
Spring Dynamic Modules Reference Guide

1.2.1

Adrian M Colyer (SpringSource), Hal Hildebrand (Oracle), Costin Leau (SpringSource), Andy
Piper (BEA)

Copyright © 2006-2009

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

Preface ... v
I. Introduction .. 1

1. Why Spring Dynamic Modules? .. 2
2. Requirements .. 3
3. Getting Started .. 4

3.1. First Steps .. 4
3.1.1. Knowing Spring .. 4
3.1.2. Knowing OSGi .. 4
3.1.3. Trying Out The Samples .. 4

3.2. Need Help? .. 5
3.2.1. Community Support .. 5
3.2.2. Professional Support .. 5

3.3. Following Development ... 5
4. What is new? .. 6

4.1. 1.2.x .. 6
4.1.1. Java 2 Security Integration ... 6
4.1.2. Compendium Services Support ... 6
4.1.3. Changed Spring DM Symbolic Names .. 6
4.1.4. Usage of SpringSource Enterprise Bundle Repository (EBR) 6

4.2. 1.1.x .. 6
4.2.1. Web Support ... 6
4.2.2. Classpath Resource Abstraction .. 7
4.2.3. Pluggable Extender Configuration .. 7
4.2.4. Improved Class Loading .. 7

II. Reference Documentation ... 8
5. Bundles and Application Contexts .. 9

5.1. The Spring Dynamic Modules Extender bundle .. 9
5.2. Application Context Creation .. 9

5.2.1. Mandatory Service Dependencies ... 10
5.2.2. Application Context Service Publication ... 11

5.3. Bundle Lifecycle .. 11
5.4. The Resource Abstraction ... 12
5.5. Accessing the BundleContext .. 13
5.6. Application Context Destruction ... 14
5.7. Stopping the Extender Bundle ... 14

6. Packaging and Deploying Spring-based OSGi applications .. 16
6.1. Bundle Format And Manifest Headers ... 17
6.2. Extender Configuration Options .. 19

6.2.1. Listening To Extender Events ... 22
6.3. Required Spring Framework And Spring Dynamic Modules Bundles 23
6.4. Spring XML Authoring Support .. 23
6.5. Importing and Exporting Packages .. 24
6.6. Considerations When Using External Libraries .. 24
6.7. Diagnosing Problems ... 25

7. The Service Registry ... 26
7.1. Exporting A Spring Bean As An OSGi Service .. 27

7.1.1. Controlling The Set Of Advertised Service Interfaces For An Exported Service . 27
7.1.2. Controlling The Set Of Advertised Properties For An Exported Service 29
7.1.3. The depends-on Attribute ... 29
7.1.4. The context-class-loader Attribute .. 29
7.1.5. The ranking Attribute .. 30
7.1.6. service Element Attributes ... 30

Spring Dynamic Modules(1.2.1) ii

7.1.7. Service Registration And Unregistration Lifecycle .. 31
7.2. Defining References To OSGi Services ... 33

7.2.1. Referencing An Individual Service ... 33
7.2.2. Referencing A Collection Of Services ... 37
7.2.3. Dealing With The Dynamics Of OSGi Imported Services 43
7.2.4. Listener And Service Proxies ... 44
7.2.5. Accessing The Caller BundleContext ... 45

7.3. Exporter/Importer Listener Best Practices .. 45
7.3.1. Listener And Cyclic Dependencies ... 46

7.4. Service Importer Global Defaults .. 47
7.5. Relationship Between The Service Exporter And Service Importer 48

8. Working With Bundles .. 50
9. Web Support .. 52

9.1. Supported Web Containers ... 52
9.2. Web Support Usage .. 52
9.3. WAR Classpath In OSGi .. 53

9.3.1. Static Resources .. 53
9.3.2. Servlets ... 53
9.3.3. Java Server Pages .. 54

9.4. Configuring The Web Extender ... 55
9.4.1. Changing The War Deployer .. 56

9.5. Customizing The Standard Deployers .. 56
9.6. OSGi-ready Libraries And Web Development .. 57

9.6.1. Deploying Web Containers As OSGi Bundles ... 57
9.6.2. Common Libraries ... 58

9.7. Spring-MVC Integration ... 58
10. Compendium Services ... 60

10.1. Configuration Admin .. 60
10.1.1. Exposing Configuration Admin Entries As Properties 60
10.1.2. Managed Properties ... 62
10.1.3. Managed Service Factories ... 64
10.1.4. Direct Access To Configuration Data .. 67

11. Testing OSGi based Applications ... 68
11.1. OSGi Mocks .. 68
11.2. Integration Testing ... 69

11.2.1. Creating A Simple OSGi Integration Test .. 69
11.2.2. Installing Test Prerequisites .. 70
11.2.3. Advanced Testing Framework Topics ... 71
11.2.4. Creating An OSGi Application Context ... 74
11.2.5. Specifying The OSGi Platform To Use ... 74
11.2.6. Waiting For The Test Dependencies ... 74
11.2.7. Testing Framework Performance .. 74

III. Other Resources .. 76
12. Useful Links ... 77

IV. Appendixes .. 78
A. Extensions ... 79

A.1. Annotation-Based Injection .. 79
A.1.1. Enabling/Disabling Annotation Processing ... 79

B. Security Integration .. 81
C. Eclipse Plug-in Development integration ... 82
D. Spring Dynamic Modules Maven Archetype .. 86

D.1. Generated Project Features At-A-Glance ... 86

Spring Dynamic Modules Reference Guide

Spring Dynamic Modules(1.2.1) iii

E. Useful OSGi tips .. 88
E.1. OSGi Fragments .. 88

F. Roadmap .. 90
F.1. Access to Service References for Collections ... 90
F.2. Start Level Integration .. 90
F.3. Web Library Integration ... 90
F.4. ORM/Persistence Support ... 90
F.5. OSGi Standards ... 90

G. Spring DM OSGi Repository .. 91
G.1. Spring DM Temporary OSGi Repository .. 91

G.1.1. Repository Conventions .. 91
G.1.2. Browsing The Repository Content ... 91
G.1.3. Using The Repository With Maven .. 91
G.1.4. Using The Repository With Ant/Ivy ... 92

H. Spring Dynamic Modules Schema ... 93
I. Acknowledgments ... 104

Spring Dynamic Modules Reference Guide

Spring Dynamic Modules(1.2.1) iv

Preface
Application development has seen significant changes in the last years, moving towards a simpler, more agile,
POJO-based programming model in order to keep a fast pace. Dependency injection and Aspect Oriented
Programming, which were once bleeding edge ideas, are used on a daily basis by most developers to manage
and simplify the complexity of their applications.

However, in terms of deployment, things have remained mainly unchanged. Even though code bases are
divided into modules, whether logical, conceptual or physical, at runtime they are seen as one monolithic
application in which, making a change (be it large or small), requires a restart. OSGi aims to change this by
allowing applications to be divided into modules that can have different life cycles, dependencies and still exist
as a whole.

Spring Dynamic Modules focuses on integrating Spring Framework powerful, non-invasive programming
model and concepts with the dynamics and modularity of OSGi platform. It allows transparent exporting and
importing of OSGi services, life cycle management and control.

While every effort has been made to ensure that this documentation is comprehensive and there are no errors,
nevertheless some topics might require more explanation and some typos might have crept in. If you do spot
any mistakes or even more serious errors and you can spare a few cycles during lunch, please do bring the error
to the attention of the Spring Dynamic Modules team by raising an issue. Thank you.

Spring Dynamic Modules(1.2.1) v

http://www.osgi.org
http://opensource.atlassian.com/projects/spring/browse/OSGI

Part I. Introduction

This document is the reference guide for Spring Dynamic Modules. It defines Spring Dynamic Modules
concepts and semantics, the syntax for the OSGi Service Platform based namespaces, the Dynamic Modules
extender bundle and the OSGi manifest header entries defined by Dynamic Modules. For a tutorial introduction
to building OSGi-based applications with Spring Dynamic Modules see our online page.

OSGi developers looking for an introduction to Spring should review the introductory articles on the
springframework.org site.

Note: OSGi is a trademark of the OSGi Alliance. Project name is pending final approval from the Alliance.

Note: Please see the known issues page for Spring Dynamic Modules release.

Spring Dynamic Modules(1.2.1) 1

http://www.osgi.org
http://www.springframework.org/osgi
http://www.springframework.org/documentation
./issues.html

Chapter 1. Why Spring Dynamic Modules?
The Spring Framework is the leading full-stack Java/JEE application framework. It provides a lightweight
container and a non-invasive programming model enabled by the use of dependency injection, AOP, and
portable service abstractions. The OSGi Service Platform offers a dynamic application execution environment
in which modules (bundles) can be installed, updated, or removed on the fly. It also has excellent support for
modularity and versioning.

Spring Dynamic Modules makes it easy to write Spring applications that can be deployed in an OSGi execution
environment, and that can take advantage of the services offered by the OSGi framework. Spring's OSGi
support also makes development of OSGi applications simpler and more productive by building on the
ease-of-use and power of the Spring Framework. For enterprise applications, the combination of Spring
Dynamic Modules and the OSGi platform provides:

• Better separation of application logic into modules, with runtime enforcement of module boundaries

• The ability to deploy multiple versions of a module (or library) concurrently

• The ability to dynamically discover and use services provided by other modules in the system

• The ability to dynamically install, update and uninstall modules in a running system

• Use of the Spring Framework to instantiate, configure, assemble, and decorate components within and across
modules.

• A simple and familiar programming model for enterprise developers to exploit the features of the OSGi
platform.

We believe that the combination of OSGi and Spring offers a comprehensive model for building enterprise
applications.

Spring Dynamic Modules(1.2.1) 2

Chapter 2. Requirements
Spring Dynamic Modules 1.0 supports JDK level 1.4 and above and OSGi R4 and above. Bundles deployed for
use with Spring Dynamic Modules should specify "Bundle-ManifestVersion: 2" in their manifest (OSGi
R4). We test against Equinox 3.2.x, Felix 1.0.3+, and Knopflerfish 2.1.x as part of our continuous integration
process.

Spring Dynamic Modules(1.2.1) 3

http://www2.osgi.org/Specifications/HomePage?section=2
http://www.eclipse.org/equinox/
http://felix.apache.org/
http://www.knopflerfish.org/

Chapter 3. Getting Started
Learning a new framework is not always straight forward. In this section, we (the Spring DM team) tried to
provide, what we think is, an easy to follow guide for starting with Spring Dynamic Modules. Of course, feel
free to create your own learning 'path' as you see fit and, if possible, please report back any improvements to
the documentation that can help others.

3.1. First Steps

As explained in Chapter 1, Why Spring Dynamic Modules?, Spring DM provides integration between Spring
framework and OSGi. Thus, it is important to become acquainted with both of these frameworks (libraries or
environments depending on how you want to name them). Throughout the Spring DM documentation, each
section provides links to resources relevant however, it is best to become familiar with these topics beforehand.

3.1.1. Knowing Spring

Spring DM uses heavily Spring framework's core functionalty, such as the IoC container, resource abstract or
AOP infrastructure. While it is not important to know the Spring APIs, understanding the concepts behind them
is. At a minimum, the idea behind IoC should be familiar. These being said, the more knowledge one has about
the Spring, the faster she will pick Spring Dynamic Modules. Besides the very comprehensive (and sometimes
disarming) documentation that explains in detail the Spring Framework, there are a lot of articles, blog entries
and books on the matter - take a look at the Spring framework home page for more information. In general, this
should be the starting point for OSGi (or Eclipse plugin) developers wanting to try Spring DM.

3.1.2. Knowing OSGi

Java developers, new to OSGi, can start by reading the OSGi Alliance introduction, the OSGi specifications or
one of the articles/blogs available on the internet (such as the SpringSource blogs). Additionally, the Spring
DM home page hosts various links to useful materials.

3.1.3. Trying Out The Samples

Once one is familiar with the concepts behind Spring and OSGi, she can start reading the Spring DM reference
documentation (this document) and take the Spring DM samples for a spin. The samples are available either in
the .zip distribution or from the Spring DM repository. The samples are a convenient way to get started quickly
with Spring DM as they show various features of Spring DM and help one get pass the initial struggles with
OSGi. However, they are not meant as the definitive guide in using OSGi rather, they aim to be a launching pad
for "newbies" trying out OSGi in Spring.

The current distribution contains:

• Simple Service Sample

A simple example that illustrates OSGi service publication and consumption through Spring DM. This is a
good starting point for users learning the basics.

• Weather Sample

A demo that shows more advanced features of Spring DM and OSGi. The application creates a very simple

Spring Dynamic Modules(1.2.1) 4

http://static.springframework.org/spring/docs/2.5.x/reference/spring-core.html
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html
http://static.springframework.org/spring/docs/2.5.x/reference/resources.html
http://static.springframework.org/spring/docs/2.5.x/reference/aop.html
http://www.springsource.org/documentation
http://www.osgi.org/About/HowOSGi
http://www.osgi.org/Specifications/HomePage
http://blog.springsource.com/category/osgi/
http://www.springframework.org/osgi

weather information services presenting some best practices in designing an application to take advantage of
the modularity offered by OSGi.

• Simple Web App Sample

As the name implies, this is a simple web application, containing Servlets, JSPs and JSP tags, that runs inside
OSGi through Spring DM.

• Web Console Sample

A more complicated sample that demos a Spring MVC annotation based, web application that runs inside
OSGi through Spring DM, featuring class path scanning and various Spring taglib. Additionally, the web
application interacts with the OSGi environment through the web UI.

Each project contains instructions regarding its content and startup procedure. Users are encouraged to
experiment with the samples to get a better understanding of the technologies used.

3.2. Need Help?

If you encounter issues or you are just looking for an advice, feel free to use one of the links below:

3.2.1. Community Support

The Spring DM forum is a message board for all Spring DM users to share information and help each other.
Note that registration is needed only for posting.

3.2.2. Professional Support

Professional, from-the-source support, with guaranteed response time, is available from SpringSource, the
company behind Spring Dynamic Modules and Spring.

3.3. Following Development

For information on the Spring DM source code repository, nightly builds and snapshot artifacts please see the
Spring DM home page.

You can help make Spring DM best serve the needs of the Spring community by interacting with developers
through the Spring Community forums.

If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring DM issue
tracker.

To stay up to date with the latest news and announcements in the Spring eco system, subscribe to the Spring
Community Portal.

Getting Started

Spring Dynamic Modules(1.2.1) 5

http://forum.springframework.org/forumdisplay.php?f=43
http://www.springsource.com
http://www.springsource.org/osgi
http://forum.springsource.org
http://jira.springframework.org/
http://www.springframework.org/

Chapter 4. What is new?
While a relatively young project, each version of Spring Dynamic Modules (even minor ones) offers new
functionality. This chapter is a guide to the new and improved feature and intended as a high-level, short
summary. Please follow the appropriate links for more in-depth information.

4.1. 1.2.x

4.1.1. Java 2 Security Integration

Since 1.2.x, Spring Dynamic Modules is aware of secured environments by making use of dedicated privileged
blocks for executing security sensitive code. Thus, Spring DM can run as a trusted library without requiring
escalated permissions for its managed bundles. See Appendix B, Security Integration for more information.

4.1.2. Compendium Services Support

1.2.x provides integration with the Configuration Admin, part of the OSGi compendium services. Chapter 10,
Compendium Services provides more details on the topic.

4.1.3. Changed Spring DM Symbolic Names

Since 1.2.0 M2, the Spring DM bundles symbolic names have been aligned with Spring's 2.5.6+. Thus the
prefix org.springframework.bundle.osgi has been changed to org.springframework.osgi; for example
Spring DM extender symbolic name was changed from org.springframework.bundle.osgi.extender to
org.springframework.osgi.extender (notice the missing bundle word). Additionally, the documentation has
been updated to reflect Spring 2.5.6+ symbolic names.

4.1.4. Usage of SpringSource Enterprise Bundle Repository (EBR)

To minimize the number of repositories used and the confusion caused by OSGified vs non-OSGified artifacts
especially to users using Spring dm Server, after 1.2.0 RC1, Spring Dynamic Modules aligned as many of its
dependencies as possible with SpringSource EBR. In practice this means that Spring framework artifacts, such
as spring-aop.jar can be now found as org.springframework.aop.jar; We apologize for any inconvenience
created to users relying on these naming conventions.

4.2. 1.1.x

4.2.1. Web Support

The biggest feature in Spring Dynamic Modules 1.1.x is the transparent support for web applications on OSGi
platforms. By integrating directly with web containers (such as Apache Tomcat and Jetty), Spring DM allows
WARs using Servlet, JSP and taglib technologies to be used with little or no effort at all. Please see Chapter 9,
Web Support for details.

4.2.1.1. Spring-MVC Integration

Spring Dynamic Modules(1.2.1) 6

http://java.sun.com/javase/technologies/security/#overview
http://java.sun.com/j2se/1.4.2/docs/guide/security/doprivileged.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/doprivileged.html
http://www.osgi.org/javadoc/r4v401/org/osgi/service/cm/package-summary.html
http://www.springsource.com/repository

Additionally, with 1.1.x it is possible to run Spring-MVC applications inside OSGi environments. See
Section 9.7, “Spring-MVC Integration” for more information.

4.2.2. Classpath Resource Abstraction

1.1.x adds support for classpath: and classpath*: prefixes to the OSGi Resource abstraction. This allows
the discovery of classpath resources (such as Spring's component scanning) to work out-of-the-box across
multiple bundles on the supported OSGi platforms. See Section 5.4, “The Resource Abstraction” for more
information.

4.2.3. Pluggable Extender Configuration

1.1.x makes it easy to change the default configuration for the various extenders used by Spring DM. By using
fragments, users can customize the way application contexts are started, the web container used for web
deployment or the thread-pool for running Spring applications. Additionally, it is possible to receive events
regarding the OSGi Spring application contexts lifecycle. Section 5.1, “The Spring Dynamic Modules Extender
bundle” lists the available options and explains them in detail.

4.2.4. Improved Class Loading

In 1.1.x, the proxy creation has been improved, leading to better package wiring for the managed bundles. See
the FAQ for more information.

What is new?

Spring Dynamic Modules(1.2.1) 7

http://static.springframework.org/spring/docs/2.5.x/reference/new-in-2.html#new-in-2-ioc-component-scanning

Part II. Reference Documentation

Document structure
This part of the reference documentation explains the core functionality offered by Spring Dynamic Modules.

Chapter 5, Bundles and Application Contexts describes the relationship between an OSGi Bundle and a Spring
Application Context, and introduces the Spring Extender Bundle support for instantiating application contexts
automatically.

Chapter 6, Packaging and Deploying Spring-based OSGi applications describes how to deploy the Spring
Framework jar files in an OSGi environment, and how to reference external APIs from your application
bundles should you need to do so. This chapter also explains some of the issues to be aware of when using
existing enterprise libraries not designed for OSGi in an OSGi environment.

Chapter 7, The Service Registry describes how to export Spring beans as services in the OSGi service registry,
and how to inject references to OSGi services into beans. This chapter also defines how the dynamic life-cycle
of OSGi services and bundles is supported.

Chapter 8, Working With Bundles describes how to declare a bean that represents an OSGi bundle, including
support for installing new bundles into the OSGi platform.

Chapter 9, Web Support explains how to run web applications inside an OSGi environment using Spring DM.

Chapter 10, Compendium Services describes the support provided for the OSGi Compendium Services,
specifically the Configuration Admin service.

Chapter 11, Testing OSGi based Applications explains the integration testing support provided by Spring
Dynamic Modules. This support enables you to write simple JUnit integration tests that can start up an OSGi
environment, install the bundles needed for the integration test, execute the test case(s) inside of OSGi, and
return the results to the runner. This makes it easy to integrate OSGi integration testing into any environment
that can work with JUnit.

Spring Dynamic Modules(1.2.1) 8

http://www2.osgi.org/Release4/Download

Chapter 5. Bundles and Application Contexts
The unit of deployment (and modularity) in OSGi is the bundle (see section 3.2 of the OSGi Service Platform
Core Specification). A bundle known to the OSGi runtime is in one of three steady states: installed, resolved, or
active. Bundles may export services (objects) to the OSGi service registry, and by so doing make these services
available for other bundles to discover and to use. Bundles may also export Java packages, enabling other
bundles to import the exported types.

In Spring the primary unit of modularity is an application context, which contains some number of beans
(objects managed by the Spring application context). Application contexts can be configured in a hierarchy
such that a child application context can see beans defined in a parent, but not vice-versa. The Spring concepts
of exporters and factory beans are used to export references to beans to clients outside of the application
context, and to inject references to services that are defined outside of the application context.

There is a natural affinity between an OSGi bundle and a Spring application context. Using Spring Dynamic
Modules, an active bundle may contain a Spring application context, responsible for the instantiation,
configuration, assembly, and decoration of the objects (beans) within the bundle. Some of these beans may
optionally be exported as OSGi services and thus made available to other bundles, beans within the bundle may
also be transparently injected with references to OSGi services.

5.1. The Spring Dynamic Modules Extender bundle

Extender Pattern

A common pattern in OSGi applications is the extender, that (quoting Peter Kriens, OSGi Technical
Director), “allows other bundles to extend the functionality in a specific domain”. See this OSGi Alliance
blog entry for an in-depth explanation.

Spring Dynamic Modules provides an OSGi bundle org.springframework.osgi.extender. This bundle is
responsible for instantiating the Spring application contexts for your application bundles. It serves the same
purpose as the ContextLoaderListener does for Spring web applications. Once the extender bundle is installed
and started it looks for any existing Spring-powered bundles that are already in the ACTIVE state and creates
application contexts on their behalf. In addition, it listens for bundle starting events and automatically creates
an application context for any Spring-powered bundle that is subsequently started. Section 6.1, “Bundle Format
And Manifest Headers” describes what the extender recognizes as a "Spring-powered bundle" while
Section 6.2, “Extender Configuration Options” how the extender can be configured.

5.2. Application Context Creation

The extender bundle creates applications contexts asynchronously, on a different thread then the one starting
the bundle. This behaviour ensures that starting an OSGi Service Platform is fast and that bundles with service
inter-dependencies do not cause deadlock (waiting for each other) on startup, as pictured below:

Spring Dynamic Modules(1.2.1) 9

http://www.aqute.biz/Blog/HomePage
http://www.osgi.org/blog/2007/02/osgi-extender-model.html
http://static.springframework.org/spring/docs/2.5.x/reference/webintegration.html

The extender considers only bundles successfully started, that is, bundles in ACTIVE state; bundles in other
states are ignored. Therefore a Spring-powered bundle will have its application context created after it has been
started. It is possible to force synchronous/serialized creation of application contexts for started bundles, on a
bundle-by-bundle basis. See Section 6.1, “Bundle Format And Manifest Headers” for information on how to
specify this behaviour.

If application context creation fails for any reason then the failure cause is logged. The bundle remains in the
ACTIVE state. There will be no services exported to the registry from the application context in this scenario.

5.2.1. Mandatory Service Dependencies

If an application context declares mandatory dependencies on the availability of certain OSGi services (see
Chapter 7, The Service Registry) then creation of the application context is blocked until all mandatory
dependencies can be satisfied through matching services available in the OSGi service registry. Since a service
may come and go at any moment in an OSGi environment, this behaviour only guarantees that all mandatory
services were available at the moment creation of the application context began. One or more services may
subsequently become unavailable again during the process of application context creation. Chapter 7, The
Service Registry describes what happens when a mandatory service reference becomes unsatisfied. In practice,
for most enterprise applications built using Spring Dynamic Modules services, the set of available services and
bundles will reach a steady state once the platform and its installed bundles are all started. In such a world the
behaviour of waiting for mandatory dependencies simply ensures that bundles A and B, where bundle A
depends on services exported by bundle B, may be started in any order.

A timeout applies to the wait for mandatory dependencies to be satisfied. By default the timeout is set to 5
minutes, but this value can be configured using the timeout directive. See Section 6.1, “Bundle Format And
Manifest Headers” for details.

It is possible to change the application context creation semantics so that application context creation fails if all
mandatory services are not immediately available upon startup (see the aformentioned section for more
information). However, regardless of the configuration chosen, the failure of the application context will not
change the bundle state.

Bundles and Application Contexts

Spring Dynamic Modules(1.2.1) 10

5.2.2. Application Context Service Publication

Once the application context creation for a bundle has completed, the application context object is
automatically exported as a service available through the OSGi Service Registry. The context is published
under the interface org.springframework.context.ApplicationContext (and also all of the visible
super-interfaces and types implemented by the context). The published service has a service property named
org.springframework.context.service.name whose value is set to the bundle symbolic name of the bundle
hosting the application context. It is possible to prevent publication of the application context as a service using
a directive in the bundle's manifest. See Section 6.1, “Bundle Format And Manifest Headers” for details.

Note: the application context is published as a service primarily to facilitate testing, administration, and
management. Accessing this context object at runtime and invoking getBean() or similar operations is
discouraged. The preferred way to access a bean defined in another application context is to export that bean as
an OSGi service from the defining context, and then to import a reference to that service in the context that
needs access to the service. Going via the service registry in this way ensures that a bean only sees services
with compatible versions of service types, and that OSGi platform dynamics are respected.

5.3. Bundle Lifecycle

OSGi is a dynamic platform: bundles may be installed, started, updated, stopped, and uninstalled at any time
during the running of the framework.

When an active bundle is stopped, any services it exported during its lifetime are automatically unregistered
and the bundle returns to the resolved state. A stopped bundle should release any resources it has acquired and
terminate any threads. Packages exported by a stopped bundle continue to be available to other bundles.

A bundle in the resolved state may be uninstalled: packages that were exported by an uninstalled bundle
continue to be available to bundles that imported them (but not to newly installed bundles).A bundle in the
resolved state may also be updated. The update process migrates from one version of a bundle to another
version of the same bundle.

Finally of course, a resolved bundle can be started, which transitions it to the active state.

The diagram below represents the bundle states and its transitions:

Bundles and Application Contexts

Spring Dynamic Modules(1.2.1) 11

The OSGi PackageAdmin refreshPackages operation refreshes packages across the whole OSGi framework or
a given subset of installed bundles. During the refresh, an application context in an affected bundle will be
stopped and restarted. After a refreshPackages operation, packages exported by older versions of updated
bundles, or packages exported by uninstalled bundles, are no longer available. Consult the OSGi specifications
for full details.

When a Spring-powered bundle is stopped, the application context created for it is automatically destroyed. All
services exported by the bundle will be unregistered (removed from the service registry) and the normal
application context tear-down life-cycle is observed (org.springframework.beans.factory.DisposableBean
implementors and destroy-method callbacks are invoked on beans in the context).

If a Spring-powered bundle that has been stopped is subsequently re-started, a new application context will be
created for it.

5.4. The Resource Abstraction

The Spring Framework defines a resource abstraction for loading resources within an application context (see
Spring's resource abstraction). All resource loading is done through the
org.springframework.core.io.ResourceLoader associated with the application context. The
org.springframework.core.io.ResourceLoader is also available to beans wishing to load resources
programmatically. Resource paths with explicit prefixes - such as classpath: - are treated uniformly across all
application context types (for example, web application contexts and classpath-based application contexts).
Relative resource paths are interpreted differently based on the type of application context being created. This
enables easy integration testing outside the ultimate deployment environment.

OSGi 4.0.x specification defines three different spaces from which a resource can be loaded. Spring DM
supports all of them through its dedicated OSGi-specific application context and dedicated prefixes:

Table 5.1. OSGi resource search strategies

Bundles and Application Contexts

Spring Dynamic Modules(1.2.1) 12

http://static.springframework.org/spring/docs/2.5.x/reference/resources.html

OSGi Search Strategy Prefix Explanation

Class Space classpath: Searches the bundle classloader
(the bundle, all imported packages
and required bundles). Forces the
bundle to be resolved. This method
has similar semantics to
Bundle#getResource(String)

Class Space classpath*: Searches the bundle classloader
(the bundle and all imported
packages and required bundles).
Forces the bundle to be resolved.
This method has similar semantics
to Bundle#getResources(String)

JAR File (or JarSpace) osgibundlejar: Searches only the bundle jar.
Provides low-level access without
requiring the bundle to be
resolved.

Bundle Space osgibundle: Searches the bundle jar and its
attached fragments (if there are
any). Does not create a class loader
or force the bundle to be resolved.

Please consult section 4.3.12 of the OSGi specification for an in depth explanation of the differences between
them.

Note
If no prefix is specified, the bundle space (osgibundle:) will be used.

Note
Due to the OSGi dynamic nature, a bundle classpath can change during its life time (for example
when dynamic imports are used). This might cause different classpath Resources to be returned
when doing pattern matching based on the running environment or target platform.

All of the regular Spring resource prefixes such as file: and http: are also supported, as are the pattern
matching wildcards. Resources loaded using such prefixes may come from any location, they are not restricted
to being defined within the resource-loading bundle or its attached fragments.

OSGi platforms may define their own unique prefixes for accessing bundle contents. For example, Equinox
defines the bundleresource: and bundlentry: prefixes. These platform specific prefixes may also be used
with Spring OSGi, at the cost, of course, of tying yourself to a particular OSGi implementation.

5.5. Accessing the BundleContext

In general there is no need to depend on any OSGi APIs when using the Spring Dynamic Modules support. If
you do need access to the OSGi BundleContext object for your bundle, then Spring makes this easy to do.

The OSGi application context created by the Spring extender will automatically contain a bean of type

Bundles and Application Contexts

Spring Dynamic Modules(1.2.1) 13

http://www2.osgi.org/javadoc/r4/org/osgi/framework/Bundle.html#getResource(java.lang.String)
http://www2.osgi.org/javadoc/r4/org/osgi/framework/Bundle.html#getResources(java.lang.String)

BundleContext and with name bundleContext. You can inject a reference to this bean into any bean in the
application context either by-name or by-type. In addition, Spring Dynamic Modules defines the interface
org.springframework.osgi.context.BundleContextAware:

public interface BundleContextAware {
public void setBundleContext(BundleContext context);

}

Any bean implementing this interface will be injected with a reference to the bundle context when it is
configured by Spring. If you wish to use this facility within a bundle, remember to import the package
org.springframework.osgi.context in your bundle manifest.

5.6. Application Context Destruction

The application context is bound to the bundle in which it lives. Thus, if the declaring bundle is being
shutdown, the application context will be destroyed as well, all exported services being unregistered and all
service imported dispose of.

As opposed to the application creation, the application context is destroyed in a synchronized manner, on the
same thread that stops the bundle. This is required since once stopped, a bundle can not longer be used (even
for class loading) preventing the application context shutdown from executing correctly.

Note that a bundle can be closed individually or as part of a bigger event such as shutting down the entire OSGi
platform. In this case or when the extender bundle is being closed down, the application contexts will be closed
in a managed manner, based on the service dependencies between them. Please see the next section for more
details.

5.7. Stopping the Extender Bundle

If the extender bundle is stopped, then all the application contexts created by the extender will be destroyed.
Application contexts are shutdown in the following order:

Bundles and Application Contexts

Spring Dynamic Modules(1.2.1) 14

1. Application contexts that do not export any services, or that export services that are not currently referenced,
are shutdown in reverse order of bundle id. (Most recently installed bundles have their application contexts
shutdown first).

2. Shutting down the application contexts in step (1) may have released references these contexts were holding
such that there are now additional application contexts that can be shutdown. If so, repeat step 1 again.

3. If there are no more active application contexts, we have finished. If there are active application contexts
then there must be a cyclic dependency of references. The circle is broken by determining the highest
ranking service exported by each context: the bundle with the lowest ranking service in this set (or in the
event of a tie, the highest service id), is shut down. Repeat from step (1).

Bundles and Application Contexts

Spring Dynamic Modules(1.2.1) 15

Chapter 6. Packaging and Deploying Spring-based
OSGi applications
A traditional Spring application uses either a single application context, or a parent context containing service
layer, data layer, and domain objects with a child context containing web layer components. The application
context may well be formed by aggregating the contents of multiple configuration files.

When deploying an application to OSGi the more natural structure is to package the application as a set of peer
bundles (application contexts) interacting via the OSGi service registry. Independent subsystems should be
packaged as independent bundles or sets of bundles (vertical partitioning). A subsystem may be package in a
single bundle, or divided into several bundles partitioned by layer (horizontal partitioning). A straightforward
web application may for example be divided into four modules (bundles): a web bundle, service layer bundle,
data layer bundle, and domain model bundle. Such an application would look like this:

In this example the data layer bundle yields a data layer application context that contains a number of internal
components (beans). Two of those beans are made publicly available outside of the application context by

Spring Dynamic Modules(1.2.1) 16

publishing them as services in the OSGi service registry.

The service layer bundle yields a service layer application context that contains a number of internal
components (beans). Some of those components depend on data layer services, and import those services from
the OSGi service registry. Two of the service layer components are made externally available as services in the
OSGi service registry.

The web component bundle yields a web application context that contains a number of internal components
(beans). Some of those components depend on application services, and import those services from the OSGi
service registry. Since the domain model bundle contributes only domain model types, but does not need to
create any components of its own, it has no associated application context.

6.1. Bundle Format And Manifest Headers

Each application module should be packaged as an OSGi bundle. A bundle is essentially a jar file with a
META-INF/MANIFEST.MF file containing a series of headers recognized by the OSGi Service Platform. See the
OSGi Service Platform Core Specification section 3.2 for details. Some OSGi implementations may support
exploded jar files, but the format remains the same.

The Spring extender recognizes a bundle as "Spring-powered" and will create an associated application context
when the bundle is started and one or both of the following conditions is true:

• The bundle path contains a folder META-INF/spring with one or more files in that folder with a '.xml'
extension.

• META-INF/MANIFEST.MF contains a manifest header Spring-Context.

In addition, if the optional SpringExtender-Version header is declared in the bundle manifest, then the
extender will only recognize bundles where the specified version constraints are satisfied by the version of the
extender bundle (Bundle-Version). The value of the SpringExtender-Version header must follow the syntax
for a version range as specified in section 3.2.5 of the OSGi Service Platform Core Specification.

In the absence of the Spring-Context header the extender expects every ".xml" file in the META-INF/spring

folder to be a valid Spring configuration file, and all directives (see below) take on their default values.

An application context is constructed from this set of files. A suggested practice is to split the application
context configuration into at least two files, named by convention modulename-context.xml and
modulename-osgi-context.xml. The modulename-context.xml file contains regular bean definitions independent
of any knowledge of OSGi. The modulename-osgi-context.xml file contains the bean definitions for importing
and exporting OSGi services. It may (but is not required to) use the Spring Dynamic Modules OSGi schema as
the top-level namespace instead of the Spring 'beans' namespace.

The Spring-Context manifest header may be used to specify an alternate set of configuration files. The
resource paths are treated as relative resource paths and resolve to entries defined in the bundle and the set of
attached fragments. When the Spring-Context header defines at least one configuration file location, any files
in META-INF/spring are ignored unless directly referenced from the Spring-Context header.

The syntax for the Spring-Context header value is:

Spring-Context-Value ::= context (',' context) *
context ::= path (';' path) * (';' directive) *

Packaging and Deploying Spring-based OSGi applications

Spring Dynamic Modules(1.2.1) 17

This syntax is consistent with the OSGi Service Platform common header syntax defined in section 3.2.3 of the
OSGi Service Platform Core Specification.

For example, the manifest entry:

Spring-Context: config/account-data-context.xml, config/account-security-context.xml

will cause an application context to be instantiated using the configuration found in the files
account-data-context.xml and account-security-context.xml in the bundle jar file.

A number of directives are available for use with the Spring-Context header. These directives are:

• create-asynchronously (false|true): controls whether the application context is created asynchronously (the
default), or synchronously.

For example:

Spring-Context: *;create-asynchronously:=false

Creates an application context synchronously, using all of the "*.xml" files contained in the
META-INF/spring folder.

Spring-Context: config/account-data-context.xml;create-asynchrously:=false

Creates an application context synchronously using the config/account-data-context.xml configuration
file. Care must be taken when specifying synchronous context creation as the application context will be
created on the OSGi event thread, blocking further event delivery until the context is fully initialized. If an
error occurs during the synchronous creation of the application context then a FrameworkEvent.ERROR event
is raised. The bundle will still proceed to the ACTIVE state.

• wait-for-dependencies (true|false): controls whether or not application context creation should wait for any
mandatory service dependencies to be satisfied before proceeding (the default), or proceed immediately
without waiting if dependencies are not satisfied upon startup.

For example:

Spring-Context: config/osgi-*.xml;wait-for-dependencies:=false

Creates an application context using all the files matching "osgi-*.xml" in the config directory. Context
creation will begin immediately even if dependencies are not satisfied. This essentially means that mandatory
service references are treated as though they were optional - clients will be injected with a service object that
may not be backed by an actual service in the registry initially. See Section 7.2.1.8, “reference And OSGi
Service Dynamics” for more details.

• timeout (300): the time to wait (in seconds) for mandatory dependencies to be satisfied before giving up and
failing application context creation. This setting is ignored if wait-for-dependencies:=false is specified.
The default is 5 minutes (300 seconds).

For example:

Spring-Context: *;timeout:=60

Packaging and Deploying Spring-based OSGi applications

Spring Dynamic Modules(1.2.1) 18

Creates an application context that waits up to 1 minute (60 seconds) for its mandatory dependencies to
appear.

• publish-context (true|false): controls whether or not the application context object itself should be published
in the OSGi service registry. The default is to publish the context.

For example:

Spring-Context: *;publish-context:=false

If there is no Spring-Context manifest entry, or no value is specified for a given directive in that entry, then
the directive takes on its default value.

6.2. Extender Configuration Options

Aside from bundle-specific configurations, Spring DM allows the core extender generic behaviour be
configured. This is useful when embedding Spring DM inside a managed environment or when a bundles-wide
functionality is desired. To allow for extensible configuration, the extender relies on OSGi fragments to
override its defaults. The extender looks for all XML files under META-INF/spring/extender folder in its
bundle space and assembled them into an application context (of type OsgiBundleXmlApplicationContext)
that is used internally as its configuration. To override a default setting of the extender, look up the appropriate
bean name from the table below, define it in a suitable manner and then attach it as a fragment to the
spring-osgi-extender.jar, using:

Fragment-Host: org.springframework.osgi.extender

The following beans are currently recognized by the extender:

Table 6.1. Extender Configuration Options

Bean Name Type Role Default
Behaviour/Value

taskExecutor TaskExecutor
a Creates and runs the

Spring application
contexts associated with
each bundle. The task
executor is responsible
for managing its own
pool of threads used by
the application contexts

SimpleAsyncTaskExecutor

is used by default which
means a new thread will
be created for each
application contexts.
While this is suitable for
testing and development,
we strongly recommend
to use a thread pool in a
production environment

shutdownTaskExecutor TaskExecutor
b Destroys managed Spring

application contexts
associated with each
bundle. The task executor
is responsible for
managing its own pool of
threads used by the

TimerTaskExecutor is
used by default which
means all application
context will be destroyed
in a serialized manner
(which is desired). Since
the shutdown order

Packaging and Deploying Spring-based OSGi applications

Spring Dynamic Modules(1.2.1) 19

http://en.wikipedia.org/wiki/Thread_pool_pattern

Bean Name Type Role Default
Behaviour/Value

application contexts normally matters, it is
recommended to keep the
default implementation
or, for managed
environments, to use a
thread-pool that executes
only one task at a time
(so that contexts are
stopped in the given
order).

extenderProperties java.util.Properties Defines simple properties
such as the maximum
time for contexts to
gracefully close

See the defaults below

osgiApplicationEventMulticasterApplicationEventMulticaster

c

ApplicationEventMultiCaster

used for propagating
Spring DM events to
third parties.

An instance of
SimpleApplicationEventMulticaster

is used. See
AbstractApplicationContext

javadoc for more
information regarding
available beans in an
application context.

applicationContextCreatorOsgiApplicationContextCreator

d

Allows customization of
the application context
created by the extender.
This includes changing
the application context
class type or additional
processing (see below).

The Extender default
behaviour applies.

(irrelevant) OsgiBeanFactoryPostProcessor

d

Similar to Spring's
BeanFactoryPostProcessor

interface, beans of type
OsgiBeanFactoryPostProcessor

are automatically
detected and applied to
all contexts created by the
extender (whether
user-defined or not). This
type of post processor is
useful as it allows
customization of the bean
factory such as
adding/removing/changing
existing bean definitions
or adding new bean
instances.

The Extender default
behaviour applies.

osgiApplicationContextListenerOsgiBundleApplicationContextListenerApplication context event Default implementation

Packaging and Deploying Spring-based OSGi applications

Spring Dynamic Modules(1.2.1) 20

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/event/ApplicationEventMulticaster.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/event/SimpleApplicationEventMulticaster.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/context/support/AbstractApplicationContext.html

Bean Name Type Role Default
Behaviour/Value

e listener registered
automatically by the
extender.

provides logging of the
managed application
contexts lifecycle.

a
org.springframework.core.task

b
org.springframework.core.task

c
org.springframework.context.event

d
org.springframework.osgi.extender package

e
org.springframework.osgi.context.event package

From the extenderProperties bean, the following properties are recognized:

Table 6.2. Available extenderProperties

Name Type Description Default Value

shutdown.wait.time java.lang.Long The amount of time the
extender will wait for
each application context
to shutdown gracefully.
Expressed in
milliseconds.

10000 ms (10 s)

process.annotations java.lang.Boolean Flag indicating whether
or not, the extender will
process Spring DM
annotations. Note that
this can be enabled in
each process bundle by
adding the appropriate
bean post processor. See
Section A.1,
“Annotation-Based
Injection” for more
information.

false

dependencies.wait.time java.lang.Long The amount of time the
newly created application
contexts will wait for
their mandatory service
dependencies during
startup. Expressed in
milliseconds. This
settings is used only if the
context owning bundle
manifest does not define
a value.

300000 ms (300 s or 5
min)

Note
Since an application context is used, the full power of the Spring IoC container can be used for

Packaging and Deploying Spring-based OSGi applications

Spring Dynamic Modules(1.2.1) 21

creating the extender configuration beans

6.2.1. Listening To Extender Events

There are cases when the failure or succesful startup of an application context needs to be acknowledged for
logging purposes (for example). For these cases, Spring DM offers a dedicated package
org.springframework.osgi.context.event which defines the events that OSGi application contexts can send
during their lifecycle. At the moment, the following events are available:

Table 6.3. Spring DM build-in events

Event Explanation

OsgiBundleContextRefreshedEvent Published when an OSGi application context has been
succesfully initialized or refreshed (e.g. using the
refresh() method on the
ConfigurableApplicationContext interface). There
are no guarantees on how many times this event
might be received during the lifecycle of an
application context - this is left up to the used
implementation.

OsgiBundleContextFailedEvent Published when an OSGi application context is
closed due to a failure. This event can appear any
time during the lifecycle of an application context -
before, during or after refresh. Usually the cause
indicates an error in the configuration - syntax typo,
incorrect wiring, missing bean and so forth.

OsgiBundleContextClosedEvent Published when an OSGi application context is
closed after a successful refresh (normally issued a
Spring bundle is being stopped).

Parties interested in receiving these events should implement OsgiBundleApplicationContextListener and
then publish it as an OSGi service. The Spring DM extender will automatically detect the listener and will send
the events to it. By taking advantage of the OSGi service registry, the extender decouples the received from the
event publisher and moreover, makes the registration/unregistration process easier. For example, there is
nothing special a client should do to unregister the listener - simply stopping the bundle will automatically
unregister all its published services (including the listener), an event which will detected by the extender which
will remove the listener. Of course, it is also possible for the client to unregister the listener manually during a
bundle lifecycle.

Note
The Spring DM events semantics are slightly different then Spring's. The OSGi events are not sent
to beans inside the causing application context but to other parties (possible beans in other
application contexts) interested in monitoring its behaviour.

6.3. Required Spring Framework And Spring Dynamic Modules

Packaging and Deploying Spring-based OSGi applications

Spring Dynamic Modules(1.2.1) 22

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events

Bundles

The Spring Dynamic Modules project provides a number of bundle artifacts that must be installed in your OSGi
platform in order for the Spring extender to function correctly:

• The extender bundle itself, org.springframework.osgi.extender

• The core implementation bundle for the Spring Dynamic Modules support,
org.springframework.osgi.core

• The Spring Dynamic Modules I/O support library bundle, org.springframework.osgi.io

In addition the Spring Framework provides a number of bundles that are required to be installed. As of release
2.5 of the Spring Framework, the Spring jars included in the Spring distribution are valid OSGi bundles and can
be installed directly into an OSGi platform. The minimum required set of bundles is:

• spring-core.jar (bundle symbolic name org.springframework.core)

• spring-context.jar (bundle symbolic name org.springframework.context)

• spring-beans.jar (bundle symbolic name org.springframework.beans)

• spring-aop.jar (bundle symbolic name org.springframework.aop)

In additional the following supporting library bundles are required. OSGi-ready versions of these libraries are
shipped with the Spring Dynamic Modules distribution.

• aopalliance

• backport-util (when running on JDK 1.4)

• cglib-nodep (when proxying classes rather then interfaces, needed in most cases)

• commons-logging API (SLF4J version highly recommended:

• SLF4J API (com.springsource.sfl4j.api.jar)

• SLF4J Implementation Bridge (such as Log4j - com.springsource.sfl4j.log4j.jar)

• SLF4J commons logging adapter (com.springsource.sfl4j.org.apache.commons.logging.jar)

)

• logging implementation suitable for commons-logging (such as log4j)

6.4. Spring XML Authoring Support

Spring 2.0 introduced (among other things) easier XML configuration and extensible XML authoring. The
latter gives the ability of creating custom schemas that are discovered automatically (in non-OSGi
environment) by the Spring XML infrastructure by including them in the classpath. Spring DM is aware of this
process and supports it in OSGi environments so that custom schemas are available to bundles that use them
without any extra code or manifest declaration.

Packaging and Deploying Spring-based OSGi applications

Spring Dynamic Modules(1.2.1) 23

http://www.slf4j.org/
http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html
http://static.springframework.org/spring/docs/2.5.x/reference/extensible-xml.html

All bundles deployed in the OSGi space (whether they are Spring-powered or not) are scanned by Spring DM
for custom Spring namespace declaration (by checking the bundle space forMETA-INF/spring.handlers and
META-INF/spring.schemas). If these are found, Spring DM will make the schemas and the namespaces
available through an OSGi service that will be automatically used by Spring-powered bundles. This mean that
if you deploy a bundle that uses a custom schema, all you have to do is deploy the library that provides the
namespace parser and the schema. Bundles that embedded inside their classpath libraries that provide custom
schemas will use these over those available in the OSGi space. However, the namespaces of the embedded
libraries will not shared with other bundles, that is, they will not be seen by any other bundle.

In short, with using Spring DM, custom Spring namespaces are supported transparently without any additional
work. Embedded namespace providers will have priority but will not be shared, as opposed to providers
deployed as bundles which will be seen (and used) by others.

6.5. Importing and Exporting Packages

Refer to the OSGi Service Platform for details of the Import-Package and Export-Package manifest headers.
Your bundle will need an Import-Package entry for every external package that the bundle depends on. If your
bundle provides types that other bundles need access to, you will need Export-Package entries for every
package that should be available from outside of the bundle.

6.6. Considerations When Using External Libraries

What is the context class loader?

The thread context class loader was introduced in J2SE without much fanfare. Below is a short definition
for it, quoted from one of the tutorials available on Java site:

The Java 2 platform also introduced the notion of context class loader. A thread's context class loader is,
by default, set to the context class loader of the thread's parent. The hierarchy of threads is rooted at the
primordial thread (the one that runs the program). The context class loader of the primordial thread is set
to the class loader that loaded the application. So unless you explicitly change the thread's context class
loader, its context class loader will be the application's class loader. That is, the context class loader can
load the classes that the application can load. This loader is used by the Java runtime such as the RMI
(Java Remote Method Invocation) to load classes and resources on behalf of the user application. The
context class loader, like any Java 2 platform class loader, has a parent class loader and supports the same
delegation model for class loading described previously.

Many enterprise application libraries assume that all of the types and resources that comprise the application
are accessible through the context class loader. While most developers do not use the context class loader, the
loader is used heavily by application servers, containers or applications that are multi-threaded.

In OSGi R4, the set of types and resources available through the context class loader is undefined. This means
that the OSGi platform does not make a guarantee of the thread context class loader value or in other words, it
does not manage it.

Thus code (for example libraries) that performs manual class loading or that generates new classes dynamically
can cause problems when executed inside an OSGi environment.

Spring Dynamic Modules guarantees that during the creation of an application context on behalf of a given

Packaging and Deploying Spring-based OSGi applications

Spring Dynamic Modules(1.2.1) 24

http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html
http://java.sun.com/

bundle, all of the types and resources on the bundle's classpath are accessible via the context class loader.
Spring Dynamic Modules also allows you to control what is accessible through the context class loader when
invoking external services and when servicing requests on exported services. See Chapter 7, The Service
Registry for details on this.

Work is underway in the OSGi R5 timeframe to provide standardized support for dealing with generated
classes and implicit class path dependencies introduced by third-party libraries. In the interim you may need to
rely on workarounds such as the DynamicImport-Package manifest header, or the facilities provided by specific
OSGi implementations such as Equinox's buddy mechanism. The Spring Dynamic Modules documentation
contains more details on known issues with common enterprise libraries and the workarounds.

6.7. Diagnosing Problems

Your chosen OSGi platform implementation should be able to provide you with a good deal of information
about the current status of the OSGi environment. For example, starting Equinox with the -console argument
provides a command-line console through which you can determine which bundles are installed and their states,
the packages and services exported by bundles, find out why a bundle has failed to resolve, and drive bundles
through the lifecycle.

In addition, Spring itself and the Spring Dynamic Modules bundles contain extensive logging instrumentation
that can help you diagnose problems. The recommended approach is to deploy the Simple Logging Facade for
Java (slf4j) slf4j-api.jar and slf4j-log4j13.jar bundles (the jar files distributed by the project are valid OSGi
bundles). Then you simply need to create a log4j.properties file in the root of your bundle classpath.

Note that Spring Dynamic Modules uses commons-logging API internally which means that its logging
implementation is fully pluggable. Please see the FAQ and Resources pages for more information on other
logging libraries besides log4j.

Packaging and Deploying Spring-based OSGi applications

Spring Dynamic Modules(1.2.1) 25

http://www.slf4j.org/

Chapter 7. The Service Registry
The OSGi service registry enables a bundle to publish objects to a shared registry, advertised via a given set of
Java interfaces. Published services also have service properties associated with them in the registry.

Spring Dynamic Modules provides an osgi namespace for Spring (see Appendix H, Spring Dynamic Modules
Schema) that can be used to export Spring beans as OSGi services, and to define references to services obtained
via the service registry. The namespace elements may be used nested inside another top-level namespace
(typically the Spring beans namespace), or within the top-level osgi element.

The following example shows the use of the osgi namespace within the familiar Spring beans element:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" ❶

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi" ❷
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd ❸
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd">

<osgi:service id="simpleServiceOsgi" ref="simpleService" ❹
interface="org.xyz.MyService" />

</beans>

❶ Use Spring Framework beans schema as the default namespace.
❷ Import Spring Dynamic Modules schema and associate a prefix with its namespace (osgi in this

example).
❸ Make sure to import Spring beans schema version 2.5.
❹ Use Spring Dynamic Modules elements using the declared namespace prefix (in this example osgi).

Using the OSGi namespace as a top-level namespace, the same service would be declared as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans ❶

xmlns="http://www.springframework.org/schema/osgi" ❷
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans" ❸
xsi:schemaLocation="http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd"> ❹

<service id="simpleServiceOsgi" ref="simpleService" ❺
interface="org.xyz.MyService" />

</beans:beans> ❶

❶ beans root element has to be prefixed with Spring Framework beans schema prefix (beans in this
example).

❷ Use Spring Dynamic Modules schema as the default namespace.
❸ Import Spring Framework beans schema and associate a prefix with its namespace (beans in this

example).
❹ Make sure to import Spring beans schema version 2.5.
❺ Use Spring Dynamic Modules elements without any prefix.

Using the OSGi namespace as a top-level namespace is particularly convenient when following the
recommendation of Section 6.1, “Bundle Format And Manifest Headers” to use a dedicated configuration file
for all OSGi-related declarations.

Spring Dynamic Modules(1.2.1) 26

7.1. Exporting A Spring Bean As An OSGi Service

The service element is used to define a bean representing an exported OSGi service. At a minimum you must
specify the bean to be exported, and the service interface that the service advertises.

For example, the declaration

<service ref="beanToPublish" interface="com.xyz.MessageService"/>

exports the bean with name beanToPublish with interface com.xyz.MessageService. The published service
will have a service property with the name org.springframework.osgi.bean.name set to the name of the
target bean being registered (beanToPublish in this case).

The bean defined by the service element is of type org.osgi.framework.ServiceRegistration and is the
ServiceRegistration object resulting from registering the exported bean with the OSGi service registry. By
giving this bean an id you can inject a reference to the ServiceRegistration object into other beans if needed.
For example:

<service id="myServiceRegistration" ref="beanToPublish"
interface="com.xyz.MessageService"/>

As an alternative to exporting a named bean, the bean to be exported to the service registry may be defined as
an anonymous inner bean of the service element. Typically the top-level namespace would be the beans

namespace when using this style:

<osgi:service interface="com.xyz.MessageService">
<bean class="SomeClass">

...
</bean>

</osgi:service>

If the bean to be exported implements the org.osgi.framework.ServiceFactory interface then the
ServiceFactory contract is honored as per section 5.6 of the OSGi Service Platform Core Specification. As an
alternative to implementing this OSGi API, Spring Dynamic Modules introduces a new bean scope, the bundle

scope. When a bean with bundle scope is exported as an OSGi service then one instance of the bean will be
created for each unique client (service importer) bundle that obtains a reference to it through the OSGi service
registry. When a service importing bundle is stopped, the bean instance associated with it is disposed. To
declare a bean with bundle scope simply use the scope attribute of the bean element:

<osgi:service ref="beanToBeExported" interface="com.xyz.MessageService"/>

<bean id="beanToBeExported" scope="bundle" class="com.xyz.MessageServiceImpl"/>

7.1.1. Controlling The Set Of Advertised Service Interfaces For An Exported
Service

The OSGi Service Platform Core Specification defines the term service interface to represent the specification
of a service's public methods. Typically this will be a Java interface, but the specification also supports
registering service objects under a class name, so the phrase service interface can be interpreted as referring to
either an interface or a class.

There are several options for specifying the service interface(s) under which the exported service is registered.
The simplest mechanism, shown above, is to use the interface attribute to specify a fully-qualified interface

The Service Registry

Spring Dynamic Modules(1.2.1) 27

name. To register a service under multiple interfaces the nested interfaces element can be used in place of the
interface attribute.

<osgi:service ref="beanToBeExported">
<osgi:interfaces>

<value>com.xyz.MessageService</value>
<value>com.xyz.MarkerInterface</value>

</osgi:interfaces>
</osgi:service>

It is illegal to use both interface attribute and interfaces element at the same time - use only one of them.

7.1.1.1. Detecting The Advertised Interfaces At Runtime

Hierarchy visibility

Note that when using auto-export, only types visible to the bundle exporting the service are registered.
For example, a super-interface SI would not be exported as a supported service interface even when using
auto-export="interfaces" if SI was not on the exporting bundle's classpath.

Even if exported service class does implement SI transitively based on its parent, if the declaring bundle
doesn't import the interface, the class is unknown to the exported service. While this might seem counter
intuitive, it is actually one of the most powerful features of OSGi which give the bundle authors control
over the class visibility and path.

Please see the FAQ for a more detailed explanation.

Using the auto-export attribute you can avoid the need to explicitly declare the service interfaces at all by
analyzing the object class hierarchy and its interfaces.

The auto-export attribute can have one of four values:

• disabled : the default value; no auto-detected of service interfaces is undertaken and the interface attribute
or interfaces element must be used instead.

• interfaces : the service will be registered using all of the Java interface types implemented by the bean to
be exported

• class-hierarchy : the service will be registered using the exported bean's implementation type and
super-types

• all-classes : the service will be registered using the exported bean's implementation type and super-types
plus all interfaces implemented by the bean.

auto-export and interface(s) option are not exclusive; both can be used at the same time for fine grained
control over the advertised interfaces if there is such a need. However, the former option should be enough for
most cases.

For example, to automatically register a bean under all of the interfaces that it supports you would declare:

<service ref="beanToBeExported" auto-export="interfaces"/>

Given the interface hierarchy:

public interface SuperInterface {}

The Service Registry

Spring Dynamic Modules(1.2.1) 28

public interface SubInterface extends SuperInterface {}

then a service registered as supporting the SubInterface interface is not considered a match in OSGi when a
lookup is done for services supporting the SuperInterface interface. For this reason it is a best practice to
export all interfaces supported by the service being registered explicitly, using either the interfaces element
or auto-export="interfaces".

7.1.2. Controlling The Set Of Advertised Properties For An Exported
Service

As previously described, an exported service is always registered with the service property
org.springframework.osgi.bean.name set to the name of the bean being exported. Additional service
properties can be specified using the nested service-properties element. The service-properties element
contains key-value pairs to be included in the advertised properties of the service. The key must be a string
value, and the value must be a type recognized by OSGi Filters. See section 5.5 of the OSGi Service Platform
Core Specification for details of how property values are matched against filter expressions.

The service-properties element must contain at least one nested entry element from the Spring beans
namespace. For example:

<service ref="beanToBeExported" interface="com.xyz.MyServiceInterface">
<service-properties>
<beans:entry key="myOtherKey" value="aStringValue"/>
<beans:entry key="aThirdKey" value-ref="beanToExposeAsProperty"/>

</service-properties>
</service>

The Spring Dynamic Modules roadmap includes support for exporting properties registered in the OSGi
Configuration Administration service as properties of the registered service. See Appendix F, Roadmap for
more details.

7.1.3. The depends-on Attribute

Spring will manage explicit dependencies of a service element, ensuring for example that the bean to be
exported as a service is fully constructed and configured before exporting it. If a service has implicit
dependencies on other components (including other service elements) that must be fully initialized before the
service can be exported, then the optional depends-on attribute can be used to express these dependencies.

<service ref="beanToBeExported" interface="com.xyz.MyServiceInterface"
depends-on="myOtherComponent"/>

7.1.4. The context-class-loader Attribute

The OSGi Service Platform Core Specification (most current version is 4.1 at time of writing) does not specify
what types and resources are visible through the context class loader when an operation is invoked on a service
obtained via the service registry. Since some services may use libraries that make certain assumptions about the
context class loader, Spring Dynamic Modules enables you to explicitly control the context class loader during
service execution. This is achieved using the option context-class-loader attribute of the service element.

The permissible values for the context-class-loader attribute are unmanaged (the default) and
service-provider. When the service-provider value is specified, Spring Dynamic Modules ensures that the

The Service Registry

Spring Dynamic Modules(1.2.1) 29

context class loader can see all of the resources on the class path of the bundle exporting the service.
When setting context-class-loader to service-provider, the service object will be proxied to handle the
class loader. If the service advertises any concrete class then CGLIB library is required .

7.1.5. The ranking Attribute

When registering a service with the service registry, you may optionally specify a service ranking (see section
5.2.5 of the OSGi Service Platform Core Specification). When a bundle looks up a service in the service
registry, given two or more matching services the one with the highest ranking will be returned. The default
ranking value is zero. To explicitly specify a ranking value for the registered service, use the optional ranking
attribute.

<service ref="beanToBeExported" interface="com.xyz.MyServiceInterface"
ranking="9"/>

7.1.6. service Element Attributes

As a summary, the following table lists the attributes names, possible values and a short description for each of
them.

Table 7.1. OSGi <service> attributes

Name Values Description

interface fully qualified class name (such as java.lang.Thread) the fully
qualified name
of the class
under which the
object will be
exported

ref any bean name Reference to the
named bean to
be exported as a
service in the
service registry.

context-class-loader unmanaged service-provider Defines how the
context class
loader will be
managed when
an operation is
invoked on the
exported
service. The
default value is
unmanaged

which means
that no
management of
the context class
loader is
attempted. A

The Service Registry

Spring Dynamic Modules(1.2.1) 30

Name Values Description

value of
service-provider

guarantees that
the context class
loader will have
visibility of all
the resources on
the class path of
bundle
exporting the
service.

auto-export disabled interfaces class-hierarchy all-classes Enables Spring
to automatically
manage the set
of service
interfaces
advertised for
the service. By
default this
facility is
disabled. A
value of
interfaces

advertises all of
the Java
interfaces
supported by the
exported
service. A value
of
class-hierarchy

advertises all the
Java classes in
the hierarchy of
the exported
service. A value
of all-classes

advertises all
Java interfaces
and classes.

ranking any integer value Specify the
service ranking
to be used when
advertising the
service. Default
value is 0.

7.1.7. Service Registration And Unregistration Lifecycle

The Service Registry

Spring Dynamic Modules(1.2.1) 31

The service defined by a service element is registered with the OSGi service registry when the application
context is first created. It will be unregistered automatically when the bundle is stopped and the application
context is disposed.

If you need to take some action when a service is unregistered because its dependencies are not satisfied (or
when it is registered), then you can define a listener bean using the nested registration-listener element.

The declaration of a registration listener must use either the ref attribute to refer to a top-level bean definition,
or declare an anonymous listener bean inline. For example:

<service ref="beanToBeExported" interface="SomeInterface">
<registration-listener ref="myListener" ❶
registration-method="serviceRegistered" ❷
unregistration-method="serviceUnregistered"/> ❷

<registration-listener
registration-method="register"> ❸
<bean class="SomeListenerClass"/> ❹

</registration-listener>
</service>

❶ Listener declaration referring to a top-level bean declaration.
❷ Indicate the registration and unregistration methods.
❸ Declare only a registration custom method for this listener.
❹ Nested listener bean declaration.

The optional registration-method and unregistration-method attributes specify the names of the methods
defined on the listener bean that are to be invoked during registration and unregistration. A registration and
unregistration callback methods must have a signature matching one of the following formats:

public void anyMethodName(ServiceType serviceInstance, Map serviceProperties);

public void anyMethodName(ServiceType serviceInstance, Dictionary serviceProperties);

where ServiceType can be any type compatible with the exported service interface of the service.

The register callback is invoked when the service is initially registered at startup, and whenever it is
subsequently re-registered. The unregister callback is invoked during the service unregistration process, no
matter the cause (such as the owning bundle stopping).

Spring DM will use the declared ServiceType argument type and invoke the registration/unregistration method
only when a service of a compatible type will be registered/unregistered.

serviceProperties represents a map holding all the properties of the registered/unregistered service. To
preserve compatibility with the OSGi specification this argument can be cast, if needed, to a
java.util.Dictionary.

7.1.7.1. Using OsgiServiceRegistrationListener Interface

While we discourage, it is possible to implement a Spring DM specific interface, namely
org.springframework.osgi.service.exporter.OsgiServiceRegistrationListener which avoids the need
to declare the registration-method and unregistration-method. However, by implementing
OsgiServiceRegistrationListener, your code becomes Spring DM aware (which goes against the POJO
philosophy).

It is possible for a listener to implement OsgiServiceRegistrationListener interface and declare custom

The Service Registry

Spring Dynamic Modules(1.2.1) 32

methods. In this case, the Spring DM interface methods will be called first, followed by the custom methods.

7.2. Defining References To OSGi Services

Spring Dynamic Modules supports the declaration of beans that represent services accessed via the OSGi
Service Registry. In this manner references to OSGi services can be injected into application components. The
service lookup is made using the service interface type that the service is required to support, plus an optional
filter expression that matches against the service properties published in the registry.

For some scenarios, a single matching service that meets the application requirements is all that is needed. The
reference element defines a reference to a single service that meets the required specification. In other
scenarios, especially when using the OSGi whiteboard pattern, references to all available matching services are
required. Spring Dynamic Modules supports the management of this set of references as a List, Set collection.

7.2.1. Referencing An Individual Service

The reference element is used to define a reference to a service in the service registry.

Since there can be multiple service matching a given description, the service returned is the service that would
be returned by a call to BundleContext.getServiceReference. This means that the service with the highest
ranking will be returned, or if there is a tie in ranking, the service with the lowest service id (the service
registered first with the framework) is returned (please see Section 5 from the OSGi spec for more information
on the service selection algorithm).

7.2.1.1. Controlling The Set Of Advertised Interfaces For The Imported Service

The interface attribute identifies the service interface that a matching service must implement. For example,
the following declaration creates a bean messageService, which is backed by the service returned from the
service registry when querying it for a service offering the MessageService interface.

<reference id="messageService" interface="com.xyz.MessageService"/>

Just like the service declaration, when specifying multiple interfaces, use the nested interfaces element
instead of interface attribute:

<osgi:reference id="importedOsgiService">
<osgi:interfaces>

<value>com.xyz.MessageService</value>
<value>com.xyz.MarkerInterface</value>

</osgi:interfaces>
</osgi:reference>

It is illegal to use both interface attribute and interfaces element at the same time - use only one of them.

The bean defined by reference element implements all of the advertised interfaces of the service that are visible
to the bundle (called greedy proxying). If the registered service interfaces include Java class types (as opposed
to interface types) then support for these types is subject to the restrictions of Spring's AOP implementation
(see the Spring Reference Guide). In short, if the specified interfaces are classes (rather then interfaces), then
cglib library must be available, and final methods are not supported.

7.2.1.2. The filter Attribute

The optional filter attribute can be used to specify an OSGi filter expression and constrains the service

The Service Registry

Spring Dynamic Modules(1.2.1) 33

registry lookup to only those services that match the given filter.

For example:

<reference id="asyncMessageService" interface="com.xyz.MessageService"
filter="(asynchronous-delivery=true)"/>

will match only OSGi services that advertise MessageService interface and have the property named
asynchronous-delivery set to value true.

7.2.1.3. The bean-name Attribute

The bean-name attribute is a convenient short-cut for specifying a filter expression that matches on the
bean-name property automatically set when exporting a bean using the service element (see Section 7.1,
“Exporting A Spring Bean As An OSGi Service”).

Consider the following exporter/importer declarations:

<bean id="❶messageServiceBean" scope="bundle" class="com.xyz.MessageServiceImpl"/>
<!-- service exporter -->
<osgi:service id="messageServiceExporter" ref="❶messageServiceBean" interface="com.xyz.MessageService"/>

<osgi:reference id="messageService" interface="com.xyz.MessageService"
bean-name="❶messageServiceBean"/>

❶ the name used with bean-name attribute

will match only OSGi services that advertise MessageService interface and have the property named
org.springframework.osgi.bean.name set to value messageServiceBean. In short, this means finding all
Spring DM exported beans that implement interface MessageService and are named messageServiceBean.

7.2.1.4. The cardinality Attribute

Nested <reference> declarations

In order for Spring DM to detect mandatory dependencies, any nested/inner reference declaration will be
transformed into top-level one with a generated name.

The cardinality attribute is used to specify whether or not a matching service is required at all times. A
cardinality value of 1..1 (the default) indicates that a matching service must always be available. A cardinality
value of 0..1 indicates that a matching service is not required at all times (see Section 7.2.1.8, “reference And
OSGi Service Dynamics” for more details). A reference with cardinality 1..1 is also known as a mandatory
service reference and, by default, application context creation is deferred until the reference is satisfied. More
information about context creation and mandatory dependencies is available at Section 7.2.1.8, “reference
And OSGi Service Dynamics”

Note
It is an error to declare a mandatory reference to a service that is also exported by the same bundle,
this behavior can cause application context creation to fail through either deadlock or timeout.

7.2.1.5. The depends-on Attribute

The Service Registry

Spring Dynamic Modules(1.2.1) 34

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-inner-beans

The depends-on attribute is used to specify that the service reference should not be looked up in the service
registry until the named dependent bean has been instantiated.

7.2.1.6. The context-class-loader Attribute

The OSGi Service Platform Core Specification (latest version is 4.1 at time of writing) does not specify what
types and resources are visible through the context class loader when an operation is invoked on a service
obtained via the service registry. Since some services may use libraries that make certain assumptions about the
context class loader, Spring Dynamic Modules enables you to explicitly control the context class loader during
service invocation. This is achieved using the option context-class-loader attribute of the reference

element.

context class loader management on the importer and exporter

Spring DM has the ability to do context class loader management on both the importer and exporter side.
Normally, if Spring DM works on both sides, only one side should have this feature enabled. However, if
both sides (importer and exporter) take advantage of this capability, the last entity in the call chain will
win. This means that the exporter setting, if enabled, will always override the importer setting (whatever
that is).

The permissible values for the context-class-loader attribute are:

• client - during the service invocation, the context class loader is guaranteed to be able to see types on the
classpath of the invoking bundle. This is the default option.

• service-provider - during the service invocation, the context class loader is guaranteed to be able to see
types on the classpath of the bundle exporting the service.

• unmanaged - no context class loader management will occur during the service invocation

7.2.1.7. reference Element Attributes

As a summary, the following table lists the reference element attributes names, possible values and a short
description for each of them.

Table 7.2. OSGi <reference> attributes

Name Values

interface fully qualified class name (such as java.lang.Thread)

filter OSGi filter expression (such as ((asynchronous-delivery=true))

bean-name any string value

context-class-loader client service-provider unmanaged

cardinality 0..1 1..1

timeout any positive long

7.2.1.8. reference And OSGi Service Dynamics

The Service Registry

Spring Dynamic Modules(1.2.1) 35

The bean defined by the reference element is unchanged throughout the lifetime of the application context
(the object reference remains constant). However, the OSGi service that backs the reference may come and go
at any time. For a mandatory service reference (cardinality 1..1), creation of the application context will block
until a matching service is available. For an optional service reference (cardinality 0..1), the reference bean
will be created immediately, regardless of whether or not there is currently a matching service.

When the service backing a reference bean goes away, Spring Dynamic Modules tries to replace the backing
service with another service matching the reference criteria. An application may be notified of a change in
backing service by registering a listener. If no matching service is available, then the reference is said to be
unsatisfied. An unsatisfied mandatory service causes any exported service (service bean) that depends on it to
be unregistered from the service registry until such time as the reference is satisfied again. See Section 7.5,
“Relationship Between The Service Exporter And Service Importer” for more information.

When an operation is invoked on an unsatisfied reference bean (either optional or mandatory), the invocation
blocks until the reference becomes satisfied. The optional timeout attribute of the reference element enables a
timeout value (in milliseconds) to be specified. If a timeout value is specified and no matching service becomes
available within the timeout period, an unchecked ServiceUnavailableException is thrown.

7.2.1.9. Getting A Hold Of The Managed Service Reference

Spring DM can automatically convert a managed OSGi service to service reference. That is, if the property into
which a reference bean is to be injected, has type ServiceReference (instead of the service interface supported
by the reference), then the managed OSGi ServiceReference for the service will be injected in place of the
service itself:

public class BeanWithServiceReference {
private ServiceReference serviceReference;
private SomeService service;

// getters/setters ommitted
}

<reference id="service" interface="com.xyz.SomeService"/>

<bean id="someBean" class="BeanWithServiceReference">
<property name="serviceReference" ref="service"/> ❶
<property name="service" ref="service"/> ❷

</bean>

❶ Automatic managed service to ServiceReference conversion.
❷ Managed service is injected without any conversion

Note
The injected ServiceReference is managed by Spring DM and will change at the same time as the
referenced backing OSGi service instance.

There are cases when the managed ServiceReference is needed to get a hold of the OSGi service.
Unfortunately, most of the OSGi frameworks expect their own ServiceReference classes and will fail when
the Spring DM managed reference is used. For such cases, one can get a hold of the native ServiceReference

bound at that moment, by casting the reference object to ServiceReferenceProxy and then calling
getTargetServiceReference. Using the example context above, one might use the following code:

ServiceReference nativeReference = ((ServiceReferenceProxy)serviceReference).getTargetServiceReference()

The Service Registry

Spring Dynamic Modules(1.2.1) 36

The returned nativeReference can be safely passed to the OSGi framework however, since it is not managed
by Spring DM, in time, it might refer to a service different then the one backing the imported OSGi service.

To avoid this desynchronization, consider using managed ServiceReference objects mainly for reading the
bound OSGi service properties rather then getting a hold of OSGi services (which can be simply injected by
Spring DM).

7.2.2. Referencing A Collection Of Services

Natural vs custom ordering

Java collection API defines two interfaces for ordering objects - Comparable and Comparator. The first is
meant to be implemented by objects for providing natural ordering. String, Long or Date are good
examples of objects that implement the Comparable interface.

However, there are cases where sorting is different then the natural ordering or, the objects meant to be
sort do not implement Comparable. To address this cases, Comparator interface was designed.

For more information on this subject, please consult the Object ordering chapter from Java collection
tutorial,

Sometimes an application needs access not simply to any service meeting some criteria, but to all services
meeting some criteria. Spring DM allows the matching services may be held in a List or Set (optionally
sorted).

The difference between using a List and a Set to manage the collection is one of equality. Two or more
services published in the registry (and with distinct service ids) may be "equal" to each other, depending on the
implementation of equals used by the service implementations. Only one such service will be present in a set,
whereas all services returned from the registry will be present in a list. For more details on collections, see this
tutorial.

The set and list schema elements are used to define collections of services with set or list semantics
respectively.

These elements support the attributes interface, filter, bean-name, cardinality, and
context-class-loader, with the same semantics as for the reference element. The allowable values for the
cardinality attribute are 0..N and 1..N.

A cardinality value of 0..n indicates that it is permissible to be no matching services. A cardinality value of
1..n indicates that at least one matching service is required at all times. Such a reference is considered a
mandatory reference and any exported services from the same bundle (service defined beans) that depend on a
mandatory reference will automatically be unregistered when the reference becomes unsatisfied, and
reregistered when the reference becomes satisfied again.

The bean defined by a list element is of type java.util.List. The bean defined by a set element is of type
java.util.Set.

Note
Make sure the Spring DM collections are injected into properties of compatible types (for example
set into Set or Collection) since otherwise the container will automatically perform type
conversion, transforming the Spring DM managed collection into a 'normal' one, unaware of the
OSGi dynamics.

The Service Registry

Spring Dynamic Modules(1.2.1) 37

http://java.sun.com/docs/books/tutorial/collections/interfaces/order.html
http://java.sun.com/docs/books/tutorial/collections/
http://java.sun.com/docs/books/tutorial/collections/interfaces/index.html
http://static.springframework.org/spring/docs/2.5.x/reference/validation.html#beans-beans-conversion
http://static.springframework.org/spring/docs/2.5.x/reference/validation.html#beans-beans-conversion

The following example defines a bean of type List that will contain all registered services supporting the
EventListener interface:

<list id="myEventListeners" interface="com.xyz.EventListener"/>

The members of the collection defined by the bean are managed dynamically by Spring. As matching services
are registered and unregistered in the service registry, the collection membership will be kept up to date. Each
member of the collection supports the service interfaces that the corresponding service was registered with and
that are visible to the bundle.

Spring DM supports sorted collections as well, both for set and list.

It is possible to specify a sorting order using either the comparator-ref attribute, or the nested comparator

element. The comparator-ref attribute is used to refer to a named bean implementing java.util.Comparator.
The comparator element can be used to define an inline bean. For example:

<set id="myServices" interface="com.xyz.MyService"
comparator-ref="someComparator"/>

<list id="myOtherServices"
interface="com.xyz.OtherService">
<comparator>

<beans:bean class="MyOtherServiceComparator"/>
</comparator>

</list>

To sort using a natural ordering instead of an explicit comparator, you can use the natural element inside of
comparator. You need to specify the basis for the natural ordering: based on the service references, following
the ServiceReference natural ordering defined in the OSGi Core Specification release 4, version 4.1, section
6.1.23; or based on the services themselves (in which case the services must be Comparable).

<list id="myServices" interface="com.xyz.MyService">
<comparator><natural basis="services"/></comparator>

</list>

<set id="myOtherServices"interface="com.xyz.OtherService">
<comparator><natural basis="service-references"/></comparator>

</set>

Note
For a sorted set, a SortedSet implementation will be created. However, since the JDK API does
not provide a dedicated SortedListinterface, the sorted list will implement only the List interface.

7.2.2.1. Greedy Proxying

All OSGi services imported by a Spring DM service collection publish and are type-compatible with the classes
declared by the interfaces property. However, some services might expose additional (optional) classes that
could be relevant to your application.

For these cases, Spring DM collections offer a dedicated attribute called greedy-proxying which will cause the
creates proxies to use all the classes advertised by the imported services, visible to the consuming importing
bundle. Thus, it is possible to cast the imported proxies to classes different then those specified in the
interfaces. For example, with the following list definition:

<list id="services" interface="com.xyz.SomeService" greedy-proxying="true"/>

The Service Registry

Spring Dynamic Modules(1.2.1) 38

one can do the following iteration (assuming MessageDispatcher type is imported by the bundle):

for (Iterator iterator = services.iterator(); iterator.hasNext();) {
SomeService service = (SomeService) iterator.next();
service.executeOperation();
// if the service implements an additional type
// do something extra
if (service instanceof MessageDispatcher) {

((MessageDispatcher)service).sendAckMessage();
}

}

Note
Before using greedy proxies and instanceof statements, consider using a different interface/class
for your services which provides better polymorphism and is more object-oriented.

7.2.2.2. Collection (list And set) Element Attributes

list and set elements support all the attributes available to reference element except the timeout attribute.
See the following table as a summary of the list and set element attribute names, possible values and a short
description for each of them.

Table 7.3. <list>/<set> attributes

Name Values Description

interface fully qualified class name (such as java.lang.Thread) The fully
qualified name
of the class
under which the
object will be
exported.

filter OSGi filter expression (such as ((asynchronous-delivery=true)) OSGi filter
expression that
is used to
constrain the set
of matching
services in the
service registry.

bean-name any string value Convenient
shortcut for
specifying a
filter expression
that matches on
the bean-name
property that is
automatically
advertised for
beans published
using the
<service>
element.

The Service Registry

Spring Dynamic Modules(1.2.1) 39

http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
http://en.wikipedia.org/wiki/Object_oriented

Name Values Description

context-class-loader client service-provider unmanaged Defines how the
context class
loader is
managed when
invoking
operations on a
service backing
this service
reference. The
default value is
client which
means that the
context class
loader has
visibility of the
resources on this
bundle's
classpath.
Alternate
options are
service-provider

which means
that the context
class loader has
visibility of
resources on the
bundle classpath
of the bundle
that exported the
service, and
unmanaged

which does not
do any
management of
the context class
loader.

cardinality 0..N 1..N Defines the
required
cardinality of
the relationship
to the backing
service. If not
specified, the
default-cardinality

attribute will
apply. A value
is '1..N' means
that a backing
service must
exist (this is a

The Service Registry

Spring Dynamic Modules(1.2.1) 40

Name Values Description

mandatory
service
reference). A
value of '0..N'
indicates that it
is acceptable to
be no backing
service (an
optional service
reference).

comparator-ref any string value Named
reference to a
bean acting as
comparator for
the declaring
collection.
Declaring a
comparator
automatically
makes the
declaring
collection
sorted.

greedy-proxying true false Indicates
whether the
proxies created
for the imported
OSGi services
will be
generated using
just the classes
specified
(false) or all
the classes
exported by the
service and
visible to the
importing
bundle (true).
The default
value is false.

The table below lists the attributes available for the comparator/natural sub element.

Table 7.4. collection <comparator> attributes

Name Values

basis service service-reference

The Service Registry

Spring Dynamic Modules(1.2.1) 41

7.2.2.3. list / set And OSGi Service Dynamics

A collection of OSGi services will change its content during the lifetime of the application context since it
needs to reflect the state of the OSGi space. As service are registered and unregistered, they will be added or
removed from the collection.

While a reference declaration will try to find a replacement if the backing service is unregistered, the
collection will simply remove the service from the collection. Like reference, a collection with cardinality
1..N is said to be mandatory while a collection with cardinality 0..N is referred to as being optional. If no
matching service is available then only mandatory collections become unsatisfied. That is if no service is
available invoking an operation on:

• mandatory collection - will throw an unchecked ServiceUnavailableException.

• optional collection - will not throw any exceptions (however the collection will be empty).

Just like reference, mandatory collections will trigger the unregistration of any exported service that depends
upon it. See Section 7.5, “Relationship Between The Service Exporter And Service Importer” for more
information.

7.2.2.4. Iterator Contract And Service Collections

The recommend way of traversing a collection is by using an Iterator. However, since OSGi services can
come and go, the content of the managed service collection will be adjusted accordingly. Spring DM will
transparently update all Iterators held by the user so it is possible to safely traverse the collection while it is
being modified. Moreover, the Iterators will reflect all the changes made to the collection, even if they
occurred after the Iterators were created (that is during the iteration). Consider a case where a collection
shrinks significantly (for example a big number of OSGi services are shutdown) right after an iteration started.
To avoid dealing with the resulting 'dead' service references, Spring DM iterators do not take collection
snapshots (that can be inaccurate) but rather are updated on each service event so they reflect the latest
collection state, no matter how fast or slow the iteration is.

It is important to note that a service update will only influence Iterator operations that are executed after the
event occurred. Services already returned by the iterator will not be updated even if the backing service has
been unregistered. As a side note, if an operation is invoked on such a service that has been unregistered, a
ServiceUnavailableException will be thrown.

To conclude, while a reference declaration will search for candidates in case the backing service has been
unregistered, a service collections will not replace unregistered services returned to the user. However, it will
remove the unregistered services from the collection so future iterations will not encounter them.

Please note that the Iterator contract is guaranteed meaning that next() method always obey the result of the
previous hasNext() invocation.

Table 7.5. Dynamic service collection Iterator contract

hasNext() returned value next() behaviour

true Always return a non-null value, even when the
collection has shrunk as services when away.

false per Iterator contract, NoSuchElementException is
thrown. This applies even if other services are added

The Service Registry

Spring Dynamic Modules(1.2.1) 42

hasNext() returned value next() behaviour

to the collection

The behaviour described above, offers a consistent view over the collection even if its structure changes during
iteration. To simply refresh the iterator, call hasNext() again. This will force the Iterator to check again the
collection status for its particular entry in the iteration.

In addition, any elements added to the collection during iteration over a sorted collection will only be visible if
the iterator has not already passed their sort point.

7.2.3. Dealing With The Dynamics Of OSGi Imported Services

Whether you are using reference or set or list, Spring Dynamic Modules will manage the backing service.
However there are cases where the application needs to be aware when the backing service is updated.

Such applications, that need to be aware of when the service backing a reference bean is bound and unbound,
can register one or more listeners using the nested listener element. This element is available on both
reference and set, list declarations. In many respects, the service importer listener declaration is similar to
the service exporter listener declaration (Section 7.1.7, “Service Registration And Unregistration Lifecycle”).
The listener element refers to a bean (either by name, or by defining one inline) that will receive bind and
unbind notifications. If this bean implements Spring DM's
org.springframework.osgi.service.importer.OsgiServiceLifecycleListener interface, then the bind

and unbind operations in this interface will be invoked. Instead of implementing this interface (or in addition),
custom bind and unbind callback methods may be named.

An example of declaring a listener that implements OsgiServiceLifecycleListener:

<reference id="someService" interface="com.xyz.MessageService">
<listener ref="aListenerBean"/>

</reference>

An example of declaring an inline listener bean with custom bind and unbind methods:

<reference id="someService" interface="com.xyz.MessageService">
<listener bind-method="onBind" unbind-method="onUnbind">

<beans:bean class="MyCustomListener"/>
</listener>

</reference>

If the listener bean implements the OsgiServiceLifecycleListener interface and the listener definition
specifies custom bind and unbind operations then both the OsgiServiceLifecycleListener operation and the
custom operation will be invoked, in that order.

The signature of a custom bind or unbind method must be one of:

public void anyMethodName(ServiceType service, Dictionary properties);

public void anyMethodName(ServiceType service, Map properties);

public void anyMethodName(ServiceReference ref);

where ServiceType can be any type. Please note that bind and unbind callbacks are invoked only if the backing
service matches the type declared in the method signature(ServiceType). If you want the callbacks to be called
no matter the type, use java.lang.Object as a ServiceType.

The Service Registry

Spring Dynamic Modules(1.2.1) 43

The properties parameter contains the set of properties that the service was registered with.

If the method signature has a single argument of type ServiceReference then the ServiceReference of the
service will be passed to the callback in place of the service object itself.

When the listener is used with a reference declaration:

• A bind callback is invoked when the reference is initially bound to a backing service, and whenever the
backing service is replaced by a new backing service.

• An unbind callback is only invoked when the current backing service is unregistered, and no replacement
service is immediately available (i.e., the reference becomes unsatisfied).

When the listener is used with a collection declaration (set or list):

• A bind callback is invoked when a new service is added to the collection.

• An unbind callback is invoked when a service is unregistered and is removed from the collection.

Again note that service collections there is no notion of service rebind: services are added or removed from the
collection.

Bind and unbind callbacks are made synchronously as part of processing an OSGi serviceChanged event for
the backing OSGi service, and are invoked on the OSGi thread that delivers the corresponding OSGi
ServiceEvent.

The table below lists the attributes available for the reference listener sub element.

Table 7.6. OSGi <listener> attributes

Name Values Description

ref bean name reference Name based reference to another
bean acting as listener.

bind-method string representing a valid method
name

The name of the method to be
invoked when a backing service is
bound.

unbind-method string representing a valid method
name

The name of the method to be
invoked when a backing service is
bound.

7.2.4. Listener And Service Proxies

While the importer listener provides access to the OSGi service bound at a certain point, it is important to note
that the given argument is not the actual service but a proxy. This can have subtle side effects especially with
regards to service class name and identity. The reason behind using a proxy is to prevent the listener from
holding strong reference to the service (which can disappear at any point). Listeners interested in tracking
certain services should not rely on instance equality (==). Object equality (equals/hashcode) can be used but
only if the backing service has exposed the aforementioned methods as part of its contract (normally by
declaring them on a certain published interface/class). If these methods are not published, the proxy will invoke

The Service Registry

Spring Dynamic Modules(1.2.1) 44

its own method, not the targets. This is on purpose since, while the proxy tries to be as transparent as possible,
it is up to the developer to define the desired semantics.

Thus, it is recommended (especially for reference importers) to do tracking based on just the service
interface/contract (not identity), service properties (see org.osgi.framework.Constants#SERVICE_ID) or
service notification (bind/unbind).

7.2.5. Accessing The Caller BundleContext

It is sometime useful for an imported service to know which bundle is using it at a certain time. To help with
this scenarion, in Spring DM imported services publish the importing bundle BundleContext through
LocalBundleContext class. Each time a method on the importer is invoked, the caller BundleContext will be
made available, using a ThreadLocal, through getInvokerBundleContext().

Please be careful when using this class since it ties your code to Spring DM API.

7.3. Exporter/Importer Listener Best Practices

As mentioned above, Spring DM exporter and importer allow listeners to be used for receiving notifications on
when services are bound, unbound, registered or unregistered. Below you can find some guidance advices when
working with listeners:

• Do not execute long activity tasks inside the listener. If you really have to, use a separate thread for
executing the work. The listener are called synchronously and so try to be as fast as possible. Doing work
inside the listener prevents other the event to be sent to other listeners and the OSGi service to resume
activity.

• Use listener custom declaration as much as possible - it doesn't tie your code to Spring DM API and it
doesn't enforce certain signature names.

• If find yourself repeating bind/unbind method declarations for your listener definitions, consider using
Spring bean definition inheritance to define a common definition that can be reused and customized
accordingly.

• Prefer java.util.Map instead of java.util.Dictionary class. The first is an interface while the latter is a
deprecated, abstract class. To preserve compatibility, Spring DM will pass to the listeners a Map

implementation that can be casted, if needed, to a Dictionary.

• Be careful when using overloaded methods: all methods matching a certain service type will be called which
is not always expected. Consider the following listener:

public class MyListener {
void register(❶Object service, Map properties);
void register(❷Collection dataService, Map properties);
void register(❸SortedSet orderedDataService , Map properties);

}

❶
Object type - will match all services for which the listener is triggered. This method will be always
called.

❷
Collection type - if this method is called, the Object method is also called.

❸
SortedSet type - if this method is called, then both the Object and Collection methods are called.

The Service Registry

Spring Dynamic Modules(1.2.1) 45

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-child-bean-definitions

7.3.1. Listener And Cyclic Dependencies

There are cases where an exporter/importer listener needs a reference back to the bean it is defined on:

<bean id="listener" class="cycle.Listener"> ❶
<property name="target" ref="importer" /> ❷

</bean>

<osgi:reference id="importer" interface="SomeService"> ❸
<osgi:listener bind-method="bind" ref="listener" /> ❹

</osgi:reference>

❶ Listener bean
❷ Dependency listener -> importer
❸ Importer declaration
❹ Dependency importer -> listener

The declaration above while valid, creates a dependecy between the listener and the importer it is defined
upon. In order to create the importer, the listener has to be resolved and created but in order to do that, the
importer called service needs to be retrieved (instantiated and configured). This cycle needs to be broken
down so that at least one bean can be fully created and configured. This scenario is supported by Spring DM for
both exporter and importers however, if the listener is defined as a nested bean, the cycle cannot be resolved:

<osgi:reference id="importer" interface="SomeService"> ❶
<osgi:listener bind-method="bind"> ❷

<bean class="cycle.Listener"> ❸
<property name="target" ref="importer" /> ❹

</bean>
</osgi:listener>

</osgi:reference>

❶ OSGi service importer
❷ Dependency between importer -> listener
❸ Nested listener declaration
❹ Dependency nested listener -> importer

Beans and Cycles

Cyclic dependencies (A depends on B which depends back on A) increase the complexity of your
configuration and in most cases indicate a design issue. What beans should be created and destroyed first
for example? While they are a bad practice, the Spring container makes a best attempt to solve the cyclic
configurations when singletons are involved (since the instances can be cached). However this does not
work all the time and depends heavily on your specific configuration (Can the bean class be partially
initialized ? Does it rely on special Aware interfaces? Are BeanPostProcessors involved?)

The example above will fail since service bean cannot be initialized as it depends on the listener. The same
cycle was seen before but in this case there is subtle yet big different from the container perspective - the
listener is declared as a nested/inner-bean (hence the missing bean id). Inner beans have the same life cycle as
their declaring parents and do not have any name. By definition, they are not tracked by the container and are
simply created on demand. Since the importer cannot be partially created and the nested listener cannot be
cached, the container cannot break the cycle and create the beans. While the two configurations shown above
seem similar, one works while the other does not. Another reason to not use cycles unless you really, really
have to.

To conclude, if you need inside the listener to hold a reference to the exporter/importer on which the listener is

The Service Registry

Spring Dynamic Modules(1.2.1) 46

declared, either declare the listener as a top-level bean (as shown before) or consider doing dependency lookup.
However, the latter approach requires extra contextual information such as the BeanFactory to use and the bean
name and is more fragile then dependency injection.

Note

For those interested in the technical details, neither the exporter and importer cannot be partially
initialized since they require the application context ClassLoader which is requested through the
BeanClassLoaderAware which relies on a buit-in BeanPostProcessor which is applied only after
the bean has been configured and is ready for initialization. If the ClassLoader was not required
then the exporter/importer could have been partially initialized and the case above supported.

7.4. Service Importer Global Defaults

The osgi namespace offers two global attributes for specifying default behaviours for all importers declared in
that file.

Thus, when using the osgi namespace to enclose set, list or reference elements, one can use:

• default-timeout - can be used to specify the default timeout (in milliseconds) for all importer elements that
do not explicitly specify one. For example:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi" ❶

osgi:default-timeout="5000"> ❷

<reference id="someService" interface="com.xyz.AService"/> ❸

<reference id="someOtherService" interface="com.xyz.BService"
timeout="1000"/> ❹

</beans:beans>

❶ Declare osgi namespace prefix.
❷ Declare default-timeout(in miliseconds) on the root element. If the default is not set, it will have a

value of 5 minutes. In this example, the default value is 5 seconds.
❸ This reference will inherit the default timeout value since it does not specify one. This service

reference will have a timeout of 5 seconds.
❹ This reference declares a timeout, overriding the default value. This service reference will have a

timeout of 1 second.

• default-cardinality - can be used to specify the default cardinality for all importer elements that do not
explicitly specify one. Possible values are 0..X and 1..X where X is substituted at runtime to 1 for reference
elements or N for collection types such as set or list.

Consider the following example:

<beans:beans
xmlns="http://www.springframework.org/schema/osgi" ❶
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans" ❷
xmlns:osgi="http://www.springframework.org/schema/osgi" ❸

osgi:default-cardinality="0..X" ❹
default-lazy-init="false"> ❺

<reference id="someService" interface="com.xyz.AService"/> ❻

The Service Registry

Spring Dynamic Modules(1.2.1) 47

<set id="someSetOfService" interface="com.xyz.BService"/> ❼

<list id="anotherListOfServices" interface="com.xyz.CService" cardinality="1..N"/> ❽

</beans:beans>

❶ Declare Spring Dynamic Modules schema as the default namespace.
❷ Import Spring Framework beans schema and associate a prefix with its namespace (beans in this

example).
❸ Import Spring Dynamic Modules schema and associate a prefix with its namespace (osgi in this

example). This is required since the global attributes have to be declared to an element (beans)
belonging to another schema. To avoid ambiguity, the Spring DM schema is imported under a specified
prefix as well.

❹ Declare default-cardinality on the root element. If the default is not set, it will have a value of 1..N.
In this example, the default value is 0..N. Note the osgi prefix added to the global attribute.

❺ beans element attributes (such as default-lazy-init) do not need a prefix since they are declared as
being local and unqualified (see the beans schema for more information).

❻ The reference declaration will inherit the default cardinality value since it does not specify one. As
reference represents a single service, its cardinality will be 0..1.

❼ The set declaration will inherit the default cardinality value since it does not specify one. As set (or
list) represents a collection of service, its cardinality will be 0..N.

❽ The list declaration specifies its cardinality (1..N), overriding the default value.

The default-* attributes allow for concise and shorter declarations as well as easy propagation of changes
(such as increasing or decreasing the timeout).

7.5. Relationship Between The Service Exporter And Service
Importer

An exported service may depend, either directly or indirectly, on other services in order to perform its function.
If one of these services is considered a mandatory dependency (has cardinality 1..x) and the dependency can
no longer be satisfied (because the backing service has gone away and there is no suitable replacement
available) then the exported service that depends on it will be automatically unregistered from the service
registry - meaning that it is no longer available to clients. If the mandatory dependency becomes satisfied once
more (by registration of a suitable service), then the exported service will be re-registered in the service
registry.

This automatic unregistering and re-registering of exported services based on the availability of mandatory
dependencies only takes into account declarative dependencies. If exported service S depends on bean A, which
in turn depends on mandatory imported service M, and these dependencies are explicit in the Spring
configuration file as per the example below, then when M becomes unsatisfied S will be unregistered. When M

becomes satisfied again, S will be re-registered.

<osgi:service id="S" ref="A" interface="SomeInterface"/>

<bean id="A" class="SomeImplementation">
<property name="helperService" ref="M"/>

</bean>

<!-- the reference element is used to refer to a service
in the service registry -->

<osgi:reference id="M" interface="HelperService"
cardinality="1..1"/>

The Service Registry

Spring Dynamic Modules(1.2.1) 48

If however the dependency from A on M is not established through configuration as shown above, but instead at
runtime through for example passing a reference to M to A without any involvement from the Spring container,
then Spring Dynamic Modules will not track this dependency.

The Service Registry

Spring Dynamic Modules(1.2.1) 49

Chapter 8. Working With Bundles
Spring DM offers a dedicated schema element for interacting with existing bundles or for installing new ones.
While it is not intended to be used as a replacement for proper OSGi services, the bundle element offers a very
easy way of executing actions on bundles based on the lifecycle of the application context.

The bundle element defines a bean of type org.osgi.framework.Bundle. It provides a simple way to work
directly with bundles, including driving their lifecycle. In the simplest case all you need to do is specify the
symbolic-name of the bundle you are interested in:

<bundle id="aBundle" symbolic-name="org.xyz.abundle"/>

The bean aBundle can now be injected into any property of type Bundle.

If the needed bundle is not installed, one can use location attribute to indicate install or/and the
action/destroy-action attributes provide declarative control over the bundle's lifecycle. The location

attribute is used to specify a URL where the bundle jar file artifact can be found. The action attribute specifies
the lifecycle operation to be invoked on the bundle object. The supported action values are install, start,
update, stop, and uninstall. These actions have the same semantics as the operations of the corresponding
names defined on the Bundle interface (see the OSGi Service Platform Core Specification), with the exception
that pre-conditions are weakened to allow for example a start action to be specified against a bundle that is not
currently installed (it will be installed first).

The following table shows how actions are interpreted for the given Bundle states:

Table 8.1. <bundle> action values

Action UNINSTALLED INSTALLED/RESOLVED ACTIVE

START installs and starts the
bundle

starts the bundle no action taken, bundle
already started

UPDATE installs the bundle and
then updates it
(`Bundle.update()`)

updates the bundle updates the bundle

STOP no action taken no action taken bundle is stopped

UNINSTALL no action taken bundle is uninstalled bundle is stopped and
then uninstalled

For example:

<!-- ensure this bundle is installed and started -->
<bundle id="aBundle" symbolic-name="org.xyz.abundle"

location="http://www.xyz.com/bundles/org.xyz.abundle.jar"
action="start"/>

The following table lists the bundle element attributes names, possible values and a short description for each
of them:

Table 8.2. <bundle> attributes

Spring Dynamic Modules(1.2.1) 50

Name Values Description

symbolic-name any valid symbolic-name String The symbolic
name of the
bundle object.
Normally
used when
interacting
with an
already
installed
bundle.

location String that can be converted into an URL Location used
to install,
update or/and
identify a
bundle.

action start stop install uninstall update Lifecyle
action to
drive on the
bundle. The
action is
executed at
startup.

destroy-action (same as action) Lifecyle
action to
drive on the
bundle. The
action is
executed at
shutdown.

The samples that ship with the Spring Dynamic Modules project include further support for a virtual-bundle

element that can be used to create and install OSGi bundles on the fly from existing artifacts.

Working With Bundles

Spring Dynamic Modules(1.2.1) 51

Chapter 9. Web Support

OSGi bundles and WARs

Web ARchives, or in short WARs, are specialized JAR for packaging web applications. Since the same
archive format is used (Java ARchive), each war can be considered an OSGi bundle if the proper OSGi
manifest entries are present. Note that it is not required for a bundle to have a .jar file extension, which
means .war files can be installed just as well.

Deployment scenarios

Users new to OSGi can benefit greatly from the SpringSource dm Server documentation which explains
how OSGi can work in various development and production scenarios.

A major feature introduced in the 1.1.0 release is support for web applications which enables easy deployment
of web artifacts to OSGi.

The biggest problems in running web applications in OSGi involve resource and class loading; there is no
notion of bundle space or imported packages in a web application. Each web container has its own class
loading hierarchy and classpath assumption which can conflict with the OSGi space. Spring DM addresses
these problems by bridging the web container and the OSGi space so loading is no longer a concern. Unique in
its functionality, the web support in Spring DM integrates directly with the web container so the WAR
processing is literally handled by the server, giving full access to its configuration and
capabilities(non-blocking vs blocking IO, thread pool, specification support (Servlet 2.3, 2.4, 2.5) and so on).
The entire web.xml syntax is supported (without any parsing on Spring DM behalf), as well as any custom
configuration file particular to the target container. In short, everything that the target container supports is
available to the OSGi WAR through Spring DM.

Tip
As a complement to this chapter, the Spring DM distribution contains a number of web samples
involving static resources, Servlets and JSPs running inside OSGi.

Note
For more information on web applications on Java platform, please see the Servlet home page.

9.1. Supported Web Containers

Currently, Spring DM supports Apache Tomcat 5.5.x/6.0.x and Jetty 6.1.8+/6.2.x out of the box (other
containers can be easily plugged in). The web support is JDK 1.4 compatible. Please check the chosen
container requirements for more information on the required JVM. In general, Servlet 2.4/JSP 2.0 require JDK
1.4 while Servlet 2.5/JSP 2.1 require JDK 1.5.

9.2. Web Support Usage

Spring Dynamic Modules(1.2.1) 52

http://en.wikipedia.org/wiki/WAR_%28file_format%29
http://www.springsource.org/dmserver
http://java.sun.com/products/servlet/
http://tomcat.apache.org
http://jetty.mortbay.org/

WAR vs Web Application

This document understand by web application an instance of a WAR: a WAR is a definition while a web
application a runtime instance of a definition. This is similar to the difference between a class and an
object: the class represents a (bytecode) definition while the object, the instance of a class.

Just like with non-WAR bundles, Spring DM Web uses the extender pattern to detect and install WARs.
However, one crucial difference from the standard Spring DM Extender is that Spring DM will only trigger the
install and uninstall of the WAR - the actual web application creation and thread management is delegated to
the web container in which the WAR is installed. That is, Spring DM Web only dictates when a WAR is
deployed to and undeployed from a web container; it is up to the web container to create and manage the
equivalent web application.

To use Spring DM Web, install:

• spring-osgi-web.jar - Spring DM web support

• spring-osgi-web-extender.jar - Spring DM web extender

bundles to detect started OSGi WAR bundles and to deploy them to one of the supported web containers. Note
that the web extender consider a war a bundle that has trailing .war in its location or contains a WEB-INF entry.
By default, Tomcat will be used but this can be changed to Jetty or to another custom server. When the war
bundle is stopped, Spring DM will also stop and uninstall the web application associated with it. Different from
traditional web development, the Servlet classes need to be explicitly imported as the OSGi class path always
takes priority (see below).

Since, when running a web application, it's the web container that does the bootstrapping and instantiation,
there is no need to place the Spring .xml files under META-INF/spring or use the Spring DM manifest entries.
Simply bundle your files in the WAR and use your web framework (or Servlets/Listeners) to bootstrap the
Spring container. See Section 9.7, “Spring-MVC Integration” for Spring-MVC integration and/or Spring
reference documentation for more information. These being said, the Spring Extender is still required as it
performs namespace handlers discovery - without it, it would not be possible to use Spring namespaces (like
osgi:, aop: or even beans: for that matter).

9.3. WAR Classpath In OSGi

The servlet specification defines a number of rules and locations which special meaning inside a WAR. This
section will explain how these are handled in an OSGi environment.

9.3.1. Static Resources

When installing a WAR bundle, for static resources, Spring DM will only consider what is available in the
bundle space - this means what is available in the bundle jar and its attached fragments. Conforming to the
Servlet spec, resources under WEB-INF folder will be available through the ServletContext API but not to
remote clients connecting to the web application. In addition, any resource available in the classpath (imported
packages, required bundles or dynamic imports) can be loaded and used by the application code but cannot be
seen outside of it.

9.3.2. Servlets

Web Support

Spring Dynamic Modules(1.2.1) 53

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#context-create

The main difference from the traditional WAR deployment is that the Servlet packages need to be imported so
they are available to the WAR bundle. To do that, add the following packages to the Import-Package entry:

Import-Package: javax.servlet,javax.servlet.http,javax.servlet.resources

Additionally, the servlet specification defines the classpath of a WAR, based on some predefined locations. To
quickly recap, these are:

• WEB-INF/classes - all resources under WEB-INF/classes

• WEB-INF/lib/*.jar - all jars under WEB-INF/lib

In addition, each container implementation can provide common libraries that are appended to the war
classpath. Since OSGi, with its class wiring, versioning, reloading, superseeds the WAR classpath, Spring DM
will ignore the WAR predefined locations and will always use the OSGi classpath instead. This means that
classes imported by a WAR bundle can be used even if they are not present under WEB-INF/classes folder or
inside a jar under WEB-INF/lib. This also means that any class under WEB-INF/classes will not be considered
if it's not available in the WAR OSGi classpath.

One of the easiest ways to support the pre-defined WAR locations, is to add them to the bundle classpath, by
adding them to the bundle manifest:

Bundle-Classpath: .,WEB-INF/classes,WEB-INF/lib/some.jar,WEB-INF/lib/lib.jar

Make sure the default Bundle-Classpath location (.) is present and there are no whitespaces between the
commas.

Note
Since the OSGi API doesn't provide a hook for bundles to be pre-processed, Spring DM cannot
automate this process in a reliable way. However, we are working on finding a suitable solution.
Note that there are tools (bnd) that can add these entries during packaging.

Before creating entries for embedded libraries, consider whether they can be installed as OSGi bundles - doing
so allows them to be shared with other WARs if needed and since OSGi allows versioning, it is perfectly okay
to have multiple versions of the same library inside the same VM.

9.3.3. Java Server Pages

For JSPs, Spring DM integrates with Tomcat Jasper 2 Engine which means JSP 1.2, 2.0 and 2.1 are supported.
OSGified versions for Jasper (from Tomcat 5.5.x and 6.0.x distribution respectively) are available in the Spring
DM OSGi repository. No imports on Jasper classes are required for the OSGi bundle.

9.3.3.1. Tag Libraries

The JSP spec allows the creation of tag libraries to “define declarative, modular functionality that can be reused
by any JSP page”. Also known as taglibs, these reusable components consist of Java classes (the tag
implementation) and description files that indicate how the tags can be used. Spring DM extends the JSP
convention, of placing the taglibs either packed as a jar under WEB-INF/lib or unpacked under
WEB-INF/classes, by detecting any taglib defined in the bundle classpath (imported packages or required
bundles).

Web Support

Spring Dynamic Modules(1.2.1) 54

http://java.sun.com/products/servlet/
http://java.sun.com/products/servlet/reference/api/index.html
http://www.aqute.biz/Code/Bnd
http://java.sun.com/products/jsp
http://en.wikipedia.org/wiki/Tomcat_Jasper

Spring DM will automatically look for any taglib file (*.tld) available in the bundle classpath and will make
them available to the Jasper engine. However, while the tag definitions are automatically discovered, the tag
classes are not - again, the OSGi classpath takes priority. This means that in order to use a tag, the war bundle
would have to import the tag corresponding classes since otherwise, they are not seen by the bundle and the tag
cannot be used.

When dealing with libraries that export a lot of tags, one can use the Require-Bundle header instead of
Import-Package for importing the tags:

Require-Bundle: org.springframework.osgi.jstl.osgi

Using the manifest entry above, all the classes (and thus tag implementations) exported by the JSP Standard
Tag Library (or JSTL in short), are seen by the war bundle and thus can be used inside the JSPs.

Warning
Before using Require-Bundle on a large scale, please read the OSGi specification (section 3.13)
for an in-depth review of its implications.

No matter what mechanism you decide to use for the war classpath, due to the OSGi capabilities, it is possible
to create libraries that are shared between multiple WARs while having full control over the used packages.
Each bundle can import only the packages (and the versions) needed not an entire library jar - in fact, packages
from different bundles/jars can be selectively used to obtain the desired behaviour - a very powerful capability
which should make web application deployment easier.

9.4. Configuring The Web Extender

Just like the core extender, the web extender can be configured by using OSGi fragments. Following a similar
pattern, the web extender looks for all XMLs under META-INF/spring/extender folder in its bundle space and
assembles them into an application context that is used internally as its configuration. To override a default
setting of the web extender, look up the appropriate bean name from the table below, define it in a suitable
manner and then attach it as a fragment to the spring-osgi-web.jar, using:

Fragment-Host: org.springframework.osgi.web.extender

The following beans are currently recognized by the web extender:

Table 9.1. Web Extender Configuration Options

Bean
Name

Type Role Default
Class

Default Behaviour

warDeployerWarDeployer

a

Installs OSGi bundles as web
applications. The deployers takes
care of locating the required web
container and installing and
uninstalling web applications.

TomcatWarDeployer

b

Installs OSGi WARs to Tomcat
5.5.x/6.0.x. The servers needs to be
installed, started and published as
OSGi services as explained here.

contextPathStrategyContextPathStrategy
aDetermines the context path

associated with an OSGi
bundle/WAR. The returned path is
used by the war deployer to install

DefaultContextPathStrategy
cReturns as context path of the war

based on the Web-ContextPath

manifest header or (if missing), the
file name from the bundle location,

Web Support

Spring Dynamic Modules(1.2.1) 55

http://java.sun.com/products/jsp/jstl/index.jsp

Bean
Name

Type Role Default
Class

Default Behaviour

the war application. falling back to the bundle name
and bundle symbolic name
respectively. If neither of these is
present, the bundle object identity
will be used.

aPart of org.springframework.osgi.web.deployer package
bPart of org.springframework.osgi.web.deployer.tomcat package
cPart of org.springframework.osgi.web.deployer.support package

Note that to properly support wars, whether they are using Servlet 2.5 or not, the Spring DM web extender
considers as WARs bundles that contains a .war extension.

9.4.1. Changing The War Deployer

To change the Tomcat deployer to Jetty for example, one can create a configuration file
META-INF/spring/extender/jetty-deployer.xml with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="warDeployer" ❶
class="org.springframework.osgi.web.deployer.jetty.JettyWarDeployer" /> ❷

</beans>

❶ Pre-defined bean name used by the web extender
❷ Bean implementing org.springframework.osgi.web.deployer.WarDeployer interface

Once the file is created, it should be bundled in an OSGi fragment attached to the Spring DM Web Extender
bundle by adding the Fragment-Host header:

Fragment-Host: org.springframework.osgi.web.extender

Now the fragment can be deployed alongside spring-osgi-web.jar bundle to plug in Jetty.

A pre-packed Jetty fragment is available in the Spring DM maven repository under
jetty.web.extender.fragment.osgi artifactId (make sure to use version 1.0.1+).

9.5. Customizing The Standard Deployers

By default, the out of the box deployers look up the needed services, at startup. As the services are considered
mandatory, the deployers will wait for them and, in case they are not found, will throw an exception. In cases
where the default timeout or service lookup filter is not be appropriate, one can customize the service used
through a Spring DM reference:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:p="http://www.springframework.org/schema/p" ❹
xsi:schemaLocation="http://www.springframework.org/schema/beans

Web Support

Spring Dynamic Modules(1.2.1) 56

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd">

<osgi:reference id="myTomcatServer" ❶
interface="org.apache.catalina.Service"
filter="(environment=testing)"
cardinality="0..1"/>

<bean id="warDeployer" ❷
class="org.springframework.osgi.web.deployer.tomcat.TomcatWarDeployer"
p:service-ref="myTomcatServer"/> ❸

</beans>

❶ User defined OSGi service lookup
❷ Deployer definition (name is important)
❸ Service property assignment (through p namespace)
❹ Spring's p namespace declaration - see this blog entry for more information

Make sure to add the packages on which your configuration depends to the fragment manifest (since the web
extender bundle imports only the packages it needs: Spring DM web support's). For the example above, one
must import Catalina Service's package. Since the Service interface signature depends on the Connector class
from another package, its package needs to be imported as well - not doing so results in
ClassNotFoundException/NoClassDefFoundErrors:

Catalina packages
Import-Package: org.apache.catalina,org.apache.catalina.connector
Spring DM Web Extender
Fragment-Host: org.springframework.osgi.web.extender

9.6. OSGi-ready Libraries And Web Development

Unfortunately, at the moment most libraries used for web development are not OSGi bundles, which means
they cannot be used inside the OSGi space unless they are embedded in other bundles. To address this problem,
the Spring DM project has osgified most of the common libraries and made them available through a dedicated
Maven repository (which can be found in the appendix). Please note that the current repository, for now, is
provided as-is without any support. These being said, we hope you find it useful.

9.6.1. Deploying Web Containers As OSGi Bundles

Spring DM web support expects the web containers to be installed as OSGi services. Since neither the Tomcat
nor the Jetty distribution do this, Spring DM offers two simple yet useful OSGi Activators for both containers
at the Spring DM OSGi repository. Once installed, these will programmatically start the appropriate web
container based on a default configuration (which can be customized and publish it as an OSGi service. While
the activators are generic, they can be easily customized for advance usages or even replaced - it's up to each
deployer to decide how the server instances are looked up.

Note
The activator binaries and sources can be found either in the Spring DM repository (see below) or
under the lib/ folder inside the Spring DM (with-dependencies) distribution

All entries in the repository belong to the org.springframework.osgi group and have an .osgi termination to
differentiate them from the original jars.

Web Support

Spring Dynamic Modules(1.2.1) 57

http://blog.springsource.com/main/2006/11/25/xml-syntax-sugar-in-spring-20/
http://www2.osgi.org/javadoc/r4/org/osgi/framework/BundleActivator.html

9.6.1.1. Tomcat 5.5.x/6.0.x

Apache Tomcat version 5.5.x and 6.0.x are available as OSGi artifacts in the repository under catalina.osgi
artifactId. The jars require only commons-logging, JMX and Servlet/JSP libraries to be present.

In addition to the Catalina artifacts, the repository contains also a Tomcat activator (that works with both 5.5.x
and 6.0.x versions) named catalina.osgi.start. The activator understands Tomcat XML configuration and
contains a default, minimal setup that starts the server on localhost, port 8080. This behaviour can be
customized by placing the desired configuration (which will override the default one) under conf/server.xml
location (following the Tomcat folder layout) in a fragment attached to the Tomcat activator.

To attach fragments to the Tomcat activator, specify the following host name in the fragment manifest:

Fragment-Host: org.springframework.osgi.catalina.start.osgi

9.6.1.2. Jetty 6.1.8+/6.2.0

Since Jetty is OSGi-ready by default, the official distribution can be installed without any
transformation/processing on the OSGi platform. However, since there is no activator, Spring DM provides
one, similar in functionality to the one available for Tomcat. The activator has jetty.start.osgi as artifact id.
Similar to the Tomcat case, a default configuration bundle (named jetty.etc.osgi) is provided for starting a
Jetty instance on localhost, port 8080. To change the defaults, place your Jetty configuration under
etc/jetty.xml location (either by updating the provided bundle by using a custom one).

To attach fragments to the Jetty activator, specify the following host name in the fragment manifest:

Fragment-Host: org.springframework.osgi.jetty.start.osgi

Just like the extender, each activator uses a default configuration which can be overridden by the user. For the
latter case, one should use fragments (as mentioned above) to provide a customized configuration and to avoid
modifying the distribution jar.

9.6.2. Common Libraries

The Servlet, Java Server Pages, Standard Taglib, Commons-EL and other web libraries are available as well in
the Spring DM repository. When browsing use an S3 compatible application .

9.7. Spring-MVC Integration

Since 1.1, Spring DM integrates closely with Spring-MVC framework. This section details how Spring-MVC
applications can be run into OSGi environments (it is assumed the reader is familiar with Spring-MVC
concepts and APIs).

In order to be properly used inside an OSGi platform, a Spring-MVC application needs to adapt to its new
environment. Spring DM provides a dedicated, OSGi-aware, web application context (called
OsgiBundleXmlWebApplicationContext) that offers the same functionality and behaviour to its Spring-MVC
brethren, XmlWebApplicationContext. The application context is aware of the web application BundleContext

and thus is able to load resources from the OSGi space, import and export OSGi services and support the
BundleContextAware and component scanning across the bundles included in the classpath.

To use this application context instead of the default one, use the contextClass parameters supported by

Web Support

Spring Dynamic Modules(1.2.1) 58

http://aws.amazon.com/s3
http://static.springframework.org/spring/docs/2.5.x/reference/mvc.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/web/context/support/XmlWebApplicationContext.html

Spring's ContextLoaderListener and DispatcherServlet inside your web application WEB-INF/web.xml:

<context-param>
<param-name>contextClass</param-name> ❶
<param-value>org.springframework.osgi.web.context.support.OsgiBundleXmlWebApplicationContext</param-value> ❷

</context-param>

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> ❸

</listener>

<servlet>
<servlet-name>petclinic</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> ❹
<load-on-startup>2</load-on-startup>
<init-param>
<param-name>contextClass</param-name> ❺
<param-value>org.springframework.osgi.web.context.support.OsgiBundleXmlWebApplicationContext</param-value> ❷

</init-param>
</servlet>

❶ Name of the context-param used by Spring's ContextLoaderListener to determine the root web
application context type

❷ Fully qualified name of the OSGi-aware web application context class
❸ Spring configuration bootstrap listener
❹ Spring MVC front controller
❺ Name of the init-param used by Spring's DispatcherServlet to determine the web application context

type

With this configuration, deployed Spring-MVC bundles will be able to look up the existing BundleContext and
be aware of the OSGi environment.

Note
You still need to add the proper package imports to your Spring-MVC application - the WAR is
still a bundle after all which means without the proper manifest entries, it will have an invalid class
path and will not be able to work properly.

Web Support

Spring Dynamic Modules(1.2.1) 59

Chapter 10. Compendium Services
The OSGi Service Platform Service Compendium specification defines a number of additional services that
may be supported by OSGi implementations. Spring Dynamic Modules supports an additional "compendium"
namespace that provides integration with some of these services. By convention, the prefix osgix is used for
this namespace:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/osgi"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:❶osgix="http://www.springframework.org/schema/osgi-compendium" ❶
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/osgi

http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.springframework.org/schema/osgi-compendium ❷

http://www.springframework.org/schema/osgi-compendium/spring-osgi-compendium.xsd ❸
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- use the OSGi namespace elements directly -->
<service id="simpleServiceOsgi" ref="simpleService"

interface="org.xyz.MyService" />

<!-- qualify compendium namespace elements -->
<osgix:cm-properties id="cm" persistent-id="com.xyz.myapp"/>

</beans:beans>

❶ Compendium namespace declaration (bound to osgix prefix)
❷ Schema location (namespace URI)
❸ XML schema to use for the compendium namespace

At present this namespace provides support for the Configuration Admin service. Support for other
compendium services may be added in future releases.

10.1. Configuration Admin

One of the most important compendium services, is the Configuration Admin which, as a name implies,
provides configuration to interested bundles through the OSGi service registry. Spring DM provides dedicated
support for Configuration Admin (CM), allowing consumption and injection of the configuration data in a
declarative way.

10.1.1. Exposing Configuration Admin Entries As Properties

In its simplest form, the CM can be seen as a configuration source, namely a Dictionary whose keys are
always Strings. Spring DM can expose entries in the CM as a Properties object, through the cm-properties

element. A minimal declaration looks as follows:

<osgix:cm-properties id="ds.cfg" persistent-id="data.source.office.1"/>

The configuration above, exposes the properties available in the CM under data.source.office.1 entry as a bean
named ds.cfg.

Note

The persistent-id attribute must refer to the persistent-id of an OSGi ManagedService, it is a

Spring Dynamic Modules(1.2.1) 60

http://www.osgi.org/javadoc/r4v401/org/osgi/service/cm/package-summary.html

configuration error to specify a factory persistent id referring to a ManagedServiceFactory.

Those familiar with Spring's util namespace will find <osgi:cm-properties/> element similar to
<util:properties/>.

It is possible to specify a default set of property values to be used in the event that the configuration dictionary
does not contain an entry for a given key. The declaration is similar to the props element inside the Spring
beans namespace:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/osgi-compendium"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:osgix="http://www.springframework.org/schema/osgi-compendium"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/osgi-compendium
http://www.springframework.org/schema/osgi-compendium/spring-osgi-compendium.xsd">

<osgix:cm-properties id="cfg.with.defaults" persistent-id="data.source.office.2">
<beans:prop key="host">localhost</beans:prop>
<beans:prop key="port">3306</beans:prop>

</osgix:cm-properties>

</beans:beans>

By default, the properties found in the Configuration Admin entry will override the local properties. Thus, for
the previous example, if the data.source.office.2 configuration contains a host entry, its value will override
the locally defined localhost. For cases where this behaviour is undesired, the attribute local-override

(default false) allows one to revert the merging algorithm, forcing the local properties to override the entries in
the CM.

Since cm-properties exposes the CM entries as Properties, it can be used with Spring's
PropertyPlaceholderConfigurer and PropertyOverrideConfigurer to externalize and customize
environment-specific properties:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgix="http://www.springframework.org/schema/osgi-compendium"
xmlns:ctx="http://www.springframework.org/schema/context"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd

http://www.springframework.org/schema/osgi-compendium
http://www.springframework.org/schema/osgi-compendium/spring-osgi-compendium.xsd">

<!-- Configuration Admin entry -->
<osgix:cm-properties id="cmProps" persistent-id="com.xyz.myapp">

<prop key="host">localhost</prop>
</osgix:cm-properties>

<!-- placeholder configurer -->
<ctx:property-placeholder properties-ref="cmProps" />

<bean id="dataSource" ...>
<property name="host" value="${host}"/>
<property name="timeout" value="${timeout}"/>

</bean>

</beans>

Compendium Services

Spring Dynamic Modules(1.2.1) 61

http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html#xsd-config-body-schemas-util
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-placeholderconfigurer
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-overrideconfigurer

An important aspect of cm-properties is does not reflect any that any subsequent changes made to the entry it
represents, made through the Configuration Admin API. That is, once resolved, the cm-properties content
remains the same, regardless of any updates made the to CM entry it represents.

10.1.2. Managed Properties

Based on a configuration admin entry, Spring DM can autowire by name, the properties of a given bean. To use
this feature, define a nested managed-properties inside the bean definition:

<bean id="managedComponent" class="MessageTank">
<osgix:managed-properties persistent-id="com.xyz.messageservice"/>

</bean>

For each key in the dictionary stored by Configuration Admin under the given persistent id, if the bean type has
a property with a matching name (following JavaBeans conventions), then that component property will be
dependency injected with the value stored in Configuration Admin under the key. If the definition of
SomeClass from the example above is as follows:

public class MessageTank {
private int amount;
public int getAmount() { return this.amount; }
public void setAmount(int amount) { this.amount = amount; }

}

and the configuration dictionary stored under the pid com.xyz.messageservice contains an entry amount=200,
then the setAmount method will be invoked on the bean instance during configuration, passing in the value 200.

If a property value is defined both in the configuration dictionary stored in the Configuration Admin service
and in a property element declaration nested in the component element, then the value from Configuration
Admin takes precedence:

<bean id="managedComponent" class="MessageTank">
<osgix:managed-properties persistent-id="com.xyz.messageservice"/>
<property name="amount" value="100"/>
<property name="threshold" value="500"/>

</bean>

Property values specified via property elements can therefore be treated as default values to be used if none is
available through Configuration Admin.

Warning
Do not share the same persistent-id (PID) between multiple bundles or definitions, as only one of
them will receive notifications. managed-properties relies on
org.osgi.service.cm.ManagedService contract which mandates that each ManagedService

instance must be identified with its own unique PID. Please see the Configuration Admin spec,
specifically section 104.3 and 104.5

10.1.2.1. Configuration Admin Runtime Updates

A powerful feature of Configuration Admin is the ability to update (or delete) entries at runtime. That is, the
configuration data stored in Configuration Admin may be updated after the bean has been created. By default,
any post-creation updates will be ignored. However, one can configure managed-properties element to receive
configuration updates through the update-strategy attribute, which can have a value of either bean-managed
or container-managed.

Compendium Services

Spring Dynamic Modules(1.2.1) 62

bean-managed strategy will pass all the updates made to the configuration to a callback present on the bean,
specified through the update-method attribute (which becomes required). The update method must have one of
the following signatures:

public void anyMethodName(Map properties)
public void anyMethodName(Map<String,?> properties); // for Java 5

In contrast, the container-managed update strategy will re-inject bean properties by name based on the new
properties received in the update. For container-managed updates, the component class must provide setter
methods for the component properties that it wishes to have updated. Consider the following class definitions:

public class ContainerManagedBean {
// will be reinjected (since it has a setter)
private Integer integer;
// will not be reinjected (no setter present)
private Long waitTime;

public void setInteger(Integer integer) { this.integer = integer; }
}

public class SelfManagedBean {

// update callback
public void updateCallback(Map properties) {

System.out.println("Received properties " + properties);
System.out.println("Props can be used as a Dictionary " + (Dictionary) properties);
// do more work ...

}
}

and configuraton:

<bean id="containerManaged" class="ContainerManagedBean">
<osgix:managed-properties persistent-id="labX" update-strategy="container-managed"/>
<property name="integer" value="23"/>

</bean>

<bean id="beanManaged" class="SelfManagedBean">
<osgix:managed-properties persistent-id="labY" update-strategy="bean-managed" update-method="updateCallback"/>

</bean>

Any updates made to the CM entry labX will be automatically reinjected on existing instances of
containerManaged bean while the labY updates will be passed to updateCallback method.

The update options are summarized in the table below:

Table 10.1. Managed Properties Update Options

update-strategy update-methodBehaviour

container-managed ignored Reinjects the bean properties, using the properties present in
the update. The re-injection will be applied while locking
(through a synchronized instruction) the bean instance. If the
locking or re-injection strategy is not suitable, consider using
the bean-managed approach.

bean-managed required Invokes the update-method callback on the bean instance,
passing the updated configuration (as a Map object that can be
safely cast to a Dictionary if needed). No locking is
performed.

Compendium Services

Spring Dynamic Modules(1.2.1) 63

10.1.3. Managed Service Factories

The Configuration Admin service supports a notion of a managed service factory(see section 104.6 in the
Compendium Specification). A managed service factory is identified by a factory pid which allows multiple
Configuration objects to be associated with the factory. Configuration objects associated with the factory
can be added or removed at any point. The main intent of a factory is to create an OSGi service for each
configuration: adding a new Configuration entry results in a new OSGi service being registered, removing a
Configuration, unregisters the service. Spring DM provides support for the managed service factory concept
through the managed-service-factory element. Once defined, the configuration associated with the factory
pid will automatically create (or remove) bean instances which will be registered (or unregistered) in the OSGi
space based on a template bean definition and the CM configuration.

This might sound more complicated then it actually is, so let's look at a simplistic example:

<osgix:managed-service-factory id="simple-msf"
factory-pid="com.xyz.messageservice" ❶
auto-export="all-classes"> ❷

<bean class="com.xyz.MessageTank"/> ❸
</osgix:managed-service-factory>

❶ factory persistent id (pid)
❷ Shortcut flag used to determine under what interfaces the OSGi service is published (more info below)
❸ bean definition template. For each detected configuration, a new service will be created using the bean

definition template.

In its simplest form, the managed-service-factory requires the factory pid, a bean definition used as a
template and some information on how possible bean instances are published as services. Basically, the
definition above instructs Spring DM to to monitor the given factory pid (through a dedicated
ManagedServiceFactory implementation (see the Compendium Spec for more info)) and for every
Configuration object associated with the factory pid, to create a new, anonymous instance of the nested bean
declared and export that instance as an OSGi service. The lifecycle of these beans instances is tied to the
lifecycle of the associated Configuration objects. If a new configuration is added, a new bean is created and
exported. If a configuration object is deleted or disassociated from the factory pid then the corresponding bean
instance is destroyed.

In many regards, managed-service-factory acts as a specialized service exporter, similar to the service

element but supporting the concept of managed properties. In fact, many of service's attributes that indicate
how a bean is exported, are found in managed-service-factory (as you saw in the previous example with
auto-export) as are the managed-properties attributes.

The list of attributes can be found below:

Table 10.2. Managed Service Factory Options

Name Values Description

interface fully qualified class name (such as java.lang.Thread) the fully
qualified name

of the class
under which the
object will be

exported

context-class-loader unmanaged service-provider Defines how the

Compendium Services

Spring Dynamic Modules(1.2.1) 64

Name Values Description

context class
loader will be

managed when
an operation is
invoked on the

exported
service. The

default value is
unmanaged

which means
that no

management of
the context class

loader is
attempted. A

value of
service-provider

guarantees that
the context class
loader will have
visibility of all

the resources on
the class path of

bundle
exporting the

service.

auto-export disabled
(default)

interfaces class-hierarchy all-classes Enables Spring
to automatically
manage the set

of service
interfaces

advertised for
the service. By

default this
facility is

disabled. A
value of

interfaces

advertises all of
the Java

interfaces
supported by the

exported
service. A value

of
class-hierarchy

advertises all the
Java classes in
the hierarchy of

the exported

Compendium Services

Spring Dynamic Modules(1.2.1) 65

Name Values Description

service. A value
of all-classes

advertises all
Java interfaces

and classes.

update-strategy none (default) bean-managed container-managed Defines the
update strategy

for
configuration
modifications
made after the

associated beans
have been
created.

Similar to the service element, a list of interfaces or/and registration listeners can be declared to be notified
when a service is being registered/unregistered. For more information on the semantics, please see
Section 7.1.1, “Controlling The Set Of Advertised Service Interfaces For An Exported Service” and
Section 7.1.7, “Service Registration And Unregistration Lifecycle” chapters.

Now that the managed-service-factory options have been explained, let's look at a more complex
configuration:

<bean id="queueTracker" class="org.xyz.queue.QueueTracker"/>

<osgix:managed-service-factory id="data-msf"
factory-pid="org.xyz.labX" ❶
update-strategy="bean-managed" ❷
update-method="refresh"> ❸
<osgix:interfaces>

<value>java.util.Collection</value> ❹
<value>java.util.Queue</value> ❹

</osgix:interfaces>
<osgix:registration-listener ref="queueTracker" ❺

registration-method="track" ❻
unregistration-method="untrack"/> ❼

<bean class="com.xyz.ResizableQueue"> ❽
<property name="size" value="100"/>
<property name="concurrency" value="10"/>
<property name="fair" value="false"/>

</bean>
</osgix:managed-service-factory>

❶ ManagedServiceFactory factory persistent id
❷ how should Spring DM behave when a Configuration is updated
❸ the method to invoke when for bean-managed updates
❹ the interfaces under which the nested beans are published as OSGi services
❺ listener notified when a service (based on the CM Configuration) is registered/unregistered
❻ custom (optional) service registration method
❼ custom (optional) service unregistration method
❽ bean definition template

The example above, creates a imaginary ResizeableQueue instance for each Configuration entry present
under the org.xyz.labX factory pid. Each instance has default values assigned to size, concurrency and fair

parameters. However, just like managed-properties, during the bean creation, the values received from the

Compendium Services

Spring Dynamic Modules(1.2.1) 66

Configuration Admin will be injected by name, possibly overriding existing settings. Once created and
configured, each nested, anonymous bean instance is registered as an OSGi service under the
java.util.Collection and java.util.Queue interfaces. The OSGi service lifecycle is monitored by a
registration listener, namely the bean queueTracker. Finally, due to the specified update-strategy, any
updates executed to each CM configuration will cause the refresh callback to be invoked on the associated
bean instance.

10.1.4. Direct Access To Configuration Data

The simplest way to work directly with the configuration data stored under a given persistent id or factory
persistent id, is to register a service that implements either the ManagedService or ManagedServiceFactory

interface and specify the pid that you are interested in as a service property (for more information, see the
Configuration Admin chapter in the OSGi compendium spec). For example:

<osgi:service interface="org.osgi.service.cm.ManagedService" ref="myManagedService">
<osgi:service-properties>
<entry key="service.pid" value="my.managed.service.pid"/>

</osgi:service-properties>
</osgi:service>

<bean id="myManagedService" class="com.xyz.MyManagedService"/>

Compendium Services

Spring Dynamic Modules(1.2.1) 67

Chapter 11. Testing OSGi based Applications
By following best practices and using the Spring Dynamic Modules support, your bean classes should be easy
to unit test as they will have no hard dependencies on OSGi, and the few OSGi APIs that you may interact with
(such as BundleContext) are interface-based and easy to mock. Whether you want to do unit testing or
integration testing, Spring DM can ease your task.

11.1. OSGi Mocks

Mocks vs Stubs

There are various strategies to unit test code that requires collaborators. The two most popular strategies
are stubs and mocks.

See this article by Martin Fowler which describes in detail the difference between them.

Even though most OSGi API are interfaces and creating mocks using a specialized library like EasyMock is
fairly simple, in practice the amount of code of setting the code (especially on JDK 1.4) becomes cumbersome.
To keep the tests short and concise, Spring DM provides OSGi mocks under org.springframework.osgi.mock
package.

It's up to you to decide whether they are useful or not however, we make extensive use of them inside Spring
DM test suite. Below you can find a code snippet that you are likely to encounter in our code base:

private ServiceReference reference;
private BundleContext bundleContext;
private Object service;

protected void setUp() throws Exception {
reference = new MockServiceReference();
bundleContext = new MockBundleContext() {

public ServiceReference getServiceReference(String clazz) {
return reference;

}

public ServiceReference[] getServiceReferences(String clazz, String filter)
throws InvalidSyntaxException {

return new ServiceReference[] { reference };
}

public Object getService(ServiceReference ref) {
if (reference == ref)

return service;
super.getService(ref);

}
};

...
}

public void testComponent() throws Exception {
OsgiComponent comp = new OsgiComponent(bundleContext);

assertSame(reference, comp.getReference());
assertSame(object, comp.getTarget());

}

As ending words, experiment with them and choose whatever style or library you feel most confortable with. In
our test suite we use the aforementioned mocks, EasyMock library and plenty of integration testing (see below).

Spring Dynamic Modules(1.2.1) 68

http://en.wikipedia.org/wiki/Integration_testing
http://martinfowler.com/articles/mocksArentStubs.html
http://www.easymock.org/

11.2. Integration Testing

What about JUnit4/TestNG?

While JUnit4/TestNG overcome the class inheritance problem that appears when building base JUnit
classes, by decoupling the runner from the test through annotations, Spring DM cannot use them since it
has to support Java 1.4.

However, it is planned for the future to provide an optional, JVM 5-based testing extension to integrate
the existing testing framework with the aforementioned libraries.

In a restricted environment such as OSGi, it's important to test the visibility and versioning of your classes, the
manifests or how your bundles interact with each other (just to name a few).

To ease integration testing, the Spring Dynamic Modules project provides a test class hierarchy (based on
org.springframework.osgi.test.AbstractOsgiTests) that provides support for writing regular JUnit test
cases that are then automatically executed in an OSGi environment.

In general, the scenario supported by Spring DM testing framework is:

• start the OSGi framework (Equinox, Knopflerfish, Felix)

• install and start any specified bundles required for the test

• package the test case itself into a on the fly bundle, generate the manifest (if none is provided) and install it
in the OSGi framework

• execute the test case inside the OSGi framework

• shut down the framework

• passes the test results back to the originating test case instance that is running outside of OSGi

Warning
The testing framework is aimed at running OSGi integration tests from a non-OSGi environment
(like Ant/Maven/IDE). The testing framework is NOT meant to be used as an OSGi bundle (nor
will it work for that matter). In practice this means that the testing bundle should be separate from
the bundle(s) it tests (similar to unit testing, where tests are separate from the classes they test).

By following this sequence it is trivial to write JUnit-based integration tests for OSGi and have them
integration into any environment (IDE, build (ant, maven), etc.) that can work with JUnit.

The rest of this chapter details (with examples) the features offered by Spring DM testing suite.

11.2.1. Creating A Simple OSGi Integration Test

While the testing framework contains several classes that offer specific features, it is most likely that your test
cases will extend org.springframework.osgi.test.AbstractConfigurableBundleCreatorTests (at least this
is what we use in practice).

Let's extend this class and interact with the OSGi platform through the bundleContext field:

Testing OSGi based Applications

Spring Dynamic Modules(1.2.1) 69

public class SimpleOsgiTest extends AbstractConfigurableBundleCreatorTests {

public void testOsgiPlatformStarts() throws Exception {
System.out.println(bundleContext.getProperty(Constants.FRAMEWORK_VENDOR));
System.out.println(bundleContext.getProperty(Constants.FRAMEWORK_VERSION));
System.out.println(bundleContext.getProperty(Constants.FRAMEWORK_EXECUTIONENVIRONMENT));
}

}

Simply execute the test as you normally do with any JUnit test. On Equinox 3.2.x, the output is similar to:

Eclipse
1.3.0
OSGi/Minimum-1.0,OSGi/Minimum-1.1,JRE-1.1,J2SE-1.2,J2SE-1.3,J2SE-1.4}

It is likely that you will see different log statements made by the testing framework during your own test
execution, but these can be disabled as they only have an informative value and do not affect the actual
execution.

Note that you did not have to create any bundle, write any MANIFEST or bother with imports or exports, let
alone starting and shutting down the OSGi platform. The testing framework takes care of these automatically
when the test is executed.

Let's do some quering and figure out what the environment in which the tests run is. A simple way to do that is
to query the BundleContext for the installed bundles:

public void testOsgiEnvironment() throws Exception {
Bundle[] bundles = bundleContext.getBundles();
for (int i = 0; i < bundles.length; i++) {

System.out.print(OsgiStringUtils.nullSafeName(bundles[i]));
System.out.print(", ");

}
System.out.println();

}

The output should be similar to:

OSGi System Bundle, ObjectWeb ASM, log4j.osgi, spring-test, spring-osgi-test, spring-osgi-core,
spring-aop, spring-osgi-io, slf4j-api,

spring-osgi-extender, etc... TestBundle-testOsgiPlatformStarts-com.your.package.SimpleOsgiTest,

As you can see, the testing framework installs the mandatory requirements required for running the test such as
the Spring, Spring DM, slf4j jars among others.

11.2.2. Installing Test Prerequisites

OSGi-friendly libraries

To work in OSGi environments, jars need to declare in their MANIFEST.MF, Export or Import packages;
that is declare what classes they need or offer to other bundles. Most libraries are OSGi unaware and do
not provide the proper manifest entries which means they are unusable in an OSGi environment.

At the moment, there are several initiatives in the open source space to provide the proper manifest -
please see the FAQ for more information.

Besides the Spring DM jars and the test itself is highly likely that you depend on several libraries or your own
code for the integration test.

Testing OSGi based Applications

Spring Dynamic Modules(1.2.1) 70

Consider the following test that relies on Apache Commons Lang:

import org.apache.commons.lang.time.DateFormatUtils;
...

public void testCommonsLangDateFormat() throws Exception {
System.out.println(DateFormatUtils.format(new Date(), "HH:mm:ssZZ"));

}
}

Running the test however yields an exception:

java.lang.IllegalStateException: Unable to dynamically start generated unit test bundle
...

Caused by: org.osgi.framework.BundleException: The bundle could not be resolved.
Reason: Missing Constraint: Import-Package: org.apache.commons.lang.time; version="0.0.0"

...
... 15 more

The test requires org.apache.commons.lang.time package but there is no bundle that exports it. Let's fix this
by installing a commons-lang bundle (make sure you use at least version 2.4 which adds the proper OSGi
entries to the jar manifest).

One can specify the bundles that she wants to be installed using getTestBundlesNames or getTestBundles

method. The first one returns an array of String that indicate the bundle name, package and versioning through
as a String while the latter returns an array of Resources that can be used directly for installing the bundles.
That is, use getTestBundlesNames when you rely on somebody else to locate (the most common case) the
bundles and getTestBundles when you want to locate the bundles yourself.

By default, the test suite performs a lookup for artifacts, similar to the one used by Maven2, searching first the
items as being relative to the current project and then falling back to the local repository. The locator expects
the bundle String to be a comma separated values containing the artifact group, name, version and (optionally)
type. It's likely that in the future, various other locators will be available. One can plug in their own locator
through the org.springframework.osgi.test.provisioning.ArtifactLocator interface.

Let's fix our integration test by installing the required bundle (and some extra osgi libraries):

protected String[] getTestBundlesNames() {
return new String[] { "net.sourceforge.cglib, com.springsource.net.sf.cglib, 2.1.3",

"javax.transaction, com.springsource.javax.transaction, 1.1.0",
"commons-lang, commons-lang, 2.4" };

};
}

Rerunning the test should show that these bundles are now installed in the OSGi platform.

Note
The artifacts mentioned above have to exist in your local maven repository.

11.2.3. Advanced Testing Framework Topics

The testing framework allows a lot of customization to be made. This chapter details some of the existing
hooks that you might want to know about. However, these are advanced topics as they increase the complexity
of your test infrastructure.

11.2.3.1. Customizing The Test Manifest

Testing OSGi based Applications

Spring Dynamic Modules(1.2.1) 71

http://commons.apache.org/lang/
http://maven.apache.org

There are cases where the auto-generated test manifest does not suite the needs of the test. For example the
manifest requires some different headers or a certain package needs to be an optional import.

For simple cases, one can work directly with the generated manifest - in the example below, the bundle class
path is being specified:

protected Manifest getManifest() {
// let the testing framework create/load the manifest
Manifest mf = super.getManifest();
// add Bundle-Classpath:
mf.getMainAttributes().putValue(Constants.BUNDLE_CLASSPATH, ".,bundleclasspath/simple.jar");
return mf;

}

Another alternative is to provide your own manifest by overriding getManifestLocations():

protected String getManifestLocation() {
return "classpath:com/xyz/abc/test/MyTestTest.MF";

}

However each manifest needs the following entry:
“Bundle-Activator: org.springframework.osgi.test.JUnitTestActivator”

since without it, the testing infrastructure cannot function properly. Also, one needs to import JUnit, Spring and
Spring DM specific packages used by the base test suite:

Import-Package: junit.framework,
org.osgi.framework,
org.apache.commons.logging,
org.springframework.util,
org.springframework.osgi.service,
org.springframework.osgi.util,
org.springframework.osgi.test,
org.springframework.context

Failing to import a package used by the test class will cause the test to fail with a NoDefClassFoundError error.

11.2.3.2. Customizing Test Bundle Content

By default, for the on-the-fly bundle, the testing infrastructure uses all the classes, xml and properties files
found under ./target/test-classes folder. This matches the project layout for maven which is used (at the
moment by Spring DM). These settings can be configured in two ways:

1. programmatically by overriding AbstractConfigurableBundleCreatorTests getXXX methods.

2. declaratively by creating a properties file having a similar name with the test case. For example, test
com.xyz.MyTest will have the properties file named com/xyz/MyTest-bundle.properties. If found, the
following properties will be read from the file:

Table 11.1. Default test jar content settings

Property Name Default Value Description

root.dir file:./target/test-classes the root folder considered as the jar
root

include.patterns /**/*.class,/**/*.xml,/**/*.propertiesComma-separated string of
Ant-style patterns

Testing OSGi based Applications

Spring Dynamic Modules(1.2.1) 72

Property Name Default Value Description

manifest (empty) manifest location given as a String.
By default it's empty meaning the
manifest will be created by the test
framework rather then being
supplied by the user.

This option is handy when creating specific tests that need to include certain resources (such as localization
files or images).

Please consult AbstractConfigurableBundleCreatorTests and AbstractOnTheFlyBundleCreatorTests tests
for more customization hooks.

11.2.3.3. Understanding The MANIFEST.MF Generation

A useful feature of the testing framework represents the automatic creation of the test manifest based on the test
bundle content. The manifest creator component uses byte-code analysis to determine the packages imported by
the test classes so that it can generate the proper OSGi directives for them. Since the generated bundle is used
for running a test, the creator will use the following assumptions:

• No packages will be exported.

The on-the-fly bundle is used for running a test which (usually) consumes OSGi packages for its execution.
This behaviour can be changed by customizing the manifest.

• Split packages (i.e. classes from the same package can come from different bundles) are not supported.

This means that packages present in the test framework are considered complete and no Import-Package

entry will be generated for them. To avoid this problem, consider using sub-packages or moving the classes
inside one bundle. Note that split packages are discouraged due to the issues associated with them (see the
OSGi Core spec, Chapter 3.13 - Required Bundles).

• The test bundle contains only test classes.

The byte-code parser will look only at the test classes hierarchy. Any other class included in the bundle, will
not be considered so no imports will be generated for it. To change the default behaviour, override
createManifestOnlyFromTestClass to return false:

protected boolean createManifestOnlyFromTestClass() {
return false;

}

Note
The time required to generate the manifest might increase depending on the number and size of
classes in the bundle.

Additionally consider customizing the manifest yourself or attaching the extra code as inner classes to the
test class (so it gets parsed automatically).

The reason behind the lack of such features is the byte-code parser is aimed to be simple and fast at creating
test manifests - it is not meant as a general-purpose tool for creating OSGi artifacts.

Testing OSGi based Applications

Spring Dynamic Modules(1.2.1) 73

11.2.4. Creating An OSGi Application Context

Spring DM testing suite builds on top of Spring testing classes. To create an application context (OSGi
specific), one should just override getConfigLocations[] method and indicate the location of the application
context configuration. At runtime, an OSGi application context will be created and cached for the lifetime of
the test case.

protected String[] getConfigLocations() {
return new String[] { "/com/xyz/abc/test/MyTestContext.xml" };

}

11.2.5. Specifying The OSGi Platform To Use

The testing framework supports out of the box, three OSGi 4.0 implementations namely: Equinox, Knopflerfish
and Felix. To be used, these should be in the test classpath. By default, the testing framework will try to use
Equinox platform. This can be configured in several ways:

1. programmatically through getPlatformName() method
.

Override the aforementioned method and indicate the fully qualified name of the Platform interface
implementation. Users can use the Platforms class to specify one of the supported platforms:

protected String getPlatformName() {
return Platforms.FELIX;

}

2. declaratively through org.springframework.osgi.test.framework system property.

If this property is set, the testing framework will use its value as a fully qualified name of a Platform
implementation. It that fails, it will fall back to Equinox after logging a warning message. This option is
useful for building tools (such as ant or maven) since it indicates a certain target environment without
changing and test code.

11.2.6. Waiting For The Test Dependencies

A built-in feature of the testing framework is the ability to wait until all dependencies are deployed before
starting the test execution. Since the OSGi platforms are concurrent by nature, installing a bundle doesn't mean
that all its services are running. By running a test before its dependency services are fully initialized can cause
sporadic errors that pollute the test results. By default, the testing framework inspects all bundles installed by
the user and, if they are Spring-powered bundles, waits until they are fully started (that is their application
context is published as an OSGi service). This behaviour can be disabled by overriding
shouldWaitForSpringBundlesContextCreation method. Consult AbstractSynchronizedOsgiTests for more
details.

11.2.7. Testing Framework Performance

Considering all the functionality offered by the testing framework, one might wonder if this doesn't become a
performance bottleneck. First, it's worth noting that all the work done automatically by the testing infrastructure
has to be done anyway (such as creating the manifest or creating a bundle for the test or installing the bundles).
Doing it manually simply does not work as it's too error prone and time consuming. In fact, the current

Testing OSGi based Applications

Spring Dynamic Modules(1.2.1) 74

infrastructure started as way to do efficient, automatic testing without worrying about deployment problems
and redundancy.

As for the numbers, the current infrastructure has been used internally for the last half a year - our integration
tests (around 120) run in about 3:30 minutes on a laptop. Most of this time is spent on starting and stopping the
OSGi platform: the "testing framework" takes around 10% (as shown in our profiling so far). For example, the
manifest generation has proved to take less then 0.5 seconds in general, while the jar creation around 1 second.

However, we are working on making it even faster and smarter so that less configuration options are needed
and the contextual information available in your tests is used as much as possible. If you have any ideas or
suggestion, feel free to use our issue tracker or/and forum.

Hopefully this chapter showed how Spring DM testing infrastructure can simplify OSGi integration testing and
how it can be customized. Consider consulting the javadocs for more information.

Testing OSGi based Applications

Spring Dynamic Modules(1.2.1) 75

Part III. Other Resources
In addition to this reference documentation, there are a number of other resources that may help you learn how
to use OSGi and Spring Dynamic Modules. These additional, third-party resources are enumerated in this
section.

Spring Dynamic Modules(1.2.1) 76

Chapter 12. Useful Links

• Spring DM Home Page - here

• SpringSource OSGi blog - here

• Spring DM Demos - here

• Getting Started with OSGi - by Neil Bartlett here and here.

• Equinox Documents - here

• Felix-related presentations - various presentations hosted by Apache Felix project.

• Launching Spring Dynamic Modules using pax-runner - screencast

• OSGi Alliance Blog - here

Spring Dynamic Modules(1.2.1) 77

http://www.springframework.org/osgi/
http://blog.springsource.com/category/osgi/
http://www.springframework.org/osgi/demos
http://neilbartlett.name/blog/osgi-articles/
http://www.eclipse.org/resources/?author=Neil%20Bartlett
http://www.eclipse.org/equinox/documents/
http://felix.apache.org/site/presentations.html
http://wiki.ops4j.org/confluence/display/ops4j/Pax+Runner+-+Screencast+-+Spring+OSGi
http://www.osgi.org/blog/

Part IV. Appendixes

Document structure
Various appendixes outside the reference documentation.

Appendix A, Extensions describes extensions that are included in the 1.0 distribution, but are not guaranteed to
be maintained in a backward-compatible form in future point releases. We anticipate these features moving into
the core specification over time.

Appendix B, Security Integration provides information on how to run Spring DM in an OSGi environment with
a SecurityManager enabled (Java 2 Security activated).

Appendix C, Eclipse Plug-in Development integration describes how to integrate Spring DM with Eclipse
Plug-in Development Environment.

Appendix D, Spring Dynamic Modules Maven Archetype describes the Spring DM Maven 2 archetype usage.

Appendix E, Useful OSGi tips provides some useful OSGi tips, especially meaningful when used along with
Spring DM.

Appendix F, Roadmap describes some features that are included in the 1.0 distribution but are still considered
early-access. The externals of these features may change in future releases. This appendix also discusses other
planned features for which no implementation yet exists.

Appendix G, Spring DM OSGi Repository describes the repository used by Spring DM for its osgi artifacts.

Appendix H, Spring Dynamic Modules Schema defines the schemas provided by Spring Dynamic Modules.

Spring Dynamic Modules(1.2.1) 78

Appendix A. Extensions

Spring DM and Spring annotations

This chapter describes the annotations present in Spring DM and how to enable/disable them. Spring DM
annotatations are separate from the annotation support in Spring framework; enabling or disabling one
does not interfere with the other.

This appendix describes extensions to the core functionality that are shipped with the 1.0 distribution, but are
not guaranteed to have backwards compatibility across point releases. We anticipate these features migrating
into the core specification in future releases.

A.1. Annotation-Based Injection

The org.springframework.osgi.extensions.annotation bundle that ships with Spring Dynamic Modules
provides early access to annotation-based support for injecting references to OSGi services. JDK 1.5 or above
is required to use this feature.

Bean class (setter) methods may be annotated with
org.springframework.osgi.extensions.annotation.ServiceReference. By default the property type of the
annotated property is used to look up a service with a matching service interface in the OSGi service registry
and inject the result. For example, given the configuration:

<bean id="annotationDriven" class="MyAnnotationDrivenBeanClass"/>

and the class declaration:

public class MyAnnotationDrivenBeanClass {

@ServiceReference
public void setMessageService(MessageService aService) { ... }

}

then a service lookup for services implementing the MessageService interface will be performed, and the best
match (using the same algorithm as documented for the reference element) will be injected.

The ServiceReference annotation class has a number of attributes that can be used to control the service
lookup (for example, to specify a filter string) that mirror the options provided by the reference element. See
the javadoc for more information.

A.1.1. Enabling/Disabling Annotation Processing

By default, as Spring-OSGi is JDK 1.4 compatible, annotation injection is disabled. There are currently two
ways for enabling it:

• through Spring DM extender (see Section 6.2, “Extender Configuration Options”).

This is an extender wide configuration which means all bundles started by the extender will have annotation

Spring Dynamic Modules(1.2.1) 79

http://static.springframework.org/spring/docs/2.5.x/reference/new-in-2.html#new-in-2-ioc-annotations
http://static.springframework.org/spring/docs/2.5.x/reference/new-in-2.html#new-in-2-ioc-component-scanning

injection applied to them.

• by specifying a dedicated bean post processor

By specifying the Spring DM annotation extension processor, one can enable per-bundle annotation
injection. To do that, add the following to your bundle configuration:

<!-- annotation processor -->
<bean class="org.springframework.osgi.extensions.annotation.ServiceReferenceInjectionBeanPostProcessor"/>

As a reminder, for the annotations to work, the containing bundle needs to import
org.springframework.osgi.extensions.annotation package, which is available in the
spring-osgi-annotation bundle.

Extensions

Spring Dynamic Modules(1.2.1) 80

Appendix B. Security Integration
Since 1.2.0, Spring DM integrates with Java 2 security. Namely Spring DM uses privileged blocks for
executing security sensitive operations using its own permissions.

Being a framework, Spring DM needs to introspect bundles to determine their content and configuration. In
general, it is recommended to grant java.security.AllPermission to Spring DM bundles. For those that
would like to restrict the properties, below you can find a list of permissions that are needed for Spring DM to
work properly. However, we strongly recommend to test whether the permissions are needed or not for your
environment since the minimum number depends heavily on what parts of the framework are used.

Table B.1. Spring DM Permission Table

Permission Target Action Usage

java.io.FilePermissiondepends,
<<ALL
FILES>>
recommended

read/write Required by the logging system and web extender for
installing the wars and JSP taglibs

java.lang.RuntimePermission* accessDeclaredMembersUsed in some cases for reflection (such as accessing the
BundleContext from a given Bundle (on R4.0 platforms).

java.lang.reflect.ReflectPermission* suppressAccessChecksUsed for accessing (through reflection) non-public methods
or fields internally.

java.util.PropertyPermission* read,write In use by the testing framework mainy. Useful for reading the
environment, including OSGi properties.

org.osgi.framework.AdminPermission* class,
execute,
listener,
metadata,
resolve,
resource

Used by the extender to listen read the content of started
bundles.

org.osgi.framework.BundlePermission* HOST Useful when attaching a custom configuration (as fragment)
to the extender/web extender.

org.osgi.framework.PackagePermission* EXPORT,
IMPORT

Basic permission used for importing and exporting the Spring
DM bundles content.

org.osgi.framework.ServicePermission* get,register Used for publishing and lookup of Spring DM internal
services (such as the Spring namespace handlers/resolvers).

As a general recommendation, for security sensible environments, to determine the minimum number of
permissions start with a basic set of bundles and no permissions. This way, on each run, one can find out what
permissions are needed and by whom and tweak the system accordingly.

Spring Dynamic Modules(1.2.1) 81

Appendix C. Eclipse Plug-in
Development integration
Eclipse PDE “provides comprehensive OSGi tooling, which makes it an ideal environment for component
programming, not just Eclipse plug-in development”. In fact, Eclipse IDE is built on top of OSGi and uses at its
core the Equinox OSGi implementation. Moreover, all the Eclipse plug-ins are OSGi bundles. This makes
Eclipse with PDE a very attractive tool for creating OSGi bundles. While Spring Dynamic Modules artifacts
can be integrated as normal libraries, through Spring IDE, Spring DM can be installed as a target platform
ready to be used with PDE.

The following steps illustrate how to install Spring IDE extension for OSGi and how to use it in your project.
Please see Spring IDE installation page for information on its requirement and install process.

1. Set Up Nightly Update Site

At the moment, the OSGi extension is available only on Spring-IDE nightly builds update site. Add it to
the Eclipse configuration by opening the software update menu:

and create a new update site pointing to http://www.springide.org/updatesite_nightly

2. Select Spring IDE OSGi extension

After using the nightly update site and performing the update, Eclipse will show the search results. Unfold
the Extension menu and select Spring IDE OSGi Extension:

Spring Dynamic Modules(1.2.1) 82

http://www.eclipse.org/pde/
http://www.springide.org
http://help.eclipse.org/stable/index.jsp?topic=/org.eclipse.pde.doc.user/guide/tools/preference_pages/target_platform.htm
http://springide.org/project/wiki/SpringideInstall

and proceed with the instalation.

3. Select Spring Dynamic Modules Target Platform

Once the plug-in has been installed, Spring Dynamic Modules can be selected as a PDE target platform.
Select Window/Preferences/Plug-in Development and then Target Platform.

Eclipse Plug-in Development integration

Spring Dynamic Modules(1.2.1) 83

Select the Spring DM version that you desire from the Pre-defined Target (1) drop box and press Load
Target (2). Eclipse will load the target and all bundles defined by it - this includes Spring DM bundles and
all of its dependencies (SLF4J is used for logging). The configuration can be customised appropriately by
removing and adding bundles.

In its current form, the plug-in offers two predefined targets - one for the stable released versions and one
for the SNAPSHOT/nightly Spring DM jars. The latter does not contain any jars as it is expected for the
user to download them manually. Simply locate the path where the plug-ins should be located (3), enter
that folder and do a

mvn install

The latest Spring DM SNAPSHOT will be downloaded along with all of its dependencies. Simply click on
the reload button (4) and Eclipse will pick up the bundles.

4. Select PDE Perspective

Once the installation is completed just select the PDE perspective:

and the Spring DM and its dependencies should be available in the plug-ins view:

Eclipse Plug-in Development integration

Spring Dynamic Modules(1.2.1) 84

Eclipse Plug-in Development integration

Spring Dynamic Modules(1.2.1) 85

Appendix D. Spring Dynamic Modules
Maven Archetype
As part of the distribution, Spring DM provides a Maven archetype which creates the basic structure of a Java
project that uses Spring DM, especially useful to new users. To run the archetype (and create the new project),
simply run the following command line:

mvn archetype:generate

The maven plugin will display a selection of possible archetype, from which you should pick
spring-osgi-bundle-archetype (Spring-OSGi archetype) (currently number 32), and will request input
regarding the project about to be created. A list of all available archetypes included with the plugin and their
versions is available here.

Note that it is still possible to select the osgi archetype directly from the command line (i.e. the old way of
using the archetype):

mvn archetype:create \
-DarchetypeGroupId=org.springframework.osgi \
-DarchetypeArtifactId=spring-osgi-bundle-archetype \
-DarchetypeVersion= \
-DgroupId=<your-project-groupId> \
-DartifactId=<your-project-artifactId> \
-Dversion=<your-project-version>

Note
The command above should be invoked as one line - the \ is used as a convenience to break the
long line into smaller pieces

In both cases, the result of the commands is a Maven 2 project that defines two packages (one public and one
private) and two Spring configurations: src/main/resources/META-INF/spring/bundle-context.xml and
src/main/resources/META-INF/spring/bundle-context-osgi.xml The project is packaged as an OSGi
bundle.

Notice that by default, the project does not contain a MANIFEST.MF for your project. The Maven
infrastructure will generate it, either through SpringSource Bundlor (the default) or Apache Felix bundle
plug-in. To generate the manifest, run the following (from the project root):

mvn package

Note
To avoid the confusion between the generated artifacts and maintained files, the manifest file
resides under META-INF folder while Spring configuration files under
src/main/resources/META-INF directory.

This will compile your project, pack it as a jar and create the OSGi manifest based on your classes under
/META-INF folder (so that users running Eclipse PDE can use it right away.

Spring Dynamic Modules(1.2.1) 86

http://maven.apache.org/plugins/maven-archetype-plugin/
http://docs.codehaus.org/display/MAVENUSER/Archetypes+List
http://www.springsource.org/bundlor
http://felix.apache.org/site/maven-bundle-plugin-bnd.html
http://felix.apache.org/site/maven-bundle-plugin-bnd.html

D.1. Generated Project Features At-A-Glance

• Packaged as an OSGi bundle

• META-INF/MANIFEST.MF automatically generated

• src/main/java/<package> public package exported by the bundle

• src/main/java/<package>/internal private package, not exported by the bundle

• src/main/resources/META-INF/spring/bundle-context.xml is a Spring configuration file that defines the
simple bean.

• src/main/resources/META-INF/spring/bundle-context-osgi.xml is a Spring configuration file ready for
you to add bean definitions from the osgi namespace (services, references etc.)

• .project, .classpath, and build.properties files created to enable use of this project directly inside
eclipse as a PDE plugin project

Spring Dynamic Modules Maven Archetype

Spring Dynamic Modules(1.2.1) 87

Appendix E. Useful OSGi tips

E.1. OSGi Fragments

Check the target OSGi platform fragment support

Before using fragments, make sure the target OSGi environment supports them (and to what degree). Out
of the OSGi platforms on which Spring DM is tested upon, at the time of this writing, Apache Felix does
not support fragments (it simply ignores them).

Part of the OSGi R4 release, fragments are a very useful and powerful feature. A fragment is “a bundle that is
attached to a host bundle”, adding content to the target bundle. A fragment cannot have its own class loader nor
a bundle activator and cannot override the information already present in the host. In short, through fragments,
bundles can be extender with resources, classes and even manifest entries. To quote the spec again, a “...key use
case for fragments is providing translation files for different locales. This allows the translation files to be
treated and shipped independently from the main application bundle.”

Note
For a full description on fragments, please see the OSGi specification, section 3.14.

In Spring DM, fragments are useful for configuring various components such as the extenders. To do that,
simply bundle the resources as you normally would and add an extra entry to the bundle manifest:

Fragment-Host: <host bundle symbolic name>

This line indicates that the containing bundle is a fragment and that it should be attached to the host specified
by a symbolic name. The fragment and host bundle symbolic name should be different. For example, to attach a
fragment (with extra configuration) the Spring DM extender, one could use the following manifest:

Manifest-Version: 1.0 ❶
Bundle-ManifestVersion: 2 ❷
Fragment-Host: org.springframework.osgi.extender ❸
Bundle-SymbolicName: org.mydomain.project.fragment ❹
Bundle-Name: my-fragment ❺
Bundle-Description: Fragment attached to Spring DM extender ❻

❶ Manifest version.
❷ OSGi bundle version. A value of 1 (which is also the default) indicates an OSGi Release 3 bundle so it's

best to specify 2 to indicate an OSGi Release 4 bundle.
❸ The symbolic name of the bundle to which this fragment should be attached to. In this case, the value

org.springframework.osgi.extender points to the spring-osgi-extender.jar. Fragment-Host is the
key entry which tells the OSGi platform that the containing bundle is a of a special kind - it's a fragment.

❹ The fragment symbolic name.
❺ The bundle name - an optional yet useful header.
❻ The bundle description - just like the name, this header is useful for humans not for the OSGi platform

itself. However, it is recommended that you define it to help identify the bundle purpose.

Note
The Manifest entries order does not matter, but they case sensitive.

Spring Dynamic Modules(1.2.1) 88

When multiple bundles with the same symbolic names are present, one can add the bundle version to make sure
the proper wiring is done:

Fragment-Host: org.springframework.osgi.extender;bundle-version=1.1.0

The default value for bundle-version (when it's not specified) is [0.0.0,#)

Useful OSGi tips

Spring Dynamic Modules(1.2.1) 89

Appendix F. Roadmap
This appendix documents features on the Spring Dynamic Modules roadmap. The design of these features
specified here is subject to change. As a most up to date source, please see our issue tracker.

F.1. Access to Service References for Collections

The current specification does not provide for access to the ServiceReference objects for services in a
managed collection (i.e. obtained via a set or list declaration). A future release of Spring Dynamic Modules
will provide an easy means of gaining access to these references.

F.2. Start Level Integration

A future release of Spring Dynamic Modules may offer the following additional guarantee with respect to
application context creation and start levels:

Application context creation happens asynchronously. However, the extender bundle does guarantee that the
creation of all application contexts for bundles at start level n will be complete before the creation of any
application context at start level m, where m > n. Care must therefore be taken not to introduce any mandatory
dependencies on services exported by bundles with higher start levels or a deadlock will be introduced.

In a similar vein, when shutting down the extender bundle, application contexts at start level m will be shut
down before application contexts at start level n, where m > n.

F.3. Web Library Integration

While support for generic and Spring-MVC web applications is available in 1.1.0, in the future we'd like to
provide integration (if needed) with other popular web libraries (such as JSF and Spring Web Flow) in the
upcoming releases.

F.4. ORM/Persistence Support

Care needs to be taken when using JPA or Hibernate under OSGi as the persistence engines must have visibility
of the persistent types and mapping files. The Spring Dynamic Modules project will be investigating an
extension model to make managing this easier when persistent configuration is split across several bundles. See
Peter Krien's blog entry on the topic for an insight into the issues.

Also, the project aims to simplify deployment of JDBC drivers and pooling libraries that at the moment require
special DynamicImport-Package.

F.5. OSGi Standards

While OSGi 4.0 is currently required, work is underway to take advantage of the new features available in 4.1.
SpringSource is an active participant in the OSGi Enterprise Expert Group and we hope to help many of the
ideas found in the Spring Dynamic Modules project to make their way into the OSGi R5 specification. Spring
Dynamic Modules would obviously seek to support any such standards at that point in time.

Spring Dynamic Modules(1.2.1) 90

http://jira.springframework.org/browse/OSGI
http://www.osgi.org/blog/2007/06/osgi-and-hibernate.html
http://www2.osgi.org/EEG/HomePage

Appendix G. Spring DM OSGi Repository
At the moment, most libraries are not released as OSGi bundles which means they cannot be used inside the
OSGi space unless they are embedded in other bundles. Though there are tools that make the bundling process
easy, it is desirable to have the artifacts prepacked so they can be used immediately for development.

SpringSource Enterprise Bundle Repository (or SpringSource Repository) addresses this problem by providing
“a collection of open source libraries commonly used for developing enterprise Java applications with the
Spring Framework” (taken from the Repository FAQ). With the availability of the Bundle Repository, the
Spring DM old repository (see below) has been deprecated and it is being used until migrating completely to
SpringSource Repository. It is highly recommended that users migrate as well to SpringSource Repository as it
provides significantly more libraries and it is intended to be a user-facing infrastructure component.

G.1. Spring DM Temporary OSGi Repository

Unfortunately, not all Spring DM dependencies are available in SpringSource Repository and thus Spring DM
still needs to maintain some of its own dedicated Maven repository available at
http://maven.springframework.org/osgi.

Warning
The repository is provided as-is without any kind of support. The repository structure/content can
(and will) change until it becomes stable. Before using Spring DM repository make sure the needed
artifact are not available in SpringSource Repository. These being said, we hope you find it useful
and we'd like to know if there are improvement that can be made to it.

G.1.1. Repository Conventions

Currently, all the artifacts published in the repository are marked as SNAPSHOTs meaning that, in time, their
content can change. This allows clients to download possible manifest updates made to the libraries. We
foresee that, as the library usage increases, several popular items will have the SNAPSHOT marker remove.
Additionally, to differentiate the OSGi-enabled artifacts from the original ones, all libraries are placed under
org.springframework.osgi group and their names contains a .osgi suffix.

So for example, an OSGi version of mx4j-3.0.2 jar is available in the Spring DM OSGi repository under at:
org/springframework/osgi/mx4j.osgi/3.0.2-SNAPSHOT/mx4j.osgi-3.0.2-SNAPSHOT.jar

G.1.2. Browsing The Repository Content

The repository is currently hosted at Amazon S3. To browse the repository structure, use a S3 compatible
browser (such as this one) since a vanilla web browse will not be suitable.

G.1.3. Using The Repository With Maven

The use the repository, simply add it ot the repositories group; since the repository contains SNAPSHOT

artifacts, make sure to mark it accordingly:

<repositories>
<repository>
<id>spring-osgified-artifacts</id>

Spring Dynamic Modules(1.2.1) 91

http://www.aqute.biz/Code/Bnd
http://www.springsource.com/repository/
http://www.springsource.com/repository/app/faq
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://jira.springframework.org/browse/OSGI
http://aws.amazon.com/s3
http://s3browse.com/explore/maven.springframework.org/osgi/org/springframework/osgi/

<snapshots>
<enabled>true</enabled>

</snapshots>
<name>Springframework Maven OSGified Artifacts Repository</name>
<url>http://maven.springframework.org/osgi</url>

</repository>
</repositories>

G.1.4. Using The Repository With Ant/Ivy

When using Ant consider using the excellent Ivy subproject for retrieving the OSGi dependencies from the
Spring DM repository as Ivy can work with a Maven-style repository. Please see the Ivy tutorial for more
information.

Spring DM OSGi Repository

Spring Dynamic Modules(1.2.1) 92

http://ant.apache.org/
http://ant.apache.org/ivy/
http://ant.apache.org/ivy/history/latest-milestone/tutorial/start.html

Appendix H. Spring Dynamic Modules
Schema
Spring Core Schema

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xsd:schema xmlns="http://www.springframework.org/schema/osgi"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:tool="http://www.springframework.org/schema/tool"
targetNamespace="http://www.springframework.org/schema/osgi"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="1.2">

<xsd:import namespace="http://www.w3.org/XML/1998/namespace"/>
<xsd:import namespace="http://www.springframework.org/schema/beans"/>
<xsd:import namespace="http://www.springframework.org/schema/tool"/>

<xsd:annotation>
<xsd:documentation><![CDATA[

Namespace support for the core services provided by Spring Dynamic Modules.
]]></xsd:documentation>

</xsd:annotation>

<xsd:attributeGroup name="defaults">
<xsd:annotation>

<xsd:documentation><![CDATA[Defaults for Spring-DM OSGi declarations.]]>
</xsd:documentation>

</xsd:annotation>
<!-- attributes -->
<xsd:attribute name="default-timeout" type="xsd:long" default="30000">

<xsd:annotation>
<xsd:documentation><![CDATA[

Default timeout (in milliseconds) for all reference (service importers) elements that do not explicitly specify one.
Default value is 300000 ms (5 minutes).

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="default-cardinality" type="TdefaultCardinalityOptions" default="1..X">

<xsd:annotation>
<xsd:documentation><![CDATA[

Default cardinality (of the relationship to the backing service(s)) for all OSGi references (singular or collections)
elements that do not explicitly specify one.
Default value is '1..X' (resolved to '1..1' for osgi:reference and '1..N' for osgi:list/set) which means that a backing
service must exist (this is a mandatory service reference). A value of '0..X' (resolved to '0..1' for osgi:reference
and '0..N' for osgi:list/set) indicates that it is acceptable to be no backing service (an optional service reference).

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
</xsd:attributeGroup>

<xsd:simpleType name="TdefaultCardinalityOptions">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="1..X">
<xsd:annotation>

<xsd:documentation><![CDATA[
A backing service must exist (this is a mandatory service reference).

]]></xsd:documentation>
</xsd:annotation>

</xsd:enumeration>
<xsd:enumeration value="0..X">

<xsd:annotation>
<xsd:documentation><![CDATA[

A backing service can be missing (this is an optional service reference).
]]></xsd:documentation>

</xsd:annotation>
</xsd:enumeration>

</xsd:restriction>
</xsd:simpleType>

Spring Dynamic Modules(1.2.1) 93

<!-- reference -->
<xsd:element name="reference" type="TsingleReference">

<xsd:annotation>
<xsd:documentation><![CDATA[

Defines a reference to a service obtained via the OSGi service registry.
]]></xsd:documentation>

</xsd:annotation>
</xsd:element>

<xsd:complexType name="Treference">
<xsd:complexContent>

<xsd:extension base="beans:identifiedType">
<xsd:sequence minOccurs="0" maxOccurs="1">

<xsd:element name="interfaces" type="beans:listOrSetType" minOccurs="0" maxOccurs="1">
<xsd:annotation>

<xsd:documentation><![CDATA[
The set of service interfaces that the services obtained via the registry are required to support.

By convention, the interface attribute is a Java interface type, but may also be a (non-final)
class type.

]]></xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="listener" type="Tlistener" minOccurs="0" maxOccurs="unbounded">

<xsd:annotation>
<xsd:documentation><![CDATA[

Defines a listener that will receive notification when a service backing this reference is
bound or unbound.

]]></xsd:documentation>
</xsd:annotation>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="interface" use="optional" type="xsd:token">

<xsd:annotation>
<xsd:documentation><![CDATA[

The service interface that the services obtained via the registry are required to support.
By convention this is a Java interface type, but may also be a (non-final) class type.

]]></xsd:documentation>
<xsd:appinfo>

<tool:annotation>
<tool:expected-type type="java.lang.Class" />

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="filter" use="optional" type="xsd:string">

<xsd:annotation>
<xsd:documentation><![CDATA[

Defines an OSGi filter expression that is used to constrain the set of matching services
in the service registry.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="depends-on" type="xsd:string" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

Used to refer to the name of another bean that this bean depends on. Ensures that the
service registry look-up does not happen until after the dependent bean has been created
(most commonly used to refer to a bundle bean).

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="bean-name" type="xsd:string" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

Convenient shortcut for specifying a filter expression that matches on the bean-name property
that is automatically advertised for beans published using the service element.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="context-class-loader" type="TreferenceClassLoaderOptions" default="client">

<xsd:annotation>
<xsd:documentation><![CDATA[

Defines how the context class loader is managed when invoking operations on a service
backing this service reference. The default value is 'client' which means that the context
class loader has visibility of the resources on this bundle's classpath. Alternate
options are 'service-provider' which means that the context class loader has visibility of
resources on the bundle classpath of the bundle that exported the service, and 'unmanaged'
which does not do any management of the context class loader.

Spring Dynamic Modules Schema

Spring Dynamic Modules(1.2.1) 94

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="TreferenceClassLoaderOptions">
<xsd:restriction base="xsd:NMTOKEN">

<xsd:enumeration value="client"/>
<xsd:enumeration value="service-provider"/>
<xsd:enumeration value="unmanaged"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="Tlistener">
<xsd:annotation>

<xsd:documentation><![CDATA[
Defines a listener that will be notified when the service backing the enclosing service reference element is bound or
unbound. Use either the 'ref' attribute or a nested bean declaration for the listener bean.

]]></xsd:documentation>
</xsd:annotation>

<xsd:sequence minOccurs="0" maxOccurs="1">
<!-- nested bean declaration -->
<xsd:any namespace="##other" minOccurs="1" maxOccurs="1" processContents="skip"/>

</xsd:sequence>

<!-- shortcut for bean references -->
<xsd:attribute name="ref" type="xsd:string" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

Refers by name to the bean that will receive bind and unbind events
]]></xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="bind-method" type="xsd:token" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

The name of the method to be invoked when a backing service is bound.
]]></xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="unbind-method" type="xsd:token" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

The name of the method to be invoked when a backing service is unbound.
]]></xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:complexType>

<!-- single reference -->
<xsd:complexType name="TsingleReference">

<xsd:complexContent>
<xsd:extension base="Treference">

<xsd:attribute name="cardinality" use="optional" type="TsingleReferenceCardinality">
<xsd:annotation>

<xsd:documentation><![CDATA[
Defines the required cardinality of the relationship to the backing service. If not specified,
the default-cardinality attribute will apply. A value is '1..1' means that a backing service
must exist (this is a mandatory service reference). A value of '0..1' indicates that it is
acceptable to be no backing service (an optional service reference).

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="timeout" use="optional" type="xsd:long">

<xsd:annotation>
<xsd:documentation><![CDATA[

For a 'reference' element, the amount of time (in milliseconds) to wait for a backing service to be
available when an operation is invoked. If not specified, the default-timeout attribute will apply.
See also the default-timeout attribute of the osgi element.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Spring Dynamic Modules Schema

Spring Dynamic Modules(1.2.1) 95

<xsd:simpleType name="TsingleReferenceCardinality">
<xsd:restriction base="xsd:token">

<xsd:enumeration value="1..1"/>
<xsd:enumeration value="0..1"/>

</xsd:restriction>
</xsd:simpleType>

<!-- reference collections (set, list) -->
<xsd:element name="list" type="TreferenceCollection">

<xsd:annotation>
<xsd:documentation source="java:org.springframework.osgi.service.importer.support.OsgiServiceCollectionProxyFactoryBean"><![CDATA[

Defines a bean of type 'List' that contains all of the services matching the given criteria.
The list members are managed dynamically as matching backing services come and go.

]]></xsd:documentation>
<xsd:appinfo>

<tool:annotation>
<tool:exports type="java.util.List"/>

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
</xsd:element>

<xsd:element name="set" type="TreferenceCollection">
<xsd:annotation>

<xsd:documentation source="java:org.springframework.osgi.service.importer.support.OsgiServiceCollectionProxyFactoryBean"><![CDATA[
Defines a bean of type 'Set' that contains all of the services matching the given criteria.
The set members are managed dynamically as matching backing services come and go.

]]></xsd:documentation>
<xsd:appinfo>

<tool:annotation>
<tool:exports type="java.util.Set"/>

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
</xsd:element>

<xsd:complexType name="TreferenceCollection">
<xsd:complexContent>

<xsd:extension base="Treference">
<xsd:sequence minOccurs="0" maxOccurs="1">

<xsd:element name="comparator" type="Tcomparator">
<xsd:annotation>

<xsd:documentation source="java:java.util.Comparator"><![CDATA[
Used to define an inline bean of type Comparator that will be used to sort the matching services.

]]></xsd:documentation>
<xsd:appinfo>

<tool:annotation>
<tool:expected-type type="java.util.Comparator" />

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="comparator-ref" type="xsd:string" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

Used to refer to a named bean implementing the Comparator interface that will be used to
sort the matching services.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>

<xsd:attribute name="cardinality" use="optional" type="TcollectionCardinality">
<xsd:annotation>

<xsd:documentation><![CDATA[
Defines the required cardinality of the relationship to the backing services. If not specified,
the default-cardinality attribute will apply. A value of '1..N' means that at least one backing
service must exist (this is a mandatory service reference. A value of '0..N' indicates that it
is acceptable for there to be no backing service (an optional service reference).

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>

<xsd:attribute name="greedy-proxying" use="optional" type="xsd:boolean" default="false">
<xsd:annotation>

<xsd:documentation><![CDATA[
Indicates whether the proxies created for the imported OSGi services will be generated using
just the classes specified (false) or all the classes exported by the service and visible to

Spring Dynamic Modules Schema

Spring Dynamic Modules(1.2.1) 96

the importing bundle (true). The default value is false.
]]></xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Tcomparator">
<xsd:annotation>

<xsd:documentation source="java:java.util.Comparator"><![CDATA[
Used to define an inline bean of type Comparator that will be used to sort the matching services.

]]></xsd:documentation>
<xsd:appinfo>

<tool:annotation>
<tool:exports type="java.util.Comparator" />

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
<xsd:choice>

<xsd:element name="natural" type="TnaturalOrdering"/>
<xsd:sequence minOccurs="1" maxOccurs="1">

<!-- nested bean declaration -->
<xsd:any namespace="##other" minOccurs="1" maxOccurs="1" processContents="skip"/>

</xsd:sequence>
</xsd:choice>
</xsd:complexType>

<xsd:complexType name="TnaturalOrdering">
<xsd:attribute name="basis" type="TorderingBasis" use="required"/>

</xsd:complexType>

<xsd:simpleType name="TorderingBasis">
<xsd:restriction base="xsd:token">

<xsd:enumeration value="service"/>
<xsd:enumeration value="service-reference"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="TcollectionCardinality">
<xsd:restriction base="xsd:token">

<xsd:enumeration value="1..N"/>
<xsd:enumeration value="0..N"/>

</xsd:restriction>
</xsd:simpleType>

<!-- service -->

<xsd:element name="service" type="Tservice"/>

<xsd:complexType name="TbaseService">
<xsd:complexContent>

<xsd:extension base="beans:identifiedType">
<xsd:attribute name="interface" type="xsd:token" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

Defines the interface to advertise for this service in the service registry.
]]></xsd:documentation>

<xsd:appinfo>
<tool:annotation>

<tool:expected-type type="java.lang.Class" />
</tool:annotation>

</xsd:appinfo>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="depends-on" type="xsd:string" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

Used to ensure that the service is not exported to the registry before the named bean
has been created.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="context-class-loader" type="TserviceClassLoaderOptions" default="unmanaged">

<xsd:annotation>
<xsd:documentation><![CDATA[

Defines how the context class loader will be managed when an operation is invoked on the

Spring Dynamic Modules Schema

Spring Dynamic Modules(1.2.1) 97

exported service. The default value is 'unmanaged' which means that no management of
the context class loader is attempted. A value of 'service-provider' guarantees that
the context class loader will have visibility of all the resources on the class path of
bundle exporting the service.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="auto-export" type="TautoExportModes" default="disabled">

<xsd:annotation>
<xsd:documentation><![CDATA[

Enables Spring to automatically manage the set of service interfaces advertised for the
service. By default this facility is disabled. A value of 'interfaces' advertises all
of the Java interfaces supported by the exported service. A value of 'class-hierarchy'
advertises all the Java classes in the hierarchy of the exported service. A value of
'all-classes' advertises all Java interfaces and classes.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="Tservice">
<xsd:annotation>

<xsd:documentation source="java:org.springframework.osgi.service.exporter.support.OsgiServiceFactoryBean"><![CDATA[
Exports the reference bean as a service in the OSGi service registry. The bean defined by this element is of
type org.osgi.framework.ServiceRegistration.

]]></xsd:documentation>
<xsd:appinfo>

<tool:annotation>
<tool:exports type="org.osgi.framework.ServiceRegistration"/>

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
<xsd:complexContent>

<xsd:extension base="TbaseService">
<xsd:sequence minOccurs="0" maxOccurs="1">
<xsd:element name="interfaces" type="beans:listOrSetType" minOccurs="0" maxOccurs="1">

<xsd:annotation>
<xsd:documentation><![CDATA[

The set of service interfaces to advertise in the service registry.
]]></xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="registration-listener" type="TserviceRegistrationListener" minOccurs="0" maxOccurs="unbounded">

<xsd:annotation>
<xsd:documentation><![CDATA[

Defines a listener that will be notified when this service is registered or unregistered in the
OSGi service registry.

]]></xsd:documentation>
</xsd:annotation>

</xsd:element>
<xsd:element name="service-properties" type="beans:mapType" minOccurs="0" maxOccurs="1">

<xsd:annotation>
<xsd:documentation><![CDATA[

Defines the service properties.
]]></xsd:documentation>

</xsd:annotation>
</xsd:element>
<!-- nested bean declaration -->

<xsd:any namespace="##other" minOccurs="0" maxOccurs="1" processContents="skip"/>
</xsd:sequence>
<xsd:attribute name="ref" type="xsd:string" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

Refers to the named bean to be exported as a service in the service registry.
]]></xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="ranking" type="xsd:int" default="0">

<xsd:annotation>
<xsd:documentation><![CDATA[

Specify the service ranking to be used when advertising the service.
]]></xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:extension>
</xsd:complexContent>

Spring Dynamic Modules Schema

Spring Dynamic Modules(1.2.1) 98

</xsd:complexType>

<xsd:complexType name="TserviceRegistrationListener">
<xsd:annotation>

<xsd:documentation><![CDATA[
Defines a listener that will be notified when the bean is registered or unregistered in the OSGi Service Registry.
Use either the 'ref' attribute or a nested bean declaration for the listener bean.

]]></xsd:documentation>
</xsd:annotation>

<xsd:sequence minOccurs="0" maxOccurs="1">
<!-- nested bean declaration -->
<xsd:any namespace="##other" minOccurs="1" maxOccurs="1" processContents="skip"/>

</xsd:sequence>

<!-- shortcut for bean references -->
<xsd:attribute name="ref" type="xsd:string" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

Refers by name to the bean that will receive register and unregister events.
]]></xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="registration-method" type="xsd:token" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

The name of the method to be invoked when the service is registered.
]]></xsd:documentation>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="unregistration-method" type="xsd:token" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

The name of the method to be invoked when the service is unregistered.
]]></xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:complexType>

<xsd:simpleType name="TserviceClassLoaderOptions">
<xsd:restriction base="xsd:token">

<xsd:enumeration value="service-provider"/>
<xsd:enumeration value="unmanaged"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="TautoExportModes">
<xsd:restriction base="xsd:token">

<xsd:enumeration value="disabled"/>
<xsd:enumeration value="interfaces"/>
<xsd:enumeration value="class-hierarchy"/>
<xsd:enumeration value="all-classes"/>

</xsd:restriction>
</xsd:simpleType>

<!-- bundle -->

<xsd:element name="bundle" type="Tbundle">
<xsd:annotation>

<xsd:documentation source="java:org.springframework.osgi.bundle.BundleFactoryBean"><![CDATA[
Defines a bean representing a Bundle object. May be used to drive bean lifecycle transitions.

]]></xsd:documentation>
<xsd:appinfo>

<tool:annotation>
<tool:exports type="org.osgi.framework.Bundle"/>

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
</xsd:element>

<xsd:complexType name="Tbundle">
<xsd:complexContent>

<xsd:extension base="beans:identifiedType">
<!-- optional nested bean declaration -->

<xsd:sequence minOccurs="0" maxOccurs="1">
<xsd:any namespace="##other" minOccurs="1" maxOccurs="1" processContents="lax">

<xsd:annotation>
<xsd:documentation><![CDATA[

OSGi bundle to work with.

Spring Dynamic Modules Schema

Spring Dynamic Modules(1.2.1) 99

]]></xsd:documentation>
<xsd:appinfo>

<tool:annotation>
<tool:expected-type type="org.osgi.framework.Bundle" />

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
</xsd:any>

</xsd:sequence>

<xsd:attribute name="symbolic-name" type="xsd:string" use="optional">
<xsd:annotation>

<xsd:documentation><![CDATA[
The bundle symbolic name of the bundle object. Normally used when interacting with an already
installed bundle.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="depends-on" type="xsd:string" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

Indicates that this bundle object should not be created until the named bean has been created.
]]></xsd:documentation>

</xsd:annotation>
</xsd:attribute>

<xsd:attribute name="location" type="xsd:string" use="optional">
<xsd:annotation>

<xsd:documentation><![CDATA[
Location used to install, update or/and identify a bundle.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="action" type="TbundleAction" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

Lifecyle action to drive on the bundle. 'start' starts the bundle, installing if necessary.
'stop' stops the bundle if it is currently ACTIVE. 'install' installs the bundle if it is
currently uninstalled. 'uninstall' stops the bundle if needed, and then uninstalls it.
'update' installs the bundle if needed, and then invokes the Bundle.update() operation.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="destroy-action" type="TbundleAction" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

Lifecyle action to drive on the bundle. 'start' starts the bundle, installing if necessary.
'stop' stops the bundle if it is currently ACTIVE. 'install' installs the bundle if it is
currently uninstalled. 'uninstall' stops the bundle if needed, and then uninstalls it.
'update' installs the bundle if needed, and then invokes the Bundle.update() operation.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="start-level" type="xsd:int" use="optional" default="0">

<xsd:annotation>
<xsd:documentation><![CDATA[

Start level to set for the bundle.
]]></xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="TbundleAction">
<xsd:restriction base="xsd:token">

<xsd:enumeration value="start"/>
<xsd:enumeration value="stop"/>
<xsd:enumeration value="install"/>
<xsd:enumeration value="uninstall"/>
<xsd:enumeration value="update"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Spring Dynamic Modules Schema

Spring Dynamic Modules(1.2.1) 100

Spring Compendium Schema

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xsd:schema xmlns="http://www.springframework.org/schema/osgi-compendium"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:tool="http://www.springframework.org/schema/tool"
targetNamespace="http://www.springframework.org/schema/osgi-compendium"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="1.2">

<xsd:import namespace="http://www.w3.org/XML/1998/namespace"/>
<xsd:import namespace="http://www.springframework.org/schema/beans"/>
<xsd:import namespace="http://www.springframework.org/schema/tool"/>
<xsd:import namespace="http://www.springframework.org/schema/osgi"

schemaLocation="http://www.springframework.org/schema/osgi/spring-osgi.xsd"/>

<xsd:annotation>
<xsd:documentation><![CDATA[

Namespace support for the compendium services provided by Spring Dynamic Modules.
]]></xsd:documentation>

</xsd:annotation>

<!-- internal reusable type -->
<xsd:attributeGroup name="updateAttributes">

<xsd:attribute name="update-strategy" use="optional">
<xsd:annotation>

<xsd:documentation><![CDATA[
The strategy to use when the configuration data backing the beans defined by this element is
updated. The default value is 'none', meaning that any update after the initial configuration
of the beans is ignored. A value of 'bean-managed' means that the method specified in the
'update-method' attribute will be invoked. A value of 'container-managed' means that the container
will autowire the bean instance by name with the new property set.

]]></xsd:documentation>
</xsd:annotation>
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:enumeration value="none"/>
<xsd:enumeration value="bean-managed"/>
<xsd:enumeration value="container-managed"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name="update-method" type="xsd:string" use="optional">

<xsd:annotation>
<xsd:documentation><![CDATA[

The update-method to invoke when using a 'bean-managed' update strategy.
]]></xsd:documentation>

</xsd:annotation>
</xsd:attribute>

</xsd:attributeGroup>

<xsd:element name="managed-properties">
<xsd:annotation>

<xsd:documentation><![CDATA[
Defines a bean based on the given class name and configuration, with properties autowired-by-name
based on the configuration stored under the given persistent id.

]]></xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:attributeGroup ref="updateAttributes"/>
<xsd:attribute name="persistent-id" type="xsd:string" use="required">

<xsd:annotation>
<xsd:documentation><![CDATA[

The persistent-id under which the configuration for this bean is stored in
the Configuration Admin service.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
</xsd:complexType>

</xsd:element>

<!-- managed-service-factory -->

Spring Dynamic Modules Schema

Spring Dynamic Modules(1.2.1) 101

<xsd:element name="managed-service-factory">
<xsd:annotation>

<xsd:documentation><![CDATA[
Defines a collection of beans based on the given class name, with properties autowired-by-name based
on the configuration sets stored under the given factory persistent id.

]]></xsd:documentation>
</xsd:annotation>

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base="osgi:TbaseService">
<xsd:sequence>
<xsd:element name="interfaces" type="beans:listOrSetType" minOccurs="0" maxOccurs="1">

<xsd:annotation>
<xsd:documentation><![CDATA[

The set of service interfaces to advertise in the service registry.
]]></xsd:documentation>

</xsd:annotation>
</xsd:element>
<xsd:element name="registration-listener" type="osgi:TserviceRegistrationListener" minOccurs="0" maxOccurs="unbounded">

<xsd:annotation>
<xsd:documentation><![CDATA[

Defines a listener that will be notified when this service is registered or unregistered in the
OSGi service registry.

]]></xsd:documentation>
</xsd:annotation>

</xsd:element>
<!-- the bean definition template -->

<xsd:any namespace="##other" minOccurs="1" maxOccurs="1" processContents="skip">
<xsd:annotation>

<xsd:documentation><![CDATA[
Defines the service definition template.

]]></xsd:documentation>
</xsd:annotation>

</xsd:any>
</xsd:sequence>
<xsd:attribute name="factory-pid" type="xsd:string" use="required">

<xsd:annotation>
<xsd:documentation><![CDATA[

The persistent-id under which the configuration for this bean is stored in
the Configuration Admin service.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attributeGroup ref="updateAttributes"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>

<!-- cm-properties -->
<xsd:element name="cm-properties">

<xsd:annotation>
<xsd:documentation source="java:org.springframework.osgi.compendium.cm.ConfigAdminPropertiesFactoryBean"><![CDATA[

Exposes the properties found in the Configuration Admin service under the given persistent id.
]]></xsd:documentation>

<xsd:appinfo>
<tool:annotation>

<tool:exports type="java.util.Properties"/>
</tool:annotation>

</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>

<xsd:complexContent>
<xsd:extension base="beans:propsType">

<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="persistent-id" type="xsd:string" use="required">

<xsd:annotation>
<xsd:documentation><![CDATA[

The persistent id under which the properties reside.
]]></xsd:documentation>

</xsd:annotation>
</xsd:attribute>

<xsd:attribute name="local-override" type="xsd:boolean">
<xsd:annotation>

<xsd:documentation><![CDATA[
Specifies whether local properties override properties from the Configuration Admin service.

Spring Dynamic Modules Schema

Spring Dynamic Modules(1.2.1) 102

Default is "false": properties from Configuration Admin service override local defaults.
If set to "true", local properties will override properties from Configuration Admin service.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>

</xsd:schema>

Spring Dynamic Modules Schema

Spring Dynamic Modules(1.2.1) 103

Appendix I. Acknowledgments
Spring Dynamic Modules would like to thank (in alphabetical order) to : Bill Gallagher, Olivier Gruber,
Richard S. Hall, BJ Hargrave, Peter Kriens, Martin Lippert, Jeff McAffer, Glyn Normington, Gerd Wuetherich
for their contributions in the development of this documentation.

Spring Dynamic Modules(1.2.1) 104

	Spring Dynamic Modules Reference Guide
	Table of Contents
	Preface
	Part I. Introduction
	Chapter 1. Why Spring Dynamic Modules?
	Chapter 2. Requirements
	Chapter 3. Getting Started
	3.1. First Steps
	3.1.1. Knowing Spring
	3.1.2. Knowing OSGi
	3.1.3. Trying Out The Samples

	3.2. Need Help?
	3.2.1. Community Support
	3.2.2. Professional Support

	3.3. Following Development

	Chapter 4. What is new?
	4.1. 1.2.x
	4.1.1. Java 2 Security Integration
	4.1.2. Compendium Services Support
	4.1.3. Changed Spring DM Symbolic Names
	4.1.4. Usage of SpringSource Enterprise Bundle Repository (EBR)

	4.2. 1.1.x
	4.2.1. Web Support
	4.2.1.1. Spring-MVC Integration

	4.2.2. Classpath Resource Abstraction
	4.2.3. Pluggable Extender Configuration
	4.2.4. Improved Class Loading

	Part II. Reference Documentation
	Chapter 5. Bundles and Application Contexts
	5.1. The Spring Dynamic Modules Extender bundle
	5.2. Application Context Creation
	5.2.1. Mandatory Service Dependencies
	5.2.2. Application Context Service Publication

	5.3. Bundle Lifecycle
	5.4. The Resource Abstraction
	5.5. Accessing the BundleContext
	5.6. Application Context Destruction
	5.7. Stopping the Extender Bundle

	Chapter 6. Packaging and Deploying Spring-based OSGi applications
	6.1. Bundle Format And Manifest Headers
	6.2. Extender Configuration Options
	6.2.1. Listening To Extender Events

	6.3. Required Spring Framework And Spring Dynamic Modules Bundles
	6.4. Spring XML Authoring Support
	6.5. Importing and Exporting Packages
	6.6. Considerations When Using External Libraries
	6.7. Diagnosing Problems

	Chapter 7. The Service Registry
	7.1. Exporting A Spring Bean As An OSGi Service
	7.1.1. Controlling The Set Of Advertised Service Interfaces For An Exported Service
	7.1.1.1. Detecting The Advertised Interfaces At Runtime

	7.1.2. Controlling The Set Of Advertised Properties For An Exported Service
	7.1.3. The depends-on Attribute
	7.1.4. The context-class-loader Attribute
	7.1.5. The ranking Attribute
	7.1.6. service Element Attributes
	7.1.7. Service Registration And Unregistration Lifecycle
	7.1.7.1. Using OsgiServiceRegistrationListener Interface

	7.2. Defining References To OSGi Services
	7.2.1. Referencing An Individual Service
	7.2.1.1. Controlling The Set Of Advertised Interfaces For The Imported Service
	7.2.1.2. The filter Attribute
	7.2.1.3. The bean-name Attribute
	7.2.1.4. The cardinality Attribute
	7.2.1.5. The depends-on Attribute
	7.2.1.6. The context-class-loader Attribute
	7.2.1.7. reference Element Attributes
	7.2.1.8. reference And OSGi Service Dynamics
	7.2.1.9. Getting A Hold Of The Managed Service Reference

	7.2.2. Referencing A Collection Of Services
	7.2.2.1. Greedy Proxying
	7.2.2.2. Collection (list And set) Element Attributes
	7.2.2.3. list / set And OSGi Service Dynamics
	7.2.2.4. Iterator Contract And Service Collections

	7.2.3. Dealing With The Dynamics Of OSGi Imported Services
	7.2.4. Listener And Service Proxies
	7.2.5. Accessing The Caller BundleContext

	7.3. Exporter/Importer Listener Best Practices
	7.3.1. Listener And Cyclic Dependencies

	7.4. Service Importer Global Defaults
	7.5. Relationship Between The Service Exporter And Service Importer

	Chapter 8. Working With Bundles
	Chapter 9. Web Support
	9.1. Supported Web Containers
	9.2. Web Support Usage
	9.3. WAR Classpath In OSGi
	9.3.1. Static Resources
	9.3.2. Servlets
	9.3.3. Java Server Pages
	9.3.3.1. Tag Libraries

	9.4. Configuring The Web Extender
	9.4.1. Changing The War Deployer

	9.5. Customizing The Standard Deployers
	9.6. OSGi-ready Libraries And Web Development
	9.6.1. Deploying Web Containers As OSGi Bundles
	9.6.1.1. Tomcat 5.5.x/6.0.x
	9.6.1.2. Jetty 6.1.8+/6.2.0

	9.6.2. Common Libraries

	9.7. Spring-MVC Integration

	Chapter 10. Compendium Services
	10.1. Configuration Admin
	10.1.1. Exposing Configuration Admin Entries As Properties
	10.1.2. Managed Properties
	10.1.2.1. Configuration Admin Runtime Updates

	10.1.3. Managed Service Factories
	10.1.4. Direct Access To Configuration Data

	Chapter 11. Testing OSGi based Applications
	11.1. OSGi Mocks
	11.2. Integration Testing
	11.2.1. Creating A Simple OSGi Integration Test
	11.2.2. Installing Test Prerequisites
	11.2.3. Advanced Testing Framework Topics
	11.2.3.1. Customizing The Test Manifest
	11.2.3.2. Customizing Test Bundle Content
	11.2.3.3. Understanding The MANIFEST.MF Generation

	11.2.4. Creating An OSGi Application Context
	11.2.5. Specifying The OSGi Platform To Use
	11.2.6. Waiting For The Test Dependencies
	11.2.7. Testing Framework Performance

	Part III. Other Resources
	Chapter 12. Useful Links

	Part IV. Appendixes
	Appendix A. Extensions
	A.1. Annotation-Based Injection
	A.1.1. Enabling/Disabling Annotation Processing

	Appendix B. Security Integration
	Appendix C. Eclipse Plug-in Development integration
	Appendix D. Spring Dynamic Modules Maven Archetype
	D.1. Generated Project Features At-A-Glance

	Appendix E. Useful OSGi tips
	E.1. OSGi Fragments

	Appendix F. Roadmap
	F.1. Access to Service References for Collections
	F.2. Start Level Integration
	F.3. Web Library Integration
	F.4. ORM/Persistence Support
	F.5. OSGi Standards

	Appendix G. Spring DM OSGi Repository
	G.1. Spring DM Temporary OSGi Repository
	G.1.1. Repository Conventions
	G.1.2. Browsing The Repository Content
	G.1.3. Using The Repository With Maven
	G.1.4. Using The Repository With Ant/Ivy

	Appendix H. Spring Dynamic Modules Schema
	Appendix I. Acknowledgments

