Spring Dynamic Modules Reference Guide

1.2.1

Adrian M Colyer (SpringSource), Hal Hildebrand (Oracle), Costin Leau (SpringSource), Andy
Piper (BEA)

Copyright © 2006-2009

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

(T Lo [FTox i o o PRSPPI 1
1. Why Spring DyNamiC MOUUIES?coiiiiiiiieiiiiiie et 2
2. REQUITEIMENES ..ottt e e e e e e e e et e e e e e e e e s s e ettt e e et eeaeesssasnteaeeeaaeeseannnreens 3
3. GELIING SEAMEAeeeeeiiiiiee ittt e et e e e et e e e st e e e e e ae e e e e enb e e e e e anbereeeaas 4

G T O T = B (o 4
3. L1 KNOWING SPIMNG etteieeiniieieeeiiteee e ettt e e et e et e e s e e e s s e e e e nbe e e e e snseeeeeannnneeas 4
3.1.2. KNOWING OSGI ...eieieiieiee e e e e ettt e e e e e ettt e e e e e e e sttt e e e e e e e e aannnneeeeeaaeeaens 4
3.1.3. Trying OUt The SAMPIESooeeeiiiieeee e a e 4

T N\ [= o I o = I o PSSR 5
3.2.1. COMMUNILY SUPPOIT ...viieieeieeeeiiiiiitee e e e e e e ettt e e e e e e e s s sntr e e e e e e e s s esntrrenereaaeaaans 5
3.2.2. Professional SUPPOITeeiiiiiiiieiiiieie et e e e 5

BTG N o] o V1T g To [D= = o] 1= o | 5

Y 7=] 1= SRS PRERRR 6

Ot 0 SRS 6
4.1.1. Java 2 SecUrity INtEGrationccuvviiiiiee e e e 6
4.1.2. Compendium SErViCES SUPPOITccuurieeiiieeeeaiiree ettt e e e e 6
4.1.3. Changed Spring DM Symbolic NamMESccccviiiiiie e 6
4.1.4. Usage of SpringSource Enterprise Bundle Repository (EBR)ccccoevviieeeennee. 6

B O PSSR 6
4.2.1. WED SUDPOIT ettt ettt ettt e e et e e e st e e e s annbe e e e enees 6
4.2.2. Classpath Resource ADSLIaCtioncoiiiiiiiiiiiiiee e a e 7
4.2.3. Pluggable Extender Configurationccccuiieiieeeeiiiiiiiieeeee e cciiireee e e 7
4.2.4. Improved ClasS LOAgING .. .cccocuvriieiiiiiieeeiiiee ettt 7

[1. RefErence DOCUMENTELIONoiiiiiiiieeeiiiie et et eee e e s e e e e st e e e snt e e e e enne e e e s snneeeeeannneeeas 8
5. Bundles and ApPpPliCation CONLEXESuvveiiiiiiieeiiiiee et e e e e 9

5.1. The Spring Dynamic Modules Extender bundleo 9

5.2. Application CONtEXE Crealioneeeeeeeeiiiiiiiiieieee e e s s ecttrere e e e e e e s s snrarrr e e e e e s s ssnraraeeeaeas 9
5.2.1. Mandatory Service DEPeNTENCIESccuveveiiiiriieiiiiee e 10
5.2.2. Application Context Service Publicationccccccooiiciiiieiiic e 11

5.3. BUNAIE LITECYCIE ...t 11

5.4. The ReSOUIrCE ADSIFTECHIONcciuveiiieiiiiie ettt e e e 12

5.5. Accessing the BUNAIECONTEXTcoueriieiiiiiee ettt 13

5.6. Application Context DESITUCLIONccoeeeiiiiiii i, 14

5.7. Stopping the EXtender BUNAIEcoeeeiiiiiiiiiiiee et e e 14

6. Packaging and Deploying Spring-based OSGi appliCationscocceeeeiiiirieeiiiiiee e 16

6.1. Bundle Format And Manifest HEadEr'Scovviiiieiiiiiiiie e 17

6.2. Extender Configuration OPLIONScccoiiirieeiiiiiiee it e s 19
6.2.1. Listening To Extender EVENEScooooeeiiiiiii e, 22

6.3. Required Spring Framework And Spring Dynamic ModulesBundles 23

6.4. Spring XML AULhOring SUPPOIcooeeeeeeeeeeeeee e, 23

6.5. Importing and EXPOrting PaCkagesoccuvieiiiie e 24

6.6. Considerations When Using External Librariesccccccvieveiiiiiiee e 24

6.7. DIiagnoSiNg ProblEMScoooiiiiiie e 25

7. THE SEIVICE REJISITY ...eeeiiiieieee ettt ettt e e et e e e et b e e e e b e e e e e nnbeeeeean 26

7.1. Exporting A Spring Bean ASAN OSGI SEIVICEccoooeeeveiieeii 27
7.1.1. Controlling The Set Of Advertised Service Interfaces For An Exported Service . 27
7.1.2. Controlling The Set Of Advertised Properties For An Exported Service 29
7.1.3. The depends-0n AHHDULEovvvierieeee e 29
7.1.4. The context-class-loader AMIDULEooceviiiiiiiie e 29
7.1.5. Theranking AMIDULEcooiiiiiiiiicce e 30
7.1.6. servi ce Element AttriDULESooeviiiiiiiii e 30

Spring Dynamic Modules(1.2.1)

Spring Dynamic Modules Reference Guide

7.1.7. Service Registration And Unregistration Lifecycleccooeeviiiiiieiiiiinccne, 31

7.2. Defining References TO OSGi SEIVICESccvvviiiiieee it e st e e e e eavvaeee s 33
7.2.1. Referencing An INdividual SEIVICEccvviiiiiiiiie i 33

7.2.2. Referencing A Collection Of ServiCesooovvveiiiiii 37

7.2.3. Dealing With The Dynamics Of OSGi Imported SErvicesccccvveiviieeeennnne 43

7.24. Listener ANd SEIVICE PrOXIESuveiiiiieeiiiiiiiiiee e e e e e e 44

7.2.5. Accessing The Caller Bundl 00Nt @XE ..cciivcerrierereeeesiiiiieiereeee e s s seirveeeeeaee e e 45

7.3. Exporter/Importer Listener BeSt PractiCescuvvviiiiiiiiiiiiiiie e 45
7.3.1. Listener And Cyclic DEPENENCIEScooiiiiiiiiieiie et 46

7.4. Service Importer Global DefaUltscooiiiiiiiiiiie e 47

7.5. Relationship Between The Service Exporter And Service Importercoeeeeeeeeenn. 48

8. WOrking With BUNGIESooiiiiiiieeeie ettt sbe e 50
9. WD SUPPOIT .. ceeieeeeeiee ettt e ettt e e e e e e ettt e e e e e e e s e s nteaeeeeaeeeeaansnnneeeaaaeeaans 52
9.1. Supported WED CONLAINETSc..vvviiiiieeeiiciiiiiee e e e e e e e e e s r e e e e e s e e nnrrraeeeeeas 52

0.2. WED SUPPOIT USBOE ..ottt ettt et e e e e e e 52

9.3. WAR CIaSSPath IN OSGI ...ccceiiiiieeiiiiiie ettt e e neee e e s 53
0.3.1. SLAlIC RESOUITESvvvvieiiieeeeiieiiieeet e e e e e s s ettt e e e e e e e s s s ssnbaaereaaeessannssraeeneaaeesaans 53

0.3.2. SENVIELS ... e e e e nees 53

0.3.3. JAVA SEIVEN PAJES ...cooi i 54

9.4. Configuring The Weh EXIENTESvvviiiiiieeeeee e 55
9.4.1. Changing The War DEPIOYENueeiiieeiiiiiiiiieiee e e e e 56

9.5. Customizing The Standard DEPIOYESSvviieiiiiiie e 56

9.6. OSGi-ready Libraries And Web Developmentcccvviieiiie e 57
9.6.1. Deploying Web Containers ASOSGI BUNAIESccvvvviiiiiiiiiiiiiiee e 57

9.6.2. COMMON LIDIAITESeeeiiiieeee ittt e e e e e e e e e e 58

9.7. SPriNg-MV C INLEQIaLiONccooiiiiiieieee e e ettt e e e e e e s e e e e s s et rneeeaeas 58

10. COMPENDIUM SEIVICESeeeiiiiiiie ettt et e e e e e e s s e e e s ann e e e e annn e e e e e nnes 60
10.1. Configuration AGMINooiiiiiie e e e e e e e e e e e s s e e b raeeeaaas 60
10.1.1. Exposing Configuration Admin ENtrieS ASProperti €scccccceveeviiieeeesnnnnnn. 60

10.1.2. Managed PrOPEriESooccuiiiiieeee ettt e e e e e e nenes 62

10.1.3. Managed SerViCe FaCLONESc.uueiiiiiiiie et 64

10.1.4. Direct Access To Configuration Dataccccceeeeieiinnnunnininnnnnnnnnnnnnnnnnnnnnnnnn. 67

11. Testing OSGi based APPIICALIONSccoiiiiiiiiiii e e e e e e e e e e aaneees 68
11,1, OSGI IMOCKS ..eeutiieiitiieeiiet ettt etttk ettt et e et e s e e et e e e enb e e e snneeeaneeas 68
12.2. INtEGration TESHING ..vveeeeeeiiieiiieiee e e e e s e e e e e e e et e e e e e e e s s eennrbrneeeeeas 69
11.2.1. Creating A Simple OSGi Integration TESEccooviriieiriiiieeiieiee e 69

11.2.2. Installing Test Prer@qUISITES ... e 70

11.2.3. Advanced Testing Framework TOPICSoovereeerriireeeiiiiiee e e e 71

11.2.4. Creating An OSGi Application CONEXLeeeiiiieiiiiiiieee e 74

11.2.5. Specifying The OSGi Platform TOUSEcovveeiiiiiiiieieeeee e 74

11.2.6. Waiting For The Test DEPENdENCIEScccuvveeiiiiirieeiiiiiee e 74

11.2.7. Testing Framework Performanceccceeevveeeiiiiiiiieieee e 74

[11. ORI RESOUICESeeeiiieeeiiiiitiieiete e e e e ssstt ettt e aeeesssasstaaeeeeeaeessasstsbaeeeeaaeesaaassstsaeeeaeessannssnnnnnaaaeennnns 76
12, USEFUI LINKS .eeeieeiiiie ettt ettt e st e e e e e e et e e e e ansne e e e annneeeeeennes 77
[V APPENTIXES ..ttt e et e e e ekt e e ekt e e e et e e n b et e e e bt e e e a b e e e e nnn s 78
N (= 1= 0] 79
A.L Annotation-Based INJECLIONccoiiiiiiiiiiie et a e e 79
A.1.1. Enabling/Disabling ANNOtation ProCESSINGueveeiiirreeeiiiieieeeiieeeessiieeeens 79

SIS o U YA L 01 =0 = 1o L SRR 81
C. Eclipse Plug-in Development iNtEgrationooceeeeeriiirieeiiiieee e e e e e sineee e 82
D. Spring Dynamic Modules Maven ArChELYPEuuuuiuinnnnnnnnnnnnasnnnnnnnsnnnnnnnsnnnnnnes 86
D.1. Generated Project FeatureS At-A-GlanCeccueviiiiiiiieiiiee e 86

Spring Dynamic Modules(1.2.1)

Spring Dynamic Modules Reference Guide

E. USEfUI OSGI LIPS ..uvveeiitie ettt ettt ettt et e e nib e e nab e e s bt e e anbe e e enneeeenes 88
E. 1. OSGI FragMENLSuvveiieieeiiiiiieiee e ettt e e e e s et e e e e e e s s et e e e e e e e s s annntbrneeeaeas 88

[0= o |1 = o TP PP S PPPRT 90
F.1. Accessto Service References for COllECHIONSoooieeiiiiiiiiie e 90

F.2. Start LEVEl INEEGIELiONcoeiiiiiieeiiiiiee ettt 90

F.3. Web Library INtegrationeeeiiiiooiiiiiiie e e e ee e 90

F.4. ORM/PErSISIENCE SUPPOITveviiiieeeeeee s e ettt e e e e e e s e et e e e e e e e s e et e e e e e e e s s e nnnrbraeeeaens 90

T O S = 1o = o TSP 90

G. Spring DM OSGi REPOSITOIYcuviieiiiieeeiiiiiitiie e ee e e s e eetttae e e e e e e s s s st aeeeeeeeesssntrraeeeaaaeeaans 91
G.1. Spring DM Temporary OSGi REPOSITOIYccoiuiiiieiiiiiieiiiieie et 91
G.1.1. Repository CONVENLIONSccoeeeeeeeiee e 91

G.1.2. Browsing The RepOSItOry CONENLceeeeeiiirieeiiiiiee e et 91

G.1.3. Using The Repository With Mavencceeveiiiiieee e 91

G.1.4. Using The Repository With ANIVY ... 92

H. Spring DynamiC MOdUIES SCREMAL.........ccoiiiiiieiiiie et 93
I, ACKNOWIEAGMENLSeeiiiiiiiiiiiiieii e e e e e e e e e e r e e e e e e s s et b baaeeeeeeeesannneeees 104

Spring Dynamic Modules(1.2.1)

Preface

Application development has seen significant changes in the last years, moving towards a simpler, more agile,
POJO-based programming model in order to keep a fast pace. Dependency injection and Aspect Oriented
Programming, which were once bleeding edge ideas, are used on a daily basis by most developers to manage
and simplify the complexity of their applications.

However, in terms of deployment, things have remained mainly unchanged. Even though code bases are
divided into modules, whether logical, conceptual or physical, at runtime they are seen as one monolithic
application in which, making a change (be it large or small), requires a restart. OSGi aims to change this by
allowing applications to be divided into modules that can have different life cycles, dependencies and still exist
asawhole.

Spring Dynamic Modules focuses on integrating Spring Framework powerful, non-invasive programming
model and concepts with the dynamics and modularity of OSGi platform. It allows transparent exporting and
importing of OSGi services, life cycle management and control.

While every effort has been made to ensure that this documentation is comprehensive and there are no errors,
nevertheless some topics might require more explanation and some typos might have crept in. If you do spot
any mistakes or even more serious errors and you can spare a few cycles during lunch, please do bring the error
to the attention of the Spring Dynamic Modules team by raising an issue. Thank you.

Spring Dynamic Modules(1.2.1) Y

http://www.osgi.org
http://opensource.atlassian.com/projects/spring/browse/OSGI

Part |. Introduction

This document is the reference guide for Spring Dynamic Modules. It defines Spring Dynamic Modules
concepts and semantics, the syntax for the OSGi Service Platform based namespaces, the Dynamic Modules
extender bundle and the OSGi manifest header entries defined by Dynamic Modules. For atutorial introduction
to building OSGi-based applications with Spring Dynamic Modules see our online page.

OSGi developers looking for an introduction to Spring should review the introductory articles on the
springframework.org site.

Note: OSGi is a trademark of the OSGi Alliance. Project name is pending final approval from the Alliance.

Note: Please see the known issues page for Spring Dynamic Modules release.

Spring Dynamic Modules(1.2.1) 1

http://www.osgi.org
http://www.springframework.org/osgi
http://www.springframework.org/documentation
./issues.html

Chapter 1. Why Spring Dynamic Modules?

The Spring Framework is the leading full-stack Java/JEE application framework. It provides a lightweight
container and a non-invasive programming model enabled by the use of dependency injection, AOP, and
portable service abstractions. The OSGi Service Platform offers a dynamic application execution environment
in which modules (bundles) can be installed, updated, or removed on the fly. It aso has excellent support for
modularity and versioning.

Spring Dynamic Modules makes it easy to write Spring applications that can be deployed in an OSGi execution
environment, and that can take advantage of the services offered by the OSGi framework. Spring's OSGi
support also makes development of OSGi applications simpler and more productive by building on the
ease-of-use and power of the Spring Framework. For enterprise applications, the combination of Spring
Dynamic Modules and the OSGi platform provides:

* Better separation of application logic into modules, with runtime enforcement of module boundaries
« The ability to deploy multiple versions of a module (or library) concurrently

« The ability to dynamically discover and use services provided by other modulesin the system

« The ability to dynamically install, update and uninstall modulesin arunning system

« Use of the Spring Framework to instantiate, configure, assemble, and decorate components within and across
modul es.

* A simple and familiar programming model for enterprise developers to exploit the features of the OSGi
platform.

We believe that the combination of OSGi and Spring offers a comprehensive model for building enterprise
applications.

Spring Dynamic Modules(1.2.1) 2

Chapter 2. Requirements

Spring Dynamic Modules 1.0 supports JDK level 1.4 and above and OSGi R4 and above. Bundles deployed for
use with Spring Dynamic Modules should specify "Bundl e- Mani f est Versi on: 2" in their manifest (OSGi
R4). We test against Equinox 3.2.x, Felix 1.0.3+, and Knopflerfish 2.1.x as part of our continuous integration
process.

Spring Dynamic Modules(1.2.1) 3

http://www2.osgi.org/Specifications/HomePage?section=2
http://www.eclipse.org/equinox/
http://felix.apache.org/
http://www.knopflerfish.org/

Chapter 3. Getting Started

Learning a new framework is not always straight forward. In this section, we (the Spring DM team) tried to
provide, what we think is, an easy to follow guide for starting with Spring Dynamic Modules. Of course, feel
free to create your own learning 'path’ as you see fit and, if possible, please report back any improvements to
the documentation that can help others.

3.1. First Steps

As explained in Chapter 1, Why Spring Dynamic Modules?, Spring DM provides integration between Spring
framework and OSGi. Thus, it is important to become acquainted with both of these frameworks (libraries or
environments depending on how you want to name them). Throughout the Spring DM documentation, each
section provides links to resources relevant however, it is best to become familiar with these topics beforehand.

3.1.1. Knowing Spring

Spring DM uses heavily Spring framework's core functionalty, such as the |0C container, resource abstract or
AOP infrastructure. While it is not important to know the Spring APIs, understanding the concepts behind them
is. At aminimum, the idea behind IoC should be familiar. These being said, the more knowledge one has about
the Spring, the faster she will pick Spring Dynamic Modules. Besides the very comprehensive (and sometimes
disarming) documentation that explains in detail the Spring Framework, there are alot of articles, blog entries
and books on the matter - take alook at the Spring framework home page for more information. In genera, this
should be the starting point for OSGi (or Eclipse plugin) devel opers wanting to try Spring DM.

3.1.2. Knowing OSGi

Java developers, new to OSGi, can start by reading the OSGi Alliance introduction, the OSGi specifications or
one of the articles/blogs available on the internet (such as the SpringSource blogs). Additionally, the Spring
DM home page hosts various links to useful materials.

3.1.3. Trying Out The Samples

Once one is familiar with the concepts behind Spring and OSGi, she can start reading the Spring DM reference
documentation (this document) and take the Spring DM samples for a spin. The samples are available either in
the .zip distribution or from the Spring DM repository. The samples are a convenient way to get started quickly
with Spring DM as they show various features of Spring DM and help one get pass the initia struggles with
OSGi. However, they are not meant as the definitive guide in using OSGi rather, they aim to be a launching pad
for "newbies" trying out OSGi in Spring.

The current distribution contains:

e Simple Service Sample

A simple example that illustrates OSGi service publication and consumption through Spring DM. Thisis a
good starting point for users learning the basics.

¢ Weather Sample

A demo that shows more advanced features of Spring DM and OSGi. The application creates a very simple

Spring Dynamic Modules(1.2.1) 4

http://static.springframework.org/spring/docs/2.5.x/reference/spring-core.html
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html
http://static.springframework.org/spring/docs/2.5.x/reference/resources.html
http://static.springframework.org/spring/docs/2.5.x/reference/aop.html
http://www.springsource.org/documentation
http://www.osgi.org/About/HowOSGi
http://www.osgi.org/Specifications/HomePage
http://blog.springsource.com/category/osgi/
http://www.springframework.org/osgi

Getting Started

weather information services presenting some best practices in designing an application to take advantage of
the modularity offered by OSGi.

* Simple Web App Sample

Asthe name implies, thisis a simple web application, containing Servlets, JSPs and JSP tags, that runsinside
OSGi through Spring DM.

* Web Console Sample

A more complicated sample that demos a Spring MV C annotation based, web application that runs inside
OSGi through Spring DM, featuring class path scanning and various Spring taglib. Additionally, the web
application interacts with the OSGi environment through the web UI.

Each project contains instructions regarding its content and startup procedure. Users are encouraged to
experiment with the samples to get a better understanding of the technol ogies used.

3.2. Need Help?

If you encounter issues or you are just looking for an advice, feel free to use one of the links below:

3.2.1. Community Support

The Spring DM forum is a message board for al Spring DM users to share information and help each other.
Note that registration is needed only for posting.

3.2.2. Professional Support

Professional, from-the-source support, with guaranteed response time, is available from SpringSource, the
company behind Spring Dynamic Modules and Spring.

3.3. Following Development

For information on the Spring DM source code repository, nightly builds and snapshot artifacts please see the
Spring DM home page.

You can help make Spring DM best serve the needs of the Spring community by interacting with developers
through the Spring Community forums.

If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring DM issue
tracker.

To stay up to date with the latest news and announcements in the Spring eco system, subscribe to the Spring
Community Portal.

Spring Dynamic Modules(1.2.1) 5

http://forum.springframework.org/forumdisplay.php?f=43
http://www.springsource.com
http://www.springsource.org/osgi
http://forum.springsource.org
http://jira.springframework.org/
http://www.springframework.org/

Chapter 4. What is new?

While a relatively young project, each version of Spring Dynamic Modules (even minor ones) offers new
functionality. This chapter is a guide to the new and improved feature and intended as a high-level, short
summary. Please follow the appropriate links for more in-depth information.

4.1.1.2.x

4.1.1. Java 2 Security Integration

Since 1.2.x, Spring Dynamic Modules is aware of secured environments by making use of dedicated privileged
blocks for executing security sensitive code. Thus, Spring DM can run as a trusted library without requiring
escalated permissions for its managed bundles. See Appendix B, Security Integration for more information.

4.1.2. Compendium Services Support

1.2.x provides integration with the Configuration Admin, part of the OSGi compendium services. Chapter 10,
Compendium Services provides more details on the topic.

4.1.3. Changed Spring DM Symbolic Names

Since 1.2.0 M2, the Spring DM bundles symbolic names have been aligned with Spring's 2.5.6+. Thus the
prefix or g. spri ngf ramewor k. bundl e. osgi has been changed to org. spri ngf ramewor k. osgi ; for example
Spring DM extender symbolic name was changed from or g. spri ngf ramewor k. bundl e. osgi . ext ender tO
org. spri ngframewor k. osgi . ext ender (notice the missing bundl e word). Additionally, the documentation has
been updated to reflect Spring 2.5.6+ symbolic names.

4.1.4. Usage of SpringSource Enterprise Bundle Repository (EBR)

To minimize the number of repositories used and the confusion caused by OSGified vs non-OSGified artifacts
especially to users using Spring dm Server, after 1.2.0 RC1, Spring Dynamic Modules aligned as many of its
dependencies as possible with SpringSource EBR. In practice this means that Spring framework artifacts, such
asspring-aop. j ar can be now found asor g. spri ngf r amewor k. aop. j ar ; We apologize for any inconvenience
created to users relying on these naming conventions.

4.2.1.1.x

4.2.1. Web Support

The biggest feature in Spring Dynamic Modules 1.1.x is the transparent support for web applications on OSGi
platforms. By integrating directly with web containers (such as Apache Tomcat and Jetty), Spring DM allows
WARSs using Servlet, JSP and taglib technologies to be used with little or no effort at all. Please see Chapter 9,
Web Support for details.

4.2.1.1. Spring-MVC Integration

Spring Dynamic Modules(1.2.1) 6

http://java.sun.com/javase/technologies/security/#overview
http://java.sun.com/j2se/1.4.2/docs/guide/security/doprivileged.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/doprivileged.html
http://www.osgi.org/javadoc/r4v401/org/osgi/service/cm/package-summary.html
http://www.springsource.com/repository

What is new?

Additionaly, with 1.1.x it is possible to run Spring-MVC applications inside OSGi environments. See
Section 9.7, “Spring-MV C Integration” for more information.

4.2.2. Classpath Resource Abstraction

1.1.x adds support for cl asspat h: and cl asspat h*: prefixes to the OSGi Resour ce abstraction. This allows
the discovery of classpath resources (such as Spring's component scanning) to work out-of-the-box across
multiple bundles on the supported OSGi platforms. See Section 5.4, “The Resource Abstraction” for more
information.

4.2.3. Pluggable Extender Configuration

1.1.x makes it easy to change the default configuration for the various extenders used by Spring DM. By using
fragments, users can customize the way application contexts are started, the web container used for web
deployment or the thread-pool for running Spring applications. Additionally, it is possible to receive events
regarding the OSGi Spring application contexts lifecycle. Section 5.1, “The Spring Dynamic Modules Extender
bundle” lists the available options and explains them in detail.

4.2.4. Improved Class Loading

In 1.1.x, the proxy creation has been improved, leading to better package wiring for the managed bundles. See
the FAQ for more information.

Spring Dynamic Modules(1.2.1) 7

http://static.springframework.org/spring/docs/2.5.x/reference/new-in-2.html#new-in-2-ioc-component-scanning

Part |Il. Reference Documentation

Document structure

This part of the reference documentation explains the core functionality offered by Spring Dynamic Maodules.

Chapter 5, Bundles and Application Contexts describes the relationship between an OSGi Bundle and a Spring
Application Context, and introduces the Spring Extender Bundle support for instantiating application contexts
automatically.

Chapter 6, Packaging and Deploying Sporing-based OSGi applications describes how to deploy the Spring
Framework jar files in an OSGi environment, and how to reference external APIs from your application
bundles should you need to do so. This chapter also explains some of the issues to be aware of when using
existing enterprise libraries not designed for OSGi in an OSGi environment.

Chapter 7, The Service Registry describes how to export Spring beans as services in the OSGi service registry,
and how to inject references to OSGi services into beans. This chapter also defines how the dynamic life-cycle
of OSGi services and bundlesis supported.

Chapter 8, Working With Bundles describes how to declare a bean that represents an OSGi bundle, including
support for installing new bundles into the OSGi platform.

Chapter 9, Web Support explains how to run web applications inside an OSGi environment using Spring DM.

Chapter 10, Compendium Services describes the support provided for the OSGi Compendium Services,
specifically the Configuration Admin service.

Chapter 11, Testing OSGi based Applications explains the integration testing support provided by Spring
Dynamic Modules. This support enables you to write simple JUnit integration tests that can start up an OSGi
environment, install the bundles needed for the integration test, execute the test case(s) inside of OSGi, and
return the results to the runner. This makes it easy to integrate OSGi integration testing into any environment
that can work with JUnit.

Spring Dynamic Modules(1.2.1) 8

http://www2.osgi.org/Release4/Download

Chapter 5. Bundles and Application Contexts

The unit of deployment (and modularity) in OSGi is the bundle (see section 3.2 of the OSGi Service Platform
Core Specification). A bundle known to the OSGi runtime isin one of three steady states: installed, resolved, or
active. Bundles may export services (objects) to the OSGi service registry, and by so doing make these services
available for other bundles to discover and to use. Bundles may also export Java packages, enabling other
bundles to import the exported types.

In Spring the primary unit of modularity is an application context, which contains some number of beans
(objects managed by the Spring application context). Application contexts can be configured in a hierarchy
such that a child application context can see beans defined in a parent, but not vice-versa. The Spring concepts
of exporters and factory beans are used to export references to beans to clients outside of the application
context, and to inject references to services that are defined outside of the application context.

There is a natural affinity between an OSGi bundle and a Spring application context. Using Spring Dynamic
Modules, an active bundle may contain a Spring application context, responsible for the instantiation,
configuration, assembly, and decoration of the objects (beans) within the bundle. Some of these beans may
optionally be exported as OSGi services and thus made available to other bundles, beans within the bundle may
also be transparently injected with references to OSGi services.

5.1. The Spring Dynamic Modules Extender bundle

Extender Pattern

A common pattern in OSGi applications is the extender, that (quoting Peter Kriens, OSGi Technical
Director), “alows other bundles to extend the functionality in a specific domain”. See this OSGi Alliance
blog entry for an in-depth explanation.

Spring Dynamic Modules provides an OSGi bundle or g. spri ngf r amewor k. osgi . ext ender . This bundle is
responsible for instantiating the Spring application contexts for your application bundles. It serves the same
purpose as the Contextl oaderL istener does for Spring web applications. Once the extender bundle is installed
and started it looks for any existing Spring-powered bundles that are already in the ACTIVE state and creates
application contexts on their behalf. In addition, it listens for bundle starting events and automatically creates
an application context for any Spring-powered bundle that is subsequently started. Section 6.1, “Bundle Format
And Manifest Headers’ describes what the extender recognizes as a "Spring-powered bundle” while
Section 6.2, “Extender Configuration Options’ how the extender can be configured.

5.2. Application Context Creation

The extender bundle creates applications contexts asynchronously, on a different thread then the one starting
the bundle. This behaviour ensures that starting an OSGi Service Platform is fast and that bundles with service
inter-dependencies do not cause deadlock (waiting for each other) on startup, as pictured below:

Spring Dynamic Modules(1.2.1) 9

http://www.aqute.biz/Blog/HomePage
http://www.osgi.org/blog/2007/02/osgi-extender-model.html
http://static.springframework.org/spring/docs/2.5.x/reference/webintegration.html

Bundles and Application Contexts

0SGi Framework Thread Extender (not a thread) Spring DM Thread

STARTED event

: ' bundle |

™ create context

> refresh context

The extender considers only bundles successfully started, that is, bundles in ACTIVE state; bundles in other
states are ignored. Therefore a Spring-powered bundle will have its application context created after it has been
started. It is possible to force synchronous/serialized creation of application contexts for started bundles, on a
bundle-by-bundle basis. See Section 6.1, “Bundle Format And Manifest Headers’ for information on how to
specify this behaviour.

If application context creation fails for any reason then the failure cause is logged. The bundle remains in the
ACTIVE state. There will be no services exported to the registry from the application context in this scenario.

5.2.1. Mandatory Service Dependencies

If an application context declares mandatory dependencies on the availability of certain OSGi services (see
Chapter 7, The Service Registry) then creation of the application context is blocked until al mandatory
dependencies can be satisfied through matching services available in the OSGi service registry. Since a service
may come and go at any moment in an OSGi environment, this behaviour only guarantees that all mandatory
services were available at the moment creation of the application context began. One or more services may
subsequently become unavailable again during the process of application context creation. Chapter 7, The
Service Registry describes what happens when a mandatory service reference becomes unsatisfied. In practice,
for most enterprise applications built using Spring Dynamic Modules services, the set of available services and
bundles will reach a steady state once the platform and its installed bundles are all started. In such aworld the
behaviour of waiting for mandatory dependencies simply ensures that bundles A and B, where bundle A
depends on services exported by bundle B, may be started in any order.

A timeout applies to the wait for mandatory dependencies to be satisfied. By default the timeout is set to 5
minutes, but this value can be configured using the ti meout directive. See Section 6.1, “Bundle Format And
Manifest Headers’ for details.

It is possible to change the application context creation semantics so that application context creation failsif al
mandatory services are not immediately available upon startup (see the aformentioned section for more
information). However, regardiess of the configuration chosen, the failure of the application context will not
change the bundle state.

Spring Dynamic Modules(1.2.1) 10

Bundles and Application Contexts

5.2.2. Application Context Service Publication

Once the application context creation for a bundle has completed, the application context object is
automatically exported as a service available through the OSGi Service Registry. The context is published
under the interface org. springframework. context. ApplicationContext (and aso al of the visible
super-interfaces and types implemented by the context). The published service has a service property named
org. spri ngframewor k. cont ext . servi ce. nane Whose value is set to the bundle symbolic name of the bundle
hosting the application context. It is possible to prevent publication of the application context as a service using
adirective in the bundle's manifest. See Section 6.1, “Bundle Format And Manifest Headers’ for details.

Note: the application context is published as a service primarily to facilitate testing, administration, and
management. Accessing this context object at runtime and invoking getBean() or similar operations is
discouraged. The preferred way to access a bean defined in another application context is to export that bean as
an OSGi service from the defining context, and then to import a reference to that service in the context that
needs access to the service. Going via the service registry in this way ensures that a bean only sees services
with compatible versions of service types, and that OSGi platform dynamics are respected.

5.3. Bundle Lifecycle

OSGi is a dynamic platform: bundles may be installed, started, updated, stopped, and uninstalled at any time
during the running of the framework.

When an active bundle is stopped, any services it exported during its lifetime are automatically unregistered
and the bundle returns to the resolved state. A stopped bundle should release any resources it has acquired and
terminate any threads. Packages exported by a stopped bundle continue to be available to other bundles.

A bundle in the resolved state may be uninstalled: packages that were exported by an uninstalled bundle
continue to be available to bundles that imported them (but not to newly installed bundles).A bundlie in the
resolved state may also be updated. The update process migrates from one version of a bundle to another
version of the same bundle.

Finally of course, aresolved bundle can be started, which transitions it to the active state.

The diagram below represents the bundle states and its transitions:

Spring Dynamic Modules(1.2.1) 11

Bundles and Application Contexts

The OSGi PackageAdni n r ef r eshPackages operation refreshes packages across the whole OSGi framework or
a given subset of installed bundles. During the refresh, an application context in an affected bundle will be
stopped and restarted. After a refreshPackages operation, packages exported by older versions of updated
bundles, or packages exported by uninstalled bundles, are no longer available. Consult the OSGi specifications
for full details.

When a Spring-powered bundle is stopped, the application context created for it is automatically destroyed. All
services exported by the bundle will be unregistered (removed from the service registry) and the normal
application context tear-down life-cycle is observed (or g. spri ngf r amewor k. beans. f act ory. Di sposabl eBean
implementors and dest r oy- net hod callbacks are invoked on beans in the context).

If a Spring-powered bundle that has been stopped is subsequently re-started, a new application context will be
created for it.

5.4. The Resource Abstraction

The Spring Framework defines a resource abstraction for loading resources within an application context (see
Spring's resource abstraction). All resource loading is done through the
org. springframework. core. i 0. ResourceLoader associated with the application context. The
org. springframework. core. i o. ResourceLoader iS also available to beans wishing to load resources
programmatically. Resource paths with explicit prefixes - such ascl asspat h: - are treated uniformly across all
application context types (for example, web application contexts and classpath-based application contexts).
Relative resource paths are interpreted differently based on the type of application context being created. This
enables easy integration testing outside the ultimate deployment environment.

OSGi 4.0.x specification defines three different spaces from which a resource can be loaded. Spring DM
supports all of them through its dedicated OSGi-specific application context and dedicated prefixes:

Table 5.1. OSGi resour ce search strategies

Spring Dynamic Modules(1.2.1) 12

http://static.springframework.org/spring/docs/2.5.x/reference/resources.html

Bundles and Application Contexts

OSGi Search Strategy Prefix Explanation

Class Space cl asspat h: Searches the bundle classloader
(the bundle, all imported packages
and required bundles). Forces the
bundle to be resolved. This method
has smilar semantics to

Bundl e#get Resour ce(String)

Class Space cl asspat h*: Searches the bundle classloader
(the bundle and all imported
packages and required bundles).
Forces the bundle to be resolved.
This method has similar semantics

10 Bundl e#get Resour ces(St ri ng)

JAR File (or JarSpace) osgi bundl ej ar: Searches only the bundle jar.
Provides low-level access without
requiring the bundle to be
resolved.

Bundle Space osgi bundl e: Searches the bundle jar and its
attached fragments (if there are
any). Does not create a class |oader
or force the bundle to be resolved.

Please consult section 4.3.12 of the OSGi specification for an in depth explanation of the differences between
them.

Note
" If no prefix is specified, the bundle space (osgi bundl e:) will be used.

Note

" Due to the OSGi dynamic nature, a bundle classpath can change during its life time (for example
when dynamic imports are used). This might cause different classpath Resour ces to be returned
when doing pattern matching based on the running environment or target platform.

All of the regular Spring resource prefixes such as file: and http: are also supported, as are the pattern
matching wildcards. Resources loaded using such prefixes may come from any location, they are not restricted
to being defined within the resource-loading bundle or its attached fragments.

OSGi platforms may define their own unique prefixes for accessing bundle contents. For example, Equinox
defines the bundl eresource: and bundl entry: prefixes. These platform specific prefixes may also be used
with Spring OSGi, at the cost, of course, of tying yourself to a particular OSGi implementation.

5.5. Accessing the BundleContext

In general there is no need to depend on any OSGi APIs when using the Spring Dynamic Modules support. If
you do need accessto the OSGi Bundl eCont ext object for your bundle, then Spring makes this easy to do.

The OSGi application context created by the Spring extender will automatically contain a bean of type

Spring Dynamic Modules(1.2.1) 13

http://www2.osgi.org/javadoc/r4/org/osgi/framework/Bundle.html#getResource(java.lang.String)
http://www2.osgi.org/javadoc/r4/org/osgi/framework/Bundle.html#getResources(java.lang.String)

Bundles and Application Contexts

Bundl eCont ext and with name bundl eCont ext . You can inject a reference to this bean into any bean in the
application context either by-name or by-type. In addition, Spring Dynamic Modules defines the interface
org. spri ngframewor k. osgi . cont ext . Bundl eCont ext Awar e:

public interface Bundl eCont ext Anare {
public voi d setBundl eCont ext (Bundl eCont ext context);

}

Any bean implementing this interface will be injected with a reference to the bundle context when it is
configured by Spring. If you wish to use this facility within a bundle, remember to import the package
org. spri ngframewor k. osgi . cont ext inyour bundle manifest.

5.6. Application Context Destruction

The application context is bound to the bundle in which it lives. Thus, if the declaring bundle is being
shutdown, the application context will be destroyed as well, all exported services being unregistered and all
service imported dispose of .

As opposed to the application creation, the application context is destroyed in a synchronized manner, on the
same thread that stops the bundle. This is required since once stopped, a bundle can not longer be used (even
for class loading) preventing the application context shutdown from executing correctly.

0SGi Framework Thread Extender (not a thread)

STOPPING event

|

|

|

l
)

3 close context

-

I
T,

Note that a bundle can be closed individually or as part of a bigger event such as shutting down the entire OSGi
platform. In this case or when the extender bundle is being closed down, the application contexts will be closed
in a managed manner, based on the service dependencies between them. Please see the next section for more
details.

5.7. Stopping the Extender Bundle

If the extender bundle is stopped, then all the application contexts created by the extender will be destroyed.
Application contexts are shutdown in the following order:

Spring Dynamic Modules(1.2.1) 14

Bundles and Application Contexts

1. Application contexts that do not export any services, or that export services that are not currently referenced,
are shutdown in reverse order of bundle id. (Most recently installed bundles have their application contexts
shutdown first).

2. Shutting down the application contexts in step (1) may have released references these contexts were holding
such that there are now additional application contexts that can be shutdown. If so, repeat step 1 again.

3. If there are no more active application contexts, we have finished. If there are active application contexts
then there must be a cyclic dependency of references. The circle is broken by determining the highest
ranking service exported by each context: the bundle with the lowest ranking service in this set (or in the
event of atie, the highest serviceid), is shut down. Repeat from step (1).

Spring Dynamic Modules(1.2.1) 15

Chapter 6. Packaging and Deploying Spring-based
OSGi applications

A traditional Spring application uses either a single application context, or a parent context containing service
layer, data layer, and domain objects with a child context containing web layer components. The application
context may well be formed by aggregating the contents of multiple configuration files.

When deploying an application to OSGi the more natural structure is to package the application as a set of peer
bundles (application contexts) interacting via the OSGi service registry. Independent subsystems should be
packaged as independent bundles or sets of bundles (vertical partitioning). A subsystem may be package in a
single bundle, or divided into several bundles partitioned by layer (horizontal partitioning). A straightforward
web application may for example be divided into four modules (bundles): a web bundle, service layer bundle,
datalayer bundle, and domain model bundle. Such an application would look like this:

. Spring Bean

Application contexts .ﬂ Impaorted service

R

u

n

1

i

m

e

D

e

p

I

a

¥

m

e

n

t Java Virtual Machine

Spring Extender Bundle "Spring-powered” application bundles

In this example the data layer bundle yields a data layer application context that contains a number of internal
components (beans). Two of those beans are made publicly available outside of the application context by

Spring Dynamic Modules(1.2.1) 16

Packaging and Deploying Spring-based OSGi applications

publishing them as services in the OSGi service registry.

The service layer bundle yields a service layer application context that contains a number of internal
components (beans). Some of those components depend on data layer services, and import those services from
the OSGi service registry. Two of the service layer components are made externally available as servicesin the
OSGi serviceregistry.

The web component bundle yields a web application context that contains a number of internal components
(beans). Some of those components depend on application services, and import those services from the OSGi
service registry. Since the domain model bundle contributes only domain model types, but does not need to
create any components of its own, it has no associated application context.

6.1. Bundle Format And Manifest Headers

Each application module should be packaged as an OSGi bundle. A bundle is essentially a jar file with a
META- | NF/ MANI FEST. MF file containing a series of headers recognized by the OSGi Service Platform. See the
OSGi Service Platform Core Specification section 3.2 for details. Some OSGi implementations may support
exploded jar files, but the format remains the same.

The Spring extender recognizes a bundle as " Spring-powered" and will create an associated application context
when the bundle is started and one or both of the following conditionsis true:

e The bundle path contains a folder META-1 NF/ spring with one or more files in that folder with a '.xml'
extension.

e META- | NF/ MANI FEST. MF contains a manifest header Spri ng- Cont ext .

In addition, if the optiona Spri ngExt ender - Versi on header is declared in the bundle manifest, then the
extender will only recognize bundles where the specified version constraints are satisfied by the version of the
extender bundle (Bundl e- Ver si on). The value of the Spri ngExt ender - Ver si on header must follow the syntax
for aversion range as specified in section 3.2.5 of the OSGi Service Platform Core Specification.

In the absence of the Spri ng- Cont ext header the extender expects every ".xml" file in the META- I NF/ spri ng
folder to be avalid Spring configuration file, and al directives (see below) take on their default values.

An application context is constructed from this set of files. A suggested practice is to split the application
context configuration into at least two files, named by convention modulename-context.xml and
modulename-osgi-context.xml. The modulename-context.xml file contains regular bean definitions independent
of any knowledge of OSGi. The modulename-osgi-context.xml file contains the bean definitions for importing
and exporting OSGi services. It may (but is not required to) use the Spring Dynamic Modules OSGi schema as
the top-level namespace instead of the Spring 'beans namespace.

The spring- Context manifest header may be used to specify an aternate set of configuration files. The
resource paths are treated as relative resource paths and resolve to entries defined in the bundle and the set of
attached fragments. When the Spri ng- Cont ext header defines at least one configuration file location, any files
in META- | NF/ spri ng areignored unless directly referenced from the Spri ng- Cont ext header.

The syntax for the spri ng- Cont ext header valueis:

Spring- Context-Value ::= context (',' context) *
context ::= path (';' path) * (';' directive) *

Spring Dynamic Modules(1.2.1) 17

Packaging and Deploying Spring-based OSGi applications

This syntax is consistent with the OSGi Service Platform common header syntax defined in section 3.2.3 of the
OSGi Service Platform Core Specification.

For example, the manifest entry:

Spring- Cont ext: config/account-data-context.xm, config/account-security-context.xm

will cause an application context to be instantiated using the configuration found in the files
account - dat a- cont ext . xni and account - securi ty-cont ext. xm inthebundlejar file.

A number of directives are available for use with the Spri ng- Cont ext header. These directives are:

* create-asynchronously (falseltrue): controls whether the application context is created asynchronoudly (the
default), or synchronously.

For example:

Spring- Context: *;create-asynchronously: =fal se

Creates an application context synchronously, using al of the "*.xml" files contained in the
META- | NF/ spri ng folder.

Spring- Cont ext: config/account-dat a-cont ext.xnl ;create-asynchrously: =fal se

Creates an application context synchronously using the confi g/ account - dat a- cont ext . xm configuration
file. Care must be taken when specifying synchronous context creation as the application context will be
created on the OSGi event thread, blocking further event delivery until the context is fully initialized. If an
error occurs during the synchronous creation of the application context then a Fr amewor kEvent . ERROR event
israised. The bundle will still proceed to the ACTI VE state.

 wait-for-dependencies (truelfalse): controls whether or not application context creation should wait for any
mandatory service dependencies to be satisfied before proceeding (the default), or proceed immediately
without waiting if dependencies are not satisfied upon startup.

For example:

Spring- Context: config/osgi-*.xm;wait-for-dependencies: =fal se

Creates an application context using all the files matching "osgi-*.xml" in the config directory. Context
creation will begin immediately even if dependencies are not satisfied. This essentially means that mandatory
service references are treated as though they were optional - clients will be injected with a service object that
may not be backed by an actual service in the registry initialy. See Section 7.2.1.8, “ref erence And OSGi
Service Dynamics’ for more details.

« timeout (300): the time to wait (in seconds) for mandatory dependencies to be satisfied before giving up and
failing application context creation. This setting is ignored if wai t - f or - dependenci es: =f al se iS specified.
The default is 5 minutes (300 seconds).

For example:

Spring- Context: *;timeout: =60

Spring Dynamic Modules(1.2.1) 18

Packaging and Deploying Spring-based OSGi applications

Creates an application context that waits up to 1 minute (60 seconds) for its mandatory dependencies to

appear.

 publish-context (truejffalse): controls whether or not the application context object itself should be published
in the OSGi service registry. The default isto publish the context.

For example:

Spring- Context: *;publish-context:=fal se

If there is no Spring-Context manifest entry, or no value is specified for a given directive in that entry, then
the directive takes on its default value.

6.2. Extender Configuration Options

Aside from bundle-specific configurations, Spring DM alows the core extender generic behaviour be
configured. Thisis useful when embedding Spring DM inside a managed environment or when a bundles-wide
functionality is desired. To allow for extensible configuration, the extender relies on OSGi fragments to
override its defaults. The extender looks for al XML files under META- | NF/ spri ng/ ext ender folder in its
bundle space and assembled them into an application context (of type Gsgi Bundl exm Appl i cati onCont ext)
that is used internally as its configuration. To override a default setting of the extender, look up the appropriate
bean name from the table below, define it in a suitable manner and then attach it as a fragment to the
spri ng- osgi - ext ender . j ar, using:

Fragnment - Host : org. spri ngfranmewor k. osgi . ext ender

The following beans are currently recognized by the extender:

Table 6.1. Extender Configuration Options

Bean Name

t askExecut or

shut downTaskExecut or

Type

TaskExecut or 2

TaskExecutorb

Role

Creates and runs the
Spring application
contexts associated with
each bundle. The task
executor is responsible
for managing its own
pool of threads used by
the application contexts

Destroys managed Spring
application contexts
associated with each
bundle. The task executor
is responsible for
managing its own pool of
threads used by the

Default
Behaviour/Value

Si npl eAsyncTaskExecut or
is used by default which
means a hew thread will
be created for each
application contexts.
While this is suitable for
testing and development,
we strongly recommend
to use a thread poal in a
production environment

Ti mer TaskExecut or is
used by default which
means al application
context will be destroyed
in a serialized manner
(which is desired). Since
the shutdown order

Spring Dynamic Modules(1.2.1)

19

http://en.wikipedia.org/wiki/Thread_pool_pattern

Packaging and Deploying Spring-based OSGi applications

Bean Name Type Role Default
Behaviour/Value
application contexts normally matters, it is

recommended to keep the
default implementation
or, for managed
environments, to use a
thread-pool that executes
only one task at a time
(so that contexts are
stopped in the given
order).

ext ender Properti es java.util.Properties Defines simple properties See the defaults below
such as the maximum
time for contexts to
gracefully close

0sgi Appl i cati onEvent Ml tAppastoat i onEvent Mul ti cagtpgn i cati onEvent Miul ti CaddBr instance of

c used for propagating Sinpl eApplicationEventMilticaste
Spring DM events to is used. See
third parties. Abstract Appl i cat i onCont ext

javadoc for more
information regarding
avallable beans in an
application context.

appl i cat i onCont ext Cr eat @sgi Appl i cati onCont ext CrAHowrs customization of The Extender default
d the application context behaviour applies.
created by the extender.
This includes changing
the application context
class type or additional
processing (see below).

(irrelevant) Csgi BeanFact oryPost Procé&&isailar to Spring's The Extender default
d BeanFact or yPost Pr ocessorbehaviour applies.

interface, beans of type

Csgi BeanFact or yPost Processor

are automatically

detected and applied to

all contexts created by the

extender (whether

user-defined or not). This

type of post processor is

useful as it alows

customization of the bean

factory such as
adding/removing/changing

existing bean definitions

or adding new bean

instances.

osgi Appl i cat i onCont ext LiGstgérBemd| eAppl i cat i onCorApplicatiosneeontext event Default implementation

Spring Dynamic Modules(1.2.1) 20

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/event/ApplicationEventMulticaster.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/event/SimpleApplicationEventMulticaster.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/support/AbstractApplicationContext.html

Packaging and Deploying Spring-based OSGi applications

Bean Name Type Role Default
Behaviour/Value
© listener registered provides logging of the
automaticaly by the managed application
extender. contexts lifecycle.

aorg.springfranemork.core.task
borg.springfranemork.core.task
Corg.springframevmrk.context.event
dorg.springfranemork.osgi.extender package

eorg.springfranemork.osgi.context.event package

From the ext ender Propert i es bean, the following properties are recognized:

Table 6.2. Available ext ender Properti es

Name Type Description Default Value

shut down. wai t. ti me java.l ang. Long The amount of time the 10000 ms (10 s)
extender will wait for
each application context
to shutdown gracefully.

Expressed in
milliseconds.
process. annot ati ons j ava. | ang. Bool ean Flag indicating whether false

or not, the extender will
process Spring DM
annotations. Note that
this can be enabled in
each process bundle by
adding the appropriate
bean post processor. See
Section Al
“ Annotation-Based
Injection” for more
information.

dependencies.wait.time java.lang. Long The amount of time the 300000 ms (300 s or 5
newly created application min)
contexts will wait for
their mandatory service

dependencies during
startup. Expressed in
milliseconds. This

settings is used only if the
context owning bundle
manifest does not define
avalue.

Note
e Since an application context is used, the full power of the Spring 10C container can be used for

Spring Dynamic Modules(1.2.1) 21

Packaging and Deploying Spring-based OSGi applications

creating the extender configuration beans

6.2.1. Listening To Extender Events

There are cases when the failure or succesful startup of an application context needs to be acknowledged for

logging purposes (for example).

For

these cases, Spring DM offers a dedicated package

org. springframewor k. osgi . cont ext . event Which defines the events that OSGi application contexts can send
during their lifecycle. At the moment, the following events are available:

Table 6.3. Spring DM build-in events

Event

Explanation

Gsgi Bundl eCont ext Ref r eshedEvent

Published when an OSGi application context has been
succesfully initialized or refreshed (e.g. using the
refresh() method on the
Confi gur abl eAppl i cati onCont ext interface). There
are no guarantees on how many times this event
might be received during the lifecycle of an
application context - this is left up to the used
implementation.

Gsgi Bundl eCont ext Fai | edEvent

Published when an OSGi application context is
closed due to a failure. This event can appear any
time during the lifecycle of an application context -
before, during or after refresh. Usually the cause
indicates an error in the configuration - syntax typo,
incorrect wiring, missing bean and so forth.

Gsgi Bundl eCont ext Cl osedEvent

Published when an OSGi application context is
closed after a successful refresh (normally issued a
Spring bundle is being stopped).

Parties interested in receiving these events should implement Gsgi Bundl eAppl i cat i onCont ext Li st ener and
then publish it as an OSGi service. The Spring DM extender will automatically detect the listener and will send
the events to it. By taking advantage of the OSGi service registry, the extender decouples the received from the
event publisher and moreover, makes the registration/unregistration process easier. For example, there is
nothing special a client should do to unregister the listener - simply stopping the bundle will automatically
unregister all its published services (including the listener), an event which will detected by the extender which
will remove the listener. Of course, it is aso possible for the client to unregister the listener manually during a

bundle lifecycle.

Note

e The Spring DM events semantics are slightly different then Spring's. The OSGi events are not sent
to beans inside the causing application context but to other parties (possible beans in other
application contexts) interested in monitoring its behaviour.

6.3. Required Spring Framework And Spring Dynamic Modules

Spring Dynamic Modules(1.2.1) 22

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events

Packaging and Deploying Spring-based OSGi applications

Bundles

The Spring Dynamic Modules project provides a number of bundle artifacts that must be installed in your OSGi
platform in order for the Spring extender to function correctly:
* The extender bundleitself, or g. spri ngf r amewor k. osgi . ext ender

e The core implementation bundle for the Spring Dynamic Modules support,
org. springframewor k. osgi . core

* The Spring Dynamic Modules I/O support library bundle, or g. spri ngf r amewor k. osgi . i o

In addition the Spring Framework provides a number of bundles that are required to be installed. As of release
2.5 of the Spring Framework, the Spring jars included in the Spring distribution are valid OSGi bundles and can
beinstalled directly into an OSGi platform. The minimum required set of bundlesis:

spring-core.jar (bundle symbolic nameor g. spri ngf r amewor k. cor e)
 gpring-context.jar (bundle symbolic name or g. spri ngf r amewor k. cont ext)
» gpring-beans.jar (bundle symbolic name or g. spri ngf r anmewor k. beans)

* spring-aop.jar (bundle symbolic name or g. spri ngf r amewor k. aop)

In additional the following supporting library bundles are required. OSGi-ready versions of these libraries are
shipped with the Spring Dynamic Modules distribution.

» aopalliance

backport-util (when running on JDK 1.4)

cglib-nodep (when proxying classes rather then interfaces, needed in most cases)

e commons-logging APl (SLF4J version highly recommended:

e SLF4JAPI (com.springsource.sfl4j.api.jar)

» SLF4J Implementation Bridge (such as Log4j - com.springsource.sfl4j.1og4j.jar)

» SLF4J commons logging adapter (com.springsource.sfl4j.org.apache.commons.logging.jar)

)

« logging implementation suitable for commons-logging (such as log4j)

6.4. Spring XML Authoring Support

Spring 2.0 introduced (among other things) easier XML configuration and extensible XML authoring. The
latter gives the ability of creating custom schemas that are discovered automatically (in non-OSGi
environment) by the Spring XML infrastructure by including them in the classpath. Spring DM is aware of this
process and supports it in OSGi environments so that custom schemas are available to bundles that use them
without any extra code or manifest declaration.

Spring Dynamic Modules(1.2.1) 23

http://www.slf4j.org/
http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html
http://static.springframework.org/spring/docs/2.5.x/reference/extensible-xml.html

Packaging and Deploying Spring-based OSGi applications

All bundles deployed in the OSGi space (whether they are Spri ng- power ed or not) are scanned by Spring DM
for custom Spring namespace declaration (by checking the bundle space fOrMETA- | NF/ spri ng. handl ers and
META- | NF/ spri ng. schemas). If these are found, Spring DM will make the schemas and the namespaces
available through an OSGi service that will be automatically used by Spring-powered bundles. This mean that
if you deploy a bundle that uses a custom schema, all you have to do is deploy the library that provides the
namespace parser and the schema. Bundles that embedded inside their classpath libraries that provide custom
schemas will use these over those available in the OSGi space. However, the namespaces of the embedded
libraries will not shared with other bundles, that is, they will not be seen by any other bundle.

In short, with using Spring DM, custom Spring namespaces are supported transparently without any additional
work. Embedded namespace providers will have priority but will not be shared, as opposed to providers
deployed as bundles which will be seen (and used) by others.

6.5. Importing and Exporting Packages

Refer to the OSGi Service Platform for details of the | nport - Package and Expor t - Package manifest headers.
Y our bundle will need an | npor t - Package entry for every external package that the bundle depends on. If your
bundle provides types that other bundles need access to, you will need Export - Package entries for every
package that should be available from outside of the bundle.

6.6. Considerations When Using External Libraries

What is the context class loader?

The thread context class loader was introduced in J2SE without much fanfare. Below is a short definition
for it, quoted from one of the tutorials available on Java site:

The Java 2 platform also introduced the notion of context class loader. A thread's context class loader is,
by default, set to the context class loader of the thread's parent. The hierarchy of threads is rooted at the
primordial thread (the one that runs the program). The context class loader of the primordial thread is set
to the class loader that loaded the application. So unless you explicitly change the thread's context class
loader, its context class loader will be the application's class loader. That is, the context class loader can
load the classes that the application can load. This loader is used by the Java runtime such as the RMI
(Java Remote Method Invocation) to load classes and resources on behalf of the user application. The
context class loader, like any Java 2 platform class loader, has a parent class |oader and supports the same
delegation model for class |oading described previously.

Many enterprise application libraries assume that all of the types and resources that comprise the application
are accessible through the context class loader. While most developers do not use the context class loader, the
loader is used heavily by application servers, containers or applications that are multi-threaded.

In OSGi R4, the set of types and resources available through the context class loader is undefined. This means
that the OSGi platform does not make a guarantee of the thread context class loader value or in other words, it
does not manage it.

Thus code (for example libraries) that performs manual class loading or that generates new classes dynamically
can cause problems when executed inside an OSGi environment.

Spring Dynamic Modules guarantees that during the creation of an application context on behalf of a given

Spring Dynamic Modules(1.2.1) 24

http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html
http://java.sun.com/

Packaging and Deploying Spring-based OSGi applications

bundle, all of the types and resources on the bundl€e's classpath are accessible via the context class loader.
Spring Dynamic Modules also alows you to control what is accessible through the context class loader when
invoking external services and when servicing requests on exported services. See Chapter 7, The Service
Registry for details on this.

Work is underway in the OSGi R5 timeframe to provide standardized support for dealing with generated
classes and implicit class path dependencies introduced by third-party libraries. In the interim you may need to
rely on workarounds such as the Dynani cl npor t - Package manifest header, or the facilities provided by specific
OSGi implementations such as Equinox’'s buddy mechanism. The Spring Dynamic Modules documentation
contains more details on known issues with common enterprise libraries and the workarounds.

6.7. Diagnosing Problems

Your chosen OSGi platform implementation should be able to provide you with a good deal of information
about the current status of the OSGi environment. For example, starting Equinox with the - consol e argument
provides a command-line consol e through which you can determine which bundles are installed and their states,
the packages and services exported by bundles, find out why a bundle has failed to resolve, and drive bundles
through the lifecycle.

In addition, Spring itself and the Spring Dynamic Modules bundles contain extensive logging instrumentation
that can help you diagnose problems. The recommended approach is to deploy the Simple Logging Facade for
Java (df4]) df4j-api.jar and df4j-logdj13.jar bundles (the jar files distributed by the project are valid OSGi
bundles). Then you simply need to create al og4j . properti es filein theroot of your bundle classpath.

Note that Spring Dynamic Modules uses commons-logging APl internally which means that its logging
implementation is fully pluggable. Please see the FAQ and Resources pages for more information on other
logging libraries besides log4j.

Spring Dynamic Modules(1.2.1) 25

http://www.slf4j.org/

Chapter 7. The Service Registry

The OSGi service registry enables a bundle to publish objects to a shared registry, advertised via a given set of
Javainterfaces. Published services also have service properties associated with them in the registry.

Spring Dynamic Modules provides an osgi hamespace for Spring (see Appendix H, Spring Dynamic Modules
Schema) that can be used to export Spring beans as OSGi services, and to define references to services obtained

Vi

a the service registry. The namespace elements may be used nested inside another top-level namespace

(typically the Spring beans namespace), or within the top-level osgi element.

The following example shows the use of the osgi namespace within the familiar Spring beans element:

(|

U

O
O

U

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://ww. springframework. or g/ schena/ beans" O
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: osgi ="http://ww. springfranmewor k. or g/ schenma/ osgi " O
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd O

http://ww. spri ngframework. or g/ schena/ osgi
http://ww. springframework. or g/ schema/ osgi / spri ng- osgi . xsd" >

<osgi : service id="sinpleServiceCsgi" ref="sinpleService" O
interface="org. xyz. M\yServi ce" />
</ beans>

Use Spring Framework beans schema as the default namespace.

Import Spring Dynamic Modules schema and associate a prefix with its namespace (osgi in this
example).

Make sure to import Spring beans schemaversion 2.5.

Use Spring Dynamic Modules elements using the declared namespace prefix (in this example osgi).

sing the OSGi namespace as atop-level namespace, the same service would be declared as follows:

<?xm version="1.0" encodi ng="UTF-8"?>

<beans: beans 0
xm ns="http://ww. springfranework. org/ schema/ osgi " ad
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: beans="htt p://ww. spri ngframewor k. or g/ schena/ beans" ad

xsi : schemalLocati on="http://ww. spri ngframewor k. or g/ schenma/ osgi
http://ww. springframework. or g/ schema/ osgi / spri ng- osgi . xsd
http://ww. spri ngfranework. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" > O

<service id="sinpleServiceCsgi" ref="sinpleService" O
interface="org.xyz. M\yService" />

</ beans: beans> ad

beans root element has to be prefixed with Spring Framework beans schema prefix (beans in this
example).

Use Spring Dynamic Modules schema as the default namespace.

Import Spring Framework beans schema and associate a prefix with its namespace (beans in this
example).

Make sure to import Spring beans schema version 2.5.

Use Spring Dynamic Modules elements without any prefix.

sing the OSGi namespace as a top-level namespace is particularly convenient when following the

recommendation of Section 6.1, “Bundle Format And Manifest Headers’ to use a dedicated configuration file
for all OSGi-related declarations.

Spring Dynamic Modules(1.2.1) 26

The Service Registry

7.1. Exporting A Spring Bean As An OSGi Service

The servi ce element is used to define a bean representing an exported OSGi service. At a minimum you must
specify the bean to be exported, and the service interface that the service advertises.

For example, the declaration

<servi ce ref="beanToPublish" interface="com xyz. MessageServi ce"/>

exports the bean with name beanToPubl i sh with interface com xyz. MessageSer vi ce. The published service
will have a service property with the name or g. spri ngf r amewor k. osgi . bean. nane set to the name of the
target bean being registered (beanToPubl i sh in this case).

The bean defined by the servi ce element is of type org. osgi . f ramewor k. Ser vi ceRegi stration and is the
Servi ceRegi st rati on object resulting from registering the exported bean with the OSGi service registry. By
giving this bean an id you can inject areference to the Ser vi ceRegi st rat i on object into other beans if needed.
For example:

<service id="nyServi ceRegi stration" ref="beanToPublish"
i nterface="com xyz. MessageServi ce"/ >

As an alternative to exporting a named bean, the bean to be exported to the service registry may be defined as
an anonymous inner bean of the service element. Typically the top-level namespace would be the beans
namespace when using this style:

<osgi :service interface="com xyz. MessageServi ce">
<bean cl ass="SoneC ass">

</ bean>
</ 0sgi : service>

If the bean to be exported implements the org. osgi.framework. ServiceFactory interface then the
Servi ceFact ory contract is honored as per section 5.6 of the OSGi Service Platform Core Specification. As an
alternative to implementing this OSGi API, Spring Dynamic Modules introduces a new bean scope, the bundl e
scope. When a bean with bundle scope is exported as an OSGi service then one instance of the bean will be
created for each unique client (service importer) bundle that obtains a reference to it through the OSGi service
registry. When a service importing bundle is stopped, the bean instance associated with it is disposed. To
declare a bean with bundl e scope simply use the scope attribute of the bean element:

<osgi : service ref="beanToBeExported" interface="com xyz. MessageServi ce"/>

<bean i d="beanToBeExported" scope="bundl e" class="com xyz. MessageSer vi cel npl "/ >

7.1.1. Controlling The Set Of Advertised Service Interfaces For An Exported
Service

The OSGi Service Platform Core Specification defines the term service interface to represent the specification
of a service's public methods. Typicaly this will be a Java interface, but the specification also supports
registering service objects under a class name, so the phrase service interface can be interpreted as referring to
either an interface or aclass.

There are severa options for specifying the service interface(s) under which the exported service is registered.
The simplest mechanism, shown above, isto use thei nt erf ace attribute to specify a fully-qualified interface

Spring Dynamic Modules(1.2.1) 27

The Service Registry

name. To register a service under multiple interfaces the nested i nt er f aces element can be used in place of the
i nterface attribute.

<osgi : servi ce ref="beanToBeExported">
<osgi : i nterfaces>
<val ue>com xyz. MessageSer vi ce</ val ue>
<val ue>com xyz. Mar ker | nt er f ace</ val ue>
</ osgi:interfaces>
</ 0sgi : servi ce>

Itisillegal to usebothinterface atributeandi nter f aces element at the same time - use only one of them.

7.1.1.1. Detecting The Advertised Interfaces At Runtime

Hierarchy visibility

Note that when using aut o- expor t , only types visible to the bundle exporting the service are registered.
For example, a super-interface si would not be exported as a supported service interface even when using
aut o- export ="interfaces" if SI was not on the exporting bundl€'s classpath.

Even if exported service class does implement si transitively based on its parent, if the declaring bundle
doesn't import the interface, the class is unknown to the exported service. While this might seem counter
intuitive, it is actually one of the most powerful features of OSGi which give the bundle authors control
over the class visibility and path.

Please see the FAQ for a more detailed explanation.

Using the aut o- export attribute you can avoid the need to explicitly declare the service interfaces at all by
analyzing the object class hierarchy and its interfaces.

The aut o- export attribute can have one of four values:

* di sabl ed : the default value; no auto-detected of service interfaces is undertaken and thei nt er f ace attribute
orinterfaces element must be used instead.

e interfaces : the service will be registered using al of the Java interface types implemented by the bean to
be exported

e class-hierarchy : the service will be registered using the exported bean's implementation type and
super-types

e all-classes : the service will be registered using the exported bean's implementation type and super-types
plus al interfaces implemented by the bean.

aut o-export and interface(s) option are not exclusive; both can be used at the same time for fine grained
control over the advertised interfaces if there is such a need. However, the former option should be enough for
most cases.

For example, to automatically register a bean under al of the interfaces that it supports you would declare:

<servi ce ref="beanToBeExported" auto-export="interfaces"/>

Given the interface hierarchy:

public interface Superlnterface {}

Spring Dynamic Modules(1.2.1) 28

The Service Registry

public interface Sublnterface extends Superinterface {}

then a service registered as supporting the subl nt er f ace interface is not considered a match in OSGi when a
lookup is done for services supporting the Super I nterface interface. For this reason it is a best practice to
export all interfaces supported by the service being registered explicitly, using either the i nt er f aces element
Or aut o-export="interfaces".

7.1.2. Controlling The Set Of Advertised Properties For An Exported
Service

As previously described, an exported service is aways registered with the service property
org. springframewor k. osgi . bean. nane set to the name of the bean being exported. Additional service
properties can be specified using the nested ser vi ce- properti es element. The servi ce- properti es element
contains key-value pairs to be included in the advertised properties of the service. The key must be a string
value, and the value must be a type recognized by OSGi Filters. See section 5.5 of the OSGi Service Platform
Core Specification for details of how property values are matched against filter expressions.

The service-properties element must contain at least one nested entry element from the Spring beans
namespace. For example:

<servi ce ref="beanToBeExported" interface="com xyz. MyServi cel nterface">
<servi ce-properties>
<beans:entry key="nmyQ her Key" val ue="aStringVal ue"/ >
<beans: entry key="aThirdKey" val ue-ref="beanToExposeAsProperty"/>
</ servi ce-properties>
</ servi ce>

The Spring Dynamic Modules roadmap includes support for exporting properties registered in the OSGi
Configuration Administration service as properties of the registered service. See Appendix F, Roadmap for
more details.

7.1.3. The depends-on Attribute

Spring will manage explicit dependencies of a service element, ensuring for example that the bean to be
exported as a service is fully constructed and configured before exporting it. If a service has implicit
dependencies on other components (including other service elements) that must be fully initialized before the
service can be exported, then the optional depends- on attribute can be used to express these dependencies.

<servi ce ref="beanToBeExported" interface="com xyz. MyServi celnterface"
depends- on="nyQ her Conponent "/ >

7.1.4. The context-class-loader Attribute

The OSGi Service Platform Core Specification (most current version is 4.1 at time of writing) does not specify
what types and resources are visible through the context class loader when an operation is invoked on a service
obtained viathe service registry. Since some services may use libraries that make certain assumptions about the
context class loader, Spring Dynamic Modules enables you to explicitly control the context class loader during
service execution. Thisis achieved using the option cont ext - cl ass- | oader attribute of the service element.

The permissible values for the context-class-1oader attribute are unmanaged (the default) and
servi ce- provi der . When the ser vi ce- provi der value is specified, Spring Dynamic Modules ensures that the

Spring Dynamic Modules(1.2.1) 29

The Service Registry

context class loader can see all of the resources on the class path of the bundle exporting the service.
When setting cont ext - cl ass- | oader tO servi ce- provi der, the service object will be proxied to handle the
class loader. If the service advertises any concrete class then CGLIB library isrequired .

7.1.5. The ranking Attribute

When registering a service with the service registry, you may optionally specify a service ranking (see section
5.2.5 of the OSGi Service Platform Core Specification). When a bundle looks up a service in the service
registry, given two or more matching services the one with the highest ranking will be returned. The default
ranking value is zero. To explicitly specify a ranking value for the registered service, use the optional r anki ng
attribute.

<servi ce ref="beanToBeExported" interface="com xyz. MyServi celnterface"
ranki ng="9"/ >

7.1.6. servi ce Element Attributes

As asummary, the following table lists the attributes names, possible values and a short description for each of
them.

Table7.1. OSGi <service> attributes

Name Values Description
interface fully qualified class name (such asj ava. | ang. Thr ead) the fully
qualified name

of the class
under which the
object will be
exported

ref any bean name Reference to the
named bean to
be exported as a
service in the
service registry.

context-class-loader unmanaged service-provider Defines how the
context class
loader will be
managed when
an operation is
invoked on the

exported
service. The
default value is
unmanaged
which means
that no

management of
the context class
loader is
attempted. A

Spring Dynamic Modules(1.2.1) 30

The Service Registry

Name Values Description

value of
servi ce- provi der
guarantees that
the context class
loader will have
visibility of al
the resources on
the class path of

bundle

exporting the

service.
auto-export disabled interfaces class-hierarchy all-classes Enables Spring

to automatically
manage the set

of service
interfaces
advertised for
the service. By
default this
facility is
di sabl ed. A
value of
interfaces
advertises all of
the Java
interfaces
supported by the
exported
service. A value
of

cl ass-hi erarchy
advertises all the
Java classes in

the hierarchy of

the exported

sarvice. A value
of all-classes

advertises all

Java interfaces
and classes.

ranking any integer value Specify the
service ranking
to be used when
advertising the
service. Default
valueisO.

7.1.7. Service Registration And Unregistration Lifecycle

Spring Dynamic Modules(1.2.1) 31

The Service Registry

The service defined by a servi ce element is registered with the OSGi service registry when the application
context is first created. It will be unregistered automatically when the bundle is stopped and the application
context is disposed.

If you need to take some action when a service is unregistered because its dependencies are not satisfied (or
when it is registered), then you can define alistener bean using the nested r egi st rati on-1i st ener element.

The declaration of a registration listener must use either theref attribute to refer to a top-level bean definition,
or declare an anonymous listener bean inline. For example:

<servi ce ref="beanToBeExported" interface="Sonelnterface">

<registration-listener ref="myListener" a
regi stration-net hod="servi ceRegi st er ed" O
unregi stration-met hod="servi ceUnregi stered"/> O

<regi stration-listener

regi strati on-nethod="regi ster"> ad
<bean cl ass="SoneLi st enerC ass"/ > 0

</registration-|listener>
</ servi ce>

Listener declaration referring to atop-level bean declaration.
Indicate ther egi st rati on and unr egi st rat i on methods.
Declareonly ar egi st rat i on custom method for this listener.
Nested listener bean declaration.

[B B

The optional regi strati on-met hod and unr egi st rati on- net hod attributes specify the names of the methods
defined on the listener bean that are to be invoked during registration and unregistration. A registration and
unregistration callback methods must have a signature matching one of the following formats:

public void anyMet hodNane(Servi ceType servi cel nstance, Map servi ceProperties);

public voi d anyMet hodName(Servi ceType servi cel nstance, Dictionary serviceProperties);

where Ser vi ceType can be any type compatible with the exported service interface of the service.

The register callback is invoked when the service is initially registered at startup, and whenever it is
subsequently re-registered. The unregister callback is invoked during the service unregistration process, no
matter the cause (such as the owning bundle stopping).

Spring DM will use the declared ser vi ceType argument type and invoke the registration/unregistration method
only when a service of a compatible type will be registered/unregistered.

servi ceProperties represents a map holding al the properties of the registered/unregistered service. To
preserve compatibility with the OSGi specification this argument can be cast, if needed, to a
java.util.Dictionary.

7.1.7.1. Using OCsgi Servi ceRegi strati onLi st ener Interface

While we discourage, it is possible to implement a Spring DM specific interface, namely
org. springframewor k. osgi . servi ce. exporter. Osgi Servi ceRegi strati onLi st ener which avoids the need
to declare the registration-method and unregistration-nmethod. However, by implementing
Osgi Servi ceRegi strati onLi st ener, your code becomes Spring DM aware (which goes against the POJO
philosophy).

It is possible for a listener to implement Osgi Servi ceRegi strati onLi stener interface and declare custom

Spring Dynamic Modules(1.2.1) 32

The Service Registry

methods. In this case, the Spring DM interface methods will be called first, followed by the custom methods.

7.2. Defining References To OSGi Services

Spring Dynamic Modules supports the declaration of beans that represent services accessed via the OSGi
Service Registry. In this manner references to OSGi services can be injected into application components. The
service lookup is made using the service interface type that the service is required to support, plus an optional
filter expression that matches against the service properties published in the registry.

For some scenarios, a single matching service that meets the application requirementsis all that is needed. The
reference element defines a reference to a single service that meets the required specification. In other
scenarios, especially when using the OSGi whiteboard pattern, references to all available matching services are
required. Spring Dynamic Modules supports the management of this set of referencesasali st, Set collection.

7.2.1. Referencing An Individual Service

Ther ef erence element is used to define areference to aservice in the service registry.

Since there can be multiple service matching a given description, the service returned is the service that would
be returned by a call to Bundl eCont ext . get Ser vi ceRef er ence. This means that the service with the highest
ranking will be returned, or if there is a tie in ranking, the service with the lowest service id (the service
registered first with the framework) is returned (please see Section 5 from the OSGi spec for more information
on the service selection agorithm).

7.2.1.1. Controlling The Set Of Advertised Interfaces For The Imported Service

Theinterface attribute identifies the service interface that a matching service must implement. For example,
the following declaration creates a bean messageSer vi ce, which is backed by the service returned from the
service registry when querying it for a service offering the vessageSer vi ce interface.

<reference id="nessageService" interface="com xyz. MessageService"/>

Just like the servi ce declaration, when specifying multiple interfaces, use the nested i nt erf aces element
instead of i nt er f ace attribute:

<osgi : reference id="inportedOsgi Servi ce">
<osgi :interfaces>
<val ue>com xyz. MessageSer vi ce</ val ue>
<val ue>com xyz. Mar ker | nt er f ace</ val ue>
</ osgi:interfaces>
</ osgi : ref erence>

Itisillegal to use bothi nter f ace attribute andi nt er f aces element at the same time - use only one of them.

The bean defined by reference element implements al of the advertised interfaces of the service that are visible
to the bundle (called greedy proxying). If the registered service interfaces include Java class types (as opposed
to interface types) then support for these types is subject to the restrictions of Spring's AOP implementation
(see the Spring Reference Guide). In short, if the specified interfaces are classes (rather then interfaces), then
cgli b library must be available, and f i nal methods are not supported.

7.2.1.2. Thefilter Attribute

The optiona filter attribute can be used to specify an OSGi filter expression and constrains the service

Spring Dynamic Modules(1.2.1) 33

The Service Registry

registry lookup to only those services that match the given filter.

For example:

<reference id="asyncMessageService" interface="com xyz. MessageServi ce"
filter="(asynchronous-delivery=true)"/>

will match only OSGi services that advertise MessageService interface and have the property named
asynchronous-del i very set tovaluet r ue.

7.2.1.3. The bean- nane Attribute

The bean-nane attribute is a convenient short-cut for specifying a filter expression that matches on the
bean- narme property automatically set when exporting a bean using the servi ce element (see Section 7.1,
“Exporting A Spring Bean As An OSGi Service”).

Consider the following exporter/importer declarations:

<bean i d="OnessageServi ceBean" scope="bundl e" cl ass="com xyz. MessageServi cel npl "/>
<l-- service exporter -->

<osgi : service id="nmessageServi ceExporter" ref="[OnessageServi ceBean" interface="com xyz. MessageServi ce"

<osgi :reference id="nmessageService" interface="com xyz. MessageServi ce"
bean- name="OnessageSer vi ceBean"/ >

O the name used with bean- nane attribute

will match only OSGi services that advertise MessageService interface and have the property named
org. spri ngfranmewor k. osgi . bean. nane Set to value nessageSer vi ceBean. In short, this means finding all
Spring DM exported beans that implement interface MessageSer vi ce and are named nessageSer vi ceBean.

7.2.1.4. The cardinal ity Attribute

Nested <reference> declarations

In order for Spring DM to detect mandatory dependencies, any nested/inner reference declaration will be
transformed into top-level one with a generated name.

The cardinal ity attribute is used to specify whether or not a matching service is required at al times. A
cardinality value of 1. . 1 (the default) indicates that a matching service must always be available. A cardinality
value of 0. . 1 indicates that a matching service is not required at all times (see Section 7.2.1.8, “r ef er ence And
OSGi Service Dynamics’ for more details). A ref erence with cardinality 1. . 1 is aso known as a mandatory
service reference and, by default, application context creation is deferred until the reference is satisfied. More
information about context creation and mandatory dependencies is available at Section 7.2.1.8, “ref erence
And OSGi Service Dynamics’

Note

e It isan error to declare a mandatory reference to a service that is also exported by the same bundle,
this behavior can cause application context creation to fail through either deadlock or timeout.

7.2.1.5. The depends-on Attribute

Spring Dynamic Modules(1.2.1) 34

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-inner-beans

The Service Registry

The depends- on attribute is used to specify that the service reference should not be looked up in the service

registry until the named dependent bean has been instantiated.

7.2.1.6. The context-class-loader Attribute

The OSGi Service Platform Core Specification (latest version is 4.1 at time of writing) does not specify what
types and resources are visible through the context class loader when an operation is invoked on a service
obtained viathe service registry. Since some services may use libraries that make certain assumptions about the
context class loader, Spring Dynamic Modules enables you to explicitly control the context class loader during
service invocation. This is achieved using the option cont ext-cl ass-1 oader attribute of the reference

element.

context class loader management on the importer and exporter

Spring DM has the ability to do context class loader management on both the importer and exporter side.
Normally, if Spring DM works on both sides, only one side should have this feature enabled. However, if
both sides (importer and exporter) take advantage of this capability, the last entity in the call chain will
win. This means that the exporter setting, if enabled, will always override the importer setting (whatever

that is).

The permissible values for the cont ext - cl ass- | oader attribute are:

e client - during the service invocation, the context class loader is guaranteed to be able to see types on the

classpath of the invoking bundle. Thisis the default option.

e service-provider - during the service invocation, the context class loader is guaranteed to be able to see

types on the classpath of the bundle exporting the service.

* unmanaged - NO context class |oader management will occur during the service invocation

7.2.1.7. reference Element Attributes

As a summary, the following table lists the ref erence element attributes names, possible values and a short

description for each of them.

Table 7.2. OSGi <reference> attributes

Name Values

interface fully qualified class name (such asj ava. | ang. Thr ead)

filter OSGi filter expression (such as ((asynchr onous- del i very=true))
bean-name any string value

context-class-loader client service-provider unmanaged
cardinality 0.1 1.1

timeout any positive long

7.2.1.8. reference And OSGi Service Dynamics

Spring Dynamic Modules(1.2.1)

35

The Service Registry

The bean defined by the ref erence element is unchanged throughout the lifetime of the application context
(the object reference remains constant). However, the OSGi service that backs the reference may come and go
at any time. For a mandatory service reference (cardinality 1. . 1), creation of the application context will block
until a matching service is available. For an optional service reference (cardinality 0. . 1), the reference bean
will be created immediately, regardless of whether or not thereis currently a matching service.

When the service backing ar ef er ence bean goes away, Spring Dynamic Modules tries to replace the backing
service with another service matching the reference criteria. An application may be notified of a change in
backing service by registering al i st ener . If no matching service is available, then ther ef er ence is said to be
unsatisfied. An unsatisfied mandatory service causes any exported service (ser vi ce bean) that depends on it to
be unregistered from the service registry until such time as the reference is satisfied again. See Section 7.5,
“Relationship Between The Service Exporter And Service Importer” for more information.

When an operation is invoked on an unsatisfied r ef er ence bean (either optional or mandatory), the invocation
blocks until the reference becomes satisfied. The optional ti meout attribute of ther ef er ence element enables a
timeout value (in milliseconds) to be specified. If atimeout value is specified and no matching service becomes
available within the timeout period, an unchecked Ser vi ceUnavai | abl eExcept i on isthrown.

7.2.1.9. Getting A Hold Of The Managed Service Reference

Spring DM can automatically convert amanaged OSGi service to service reference. That is, if the property into
which a reference bean is to be injected, has type Ser vi ceRef er ence (instead of the service interface supported
by the reference), then the managed OSGi Ser vi ceRef erence for the service will be injected in place of the
service itself:

public class BeanWt hServi ceRef erence {
private ServiceReference servi ceReference
private SomeService service

/] getters/setters onmtted

<reference id="service" interface="com xyz. SoneService"/>

<bean i d="soneBean" cl ass="BeanW thServi ceReference">

<property name="servi ceReference" ref="service"/> O
<property name="service" ref="service"/> ad
</ bean>

O Automatic managed service to Ser vi ceRef er ence CONVErsion.
0 Managed serviceisinjected without any conversion

Note
e The injected Ser vi ceRef er ence is managed by Spring DM and will change at the same time as the
referenced backing OSGi service instance.

There are cases when the managed ServiceReference is needed to get a hold of the OSGi service.
Unfortunately, most of the OSGi frameworks expect their own Ser vi ceRef er ence classes and will fail when
the Spring DM managed reference is used. For such cases, one can get a hold of the native Ser vi ceRef er ence
bound at that moment, by casting the reference object to ServiceReferenceProxy and then calling
get Tar get Ser vi ceRef er ence. Using the example context above, one might use the following code:

Servi ceRef erence nativeReference = ((Servi ceRef erenceProxy)servi ceRef erence). get Tar get Servi ceRef er ence()

Spring Dynamic Modules(1.2.1) 36

The Service Registry

The returned nat i veRef er ence can be safely passed to the OSGi framework however, since it is not managed
by Spring DM, in time, it might refer to a service different then the one backing the imported OSGi service.

To avoid this desynchronization, consider using managed Ser vi ceRef er ence objects mainly for reading the
bound OSGi service properties rather then getting a hold of OSGi services (which can be simply injected by

Spring DM).

7.2.2. Referencing A Collection Of Services

Natural vs custom ordering

Java collection API defines two interfaces for ordering objects - Conpar abl e and Comparator. Thefirst is
meant to be implemented by objects for providing natural ordering. String, Long OF Date are good
examples of objects that implement the Conpar abl e interface.

However, there are cases where sorting is different then the natural ordering or, the objects meant to be
sort do not implement Comparable. To address this cases, Conpar at or interface was designed.

For more information on this subject, please consult the Object ordering chapter from Java collection
tutorial,

Sometimes an application needs access not simply to any service meeting some criteria, but to all services
meeting some criteria. Spring DM allows the matching services may be held in a List or Set (optionally
sorted).

The difference between using a Li st and a Set to manage the collection is one of equality. Two or more
services published in the registry (and with distinct service ids) may be "equal” to each other, depending on the
implementation of equals used by the service implementations. Only one such service will be present in a set,
whereas al services returned from the registry will be present in alist. For more details on collections, see this
tutorial.

The set and 1ist schema elements are used to define collections of services with set or list semantics
respectively.

These elements support the attributes interface, filter, bean-name, cardinality, and
cont ext - cl ass- | oader, with the same semantics as for the r ef er ence element. The allowable values for the
cardinal i ty attributeareo. . Nand 1. . N.

A cardinality value of 0. . n indicates that it is permissible to be no matching services. A cardinality value of
1..n indicates that at least one matching service is required at al times. Such a reference is considered a
mandatory reference and any exported services from the same bundle (ser vi ce defined beans) that depend on a
mandatory reference will automatically be unregistered when the reference becomes unsatisfied, and
reregistered when the reference becomes satisfied again.

The bean defined by a1 i st element is of typej ava. util . List. The bean defined by aset element is of type
java.util. Set.

Note

2 Make sure the Spring DM collections are injected into properties of compatible types (for example
set int0 Set Or Collection) since otherwise the container will automatically perform type
conversion, transforming the Spring DM managed collection into a 'normal’ one, unaware of the
OSGi dynamics.

Spring Dynamic Modules(1.2.1) 37

http://java.sun.com/docs/books/tutorial/collections/interfaces/order.html
http://java.sun.com/docs/books/tutorial/collections/
http://java.sun.com/docs/books/tutorial/collections/interfaces/index.html
http://static.springframework.org/spring/docs/2.5.x/reference/validation.html#beans-beans-conversion
http://static.springframework.org/spring/docs/2.5.x/reference/validation.html#beans-beans-conversion

The Service Registry

The following example defines a bean of type Li st that will contain all registered services supporting the
Event Li st ener interface:

<list id="nyEventListeners" interface="com xyz. EventListener"/>

The members of the collection defined by the bean are managed dynamically by Spring. As matching services
are registered and unregistered in the service registry, the collection membership will be kept up to date. Each
member of the collection supports the service interfaces that the corresponding service was registered with and
that are visible to the bundle.

Spring DM supports sorted collections as well, both for set and list.

It is possible to specify a sorting order using either the conpar at or - ref attribute, or the nested conpar at or
element. The conpar at or - ref attribute is used to refer to a named bean implementing j ava. uti | . Conpar at or .
The conpar at or element can be used to define an inline bean. For example:

<set id="nmyServices" interface="com xyz. MyService"
conpar at or - r ef =" soneConpar at or "/ >

<list id="nyQ herServices"
interface="com xyz. Ot her Servi ce">
<conpar at or >
<beans: bean cl ass="M/Q her Ser vi ceConpar at or"/ >
</ conpar at or >
</list>

To sort using a natural ordering instead of an explicit comparator, you can use the nat ural element inside of
conpar at or . You need to specify the basis for the natural ordering: based on the service references, following
the Ser vi ceRef er ence natural ordering defined in the OSGi Core Specification release 4, version 4.1, section
6.1.23; or based on the services themselves (in which case the services must be Conpar abl e).

<list id="nyServices" interface="com xyz. M/Service">
<conpar at or ><nat ur al basi s="servi ces"/ ></ conpar at or >
</list>

<set id="nyCQ herServices"interface="com xyz. Gt her Servi ce">
<conpar at or ><nat ur al basi s="servi ce-references"/ ></ conpar at or >
</ set >

Note

e For a sorted set, a Sort edSet implementation will be created. However, since the JDK APl does
not provide a dedicated Sor t edLi st interface, the sorted list will implement only the Li st interface.

7.2.2.1. Greedy Proxying

All OSGi servicesimported by a Spring DM service collection publish and are type-compatible with the classes
declared by the i nter f aces property. However, some services might expose additional (optional) classes that
could be relevant to your application.

For these cases, Spring DM collections offer a dedicated attribute called gr eedy- pr oxyi ng which will cause the
creates proxies to use all the classes advertised by the imported services, visible to the consuming importing
bundle. Thus, it is possible to cast the imported proxies to classes different then those specified in the
i nter f aces. For example, with the following list definition:

<list id="services" interface="com xyz. SoneServi ce" greedy-proxying="true"/>

Spring Dynamic Modules(1.2.1) 38

The Service Registry

one can do the following iteration (assuming MessageDi spat cher typeisimported by the bundle):

for (lterator iterator = services.iterator(); iterator.hasNext();) {
SonmeServi ce service = (SoneService) iterator.next();
servi ce. execut eOperation();
/1 if the service inplenents an additional type
// do sonething extra
if (service instanceof MessageDi spatcher) {
((MessageDi spat cher) servi ce). sendAckMessage() ;
}

Note

e Before using greedy proxies and i nst anceof Statements, consider using a different interface/class
for your services which provides better polymorphism and is more object-oriented.

7.2.2.2. Collection (1i st And set) Element Attributes

list and set elements support all the attributes available to r ef er ence element except the ti neout attribute.
See the following table as a summary of theli st and set element attribute names, possible values and a short
description for each of them.

Table 7.3. <list>/<set> attributes

Name Values Description
interface fully qualified class name (such asj ava. | ang. Thr ead) The fully
qualified name

of the class
under which the
object will be

exported.

filter OSGi filter expression (such as ((asynchr onous- del i very=t r ue)) OSGi filter
expression that
is used to

constrain the set
of matching
services in the
service registry.

bean-name any string value Convenient
shortcut for
specifying a

filter expression
that matches on
the bean-name
property that is

automatically
advertised for
beans published
using the
<service>
element.

Spring Dynamic Modules(1.2.1) 39

http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
http://en.wikipedia.org/wiki/Object_oriented

The Service Registry

Name Values Description

context-class-loader client service-provider unmanaged Defines how the
context class
|oader is
managed when
invoking
operations on a
service backing
this service
reference. The
default value is
client which
means that the
context class
loader has
visibility of the
resources on this
bundle's
classpath.
Alternate
options are
servi ce- provi der
which means
that the context
class loader has
visibility of
resources on the
bundle classpath
of the bundle
that exported the
service, and
unmanaged
which does not
do any
management of
the context class

loader.
cardinality 0..N 1.N Defines the

required

cardinality of

the relationship
to the backing
service. If not
specified, the
default-cardinality
attribute will
apply. A vaue
is '"1.N' means
that a backing
service must
exist (this is a

Spring Dynamic Modules(1.2.1) 40

The Service Registry

Name

Values

comparator-ref any string value

greedy-proxying

true

false

Description
mandatory
service
reference). A
value of '0.N'
indicates that it
is acceptable to
be no backing
service (an
optional service
reference).
Named

reference to a
bean acting as
comparator for
the declaring
collection.
Declaring a
comparator
automatically
makes the
declaring
collection
sorted.

Indicates
whether the
proxies created
for the imported
OSGi services
will be
generated using
just the classes
specified
(false) or al
the classes
exported by the
service and
visible to the
importing
bundle (true).
The default
valueisf al se.

The table below lists the attributes available for the conpar at or / nat ur al sub element.

Table 7.4. collection <compar ator > attributes

Name

basis

Values

service

service-reference

Spring Dynamic Modules(1.2.1)

41

The Service Registry

7.2.2.3.1ist [set And OSGi Service Dynamics

A collection of OSGi services will change its content during the lifetime of the application context since it
needs to reflect the state of the OSGi space. As service are registered and unregistered, they will be added or
removed from the collection.

While a reference declaration will try to find a replacement if the backing service is unregistered, the
collection will simply remove the service from the collection. Like ref erence, a collection with cardinality
1..Nis said to be mandatory while a collection with cardinality 0. . N is referred to as being optional. If no
matching service is available then only mandatory collections become unsatisfied. That is if no service is
available invoking an operation on:

« mandatory collection - will throw an unchecked Ser vi ceUnavai | abl eExcept i on.
 optional collection - will not throw any exceptions (however the collection will be empty).

Just like r ef er ence, mandatory collections will trigger the unregistration of any exported service that depends
upon it. See Section 7.5, “Relationship Between The Service Exporter And Service Importer” for more
information.

7.2.2.4. 1terator Contract And Service Collections

The recommend way of traversing a collection is by using an It erat or. However, since OSGi services can
come and go, the content of the managed service collection will be adjusted accordingly. Spring DM will
transparently update all 1t erat or s held by the user so it is possible to safely traverse the collection while it is
being modified. Moreover, the 1 terat ors will reflect al the changes made to the collection, even if they
occurred after the 1t erat or s were created (that is during the iteration). Consider a case where a collection
shrinks significantly (for example a big number of OSGi services are shutdown) right after an iteration started.
To avoid dealing with the resulting 'dead’ service references, Spring DM iterators do not take collection
snapshots (that can be inaccurate) but rather are updated on each service event so they reflect the latest
collection state, no matter how fast or slow the iteration is.

It is important to note that a service update will only influence It erat or operations that are executed after the
event occurred. Services aready returned by the iterator will not be updated even if the backing service has
been unregistered. As a side note, if an operation is invoked on such a service that has been unregistered, a
Ser vi ceUnavai | abl eExcepti on will be thrown.

To conclude, while aref erence declaration will search for candidates in case the backing service has been
unregistered, a service collections will not replace unregistered services returned to the user. However, it will
remove the unregistered services from the collection so future iterations will not encounter them.

Please note that the 1 t er at or contract is guaranteed meaning that next () method always obey the result of the
previous hasNext () invocation.

Table 7.5. Dynamic service collection I t er at or contract

hasNext() returned value next() behaviour

true Always return a non-null value, even when the
collection has shrunk as services when away.

fase per Iterator contract, NoSuchEl ement Exception iS
thrown. This applies even if other services are added

Spring Dynamic Modules(1.2.1) 42

The Service Registry

hasNext() returned value next() behaviour

to the collection

The behaviour described above, offers a consistent view over the collection even if its structure changes during
iteration. To simply refresh the iterator, call hasNext () again. Thiswill force the I terat or to check again the
collection status for its particular entry in the iteration.

In addition, any elements added to the collection during iteration over a sorted collection will only be visible if
the iterator has not already passed their sort point.

7.2.3. Dealing With The Dynamics Of OSGi Imported Services

Whether you are using r ef er ence or set or |i st, Spring Dynamic Modules will manage the backing service.
However there are cases where the application needs to be aware when the backing service is updated.

Such applications, that need to be aware of when the service backing ar ef er ence bean is bound and unbound,
can register one or more listeners using the nested |istener element. This element is available on both
reference and set, | i st declarations. In many respects, the service importer listener declaration is similar to
the service exporter listener declaration (Section 7.1.7, “ Service Registration And Unregistration Lifecycle’).
Thelistener element refers to a bean (either by name, or by defining one inline) that will receive bind and
unbind notifications. If this bean implements Spring DM's
org. spri ngf ramewor k. osgi . servi ce. i nporter. Osgi Servi ceLi fecycl eLi stener interface, then the bind
and unbi nd operations in this interface will be invoked. Instead of implementing this interface (or in addition),
custom bind and unbind callback methods may be named.

An example of declaring alistener that implements Gsgi Ser vi ceLi f ecycl eLi st ener :

<reference id="soneService" interface="com xyz. MessageServi ce">
<listener ref="alListenerBean"/>
</reference>

An example of declaring an inline listener bean with custom bind and unbind methods:

<reference id="sonmeService" interface="com xyz. MessageServi ce">
<li stener bind-nethod="onBi nd" unbi nd- met hod="onUnbi nd" >
<beans: bean cl ass="MCust onli stener"/>
</l|istener>
</reference>

If the listener bean implements the Osgi Servi ceLi fecycl eLi st ener interface and the listener definition
specifies custom bind and unbind operations then both the Csgi Ser vi ceLi f ecycl eLi st ener operation and the
custom operation will be invoked, in that order.

The signature of a custom bind or unbind method must be one of:

public void anyMet hodNane(Servi ceType service, Dictionary properties);
public void anyMet hodNane(Servi ceType service, Map properties);

public void anyMet hodName(Servi ceRef erence ref);

where Ser vi ceType can be any type. Please note that bind and unbind callbacks are invoked only if the backing
service matches the type declared in the method signature(Ser vi ceType). If you want the callbacks to be called
no matter the type, usej ava. | ang. Gbj ect asa Ser vi ceType.

Spring Dynamic Modules(1.2.1) 43

The Service Registry

Theproperties parameter contains the set of properties that the service was registered with.

If the method signature has a single argument of type Ser vi ceRef er ence then the Servi ceRef er ence of the
service will be passed to the callback in place of the service object itself.

When the listener is used with ar ef er ence declaration:

« A hind calback is invoked when the reference is initially bound to a backing service, and whenever the
backing service is replaced by a new backing service.

« An unbind callback is only invoked when the current backing service is unregistered, and no replacement
serviceisimmediately available (i.e., ther ef er ence becomes unsatisfied).

When the listener is used with a collection declaration (set or | i st):

« A bind callback isinvoked when a new service is added to the collection.
< Anunbind callback isinvoked when a service is unregistered and is removed from the collection.

Again note that service collections there is no notion of service rebind: services are added or removed from the
collection.

Bind and unbind callbacks are made synchronously as part of processing an OSGi ser vi ceChanged event for
the backing OSGi service, and are invoked on the OSGi thread that delivers the corresponding OSGi

Servi ceEvent.

The table below lists the attributes available for ther ef erence | i st ener Sub element.

Table 7.6. OSGi <listener> attributes

Name Values Description

ref bean name reference Name based reference to another
bean acting as listener.

bind-method string representing a valid method The name of the method to be
name invoked when a backing service is

bound.
unbind-method string representing a valid method | The name of the method to be
name invoked when a backing service is

bound.

7.2.4. Listener And Service Proxies

While the importer listener provides access to the OSGi service bound at a certain point, it isimportant to note
that the given argument is not the actual service but a proxy. This can have subtle side effects especially with
regards to service class name and identity. The reason behind using a proxy is to prevent the listener from
holding strong reference to the service (which can disappear at any point). Listeners interested in tracking
certain services should not rely on instance equality (==). Object equality (equal s/hashcode) can be used but
only if the backing service has exposed the aforementioned methods as part of its contract (normally by
declaring them on a certain published interface/class). If these methods are not published, the proxy will invoke

Spring Dynamic Modules(1.2.1) 44

The Service Registry

its own method, not the targets. Thisis on purpose since, while the proxy tries to be as transparent as possible,
it is up to the developer to define the desired semantics.

Thus, it is recommended (especially for reference importers) to do tracking based on just the service
interface/contract (not identity), service properties (see org. osgi . f ramewor k. Const ant s#SERVI CE_I D) Orf
service notification (bind/unbind).

7.2.5. Accessing The Caller Bundl eCont ext

It is sometime useful for an imported service to know which bundle is using it at a certain time. To help with
this scenarion, in Spring DM imported services publish the importing bundle Bundl eCont ext through
Local Bundl eCont ext class. Each time a method on the importer is invoked, the caller Bundl eCont ext will be
made available, using a Thr eadLocal , through get | nvoker Bundl eCont ext () .

Please be careful when using this class since it ties your code to Spring DM API.

7.3. Exporter/Importer Listener Best Practices

As mentioned above, Spring DM exporter and importer allow listeners to be used for receiving notifications on
when services are bound, unbound, registered or unregistered. Below you can find some guidance advices when
working with listeners:

» Do not execute long activity tasks inside the listener. If you really have to, use a separate thread for
executing the work. The listener are called synchronously and so try to be as fast as possible. Doing work
inside the listener prevents other the event to be sent to other listeners and the OSGi service to resume
activity.

* Use listener custom declaration as much as possible - it doesn't tie your code to Spring DM APl and it
doesn't enforce certain signature names.

o If find yourself repeating bind/unbind method declarations for your listener definitions, consider using
Spring bean definition inheritance to define a common definition that can be reused and customized
accordingly.

* Preferjava. util. Map instead of java. util. Dictionary class. The first is an interface while the latter is a
deprecated, abstract class. To preserve compatibility, Spring DM will pass to the listeners a map
implementation that can be casted, if needed, toaDi cti onary.

» Be careful when using overloaded methods: al methods matching a certain service type will be called which
is not always expected. Consider the following listener:

public class MListener {
voi d regi ster(OOnj ect service, Map properties);
voi d register(OCol |l ection dataService, Map properties);
voi d regi ster(OSortedSet orderedDataService , Map properties);

0
Obj ect type - will match all services for which the listener is triggered. This method will be always
called.

0
Col | ecti on type - if thismethod is called, the dbj ect_method is also called.

0

Sort edSet type- if thismethod is called, then both the bj ect and ol | ecti on methods are called.

Spring Dynamic Modules(1.2.1) 45

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-child-bean-definitions

The Service Registry

7.3.1. Listener And Cyclic Dependencies

There are cases where an exporter/importer listener needs a reference back to the bean it is defined on:

<bean id="listener" class="cycle.Listener"> O
<property name="target" ref="inporter" /> ad

</ bean>

<osgi:reference id="inporter" interface="SoneService"> O
<osgi : | i stener bind-nethod="bind" ref="Ilistener" /> g

</ osgi : ref erence>

Listener bean

Dependency listener -> importer
Importer declaration
Dependency importer -> listener

B B B B

The declaration above while valid, creates a dependecy between the Ii st ener and the importer it is defined
upon. In order to create the importer, the I i st ener has to be resolved and created but in order to do that, the
importer called servi ce needs to be retrieved (instantiated and configured). This cycle needs to be broken
down so that at least one bean can be fully created and configured. This scenario is supported by Spring DM for
both exporter and importers however, if the listener is defined as a nested bean, the cycle cannot be resolved:

<osgi:reference id="inporter" interface="SoneService">
<osgi : | i stener bind-nmet hod="bi nd">
<bean cl ass="cycl e. Li stener">
<property name="target" ref="inporter" />
</ bean>
</ osgi:listener>
</ osgi : reference>

o I |

OSGi service importer

Dependency between importer -> listener
Nested listener declaration

Dependency nested listener -> importer

o R |

Beans and Cycles

Cyclic dependencies (A depends on B which depends back on A) increase the complexity of your
configuration and in most cases indicate a design issue. What beans should be created and destroyed first
for example? While they are a bad practice, the Spring container makes a best attempt to solve the cyclic
configurations when singletons are involved (since the instances can be cached). However this does not
work all the time and depends heavily on your specific configuration (Can the bean class be partialy
initialized ? Does it rely on special Avar e interfaces? Are BeanPost Pr ocessor S involved?)

The example above will fail since servi ce bean cannot be initialized as it depends on the listener. The same
cycle was seen before but in this case there is subtle yet big different from the container perspective - the
listener is declared as a nested/inner-bean (hence the missing bean i d). Inner beans have the same life cycle as
their declaring parents and do not have any name. By definition, they are not tracked by the container and are
simply created on demand. Since the importer cannot be partialy created and the nested listener cannot be
cached, the container cannot break the cycle and create the beans. While the two configurations shown above
seem similar, one works while the other does not. Another reason to not use cycles unless you really, really
have to.

To conclude, if you need inside the listener to hold a reference to the exporter/importer on which the listener is

Spring Dynamic Modules(1.2.1) 46

The Service Registry

declared, either declare the listener as atop-level bean (as shown before) or consider doing dependency |ookup.
However, the latter approach requires extra contextual information such as the BeanFact or y to use and the bean
name and is more fragile then dependency injection.

Note

s

"8

For those interested in the technical details, neither the exporter and importer cannot be partially
initialized since they require the application context ¢ assLoader which is requested through the
Beand assLoader Awar e Which relies on a buit-in BeanPost Processor which is applied only after
the bean has been configured and is ready for initialization. If the d assLoader was not required
then the exporter/importer could have been partially initialized and the case above supported.

7.4. Service Importer Global Defaults

The osgi namespace offers two global attributes for specifying default behaviours for al importers declared in
that file.

Thus, when using the osgi hamespace to encloseset , | i st Or ref er ence elements, one can use:

e defaul t-ti meout - can be used to specify the default timeout (in milliseconds) for al importer elements that
do not explicitly specify one. For example:

<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: osgi ="http://wwm springframework. or g/ schema/ osgi " 0
osgi : defaul t-ti neout ="5000"> a
<reference id="soneService" interface="com xyz. AService"/> ad

<reference id="soneQt her Servi ce" interface="com xyz. BService"
ti meout ="1000"/ > 0

</ beans: beans>

0 Declareosgi namespace prefix.

Declare def aul t - ti meout (in miliseconds) on the root element. If the default is not set, it will have a

value of 5 minutes. In this example, the default value is 5 seconds.

O This reference will inherit the default timeout value since it does not specify one. This service
reference will have atimeout of 5 seconds.

0 Thisreference declares a timeout, overriding the default value. This service reference will have a
timeout of 1 second.

|

e defaul t-cardinality - can be used to specify the default cardinality for all importer elements that do not
explicitly specify one. Possible valuesare 0. . X and 1. . X where X is substituted at runtimeto 1 for ref erence
elements or N for collection types such asset or | i st.

Consider the following example:

<beans: beans

xm ns="http://wwm. springframework. or g/ schema/ osgi " O

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns: beans="http://ww. spri ngfranmewor k. or g/ schena/ beans" O
xm ns: osgi ="http://ww. springfranmewor k. org/ schena/ osgi " ad
osgi :default-cardinality="0..X" O
default-lazy-init="fal se"> O
<reference id="soneService" interface="com xyz. AService"/> O

Spring Dynamic Modules(1.2.1) 47

The Service Registry

<set id="sonmeSet O Service" interface="com xyz.BService"/> 0
<list id="anotherListCf Services" interface="com xyz.CService" cardinality="1..N'/> a

</ beans: beans>

O Declare Spring Dynamic Modules schema as the default namespace.

O Import Spring Framework beans schema and associate a prefix with its namespace (beans in this
example).

O Import Spring Dynamic Modules schema and associate a prefix with its namespace (osgi in this
example). This is required since the global attributes have to be declared to an element (beans)
belonging to another schema. To avoid ambiguity, the Spring DM schemais imported under a specified
prefix as well.

0 Declaredefaul t-cardinal ity ontheroot element. If the default is not set, it will haveavaueof 1. . N.
In this example, the default valueiso. . N. Notethe osgi prefix added to the global attribute.

O beans element attributes (such as def aul t -1 azy-init) do not need a prefix since they are declared as
being local and unqualified (see the beans schema for more information).

O Thereference declaration will inherit the default cardinality value since it does not specify one. As
ref er ence represents asingle service, its cardinality will beo. . 1.

0 Theset declaration will inherit the default cardinality value since it does not specify one. As set (or
l'i st) represents a collection of service, its cardinality will beo. . N.

O Thelist declaration specifiesits cardinality (1. . N), overriding the default value.

The def aul t -* attributes allow for concise and shorter declarations as well as easy propagation of changes
(such asincreasing or decreasing the timeout).

7.5. Relationship Between The Service Exporter And Service
Importer

An exported service may depend, either directly or indirectly, on other servicesin order to perform its function.
If one of these services is considered a mandatory dependency (has cardinality 1. . x) and the dependency can
no longer be satisfied (because the backing service has gone away and there is no suitable replacement
available) then the exported service that depends on it will be automatically unregistered from the service
registry - meaning that it is no longer available to clients. If the mandatory dependency becomes satisfied once
more (by registration of a suitable service), then the exported service will be re-registered in the service

registry.

This automatic unregistering and re-registering of exported services based on the availability of mandatory
dependencies only takes into account declarative dependencies. If exported service s depends on bean A, which
in turn depends on mandatory imported service M and these dependencies are explicit in the Spring
configuration file as per the example below, then when M becomes unsatisfied s will be unregistered. When m
becomes satisfied again, s will be re-registered.

<osgi:service id="S" ref="A" interface="Sonelnterface"/>

<bean id="A" cl ass="Sonel npl enent ati on">
<property name="hel per Servi ce" ref="M/>
</ bean>

<l-- the reference elenent is used to refer to a service
in the service registry -->

<osgi :reference id="M interface="Hel perService"
cardinality="1..1"/>

Spring Dynamic Modules(1.2.1) 48

The Service Registry

If however the dependency from A on mMis not established through configuration as shown above, but instead at
runtime through for example passing a reference to Mto A without any involvement from the Spring container,
then Spring Dynamic Modules will not track this dependency.

Spring Dynamic Modules(1.2.1) 49

Chapter 8. Working With Bundles

Spring DM offers a dedicated schema element for interacting with existing bundles or for installing new ones.
While it is not intended to be used as a replacement for proper OSGi services, the bundl e element offers avery
easy way of executing actions on bundles based on the lifecycle of the application context.

The bundl e element defines a bean of type or g. osgi . f ramewor k. Bundl e. It provides a ssimple way to work
directly with bundles, including driving their lifecycle. In the simplest case all you need to do is specify the
synbol i c- name of the bundle you are interested in:

<bundl e id="aBundl e" synbolic-nanme="org. xyz. abundl e"/ >

The bean aBundl e can now be injected into any property of type Bundl e.

If the needed bundle is not installed, one can use Iocation attribute to indicate instal or/and the
action/destroy-action attributes provide declarative control over the bundle's lifecycle. The 1ocation
attribute is used to specify a URL where the bundle jar file artifact can be found. The act i on attribute specifies
the lifecycle operation to be invoked on the bundle object. The supported action values are i nstal |, start,
updat e, st op, and uni nstal | . These actions have the same semantics as the operations of the corresponding
names defined on the Bund! e interface (see the OSGi Service Platform Core Specification), with the exception
that pre-conditions are weakened to alow for example a start action to be specified against a bundle that is not
currently installed (it will beinstalled first).

The following table shows how actions are interpreted for the given Bundle states:

Table 8.1. <bundle> acti on values

Action UNI NSTALLED | NSTALLED/ RESOLVED ACTI VE

START installs and starts the startsthe bundle no action taken, bundle
bundle already started

UPDATE installs the bundle and | updatesthe bundle updates the bundle
then updates it
(‘Bundle.update())

SsTOP no action taken no action taken bundleis stopped

UNI NSTALL no action taken bundleis uninstalled bundle is stopped and

then uninstalled
For example:
<l-- ensure this bundle is installed and started -->

<bundl e i d="aBundl e" synbol i c-nanme="org. xyz. abundl e"
| ocation="http://ww.xyz. conl bundl es/ org. xyz. abundl e. j ar"
action="start"/>

The following table lists the bundl e element attributes names, possible values and a short description for each
of them:

Table 8.2. <bundle> attributes

Spring Dynamic Modules(1.2.1) 50

Working With Bundles

Name Values

symbolic-name any valid symbolic-name String

location String that can be converted into an URL

action start stop install uninstall update

destroy-action | (same as action)

Description
The symbolic
name of the
bundle object.
Normally
used when
interacting
with an
aready
installed
bundle.

L ocation used
to instal,
update or/and
identify a
bundle.
Lifecyle
action to
drive on the
bundle. The
action is
executed at
startup.
Lifecyle
action to
drive on the
bundle. The
action is
executed at
shutdown.

The samples that ship with the Spring Dynamic Modules project include further support for avi rt ual - bundl e

element that can be used to create and install OSGi bundles on the fly from existing artifacts.

Spring Dynamic Modules(1.2.1)

51

Chapter 9. Web Support

OSGi bundles and WARSs

Web ARchives, or in short WARs, are specialized JAR for packaging web applications. Since the same
archive format is used (Java ARchive), each war can be considered an OSGi bundle if the proper OSGi
manifest entries are present. Note that it is not required for abundle to have a. j ar file extension, which
means . war filescan beinstalled just aswell.

Deployment scenarios

Users new to OSGi can benefit greatly from the SpringSource dm Server documentation which explains
how OSGi can work in various development and production scenarios.

A major feature introduced in the 1.1.0 release is support for web applications which enables easy deployment
of web artifacts to OSGi.

The biggest problems in running web applications in OSGi involve resource and class loading; there is no
notion of bundle space or imported packages in a web application. Each web container has its own class
loading hierarchy and classpath assumption which can conflict with the OSGi space. Spring DM addresses
these problems by bridging the web container and the OSGi space so loading is no longer a concern. Uniquein
its functionality, the web support in Spring DM integrates directly with the web container so the WAR
processing is literally handled by the server, giving full access to its configuration and
capabilities(non-blocking vs blocking 10, thread pool, specification support (Servlet 2.3, 2.4, 2.5) and so on).
The entire web. xni syntax is supported (without any parsing on Spring DM behalf), as well as any custom
configuration file particular to the target container. In short, everything that the target container supports is
available to the OSGi WAR through Spring DM.

Tip
e As a complement to this chapter, the Spring DM distribution contains a number of web samples
involving static resources, Servlets and JSPs running inside OSGi.

Note
" For more information on web applications on Java platform, please see the Servlet home page.

9.1. Supported Web Containers

Currently, Spring DM supports Apache Tomcat 5.5.x/6.0.x and Jetty 6.1.8+/6.2.x out of the box (other
containers can be easily plugged in). The web support is JDK 1.4 compatible. Please check the chosen
container requirements for more information on the required VM. In general, Servlet 2.4/JSP 2.0 require JDK
1.4 while Servlet 2.5/JSP 2.1 require JDK 1.5.

9.2. Web Support Usage

Spring Dynamic Modules(1.2.1) 52

http://en.wikipedia.org/wiki/WAR_%28file_format%29
http://www.springsource.org/dmserver
http://java.sun.com/products/servlet/
http://tomcat.apache.org
http://jetty.mortbay.org/

Web Support

WAR vs Web Application

This document understand by web application an instance of aWAR: a WAR is a definition while aweb
application a runtime instance of a definition. This is similar to the difference between a class and an
object: the class represents a (bytecode) definition while the object, the instance of a class.

Just like with non-WAR bundles, Spring DM Web uses the extender pattern to detect and install WARs.
However, one crucia difference from the standard Spring DM Extender is that Spring DM will only trigger the
install and uninstall of the WAR - the actual web application creation and thread management is delegated to
the web container in which the WAR is installed. That is, Spring DM Web only dictates when a WAR is
deployed to and undeployed from a web container; it is up to the web container to create and manage the
equivalent web application.

To use Spring DM Web, install:

* spring-osgi-web.jar - Spring DM web support

* spring-osgi - web- ext ender . j ar - Spring DM web extender

bundles to detect started OSGi WAR bundles and to deploy them to one of the supported web containers. Note
that the web extender consider awar a bundle that has trailing . war in itslocation or contains a VEB- | NF entry.
By default, Tomcat will be used but this can be changed to Jetty or to another custom server. When the war
bundle is stopped, Spring DM will also stop and uninstall the web application associated with it. Different from
traditional web development, the Servlet classes need to be explicitly imported as the OSGi class path always
takes priority (see below).

Since, when running a web application, it's the web container that does the bootstrapping and instantiation,
there is no need to place the Spring .xml files under META- 1 NF/ spri ng or use the Spring DM manifest entries.
Simply bundle your files in the WAR and use your web framework (or Servl et §/Li st ener S) to bootstrap the
Spring container. See Section 9.7, “Spring-MVC Integration” for Spring-MVC integration and/or Spring
reference documentation for more information. These being said, the Spring Extender is still required as it
performs namespace handlers discovery - without it, it would not be possible to use Spring namespaces (like
osgi :, aop: Or evenbeans: for that matter).

9.3. WAR Classpath In OSGi

The servlet specification defines a number of rules and locations which special meaning inside a WAR. This
section will explain how these are handled in an OSGi environment.

9.3.1. Static Resources

When installing a WAR bundle, for static resources, Spring DM will only consider what is available in the
bundle space - this means what is available in the bundle jar and its attached fragments. Conforming to the
Servlet spec, resources under WeB- | NF folder will be available through the Servi et Cont ext API but not to
remote clients connecting to the web application. In addition, any resource available in the classpath (imported
packages, required bundles or dynamic imports) can be loaded and used by the application code but cannot be
seen outside of it.

9.3.2. Servlets

Spring Dynamic Modules(1.2.1) 53

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#context-create

Web Support

The main difference from the traditional WAR deployment is that the Servlet packages need to be imported so
they are available to the WAR bundle. To do that, add the following packagesto the | nport - Package entry:

| nport - Package: javax.servlet,javax.servlet.http,javax.servlet.resources

Additionally, the servlet specification defines the classpath of a WAR, based on some predefined locations. To
quickly recap, these are:

* \WEB- | NF/ cl asses - all resources under VEB- | NF/ ¢l asses
e WEB-INF/lib/*.jar -all jarsunder VEB- I NF/ i b

In addition, each container implementation can provide common libraries that are appended to the war
classpath. Since OSGi, with its class wiring, versioning, reloading, superseeds the WAR classpath, Spring DM
will ignore the WAR predefined locations and will always use the OSGi classpath instead. This means that
classes imported by a WAR bundle can be used even if they are not present under WEB- | NF/ cl asses folder or
inside ajar under VEB- | NF/ 1 i b. This also means that any class under WEB- | NF/ cl asses Will not be considered
if it's not available in the WAR OSGi classpath.

One of the easiest ways to support the pre-defined WAR locations, is to add them to the bundle classpath, by
adding them to the bundle manifest:

Bundl e- C asspat h: ., VEB- | NF/ cl asses, WEB- I NF/ | i b/ sone. jar, WEB-I NF/lib/lib.jar

Make sure the default Bundl e- d asspat h location (.) is present and there are no whitespaces between the
commeas.

Note

e Since the OSGi API doesn't provide a hook for bundles to be pre-processed, Spring DM cannot
automate this process in a reliable way. However, we are working on finding a suitable solution.
Note that there are tools (bnd) that can add these entries during packaging.

Before creating entries for embedded libraries, consider whether they can be installed as OSGi bundles - doing
so allows them to be shared with other WARs if needed and since OSGi allows versioning, it is perfectly okay
to have multiple versions of the same library inside the same VM.

9.3.3. Java Server Pages

For JSPs, Spring DM integrates with Tomcat Jasper 2 Engine which means JSP 1.2, 2.0 and 2.1 are supported.
OSGified versions for Jasper (from Tomcat 5.5.x and 6.0.x distribution respectively) are available in the Spring
DM OSGi repository. No imports on Jasper classes are required for the OSGi bundle.

9.3.3.1. Tag Libraries

The JSP spec alows the creation of tag libraries to “ define declarative, modular functionality that can be reused
by any JSP page’. Also known as taglibs, these reusable components consist of Java classes (the tag
implementation) and description files that indicate how the tags can be used. Spring DM extends the JSP
convention, of placing the taglibs either packed as a jar under WEB-INF/1ib or unpacked under
VEB- | NF/ ¢l asses, by detecting any taglib defined in the bundle classpath (imported packages or required
bundles).

Spring Dynamic Modules(1.2.1) 54

http://java.sun.com/products/servlet/
http://java.sun.com/products/servlet/reference/api/index.html
http://www.aqute.biz/Code/Bnd
http://java.sun.com/products/jsp
http://en.wikipedia.org/wiki/Tomcat_Jasper

Web Support

Spring DM will automatically look for any taglib file (*. t1d) available in the bundle classpath and will make
them available to the Jasper engine. However, while the tag definitions are automatically discovered, the tag
classes are not - again, the OSGi classpath takes priority. This means that in order to use a tag, the war bundle
would have to import the tag corresponding classes since otherwise, they are not seen by the bundle and the tag
cannot be used.

When dealing with libraries that export a lot of tags, one can use the Require-Bundl e header instead of
I npor t - Package for importing the tags:

Requi re- Bundl e: org. springfranework. osgi .jstl.osgi

Using the manifest entry above, all the classes (and thus tag implementations) exported by the JSP Standard
Tag Library (or JSTL in short), are seen by the war bundle and thus can be used inside the JSPs.

=] Warning
Before using Requi re- Bundl e 0n a large scale, please read the OSGi specification (section 3.13)
for an in-depth review of itsimplications.

No matter what mechanism you decide to use for the war classpath, due to the OSGi capabilities, it is possible
to create libraries that are shared between multiple WARs while having full control over the used packages.
Each bundle can import only the packages (and the versions) needed not an entire library jar - in fact, packages
from different bundles/jars can be selectively used to obtain the desired behaviour - a very powerful capability
which should make web application deployment easier.

9.4. Configuring The Web Extender

Just like the core extender, the web extender can be configured by using OSGi fragments. Following a similar
pattern, the web extender looks for all XMLs under META- | NF/ spri ng/ ext ender folder in its bundle space and
assembles them into an application context that is used internally as its configuration. To override a default
setting of the web extender, ook up the appropriate bean name from the table below, define it in a suitable
manner and then attach it as a fragment to the spri ng- osgi - web. j ar, Using:

Fragnent - Host : org. spri ngfranmewor k. osgi . web. ext ender
The following beans are currently recognized by the web extender:

Table9.1. Web Extender Configuration Options

Bean Type Role Default Default Behaviour
Name Class

war Depl oyemar Depl oyerdnstalls OSGi bundles as web Toncat var Ddpistalls OSGi WARs to Tomcat

a applications. The deployers takes b 5.5.x/6.0.x. The servers needs to be
care of locating the required web installed, started and published as
container and installing and OSGi services as explained here.

uninstalling web applications.

cont ext Pat Itatintabedat M3etaneigeS the context path Def aul t ContRetupPastes cantgyt’path of the war

associated with an OSGi based on the Wweb- ContextPath
bundle/lWAR. The returned path is manifest header or (if missing), the
used by the war deployer to install file name from the bundle location,

Spring Dynamic Modules(1.2.1) 55

http://java.sun.com/products/jsp/jstl/index.jsp

Web Support

Bean Type Role Default Default Behaviour
Name Class

the war application. faling back to the bundle name
and bundle symbolic name
respectively. If neither of these is
present, the bundle object identity
will be used.

3Part of or g. spri ngf r amewor k. osgi . web. depl oyer package
bPal’t of org. spri ngfranmewor k. osgi . web. depl oyer . t ontat package
cF’al’toforg.springfranemmk.osgi.web.deployer.support package

Note that to properly support wars, whether they are using Servlet 2.5 or not, the Spring DM web extender
considers as WARs bundles that containsa. war extension.

9.4.1. Changing The War Deployer

To change the Tomcat deployer to Jetty for example, one can create a configuration file
META- | NF/ spri ng/ ext ender/ j et t y- depl oyer . xm with the following content:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http: // ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean i d="war Depl oyer" O
cl ass="org. springframewor k. osgi . web. depl oyer.jetty. JettyWarDepl oyer" /> O
</ beans>

0 Pre-defined bean name used by the web extender
0 Beanimplementing or g. spri ngf r amewor k. osgi . web. depl oyer . War Depl oyer interface

Once the file is created, it should be bundled in an OSGi fragment attached to the Spring DM Web Extender
bundle by adding the Fr agnent - Host header:

Fragment - Host : org. spri ngframewor k. osgi . web. ext ender

Now the fragment can be deployed alongside spri ng- osgi - web. j ar bundleto plug in Jetty.

A pre-packed Jetty fragment is avalable in the Spring DM maven repository under
jetty.web. extender. fragnent. osgi artifactld (make sureto useversion 1.0.1+).

9.5. Customizing The Standard Deployers

By default, the out of the box deployers look up the needed services, at startup. As the services are considered
mandatory, the deployers will wait for them and, in case they are not found, will throw an exception. In cases
where the default timeout or service lookup filter is not be appropriate, one can customize the service used
through a Spring DM reference:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://wwmw. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: osgi ="http://wwmv. springframework. or g/ schema/ osgi "
xm ns: p="http://ww.springfranmework. org/ scherma/ p" ad
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans

Spring Dynamic Modules(1.2.1) 56

Web Support

http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranmework. or g/ schema/ osg
http://ww. springfranmework. or g/ schenma/ osgi / spri ng- osgi . xsd" >

<osgi : reference id="nyTontat Server" 0
i nterface="org. apache. catal i na. Servi ce"
filter="(environnment=testing)"
cardinality="0..1"/>

<bean i d="war Depl oyer" O
cl ass="org. spri ngfranmewor k. osgi . web. depl oyer. t ontat . Tontat War Depl oyer"
p: servi ce-ref ="nyToncat Server"/ > O
</ beans>

User defined OSGi service lookup

Deployer definition (name isimportant)

Service property assignment (through p hamespace)

Spring's p namespace declaration - see this blog entry for more information

Oo0Ooo

Make sure to add the packages on which your configuration depends to the fragment manifest (since the web
extender bundle imports only the packages it needs. Spring DM web support's). For the example above, one
must import Catalina Ser vi ce's package. Since the Ser vi ce interface signature depends on the Connect or class
from another package, its package needs to be imported as well - not doing so results in
Cl assNot FoundExcept i on/ NoCl assDef FoundErr or S

Catal i na packages

I mport - Package: org. apache. catalina, org. apache. catal i na. connect or
Spring DM Web Ext ender

Fragnment - Host : org. spri ngfranmewor k. osgi . web. ext ender

9.6. OSGi-ready Libraries And Web Development

Unfortunately, at the moment most libraries used for web development are not OSGi bundles, which means
they cannot be used inside the OSGi space unless they are embedded in other bundles. To address this problem,
the Spring DM project has osgified most of the common libraries and made them available through a dedicated
Maven repository (which can be found in the appendix). Please note that the current repository, for now, is
provided as-is without any support. These being said, we hope you find it useful.

9.6.1. Deploying Web Containers As OSGi Bundles

Spring DM web support expects the web containers to be installed as OSGi services. Since neither the Tomcat
nor the Jetty distribution do this, Spring DM offers two simple yet useful OSGi Activators for both containers
at the Spring DM OSGi repository. Once installed, these will programmatically start the appropriate web
container based on a default configuration (which can be customized and publish it as an OSGi service. While
the activators are generic, they can be easily customized for advance usages or even replaced - it's up to each
deployer to decide how the server instances are looked up.

Note
A" The activator binaries and sources can be found either in the Spring DM repository (see below) or
under thel i b/ folder inside the Spring DM (wi t h- dependenci es) distribution

All entries in the repository belong to the or g. spri ngf r amewor k. osgi group and have an . osgi termination to
differentiate them from the origina jars.

Spring Dynamic Modules(1.2.1) 57

http://blog.springsource.com/main/2006/11/25/xml-syntax-sugar-in-spring-20/
http://www2.osgi.org/javadoc/r4/org/osgi/framework/BundleActivator.html

Web Support

9.6.1.1. Tomcat 5.5.x/6.0.x

Apache Tomcat version 5.5.x and 6.0.x are available as OSGi artifacts in the repository under cat al i na. osgi
artifactld. The jars require only commons-logging, IMX and Servlet/JSP libraries to be present.

In addition to the Catalina artifacts, the repository contains also a Tomcat activator (that works with both 5.5.x
and 6.0.x versions) named cat al i na. osgi . start . The activator understands Tomcat XML configuration and
contains a default, minimal setup that starts the server on | ocal host, port 8080. This behaviour can be
customized by placing the desired configuration (which will override the default one) under conf/ server. xm

location (following the Tomcat folder layout) in afragment attached to the Tomcat activator.

To attach fragments to the Tomcat activator, specify the following host name in the fragment manifest:

Fragnent - Host : org. springfranmework. osgi .catalina.start. osgi

9.6.1.2. Jetty 6.1.8+/6.2.0

Since Jetty is OSGi-ready by default, the officia distribution can be installed without any
transformation/processing on the OSGi platform. However, since there is no activator, Spring DM provides
one, similar in functionality to the one available for Tomcat. The activator hasjetty. start. osgi asartifact id.
Similar to the Tomcat case, a default configuration bundle (named j etty. et c. osgi) is provided for starting a
Jetty instance on I ocal host, port 8080. To change the defaults, place your Jetty configuration under
etc/jetty. xm location (either by updating the provided bundle by using a custom one).

To attach fragments to the Jetty activator, specify the following host name in the fragment manifest:

Fragnment - Host : org. spri ngframework. osgi .jetty.start. osgi

Just like the extender, each activator uses a default configuration which can be overridden by the user. For the
latter case, one should use fragments (as mentioned above) to provide a customized configuration and to avoid
modifying the distribution jar.

9.6.2. Common Libraries

The Servlet, Java Server Pages, Standard Taglib, Commons-EL and other web libraries are available as well in
the Spring DM repository. When browsing use an S3 compatible application .

9.7. Spring-MVC Integration

Since 1.1, Spring DM integrates closely with Spring-MVC framework. This section details how Spring-MVC
applications can be run into OSGi environments (it is assumed the reader is familiar with Spring-MVC
concepts and APIs).

In order to be properly used inside an OSGi platform, a Spring-MV C application needs to adapt to its new
environment. Spring DM provides a dedicated, OSGi-aware, web application context (called
Osgi Bundl eXnl WebAppl i cat i onCont ext) that offers the same functionality and behaviour to its Spring-MVC
brethren, xm WebAppl i cati onCont ext . The application context is aware of the web application Bundl eCont ext
and thus is able to load resources from the OSGi space, import and export OSGi services and support the
Bundl eCont ext Awar e and component scanning across the bundles included in the classpath.

To use this application context instead of the default one, use the cont ext C ass parameters supported by

Spring Dynamic Modules(1.2.1) 58

http://aws.amazon.com/s3
http://static.springframework.org/spring/docs/2.5.x/reference/mvc.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/web/context/support/XmlWebApplicationContext.html

Web Support

Spring's Cont ext Loader Li st ener and Di spat cher Ser vl et inside your web application WEB- | NF/ web. xni :

<cont ext - par an>

<par am nane>cont ext Cl ass</ par am nane>

<par am val ue>org. spri ngf ramewor k. osgi . web. cont ext . support. Csgi Bundl eXm WebAppl i cat i onCont ext </ par am val ue>
</ cont ext - par an>

<listener>
<l istener-class>org. springfranmewor k. web. cont ext. Cont ext Loader Li stener</|i stener-cl ass>
</listener>

<servl et >
<servl et - nane>pet cl i ni c</ servl et - nane>
<servl et -cl ass>org. springfranewor k. web. servl et. Di spat cher Servl et </ servl et-cl ass>
<l oad- on- st art up>2</ | oad- on- st art up>
<i nit-parane
<par am nanme>cont ext Cl ass</ par am nane>
<par am val ue>org. spri ngf ramewor k. osgi . web. cont ext . support. Gsgi Bundl eXm WebAppl i cat i onCont ext </ par am val ue>
</init-parank
</ servl et >

(|

Name of the context-param used by Spring's Cont ext Loader Li st ener to determine the root web
application context type

Fully qualified name of the OSGi-aware web application context class

Spring configuration bootstrap listener

Spring MV C front controller

Name of the i ni t - par amused by Spring's b spat cher Servl et to determine the web application context

type

[B B

With this configuration, deployed Spring-MV C bundles will be able to look up the existing Bundl eCont ext and
be aware of the OSGi environment.

Note

" You still need to add the proper package imports to your Spring-MVC application - the WAR is
still abundle after all which means without the proper manifest entries, it will have an invalid class
path and will not be able to work properly.

Spring Dynamic Modules(1.2.1) 59

Chapter 10. Compendium Services

The OSGi Service Platform Service Compendium specification defines a number of additional services that
may be supported by OSGi implementations. Spring Dynamic Modules supports an additional "compendium”
namespace that provides integration with some of these services. By convention, the prefix osgi x is used for
this namespace:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns="http://ww. spri ngfranmework. or g/ schena/ osgi "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: Oosgi x="htt p://ww. spri ngframewor k. or g/ schema/ osgi - conpendi unt O
xm ns: beans="http://ww. spri ngfranmewor k. or g/ schena/ beans"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schena/ osgi
http: //ww. spri ngfranewor k. or g/ schena/ osgi / spri ng- osgi . xsd
htt p: // ww. spri ngf ranewor k. or g/ schena/ osgi - conpendi um O
http://ww. springframework. or g/ schema/ osgi - conpendi uni spri ng- osgi - conpendi um xsd
http://ww. springframework. or g/ scherma/ beans
http: // ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<l-- use the OSG nanespace elenents directly -->
<servi ce id="sinpleServiceGCsgi" ref="sinpleService"
interface="org. xyz. MyServi ce" />

<l-- qualify conpendi um nanespace el enents -->
<osgi x: cm properties id="cm' persistent-id="com xyz. nmyapp"/>

</ beans: beans>

O Compendium namespace declaration (bound to osgi x prefix)
O Schemalocation (namespace URI)
O XML schemato use for the compendium namespace

At present this namespace provides support for the Configuration Admin service. Support for other
compendium services may be added in future rel eases.

10.1. Configuration Admin

One of the most important compendium services, is the Configuration Admin which, as a name implies,
provides configuration to interested bundles through the OSGi service registry. Spring DM provides dedicated
support for Configuration Admin (CM), allowing consumption and injection of the configuration data in a
declarative way.

10.1.1. Exposing Configuration Admin Entries As Properties

In its smplest form, the CM can be seen as a configuration source, namely a Di cti onary whose keys are
always st ri ngs. Spring DM can expose entries in the CM as aProperti es object, through the cm properti es
element. A minimal declaration looks as follows:

<osgi x:cmproperties id="ds.cfg" persistent-id="data.source.office.1"/>

The configuration above, exposes the properties available in the CM under data.source.office.1 entry as a bean
named ds.cfg.

Note

-

e

The persistent-id attribute must refer to the persistent-id of an OSGi ManagedServi ce, it is a

Spring Dynamic Modules(1.2.1) 60

http://www.osgi.org/javadoc/r4v401/org/osgi/service/cm/package-summary.html

Compendium Services

configuration error to specify afactory persistent id referring to a ManagedSer vi ceFact ory.

Those familiar with Spring's util namespace will find <osgi:cmproperties/> element similar to
<util:properties/>.

It is possible to specify a default set of property values to be used in the event that the configuration dictionary
does not contain an entry for a given key. The declaration is similar to the props element inside the Spring
beans namespace:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns="http://ww. spri ngframework. or g/ schena/ osgi - conpendi unt'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: beans="http://ww. spri ngfranmewor k. or g/ schena/ beans"
xm ns: osgi x="http://wwmv springfranmewor k. or g/ schenma/ osgi - conpendi unt'
xsi : schemalLocat i on="
htt p: // ww. spri ngf ranewor k. or g/ schena/ beans
http: //ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ osgi - conpendi um
http://ww. springfranmework. or g/ schema/ osgi - conpendi uni spri ng- osgi - conpendi um xsd" >

<osgi x:cmproperties id="cfg.w th.defaults" persistent-id="data.source.office.2">
<beans: prop key="host ">l ocal host </ beans: pr op>
<beans: prop key="port">3306</ beans: prop>

</ 0sgi x: cm properties>

</ beans: beans>

By default, the properties found in the Configuration Admin entry will override the local properties. Thus, for
the previous example, if the dat a. sour ce. of fi ce. 2 configuration contains a host entry, its value will override
the locally defined | ocal host . For cases where this behaviour is undesired, the attribute 1 ocal - overri de

(default f al se) allows one to revert the merging agorithm, forcing the local properties to override the entriesin
the CM.

Since cmproperties exposes the CM entries as Properties, it can be used with Spring's
PropertyPl acehol der Configurer and PropertyOverrideConfigurer to externaize and customize
environment-specific properties:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: osgi x="http://wwm. springframework. or g/ scherma/ osgi - conpendi unt
xm ns: ctx="http://ww:. springframework. org/ schema/ cont ext "
xsi : schemalLocat i on="
http://ww. springfranmework. or g/ scherma/ beans
http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http: // ww. spri ngfranewor k. or g/ schena/ cont ext / spri ng- cont ext . xsd
http://ww. springframework. or g/ schema/ osgi - conpendi um
http://ww. springfranmework. or g/ schenma/ osgi - conpendi uni spri ng- osgi - conpendi um xsd" >

<!-- Configuration Admn entry -->

<osgi x: cm properties id="cnProps" persistent-id="com xyz.nyapp">
<prop key="host ">l ocal host </ pr op>

</ 0sgi x: cm properties>

<!-- placehol der configurer -->
<ct x: property-pl acehol der properties-ref="cnProps" />

<bean i d="dataSource" ...>
<property nane="host" val ue="${host}"/>
<property name="tinmeout" val ue="${tinmeout}"/>
</ bean>

</ beans>

Spring Dynamic Modules(1.2.1) 61

http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html#xsd-config-body-schemas-util
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-placeholderconfigurer
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-overrideconfigurer

Compendium Services

An important aspect of cm properti es is does not reflect any that any subsequent changes made to the entry it
represents, made through the Configuration Admin API. That is, once resolved, the cm properties content
remains the same, regardless of any updates made the to CM entry it represents.

10.1.2. Managed Properties

Based on a configuration admin entry, Spring DM can autowire by name, the properties of a given bean. To use
this feature, define a nested nanaged- pr operti es inside the bean definition:

<bean i d="nmanagedConponent" cl ass="MessageTank" >
<osgi x: managed- properties persistent-id="com xyz. nessageservi ce"/>
</ bean>

For each key in the dictionary stored by Configuration Admin under the given persistent id, if the bean type has
a property with a matching name (following JavaBeans conventions), then that component property will be
dependency injected with the value stored in Configuration Admin under the key. If the definition of
Somed ass from the example aboveis as follows:

public class MessageTank {
private int anount;
public int getAmount() { return this.anount; }
public void set Amount (i nt amount) { this.amount = anpunt; }

}

and the configuration dictionary stored under the pid com xyz. nessageser vi ce contains an entry amount =200,
then the set Amount method will be invoked on the bean instance during configuration, passing in the value 200.

If a property value is defined both in the configuration dictionary stored in the Configuration Admin service
and in a property element declaration nested in the component element, then the value from Configuration
Admin takes precedence:

<bean i d="managedConponent" cl ass="MessageTank" >
<osgi x: managed- properties persistent-id="com xyz. messageservice"/>
<property name="anount" val ue="100"/>
<property name="t hreshol d' val ue="500"/>

</ bean>

Property values specified via property elements can therefore be treated as default values to be used if noneis
available through Configuration Admin.

=] Warning
Do not share the same persistent-id (PID) between multiple bundles or definitions, as only one of
them will receive notifications. managed- properties relies on
org. osgi . servi ce. cm ManagedServi ce contract which mandates that each ManagedService
instance must be identified with its own unique PID. Please see the Configuration Admin spec,
specifically section 104.3 and 104.5

10.1.2.1. Configuration Admin Runtime Updates

A powerful feature of Configuration Admin is the ability to update (or delete) entries at runtime. That is, the
configuration data stored in Configuration Admin may be updated after the bean has been created. By defaullt,
any post-creation updates will be ignored. However, one can configure managed- pr operti es element to receive
configuration updates through the updat e- st r at egy attribute, which can have a value of either bean- managed
Or cont ai ner - mranaged.

Spring Dynamic Modules(1.2.1) 62

Compendium Services

bean- managed Strategy will pass all the updates made to the configuration to a callback present on the bean,
specified through the updat e- net hod attribute (which becomes required). The update method must have one of
the following signatures:

public voi d anyMet hodName(Map properties)

public void anyMet hodName(Map<String, ?> properties); // for Java 5

In contrast, the cont ai ner - managed update strategy will re-inject bean properties by name based on the new
properties received in the update. For cont ai ner - managed updates, the component class must provide setter
methods for the component properties that it wishes to have updated. Consider the following class definitions:

public class Contai ner ManagedBean {

/1l will be reinjected (since it has a setter)
private |nteger integer;
/1 will not be reinjected (no setter present)

private Long waitTinme;

public void setlnteger(lnteger integer) { this.integer = integer; }

public class Sel fManagedBean {

/] update call back

publ i c void updateCal | back(Map properties) {
Systemout. println("Received properties " + properties);
Systemout.println("Props can be used as a Dictionary " + (Dictionary) properties);
// do nmore work ..

and configuraton:

<bean i d="cont ai ner Managed" cl ass="Cont ai ner ManagedBean" >
<osgi x: managed- properties persistent-id="|abX"' update-strategy="container-nmanaged"/ >
<property name="integer" val ue="23"/>

</ bean>

<bean i d="beanManaged" cl ass="Sel f ManagedBean" >

<osgi x: managed- properties persistent-id="labY" update-strategy="bean-nanaged" update-nmet hod="updat eCal | back"/
</ bean>

Any updates made to the CM entry 1abXx will be automatically reinjected on existing instances of
cont ai ner Managed bean whilethe | aby updates will be passed to updat ecCal | back method.

The update options are summarized in the table below:

Table 10.1. Managed Properties Update Options

updat e- st r at egy updat e- et hod Behaviour

cont ai ner - managed ignored Reinjects the bean properties, using the properties present in
the update. The re-injection will be applied while locking
(through a synchr oni zed instruction) the bean instance. If the
locking or re-injection strategy is not suitable, consider using
the bean- managed approach.

bean- managed required Invokes the updat e- met hod callback on the bean instance,
passing the updated configuration (as a Map object that can be
safely cast to a Dictionary if needed). No locking is
performed.

Spring Dynamic Modules(1.2.1) 63

Compendium Services

10.1.3. Managed Service Factories

The Configuration Admin service supports a notion of a managed service factory(see section 104.6 in the
Compendium Specification). A managed service factory is identified by a factory pid which allows multiple
Confi guration objects to be associated with the factory. Confi gurati on objects associated with the factory
can be added or removed at any point. The main intent of a factory is to create an OSGi service for each
configuration: adding a new Confi gurati on entry resultsin a new OSGi service being registered, removing a
Confi gur ati on, unregisters the service. Spring DM provides support for the managed service factory concept
through the managed- servi ce-fact ory element. Once defined, the configuration associated with the factory
pid will automatically create (or remove) bean instances which will be registered (or unregistered) in the OSGi
space based on atemplate bean definition and the CM configuration.

This might sound more complicated then it actualy is, so let'slook at a smplistic example:

<osgi x: managed- servi ce-factory id="sinpl e-nsf"

factory-pi d="com xyz. nessageservi ce" 0
aut o- export="al | -cl asses" > 0
<bean cl ass="com xyz. MessageTank"/ > O

</ osgi x: managed- servi ce-fact ory>

O factory persistent id (pid)

0 Shortcut flag used to determine under what interfaces the OSGi service is published (more info below)

O bean definition template. For each detected configuration, a new service will be created using the bean
definition template.

In its simplest form, the managed- servi ce-factory requires the factory pid, a bean definition used as a
template and some information on how possible bean instances are published as services. Basicaly, the
definition above instructs Spring DM to to monitor the given factory pid (through a dedicated
ManagedSer vi ceFact ory implementation (see the Compendium Spec for more info)) and for every
Confi gur ati on object associated with the factory pid, to create a new, anonymous instance of the nested bean
declared and export that instance as an OSGi service. The lifecycle of these beans instances is tied to the
lifecycle of the associated Confi gurati on objects. If a new configuration is added, a new bean is created and
exported. If a configuration object is deleted or disassociated from the factory pid then the corresponding bean
instance is destroyed.

In many regards, managed- servi ce-factory acts as a specialized service exporter, similar to the servi ce
element but supporting the concept of managed properties. In fact, many of servi ce's attributes that indicate
how a bean is exported, are found in managed- servi ce-factory (as you saw in the previous example with
aut o- export) as are the managed- pr operti es attributes.

Thelist of attributes can be found below:

Table 10.2. Managed Service Factory Options

Name Values Description

interface fully qualified class name (such asj ava. | ang. Thr ead) the fully
qualified name
of the class
under which the
object will be
exported

context-class-loader unmanaged service-provider Defines how the

Spring Dynamic Modules(1.2.1) 64

Compendium Services

Name

auto-export

disabled
(default)

Values

interfaces class-hierarchy all-classes

Description

context class
loader will be
managed when
an operationis
invoked on the
exported
service. The
default valueis
unmanaged
which means
that no
management of
the context class
loader is
attempted. A
value of

servi ce- provi der

guarantees that
the context class
loader will have
vishility of all
the resources on
the class path of
bundle
exporting the
service.

Enables Spring
to automatically
manage the set
of service
interfaces
advertised for
the service. By
default this
facility is
di sabl ed. A
value of
i nterfaces
advertises all of
the Java
interfaces
supported by the
exported
service. A value
of

cl ass-hi erarchy
advertises all the

Javaclassesin
the hierarchy of
the exported

Spring Dynamic Modules(1.2.1)

65

Compendium Services

Name Values Description

service. A value

of al | -cl asses
advertises all

Javainterfaces
and classes.

update-strategy none (default) bean-managed container-managed Definesthe
update strategy
for
configuration
modifications
made after the
associated beans
have been
created.

Similar to the servi ce element, a list of interfaces or/and registration listeners can be declared to be notified
when a service is being registered/unregistered. For more information on the semantics, please see
Section 7.1.1, “Controlling The Set Of Advertised Service Interfaces For An Exported Service” and
Section 7.1.7, “ Service Registration And Unregistration Lifecycle” chapters.

Now that the managed-service-factory options have been explained, let's look a a more complex
configuration:

<bean i d="queueTracker" class="org.xyz. queue. QueueTr acker"/>

<osgi x: managed- servi ce-factory id="dat a- nsf"

factory-pi d="org. xyz. | abX" O
updat e- st r at egy="bean- nanaged" a
updat e- net hod="refresh"> O
<osgi x: i nterfaces>
<val ue>java. util.Col | ecti on</val ue> 0
<val ue>j ava. util . Queue</val ue> O
</ osgi x:interfaces>
<osgi x: regi stration-1listener ref="queueTracker" O
regi stration-net hod="track" O
unregi strati on-met hod="untrack"/ > O
<bean cl ass="com xyz. Resi zabl eQueue" > O

<property name="size" val ue="100"/>
<property name="concurrency" val ue="10"/>
<property name="fair" value="fal se"/>
</ bean>
</ osgi x: managed- servi ce-f act ory>

ManagedSer vi ceFact or y factory persistent id

how should Spring DM behave when a Conf i gur at i on is updated

the method to invoke when for bean- managed updates

the interfaces under which the nested beans are published as OSGi services

listener notified when a service (based on the CM confi gur at i on) isregistered/unregistered
custom (optional) service registration method

custom (optional) service unregistration method

bean definition template

I I

The example above, creates a imaginary Resi zeabl eQueue instance for each Configuration entry present
under the or g. xyz. | abX factory pid. Each instance has default values assigned to si ze, concurrency and f ai r
parameters. However, just like managed- properti es, during the bean creation, the values received from the

Spring Dynamic Modules(1.2.1) 66

Compendium Services

Configuration Admin will be injected by name, possibly overriding existing settings. Once created and
configured, each nested, anonymous bean instance is registered as an OSGi service under the
java.util.Collection and java.util.Qeue interfaces. The OSGi service lifecycle is monitored by a
registration listener, namely the bean queueTracker. Finally, due to the specified updat e-strategy, any
updates executed to each CM configuration will cause the refresh callback to be invoked on the associated
bean instance.

10.1.4. Direct Access To Configuration Data

The simplest way to work directly with the configuration data stored under a given persistent id or factory
persistent id, is to register a service that implements either the ManagedSer vi ce Or ManagedSer vi ceFact ory
interface and specify the pid that you are interested in as a service property (for more information, see the
Configuration Admin chapter in the OSGi compendium spec). For example:

<osgi :service interface="org.osgi.service.cm ManagedServi ce" ref="nmyManagedServi ce">
<0sgi : servi ce-properties>
<entry key="service.pid" value="ny. managed. servi ce. pid"/>
</ 0sgi : servi ce-properties>
</ osgi : servi ce>

<bean i d="nyManagedServi ce" class="com xyz. MyManagedSer vi ce"/ >

Spring Dynamic Modules(1.2.1) 67

Chapter 11. Testing OSGi based Applications

By following best practices and using the Spring Dynamic Modules support, your bean classes should be easy
to unit test as they will have no hard dependencies on OSGi, and the few OSGi APIs that you may interact with
(such as Bundl eCont ext) are interface-based and easy to mock. Whether you want to do unit testing or
integration testing, Spring DM can ease your task.

11.1. OSGi Mocks

Mocks vs Stubs

There are various strategies to unit test code that requires collaborators. The two most popular strategies
are stubs and mocks.

See this article by Martin Fowler which describes in detail the difference between them.

Even though most OSGi API are interfaces and creating mocks using a specialized library like EasyMock is
fairly ssimple, in practice the amount of code of setting the code (especially on JDK 1.4) becomes cumbersome.
To keep the tests short and concise, Spring DM provides OSGi mocks under or g. spri ngf r amewor k. osgi . mock
package.

It's up to you to decide whether they are useful or not however, we make extensive use of them inside Spring
DM test suite. Below you can find a code snippet that you are likely to encounter in our code base:

private ServiceReference reference;
private Bundl eCont ext bundl eCont ext;
private Object service;

protected void setUp() throws Exception {
reference = new MbckServi ceRef erence();
bundl eCont ext = new MockBundl eCont ext () {

public ServiceReference getServiceReference(String clazz) {
return reference;
}

public ServiceReference[] getServiceReferences(String clazz, String filter)
throws I nvalidSyntaxException {
return new Servi ceReference[] { reference };

}

public Object getService(ServiceReference ref) {
if (reference == ref)
return service;
super . get Servi ce(ref);

}

public void testConponent() throws Exception {
Osgi Component conp = new Osgi Conponent (bundl eCont ext) ;

assert Same(ref erence, conp. get Reference());
assert Same(obj ect, conp.getTarget());

As ending words, experiment with them and choose whatever style or library you feel most confortable with. In
our test suite we use the aforementioned mocks, EasyMock library and plenty of integration testing (see below).

Spring Dynamic Modules(1.2.1) 68

http://en.wikipedia.org/wiki/Integration_testing
http://martinfowler.com/articles/mocksArentStubs.html
http://www.easymock.org/

Testing OSGi based Applications

11.2. Integration Testing

What about JUnit4/TestNG?

While JUnit4/TestNG overcome the class inheritance problem that appears when building base JUnit
classes, by decoupling the runner from the test through annotations, Spring DM cannot use them since it
has to support Java 1.4.

Howeuver, it is planned for the future to provide an optional, VM 5-based testing extension to integrate
the existing testing framework with the aforementioned libraries.

In arestricted environment such as OSGi, it's important to test the visibility and versioning of your classes, the
manifests or how your bundles interact with each other (just to name afew).

To ease integration testing, the Spring Dynamic Maodules project provides a test class hierarchy (based on
org. springfranmework. osgi . t est. Abstract Osgi Test s) that provides support for writing regular Junit test
cases that are then automatically executed in an OSGi environment.

In general, the scenario supported by Spring DM testing framework is:

start the OSGi framework (Equinox, Knopflerfish, Felix)
* install and start any specified bundles required for the test

» packagethetest caseitself into aon the f1y bundle, generate the manifest (if noneis provided) and install it
in the OSGi framework

» execute the test case inside the OSGi framework
« shut down the framework

» passes the test results back to the originating test case instance that is running outside of OSGi

=] Warning
The testing framework is aimed at running OSGi integration tests from a non-OSGi environment
(like Ant/Maven/IDE). The testing framework is NOT meant to be used as an OSGi bundle (nor
will it work for that matter). In practice this means that the testing bundle should be separate from
the bundle(s) it tests (similar to unit testing, where tests are separate from the classes they test).

By following this sequence it is trivia to write JUnit-based integration tests for OSGi and have them
integration into any environment (IDE, build (ant, maven), etc.) that can work with JUnit.

The rest of this chapter details (with examples) the features offered by Spring DM testing suite.

11.2.1. Creating A Simple OSGi Integration Test

While the testing framework contains several classes that offer specific features, it is most likely that your test
cases will extend or g. spri ngf ramewor k. osgi . t est . Abst ract Conf i gur abl eBundl eCr eat or Test s (at least this
iswhat we use in practice).

Let's extend this class and interact with the OSGi platform through the bundl eCont ext field:

Spring Dynamic Modules(1.2.1) 69

Testing OSGi based Applications

public class SinpleOsgi Test extends Abstract Confi gurabl eBundl eCreat or Tests {

public void testCsgi PlatfornStarts() throws Exception {
System out . printl n(bundl eCont ext . get Property(Const ant s. FRAVEWORK_VENDOR)) ;
System out . print| n(bundl eCont ext . get Property(Const ants. FRAVEWORK_VERSI ON)) ;
System out . printl n(bundl eCont ext . get Property(Const ant s. FRAVEWORK_EXECUTI ONENVI RONVENT)) ;
}

Simply execute the test as you normally do with any JUnit test. On Equinox 3.2.x, the output is similar to:

Ecli pse
1.3.0
OSG/Mnimum1.0,08G /M ni mum 1.1, JRE-1. 1, J2SE- 1. 2, J2SE- 1. 3, J2SE- 1. 4}

It is likely that you will see different log statements made by the testing framework during your own test
execution, but these can be disabled as they only have an informative value and do not affect the actual
execution.

Note that you did not have to create any bundle, write any MANIFEST or bother with imports or exports, let
alone starting and shutting down the OSGi platform. The testing framework takes care of these automatically
when the test is executed.

Let's do some quering and figure out what the environment in which the testsrun is. A simple way to do that is
to query the Bundl eCont ext for the installed bundles:

public void testOsgi Environnent () throws Exception {
Bundl e[] bundl es = bundl eCont ext . get Bundl es() ;

for (int i =0; i < bundles.length; i++) {
System out. print(Gsgi StringUtils. null Saf eNane(bundl es[i]));
Systemout.print(", ");

}
Systemout.println();

The output should be similar to:

OSG System Bundl e, Object\Wb ASM | o0g4j.o0sgi, spring-test, spring-osgi-test, spring-osgi-core,
spring-aop, spring-osgi-io, slf4j-api,
spring-osgi -extender, etc... TestBundl e-testOsgi Pl atfornftarts-com your. package. Si npl eGsgi Test,

Asyou can see, the testing framework installs the mandatory requirements required for running the test such as
the Spring, Spring DM, df4j jars among others.

11.2.2. Installing Test Prerequisites

OSGi-friendly libraries

To work in OSGi environments, jars need to declare in their MaNnI FEST. MF, Export or Import packages;
that is declare what classes they need or offer to other bundles. Most libraries are OSGi unaware and do
not provide the proper manifest entries which means they are unusable in an OSGi environment.

At the moment, there are severa initiatives in the open source space to provide the proper manifest -
please see the FAQ for more information.

Besides the Spring DM jars and the test itself is highly likely that you depend on several libraries or your own
code for the integration test.

Spring Dynamic Modules(1.2.1) 70

Testing OSGi based Applications

Consider the following test that relies on Apache Commons Lang:

i mport org.apache. commons. | ang.tinme. Dat eFornmat Uil s;

public void test CoombonsLangDat eFormat () throws Exception {
Systemout. println(DateFormat Utils. format(new Date(), "HH nmm sszZZ"));

Running the test however yields an exception:

java.lang. |11 egal StateException: Unable to dynam cally start generated unit test bundle

Caused by: org.osgi.framework. Bundl eException: The bundl e coul d not be resol ved.
Reason: M ssing Constraint: |nport-Package: org.apache.comons. | ang.tine; version="0.0.0"

. 15 nore

The test requires or g. apache. conmons. | ang. ti me package but there is no bundle that exports it. Let's fix this
by installing a commons-lang bundle (make sure you use at least version 2.4 which adds the proper OSGi
entries to the jar manifest).

One can specify the bundles that she wants to be installed using get Test Bundl esNanmes Or get Test Bundl es
method. The first one returns an array of String that indicate the bundle name, package and versioning through
as a String while the latter returns an array of Resour ces that can be used directly for installing the bundles.
That is, use get Test Bundl esNames when you rely on somebody else to locate (the most common case) the
bundles and get Test Bundl es when you want to locate the bundles yourself.

By default, the test suite performs a lookup for artifacts, similar to the one used by Maven2, searching first the
items as being relative to the current project and then falling back to the local repository. The locator expects
the bundle String to be a comma separated values containing the artifact group, name, version and (optionally)
type. It's likely that in the future, various other locators will be available. One can plug in their own locator
through the or g. spri ngf ramewor k. osgi . t est . provi si oni ng. Arti f act Locat or interface.

Let'sfix our integration test by installing the required bundle (and some extra osgi libraries):

protected String[] getTestBundl esNanmes() {
return new String[] { "net.sourceforge.cglib, comspringsource.net.sf.cglib, 2.1.3",
"javax. transaction, com springsource.javax.transaction, 1.1.0",
"commons- | ang, commons-|ang, 2.4" };

Rerunning the test should show that these bundles are now installed in the OSGi platform.

Note
e The artifacts mentioned above have to exist in your local maven repository.

11.2.3. Advanced Testing Framework Topics
The testing framework allows a lot of customization to be made. This chapter details some of the existing

hooks that you might want to know about. However, these are advanced topics as they increase the complexity
of your test infrastructure.

11.2.3.1. Customizing The Test Manifest

Spring Dynamic Modules(1.2.1) 71

http://commons.apache.org/lang/
http://maven.apache.org

Testing OSGi based Applications

There are cases where the auto-generated test manifest does not suite the needs of the test. For example the
manifest requires some different headers or a certain package needs to be an optional import.

For simple cases, one can work directly with the generated manifest - in the example below, the bundle class
path is being specified:

protected Mani fest get Manifest() {
/] let the testing framework create/l oad the manifest
Mani fest nf = super. get Mani fest();
// add Bundl e- C asspat h:
nf. get Mai nAttri butes(). put Val ue(Const ant s. BUNDLE_CLASSPATH, "., bundl ecl asspath/sinple.jar");
return nf;

Another alternative isto provide your own manifest by overriding get Mani f est Locat i ons() :

protected String get ManifestLocation() {
return "cl asspat h: conl xyz/ abc/ test/ MyTest Test . MF";
}

However each manifest needs the following entry:
“Bundle-Activator: org.springframework.osgi.test.JUnitTestActivator”

since without it, the testing infrastructure cannot function properly. Also, one needs to import JUnit, Spring and
Spring DM specific packages used by the base test suite:

| mport - Package: junit.franework,
org. osgi . framewor k,
or g. apache. conmons. | oggi ng,
org. springframework. util,
or g. springframewor k. osgi . servi ce,
org. springframework. osgi . util,
org. springframework. osgi . test,
org. springframewor k. cont ext

Failing to import a package used by the test class will cause the test to fail with a NoDef O assFoundEr r or error.

11.2.3.2. Customizing Test Bundle Content

By default, for the on-the-fly bundle, the testing infrastructure uses all the classes, xml and properties files
found under ./t arget/test-cl asses folder. This matches the project layout for maven which is used (at the
moment by Spring DM). These settings can be configured in two ways:

1. programmatically by overriding Abst r act Conf i gur abl eBundl eCr eat or Test s get XXX methods.

2. declaratively by creating a properties file having a similar name with the test case. For example, test
com xyz. MyTest Will have the properties file named coni xyz/ MyTest - bundl e. properti es. If found, the
following properties will be read from thefile:

Table 11.1. Default test jar content settings

Property Name Default Value Description

root.dir file:./target/test-classes the root folder considered as the jar
root

include.patterns I**[* class,/**/*. xnl, [**/* profEomnraaseparated string of

Ant-style patterns

Spring Dynamic Modules(1.2.1) 72

Testing OSGi based Applications

Property Name Default Value Description

manifest (empty) manifest location given as a String.
By default it's empty meaning the
manifest will be created by the test
framework rather then being
supplied by the user.

This option is handy when creating specific tests that need to include certain resources (such as localization
files or images).

Please consult Abst r act Conf i gur abl eBundl eCr eat or Test s and Abst r act OnTheFl| yBundl eCr eat or Test s tests
for more customization hooks.

11.2.3.3. Understanding The MaNI FEST. MF Generation

A useful feature of the testing framework represents the automatic creation of the test manifest based on the test
bundle content. The manifest creator component uses byte-code analysis to determine the packages imported by
the test classes so that it can generate the proper OSGi directives for them. Since the generated bundle is used
for running atest, the creator will use the following assumptions:

» No packages will be exported.

The on-the-fly bundle is used for running a test which (usually) consumes OSGi packages for its execution.
This behaviour can be changed by customizing the manifest.

» Split packages (i.e. classes from the same package can come from different bundles) are not supported.

This means that packages present in the test framework are considered complete and no I nport - Package
entry will be generated for them. To avoid this problem, consider using sub-packages or moving the classes
inside one bundle. Note that split packages are discouraged due to the issues associated with them (see the
OSGi Core spec, Chapter 3.13 - Required Bundles).

» Thetest bundle contains only test classes.

The byte-code parser will look only at the test classes hierarchy. Any other class included in the bundle, will
not be considered so no imports will be generated for it. To change the default behaviour, override
creat eMani f est Onl yFr onrest Cl ass toreturn f al se:

prot ect ed bool ean creat eMani f est Onl yFronilest d ass() {
return fal se;

}

Note
e The time required to generate the manifest might increase depending on the number and size of
classesin the bundle.

Additionally consider customizing the manifest yourself or attaching the extra code as inner classes to the
test class (so it gets parsed automaticaly).

The reason behind the lack of such features is the byte-code parser is aimed to be smple and fast at creating
test manifests - it is not meant as a general-purpose tool for creating OSGi artifacts.

Spring Dynamic Modules(1.2.1) 73

Testing OSGi based Applications

11.2.4. Creating An OSGi Application Context

Spring DM testing suite builds on top of Spring testing classes. To create an application context (OSGi
specific), one should just override get Confi gLocat i ons[] method and indicate the location of the application
context configuration. At runtime, an OSGi application context will be created and cached for the lifetime of
the test case.

protected String[] getConfigLocations() {
return new String[] { "/conml xyz/abc/test/MTestContext.xm" };

}

11.2.5. Specifying The OSGi Platform To Use

The testing framework supports out of the box, three OSGi 4.0 implementations namely: Equinox, Knopflerfish
and Felix. To be used, these should be in the test classpath. By default, the testing framework will try to use
Equinox platform. This can be configured in several ways:

1. programmatically through get PI at f or mName() method

Override the aforementioned method and indicate the fully qualified name of the Pl atf orm interface
implementation. Users can usethe Pl at f or s class to specify one of the supported platforms:

protected String getPlatformNane() {
return Pl atforms. FELI X;

}

2. declaratively through or g. spri ngf r anmewor k. osgi . t est . f r amewor k System property.

If this property is set, the testing framework will use its value as a fully qualified name of a Platform
implementation. It that fails, it will fall back to Equinox after logging a warning message. This option is
useful for building tools (such as ant or maven) since it indicates a certain target environment without
changing and test code.

11.2.6. Waiting For The Test Dependencies

A built-in feature of the testing framework is the ability to wait until all dependencies are deployed before
starting the test execution. Since the OSGi platforms are concurrent by nature, installing a bundle doesn't mean
that al its services are running. By running a test before its dependency services are fully initialized can cause
sporadic errors that pollute the test results. By default, the testing framework inspects all bundles installed by
the user and, if they are Spring-powered bundles, waits until they are fully started (that is their application
context is published as an OSGi service). This behaviour can be disabled by overriding
shoul dWai t For Spri ngBundl esCont ext Cr eat i on method. Consult Abst ract Synchr oni zedOsgi Test s for more
details.

11.2.7. Testing Framework Performance

Considering all the functionality offered by the testing framework, one might wonder if this doesn't become a
performance bottleneck. First, it's worth noting that all the work done automatically by the testing infrastructure
has to be done anyway (such as creating the manifest or creating a bundle for the test or installing the bundles).
Doing it manually simply does not work as it's too error prone and time consuming. In fact, the current

Spring Dynamic Modules(1.2.1) 74

Testing OSGi based Applications

infrastructure started as way to do efficient, automatic testing without worrying about deployment problems
and redundancy.

As for the numbers, the current infrastructure has been used internaly for the last half a year - our integration
tests (around 120) run in about 3:30 minutes on a laptop. Most of thistime is spent on starting and stopping the
OSGi platform: the "testing framework" takes around 10% (as shown in our profiling so far). For example, the
manifest generation has proved to take less then 0.5 seconds in general, while the jar creation around 1 second.

However, we are working on making it even faster and smarter so that less configuration options are needed
and the contextual information available in your tests is used as much as possible. If you have any ideas or
suggestion, feel free to use our issue tracker or/and forum.

Hopefully this chapter showed how Spring DM testing infrastructure can ssimplify OSGi integration testing and
how it can be customized. Consider consulting the javadocs for more information.

Spring Dynamic Modules(1.2.1) 75

Part lll. Other Resources

In addition to this reference documentation, there are a number of other resources that may help you learn how
to use OSGi and Spring Dynamic Modules. These additional, third-party resources are enumerated in this
section.

Spring Dynamic Modules(1.2.1) 76

Chapter 12. Useful Links

* Soring DM Home Page - here

» SpringSource OSGi blog - here

* Soring DM Demos - here

» Getting Sarted with OSGi - by Neil Bartlett here and here.

» Equinox Documents - here

« Felix-related presentations - various presentations hosted by Apache Felix project.

* Launching Spring Dynamic Modules using pax-runner - screencast

* OSGi Alliance Blog - here

Spring Dynamic Modules(1.2.1)

77

http://www.springframework.org/osgi/
http://blog.springsource.com/category/osgi/
http://www.springframework.org/osgi/demos
http://neilbartlett.name/blog/osgi-articles/
http://www.eclipse.org/resources/?author=Neil%20Bartlett
http://www.eclipse.org/equinox/documents/
http://felix.apache.org/site/presentations.html
http://wiki.ops4j.org/confluence/display/ops4j/Pax+Runner+-+Screencast+-+Spring+OSGi
http://www.osgi.org/blog/

Part IV. Appendixes

Document structure

Various appendixes outside the reference documentation.

Appendix A, Extensions describes extensions that are included in the 1.0 distribution, but are not guaranteed to
be maintained in a backward-compatible form in future point releases. We anticipate these features moving into
the core specification over time.

Appendix B, Security Integration provides information on how to run Spring DM in an OSGi environment with
asSecurityManager enabled (Java 2 Security activated).

Appendix C, Eclipse Plug-in Development integration describes how to integrate Spring DM with Eclipse
Plug-in Development Environment.

Appendix D, Spring Dynamic Modules Maven Archetype describes the Spring DM Maven 2 archetype usage.

Appendix E, Useful OSGi tips provides some useful OSGi tips, especially meaningful when used along with
Spring DM.

Appendix F, Roadmap describes some features that are included in the 1.0 distribution but are still considered
early-access. The externals of these features may change in future releases. This appendix also discusses other
planned features for which no implementation yet exists.

Appendix G, Soring DM OSGi Repository describes the repository used by Spring DM for its osgi artifacts.

Appendix H, Spring Dynamic Modules Schema defines the schemas provided by Spring Dynamic Modules.

Spring Dynamic Modules(1.2.1) 78

Appendix A. Extensions

Spring DM and Spring annotations

This chapter describes the annotations present in Spring DM and how to enable/disable them. Spring DM
annotatations are separate from the annotation support in Spring framework; enabling or disabling one
does not interfere with the other.

This appendix describes extensions to the core functionality that are shipped with the 1.0 distribution, but are
not guaranteed to have backwards compatibility across point releases. We anticipate these features migrating
into the core specification in future releases.

A.l. Annotation-Based Injection

The org. spri ngf ramewor k. osgi . ext ensi ons. annot at i on bundle that ships with Spring Dynamic Modules
provides early access to annotation-based support for injecting references to OSGi services. JDK 1.5 or above
isrequired to use this feature.

Bean class (setter) methods may be annotated with
org. springframewor k. osgi . ext ensi ons. annot at i on. Ser vi ceRef er ence. By default the property type of the
annotated property is used to look up a service with a matching service interface in the OSGi service registry
and inject the result. For example, given the configuration:

<bean id="annotati onDriven" class="MAnnotationDrivenBeanCl ass"/>

and the class declaration:

public class MyAnnotati onDri venBeand ass {

@ver vi ceRef erence
public void set MessageServi ce(MessageServi ce aService) { ... }

then a service lookup for services implementing the MessageSer vi ce interface will be performed, and the best
match (using the same algorithm as documented for ther ef er ence element) will be injected.

The Servi ceRef erence annotation class has a number of attributes that can be used to control the service
lookup (for example, to specify afilter string) that mirror the options provided by the r ef er ence element. See
the javadoc for more information.

A.1.1. Enabling/Disabling Annotation Processing

By default, as Spring-OSGi is JDK 1.4 compatible, annotation injection is disabled. There are currently two
ways for enabling it:

« through Spring DM extender (see Section 6.2, “ Extender Configuration Options”).

This is an extender wide configuration which means all bundles started by the extender will have annotation

Spring Dynamic Modules(1.2.1) 79

http://static.springframework.org/spring/docs/2.5.x/reference/new-in-2.html#new-in-2-ioc-annotations
http://static.springframework.org/spring/docs/2.5.x/reference/new-in-2.html#new-in-2-ioc-component-scanning

Extensions

injection applied to them.
* by specifying a dedicated bean post processor

By specifying the Spring DM annotation extension processor, one can enable per-bundle annotation
injection. To do that, add the following to your bundle configuration:

<l-- annotation processor -->
<bean cl ass="org. spri ngframewor k. osgi . ext ensi ons. annot ati on. Servi ceRef er encel nj ect i onBeanPost Processor"/ >

As a reminder, for the annotations to work, the containing bundle needs to import
org. spri ngf ramewor k. osgi . ext ensi ons. annot ati on package, which is available in the
spri ng- osgi - annot ati on bundle.

Spring Dynamic Modules(1.2.1) 80

Appendix B. Security Integration

Since 1.2.0, Spring DM integrates with Java 2 security. Namely Spring DM uses privileged blocks for
executing security sensitive operations using its own permissions.

Being a framework, Spring DM needs to introspect bundles to determine their content and configuration. In
generd, it is recommended to grant j ava. security. Al | Perni ssi on to Spring DM bundles. For those that
would like to restrict the properties, below you can find alist of permissions that are needed for Spring DM to
work properly. However, we strongly recommend to test whether the permissions are needed or not for your
environment since the minimum number depends heavily on what parts of the framework are used.

TableB.1. Spring DM Permission Table

Permission Target Action Usage

java.io. Fi | eralepedsn read/write Required by the logging system and web extender for
<<ALL installing the wars and JSP taglibs
FILES>>
recommended

j ava. | ang. Runti mePer ni ssi onaccessDeclared\eatbers some cases for reflection (such as accessing the
Bundl eCont ext from agiven Bundl e (on R4.0 platforms).

java. | ang. ref I*ect . Ref | ect PesuipprassA ccessClaeck$or accessing (through reflection) non-public methods
or fieldsinternally.

java.util.ProgertyPerni ssi ofead,write In use by the testing framework mainy. Useful for reading the
environment, including OSGi properties.

org. osgi . f rangéwor k. Adni nPercliass;j on Used by the extender to listen read the content of started
execute, bundles.
listener,
metadata,
resolve,
resource

org. osgi . framéwor k. Bund| ePeHi@S3i on Useful when attaching a custom configuration (as fragment)
to the extender/web extender.

org. osgi . f ranéwor k. PackageFeXPOR b Basic permission used for importing and exporting the Spring
IMPORT DM bundles content.

org. osgi . f raméwor k. Ser vi ceRgetyiegi stef Used for publishing and lookup of Spring DM interna
services (such as the Spring namespace handlers/resolvers).

As a general recommendation, for security sensible environments, to determine the minimum number of
permissions start with a basic set of bundles and no permissions. This way, on each run, one can find out what
permissions are needed and by whom and tweak the system accordingly.

Spring Dynamic Modules(1.2.1) 81

Appendix C. Eclipse Plug-in
Development integration

Eclipse PDE “provides comprehensive OSGi tooling, which makes it an ideal environment for component
programming, not just Eclipse plug-in development”. In fact, Eclipse IDE is built on top of OSGi and uses at its
core the Equinox OSGi implementation. Moreover, all the Eclipse plug-ins are OSGi bundles. This makes
Eclipse with PDE a very attractive tool for creating OSGi bundles. While Spring Dynamic Modules artifacts
can be integrated as normal libraries, through Spring IDE, Spring DM can be installed as a target platform
ready to be used with PDE.

The following steps illustrate how to install Spring IDE extension for OSGi and how to use it in your project.
Please see Spring IDE installation page for information on its requirement and install process.

1. Set Up Nightly Update Site

At the moment, the OSGi extension is available only on Spring-IDE nightly builds update site. Add it to
the Eclipse configuration by opening the software update menu:

s Welcome
(7) Help Contents
' Saarch
Dymamic Help
Eey Assist. . CirHShift+L
Tip= and Tricks...
] Report Bug or Erhancemant:
Cheat Sheets...
=M o
3 Manage Configura Falation -
About Eclipse Platform
x|
Marme: | SpringiDE-NIGHTL'Y|
LIRL: | hittp :/fspringicke. org/updatesite_nighthy
% o | caesl |

and create anew update site pointing to ht t p: / / ww. spri ngi de. or g/ updat esi t e_ni ght | y
2. Sedlect Spring IDE OSGi extension

After using the nightly update site and performing the update, Eclipse will show the search results. Unfold
the Extension menu and select Spring | DE OSG Ext ensi on:

Spring Dynamic Modules(1.2.1) 82

http://www.eclipse.org/pde/
http://www.springide.org
http://help.eclipse.org/stable/index.jsp?topic=/org.eclipse.pde.doc.user/guide/tools/preference_pages/target_platform.htm
http://springide.org/project/wiki/SpringideInstall

Eclipse Plug-in Development integration

Search Results I |
Salect features o netall from $ie search result st \i}f‘
Selact the features to nstall:
[ookt
= 7] core N
[F14* Sprirg I0E Bean Support (required) 2.0,3.v200801162020 I
[0 Deperdencies Froperties |
El Il Extensions

34+ Spring IDE A0P Extension (optional) 2.0.3.v200201162020 Select Required
34 Spring IDE JavaConfig Exterwsion (optional) 2,0.3.v200201162020
[[J4= Spring IDE Web Flow Extension (optional) 2.0.3.v200801162020
[F14* Spring IDE OSGI Extension (optional) 2.0.3.v200801 162020

[0 Inbegr atiors

] Myhm (Exiras)

= 9 Mybn

@ [20T

This site provides plugins supporting the Spring Framework (hitp:/fensw, springframework orgf
weithin the Eclipss platem,

Errof Detalls. .

2 of 21 selected.
¥ Show the latest version of & faatre anly
™ Filter features mcluded inother features on the list

Ejrtich Cancel

and proceed with the instalation.

Select Spring Dynamic Modules Tar get Platform

Once the plug-in has been installed, Spring Dynamic Modules can be selected as a PDE target platform.
Select Window/Preferences/Plug-in Development and then Target Platform.

& Preferences =18l x|
type filter tewt Target Platform o -
& MGE ol specvgha platiorm agakst which the worksaace pg-Fs - ;s
=
- Cornectivity Locations®lD : faclipse/spring-ide.nightly faclipse,plugine forg.springframework. ide.ec lipse. osgi. targetdefinition_2.10.3.v200501 162020 targets frelease /targat Browess... Reset I
- B+ |Enyronment | Launchng argumeris [mplci Beperiences | Sarce Code Locators | 4.
j Iternet = [F1%] D eclipse!\spring-ide.nightly'\eclipselplginelorg springframenvork. ide.eclipse.egl targetdefinition_2.0.3.v200901 152020\ targets\yelease\arget\pluging
= jeliod.over sifdf (1.4.3)
&1 1av:
» : [#1> org.eclipss.osgi (3.2,2.R32x_v20070118) Ll
& Myhm .- org.springframework bundle.osgloore {1.0.0rc2)
%1 Plug-in Developrent [org.speingFramework bundie.csglextender (1,0,0.rc2) Select All
?:u ers [P org.speingframework. bundle.osgi.ia (1.0.0.c2) =
Edr;prg EFJ org.springframework bundle.osgl test {1.0.0.,c2) Degsel
i
oG Fra - Elh org.springframework bundle.spring aop (2.5.1) Ak Werking Set...
1% crg.speingfamewerk bundie spring beans (2.5.1)
4 Runfbebug [#1> org.speingframework. bundle. sprng.contet (2.5.1) Add Reguired Plg-ins
1 Sarver = org. springframework bundle. spring context. support (2.5.1)
& Sprin (71" org.speingfamework bundle. spring.core (2.5.1)
-5aL Igemebpment org. springframewaork.osgi.sopalliance.osgi (1.0.0.5NAPSHOT)
o Tean -- org.springf amework.osgl.asm.osgl (2.2.3.5MAPSHOT)
5 Tormeat EFJ org.springframework 0sgi backport-util-concurrent osgi (3.1.0, SKAPSHOT)
validation [org sringframewark,oegi.colb-nodep.osgi (2, 1.3, SNAPSHOT)
1 Wb and ML EF.I org.springframework.osgi. junit.osgi (3.8, 2.5M0PSHOT)
51 Wb Services = org. springframework.osgil logd].osgl (1.2, 15.5NAPSHOT)
- ¥Doclket = org. springframework,osgi source (1.0,0.0c2)
- org.springframewor k. osgi.spring-osgrarnotation (1.0.00mc2)
.- org.springframework.spring source (2.5.1)
[F% sifijapi (14.3)
1% slfdflog4ii2 (1.4.3)
22 out of 22 seleched,
¥ Group plig-ins by location
PhﬁchﬁndT
’V Spring Dynamic Modules for SSGi(tm) Sarvice Platforms RC2 3 Browse... Load Target |)
Restore mflullsl Apply |
i [] o |

Spring Dynamic Modules(1.2.1)

83

Eclipse Plug-in Development integration

Select the Spring DM version that you desire from the Pre-defined Target (1) drop box and press Load
Target (2). Eclipse will load the target and all bundles defined by it - this includes Spring DM bundles and
al of its dependencies (SLF4J is used for logging). The configuration can be customised appropriately by
removing and adding bundles.

In its current form, the plug-in offers two predefined targets - one for the stable released versions and one
for the SNAPSHOT/nightly Spring DM jars. The latter does not contain any jars as it is expected for the
user to download them manually. Simply locate the path where the plug-ins should be located (3), enter
that folder and do a

mvn install

The latest Spring DM SNAPSHOT will be downloaded along with all of its dependencies. Simply click on
the reload button (4) and Eclipse will pick up the bundles.

4. Select PDE Per spective

Oncetheinstallation is completed just select the PDE perspective:

p— x

lea VS Raposiory Exploring
LixDratabase Debug

L3 Database Devaloprmerit
- Dabug

Sharer Wiew

Customige Perspective. .. &M1ava
Save Perspective As. . el ava Browsing
Resst Perspactive i® Java EE (default)

Closa Perspective 24 13va Type Hierarchy
+ P4 Developrert

Cloze &)l Perspectives

Flarning
Navigation . Flug-in Develop
Resource
Wworking Sets k li#45VH Repository Exploring
o = &1 Team Synchronizing

and the Spring DM and its dependencies should be available in the plug-ins view:

Spring Dynamic Modules(1.2.1) 84

Eclipse Plug-in Development integration

5 Flug-is X ﬁ]‘ | = i
Filter matched 22 of 22 plug-ins.
A (1104 over 514 (14,33 |
%= org.echipse.nsgi (3.2.2.R32x_v20070118)
A orgsprivgfrarmework, buedle. osgi.core (1.0.00rc2)
%= org.springframework, bundle. osgiextender {1.0.0.rc2)
: %= org springfrarmework. bundle. osgLio (1.0.0.rc2)
| % org.springfrarmework bundle. osgi.est (1.0,0.c2)
A= orgspringframework. bundle. spring. sop (2.5.1)
|- %= org.springframework. bundle. spring beans (2.5.1)
: A= org.springframesork, bundle. spring.cortest (2.5.1)
A orgsprivafrarmesork, bundie spring, cortest support (2.5.1)
A= orgspringframework, bundle. spring.core (2.5.1)
: %= org springframework. oegl.aopallisnce.osgl (1.0.0.SMAPSHOT)
| % org.springframework, 0sgl.asm.0sgi (2.2.3.SNAFSHOT)
A= orgspringframework, osgi becpor t-utikconcurrent.osgi (3, 1,0.SMAPSHOT)
- org.springframework. cegi.oglib-nodep. oegi (2. 1.3, SWAPEHOT)
|- ¥ crg.sprivgfranework.csgl, unit osgl (3.8.2.SHAPSHOT)
A orgsprivafrarmework, osgi, oo fosgi (1.2.15,5HAPSHOT)
-4 org.springframewo—rk, osgisource {1.000.rc2)
: %= org. springframework. ozg)spring-oegi-annotstion (1.0.0.rc2)
i 4 org springiranework. sprng source (2.5.1)
A= 51f4.api (1.4.3)
L B slfd ogdji2 (1.4.3)

Spring Dynamic Modules(1.2.1)

Appendix D. Spring Dynamic Modules
Maven Archetype

As part of the distribution, Spring DM provides a Maven archetype which creates the basic structure of a Java
project that uses Spring DM, especially useful to new users. To run the archetype (and creste the new project),
simply run the following command line:

mvn ar chet ype: gener at e

The maven plugin will display a selection of possible archetype, from which you should pick
spri ng- osgi - bundl e- ar chet ype (Spring-0SG archetype) (currently number 32), and will request input
regarding the project about to be created. A list of al available archetypes included with the plugin and their
versionsis available here.

Note that it is still possible to select the osgi archetype directly from the command line (i.e. the old way of
using the archetype):

nmvn archetype: create \

- Dar chet ypeG oupl d=or g. spri ngf ramewor k. osgi \

- DarchetypeArtifact! d=spring-osgi - bundl e-archetype \

- Dar chet ypeVersi on= \

- Dgr oupl d=<your - pr oj ect - groupl d> \

-Dartifactld=<your-project-artifactld> \

- Dver si on=<your - pr oj ect - ver si on>

Note
H"il The command above should be invoked as one line - the\ is used as a convenience to break the
long lineinto smaller pieces

In both cases, the result of the commands is a Maven 2 project that defines two packages (one public and one
private) and two Spring configurations: src/ mai n/ r esour ces/ META- | NF/ spri ng/ bundl e- cont ext . xni and
src/ mai n/ resour ces/ META- | NF/ spri ng/ bundl e- cont ext - osgi . xmi The project is packaged as an OSGi
bundle.

Notice that by default, the project does not contain a MANIFEST.MF for your project. The Maven
infrastructure will generate it, either through SpringSource Bundlior (the default) or Apache Felix bundle
plug-in. To generate the manifest, run the following (from the project root):

m/n package

Note

e To avoid the confusion between the generated artifacts and maintained files, the manifest file
resides under META-INF folder while Spring configuration files under
src/ mai n/ resour ces/ META- | NF directory.

This will compile your project, pack it as a jar and create the OSGi manifest based on your classes under
/| META- | NF folder (so that users running Eclipse PDE can useit right away.

Spring Dynamic Modules(1.2.1) 86

http://maven.apache.org/plugins/maven-archetype-plugin/
http://docs.codehaus.org/display/MAVENUSER/Archetypes+List
http://www.springsource.org/bundlor
http://felix.apache.org/site/maven-bundle-plugin-bnd.html
http://felix.apache.org/site/maven-bundle-plugin-bnd.html

Spring Dynamic Modules Maven Archetype

D.1. Generated Project Features At-A-Glance

» Packaged as an OSGi bundle

e META- | NF/ MANI FEST. MF automatically generated

e src/ main/javal <package> public package exported by the bundle

e src/ main/javal <package>/ i nternal private package, not exported by the bundle

* src/main/resources/ META- | NF/ spri ng/ bundl e- cont ext . xni isa Spring configuration file that defines the
simple bean.

* src/main/resources/ META- | NF/ spring/ bundl e- cont ext - osgi . xm IS @ Spring configuration file ready for
you to add bean definitions from the osgi namespace (services, references etc.)

e .project, .classpath, and buil d. properties files created to enable use of this project directly inside
eclipse as a PDE plugin project

Spring Dynamic Modules(1.2.1) 87

Appendix E. Useful OSGi tips

E.1. OSGi Fragments

Check the target OSGi platform fragment support

Before using fragments, make sure the target OSGi environment supports them (and to what degree). Out
of the OSGi platforms on which Spring DM is tested upon, at the time of this writing, Apache Felix does
not support fragments (it smply ignores them).

Part of the OSGi R4 release, fragments are a very useful and powerful feature. A fragment is “a bundle that is
attached to a host bundle”, adding content to the target bundle. A fragment cannot have its own class loader nor
a bundle activator and cannot override the information already present in the host. In short, through fragments,
bundles can be extender with resources, classes and even manifest entries. To quote the spec again, a*“...key use
case for fragments is providing trandation files for different locales. This allows the trandation files to be
treated and shipped independently from the main application bundle.”

Note
e For afull description on fragments, please see the OSGi specification, section 3.14.

In Spring DM, fragments are useful for configuring various components such as the extenders. To do that,
simply bundle the resources as you normally would and add an extra entry to the bundle manifest:

Fragnent - Host : <host bundl e synbolic nanme>

This line indicates that the containing bundle is a fragment and that it should be attached to the host specified
by a symbolic name. The fragment and host bundle symbolic name should be different. For example, to attach a
fragment (with extra configuration) the Spring DM extender, one could use the following manifest:

Mani f est-Version: 1.0

Bundl e- Mani f est Versi on: 2

Fragnent - Host : org. spri ngf ranewor k. osgi . ext ender

Bundl e- Synbol i cNane: org. nydonai n. proj ect . f ragnent

Bundl e- Nanme: ny-fragnment

Bundl e- Descri ption: Fragnent attached to Spring DM ext ender

Oooooono

0O Manifest version.

0 OSGi bundle version. A value of 1 (which is also the default) indicates an OSGi Release 3 bundle so it's
best to specify 2 to indicate an OSGi Release 4 bundle.

0 The symbolic name of the bundle to which this fragment should be attached to. In this case, the value
org. spri ngframewor k. osgi . ext ender POINts to the spri ng- osgi - ext ender. j ar. Fragnent - Host iS the
key entry which tellsthe OSGi platform that the containing bundle isaof aspecia kind - it's afragment.

O Thefragment symbolic name.

O Thebundlename - an optional yet useful header.

0 The bundle description - just like the name, this header is useful for humans not for the OSGi platform
itself. However, it is recommended that you define it to help identify the bundle purpose.

Note
e The Manifest entries order does not matter, but they case sensitive.

Spring Dynamic Modules(1.2.1) 88

Useful OSGi tips

When multiple bundles with the same symbolic names are present, one can add the bundle version to make sure
the proper wiring is done:

Fragnent - Host : org. spri ngfranewor k. osgi . ext ender ; bundl e-versi on=1. 1. 0

The default value for bundl e- ver si on (when it's not specified) iS[0. 0. 0, #)

Spring Dynamic Modules(1.2.1) 89

Appendix F. Roadmap

This appendix documents features on the Spring Dynamic Modules roadmap. The design of these features
specified here is subject to change. As amost up to date source, please see our issue tracker.

F.1. Access to Service References for Collections

The current specification does not provide for access to the Servi ceRef erence objects for services in a
managed collection (i.e. obtained viaaset orlist declaration). A future release of Spring Dynamic Modules
will provide an easy means of gaining access to these references.

F.2. Start Level Integration

A future release of Spring Dynamic Modules may offer the following additional guarantee with respect to
application context creation and start levels:

Application context creation happens asynchronously. However, the extender bundle does guarantee that the
creation of al application contexts for bundles at start level n will be complete before the creation of any
application context at start level m where m > n. Care must therefore be taken not to introduce any mandatory
dependencies on services exported by bundles with higher start levels or a deadlock will be introduced.

In a similar vein, when shutting down the extender bundle, application contexts at start level mwill be shut
down before application contexts at start level n, wherem > n.

F.3. Web Library Integration

While support for generic and Spring-MVC web applications is available in 1.1.0, in the future we'd like to
provide integration (if needed) with other popular web libraries (such as JSF and Spring Web Flow) in the
upcoming releases.

F.4. ORM/Persistence Support

Care needs to be taken when using JPA or Hibernate under OSGi as the persistence engines must have visibility
of the persistent types and mapping files. The Spring Dynamic Modules project will be investigating an
extension model to make managing this easier when persistent configuration is split across several bundles. See
Peter Krien's blog entry on the topic for an insight into the issues.

Also, the project aims to simplify deployment of JDBC drivers and pooling libraries that at the moment require
specia Dynani cl npor t - Package.

F.5. OSGi Standards

While OSGi 4.0 is currently required, work is underway to take advantage of the new features available in 4.1.
SpringSource is an active participant in the OSGi Enterprise Expert Group and we hope to help many of the
ideas found in the Spring Dynamic Modules project to make their way into the OSGi R5 specification. Spring
Dynamic Modules would obviously seek to support any such standards at that point in time.

Spring Dynamic Modules(1.2.1) 90

http://jira.springframework.org/browse/OSGI
http://www.osgi.org/blog/2007/06/osgi-and-hibernate.html
http://www2.osgi.org/EEG/HomePage

Appendix G. Spring DM OSGi Repository

At the moment, most libraries are not released as OSGi bundles which means they cannot be used inside the
OSGi space unless they are embedded in other bundles. Though there are tools that make the bundling process
easy, it is desirable to have the artifacts prepacked so they can be used immediately for devel opment.

SpringSource Enterprise Bundle Repository (or SpringSource Repository) addresses this problem by providing
“a collection of open source libraries commonly used for developing enterprise Java applications with the
Spring Framework” (taken from the Repository FAQ). With the availability of the Bundle Repository, the
Spring DM old repository (see below) has been deprecated and it is being used until migrating completely to
SpringSource Repository. It is highly recommended that users migrate as well to SpringSource Repository as it
provides significantly more libraries and it is intended to be a user-facing infrastructure component.

G.1. Spring DM Temporary OSGi Repository

Unfortunately, not all Spring DM dependencies are available in SpringSource Repository and thus Spring DM
dill needs to maintain some of its own dedicated Maven repository avalable at
http://maven. spri ngf ramewor k. or g/ 0sgi .

=] Warning
The repository is provided as-is without any kind of support. The repository structure/content can
(and will) change until it becomes stable. Before using Spring DM repository make sure the needed
artifact are not available in SpringSource Repository. These being said, we hope you find it useful
and we'd like to know if there are improvement that can be madeto it.

G.1.1. Repository Conventions

Currently, all the artifacts published in the repository are marked as SNAPSHOTS meaning that, in time, their
content can change. This alows clients to download possible manifest updates made to the libraries. We
foresee that, as the library usage increases, several popular items will have the sNaPsHOT marker remove.
Additionally, to differentiate the OSGi-enabled artifacts from the original ones, al libraries are placed under
org. springframewor k. osgi group and their names containsa. osgi suffix.

So for example, an OSGi version of nx4j - 3. 0. 2 jar is available in the Spring DM OSGi repository under at:

or g/ spri ngframewor k/ osgi / mx4j . osgi / 3. 0. 2- SNAPSHOT/ nx4j . osgi - 3. 0. 2- SNAPSHOT. j ar

G.1.2. Browsing The Repository Content

The repository is currently hosted at Amazon S3. To browse the repository structure, use a S3 compatible
browser (such asthis one) since a vanillaweb browse will not be suitable.

G.1.3. Using The Repository With Maven

The use the repository, simply add it ot the repositories group; since the repository contains SNAPSHOT
artifacts, make sure to mark it accordingly:

<reposi tori es>
<reposi tory>
<i d>spring-osgified-artifacts</id>

Spring Dynamic Modules(1.2.1) 91

http://www.aqute.biz/Code/Bnd
http://www.springsource.com/repository/
http://www.springsource.com/repository/app/faq
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://jira.springframework.org/browse/OSGI
http://aws.amazon.com/s3
http://s3browse.com/explore/maven.springframework.org/osgi/org/springframework/osgi/

Spring DM OSGi Repository

<snapshot s>
<enabl ed>t r ue</ enabl ed>
</ snapshot s>
<nane>Spri ngframewor k Maven OSG fied Artifacts Repository</nanme>
<ur | >http:// maven. spri ngframewor k. or g/ osgi </ ur| >
</repository>
</repositories>

G.1.4. Using The Repository With Ant/lvy

When using Ant consider using the excellent vy subproject for retrieving the OSGi dependencies from the
Spring DM repository as Ivy can work with a Maven-style repository. Please see the Ivy tutorial for more
information.

Spring Dynamic Modules(1.2.1) 92

http://ant.apache.org/
http://ant.apache.org/ivy/
http://ant.apache.org/ivy/history/latest-milestone/tutorial/start.html

Appendix H. Spring Dynamic Modules
Schema

Spring Core Schema

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>

<xsd: schema xm ns="http://ww. spri ngframewor k. or g/ schema/ osgi "
xm ns: xsd="ht t p: // www. W3. or g/ 2001/ XM_Scherma"
xm ns: beans="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: t ool ="http://ww. springfranmework. org/ schena/t ool "
t ar get Nanespace="htt p: // ww. spri ngf ramewor k. or g/ schena/ osgi "
el enent For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t =" unqual i fi ed"
version="1.2">

<xsd:inport nanmespace="http://ww. w3. or g/ XM./ 1998/ nanespace"/ >
<xsd:inmport namespace="http://ww. spri ngframework. or g/ schenma/ beans"/ >
<xsd: i nport nanmespace="http://ww. springfranmework. org/ schema/tool "/ >

<xsd: annot ati on>
<xsd: document at i on><! [CDATA|

Nanespace support for the core services provided by Spring Dynam c Mdul es
]]1></ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: attributeG oup nanme="defaul ts">
<xsd: annot ati on>
<xsd: docunent ati on><! [CDATA[Def aults for Spring-DM OSG declarations.]]>
</ xsd: docunent at i on>
</ xsd: annot at i on>
<!-- attributes -->
<xsd:attribute nane="defaul t-timeout" type="xsd:|ong" default="30000">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[

Default tineout (in mlliseconds) for all reference (service inporters) elenents that do not explicitly spec

Default value is 300000 ns (5 m nutes).
]]></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: attri bute>

<xsd:attribute nane="default-cardinality" type="TdefaultCardinalityOptions" default="1..X">

<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[

Default cardinality (of the relationship to the backing service(s)) for all OSG references (singular or co

el enents that do not explicitly specify one

Default value is '"1..X (resolved to '1..1" for osgi:reference and '1..N for osgi:list/set) which nmeans the
service nust exist (this is a mandatory service reference). A value of '0..X (resolved to '0..1' for osgi:r

and '0..N for osgi:list/set) indicates that it is acceptable to be no backing service (an optiona
]]></ xsd: docunent at i on>
</ xsd: annot at i on>
</xsd:attribute>
</ xsd: attri but eG oup>

<xsd: si npl eType nanme="Tdef aul t Cardi nal i t yOpti ons">
<xsd:restriction base="xsd:string">
<xsd: enuneration val ue="1..X">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
A backi ng service nust exist (this is a nandatory service reference).
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: enuner ati on>
<xsd: enuneration val ue="0..X">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
A backi ng service can be missing (this is an optional service reference).
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: enuner at i on>
</ xsd:restriction>
</ xsd: si npl eType>

Spring Dynamic Modules(1.2.1) 93

service

Spring Dynamic Modules Schema

<l-- reference -->
<xsd: el ement nane="ref erence" type="Tsingl eRef erence">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a reference to a service obtained via the OSG service registry.
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >

<xsd: conpl exType nanme="Tr ef erence" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="beans:identifiedType">
<xsd: sequence m nCccurs="0" maxCccurs="1">
<xsd: el ement nanme="interfaces" type="beans:|istO Set Type" m nCQccurs="0" maxQOccurs="1">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
The set of service interfaces that the services obtained via the registry are required to support.
By convention, the interface attribute is a Java interface type, but nmay also be a (non-final)
class type.
]1></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el ement nane="listener" type="Tlistener" m nCccurs="0" nmaxQCccurs="unbounded" >
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a listener that will receive notification when a service backing this reference is
bound or unbound
]]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="interface" use="optional" type="xsd:token">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The service interface that the services obtained via the registry are required to support.
By convention this is a Java interface type, but may also be a (non-final) class type.
]]1></ xsd: docunent at i on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : expect ed-type type="java.l ang. d ass" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute name="filter" use="optional" type="xsd:string">
<xsd: annot ati on>
<xsd: documnent at i on><! [CDATA|
Defines an OSG filter expression that is used to constrain the set of matching services
in the service registry.
]1></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: attri bute>
<xsd: attri bute nane="depends-on" type="xsd:string" use="optional">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Used to refer to the name of another bean that this bean depends on. Ensures that the
service registry | ook-up does not happen until after the dependent bean has been created
(rmost commonly used to refer to a bundl e bean).
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd: attribute name="bean-name" type="xsd:string" use="optional">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Conveni ent shortcut for specifying a filter expression that matches on the bean-nanme property
that is automatically advertised for beans published using the service el enent.
]]1></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: attribute>
<xsd: attri bute nane="context-cl ass-|oader" type="Treferenced assLoader Opti ons" default="client">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines how the context class |oader is managed when invoking operations on a service
backing this service reference. The default value is 'client' which neans that the context
class | oader has visibility of the resources on this bundle's classpath. Alternate
options are 'service-provider' which nmeans that the context class |oader has visibility of
resources on the bundl e classpath of the bundle that exported the service, and 'unnmanaged
whi ch does not do any managenent of the context class | oader.

Spring Dynamic Modules(1.2.1) 94

Spring Dynamic Modules Schema

]]></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: attri bute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: si npl eType name="Tr ef erenceCl assLoader Opti ons" >
<xsd:restriction base="xsd: NMTOKEN' >
<xsd: enuneration val ue="client"/>
<xsd: enuner ati on val ue="service-provider"/>
<xsd: enuner ati on val ue="unmanaged"/ >
</xsd:restriction>
</ xsd: si npl eType>

<xsd: conpl exType nanme="Tli stener">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA|
Defines a listener that will be notified when the service backing the encl osing service reference el ement
unbound. Use either the 'ref' attribute or a nested bean declaration for the |istener bean
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence m nCccurs="0" maxCccurs="1">
<l-- nested bean declaration -->
<xsd: any nanespace="##ot her" m nQccurs="1" maxQccurs="1" processCont ents="skip"/>
</ xsd: sequence>

<l-- shortcut for bean references -->
<xsd:attribute name="ref" type="xsd:string" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Refers by nane to the bean that will receive bind and unbind events
]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: attri bute>
<xsd: attribute nane="bi nd- met hod" type="xsd:token" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The name of the method to be invoked when a backing service is bound
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd: attribute nane="unbi nd- met hod" type="xsd:token" use="optional ">
<xsd: annot ati on>
<xsd: documnent at i on><! [CDATA|
The name of the nmethod to be invoked when a backing service is unbound
]1]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: conpl exType>

<I-- single reference -->
<xsd: conpl exType nanme="Tsi ngl eRef erence" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="Tref erence">
<xsd:attribute nane="cardinality" use="optional" type="Tsingl eReferenceCardinality">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines the required cardinality of the relationship to the backing service. |If not specified
the default-cardinality attribute will apply. A value is '1..1" neans that a backing service
nust exist (this is a mandatory service reference). A value of '0..1" indicates that it is
acceptabl e to be no backing service (an optional service reference).
]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: attri bute>
<xsd:attribute name="tinmeout" use="optional" type="xsd:|ong">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
For a 'reference' elenment, the ambunt of tine (in mlliseconds) to wait for a backing service to be
avail abl e when an operation is invoked. |f not specified, the default-tinmeout attribute will apply.
See also the default-tineout attribute of the osgi elenent.
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Spring Dynamic Modules(1.2.1) 95

Spring Dynamic Modules Schema

<xsd: si npl eType nane="Tsi ngl eRef erenceCardi nal ity">
<xsd:restriction base="xsd:token">
<xsd: enuneration value="1..1"/>
<xsd: enuneration val ue="0..1"/>
</xsd:restriction>
</ xsd: si npl eType>

<I-- reference collections (set, list) -->
<xsd: el ement name="list" type="TreferenceCollection">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. spri ngframewor k. osgi . servi ce. i nmporter.support. Osgi Se
Defines a bean of type 'List' that contains all of the services matching the given criteria.
The |ist nmenbers are nmanaged dynanically as matchi ng backi ng services cone and go
]]></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="java.util.List"/>
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
</ xsd: el enent >

<xsd: el ement nane="set" type="TreferenceCollection">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. spri ngfranmewor k. osgi . servi ce. i nporter.support. Csgi Se
Defines a bean of type 'Set' that contains all of the services matching the given criteria
The set nmenbers are managed dynami cal |y as matchi ng backi ng services cone and go
]]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="java.util.Set"/>
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
</ xsd: el enent >

<xsd: conpl exType name="Tr ef erenceCol | ecti on">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="Tref erence">
<xsd: sequence m nCOccurs="0" maxCccurs="1">
<xsd: el ement nane="conparator" type="Tconparator">
<xsd: annot ati on>
<xsd: docunent ati on source="java:java.util.Conparator"><
Used to define an inline bean of type Conparator that will be used to sort the matching services
]]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot at i on>
<t ool : expect ed-type type="java.util . Cong
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute nane="conparator-ref" type="xsd:string" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Used to refer to a naned bean inplenenting the Conparator interface that will be used to
sort the matching services.
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>

<xsd:attribute nane="cardinality" use="optional" type="TcollectionCardinality">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Defines the required cardinality of the relationship to the backing services. |If not specified
the default-cardinality attribute will apply. A value of '1..N nmeans that at |east one backing
service nust exist (this is a mandatory service reference. A value of '0..N indicates that it
is acceptable for there to be no backing service (an optional service reference).
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>

<xsd: attribute name="greedy- proxyi ng" use="optional" type="xsd: bool ean" default="fa
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA|
I ndi cat es whether the proxies created for the inported OSG services will be generated using
just the classes specified (false) or all the classes exported by the service and visible to

Spring Dynamic Modules(1.2.1) 96

Spring Dynamic Modules Schema

the inmporting bundle (true). The default value is false
]1]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>

</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType nanme="Tconpar at or ">
<xsd: annot ati on>
<xsd: docunent ati on source="java:java. util. Conparat or"><![CDATA[
Used to define an inline bean of type Conparator that will be used to sort the matching services
]]></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="java.util.Conparator" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: choi ce>
<xsd: el ement name="natural " type="Tnatural Ordering"/>
<xsd: sequence m nCccurs="1" maxCccurs="1">
<I-- nested bean declaration -->
<xsd: any nanespace="##ot her" m nQccurs="1" maxQccurs="1" processCont ent s="skip"/>
</ xsd: sequence>
</ xsd: choi ce>
</ xsd: conpl exType>

<xsd: conpl exType nanme="Tnat ural O deri ng">
<xsd: attribute name="basi s" type="TorderingBasis" use="required"/>

</ xsd: conpl exType>

<xsd: si npl eType nanme="Tor deri ngBasi s" >
<xsd:restriction base="xsd:token">
<xsd: enunerati on val ue="service"/>
<xsd: enuneration val ue="service-reference"/>
</ xsd:restriction>
</ xsd: si npl eType>

<xsd: si npl eType name="Tcol | ectionCardinality">
<xsd:restricti on base="xsd: token">
<xsd: enuneration value="1..N'/>
<xsd: enunerati on val ue="0..N'/>
</xsd:restriction>
</ xsd: si npl eType>

<l-- service -->
<xsd: el ement name="service" type="Tservice"/>

<xsd: conpl exType name="TbaseServi ce">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="beans:identifiedType">
<xsd:attribute nane="interface" type="xsd:token" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines the interface to advertise for this service in the service registry.
]]></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : expect ed-type type="java.l ang. d ass" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd: attribute nane="depends-on" type="xsd:string" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Used to ensure that the service is not exported to the registry before the naned bean
has been created
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd: attribute nane="context-class-|oader" type="TserviceC assLoader Opti ons" def aul t ="unnanaged
<xsd: annot ati on>
<xsd: documnent at i on><! [CDATA|
Defines how the context class |oader will be nmanaged when an operation is invoked on the

Spring Dynamic Modules(1.2.1) 97

Spring Dynamic Modules Schema

exported service. The default value is 'unmanaged' which neans that no managenent of
the context class |loader is attenpted. A value of 'service-provider' guarantees that
the context class |oader will have visibility of all the resources on the class path of
bundl e exporting the service
]1></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: attri bute>
<xsd: attri bute nane="auto-export" type="Taut oExport Modes" defaul t="di sabl ed">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Enabl es Spring to automatically nmanage the set of service interfaces advertised for the
service. By default this facility is disabled. A value of 'interfaces' advertises al
of the Java interfaces supported by the exported service. A value of 'class-hierarchy
advertises all the Java classes in the hierarchy of the exported service. A value of
"all-classes' advertises all Java interfaces and cl asses.
]]></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: attri bute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType nanme="Tservice">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. spri ngf ramewor k. osgi . servi ce. exporter. support. Osgi Servi c
Exports the reference bean as a service in the OSG service registry. The bean defined by this elenent is of
type org. osgi.framework. Servi ceRegi stration
]]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="org. osgi.framework. Servi ceRegi stration"/>
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="TbaseServi ce">
<xsd: sequence m nCccurs="0" maxCccurs="1">
<xsd: el ement nanme="interfaces" type="beans:|istO Set Type" m nCccurs="0" maxCccurs="1">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The set of service interfaces to advertise in the service registry.
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement name="registration-listener" type="TserviceRegistrationListener" m nCccurs="0"
<xsd: annot ati on>
<xsd: documnent at i on><! [CDATA|
Defines a listener that will be notified when this service is registered or unregistered in the
OSG service registry.
]1></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el ement nane="service-properti es" type="beans: mapType" m nCccurs="0" maxCccurs="1">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines the service properties.
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<!-- nested bean declaration -->
<xsd: any nanespace="##ot her" m nQccurs="0" maxOccurs="1" processCont ents="skip"/>
</ xsd: sequence>
<xsd:attribute nanme="ref" type="xsd:string" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA|
Refers to the naned bean to be exported as a service in the service registry.
]]1></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: attribute>
<xsd:attribute nane="ranki ng" type="xsd:int" default="0">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Specify the service ranking to be used when advertising the service
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >

Spring Dynamic Modules(1.2.1) 98

Spring Dynamic Modules Schema

</ xsd: conpl exType>

<xsd: conpl exType name="Tservi ceRegi strati onLi stener">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA]
Defines a listener that will be notified when the bean is registered or unregistered in the OSG Service Rec
Use either the '"ref' attribute or a nested bean declaration for the |istener bean
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence m nCccurs="0" maxCccurs="1">
<I-- nested bean declaration -->
<xsd: any nanespace="##ot her" m nQccurs="1" maxQOccurs="1" processCont ents="skip"/>
</ xsd: sequence>

<!-- shortcut for bean references -->
<xsd:attribute name="ref" type="xsd:string" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA|
Refers by nane to the bean that will receive regi ster and unregister events
]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute nane="regi stration-nmethod" type="xsd:token" use="optional">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The name of the method to be invoked when the service is registered
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute name="unregi stration-nmethod" type="xsd:token" use="optional ">
<xsd: annot ati on>
<xsd: documnent at i on><! [CDATA|
The name of the method to be invoked when the service is unregistered
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: conpl exType>

<xsd: si npl eType name="Tservi ceCl assLoader Opti ons" >
<xsd:restriction base="xsd:token">
<xsd: enuner ati on val ue="service-provider"/>
<xsd: enuner ati on val ue="unmanaged"/ >
</xsd:restriction>
</ xsd: si npl eType>

<xsd: si npl eType nane="Taut oExport Modes" >
<xsd:restriction base="xsd:token">
<xsd: enunerati on val ue="di sabl ed"/ >
<xsd: enuneration val ue="interfaces"/>
<xsd: enunerati on val ue="cl ass-hi erarchy"/>
<xsd: enuneration val ue="all -cl asses"/>
</xsd:restriction>
</ xsd: si npl eType>

<l-- bundle -->

<xsd: el ement nane="bundl e" type="Tbundl e">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. spri ngf ramewor k. osgi . bundl e. Bundl eFact or yBean" ><! [CDATA[
Defines a bean representing a Bundl e object. May be used to drive bean lifecycle transitions.
]]></ xsd: docunent at i on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="org.osgi.framework. Bundl e"/ >
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: el ement >

<xsd: conpl exType nanme="Tbundl e">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="beans:identifiedType">
<I-- optional nested bean declaration -->
<xsd: sequence m nCccurs="0" maxQccurs="1">
<xsd: any nanespace="##ot her" m nOccurs="1" nmaxQccurs="1" processContents="1lz¢
<xsd: annot ati on>
<xsd: documnent at i on><! [CDATA|
OSG bundle to work w th.

Spring Dynamic Modules(1.2.1) 99

Spring Dynamic Modules Schema

]]></ xsd: docunent at i on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : expect ed-type type="org.osgi.fre
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: any>
</ xsd: sequence>

<xsd: attribute name="synbolic-nanme" type="xsd:string" use="optional">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The bundl e synbolic name of the bundle object. Normally used when interacting with an already
installed bundle.
]]></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: attri bute>
<xsd: attribute nane="depends-on" type="xsd:string" use="optional">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Indicates that this bundle object should not be created until the named bean has been created
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>

<xsd:attribute name="|ocation" type="xsd:string" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA|
Location used to install, update or/and identify a bundle.
]]></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute nane="action" type="Tbundl eActi on" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Lifecyle action to drive on the bundle. 'start' starts the bundle, installing if necessary.
'stop' stops the bundle if it is currently ACTIVE. 'install' installs the bundle if it is
currently uninstalled. 'uninstall' stops the bundle if needed, and then uninstalls it.
‘update' installs the bundle if needed, and then invokes the Bundl e.update() operation
]]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd: attribute name="destroy-action" type="Thbundl eActi on" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA|
Lifecyle action to drive on the bundle. 'start' starts the bundle, installing if necessary.
'stop' stops the bundle if it is currently ACTIVE. 'install' installs the bundle if it is
currently uninstalled. 'uninstall' stops the bundle if needed, and then uninstalls it.
‘update' installs the bundle if needed, and then invokes the Bundl e.update() operation
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute nane="start-level" type="xsd:int" use="optional" default="0">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Start level to set for the bundle.
]]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: si npl eType name="Tbundl eActi on">
<xsd:restriction base="xsd:token">
<xsd: enuneration value="start"/>
<xsd: enunerati on val ue="stop"/>
<xsd: enuneration value="install"/>
<xsd: enunerati on val ue="uninstall"/>
<xsd: enunerati on val ue="update"/>
</ xsd:restriction>
</ xsd: si npl eType>

</ xsd: schena>

Spring Dynamic Modules(1.2.1) 100

Spring Dynamic Modules Schema

Spring Compendium Schema

<?xm version="1.0" encodi ng="UTF-8" standal one="no" ?>

<xsd: schema xm ns="http://ww. spri ngframework. or g/ schema/ osgi - conpendi uni'
xm ns: xsd="ht t p: / / www. w3. or g/ 2001/ XM_Schem"
xm ns: beans="http: //ww. spri ngframewor k. or g/ schena/ beans"
xm ns: osgi ="http://ww. spri ngfranmewor k. or g/ schenma/ osgi "
xm ns: tool ="http://ww. springfranmework. org/ schena/t ool "
tar get Nanespace="htt p: // ww. spri ngf ramewor k. or g/ schenma/ osgi - conpendi unt'
el enent For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t =" unqual i fi ed"
versi on="1.2">

<xsd:inport nanmespace="http://ww. w3. or g/ XM./ 1998/ nanespace"/ >
<xsd:inmport namespace="http://ww. spri ngframework. or g/ schenma/ beans"/ >
<xsd: i nport nanespace="http://ww. springfranmework. org/ schema/tool "/ >
<xsd:inmport namespace="http://ww. spri ngframework. or g/ schenma/ osgi "
schemaLocati on="htt p: //ww. spri ngfranmewor k. or g/ schema/ osgi / spri ng- osgi . xsd"/ >

<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA|

Nanmespace support for the conpendi um servi ces provided by Spring Dynam c Mdul es.
]1></ xsd: docunent at i on>

</ xsd: annot ati on>

<l-- internal reusable type -->
<xsd: attributeG oup nane="updat eAttri butes">
<xsd: attribute nane="update-strategy" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The strategy to use when the configuration data backing the beans defined by this elenent is
updat ed. The default value is 'none', neaning that any update after the initial configuration
of the beans is ignored. A value of 'bean-nmanaged’ neans that the method specified in the
‘update-nmethod' attribute will be invoked. A value of 'container-mnaged' neans that the container
will autowire the bean instance by name with the new property set
]1></ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: si npl eType>
<xsd:restriction base="xsd: string">
<xsd: enuner ati on val ue="none"/>
<xsd: enuner ati on val ue="bean- nanaged"/ >
<xsd: enurer ati on val ue="cont ai ner - managed"/ >
</xsd:restriction>
</ xsd: si npl eType>
</ xsd:attribute>
<xsd: attribute nane="updat e- net hod" type="xsd:string" use="optional">
<xsd: annot ati on>
<xsd: document at i on><! [CDATA|
The update-nmethod to i nvoke when using a 'bean-managed' update strategy.
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: attri but eG oup>

<xsd: el ement nane="nmnaged- properties">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a bean based on the given class name and configuration, with properties autow red-by-nane
based on the configuration stored under the given persistent id.
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd:attributeGoup ref="updateAttributes"/>
<xsd:attribute nane="persistent-id" type="xsd:string" use="required">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The persistent-id under which the configuration for this bean is stored in
the Configuration Admi n service
]]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: conpl exType>
</ xsd: el enent >

<I'-- managed-service-factory -->

Spring Dynamic Modules(1.2.1) 101

Spring Dynamic Modules Schema

<xsd: el ement nanme="managed- servi ce-factory">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a collection of beans based on the given class nane, with properties autow red-by-name based
on the configuration sets stored under the given factory persistent id.
]1></ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="o0sgi: ThaseService">
<xsd: sequence>
<xsd: el ement name="interfaces" type="beans:|istO Set Type" m nCccurs="0" maxCccurs="1
<xsd: annot ati on>
<xsd: documnent at i on><! [CDATA|
The set of service interfaces to advertise in the service registry.
]1]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement name="registration-listener" type="osgi: Tservi ceRegi strationListener" r
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Defines a listener that will be notified when this service is registered or unregistered in the
OSG service registry.
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<l-- the bean definition tenplate -->
<xsd: any nanespace="##ot her" m nQccurs="1" maxQOccurs="1" processContents="skip">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA|
Defines the service definition tenplate.
]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: any>
</ xsd: sequence>
<xsd:attribute name="factory-pid" type="xsd:string" use="required'>
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The persistent-id under which the configuration for this bean is stored in
the Configuration Adnin service
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attributeGoup ref="updateAttributes"/>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<l-- cmproperties -->
<xsd: el ement nanme="cm properties">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. spri ngf ramewor k. osgi . conpendi um cm Conf i gAdm nProperti es
Exposes the properties found in the Configuration Adm n service under the given persistent id.
]]></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="java.util.Properties"/>
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="beans: propsType" >
<xsd:attribute nane="id" type="xsd:ID'/>
<xsd:attribute nane="persistent-id" type="xsd:string" use="required">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The persistent id under which the properties reside
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute name="|ocal -override" type="xsd: bool ean">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA|
Speci fi es whether |ocal properties override properties fromthe Configuration Adnmin service

Spring Dynamic Modules(1.2.1) 102

Spring Dynamic Modules Schema

Default is "false": properties from Configuration Adm n service override |ocal defaults.
If set to "true", local properties will override properties from Configurati on Adm n service
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

</ xsd: schema>

Spring Dynamic Modules(1.2.1) 103

Appendix I. Acknowledgments

Spring Dynamic Modules would like to thank (in alphabetical order) to : Bill Gallagher, Olivier Gruber,

Richard S. Hall, BJ Hargrave, Peter Kriens, Martin Lippert, Jeff McAffer, Glyn Normington, Gerd Wuetherich
for their contributions in the development of this documentation.

Spring Dynamic Modules(1.2.1) 104

	Spring Dynamic Modules Reference Guide
	Table of Contents
	Preface
	Part I. Introduction
	Chapter 1. Why Spring Dynamic Modules?
	Chapter 2. Requirements
	Chapter 3. Getting Started
	3.1. First Steps
	3.1.1. Knowing Spring
	3.1.2. Knowing OSGi
	3.1.3. Trying Out The Samples

	3.2. Need Help?
	3.2.1. Community Support
	3.2.2. Professional Support

	3.3. Following Development

	Chapter 4. What is new?
	4.1. 1.2.x
	4.1.1. Java 2 Security Integration
	4.1.2. Compendium Services Support
	4.1.3. Changed Spring DM Symbolic Names
	4.1.4. Usage of SpringSource Enterprise Bundle Repository (EBR)

	4.2. 1.1.x
	4.2.1. Web Support
	4.2.1.1. Spring-MVC Integration

	4.2.2. Classpath Resource Abstraction
	4.2.3. Pluggable Extender Configuration
	4.2.4. Improved Class Loading

	Part II. Reference Documentation
	Chapter 5. Bundles and Application Contexts
	5.1. The Spring Dynamic Modules Extender bundle
	5.2. Application Context Creation
	5.2.1. Mandatory Service Dependencies
	5.2.2. Application Context Service Publication

	5.3. Bundle Lifecycle
	5.4. The Resource Abstraction
	5.5. Accessing the BundleContext
	5.6. Application Context Destruction
	5.7. Stopping the Extender Bundle

	Chapter 6. Packaging and Deploying Spring-based OSGi applications
	6.1. Bundle Format And Manifest Headers
	6.2. Extender Configuration Options
	6.2.1. Listening To Extender Events

	6.3. Required Spring Framework And Spring Dynamic Modules Bundles
	6.4. Spring XML Authoring Support
	6.5. Importing and Exporting Packages
	6.6. Considerations When Using External Libraries
	6.7. Diagnosing Problems

	Chapter 7. The Service Registry
	7.1. Exporting A Spring Bean As An OSGi Service
	7.1.1. Controlling The Set Of Advertised Service Interfaces For An Exported Service
	7.1.1.1. Detecting The Advertised Interfaces At Runtime

	7.1.2. Controlling The Set Of Advertised Properties For An Exported Service
	7.1.3. The depends-on Attribute
	7.1.4. The context-class-loader Attribute
	7.1.5. The ranking Attribute
	7.1.6. service Element Attributes
	7.1.7. Service Registration And Unregistration Lifecycle
	7.1.7.1. Using OsgiServiceRegistrationListener Interface

	7.2. Defining References To OSGi Services
	7.2.1. Referencing An Individual Service
	7.2.1.1. Controlling The Set Of Advertised Interfaces For The Imported Service
	7.2.1.2. The filter Attribute
	7.2.1.3. The bean-name Attribute
	7.2.1.4. The cardinality Attribute
	7.2.1.5. The depends-on Attribute
	7.2.1.6. The context-class-loader Attribute
	7.2.1.7. reference Element Attributes
	7.2.1.8. reference And OSGi Service Dynamics
	7.2.1.9. Getting A Hold Of The Managed Service Reference

	7.2.2. Referencing A Collection Of Services
	7.2.2.1. Greedy Proxying
	7.2.2.2. Collection (list And set) Element Attributes
	7.2.2.3. list / set And OSGi Service Dynamics
	7.2.2.4. Iterator Contract And Service Collections

	7.2.3. Dealing With The Dynamics Of OSGi Imported Services
	7.2.4. Listener And Service Proxies
	7.2.5. Accessing The Caller BundleContext

	7.3. Exporter/Importer Listener Best Practices
	7.3.1. Listener And Cyclic Dependencies

	7.4. Service Importer Global Defaults
	7.5. Relationship Between The Service Exporter And Service Importer

	Chapter 8. Working With Bundles
	Chapter 9. Web Support
	9.1. Supported Web Containers
	9.2. Web Support Usage
	9.3. WAR Classpath In OSGi
	9.3.1. Static Resources
	9.3.2. Servlets
	9.3.3. Java Server Pages
	9.3.3.1. Tag Libraries

	9.4. Configuring The Web Extender
	9.4.1. Changing The War Deployer

	9.5. Customizing The Standard Deployers
	9.6. OSGi-ready Libraries And Web Development
	9.6.1. Deploying Web Containers As OSGi Bundles
	9.6.1.1. Tomcat 5.5.x/6.0.x
	9.6.1.2. Jetty 6.1.8+/6.2.0

	9.6.2. Common Libraries

	9.7. Spring-MVC Integration

	Chapter 10. Compendium Services
	10.1. Configuration Admin
	10.1.1. Exposing Configuration Admin Entries As Properties
	10.1.2. Managed Properties
	10.1.2.1. Configuration Admin Runtime Updates

	10.1.3. Managed Service Factories
	10.1.4. Direct Access To Configuration Data

	Chapter 11. Testing OSGi based Applications
	11.1. OSGi Mocks
	11.2. Integration Testing
	11.2.1. Creating A Simple OSGi Integration Test
	11.2.2. Installing Test Prerequisites
	11.2.3. Advanced Testing Framework Topics
	11.2.3.1. Customizing The Test Manifest
	11.2.3.2. Customizing Test Bundle Content
	11.2.3.3. Understanding The MANIFEST.MF Generation

	11.2.4. Creating An OSGi Application Context
	11.2.5. Specifying The OSGi Platform To Use
	11.2.6. Waiting For The Test Dependencies
	11.2.7. Testing Framework Performance

	Part III. Other Resources
	Chapter 12. Useful Links

	Part IV. Appendixes
	Appendix A. Extensions
	A.1. Annotation-Based Injection
	A.1.1. Enabling/Disabling Annotation Processing

	Appendix B. Security Integration
	Appendix C. Eclipse Plug-in Development integration
	Appendix D. Spring Dynamic Modules Maven Archetype
	D.1. Generated Project Features At-A-Glance

	Appendix E. Useful OSGi tips
	E.1. OSGi Fragments

	Appendix F. Roadmap
	F.1. Access to Service References for Collections
	F.2. Start Level Integration
	F.3. Web Library Integration
	F.4. ORM/Persistence Support
	F.5. OSGi Standards

	Appendix G. Spring DM OSGi Repository
	G.1. Spring DM Temporary OSGi Repository
	G.1.1. Repository Conventions
	G.1.2. Browsing The Repository Content
	G.1.3. Using The Repository With Maven
	G.1.4. Using The Repository With Ant/Ivy

	Appendix H. Spring Dynamic Modules Schema
	Appendix I. Acknowledgments

