolver, simply
 configure a default DeviceResolverHandlerInterceptor and it will be enabled for
 you.

 It is possible that the LiteDeviceResolver incorrectly identifies a
 User-Agent as a mobile device. The LiteDeviceResolver provides a configuration
 option for setting a list of User-Agent keywords that should resolve to a "normal" device, effectively
 overriding the default behavior. These keywords take precedence over the mobile and tablet device
 detection keywords. The following example illustrates how to set the normal keywords in the
 configuration of the DeviceResolverHandlerInterceptor by injecting a
 constructor argument. In this case, User-Agents that contain "iphone" and "android" would no longer
 resolve to a mobile device.

<interceptors>
 <!-- Detects the client's Device -->
 <bean class="org.springframework.mobile.device.DeviceResolverHandlerInterceptor">
 <constructor-arg>
 <bean class="org.springframework.mobile.device.LiteDeviceResolver">
 <constructor-arg>
 <list>
 <value>iphone</value>
 <value>android</value>
 </list>
 </constructor-arg>
 </bean>
 </constructor-arg>
 </bean>
</interceptors>

 The same thing can be accomplished using Java-based configuration.

@Bean
public LiteDeviceResolver liteDeviceResolver() {
 List<String> keywords = new ArrayList<String>();
 keywords.add("iphone");
 keywords.add("android");
 return new LiteDeviceResolver(keywords);
}

@Bean
public DeviceResolverHandlerInterceptor deviceResolverHandlerInterceptor() {
 return new DeviceResolverHandlerInterceptor(liteDeviceResolver());
}

@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(deviceResolverHandlerInterceptor());
}

 Alternatively, you may subclass LiteDeviceResolver, and set the
 values by overriding the init() method.

public class CustomLiteDeviceResolver extends LiteDeviceResolver {

 @Override
 protected void init() {
 super.init();
 getNormalUserAgentKeywords().addAll(Arrays.asList(NORMAL_KEYWORDS));
 };

 private static final String[] NORMAL_KEYWORDS = new String[] { "iphone", "android" };

}

 Site preference management

 Device resolution is often used to determine which "site" will be served to the user. For example, a
 mobile user may be served a "mobile site" that contains content optimized for display on a small screen, while
 a desktop user would be served the "normal site". Support for multiple sites can be achieved by introspecting
 Device.isMobile() and varying controller and view rendering logic based on its value.
 Likewise, support for tablets is achieved by using Device.isTablet().

 However, when an application supports multiple sites, allowing the user to switch between them, if
 desired, is considered a good usability practice. For example, a mobile user currently viewing the mobile site
 may wish to access the normal site instead, perhaps because some content he or she would like to access is not
 available through the mobile UI.

 Building on the device resolution system is a facility for this kind of "user site preference
 management". This facility allows the user to indicate if he or she prefers the normal, mobile or tablet
 sites. The indicated SitePreference may then be used to vary control and view
 rendering logic.

 The SitePreferenceHandler interface defines the core service API for site
 preference management:

public interface SitePreferenceHandler {

 /**
 * The name of the request attribute that holds the current user's site
 * preference value.
 */
 final String CURRENT_SITE_PREFERENCE_ATTRIBUTE = "currentSitePreference";

 /**
 * Handle the site preference aspect of the web request.
 * Implementations should first check if the user has indicated a site
 * preference. If so, the indicated site preference should be saved and
 * remembered for future requests. If no site preference has been
 * indicated, an implementation may derive a default site preference from
 * the {@link Device} that originated the request. After handling, the
 * user's site preference is returned and also available as a request
 * attribute named 'currentSitePreference'.
 */
 SitePreference handleSitePreference(HttpServletRequest request, HttpServletResponse response);

}

 The resolved SitePreference is an enum value:

public enum SitePreference {

 /**
 * The user prefers the 'normal' site.
 */
 NORMAL {
 public boolean isNormal() {
 return true;
 }
 },

 /**
 * The user prefers the 'mobile' site.
 */
 MOBILE {
 public boolean isMobile() {
 return true;
 }
 },

 /**
 * The user prefers the 'tablet' site.
 */
 TABLET {
 public boolean isTablet() {
 return true;
 }
 };

 /**
 * Tests if this is the 'normal' SitePreference.
 * Designed to support concise SitePreference boolean expressions
 * e.g. <c:if test="${currentSitePreference.normal}"></c:i>.
 */
 public boolean isNormal() {
 return (!isMobile() && !isTablet());
 }

 /**
 * Tests if this is the 'mobile' SitePreference.
 * Designed to support concise SitePreference boolean expressions
 * e.g. <c:if test="${currentSitePreference.mobile}"></c:i>.
 */
 public boolean isMobile() {
 return false;
 }

 /**
 * Tests if this is the 'tablet' SitePreference.
 * Designed to support concise SitePreference boolean expressions
 * e.g. <c:if test="${currentSitePreference.tablet}"></c:i>;.
 */
 public boolean isTablet() {
 return false;
 }

}

 Spring Mobile provides a single SitePreferenceHandler implementation
 named StandardSitePreferenceHandler, which should be suitable for most needs. It
 supports query-parameter-based site preference indication, pluggable SitePreference
 storage, and may be enabled in a Spring MVC application using a HandlerIntercepor. In addition, if no
 SitePreference has been explcitly indicated by the user, a default will be
 derived based on the user's Device (MOBILE for mobile devices, TABLET for tablet devices, and NORMAL
 otherwise).

 Indicating a site preference

 The user may indicate a site preference by activating a link that submits the site_preference query
 parameter:

Site: Normal |
Mobile

 The indicated site preference is saved for the user in a
 SitePreferenceRepository, and made available as a request attribute
 named 'currentSitePreference'.

 Site preference storage

 Indicated site preferences are stored in a SitePreferenceRepository
 so they are remembered in future requests made by the user.
 CookieSitePreferenceRepository is the default implementation and stores the user's'
 preference in a client-side cookie.

public interface SitePreferenceRepository {

 /**
 * Load the user's site preference.
 * Returns null if the user has not specified a preference.
 */
 SitePreference loadSitePreference(HttpServletRequest request);

 /**
 * Save the user's site preference.
 */
 void saveSitePreference(SitePreference preference, HttpServletRequest request, HttpServletResponse response);

}

 Enabling site preference management

 To enable SitePreference management before requests are processed,
 add the SitePreferenceHandlerInterceptor to your
 DispatcherServlet configuration:

<interceptors>
 <!-- On pre-handle, manage the user's site preference (declare after DeviceResolverHandlerInterceptor) -->
 <bean class="org.springframework.mobile.device.site.SitePreferenceHandlerInterceptor" />
</interceptors>

 Java-based configuration is also available:

@Bean
public SitePreferenceHandlerInterceptor sitePreferenceHandlerInterceptor() {
 return new SitePreferenceHandlerInterceptor();
}

@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(sitePreferenceHandlerInterceptor());
}

 By default, the interceptor will delegate to a StandardSitePreferenceHandler
 configured with a CookieSitePreferenceRepository. You may plug-in another
 SitePreferenceHandler by injecting a constructor argument. After the
 interceptor is invoked, the SitePreference will be available as a request attribute
 named 'currentSitePreference'.

 Obtaining a reference to the current site preference

 When you need to lookup the current SitePreference in your code, you can do
 so in several ways. If you already have a reference to a ServletRequest or
 Spring WebRequest, simply use SitePreferenceUtils:

SitePreference sitePreference = SitePreferenceUtils.getCurrentSitePreference(servletRequest);

 If you'd like to pass the current SitePreference as an argument to one of
 your @Controller methods, configure a
 SitePreferenceWebArgumentResolver:

<annotation-driven>
 <argument-resolvers>
 <bean class="org.springframework.mobile.device.site.SitePreferenceWebArgumentResolver" />
 </argument-resolvers>
</annotation-driven>

 Java-based configuration is also available:

@Bean
public SitePreferenceHandlerMethodArgumentResolver sitePreferenceHandlerMethodArgumentResolver() {
 return new SitePreferenceHandlerMethodArgumentResolver();
}

@Override
public void addArgumentResolvers(List<HandlerMethodArgumentResolver> argumentResolvers) {
 argumentResolvers.add(sitePreferenceHandlerMethodArgumentResolver());
}

 You can then inject the indicated SitePreference into your
 @Controller as shown below:

@Controller
public class HomeController {

 @RequestMapping("/")
 public String home(SitePreference sitePreference, Model model) {
 if (sitePreference == SitePreference.NORMAL) {
 logger.info("Site preference is normal");
 return "home";
 } else if (sitePreference == SitePreference.MOBILE) {
 logger.info("Site preference is mobile");
 return "home-mobile";
 } else if (sitePreference == SitePreference.TABLET) {
 logger.info("Site preference is tablet");
 return "home-tablet";
 } else {
 logger.info("no site preference");
 return "home";
 }
 }

}

 Site switching

 Some applications may wish to host their "mobile site" at a different domain from their "normal site".
 For example, Google will switch you to m.google.com if you access
 google.com from your mobile phone.

 In Spring Mobile, you may use the SiteSwitcherHandlerInterceptor to redirect
 mobile users to a dedicated mobile site. Users may also indicate a site preference; for example, a mobile user
 may still wish to use the 'normal' site. Convenient static factory methods are provided that implement
 standard site switching conventions.

 The mDot, dotMobi and urlPath
 factory methods configure cookie-based SitePreference storage. The cookie value
 will be shared across the mobile and normal site domains. Internally, the interceptor delegates to a
 SitePreferenceHandler, so there is no need to register a
 SitePreferenceHandlerInterceptor when using the switcher.

 mDot SiteSwitcher

 Use the mDot factory method to construct a SiteSwitcher that redirects
 mobile users to m.${serverName}; for example, m.myapp.com:

<interceptors>
 <!-- On pre-handle, resolve the device that originated the web request -->
 <bean class="org.springframework.mobile.device.DeviceResolverHandlerInterceptor" />
 <!-- On pre-handle, redirects mobile users to "m.myapp.com" (declare after DeviceResolverHandlerInterceptor) -->
 <bean class="org.springframework.mobile.device.switcher.SiteSwitcherHandlerInterceptor"
 factory-method="mDot">
 <constructor-arg index="0" type="java.lang.String" value="myapp.com"/>
 </bean>
</interceptors>

 By default, tablet devices see the 'normal' site. A second constructor argument is available for
 specifying that tablet devices are redirected to the 'mobile' site:

<interceptors>
 <!-- On pre-handle, resolve the device that originated the web request -->
 <bean class="org.springframework.mobile.device.DeviceResolverHandlerInterceptor" />
 <!-- On pre-handle, redirects mobile users to "m.myapp.com" (declare after DeviceResolverHandlerInterceptor) -->
 <bean class="org.springframework.mobile.device.switcher.SiteSwitcherHandlerInterceptor"
 factory-method="mDot">
 <constructor-arg index="0" type="java.lang.String" value="myapp.com"/>
 <constructor-arg index="1" type="java.lang.Boolean" value="true"/>
 </bean>
</interceptors>

 Java-based configuration is also available:

@Bean
public DeviceResolverHandlerInterceptor deviceResolverHandlerInterceptor() {
 return new DeviceResolverHandlerInterceptor();
}

@Bean
public SiteSwitcherHandlerInterceptor siteSwitcherHandlerInterceptor() {
 return SiteSwitcherHandlerInterceptor.mDot("myapp.com", true);
}

@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(deviceResolverHandlerInterceptor());
 registry.addInterceptor(siteSwitcherHandlerInterceptor());
}

 dotMobi SiteSwitcher

 Use the dotMobi factory method to construct a SiteSwitcher that redirects
 mobile users to ${serverName - lastDomain}.mobi; for example, myapp.mobi:

<interceptors>
 <!-- On pre-handle, resolve the device that originated the web request -->
 <bean class="org.springframework.mobile.device.DeviceResolverHandlerInterceptor" />
 <!-- On pre-handle, redirects mobile users to "myapp.mobi" (declare after DeviceResolverHandlerInterceptor) -->
 <bean class="org.springframework.mobile.device.switcher.SiteSwitcherHandlerInterceptor"
 factory-method="dotMobi">
 <constructor-arg index="0" type="java.lang.String" value="myapp.com"/>
 </bean>
</interceptors>

 As described earlier with the mDot factory method, tablet devices see the
 'normal' site. A second constructor argument is available for specifying that tablet devices are
 redirected to the 'mobile' site:

<interceptors>
 <!-- On pre-handle, resolve the device that originated the web request -->
 <bean class="org.springframework.mobile.device.DeviceResolverHandlerInterceptor" />
 <!-- On pre-handle, redirects mobile users to "myapp.mobi" (declare after DeviceResolverHandlerInterceptor) -->
 <bean class="org.springframework.mobile.device.switcher.SiteSwitcherHandlerInterceptor"
 factory-method="dotMobi">
 <constructor-arg index="0" type="java.lang.String" value="myapp.com"/>
 <constructor-arg index="1" type="java.lang.Boolean" value="true"/>
 </bean>
</interceptors>

 Java-based configuration is also available:

@Bean
public DeviceResolverHandlerInterceptor deviceResolverHandlerInterceptor() {
 return new DeviceResolverHandlerInterceptor();
}

@Bean
public SiteSwitcherHandlerInterceptor siteSwitcherHandlerInterceptor() {
 return SiteSwitcherHandlerInterceptor.dotMobi("myapp.com", true);
}

@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(deviceResolverHandlerInterceptor());
 registry.addInterceptor(siteSwitcherHandlerInterceptor());
}

 Standard SiteSwitcher

 For a more customized configuration of the mDot or dotMobi
 strategies, the standard factory method is available. Construct a SiteSwitcher
 that redirects mobile and tablet users to a specified schema:

<interceptors>
 <!-- On pre-handle, resolve the device that originated the web request -->
 <bean class="org.springframework.mobile.device.DeviceResolverHandlerInterceptor" />
 <!-- On pre-handle, redirects mobile users to "m.myapp.com" (declare after DeviceResolverHandlerInterceptor) -->
 <bean class="org.springframework.mobile.device.switcher.SiteSwitcherHandlerInterceptor"
 factory-method="standard">
 <constructor-arg value="app.com"/>
 <constructor-arg value="mobile.app.com"/>
 <constructor-arg value="tablet.app.com"/>
 <constructor-arg value=".app.com"/>
 </bean>
</interceptors>

 Java-based configuration is also available:

@Bean
public DeviceResolverHandlerInterceptor deviceResolverHandlerInterceptor() {
 return new DeviceResolverHandlerInterceptor();
}

@Bean
public SiteSwitcherHandlerInterceptor siteSwitcherHandlerInterceptor() {
 return SiteSwitcherHandlerInterceptor.standard("app.com",
 "mobile.app.com", "tablet.app.com", ".app.com");
}

@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(deviceResolverHandlerInterceptor());
 registry.addInterceptor(siteSwitcherHandlerInterceptor());
}

 urlPath SiteSwitcher

 Use the urlPath factory method to construct a SiteSwitcher that redirects
 mobile users to a different path within the application. Unlike mDot and
 dotMobi, this SiteSwitcher does not require setting up a different DNS entry for
 a mobile site.

 Mobile Path

 Use the urlPath factory method to construct a SiteSwitcher that
 redirects mobile users to ${serverName}/${mobilePath}; for example, myapp.com/m/:

<interceptors>
 <!-- On pre-handle, resolve the device that originated the web request -->
 <bean class="org.springframework.mobile.device.DeviceResolverHandlerInterceptor" />
 <!-- On pre-handle, redirects mobile users to "myapp.com/m" (declare after DeviceResolverHandlerInterceptor) -->
 <bean class="org.springframework.mobile.device.switcher.SiteSwitcherHandlerInterceptor"
 factory-method="urlPath">
 <constructor-arg index="0" type="java.lang.String" value="/m" />
 </bean>
</interceptors>

 Java-based configuration is also available:

@Bean
public DeviceResolverHandlerInterceptor deviceResolverHandlerInterceptor() {
 return new DeviceResolverHandlerInterceptor();
}

@Bean
public SiteSwitcherHandlerInterceptor siteSwitcherHandlerInterceptor() {
 return SiteSwitcherHandlerInterceptor.urlPath("/m");
}

@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(deviceResolverHandlerInterceptor());
 registry.addInterceptor(siteSwitcherHandlerInterceptor());
}

 Mobile Path and Root Path

 You can also specify the root path of the application in the urlPath
 factory method. The following sample constructs a SiteSwitcher that redirects mobile users to
 ${serverName}/${rootPath}/${mobilePath}; for example, myapp.com/showcase/m/:

<interceptors>
 <!-- On pre-handle, resolve the device that originated the web request -->
 <bean class="org.springframework.mobile.device.DeviceResolverHandlerInterceptor" />
 <!-- On pre-handle, redirects mobile users to "myapp.com/showcase/m" (declare after DeviceResolverHandlerInterceptor) -->
 <bean class="org.springframework.mobile.device.switcher.SiteSwitcherHandlerInterceptor"
 factory-method="urlPath">
 <constructor-arg index="0" type="java.lang.String" value="/m" />
 <constructor-arg index="1" type="java.lang.String" value="/showcase" />
 </bean>
</interceptors>

 Java-based configuration is also available:

@Bean
public DeviceResolverHandlerInterceptor deviceResolverHandlerInterceptor() {
 return new DeviceResolverHandlerInterceptor();
}

@Bean
public SiteSwitcherHandlerInterceptor siteSwitcherHandlerInterceptor() {
 return SiteSwitcherHandlerInterceptor.urlPath("/m", "/showcase");
}

@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(deviceResolverHandlerInterceptor());
 registry.addInterceptor(siteSwitcherHandlerInterceptor());
}

 Mobile Path, Tablet Path, and Root Path

 Lastly, the urlPath factory method supports configuring a path for a
 tablet site. The following sample constructs a SiteSwitcher that redirects mobile users to
 ${serverName}/${rootPath}/${mobilePath} for mobile sites, and ${serverName}/${rootPath}/${tabletPath}
 for tablet sites.

 In the following configuration example, the mobile site would be located at myapp.com/showcase/m/, while the tablet site would be similarly located at myapp.com/showcase/t/:

<interceptors>
 <!-- On pre-handle, resolve the device that originated the web request -->
 <bean class="org.springframework.mobile.device.DeviceResolverHandlerInterceptor" />
 <!-- On pre-handle, redirects mobile users to "myapp/showcase/m" (declare after DeviceResolverHandlerInterceptor) -->
 <bean class="org.springframework.mobile.device.switcher.SiteSwitcherHandlerInterceptor"
 factory-method="urlPath">
 <constructor-arg index="0" type="java.lang.String" value="/m" />
 <constructor-arg index="1" type="java.lang.String" value="/t" />
 <constructor-arg index="2" type="java.lang.String" value="/showcase" />
 </bean>
</interceptors>

 Java-based configuration is also available:

@Bean
public DeviceResolverHandlerInterceptor deviceResolverHandlerInterceptor() {
 return new DeviceResolverHandlerInterceptor();
}

@Bean
public SiteSwitcherHandlerInterceptor siteSwitcherHandlerInterceptor() {
 return SiteSwitcherHandlerInterceptor.urlPath("/m", "/t", "/showcase");
}

@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(deviceResolverHandlerInterceptor());
 registry.addInterceptor(siteSwitcherHandlerInterceptor());
}

 Additional Configuration

 Please note that in order for the urlPath SiteSwitcher to work
 properly, you will need to add a corresponding url pattern to your web.xml for the mobile and tablet
 site paths.

<servlet-mapping>
 <servlet-name>appServlet</servlet-name>
 <url-pattern>/</url-pattern>
 <url-pattern>/m/*</url-pattern>
 <url-pattern>/t/*</url-pattern>
</servlet-mapping>

 See the JavaDoc of SiteSwitcherHandlerInterceptor for additional options when you
 need more control. See the spring-mobile
 samples repository for runnable SiteSwitcher examples.

 Device aware view management

 Using device detection, it is possible to add conditional logic within your controllers to return
 specific views based on device type. But this process can be laborious if you are dealing with a large
 number of views. Fortunately, Spring Mobile offers an alternative method for managing views for different
 device types.

 Device aware view resolving

 Spring Mobile includes AbstractDeviceDelegatingViewResolver, an abstract
 ViewResolver wrapper that delegates to another view resolver implementation,
 allowing for resolution of device specific view names without the need for a dedicated mapping to be
 defined for each view. A lightweight implementation is provided, which supports adjusting view names
 based on whether the calling device is normal, mobile, or tablet based.

 Within your application, you can then create alternate views for normal, mobile or tablet devices,
 and given the proper configuration, Spring Mobile will adjust the view name to resolve to the correct one.
 This happens internally, without the need to add conditional logic through your controllers. The following
 table illustrates the behavior of the LiteDeviceDelegatingViewResolver when
 receiving a request for the "home" view and adjusting it to use a prefix. This allows you to store
 "mobile" views in a subdirectory, for example.

 Table 2.1. Prefixes

 	Resolved Device	Method	Prefix	Adjusted View
	Normal	setNormalPrefix()	"normal/"	"normal/home"
	Mobile	setMobilePrefix()	"mobile/"	"mobile/home"
	Tablet	setTabletPrefix()	"tablet/"	"tablet/home"

 Alternatively, the LiteDeviceDelegatingViewResolver also supports adjusting
 views with suffixes. The following table shows the results of receiving a request for the "home" view.
 For example, this allows you to store all your views in the same folder, and distinguish between them by
 using different suffixes.

 Table 2.2. Suffixes

 	Resolved Device	Method	Suffix	Adjusted View
	Normal	setNormalSuffix()	".nor"	"home.nor"
	Mobile	setMobileSuffix()	".mob"	"home.mob"
	Tablet	setTabletSuffix()	".tab"	"home.tab"

 Enabling device aware views

 The following example illustrates how to configure a site that delegates to an
 InternalResourceViewResolver. It is configurated to adjust the view name by adding
 a mobile/ or tablet/ prefix if the requesting device is determined
 to be mobile or tablet respectively.

 XML configuration:

<bean class="org.springframework.mobile.device.view.LiteDeviceDelegatingViewResolver">
 <constructor-arg>
 <bean class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/views/" />
 <property name="suffix" value=".jsp" />
 </bean>
 </constructor-arg>
 <property name="mobilePrefix" value="mobile/" />
 <property name="tabletPrefix" value="tablet/" />
</bean>

 Java-based configuration:

@Bean
public LiteDeviceDelegatingViewResolver liteDeviceAwareViewResolver() {
 InternalResourceViewResolver delegate = new InternalResourceViewResolver();
 delegate.setPrefix("/WEB-INF/views/");
 delegate.setSuffix(".jsp");
 LiteDeviceDelegatingViewResolver resolver = new LiteDeviceDelegatingViewResolver(delegate);
 resolver.setMobilePrefix("mobile/");
 resolver.setTabletPrefix("tablet/");
 return resolver;
}

 Fallback resolution

 Because using a ViewResolver will apply the view name strategy to
 your entire site, there may be times when some of your views do not have separate implementations for
 different device types or you do not need different versions. In this case, you can enable fallback
 support. Enabling fallback support means if an adjusted view name cannot be resolved, the
 ViewResolver will attempt to resolve the original view request. This
 feature is only supported if the delegate ViewResolver returns
 null from a call to resolveViewName when attempting to
 resolve a view that does not exist.

 Enable fallback support by setting the enableFallback property.

 XML configuration:

<bean class="org.springframework.mobile.device.view.LiteDeviceDelegatingViewResolver">
 ...
 <property name="enableFallback" value="true" />
 ...
</bean>

 Java-based configuration:

@Bean
public LiteDeviceDelegatingViewResolver liteDeviceAwareViewResolver() {
 ...
 resolver.setEnableFallback(true);
 ...
 return resolver;
}

