
Frequently Asked Questions

Spring Dynamic Modules for OSGi Service Platforms *

1.2.1

Costin Leau (SpringSource)

Copyright © 2006-2009

* - OSGi is a trademark of the OSGi Alliance,project name is pending OSGi Alliance approval. Copies of this
document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print

or electronically.

1. Frequently Asked Questions .. 1
1.1. What happened to "Spring OSGi" project name? .. 1
1.2. Why aren't there any javadocs on *.internal.*? ... 1
1.3. What are Spring Dynamic Modules requirements? ... 1
1.4. Are there plans to support other dynamic module frameworks (such as the JSR 277 extensions
in Java 7)? .. 1
1.5. Will Spring DM work in restricted environments (such as small/mobile devices)? 1
1.6. What OSGi platforms are supported? ... 2
1.7. Where can I learn about OSGi? ... 2
1.8. I have problems building the sources. What can I do? ... 2
1.9. I get an exception about backport-util-concurrent library being required. Why is that? 2
1.10. How can I use logging in OSGi? ... 3
1.11. If you use the commons-logging API, why rely on SLF4J and not the commons-logging jar?
... 4
1.12. I have to use commons-logging, what can I do? .. 4
1.13. Why don't you use the OSGi logging service/[insert your favourite logging library in here]? . 4
1.14. I have to use [insert name] library/framework inside. What can I do? 5
1.15. I keep getting java.lang.NoClassDefFoundError: javax/transaction/... when trying to do data
access.. .. 5
1.16. When doing integration testing I receive java.lang.NoClassDefFoundError:
org.osgi.vendor.framework property not set... ... 5
1.17. The autoExport option doesn't work properly! .. 5
1.18. When using Spring DM integration testing I get an exception about serialVersionUID. What is
the problem? .. 6
1.19. I'm using Eclipse PDE and I started getting some weird exceptions/behaviour. What's the
matter? ... 6
1.20. I'm upgrading to Spring DM 1.1 but now I get some ClassNotFoundExceptions. What has
changed? .. 6
1.21. I've noticed that objects imported by Spring DM are not always equal to the raw target service.
Why is that? ... 7
1.22. My Spring DM collection doesn't change even though the number of OSGi service changes.
What's wrong? .. 7
1.23. I have upgraded to Spring DM 1.2 but my custom extender/web extender configuration doesn't
work anymore. What has changed? .. 7
1.24. I'm using Knopflerfish 2.3.x and I have a lot of visibility exception. How can I fix this? 7

Spring Dynamic Modules(1.2.1) ii

Chapter 1. Frequently Asked Questions

1.1. What happened to "Spring OSGi" project name?

The OSGi term is a trademark belonging to The OSGi Alliance. In order to comply with their guidelines, it was
decided that the project name be changed to "Spring Dynamic Modules for OSGi Service Platforms" (aka
Spring DM). The new name is still pending final approval by the OSGi Alliance. The name change was the
result of an amicable discussion between the OSGi Alliance and Interface21. Interface21 is a member of the
OSGi Alliance, and the OSGi Alliance remain very supportive of the project.

1.2. Why aren't there any javadocs on *.internal.*?

org.springframework.osgi.*.internal packages are meant (as the name implies) to be private and
non-public package. Thus, there is no documentation, support or compatibility guarantee for them. In fact, the
Spring Dynamic Modules bundle does not even export them to prevent accidental usage.

If you find classes under this package, which you really, really depend on, then consider raising an issue on
JIRA to have access opened up.

1.3. What are Spring Dynamic Modules requirements?

Spring Dynamic Modules requires at least Java 1.4, OSGi 4.0 and Spring 2.5. It might be possible to use Spring
Dynamic Modules on a lower execution environment (such CDC) but it is not guaranteed to work. Both Spring
and Spring Dynamic Modules rely on JavaBeans (java.beans package) which, unfortunately, is missing in most
restricted environments. See this PDF for information on CDC profiles. Note that, Spring 2.5 also requires Java
1.4.

Nevertheless, experiences and feedback on running Spring DM in restricted environments is welcomed - please
use our mailing list.

1.4. Are there plans to support other dynamic module
frameworks (such as the JSR 277 extensions in Java 7)?

There are no current plans to support other dynamic module frameworks.

1.5. Will Spring DM work in restricted environments (such as
small/mobile devices)?

See the requirements entry. The OSGi Service Platform is designed to run in very constrained environments
however, Spring Dynamic Modules depends on the Spring Framework v2.5 which in turn depends on JDK 1.4.
Thus Spring Dynamic Modules cannot run on more constrained environments (such as the OSGi Minimum
Execution Environment) unless Spring itself also runs in those environments. There are no current plans to
make such a version of Spring. However as existing OSGi developers adopt Spring Dynamic Modules to
simplify creation of OSGi applications and the user base expands, the target audience can cover domains much
broader than enterprise Java applications. In time this could create a large enough demand to justify the

Spring Dynamic Modules(1.2.1) 1

http://www.osgi.org/
http://opensource.atlassian.com/projects/spring/browse/OSGI
http://wiki.eclipse.org/index.php/Execution_Environments
http://java.sun.com/products/cdc/
http://java.sun.com/products/javabeans/

investment needed to allow Spring and Spring DM to run in restricted environments.

1.6. What OSGi platforms are supported?

Spring DM requires an OSGi 4.0 platform. The framework has been tested on Equinox, Felix and Knopflerfish
- in fact, the test suite is ran against all of them as part of our continuous integration process.

1.7. Where can I learn about OSGi?

The best place to start is The Osgi Alliance home and developer pages which provide the OSGi specifications,
introductions and many links and blogs on the topic. Please see the reference documentation appendix for more
information.

In addition, all OSGi implementation websites host detailed, step-by-step tutorials and introduction.

If you discover any additional materials useful for OSGi newbies, please let us know to update the list. Thank
you.

1.8. I have problems building the sources. What can I do?

Please see the file called readme-building.txt found in the source tree.

1.9. I get an exception about backport-util-concurrent library
being required. Why is that?

This exception is thrown only when running on Java 1.4 without backport-util-concurrent bundle installed.

OSGi platform is a concurrent environment. Beans from different application contexts can interact with each
other creating cycles between their owning contexts. This means that the backing contexts have to be able to
lookup and create/retrieve bean instances, all at the same time, on multiple threads. A traditional synchronised
collection allows proper locking and thread coordination and prevents race conditions, but can cause very easily
deadlocks.

Consider two contexts each containing two beans:

Frequently Asked Questions

Spring Dynamic Modules(1.2.1) 2

http://www.eclipse.org/equinox/
http://felix.apache.org
http://www.knopflerfish.org/
http://build.springframework.org:8085/bamboo/browse/OSGI
http://www.osgi.org/
http://www2.osgi.org/Main/HomePage

Inter-application context bean interaction

If both bean A and C are requested by two separate threads at the same time, this scenario will deadlock since
each thread waits for the other one to release the "bean registry" lock even just for reading. However, when
using a concurrent collection, reading doesn't require a lock so each thread can interact with the other context
without waiting for a lock. Java 1.5 and upwards provide concurrent collections under java.util package.
However, since Java 1.4 does not, backport-util-concurrent library is required.

1.10. How can I use logging in OSGi?

OSGi platforms do not change the way libraries work, it just enforces tighter classloading. Thus, you can, in
most of the cases, use the same logging strategy used in non-OSGi environments.

Spring (and Spring DM) use internally the commons-logging API which acts as an "ultra-thin bridge between
different logging implementations". In OSGi, just like in a non-OSGi environment, Spring and Spring DM
delegate all logging (including initialisation) to the actual commons-logging API implementation.

Out of the box, SLF4J library is provided, which shares the same purpose as commons-logging but without the
class loading discovery mechanism (that causes loading issues), using static wiring (see the SLF4J site for more
info). To use slf4j, make sure you use: slf4j-api-XXX.jar, jcl104-overslf4j-XXX.jar and
slf4j-log4j-XXX.jar (where XXX stands for the slf4j version). The last jar provides the static wiring between
slf4j and log4j - if another implementation is desired (such as jdk14), then a different jar is required (for the
jdk14 that would be slf4j-jdk14-XXX.jar) - see the official SLF4J site for more information. Please see this
question for more details on why commons-logging jar is not used.

Spring DM uses SLF4J on top of Log4J but this can be easily changed. As part of log4j initialisation, a
log4j.properties or log4j.xml configuration fille needs to be present in the bundle classpath. This means
that the configuration file has to be part of your bundle or one of its attached fragments. Besides SLF4J, for
another OSGi-aware solution, one can try Pax Logging.

To learn more about log4j setup process, follow this link.

Frequently Asked Questions

Spring Dynamic Modules(1.2.1) 3

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://dcl.mathcs.emory.edu/util/backport-util-concurrent/
http://commons.apache.org/logging/
http://www.slf4j.org/
http://logging.apache.org/log4j/
http://wiki.ops4j.org/dokuwiki/doku.php?id=pax:logging
http://logging.apache.org/log4j/1.2/manual.html

1.11. If you use the commons-logging API, why rely on SLF4J
and not the commons-logging jar?

The commons-logging project provides the commons-logging API (commons-logging-api-nn.jar) along with
an implementation (commons-logging-adapters-nn.jar) that provides a wrapper between the API and the
actual logging libraries used underneath (such as log4j, java.util.logging, etc). However, in order to determine
what implementation should be used, commons-logging library tries to do some classloading-based discovery
that is fragile and can fail unexpectedly. In an strict classloading environment such as OSGi, this mechanism
adds unnecessary complexity - that's why we decided to use SFL4J which is not just simpler and actively
maintained but is also OSGi-friendly out of the box.

For more information about commons-logging classloading problems, see these links: #1 #2

1.12. I have to use commons-logging, what can I do?

If you have to use commons-logging (for example the jar is required by certain bundles) then try using the most
recent version commons-logging version (1.1+) as it provides more options on the discovery process. Below
are some settings that can be used to make commons-logging work inside an OSGi environment:

• 1.0.x

Unfortunately, commons-logging 1.0.x uses the thread context class loader (TCCL) always for loading
loggers implementations. Inside an OSGi environment, the TCCL is undefined and cannot be relied upon.
Since managing the TCCL is almost impossible as most loggers are defined as static fields that need to
resolved on class loading, using a different LogFactory is advised. One can use the
org.apache.commons.logging.LogFactory system property to specify a different log factory however, the
commons-logging bundle should be able to load this class.

• 1.1.x

If using commons logging 1.1.x, one can turn off the tccl usage through use_tccl property, part of the
commons-logging.properties file.
http://commons.apache.org/logging/commons-logging-1.1/troubleshooting.html. Additionally, 1.1.x provides
several system properties (such as org.apache.commons.logging.Log.allowFlawedContext,
org.apache.commons.logging.Log.allowFlawedDiscovery and
org.apache.commons.logging.Log.allowFlawedHierarchy) that can change the behavious of the discovery
process. See the LogFactoryImpl javadoc for more details.

In our tests, commons logging 1.1.x can be used with reasonable success inside OSGi. We haven't been able to
find a generic configuration for commons logging 1.0.x that works and that does not rely on fragile hacks
dependent on the running environment.

1.13. Why don't you use the OSGi logging service/[insert your
favourite logging library in here]?

It is completely up to you what logging implementation you want Spring DM to use. To route log messages to
the OSGi logging service, just use a commons-logging API implementation that delegates to the OSGi logging
service, such as Pax Logging.

Frequently Asked Questions

Spring Dynamic Modules(1.2.1) 4

http://radio.weblogs.com/0122027/2003/08/15.html
http://www.qos.ch/logging/thinkAgain.jsp
http://commons.apache.org/logging/commons-logging-1.1/tech.html#A_Short_Theory_Guide_To_JCL
http://commons.apache.org/logging/commons-logging-1.1/tech.html#A_Short_Theory_Guide_To_JCL
http://commons.apache.org/logging/commons-logging-1.1/troubleshooting.html
http://commons.apache.org/logging/apidocs/org/apache/commons/logging/impl/LogFactoryImpl.html

1.14. I have to use [insert name] library/framework inside.
What can I do?

OSGi requires JARs to contain certain MANIFEST.MF entries which indicate what classes are required and shared
by each archive. This means that tradition jars cannot be used inside an OSGi environment. To solve the
problem one can:

• Use a repository of pre-wrapped libraries such as Orbit, Felix Commons or Knopflerfish repository. Spring
DM uses the SpringSource Enterprise Bundle Repository for its dependencies, which you might find useful.
Additionally, for artifacts that have not yet made it into SpringSource Repository, Spring DM provides a
small, temporary (Amazon S3) Maven repository (link | browser-friendly link) for its internal usage.

• Wrap the necessary jars with proper OSGi manifest. While this can be done by hand, we strongly
recommend Peter Kriens excellent bnd tool which can do this for you automatically. For Maven, see Felix
maven-bundle-plugin.

• Include the jar inside your OSGi bundle and include it in the bundle classpath through Bundle-ClassPath
directive. See the OSGi specification for more information.

1.15. I keep getting java.lang.NoClassDefFoundError:
javax/transaction/... when trying to do data access..

This problem is likely to be caused by bad class wiring. All 1.3+ JDKs include incomplete javax.transaction
and javax.transaction.xa packages for usage inside ORB environments. To address the problem, use a proper
JTA library which contains all the classes from the forementioned packages and exports them with a specific
version to prevent confusion.

Spring DM wraps JTA 1.1 library for OSGI environments which can be found at Spring snapshot repository.
One can deploy this library and specify version 1.1 for javax.transaction* packages inside Import-Package
header. By specifying the version, one can be sure that the proper package is used.

Note that JTA 1.1 is compatible with version 1.0.1.

1.16. When doing integration testing I receive
java.lang.NoClassDefFoundError: org.osgi.vendor.framework
property not set...

Remove the official OSGi jars (osgi.jar or osgi-r4-core.jar) from the classpath and use only the actual OSGi
platform (Equinox/Knopflerfish/Felix) jars. The former provides only the public classes without an actual
implementation and thus cannot be used during runtime, only during the compilation stage.

1.17. The autoExport option doesn't work properly!

autoExport flag, part of the service exporter, will discover and include for exporting only the visible
interfaces/classes implemented by the service object. Consider class GenericApplicationContext which
implements among others, interfaces BeanFactory (from org.springframework.beans.factory package) and

Frequently Asked Questions

Spring Dynamic Modules(1.2.1) 5

http://www.eclipse.org/orbit/
http://felix.apache.org/site/apache-felix-commons.html
http://www.knopflerfish.org/repo/index.html
http://www.springsource.com/repository/app/
http://s3.amazonaws.com/maven.springframework.org/osgi
http://s3browse.com/explore/maven.springframework.org/osgi/
http://www.aqute.biz/Code/Bnd
http://felix.apache.org/site/maven-bundle-plugin-bnd.html

ResourceLoader (org.springframework.core.io).

Class Hierarchy

Depending on your OSGi imports, the exporting bundle can see only one of the packages, none or both. Based
on these visibility settings, the exporter will only export the classes that are 'known' to the exporting bundle.
For example, if the exporting bundle sees org.springframework.core.io but not
org.springframework.beans.factory, the service will be exported as a ResourceLoader but not as a
BeanFactory. In fact, exporting the object as a BeanFactory will fail since the bundle doesn't see this interface
and thus doesn't know how to handle its contract.

1.18. When using Spring DM integration testing I get an
exception about serialVersionUID. What is the problem?

This problem occurs on Spring DM versions up to 1.0 - consider upgrading to 1.0.1 or better. If you are stuck
with 1.0 see below. When running an integration test, Spring DM will duplicate the test instance and execute it
inside OSGi. To avoid problems like this one, make sure you are using the same libraries (with the same
version) as Spring DM when running your test. This particular problem for example is caused by a JUnit 3.8.2
vs 3.8.x serialization compatibility. Make sure that you are using at least JUnit 3.8.2 for the execution of your
tests.

1.19. I'm using Eclipse PDE and I started getting some weird
exceptions/behaviour. What's the matter?

Eclipse PDE uses Equinox OSGi platform underneath which (like other OSGi platforms) caches the bundles
between re-runs. When the cache is not properly updated, one can encounter strange behaviour (such as the
new services/code being picked up) or errors ranging from class versioning to linkage. Consider doing a
complete clean build or, in case of Eclipse, creating a new workspace or deleting the bundle folder (depends on
each project settings but most users should find it at:
[workspace_dir]\.metadata\.plugins\org.eclipse.pde.core\OSGi\org.eclipse.osgi\bundles).

1.20. I'm upgrading to Spring DM 1.1 but now I get some
ClassNotFoundExceptions. What has changed?

Frequently Asked Questions

Spring Dynamic Modules(1.2.1) 6

In Spring DM 1.1 M2, the proxy infrastructure has been refined to avoid type leaks, the usage of dynamic
imports or exposure of class loader chain delegation. If you encounter class visibility problems during the
upgrade then it's likely you have missing imports which were previously resolved as a side effect of Spring DM
proxy weaving process.

1.21. I've noticed that objects imported by Spring DM are not
always equal to the raw target service. Why is that?

To deal with dynamics, Spring DM creates proxies around the imported services. The proxies are classes
(generated at runtime), different from the target but able to intercept the calls made to it. Since a proxy is
different then its target, comparing objects against it can yield different results then when the comparison is
done against the target. In most scenarios this is not a problem but there might be corner cases where this
contract matters. Since 1.1, Spring DM importer proxies implement InfrastructureProxy interface (from
Spring framework) which allow access to the raw target.

1.22. My Spring DM collection doesn't change even though the
number of OSGi service changes. What's wrong?

Make sure the Spring DM collections are injected into object of compatible types (for example list into
java.util.List or java.util.Collection). If the types are not compatible, the container will have to perform
type conversion, transforming the Spring DM managed collection into a 'normal' one, unaware of the OSGi
dynamics.

1.23. I have upgraded to Spring DM 1.2 but my custom
extender/web extender configuration doesn't work anymore.
What has changed?

Since Spring 2.5.6, the symbolic names of the artifacts have changed slightly. Spring DM aligned its symbolic
names as well with the new patter since 1.2.0 M2. Thus the prefix org.springframework.bundle.osgi has
been changed to org.springframework.osgi; for example Spring DM extender symbolic name was changed
from org.springframework.bundle.osgi.extender to org.springframework.osgi.extender (notice the
missing bundle word). To fix this problem, change the reference to the old symbolic name (usually inside the
fragments manifests or LDAP filters) to the new one.

1.24. I'm using Knopflerfish 2.3.x and I have a lot of visibility
exception. How can I fix this?

Since 2.3.0, Knopflerfish changed the way it does bootpath delegation which causes classes to be loaded from
inside and outside OSGi. Set the system property org.knopflerfish.framework.strictbootclassloading to
true before starting up the Knopflerfish platform to prevent this from happening. See Knopflerfish 2.3.x
release notes for more information.

Frequently Asked Questions

Spring Dynamic Modules(1.2.1) 7

http://static.springframework.org/spring/docs/2.5.x/reference/validation.html#beans-beans-conversion
http://www.knopflerfish.org/release_notes_2.3.html

	Spring Dynamic Modules for OSGi™ Service Platforms *
	Table of Contents
	Chapter 1. Frequently Asked Questions
	1.1. What happened to "Spring OSGi" project name?
	1.2. Why aren't there any javadocs on *.internal.*?
	1.3. What are Spring Dynamic Modules requirements?
	1.4. Are there plans to support other dynamic module frameworks (such as the JSR 277 extensions in Java 7)?
	1.5. Will Spring DM work in restricted environments (such as small/mobile devices)?
	1.6. What OSGi platforms are supported?
	1.7. Where can I learn about OSGi?
	1.8. I have problems building the sources. What can I do?
	1.9. I get an exception about backport-util-concurrent library being required. Why is that?
	1.10. How can I use logging in OSGi?
	1.11. If you use the commons-logging API, why rely on SLF4J and not the commons-logging jar?
	1.12. I have to use commons-logging, what can I do?
	1.13. Why don't you use the OSGi logging service/[insert your favourite logging library in here]?
	1.14. I have to use [insert name] library/framework inside. What can I do?
	1.15. I keep getting java.lang.NoClassDefFoundError: javax/transaction/... when trying to do data access..
	1.16. When doing integration testing I receive java.lang.NoClassDefFoundError: org.osgi.vendor.framework property not set...
	1.17. The autoExport option doesn't work properly!
	1.18. When using Spring DM integration testing I get an exception about serialVersionUID. What is the problem?
	1.19. I'm using Eclipse PDE and I started getting some weird exceptions/behaviour. What's the matter?
	1.20. I'm upgrading to Spring DM 1.1 but now I get some ClassNotFoundExceptions. What has changed?
	1.21. I've noticed that objects imported by Spring DM are not always equal to the raw target service. Why is that?
	1.22. My Spring DM collection doesn't change even though the number of OSGi service changes. What's wrong?
	1.23. I have upgraded to Spring DM 1.2 but my custom extender/web extender configuration doesn't work anymore. What has changed?
	1.24. I'm using Knopflerfish 2.3.x and I have a lot of visibility exception. How can I fix this?

