Spring Native documentation

Version 0.12.2 - Andy Clement, Sébastien Deleuze, Filip Hanik, Dave Syer,
Esteban Ginez, Jay Bryant, Brian Clozel, Stéphane Nicoll, Josh Long

Table of Contents

1. Overview
1.1. Modules
2. Getting started
2.1. Getting started with Buildpacks
2.1.1. System Requirements
2.1.2. Sample Project Setup

Validate Spring Boot version

Add the Spring Native dependency
Add the Spring AOT plugin

Enable native image support

Freeze native image version

Use an alternative native image toolkit

Maven Repository

2.1.3. Build the native application
2.1.4. Run the native application

2.2. Getting started with Native Build Tools
2.2.1. System Requirements

Linux and MacOS
Windows

2.2.2. Sample Project Setup

Validate Spring Boot version

Add the Spring Native dependency
Add the Spring AOT plugin

Add the native build tools plugin
Maven Repository

2.2.3. Build the native application
2.2.4. Run the native application
2.2.5. Test the native application
3. Support

3.1. GraalvVM

3.2. Language

3.3. Tooling

3.4. Feature flags

3.5. Spring Boot
3.5.1. Starters requiring special build configuration
3.5.2. Starters requiring no special build configuration

3.6. Spring Cloud

3.7. Others

© 00 00 1 O U1 = = b kNN

DN N N DN DN DN DN N N R R R R R R s s s s s s s
B N R O O O 0O 0 O ©W W 0 N Ul bW oW N DNDNDDNDDND R e

3.8. Limitations
4. AOT generation
4.1. Build setup
4.1.1. Maven
4.1.2. Gradle
4.1.3. AOT configuration
4.2. Debugging the source generation
4.3. AOT runtime modes
4.3.1. IDEs
4.3.2. Plugins
4.4. AOT engine
4.4.1. BeanFactory Preparation
4.4.2. Code Generation
4.4.3. Additional Processing
5. Native hints
5.1. Annotated Hints
5.2. Programmatic Hints
5.3. Manual Hints
6. Samples
7. Native image options
7.1. Options enabled by default
7.2. Useful options
7.3. Unsupported options
8. Tracing agent
8.1. Running the application with the agent to compute configuration
8.2. Testing with the agent to compute configuration
8.2.1. A basic access-filter file
8.2.2. Using the access-filter file
8.2.3. Using it with maven
9. Executable JAR to native
9.1. With Buildpacks
9.2. With native-image
10. Troubleshooting
10.1. native-image is failing
10.1.1. DataSize was unintentionally initialized at build time
10.1.2. WARNING: Could not register reflection metadata
10.1.3. Out of memory error when building the native image
10.1.4. Builder lifecycle 'creator’ failed with status code 145
10.2. The built image does not run
10.2.1. Missing resource bundles

10.2.2. Application failed to start when running mvn spring-boot:run

25
26
26
26
27
29
30
31
31
31
32
32
33
33
34
34
35
36
37
38
38
38
39
40
40
40
40
41
41
44
44
44
46
46
46
46
46
47
47
47
47

10.2.3. Missing configuration
10.2.4. AotProxyHint errors
10.2.5. No access hint found for import selector: XXX

10.3. Working with Multi-Modules projects

10.4. Working with snapshots

11. How to contribute

11.1. Designing native-friendly Spring libraries
11.1.1. Use proxyBeanMethods=false or method parameter injection in @Configuration classes
11.1.2. Use NativeDetector for native conditional code paths
11.1.3. Do classpath checks in static block/fields and configure build-time initialization
11.1.4. Move reflection to build-time when possible

11.2. Contributing new hints

11.3. Dynamic native configuration
11.3.1. Implementing NativeConfiguration
11.3.2. Taking more control via processors

11.4. Using container-based build environment
11.4.1. run-dev-container.sh
11.4.2. Usual dev workflow

11.5. Scripts
11.5.1. Comparing images

12. Contact us

47
47
48
48
48
49
49

49
50
50
50
52
52
52
52
53
53
53
54
56

o Spring Native is now superseded by Spring Boot 3 official native support, see the
related reference documentation for more details.

https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html
https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html

Chapter 1. Overview

Spring Native provides support for compiling Spring applications to native executables using the
GraalVM native-image compiler.

Compared to the Java Virtual Machine, native images can enable cheaper and more sustainable
hosting for many types of workloads. These include microservices, function workloads, well suited
to containers, and Kubernetes

Using native image provides key advantages, such as instant startup, instant peak performance,
and reduced memory consumption.

There are also some drawbacks and trade-offs that the GraalVM native project expect to improve on
over time. Building a native image is a heavy process that is slower than a regular application. A
native image has fewer runtime optimizations after warmup. Finally, it is less mature than the JVM
with some different behaviors.

The key differences between a regular JVM and this native image platform are:

* A static analysis of your application from the main entry point is performed at build time.
* The unused parts are removed at build time.

* Configuration is required for reflection, resources, and dynamic proxies.

* Classpath is fixed at build time.

* No class lazy loading: everything shipped in the executables will be loaded in memory on
startup.

* Some code will run at build time.
* There are some limitations around some aspects of Java applications that are not fully

supported.

The goal of this project is to incubate the support for Spring Native, an alternative to Spring JVM,
and provide a native deployment option designed to be packaged in lightweight containers. In
practice, the target is to support your Spring applications, almost unmodified, on this new platform.

o This is work in progress, see the list of supported features for more details.

1.1. Modules

Spring Native is composed of the following modules:
* spring-native: runtime dependency required for running Spring Native, provides also Native
hints APL.

* spring-native-configuration: configuration hints for Spring classes used by Spring AOT plugins,
including various Spring Boot auto-configurations.

* spring-native-docs: reference guide, in asciidoc format.

* spring-native-tools: tools used for reviewing image building configuration and output.

https://www.graalvm.org
https://www.graalvm.org/reference-manual/native-image/
https://kubernetes.io/
https://www.graalvm.org/reference-manual/native-image/Limitations/

spring-aot: AOT generation infrastructure common to Maven and Gradle plugins.
spring-aot-test: Test-specific AOT generation infrastructure.
spring-aot-gradle-plugin: Gradle plugin that invokes AOT generation.
spring-aot-maven-plugin: Maven plugin that invokes AOT generation.

samples: contains various samples that demonstrate features usage and are used as integration
tests.

Chapter 2. Getting started

There are two main ways to build a Spring Boot native application:

» Using Spring Boot Buildpacks support to generate a lightweight container containing a native
executable.

» Using the Native Build Tools to generate a native executable.

Q The easiest way to start a new native Spring Boot project is to go to start.spring.io,
add the "Spring Native" dependency and generate the project.

2.1. Getting started with Buildpacks

This section gives you a practical overview of building a Spring Boot native application using Cloud
Native Buildpacks. This is a practical guide that uses the RESTful Web Service getting started guide.

2.1.1. System Requirements

Docker should be installed, see Get Docker for more details. Configure it to allow non-root user if
you are on Linux.

You can run docker run hello-world (without sudo) to check the Docker daemon is
9 reachable as expected. Check the Maven or Gradle Spring Boot plugin
documentation for more details.

On MacOS, it is recommended to increase the memory allocated to Docker to at
Q least 8GB, and potentially add more CPUs as well. See this Stackoverflow answer for
more details. On Microsoft Windows, make sure to enable the Docker WSL 2
backend for better performance.
2.1.2. Sample Project Setup
The completed "RESTful Web Service" guide can be retrieved using the following commands:

git clone https://github.com/spring-quides/gs-rest-service
cd gs-rest-service/complete

Validate Spring Boot version

o Spring Native 0.12.2 only supports Spring Boot 2.7.7, so change the version if
necessary.

https://start.spring.io
https://docs.spring.io/spring-boot/docs/2.7.7/reference/html/features.html#features.container-images.building.buildpacks
https://docs.spring.io/spring-boot/docs/2.7.7/reference/html/features.html#features.container-images.building.buildpacks
https://spring.io/guides/gs/rest-service/
https://docs.docker.com/installation/#installation
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.spring.io/spring-boot/docs/2.7.7/maven-plugin/reference/htmlsingle//#build-image-docker-daemon
https://docs.spring.io/spring-boot/docs/2.7.7/gradle-plugin/reference/htmlsingle//#build-image-docker-daemon
https://stackoverflow.com/questions/44533319/how-to-assign-more-memory-to-docker-container/44533437#44533437
https://docs.docker.com/docker-for-windows/wsl/
https://docs.docker.com/docker-for-windows/wsl/

Maven

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.7.7</version>
<relativePath/>

</parent>

Gradle Groovy

plugins {
/] ...
id 'org.springframework.boot' version '2.7.7'

Gradle Kotlin

plugins {
/] ...
id("org.springframework.boot") version "2.7.7"

Add the Spring Native dependency

org.springframework.experimental:spring-native provides native configuration APIs like
@NativeHint as well as other mandatory classes required to run a Spring application as a native
image. You need to specify it explicitly only with Maven.

Maven

<dependencies>
<l-- .0 -
<dependency>
<groupIld>org.springframework.experimental</groupId>
<artifactId>spring-native</artifactId>
<version>@.12.2</version>
</dependency>
</dependencies>

Gradle Groovy

// No need to add the spring-native dependency explicitly with Gradle, the Spring AOT
plugin will add it automatically.

Gradle Kotlin

// No need to add the spring-native dependency explicitly with Gradle, the Spring AOT
plugin will add it automatically.

Add the Spring AOT plugin

The Spring AOT plugin performs ahead-of-time transformations required to improve native image
compatibility and footprint.

Q The transformations also apply to the JVM so this can be applied regardless.
Maven
<build>
<plugins>
gll== oo ==&
<plugin>

<groupld>org.springframework.experimental</groupIld>
<artifactId>spring-aot-maven-plugin</artifactId>
<version>0.12.2</version>
<executions>
<execution>
<id>generate</id>
<goals>
<goal>generate</goal>
</qoals>
</execution>
</executions>
</plugin>
</plugins>
</build>

Gradle Groovy
plugins {

/...
id 'org.springframework.experimental.aot' version '0.12.2'

Gradle Kotlin
plugins {

/] ...
id("org.springframework.experimental.aot") version "0.12.2"

The plugin provides a number of options to customize the transformations, see AOT generation for

more details.

Enable native image support

Spring Boot’s Cloud Native Buildpacks support lets you build a container for your Spring Boot
application. The native image buildpack can be enabled using the BP_NATIVE_IMAGE environment
variable as follows:

0 As of Spring Native 0.11, Liberica Native Image Kit (NIK) is the native-image
compiler distribution used by default with Buildpacks.
Maven
<plugin>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>

</confiquration>
</plugin>

Gradle Groovy

bootBuildImage {
builder = "paketobuildpacks/builder:tiny’
environment = [
"BP_NATIVE_IMAGE" : "true"

]

Gradle Kotlin

tasks.getByName<BootBuildImage>("bootBuildImage") {
builder = "paketobuildpacks/builder:tiny"
environment = mapOf(
"BP_NATIVE_IMAGE" to "true"

)

tiny builder allows small footprint and reduced surface attack, you can also use
0 base (the default) or full builders to have more tools available in the image for an
improved developer experience.

https://docs.spring.io/spring-boot/docs/2.7.7/reference/html/spring-boot-features.html#boot-features-container-images-buildpacks
https://github.com/paketo-buildpacks/native-image
https://bell-sw.com/pages/liberica-native-image-kit/

Q Additional native-image arguments can be added using the
BP_NATIVE_IMAGE_BUILD_ARGUMENTS environment variable.

Freeze native image version

By default, native-image versions will be upgraded automatically by Buildpacks to the latest release.
You can explicitly configure Spring Boot Maven or Gradle plugins with a specific version of java-
native-image buildpack which will freeze GraalVM version, see related versions mapping. For
example, if you want to force using native image 22.1.0, you can configure:

Maven

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
Cl=o o ==

</confiquration>
</plugin>

Gradle Groovy

bootBuildImage {
/...
buildpacks = ["gcr.io/paketo-buildpacks/java-native-image:7.19.0"]

Gradle Kotlin

tasks.getByName<BootBuildImage>("bootBuildImage") {
/...
buildpacks = 1istOf("gcr.io/paketo-buildpacks/java-native-image:7.19.0")

Use an alternative native image toolkit

If you want to change the default native image toolkit used by Buildpack (Liberica NIK) to an
alternative one, you can explicitly configure Spring Boot Maven or Gradle plugins accordingly, see
related Buildpack documentation. For example, if you want to use GraalVM CE instead of Liberica
NIK, you can configure:

https://docs.spring.io/spring-boot/docs/2.7.7/maven-plugin/reference/htmlsingle/#build-image-example-buildpacks
https://docs.spring.io/spring-boot/docs/2.7.7/gradle-plugin/reference/htmlsingle/#build-image-example-buildpacks
https://paketo.io//docs/howto/java/#configure-the-graalvm-version
https://docs.spring.io/spring-boot/docs/2.7.7/maven-plugin/reference/htmlsingle/#build-image-example-buildpacks
https://docs.spring.io/spring-boot/docs/2.7.7/gradle-plugin/reference/htmlsingle/#build-image-example-buildpacks
https://paketo.io//docs/howto/java/#use-an-alternative-java-native-image-toolkit

Maven

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
== 00 ==2

</confiquration>
</plugin>

Gradle Groovy

bootBuildImage {

/] ...

buildpacks = ["gcr.io/paketo-buildpacks/graalvm", "gcr.io/paketo-buildpacks/java-
native-image"]

}

Gradle Kotlin

tasks.getByName<BootBuildImage>("bootBuildImage") {

/] ...

buildpacks = 1istOf("gcr.io/paketo-buildpacks/graalvm", "gcr.io/paketo-
buildpacks/java-native-image")

}

Maven Repository

Configure your build to include the required repository for the spring-native dependency, as
follows:

Maven

<repositories>
<l-- .0 -
<repository>
<id>spring-milestone</id>
<name>Spring milestone</name>
<url>https://repo.spring.io/milestone</url>
</repository>
</repositories>

Gradle Groovy

repositories {
/...
maven { url 'https://repo.spring.io/milestone’ }

Gradle Kotlin

repositories {
/] ...
maven { url = uri("https://repo.spring.io/milestone") }

The Spring AOT plugin also requires a dedicated plugin repository in the pom.xml file for Maven and
in the in the settings.gradle(.kts) for Gradle.

Maven

<pluginRepositories>
Qo= o0 ==B
<pluginRepository>
<id>spring-milestone</id>
<name>Spring milestone</name>
<url>https://repo.spring.io/milestone</url>
</pluginRepository>
</pluginRepositories>

Gradle Groovy

pluginManagement {
repositories {
/] ...
maven { url 'https://repo.spring.io/milestone’ }

Gradle Kotlin

pluginManagement {
repositories {
/] ...
maven { url = uri("https://repo.spring.io/milestone") }

10

2.1.3. Build the native application
The native application can be built as follows:

Maven

$ mvn spring-boot:build-image

Gradle Groovy

$ gradle bootBuildImage

Gradle Kotlin

$ gradle bootBuildImage

During the native compilation, you will see a lot of WARNING: Could not register
reflection metadata messages. They are expected and will be removed in a future
version, see #502 for more details.

This creates a Linux container to build the native application using the GraalVM native image
compiler. By default, the container image is installed locally.

2.1.4. Run the native application

To run the application, you can use docker the usual way as shown in the following example:
$ docker run --rm -p 8080:8080 rest-service-complete:@.0.1-SNAPSHOT

If you prefer docker-compose, you can write a docker-compose.yml at the root of the project with the
following content:

version: '3.1'
services:
rest-service:
image: rest-service-complete:0.0.1-SNAPSHOT
ports:
- "8080:8080"

And then run
$ docker-compose up

The startup time should be less than 100ms, compared to the roughly 1500ms when starting the
application on the JVM.

11

https://github.com/spring-projects-experimental/spring-native/issues/502#issuecomment-786933142

Now that the service is up, visit localhost:8080/greeting, where you should see:

{"id":1,"content":"Hello, World!"}

2.2. Getting started with Native Build Tools

This section gives you a practical overview of building a Spring Boot native application using the
GraalVM native build tools. This is a practical guide that uses the RESTful Web Service getting
started guide.

2.2.1. System Requirements

A number of prerequisites are required before installing the GraalVM native-image compiler. You
then need a local installation of the native image compiler.

There are various distributions of the native-image compiler available, here we focus on those 2
ones:

* GraalVM CE based on the GraalVM open-source repository and Labs]JDK
* Bellsoft Liberica Native Image Kit (NIK) based on the GraalVM open-source repository and
Liberica JDK

Linux and MacOS
To install the native image compiler on MacOS or Linux, we recommend using SDKMAN:

e Install SDKMAN.

* Install a GraalVM native-image distribution, either GraalVM CE (gr1 suffix) or Bellsoft Liberica
NIK (nik suffix), here we go with Liberica NIK Java 11 variant: sdk install java 22.1.r11-nik

* Make sure to use the newly installed JDK with sdk use java 22.1.r11-nik

* Run gu install native-image to bring in the native-image extensions to the JDK.

Alternatively, you can manually install builds from GraalVM or Liberica NIK. Don’t forget to set
JAVA_HOME / PATH appropriately if needed and to run qu install native-image to bring in the native-
image extensions.

Windows

On Windows, follow those instructions to install either GraalVM or Liberica NIK, Visual Studio
Build Tools and Windows SDK. Due to a well-known Windows limitations related command-line
maximum length, make sure to use x64 Native Tools Command Prompt instead of the regular
Windows command line to run Maven or Gradle plugins.

2.2.2. Sample Project Setup

The completed "RESTful Web Service" guide can be retrieved using the following commands:

12

http://localhost:8080/greeting
http://localhost:8080/greeting
http://localhost:8080/greeting
https://github.com/graalvm/native-build-tools
https://spring.io/guides/gs/rest-service/
https://spring.io/guides/gs/rest-service/
https://www.graalvm.org/reference-manual/native-image/#prerequisites
https://www.graalvm.org/
https://github.com/oracle/graal
https://bell-sw.com/pages/liberica-native-image-kit/
https://github.com/oracle/graal
https://sdkman.io/
https://sdkman.io/install
https://www.graalvm.org/downloads/
https://bell-sw.com/pages/downloads/native-image-kit/
https://medium.com/graalvm/using-graalvm-and-native-image-on-windows-10-9954dc071311
https://www.graalvm.org/downloads/
https://bell-sw.com/pages/downloads/native-image-kit/
https://docs.microsoft.com/en-US/troubleshoot/windows-client/shell-experience/command-line-string-limitation
https://docs.microsoft.com/en-US/troubleshoot/windows-client/shell-experience/command-line-string-limitation

git clone https://github.com/spring-quides/gs-rest-service
cd gs-rest-service/complete

Validate Spring Boot version

0 Spring Native 0.12.2 only supports Spring Boot 2.7.7, so change the version if
necessary.
Maven
<parent>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.7.7</version>
<relativePath/>

</parent>

Gradle Groovy

plugins {
id 'org.springframework.boot' version '2.7.7'
/...

Gradle Kotlin

plugins {
id("org.springframework.boot") version "2.7.7"
/] ...

Add the Spring Native dependency

org.springframework.experimental:spring-native provides native configuration APIs like
@NativeHint as well as other mandatory classes required to run a Spring application as a native
image.

13

Maven

<dependencies>
<l-- .0 -
<dependency>
<groupId>org.springframework.experimental</groupId>
<artifactId>spring-native</artifactId>
<version>0.12.2</version>
</dependency>
</dependencies>

Gradle Groovy

// No need to add the spring-native dependency explicitly with Gradle, the Spring AOT
plugin will add it automatically.

Gradle Kotlin

// No need to add the spring-native dependency explicitly with Gradle, the Spring AOT
plugin will add it automatically.

Add the Spring AOT plugin

The Spring AOT plugin performs ahead-of-time transformations required to improve native image
compatibility and footprint.

14

Maven

<build>
<plugins>
S
<plugin>
<groupld>org.springframework.experimental</groupld>
<artifactId>spring-aot-maven-plugin</artifactId>
<version>0.12.2</version>
<executions>
<execution>
<id>generate</id>
<goals>
<goal>generate</goal>
</goals>
</execution>
<execution>
<id>test-generate</id>
<goals>
<goal>test-generate</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
Gradle Groovy
plugins {
/...
id 'org.springframework.experimental.aot' version '0.12.2'
}
Gradle Kotlin
plugins {
/] ...
id("org.springframework.experimental.aot") version "0.12.2"
}

The plugin provides a number of options to customize the transformations, see AOT generation for
more details.

Add the native build tools plugin

GraalVM provides Gradle and Maven plugins to invoke the native image compiler from your build.
The following example adds a native profile that triggers the plugin during the package phase:

15

https://github.com/graalvm/native-build-tools

Maven

<profiles>
<profile>
<id>native</id>
<dependencies>
<!-- Required with Maven Surefire 2.x -->
<dependency>
<groupId>org.junit.platform</groupId>
<artifactId>junit-platform-launcher</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.graalvm.buildtools</groupId>
<artifactId>native-maven-plugin</artifactId>
<version>0.9.13</version>
<extensions>true</extensions>
<executions>
<execution>
<id>build-native</id>
<goals>
<goal>build</goal>
</goals>
<phase>package</phase>
</execution>
<execution>
<id>test-native</id>
<goals>
<goal>test</goal>
</goals>
<phase>test</phase>
</execution>
</executions>
<configuration>
S
</configuration>
</plugin>
<!-- Avoid a clash between Spring Boot repackaging and native-
maven-plugin -->
<plugin>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<confiquration>
<classifier>exec</classifier>
</configuration>
</plugin>
</plugins>
</build>

16

</profile>
</profiles>

Gradle Groovy

// The GraalVM native build tools plugin is applied and configured automatically

Gradle Kotlin

// The GraalVM native build tools plugin is applied and configured automatically

When used with Spring AOT, Native Build Tools Gradle toolchain support is
disabled by default in order to avoid current limitations related to identifying in a
reliable way JDK with native capabilities. See this related Gradle issue.

Maven Repository

Configure your build to include the milestone repository for the spring-native dependency, and the
Maven Central one with Gradle for the native build tools one as follows:

Maven

<repositories>
<l-- ... -->
<repository>
<id>spring-milestone</id>
<name>Spring milestone</name>
<url>https://repo.spring.io/milestone</url>
</repository>
</repositories>

Gradle Groovy

repositories {

/] ...
mavenCentral()
maven { url 'https://repo.spring.io/milestone’ }
}
Gradle Kotlin

repositories {
/] ...
mavenCentral()
maven { url = uri("https://repo.spring.io/milestone") }

17

https://github.com/gradle/gradle/issues/18896

Same thing for the plugins:

Maven

<pluginRepositories>
Ch== L =0
<pluginRepository>
<id>spring-milestone</id>
<name>Spring milestone</name>
<url>https://repo.spring.io/milestone</url>
</pluginRepository>
</pluginRepositories>

Gradle Groovy

pluginManagement {
repositories {

/] ...
mavenCentral()
maven { url 'https://repo.spring.io/milestone’ }
}
}
Gradle Kotlin

pluginManagement {
repositories {
/] ...
mavenCentral()
maven { url = uri("https://repo.spring.io/milestone") }

2.2.3. Build the native application

The native application can be built as follows:
Maven

$ mvn -Pnative -DskipTests package

Gradle Groovy

$ gradle nativeCompile

18

Gradle Kotlin

$ gradle nativeCompile

This command creates a native executable containing your Spring Boot application in the target
directory.

2.2.4. Run the native application

To run your application, invoke the following:
$ target/gs-rest-service

The startup time should be less than 100ms, compared to the roughly 1500ms when starting the
application on the JVM.

Now that the service is up, visit localhost:8080/greeting, where you should see:

{"id":1,"content":"Hello, World!"}

2.2.5. Test the native application
The native application can be tested as follows:

Maven

$ mvn -Pnative test

Gradle Groovy

$ gradle nativeTest

Gradle Kotlin

$ gradle nativeTest

You can find more details about the native build tools here.

19

http://localhost:8080/greeting
http://localhost:8080/greeting
http://localhost:8080/greeting
https://github.com/graalvm/native-build-tools

Chapter 3. Support

o Spring Native is now superseded by Spring Boot 3 official native support, see the
related reference documentation for more details.

This section defines the GraalVM version, languages and dependencies that have been validated
against Spring Native 0.12.2, which provides beta support on the scope defined in this section. You
can try it on your projects if they are using those supported dependencies, and raise bugs or
contribute pull requests if something goes wrong.

Beta support also means that breaking changes will happen, but a migration path will be provided
and documented.

3.1. GraalvM

GraalVM version 22.1.0 is supported, see the related release notes. GraalVM issues impacting the
Spring ecosystem are identified on their issue tracker using the spring label.

3.2. Language

Java 11, Java 17 and Kotlin 1.5+ are supported.
Java compiler -parameters flag is required since the .class resources, used as a
fallback mechanism on the JVM to retrieve parameter names, are typically not
A available on native. Spring Boot plugin automatically configures it on modules

where it is applied, but make sure to configure it explicitly when that’s not the case
(typically in multi modules projects or when using Kotlin multiplatform).

3.3. Tooling

Maven and Gradle (version 7 or above) are supported.

3.4. Feature flags

Some features like HTTPS may require some additional flags, check Native image options for more
details. When it recognizes certain usage scenarios, Spring Native tries to set required flags
automatically.

3.5. Spring Boot
O Spring Native 0.12.2 has been tested against Spring Boot 2.7.7.

The following starters are supported, the group ID is org.springframework.boot unless specified
otherwise.

20

https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html
https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html
https://github.com/spring-projects-experimental/spring-native/issues
https://github.com/spring-projects-experimental/spring-native/pulls
https://www.graalvm.org/release-notes/
https://github.com/oracle/graal/labels/spring
https://github.com/oracle/graal/labels/spring
https://github.com/oracle/graal/labels/spring

3.5.1. Starters requiring special build configuration

« spring-boot-starter-web

> Only Tomcat is supported for now.
o --enable-https flag is required for server HTTPS support.

o org.apache.tomcat.experimental:tomcat-embed-programmatic dependency should be used for
optimized footprint.

Maven

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>
<exclusion>
<groupld>org.apache.tomcat.embed</groupld>
<artifactId>tomcat-embed-core</artifactld>
</exclusion>
<exclusion>
<groupld>org.apache.tomcat.embed</groupld>
<artifactId>tomcat-embed-websocket</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.tomcat.experimental</groupld>
<artifactId>tomcat-embed-programmatic</artifactld>
<version>${tomcat.version}</version>
</dependency>

Gradle Groovy

implementation('org.springframework.boot:spring-boot-starter-web") {
exclude group: 'org.apache.tomcat.embed', module: 'tomcat-embed-core'
exclude group: 'org.apache.tomcat.embed', module: 'tomcat-embed-websocket'
}
implementation "org.apache.tomcat.experimental:tomcat-embed-
programmatic:${dependencyManagement.importedProperties["tomcat.version"]}"

Gradle Kotlin

implementation("org.springframework.boot:spring-boot-starter-web") {
exclude(group = "org.apache.tomcat.embed", module = "tomcat-embed-core")
exclude(group = "org.apache.tomcat.embed", module = "tomcat-embed-websocket")

}

implementation("org.apache.tomcat.experimental:tomcat-embed-
programmatic:${dependencyManagement.importedProperties["tomcat.version"]}")

21

« spring-boot-starter-actuator

- WebMvc and WebFlux are supported, as well as metrics and tracing infrastructure.

o Exclude io.micrometer:micrometer-core when metrics are not used for optimized footprint.

Maven

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
<exclusions>
<exclusion>
<groupId>io.micrometer</groupld>
<artifactId>micrometer-core</artifactId>
</exclusion>
</exclusions>
</dependency>

Gradle Groovy

implementation('org.springframework.boot:spring-boot-starter-actuator') {
exclude group: 'io.micrometer', module: 'micrometer-core’

}

Gradle Kotlin

implementation("org.springframework.boot:spring-boot-starter-actuator") {
exclude(group = "io.micrometer"”, module = "micrometer-core")

}

« spring-boot-starter-test

o MocKkito is not yet supported.

o See testing support documentation in Getting started with Native Build Tools.

3.5.2. Starters requiring no special build configuration

« spring-boot-starter-amgp
« spring-boot-starter-aop
o May require additional @AotProxyHint.
« spring-boot-starter-batch
o May require some additional hints, see batch-io sample.
o See related #459 issue about supporting class that implements multiple interfaces.

« spring-boot-starter-data-elasticsearch
« spring-boot-starter-data-jdbc
o spring-boot-starter-data-jpa

o If you want a lighter alternative, spring-boot-starter-data-jdbc which provides a smaller

22

https://github.com/spring-projects-experimental/spring-native/issues/1063
https://github.com/spring-projects-experimental/spring-native/blob/main/samples/batch-io/src/main/java/com/example/batch/BatchApplication.java
https://github.com/spring-projects-experimental/spring-native/blob/main/samples/batch-io/src/main/java/com/example/batch/BatchApplication.java
https://github.com/spring-projects-experimental/spring-native/issues/459

native footprint is a great alternative.
> You need to configure Hibernate build-time bytecode enhancement

o hibernate.bytecode.provider=none is automatically set
spring-boot-starter-data-mongodb

o Multi Document Transactions are currently not supported.
spring-boot-starter-data-neo4j
spring-boot-starter-data-r2dbc
spring-boot-starter-data-redis
spring-boot-starter-hateoas
spring-boot-starter-jdbc
spring-boot-starter-logging

o Logback is supported with some limitations

= Configuration with embedded logback.xml is not supported yet.

= Configuration with embedded logback-spring.xml, via myapp -Dlogging.config=logback
-config.xml or myapp --logging.config=logback-config.xml is supported but you need to
enable XML support and add org.codehaus.janino:janino dependency (see the logger
sample).

= Conditional processing in Loghack configuration with Janino library has limited support.
Only simple expressions of isDefined() and isNull() having string literal as argument
are supported.

> Log4j2 is not supported yet, see #115.
spring-boot-starter-mail
spring-boot-starter-oauth2-resource-server: WebMvc and WebFlux are supported.
spring-boot-starter-oauth2-client: WebMvc and WebFlux are supported.
spring-boot-starter-rsocket

spring-boot-starter-security: WebMvc and WebFlux form login, HTTP basic authentication,
OAuth 2.0 and LDAP are supported. RSocket security is also supported.

spring-boot-starter-thymeleaf

spring-boot-starter-validation
spring-boot-starter-webflux:
o Client and server are supported.
o For Web support, only Reactor Netty is supported for now.

> For WebSocket support, Tomcat, Jetty 9, Undertow and Reactor Netty are supported. Jetty 10
is not supported.

spring-boot-starter-websocket
com.wavefront:wavefront-spring-boot-starter

spring-boot-starter-quartz

o Supports the Quartz Job Scheduling engine.

o It adds types required by Quartz, and automatically registers any Job subclasses for

23

https://docs.jboss.org/hibernate/orm/5.4/topical/html_single/bytecode/BytecodeEnhancement.html#_build_time_enhancement
https://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#mongo.transactions
https://github.com/spring-projects-experimental/spring-native/issues/625
https://search.maven.org/artifact/org.codehaus.janino/janino
https://search.maven.org/artifact/org.codehaus.janino/janino
http://logback.qos.ch/manual/configuration.html#conditional
https://github.com/spring-projects-experimental/spring-native/issues/115
http://www.quartz-scheduler.org/

reflection.

3.6. Spring Cloud
0 Spring Native 0.12.2 has been tested against Spring Cloud 2021.0.3.
Group ID is org.springframework.cloud.

When using Spring Native, spring.cloud.refresh.enabled is set to false for

O compatibility and footprint reasons. spring.sleuth.async.enabled is also set to
false since this feature leads to too much proxies created for a reasonable
footprint.

« spring-cloud-starter-config

« spring-cloud-config-client

« spring-cloud-config-server

o spring-cloud-starter-netflix-eureka-client
o spring-cloud-starter-task

« spring-cloud-function-web
o FunctionalSpringApplication is not supported
o --enable-https flag is required for HTTPS support.

« spring-cloud-function-adapter-aws

« spring-cloud-starter-function-webflux
o --enable-https flag is required for HTTPS support.

« spring-cloud-starter-sleuth

« spring-cloud-sleuth-zipkin

0 Spring Cloud Bootstrap is no longer supported.

While building a project that contains Spring Cloud Config Client, it is necessary to
make sure that the configuration data source that it connects to (such as, Spring
Cloud Config Server, Consul, Zookeeper, Vault, etc.) is available. For example, if you

0 retrieve configuration data from Spring Cloud Config Server, make sure you have
its instance running and available at the port indicated in the Config Client setup.
This is necessary because the application context is being optimized at build time
and requires the target environment to be resolved.

3.7. Others

¢ Micrometer

* Google Cloud Platform libraries via com.google.cloud:native-image-support dependency, see this
repository for more information

¢ Lombok

24

https://micrometer.io/
https://github.com/GoogleCloudPlatform/native-image-support-java
https://github.com/GoogleCloudPlatform/native-image-support-java

Spring Kafka
» Spring Session (Redis and JDBC)

GRPC

H2 database

Mysql JDBC driver

PostgreSQL JDBC driver

« Wavefront

3.8. Limitations

* When using programmatic APIs like RestTemplate or WebClient, reflection-based serialization
like Jackson requires additional @TypeHint, this limitation could be removed later via #1152.

» Kotlin Coroutines are supported but currently require additional reflection entries due to how
Coroutines generates bytecode with an Object return type.

 Sealed class are not supported yet due to github.com/oracle/graal/issues/3870.

* Custom repository implementation fragments need to be annotated with @Component.

25

https://grpc.io/
https://github.com/spring-projects-experimental/spring-native/issues/1152
https://github.com/oracle/graal/issues/3870
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories.custom-implementations

Chapter 4. AOT generation

This section covers AOT (Ahead Of Time) generation plugins, including how to configure your build
for Maven or Gradle. Yow'll also learn more about AOT runtime modes and more details on the AOT

engine.

4.1. Build setup

4.1.1. Maven
The plugin should be declared in your pom.xml file:

Maven

<dependencies>
<!-- This is a mandatory dependency for your application -->
<groupId>org.springframework.experimental</groupIld>
<artifactId>spring-native</artifactId>
</dependencies>
<build>
<plugins>
<l-- ... -=>
<plugin>
<groupId>org.springframework.experimental</groupId>
<artifactId>spring-aot-maven-plugin</artifactId>
<version>0.12.2</version>
<executions>
<execution>
<id>generate</id>
<goals>
<goal>generate</goal>
</goals>
</execution>
<execution>
<id>test-generate</id>
<goals>
<goal>test-generate</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

Maven goals spring-aot:generate (prepare-package phase) and spring-aot:test-generate (process-
test-classes phase) are automatically invoked in the Maven lifecycle when using the mvn verify or
mvn package commands. The spring-aot:* goals are not meant to be called directly since they rely on
other parts of the lifecycle. Sources are generated in target/generated-runtime-sources/spring-aot/

26

and test sources in target/generated-runtime-test-sources/spring-aot/.

0 When spring-aot-maven-plugin is applied, mvn test -DspringAot=false runs tests in
regular mode while mvn test generates related sources and run tests in AOT mode.

Configuration can be performed if needed within the <configuration> element, for example to
remove SpEL support at build-time if your application does not use it in order to optimize the
footprint:

<confiquration>
<removeSpelSupport>true</removeSpelSupport>
</configuration>

See AOT configuration for a list of the configuration options available.

4.1.2. Gradle

You can configure the Gradle Spring AOT plugin by declaring first the plugin repositories in your
settings.gradle(.kts) file:

Gradle Groovy

pluginManagement {
repositories {
/] ...
maven { url 'https://repo.spring.io/milestone’ }

Gradle Kotlin

pluginManagement {
repositories {
/] ...
maven { url = uri("https://repo.spring.io/milestone") }

Gradle Groovy
plugins {

/] ...
id 'org.springframework.experimental.aot' version '0.12.2'

27

Gradle Kotlin

plugins {
/] ...
id("org.springframework.experimental.aot") version "0.12.2"

The plugin creates two SourceSets for testing and running the application: "aot" and "aotTest". The
resulting classes and resources are automatically added to the runtime classpath of the application
when running the aotTest, bootRun and bootJar tasks. You can also call directly generateAot and
generateTestAot tasks to perform only the generation.

Sources are generated in build/generated/runtimeSources/aotMain/,
build/generated/resources/aotMain/ and test sources in build/generated/runtimeSources/aotTest/,
build/generated/resources/aotTest/.

0 test task runs tests in regular mode while aotTest task generates related sources
and run tests in AOT mode.

Configuration can be performed if needed using the springAot DSL extension, for example to
remove SpEL support at build-time if your application does not use it in order to optimize the
footprint:

Gradle Groovy
springAot {

removeSpelSupport = true

}

Gradle Kotlin

springAot {
removeSpelSupport.set(true)

}

Here is a complete code sample showing all the default values and how to set them:

28

Gradle Groovy

import org.springframework.aot.gradle.dsl.AotMode

/] ...

springAot {
mode = AotMode.NATIVE
debugVerify = false
removeXmlSupport = true
removeSpelSupport = false
removeYamlSupport = false
removeJmxSupport = true
verify = true

Gradle Kotlin

import org.springframework.aot.gradle.dsl.AotMode

/] ...

springAot {
mode.set(AotMode.NATIVE)
debugVerify.set(false)
removeXmlSupport.set(true)
removeSpelSupport.set(false)
removeYamlSupport.set(false)
removeJmxSupport.set(true)
verify.set(true)

0 The non-idomatic property.set(::*) syntax in the Gradle Kotlin DSL is due to
gradle#9268, feel free to vote for this issue.

See AOT configuration for more details on the configuration options.

4.1.3. AOT configuration

The Spring AOT plugins allow you to express opinions about the source generation process. Here
are all the options available:

» mode switches how much configuration the plugin actually provides to the native image
compiler:

o native (default) generates AOT Spring factories, application context bootstrap, native
configuration, native-image.properties as well as substitutions.

> native-agent is designed to be used with the configuration generated by the tracing agent.
Generates AOT Spring factories, application context bootstrap, native-image.properties as

29

https://github.com/gradle/gradle/issues/9268

well as substitutions.

* removeXmlSupport is set to true by default to optimize the footprint, setting it to false
restores Spring XML support (XML converters, codecs and XML application context
support).

» removeSpelSupport is set to false by default, setting it to true removes Spring SpEL support to
optimize the footprint (should be used only on applications not requiring SpEL).

 removeYamlSupport is set to false by default, setting it to true removes Spring Boot Yaml support
to optimize the footprint.

* removeJmxSupport is set to true by default to optimize the footprint, setting it to false
restores Spring Boot JMX support.

» verify is set to true by default and perform some automated verification to ensure your
application is native compliant, setting it to false switches off the verifications.

» debugVerify is set to false by default and enables verification debug when set to true.
* mainClass allows to specify a main class, useful when multiple ones are present.

» applicationClass allows to specify an application class (typically annotated with
@SpringBootApplication), useful when multiple ones are present.

4.2. Debugging the source generation

The Spring AOT plugins spawns a new process to perform the source generation. To remote debug
this process, you can set a debug System property on the command line; then, the source generation
process launches with a listener accepting a remote debugger on port 8000 for Maven or 5005 for
Gradle.

Maven

$ # use the port 8000 by default

$ mvn spring-aot:generate -Dspring.aot.debug=true

$ # configure custom debug options

$ mvn spring-aot:generate -Dspring.aot.debug=
-agentlib:jdwp=transport=dt_socket,server=y, suspend=y,address=8000

$ mvn spring-aot:generate -Dspring.aot.debug="-Xdebug

-Xrunjdwp: transport=dt_socket, server=y, suspend=y,address=9000 -Xnoagent"

Gradle

$ # use the port 5005 by default

$./gradlew generateAot -Dspring.aot.debug=true

$ # configure a custom port

$./gradlew generateAot -Dspring.aot.debug=true -Dspring.aot.debug.port=9000

If the need to debug the plugins that are involved before the source generation, use the regular
related commands:

30

Maven

$ # use the port 8000 by default
$ mvnDebug spring-aot:generate

Gradle

$ # use the port 5005 by default
$./gradlew generateAot -Dorg.gradle.debug=true --no-daemon

4.3. AOT runtime modes

The generated sources are automatically used by the native image compilation, but are not used by
default when running your application with a JVM. This means that running the application or its
tests from the IDE or the command line will not involve those classes.

Any application using Spring AOT can use the springAot System property in order to use the AOT
classes with a regular JVM. This is mainly useful for debugging purposes in case of issues during
native image generation.

0 When AOT mode is enabled, Spring Boot Developer Tools are ignored as they are
not compatible with an AOT approach.

You can set such a property when running an executable Jar from the command line:

java -DspringAot=true -jar myapplication-0.0.17-SNAPSHOT.jar

4.3.1. IDEs

In IDEs, you can specify -DspringAot=true when running the application to enable the AOT mode. It
requires AOT generation has been invoked before manually via Maven or Gradle.

With Intelli] IDEA Gradle support, be aware running application in AOT mode is
broken in IDEA when delegated to Gradle, see IDEA-287067 related issue. As a

A workaround, you can go to "File —» Plugins ... » Build, Execution, Deployment -
Build tools — Gradle" and change "Build and run using" from "Gradle" to "Intelli]
IDEA".

4.3.2. Plugins

For running an application with gradle bootRun or mvn spring-boot:run, configure your build as
following:

31

https://youtrack.jetbrains.com/issue/IDEA-287067

Maven

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
== 00 ==2
<systemPropertyVariables>
<springAot>true</springAot>
</systemPropertyVariables>
</confiquration>
</plugin>

Gradle Groovy

bootRun {
systemProperty 'springAot', 'true'

Gradle Kotlin

tasks.getByName<BootRun>("bootRun") {
systemProperty("springAot", "true")
}

4.4. AOT engine

Spring AOT inspects an application at build-time and generates an optimized version of it. Based on
your @SpringBootApplication-annotated main class, the AOT engine generates a persistent view of
the beans that are going to be contributed at runtime in a way that bean instantiation is as
straightforward as possible. Additional post-processing of the factory is possible using callbacks.
For instance, these are used to generate the necessary reflection configuration that GraalVM needs
to initialize the context in a native image.

The engine goes through the following phases:

1. Prepare the underlying BeanFactory so that the relevant bean definitions are available. This
typically includes bean definitions model parsing (such as @Configuration-annotated classes) as
well as any additional post-processing of the bean factory.

2. Code generation based on the prepared BeanFactory. Each bean definition is handled one by one
and the necessary code to instantiate the bean and its necessary runtime semantics (such as
primary flag) is generated.

3. Additional processing of the bean factory used to optimize the runtime.

4.4.1. BeanFactory Preparation

As the BeanFactory is fully prepared at build-time, conditions are also evaluated. This has an

32

important difference compared to what a regular Spring Boot application does at runtime. For
instance, if you want to opt-in or opt-out for certain features, you need to configure the
environment used at build time to do so.

While certain properties like passwords or url can be changed once the application has been
prepared, properties that affect, typically, auto-configurations should be set at build-time.

0 Conditions on the runtime environment, such as enabling features based on your
chosen cloud platform, will no longer run at runtime.

A profile is a special sort of condition so these are also evaluated at build-time. It is recommended
to avoid the use of profiles as processing them at build-time does not allow you to enable or disable
them at runtime anyway. If you want to keep using them, they should be enabled at build-time, for
instance by adding the spring.profiles.active property in application.properties.

Low-level framework callbacks, such as BeanDefinitionRegistryPostProcessor are invoked at build-
time to create any additional bean definitions. To prevent such a callback to be invoked at runtime
again, it is not registered as bean, unless it does not have an infrastructure role.

4.4.2. Code Generation

Based on a bean name and a merged RootBeanDefinition, the engine identifies a suitable
BeanRegistrationWriter that is responsible to write the necessary code to instantiate the bean at
runtime.

It is not expected that projects have to define their own writers, but this could happen for corner-
cases. Writers are identified via implementations of BeanRegistrationWriterSupplier, registered in
META-INF/spring.factories. Suppliers are ordered with a first-win approach, and a default
implementation with lowest precedence that handles most use cases is provided.

Explicit care is required if a bean requires privileged access in more than one
0 package. This happens typically if the bean use protected access and extends from

another class in a different package that does the same. As a rule of thumb, make

sure that each custom bean of yours can be instantiated in a test in a usable form.

4.4.3. Additional Processing

Additional processing of the BeanFactory currently only scans for @EventlListener-annotated
methods, but future versions may provide additional implementations.

More core to GraalVM support is the generation of an optimized set of native configuration based
on the actual beans of the application, as covered by the next section.

33

https://github.com/spring-projects-experimental/spring-native/tree/main/spring-aot/src/main/java/org/springframework/aot/context/bootstrap/generator/bean/DefaultBeanRegistrationWriterSupplier.java
https://github.com/spring-projects-experimental/spring-native/tree/main/spring-aot/src/main/java/org/springframework/aot/context/bootstrap/generator/bean/DefaultBeanRegistrationWriterSupplier.java

Chapter 5. Native hints

GraalVM native image supports configuration via static files that are automatically discovered
when located in META-INF/native-image. Those files can be native-image.properties, reflect-
config.json, proxy-config.json, or resource-config.json.

Spring Native is generating such configuration files (that would sit alongside any user provided
ones) via the Spring AOT build plugin. However, there are situations where specifying additional
native configuration is required:

* When reflection-based serialization is used in a programmatic API like WebClient with Jackson.

» To use a feature or library not yet supported by Spring Native.

» To specify native configuration related to your own application.
Here is the full list of what can be specified in a hint:

» options as defined in here that will be passed when executing native-image

* jdkProxies which list interfaces for which JDK proxy types are needed and should be built into
the image.

* aotProxies which lists more complex proxy configurations where the proxy will extend a class.

* types which lists any reflective needs. It should use class references but string names for classes
are allowed if visibility (private classes) prevents a class reference. If these are types that are
accessed via JNI and should go into a jni-config.json file rather than reflect-config.json then
ensure the access bit JNI is set when defining access.

* serializables which lists any serialization needs via a list of @SerializationHint annotations.

* resources which lists patterns that match resources (including .class files) that should be
included in the image.

* initialization which lists classes/packages that should be explicitly initialized at either build-
time or run-time. There should not really be a trigger specified on hints included
initialization.

* imports can be useful if two hints share a number of @TypeHint/@JdkProxyHint/etc in common.

Hints can be provided statically using an annotated model, or programmatically by implementing
one of the callback interfaces.

5.1. Annotated Hints

Annotated hints can be put on any @Configuration-annotated class of your application, including
@SpringBootApplication:

* @TypeHint for simple reflection hints

* @NativeHint is a container for @TypeHint and offer more options.

Let us take an example of an application using WebClient to deserialize a Data class with a SuperHero
nested class using Jackson. Such process requires reflective access to the class and can be

34

https://www.graalvm.org/reference-manual/native-image/BuildConfiguration/#configuration-file-format
https://www.graalvm.org/reference-manual/native-image/Reflection/
https://www.graalvm.org/reference-manual/native-image/Reflection/
https://www.graalvm.org/reference-manual/native-image/DynamicProxy/
https://www.graalvm.org/reference-manual/native-image/Resources/
https://docs.spring.io/spring-native/docs/0.12.2/api/org/springframework/nativex/hint/package-summary.html
https://docs.spring.io/spring-native/docs/0.12.2/api/org/springframework/nativex/hint/TypeHint.html
https://docs.spring.io/spring-native/docs/0.12.2/api/org/springframework/nativex/hint/NativeHint.html

configured as shown in the following example.

(types = Data.class, typeNames = "com.example.webclient.Data$SuperHero")

public class SampleApplication {
/] ...
}

0 Either the (Class itself or its fully qualified name can be provided. For nested
classes, the § separator should be used.

Spring Native itself provides hints for a number of libraries so that they work out-of-the-box. Hints
classes should implement NativeConfiguration and be registered in META-INF/spring.factories. If
you need some concrete example of hints, you can browse ours.

5.2. Programmatic Hints

Spring Native provides a programmatic registry which exposes a high-level API for all hints.
Three callbacks are provided:

1. BeanFactoryNativeConfigurationProcessor provides the BeanFactory so that it can be introspected
for matching beans.

2. BeanNativeConfigurationProcessor provides a BeanInstanceDescriptor for each bean.

3. NativeConfiguration typically used for hints not related to beans or BeanFactory.

Those types are available via the org.springframework.experimental:spring-aot
A dependency which should not be in the runtime classpath, so you should typically
use <scope>provided</scope> with Maven or compileOnly configuration with Gradle.

BeanFactoryNativeConfigurationProcessor should be used when a particular aspect of matching
beans is requested. A typical example is automatically processing beans having a certain
annotation. BeanNativeConfigurationProcessor, however, is more suited when processing all beans,
regardless of their nature.

Let us take an example of an application that has @CustomClient-annotated beans. Such bean uses a
WebClient internally and the return types of public methods are DTO used for transfer. As we have
seen in the previous example, reflection access is required for those. The sample below registers
those hints automatically:

35

https://github.com/spring-projects-experimental/spring-native/tree/main/spring-native-configuration/src/main/java
https://docs.spring.io/spring-native/docs/0.12.2/api/org/springframework/aot/context/bootstrap/generator/infrastructure/nativex/NativeConfigurationRegistry.html
https://docs.spring.io/spring-native/docs/0.12.2/api/org/springframework/aot/context/bootstrap/generator/infrastructure/nativex/BeanFactoryNativeConfigurationProcessor.html
https://docs.spring.io/spring-native/docs/0.12.2/api/org/springframework/aot/context/bootstrap/generator/infrastructure/nativex/BeanNativeConfigurationProcessor.html
https://docs.spring.io/spring-native/docs/0.12.2/api/org/springframework/nativex/type/NativeConfiguration.html

class CustomClientNativeConfigurationProcessor implements
BeanFactoryNativeConfigurationProcessor {

void process(ConfigurablelListableBeanFactory beanFactory,
NativeConfigurationRegistry registry) {
String[] beanNames = beanFactory.getBeanNamesForAnnotation(CustomClient.class
)i
for (String beanName : beanNames) {
(lass<?> clientType = beanFactory.getMergedBeanDefinition(beanName)
.getResolvableType().toClass();
ReflectionUtils.doWithMethods(clientType, registerNativeConfiguration
(registry), publicDtoMethods());
}
}

private MethodCallback registerNativeConfiguration(NativeConfigurationRegistry
registry) {
return (method) -> {
registry.reflection().forType(method.getReturnType())
.withAccess(TypeAccess.DECLARED_CONSTRUCTORS, TypeAccess
.DECLARED_METHODS) ;

};
}

private MethodFilter publicDtoMethods() {
return (method) -> Modifier.isPublic(method.getModifiers())
&& method.getReturnType() != Void.class;

Two important bits are worth mentioning:
* The BeanFactory parameter is the prepared bean factory and could technically create instances.
To prevent that from happening we are retrieving the bean definition, not the bean itself.
» getMergedBeanDefinition is preferred as it contains the full resolution.

Custom implementations, such as the CustomClientNativeConfigurationProcessor above, should be
registered in META-INF/spring.factories.

5.3. Manual Hints

Annotations and programmatic hints are automatically invoked as part of the build process if the
AOT build plugin is configured. It is also possible to provide directly GraalVM native configuration
files if you prefer to do so, but annotation based configuration is usually easier to write and to
maintain thanks to auto-completion and compilation type checks. Programmatic hints are easily
testable as well.

36

Chapter 6. Samples

There are numerous samples in the samples subfolder of the root project.

Maven projects can be built and tested using a local native-image installation using the build.sh
script file present at the root of each sample. Maven or Gradle projects can be built using Buildpack
support using mvn spring-boot:build-image or gradle bootBuildImage commands which require
Docker to be installed.

Beware that native image compilation can take a long time and uses a lot of RAM.

The samples show the wide variety of tech that is working fine: Spring MVC with Tomcat, Spring
WebFlux with Netty, Thymeleaf, JPA, and others. The Petclinic samples brings multiple technologies
together in one application.

If you are starting to build your first Spring Boot application, we recommend you follow one of the
Getting started guides.

37

https://github.com/spring-projects-experimental/spring-native/tree/main/samples

Chapter 7. Native image options

GraalVM native-image options are documented here. Spring Native is enabling automatically some
of those, and some others especially useful are documented here as well.

They can be specified using the BP_NATIVE_IMAGE_BUILD_ARGUMENTS environment variable in Spring
Boot plugin if you are using Cloud Native Buildpacks or using the <buildArgs></buildArgs>
configuration element if you are using native-maven-plugin.

7.1. Options enabled by default

These options are enabled by default when using Spring Native, since they are mandatory to make
a Spring application work when compiled as GraalVM native images.

* --allow-incomplete-classpath allows image building with an incomplete class path and reports
type resolution errors at run time when they are accessed the first time, instead of during image
building.

* --report-unsupported-elements-at-runtime reports usage of unsupported methods and fields at
run time when they are accessed the first time, instead of as an error during image building.

* --no-fallback enforces native image only runtime and disable fallback on regular JVM.

* --install-exit-handlers allows to react to a shutdown request from Docker.

7.2. Useful options

» --verbose makes image building output more verbose.
» -H:+ReportExceptionStackTraces provides more detail should something go wrong.

e —-initialize-at-build-time initializes classes by default at build time without any class or
package being specified. This option is currently (hopefully, temporarily) required for Netty-
based applications but is not recommended for other applications, since it can trigger
compatibility issues, especially regarding logging and static fields. See this issue for more
details. You can use it with specific classes or package specified if needed.

e -H:+PrintAnalysisCallTree helps to find what classes, methods, and fields are used and why.

* -H:Log=registerResource:3 prints the resources included in the native image. You can find more
details in GraalVM reports documentation.

* -H:ReportAnalysisForbiddenType=com.example.Foo helps to find why the specified class is included
in the native image.

* --trace-class-initialization provides a comma-separated list of fully-qualified class names
that a class initialization is traced for.

* --trace-object-instantiation provides a comma-separated list of fully-qualified class names
that an object instantiation is traced for.

* --enable-https enables HTTPS support (common need when using Web(Client or RestTemplate for
example).

38

https://www.graalvm.org/reference-manual/native-image/Options/
https://docs.spring.io/spring-boot/docs/2.7.7/reference/html/container-images.html#container-images.buildpacks
https://github.com/spring-projects-experimental/spring-native/issues/8
https://github.com/oracle/graal/blob/master/substratevm/Reports.md

7.3. Unsupported options

* --initialize-at-build-time without class or package specified is not supported since Spring
Native for GraalVM is designed to work with runtime class initialization by default (a selected
set of classes are enabled at buildtime).

39

Chapter 8. Tracing agent

The GraalVM native image tracing agent allows to intercept reflection, resources or proxy usage on
the JVM in order to generate the related native configuration. Spring Native should generate most
of this native configuration automatically, but the tracing agent can be used to quickly identify the
missing entries.

When using the agent to compute configuration for native-image, there are a couple of approaches:

* Launch the app directly and exercise it.

* Run application tests to exercise the application.

The first option is interesting for identifying the missing native configuration when a library or a
pattern is not recognized by Spring Native.

The second option sounds more appealing for a repeatable setup but by default the generated
configuration will include anything required by the test infrastructure, which is unnecessary when
the application runs for real. To address this problem the agent supports an access-filter file that
will cause certain data to be excluded from the generated output.

8.1. Running the application with the agent to compute
configuration

It is possible to use the tracing agent to run the application in AOT mode in order to compute the
native configuration:

* Configure the AOT plugin to use the native-agent mode.
* Build the Spring Boot application with the AOT plugin enabled.

* Run the app with the tracing agent and generate the config temporarily in src/main/resources
with for example java -DspringAot=true -agentlib:native-image-agent=config-output
-dir=src/main/resources/META-INF/native-image -jar target/myapp-0.0.1-SNAPSHOT.jar.

* Check if the application is now working fine on native.

8.2. Testing with the agent to compute configuration

8.2.1. A basic access-filter file

Create the following access-filter.json file at the root of your project.

40

https://www.graalvm.org/reference-manual/native-image/Agent/

{ "rules": [
{"excludeClasses": "org.apache.maven.surefire.**"},
{"excludeClasses": "net.bytebuddy.**"},
{"excludeClasses": "org.apiguardian.**"},
{"excludeClasses": "org.junit.**"},
{"excludeClasses": "org.mockito.**"},

{"excludeClasses": "org.springframework.test.**"},
{"excludeClasses": "org.springframework.boot.test.**"},
{"excludeClasses": "com.example.demo.test.**"}

]
}

Most of these lines would apply to any Spring application, except for the last one which is
application specific and will need tweaking to match the package of a specific applications tests.

8.2.2. Using the access-filter file

The access-filter.json file is specified with the access-filter-file option as part of the agentlib
string:

-agentlib:native-image-agent=access-filter-file=access-filter.json,config-output
-dir=target/classes/META-INF/native-image

8.2.3. Using it with maven

Let’s look at how to pull the ideas here together and apply them to a project.

Since Spring takes an eager approach when building the application context, a very basic test that
starts the application context will exercise a lot of the Spring infrastructure that needs to produce
native-image configuration. This test would suffice for that and could be placed in src/test/java:

package com.example.demo.test;
import org.junit.jupiter.api.Test;

import org.springframework.boot.test.context.SpringBootTest;
public class ApplicationTests {

public void contextLoads() {
}

Make sure to exercise all the required code path to allow the agent to generate all
0 the required native configuration. For example, that could mean to request with
an http client all the web endpoints.

41

This following snippet would go into the maven pom:

<plugins>
QIS —>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-antrun-plugin</artifactId>
<executions>
<execution>
<id>copy-agent-config</id>
<phase>prepare-package</phase>
<goals>
<goal>run</goal>
</goals>
<configuration>
<target>
<mkdir dir="${project.build.directory}/native/agent-
output/main"/>
<copy todir="${project.build.directory}/native/agent-
output/main">
<fileset dir="${project.build.directory}/native/agent-
output/test" />
</copy>
</target>
</confiquration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.graalvm.buildtools</groupId>
<artifactId>native-maven-plugin</artifactId>
<extensions>true</extensions>
<configuration>
<agent>
<enabled>true</enabled>
<options name="test">
<option>access-filter-file=$/home/seb/workspace/spring-
native/spring-native-docs/access-filter.json</option>
</options>
</agent>
</configuration>
</plugin>
</plugins>

You need to activate the AOT mode when running the tracing agent on the
0 application as documented in AOT runtime modes, for tests this is not needed
since AOT mode is enabled automatically when AOT files are detected.

Also update the spring-aot build plugin to enable the native-agent mode in order to not generate *-

42

config.json files since the agent will take care of that:

<plugin>
<groupId>org.springframework.experimental</groupld>
<artifactId>spring-aot-maven-plugin</artifactId>
<configuration>
<mode>native-agent</mode>
</confiquration>
</plugin>

Build the native image with mvn -Pnative -DskipNativeTests package. If that’s not enough, you can
add additional native configuration using @NativeHint annotations.

43

Chapter 9. Executable JAR to native

It is possible to turn a Spring Boot executable JAR to a native executable, or a container image
containing a native executable. This can be useful for various use cases:

* Keep the regular JVM pipeline and turn the JVM Spring Boot application to native on the CI/CD
platform.

* Keep an architecture neutral deployment artifact, as native-image does not support cross-

compilation.
9 A mandatory pre-requisite is to use AOT generation Maven or Gradle upstream to
build the Spring Boot executable JAR.

9.1. With Buildpacks

Spring Boot applications usually use Buildpacks via the Maven (mvn spring-boot:build-image), or
Gradle (gradle bootBuildImage) integration. You can also use directly the pack CLI to turn a Spring
Boot executable JAR built with AOT generation into an optimized container image.

First, make sure that a Docker daemon is available, either locally or remotely. You also need to
Install pack.

Assuming a Spring Boot executable JAR built as my-app-0.0.1-SNAPSHOT. jar in the target directory,

run:

pack build --builder paketobuildpacks/builder:tiny \
--path target/my-app-0.0.1-SNAPSHOT.jar --env 'BP_NATIVE_IMAGE=true' my-app:0.0.1

0 This does not require a local native-image installation.

9.2. With native-image

Another option is to turn a Spring Boot executable JAR built with AOT generation into a native
executable using the GraalVM native-image compiler. For this to work, you need to Install native-
image.

Assuming a Spring Boot executable JAR built as my-app-0.0.1-SNAPSHOT. jar in the target directory:

44

https://docs.spring.io/spring-boot/docs/2.7.7/reference/html/appendix-executable-jar-format.html
https://github.com/oracle/graal/issues/407
https://github.com/oracle/graal/issues/407
https://buildpacks.io/
https://buildpacks.io//docs/tools/pack/
https://buildpacks.io//docs/tools/pack/
https://buildpacks.io//docs/tools/pack/
https://hub.docker.com/search?type=edition&offering=community
https://buildpacks.io//docs/app-developer-guide/build-a-windows-app/#using-remote-docker-hosts
https://buildpacks.io//docs/tools/pack/
https://buildpacks.io//docs/tools/pack/

#!/usr/bin/env bash

rm -rf target/native

mkdir -p target/native

cd target/native

jar -xvf ../my-app-0.0.1-SNAPSHOT.jar >/dev/null 2>&1

cp -R META-INF BOOT-INF/classes

native-image -H:Name=my-app -cp BOOT-INF/classes:‘find BOOT-INF/1ib | tr '\n" ":"'
mv my-app ../

0 This is documented as a simple bash script but can be adapted to whatever is
suitable to you environment.

45

Chapter 10. Troubleshooting

While trying to build native images, various things can go wrong, either at image build time or at
runtime when you try to launch the built image. Usually, the problem is a lack of native
configuration, so be sure to check Native hints first thing. Reading Native image reference
documentation could also probably help.

This section explores some of the errors that can be encountered and possible fixes or
workarounds.

Make sure to check GraalVM native image known issues related to Spring as well as Spring Native
open issues before creating a new one.

10.1. native-1image is failing

The image can fail for a number of reasons. We have described the most common causes and their
solutions here.

10.1.1. DataSize was unintentionally initialized at build time
If you see an error like:
Error: Classes that should be initialized at run time got initialized during image
building:
org.springframework.util.unit.DataSize was unintentionally initialized at build time.

To see why org.springframework.util.unit.DataSize got initialized use --trace-class
-initialization

You have probably tried to compile a Spring Boot application to native without the spring-native
dependency and Spring AOT plugin. See related Getting started with Native Build Tools and Getting
started with Buildpacks documentation.

10.1.2. WARNING: Could not register reflection metadata

Those warnings are expected for now, and should be removed in a future version, see #502 for
more details.

10.1.3. Out of memory error when building the native image

Out of memory error can materialize with error messages like Error: Image build request failed
with exit status 137.

native-image consumes a lot of RAM, we recommend a machine with at least 16G of RAM.

If you are using containers, on Mac, it is recommended to increase the memory allocated to Docker
to at least 8G (and potentially to add more CPUs as well) since native-image compiler is a heavy
process. See this Stackoverflow answer for more details.

46

https://www.graalvm.org/reference-manual/native-image/
https://www.graalvm.org/reference-manual/native-image/
https://github.com/oracle/graal/projects/2?card_filter_query=label%3Aspring
https://github.com/spring-projects-experimental/spring-native/issues
https://github.com/spring-projects-experimental/spring-native/issues
https://github.com/spring-projects-experimental/spring-native/issues/502#issuecomment-786933142
https://stackoverflow.com/questions/44533319/how-to-assign-more-memory-to-docker-container/44533437#44533437

On Windows, make sure to enable the Docker WSL 2 backend for better performances.

10.1.4. Builder lifecycle 'creator’ failed with status code 145

This is a generic error triggered by Docker and forwarded by Spring Boot Buildpacks support.
native-image command has likely failed, so check the error messages in the output. If you can’t find
anything, check if that’s not an out of memory error as described above.

10.2. The built image does not run

If your built image does not run, you can try a number of fixes. This section describes those
possible fixes.

10.2.1. Missing resource bundles
In some cases, when there is a problem, the error message tries to tell you exactly what to do, as

follows:

Caused by: java.util.MissingResourceException:
Resource bundle not found javax.servlet.http.lLocalStrings.
Register the resource bundle using the option
-H:IncludeResourceBundles=javax.servlet.http.LocalStrings.

You should add resource configuration using Native hints.

10.2.2. Application failed to start when running mvn spring-boot:run

Because of a temporary limitation of the AOT plugin, developers need to trigger the package phase if
they wish to run the application with the Spring Boot Maven plugin: please use mvn package spring-
boot:run.

10.2.3. Missing configuration

The Spring AOT plugin will do the best it can to catch everything but it doesn’t understand every bit
of code out there. In these situations you can write native configuration yourself, see Native hints,
Tracing agent and How to contribute.

10.2.4. AotProxyHint errors

When running native image an error indicating a AotProxyHint is missing may be produced, like
this:

47

https://docs.docker.com/docker-for-windows/wsl/

Caused by: java.lang.IllegalStateException: Class proxy missing at runtime, hint
required at build time:
@AotProxyHint(targetClass=com.example.batch.ItemReaderListener.class,
interfaces={org.springframework.aop.scope.ScopedObject.class,
java.io.Serializable.class,
org.springframework.aop.framework.AopInfrastructureBean.class})

This indicates a hint was missing to construct the proxy at build time. New classes cannot be
generated at runtime in native images. By including these hints on your application (alongside the
other hints), the original building of your application will generate the required proxy classes (and
their support classes) and they will be included in the native-image. At runtime when a class proxy
is required, these classes generated earlier will then be loaded.

The error message includes exactly the hint text that needs to be pasted into the source.

A class proxy is a proxy that extends a class. This is in contrast to a regular JdkProxyHint which only
specifies a set of interfaces to be implemented by a JDK Proxy class.

10.2.5. No access hint found for import selector: XXX

See [how-to-contribute-design-import-selectors].

10.3. Working with Multi-Modules projects

The Spring Boot and AOT plugins should only be applied to the module that contains the main
application class. We’ve shared a sample application showing how to set up multi-modules projects
with Gradle and Maven.

10.4. Working with snapshots

Snapshots are regularly published and obviously ahead of releases and milestones. If you wish to
use the snapshot versions you should use the following repository:

<repositories>
S
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
</repository>
</repositories>

48

https://github.com/spring-projects-experimental/spring-native/tree/main/samples/multi-modules/
https://github.com/spring-projects-experimental/spring-native/tree/main/samples/multi-modules/

Chapter 11. How to contribute

This section describes how to contribute native support for libraries or features used in Spring
applications. This can be done either by submitting submit pull requests to Spring Native for the
scope supported on start.spring.io, or by providing native support directly at library or application
level otherwise.

11.1. Designing native-friendly Spring libraries

Native support is mostly about making an application and its libraries possible to analyze at build-
time to configure what’s required or not at runtime. The goal is to do that in an optimal way to have
a minimal footprint.

Spring applications are dynamic, which means they typically use Java language features like
reflection in various places. Spring Native and its Spring AOT build plugins performs AOT
transformations, in the context of a specific application classpath and configuration in order to
generate the optimal native configuration. They also generate programmatic versions of
spring.factories or auto-configurations to reduce the amount of reflection required at runtime.

Each reflection entry (per constructor/method/field) leads to the creation of a proxy class by native-
image, so from a footprint point of view, these AOT transformations allow a smaller and more
optimal configuration to be generated.

The documentation below describes best practices to keep in mind when trying to make Spring
code more compatible with native-images.

11.1.1. Use proxyBeanMethods=false or method parameter injection in
@Confiquration classes

In native applications, @Bean annotated methods do not support cross @Bean invocations since they
require a CGLIB proxy created at runtime. This is similar to the behavior you get with the so called
lite mode or with @Configuration(proxyBeanMethods=false).

It is fine for applications to just use @Configuration without setting proxyBeanMethods=false and use
method parameters to inject bean dependencies, this is handled by Spring Native to not require a
CGLIB proxy.

Libraries are encouraged to use @Configuration(proxyBeanMethods=false) (most of Spring portfolio
currently uses this variant) since it is generally a good idea to avoid CGLIB proxies if not needed
and to provide native compatibility. This behavior could potentially become the default in a future
Spring Framework version.

11.1.2. Use NativeDetector for native conditional code paths

Spring related code should use NativeDetector.inNativeImage() (provided by spring-core
dependency in the org.springframework.core package) to detect native-specific code paths. Spring
Framework or Spring Data takes advantage of this utility method to disable CGLIB proxies since
they are not supported in native images for example.

49

https://github.com/spring-projects-experimental/spring-native/pulls
https://start.spring.io
https://docs.spring.io/spring-framework/docs/5.3.x/reference/html/core.html#beans-java-basic-concepts
https://docs.spring.io/spring-framework/docs/5.3.x/javadoc-api/org/springframework/context/annotation/Configuration.html#proxyBeanMethods--

Whenever possible, we recommend writing code that works in both contexts rather than always
falling back on the NativeDetector. This way, common code is easier to reason about and test/debug.

11.1.3. Do classpath checks in static block/fields and configure build-time
initialization
It is possible to configure code in your application/dependencies to run at image build time. This

will speed up the runtime performance of your image and reduce the footprint.

If the behaviour of some code is conditional on some class being present on the classpath, that
presence check can be performed when the image is built because the classpath cannot be changed
after that.

A presence check is normally done via an attempt to reflectively load a class. It is optimal if that
check can be performed as the native image is built, then no reflective configuration is necessary
for that presence check at runtime. To achieve this optimization:

» Perform the presence check in a static block/field in a type.

* Configure that type containing the check to be initialized at build-time using @NativeHint

Care must be taken to limit as much as possible the amount of other classes
0 transitively initialized at build-time, since it can introduce serious compatibility
issues.

11.1.4. Move reflection to build-time when possible

It is fine to use reflection in a native world but it is most optimal to do it in code executed at build-
time:

* In the static block/fields of a class initialized at build-time.

* In an AOT transformation run as a Spring AOT build plugin.

0 More guidelines will be provided here as AOT generation matures.

11.2. Contributing new hints

0 When contributing non-Spring related hints, you can use regular native image
configuration as documented in their reference documentation.

For most cases Spring Native understands how Spring applications operate - how configurations
refer to each other, how beans are going to be instantiated, etc. However, there are some subtleties
that it doesn’t understand and to plug those knowledge gaps it relies on hints, these tell the system
what extra configuration may be needed for the native image build when particular auto
configurations or libraries are active in an application.

A hint may indicate that a specific resource must be included or that reflection on a particular type
is required.

50

https://www.graalvm.org/reference-manual/native-image/

When adding support for a new area of Spring or new version of a library, the typical approach to
work out the missing hints is as follows:

1. Notice an error if your application when you try to build it or run it—a classnotfound,
methodnotfound, or similar error. If you are using a piece of Spring we don’t have a sample for,
this is likely to happen.

2. Try to determine which configuration classes give rise to the need for that reflective access to
occur. Usually, we do a few searches for references to the type that is missing, and those
searches guide us to the configuration.

3. If there is already a NativeConfiguration implementation for that configuration, augment it with
the extra type info. If there is not, create one, attach a @NativeHint to it to identify the triggering
configuration and the classes that need to be exposed, and add it to the META-
INF/services/org.springframework.nativex.extension.NativeConfiguration. You may also need to
set the accessibility in the annotation (in the @TypeHint). It is possible that more dependencies
may need to be added to the configuration project to allow the direct class references. That is
OK, so long as you ensure that they are provided scope.

See Native hints for basic hint documentation. These @NativeHint can be hosted in one of two
places:

* In the spring-native-configuration module, you can see that they are hosted on types that
implement the org.springframework.nativex.extension.NativeConfiguration interface.
Implementations of this interface should be listed in a src/main/resources/META-
INF/spring.factories file as comma separated values for the
org.springframework.nativex.type.NativeConfiguration key.

* On Spring configuration classes. That’s useful for project-specific hints or while crafting hints on
a sample before moving it to the spring-native-configuration module (shorter feedback loop).

An attribute trigger can be specified on the @NativeHint annotation.

o If the hint is on a NativeConfiguration class, and no trigger is specified then it is assumed this
configuration should always apply. This is useful for common configuration necessary for all
applications.

* If the hint is on something other than a NativeConfiguration class (e.g. on a Spring auto-
configuration class) then that type is considered to be the trigger, and if the Spring AOT plugin
determines that is 'active’, the hint applies.

The trigger attribute might be a piece of Spring infrastructure (autoconfiguration) or just a regular
class. If the Spring AOT plugin determines that Spring infrastructure may be active when the
application runs, or (for a regular class trigger) that the named class is on the classpath, it will
activate the associated hints, informing the native-image build process what is needed.

It is best practice to use the hints in a sample (existing or new one) in order to have automated
testing of it. Once you are happy with the hints you crafted, you can submit a pull request.

Using the Tracing agent can also be useful an approximation of the required native configuration
without having to run too many native builds.

51

https://github.com/spring-projects-experimental/spring-native/pulls

11.3. Dynamic native configuration

You can provide dynamic native configuration by:

* Providing a org.springframework.nativex.extension.NativeConfiguration implementation
(require a provided (Maven) or compileOnly (Gradle) dependency on
org.springframework.experimental:spring-aot dependency).

* Listing this implementation in a src/main/resources/META-INF/spring.factories file as comma
separated values for the org.springframework.nativex.type.NativeConfiguration key.

11.3.1. Implementing NativeConfiguration

Sometimes the necessary configuration is hard to statically declare and needs a more dynamic
approach. For example, the interfaces involved in a proxy hint might need something to be checked
beyond the simple presence of a class. In this case the method computeHints can be implemented
which allows computation of hints in a more dynamic way, which are then combined with those
statically declared via annotations.

The NativeConfiguration interface contains a couple of default methods that can be implemented
for more control. For example whether the hints on a NativeConfiguration should activate may be a
more subtle condition that simply whether a configuration is active. It is possible to implement the
isValid method in a NativeConfiguration implementation and perform a more detailed test,
returning false from this method will deactivate the associated hints.

11.3.2. Taking more control via processors

Within a Spring application there are going to be a number of active components (the main
application, configurations, controllers, etc). There may be much more sophisticated domain
specific analysis to be done for these components in order to compute the necessary configuration
for the native-image invocation. It is possible to implement a couple of interfaces to participate in
the process like BeanFactoryNativeConfigurationProcessor or BeanNativeConfigurationProcessor.

They should be registered via src/main/resources/META-INF/spring.factories as well.

11.4. Using container-based build environment

To allow easily reproducible builds of spring-native, dedicated interactive Docker images are
available for local development (tested on Linux and Mac) and are also used on CI:

* graalvm-ce: base image with Ubuntu bionic + GraalVM native, built daily by the CI and available
from Docker hub

* spring-native: base image with graalvm-ce + utilities required to build the project, available
from Docker hub

* spring-native-dev: local image built via run-dev-container.sh designed to share the same user
between the host and the container.

To use it:

52

https://raw.githubusercontent.com/spring-projects-experimental/spring-native/main/ci/images/graalvm-ce-image/Dockerfile
https://hub.docker.com/r/springci/graalvm-ce/tags
https://raw.githubusercontent.com/spring-projects-experimental/spring-native/main/ci/images/spring-native-image/Dockerfile
https://hub.docker.com/r/springci/spring-native/tags
https://raw.githubusercontent.com/spring-projects-experimental/spring-native/main/docker/Dockerfile.spring-native-dev

* Install Docker.
» Configure it to allow non-root user if you are on Linux.

* On Mac, ensure in the Docker preferences resources tab that you give it enough memory, ideally
10G or more, otherwise you may see out of memory issues when building images.

e Run run-dev-container.sh to run the Docker container with an interactive shell suitable to run
spring-native build scripts (see below for more documentation).

* The first time, it will download remotely hosted images built by CI.

* The current and the Maven home directories are shared between the host (where is typically
the IDE) and the container (where you can run builds).

11.4.1. run-dev-container.sh

run-dev-container.sh runs Spring Native for GraalVM dev container with an interactive shell.

run-dev-container.sh [options]

options:
-h, --help show brief help
-j, --java=VERSION specify Java version to use, can be 8 or 11, 11 by default

-g, --graalvm=VERSION specify GraalVM flavor to use, can be stable or dev, stable
by default

-w, --workdir=/foo specify the working directory, should be an absolute path,
current one by default

-p, --pull force pulling of remote container images

-r, --rebuild force container image rebuild

11.4.2. Usual dev workflow

Import the root project in your IDE.
* Eventually import the sample you are working on as a distinct project in your IDE.

* Run the root project build.sh (from the host or the container) if you have made modification to
the feature, substitutions or configuration modules.

* Make sure native-image is in the PATH (usually done by switching to a GraalVM installation with
SDKMAN).

* Run build.sh of the sample you are working on from the container.

To test the various samples You can also run the root build.sh then build-key-samples.sh (test only
key samples) or build-samples.sh (test all samples) from the container.

11.5. Scripts

The native-image command supports a number of flags for producing information about what is in
an image. However, what can sometimes be really useful is comparing two images. What is in one
that isn’t in the other? Sometimes sifting through the mass of output is tricky. The scripts folder

53

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://ci.spring.io/teams/spring-native/pipelines/spring-native?group=ci-images
https://sdkman.io/install

provides some tools to help with this.

11.5.1. Comparing images

First up is -H:+PrintAOTCompilation which prints logging information during compilation, looking a
bit like this:

Compiling FieldPosition[] java.text.DecimalFormat.getNegativeSuffixFieldPositions()
[Direct call from StringBuffer DecimalFormat.subformat(StringBuffer,
Format$FieldDelegate, boolean, boolean, int, int, int, int)]

Compiling FieldPosition[] java.text.DecimalFormat.getPositiveSuffixFieldPositions()
[Direct call from StringBuffer DecimalFormat.subformat(StringBuffer,
Format$FieldDelegate, boolean, boolean, int, int, int, int)]

Thousands and thousands of lines typically. Typically we turn on that option for native-image in the
pom.xml. The output is produced to stdout which our samples capture in target/native/output.txt.
With two builds done, we can use a script from this folder to produce a tree diff:

compilationDiff.sh java8build/target/native/output.txt
javallbuild/target/native/output.txt 8-11.html

The inputs are the two collected PrintAOTCompilation outputs to compare and the name for an
HTML file that should be generated (this will contain the navigable tree). Then simply open the
HTML file.

54

file:///Users/aclement/8-11.html

(#) 8-11.html

Compilation Summary difference (output from -

H:+PrintAOTCompilation)
Types in 11/target/native-image/output.txt but not in 8/target/native-image/output.txt = 1114

¥ com:568
» sun:506
¥ oracle.svm:62
» reflect:58
» core.jdk:4
» java:277
» sun:98
» jdk:94
¥ javax:61
¥ xml:39
» catalog:30
¥ parsers:7
DocumentBuilder
DocumentBuilderFactory
FactoryConfigurationError
FactoryFinder
FactoryFinder$l
SAXParser
SAXParserFactory
» datatype:1l
» transform.sax:1
» naming:13
» crypto:9
» org:16

One of the key entries to look at in the diff is under the path com/oracle/svm/reflect as that shows
the entries included due to reflection.

55

Chapter 12. Contact us

We would love to hear about your successes and failures (with minimal repro projects) through the
project issue tracker. Before raising an issue, please check the troubleshooting guide, which is full
of information on pitfalls, common problems, and how to deal with them (through fixes and
workarounds).

If you want to make a contribution here, see the how to contribute guide. Please be aware this
project is still incubating and, as such, some of these options and extension APIs are still evolving
and may change before it is finally considered done.

56

https://github.com/spring-projects-experimental/spring-native/issues

	Spring Native documentation
	Table of Contents
	Chapter 1. Overview
	1.1. Modules

	Chapter 2. Getting started
	2.1. Getting started with Buildpacks
	2.1.1. System Requirements
	2.1.2. Sample Project Setup
	Validate Spring Boot version
	Add the Spring Native dependency
	Add the Spring AOT plugin
	Enable native image support
	Freeze native image version
	Use an alternative native image toolkit
	Maven Repository

	2.1.3. Build the native application
	2.1.4. Run the native application

	2.2. Getting started with Native Build Tools
	2.2.1. System Requirements
	Linux and MacOS
	Windows

	2.2.2. Sample Project Setup
	Validate Spring Boot version
	Add the Spring Native dependency
	Add the Spring AOT plugin
	Add the native build tools plugin
	Maven Repository

	2.2.3. Build the native application
	2.2.4. Run the native application
	2.2.5. Test the native application

	Chapter 3. Support
	3.1. GraalVM
	3.2. Language
	3.3. Tooling
	3.4. Feature flags
	3.5. Spring Boot
	3.5.1. Starters requiring special build configuration
	3.5.2. Starters requiring no special build configuration

	3.6. Spring Cloud
	3.7. Others
	3.8. Limitations

	Chapter 4. AOT generation
	4.1. Build setup
	4.1.1. Maven
	4.1.2. Gradle
	4.1.3. AOT configuration

	4.2. Debugging the source generation
	4.3. AOT runtime modes
	4.3.1. IDEs
	4.3.2. Plugins

	4.4. AOT engine
	4.4.1. BeanFactory Preparation
	4.4.2. Code Generation
	4.4.3. Additional Processing

	Chapter 5. Native hints
	5.1. Annotated Hints
	5.2. Programmatic Hints
	5.3. Manual Hints

	Chapter 6. Samples
	Chapter 7. Native image options
	7.1. Options enabled by default
	7.2. Useful options
	7.3. Unsupported options

	Chapter 8. Tracing agent
	8.1. Running the application with the agent to compute configuration
	8.2. Testing with the agent to compute configuration
	8.2.1. A basic access-filter file
	8.2.2. Using the access-filter file
	8.2.3. Using it with maven

	Chapter 9. Executable JAR to native
	9.1. With Buildpacks
	9.2. With native-image

	Chapter 10. Troubleshooting
	10.1. native-image is failing
	10.1.1. DataSize was unintentionally initialized at build time
	10.1.2. WARNING: Could not register reflection metadata
	10.1.3. Out of memory error when building the native image
	10.1.4. Builder lifecycle 'creator' failed with status code 145

	10.2. The built image does not run
	10.2.1. Missing resource bundles
	10.2.2. Application failed to start when running mvn spring-boot:run
	10.2.3. Missing configuration
	10.2.4. AotProxyHint errors
	10.2.5. No access hint found for import selector: XXX

	10.3. Working with Multi-Modules projects
	10.4. Working with snapshots

	Chapter 11. How to contribute
	11.1. Designing native-friendly Spring libraries
	11.1.1. Use proxyBeanMethods=false or method parameter injection in @Configuration classes
	11.1.2. Use NativeDetector for native conditional code paths
	11.1.3. Do classpath checks in static block/fields and configure build-time initialization
	11.1.4. Move reflection to build-time when possible

	11.2. Contributing new hints
	11.3. Dynamic native configuration
	11.3.1. Implementing NativeConfiguration
	11.3.2. Taking more control via processors

	11.4. Using container-based build environment
	11.4.1. run-dev-container.sh
	11.4.2. Usual dev workflow

	11.5. Scripts
	11.5.1. Comparing images

	Chapter 12. Contact us

