Spring for Apache Pulsar

Table of Contents

1. Introduction
1.1. Minimum Supported Versions
1.2. Building the Project
2. Reference
2.1. Using Spring for Apache Pulsar
2.1.1. Quick Tour
Dependencies
Application Code
2.1.2. Pulsar Client
Authentication
2.1.3. Message Production
Pulsar Template
Simple API
Fluent API
Message customization
Producer customization
Specifying Schema Information
Pulsar Producer Factory
Pulsar Producer Caching
Intercept Messages on the Producer
2.1.4. Message Consumption
Pulsar Listener
Specifying Schema Information
Accessing the Pulsar Consumer Object
Pulsar Message Listener Container
DefaultPulsarMessageListenerContainer
ConcurrentPulsarMessageListenerContainer
Message Consumption
Pulsar Headers
Accessing in Single Record based Consumer
Accessing in Batch Record based Consumer
Message Acknowledgment
Message ACK modes
Automatic Message Ack in Single Record Mode
Manual Message Ack in Single Record Mode
Automatic Message Ack in Batch Consumption
Manual Message Ack in Batch Consumption
Message Redelivery and Error Handling

© © © 00 00 0 00 N 0 Ul b W W W W W DD NN

NN NN NN R R B R R |, |l |l |l) s s
B W W R OO0 W W 0 00 N o U b b b O O O

Specifying Acknowledgment Timeout for Message Redelivery
Specifying Negative Acknowledgment Redelivery
Using Dead Letter Topic from Apache Pulsar for Message Redelivery and Error
Handling
Native Error Handling in Spring for Apache Pulsar
Batch listener with PulsarConsumerErrorHandler
2.1.5. Publishing and Consuming Partitioned Topics
2.2. Reactive Support
2.2.1. Quick Tour
Dependencies
Application Code
2.2.2. Design
Apache Pulsar Reactive
Additive Auto-Configuration
2.2.3. Reactive Pulsar Client
Authentication
2.2.4. Message Production
ReactivePulsarTemplate
Fluent API
Message customization
Sender customization
Specifying Schema Information
ReactivePulsarSenderFactory
Producer Caching
2.2.5. Message Consumption
@ReactivePulsarListener
Streaming
Configuration - Application Properties
Consumer Customization
Specifying Schema Information
Message Listener Container Infrastructure
ReactivePulsarMessageListenerContainer
ReactiveMessagePipeline
ReactivePulsarMessageHandler
Concurrency
Pulsar Headers
Accessing In OneByOne Listener
Accessing In Streaming Listener
Message Acknowledgment
OneByOne Listener

Streaming Listener

24
26

26
28
31
32
35
35
35
36
37
37
37
37
37
37
37
38
38
38
38
39
39
39
39
41
42
42
43
43
43
43
43
44
44
44
45
45
45
45

Message Redelivery and Error Handling
Acknowledgment Timeout
Negative Acknowledgment Redelivery Delay
Dead Letter Topic
Pulsar Reader Support
2.3. Pulsar Administration
2.3.1. Pulsar Admin Client
Authentication
2.3.2. Automatic Topic Creation
2.4. Observability
2.4.1. Micrometer Observations
Custom tags
Observability - Metrics
Listener Observation
Template Observation
Observability - Spans
Listener Observation Span
Template Observation Span
Manual Configuration without Spring Boot
Auto-Configuration with Spring Boot
Example Configuration
Other Resources
Appendices
Appendix A: Application Properties
Pulsar Client Properties
Pulsar Producer Properties
Pulsar Consumer Properties
Pulsar Administration Properties
Pulsar Reactive Sender Properties
Pulsar Reactive Consumer Properties
Pulsar Reactive Reader Properties
Appendix B: Non-GA Versions
Appendix C: GraalVM Native Image Support

45
45
46
46
48
48
48
48
48
49
49
49
49
49
50
51
51
51
52
52
52
54
35
35
35
39
61
64
65
67
70
71
72

Soby Chacko; Chris Bono; Alexander Preuf; Jay Bryant; Christophe Bornet
(v0.1.0)

© 2022 VMware, Inc.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Chapter 1. Introduction

This project provides a basic Spring-friendly API for developing Apache Pulsar applications.

On a very high level, Spring for Apache Pulsar provides a PulsarTemplate for publishing to a Pulsar
topic and a PulsarListener annotation for consuming from a Pulsar topic. In addition, it also
provides various convenience APIs for Spring developers to ramp up their development journey
into Apache Pulsar.

1.1. Minimum Supported Versions

The minimum supported versions for the underlying libraries required by the framework are as
follows:

Library Version
Java 17
Apache Pulsar 2.10.0
Spring Boot 3.0.0
Spring Framework 6.0.0
Gradle 7.5

1.2. Building the Project

If you have cloned the project locally, follow these steps to build the project from the source code.

Spring for Apache Pulsar uses Gradle as its build tool. Run the following command to do a full build
of the project:

./gradlew clean build
You can build without running tests by using the following command:

./gradlew clean build -x test

https://pulsar.apache.org/

Chapter 2. Reference

This part of the reference documentation goes through the details of the various components in
Spring for Apache Pulsar.

2.1. Using Spring for Apache Pulsar

2.1.1. Quick Tour

We will take a quick tour of Spring for Apache Pulsar by showing a sample Spring Boot application
that produces and consumes. This is a complete application and does not require any additional
configuration, as long as you have a Pulsar cluster running on the default location - localhost:6650.

We recommend using a Spring-Boot-First approach for Spring for Apache Pulsar-
o based application, as that simplifies things tremendously. To do so, you can add the
spring-pulsar-spring-boot-starter module as a dependency.

Dependencies

Spring Boot applications need only the spring-pulsar-spring-boot-starter dependency. The
following listings show how to define the dependency for Maven and Gradle, respectively:

Maven

<dependencies>
<dependency>
<groupId>org.springframework.pulsar</groupId>
<artifactId>spring-pulsar-spring-boot-starter</artifactId>
<version>0.1.0</version>
</dependency>
</dependencies>

Gradle

dependencies {

implementation 'org.springframework.pulsar:spring-pulsar-spring-boot-
starter:0.1.0'
}

Application Code

The following listing shows the Spring Boot application case for the example:

@SpringBootApplication
public class PulsarBootHelloWorld {

public static void main(String[] args) {
SpringApplication.run(PulsarBootHelloWorld.class, args);
}

@Bean
ApplicationRunner runner(PulsarTemplate<String> pulsarTemplate) {
return (args) -> pulsarTemplate.send("hello-pulsar-topic", "Hello Pulsar
World!");
}

@PulsarListener(subscriptionName = "hello-pulsar-sub", topics = "hello-pulsar-
topic")
void listen(String message) {
System.out.println("Message Received:

+ message);

}

Let us quickly go through the higher-level details of this application. Later in the documentation we
see these components in much more detail.

In the preceding sample, we heavily rely on Spring Boot auto-configuration. Spring Boot auto-
configures several components for our application. It automatically provides a Pulsar(Client, which
is used by both the producer and the consumer, for the application.

Spring Boot also auto-configures PulsarTemplate, which we inject in the application and start
sending records to a Pulsar topic. The application sends messages to a topic named hello-pulsar.
Note that the application does not specify any schema information, because Spring for Apache
Pulsar library automatically infers the schema type from the type of the data that you send.

We use the PulsarListener annotation to consume from the hello-pulsar topic where we publish the
data. PulsarlListener is a convenience annotation that wraps the message listener container
infrastructure in Spring for Apache Pulsar. Behind the scenes, it creates a message listener
container to create and manage the Pulsar consumer. As with a regular Pulsar consumer, the
default subscription type when using Pulsarlistener is the Exclusive mode. As records are
published in to the hello-pulsar topic, the Pulsarlistener consumes them and prints them on the
console. The framework also infers the schema type used from the data type that the PulsarListner
method uses as the payload — String, in this case.

2.1.2. Pulsar Client

When you use the Pulsar Spring Boot Starter, you get the PulsarClient auto-configured. This is done
through a factory bean called PulsarClientFactoryBean, which takes a configuration object called
PulsarClientConfiguration. By default, the application tries to connect to a local Pulsar instance at
pulsar://localhost:6650. However, there are many application properties available to configure the
client. See the Appendix for more detail.

Authentication

To connect to a Pulsar cluster that requires authentication, you need to set the authPluginClassName
and any parameters required by the authentication plugin. You can set the parameters as a single
JSON-encoded string or as map of parameter names to parameter values. The following listings
show both approaches:

Map

spring:
pulsar:
client:
auth-plugin-class-name:
org.apache.pulsar.client.impl.auth.oauth2.AuthenticationOAuth2
authentication:
issuer-url: https://auth.server.cloud/
private-key: file:///Users/some-key.json
audience: urn:sn:acme:dev:my-instance

JSON encoded string

spring:
pulsar:
client:

auth-plugin-class-name:
org.apache.pulsar.client.impl.auth.oauth2.AuthenticationOAuth2

auth-params: "{\"privateKey\":\"file:///Users/some-
key.json\",\"issuerUr1\":\"https://auth.server.cloud/",
\"audience\":\"urn:sn:acme:dev:my-instance"}"

(r) Using a map is the recommended approach as it is less error-prone and easier to
- read.

The following listings show how to configure each of the supported authentication mechanisms.

Click here for Athenz

spring:
pulsar:
client:
auth-plugin-class-name:
org.apache.pulsar.client.impl.auth.AuthenticationAthenz
authentication:
tenant-domain: ...
tenant-service: ...
provider-domain: ...
private-key: ...
key-id: ...
enable-tls: true
tls-trust-certs-file: /path/to/cacert.pem

Click here for Basic

spring:
pulsar:
client:
auth-plugin-class-name:
org.apache.pulsar.client.impl.auth.AuthenticationBasic
authentication:
user-id: ...
password: ...

Click here for OAuth2

spring:
pulsar:
client:
auth-plugin-class-name:
org.apache.pulsar.client.impl.auth.oauth2.AuthenticationFactoryOAuth2
authentication:
issuer-url: ...
private-key: ...
audience: ...
scope: ...

Click _here for Sasl

spring:
pulsar:
client:
auth-plugin-class-name:
org.apache.pulsar.client.impl.auth.AuthenticationSasl
authentication:
sasl-jaas-client-section-name: ...
server-type: ...

Click _here for Tls

spring:
pulsar:
client:

auth-plugin-class-name: org.apache.pulsar.client.impl.auth.AuthenticationTls

authentication:
tls-cert-file: /path/to/my-role.cert.pem
tls-key-file: /path/to/my-role.key-pk8.pem

enable-tls: true

tls-trust-certs-file: /path/to/cacert.pem

Click here for Token

spring:
pulsar:
client:
auth-plugin-class-name:
org.apache.pulsar.client.impl.auth.AuthenticationToken
authentication:
token: some-token-goes-here

o You can find more information on each of the schemes and their required
properties in the official Pulsar security documentation.

2.1.3. Message Production

Pulsar Template

On the Pulsar producer side, Spring Boot auto-configuration provides a PulsarTemplate for
publishing records. The template implements an interface called PulsarOperations and provides
methods to publish records through its contract.

https://pulsar.apache.org/docs/security-overview#authentication-providers

There are two categories of these send API methods: send and sendAsync. The send methods block
calls by using the synchronous sending capabilities on the Pulsar producer. They return the
Messageld of the message that was published once the message is persisted on the broker. The
sendAsync method calls are asynchronous calls that are non-blocking. They return a
CompletableFuture, which you can use to asynchronously receive the message ID once the messages
are published.

Simple API

The template provides a handful of methods (prefixed with 'send’) for simple send requests that
contain only a message or a destination topic. For more complicated send requests, a fluent API lets
you configure more options.

Both send and sendAsync methods have a variety that allows publishing with only
(;) the message. When you do that, the application must provide the topic name by
et setting the property spring.pulsar.producer.topic-name.

Fluent API

The template provides a fluent builder to handle more complicated send requests.

Message customization

You can specify a TypedMessageBuilderCustomizer to configure the outgoing message. For example,
the following code shows how to send a keyed message:

template.newMessage(msg)
.withMessageCustomizer((mb) -> mb.key("foo-msg-key"))
.send();

Producer customization

You can specify a ProducerBuilderCustomizer to configure the underlying Pulsar producer builder
that ultimately constructs the producer used to send the outgoing message.

a Use with caution as this gives full access to the producer builder and invoking
some of its methods (such as create) may have unintended side effects.

For example, the following code shows how to disable batching and enable chunking:
template.newMessage(msg)

.withProducerCustomizer((pb) -> pb.enableChunking(true).enableBatching(false))
.send();

https://docs.spring.io/spring-pulsar/docs/0.1.0/api/org/springframework/pulsar/core/PulsarOperations.html
https://docs.spring.io/spring-pulsar/docs/0.1.0/api/org/springframework/pulsar/core/PulsarOperations.html
https://docs.spring.io/spring-pulsar/docs/0.1.0/api/org/springframework/pulsar/core/PulsarOperations.html#newMessage(T)

This other example shows how to use custom routing when publishing records to partitioned
topics. Specify your custom MessageRouter implementation on the Producer builder such as:

template.newMessage(msg)
.withProducerCustomizer((pb) -> pb.messageRouter(messageRouter))

.send();
(r) Note that, when wusing a MessageRouter, the only valid setting for
- spring.pulsar.producer.message-routing-mode is custom.

This other example shows how to add a ProducerInterceptor that will intercept and mutate
messages received by the producer before being published to the brokers:

template.newMessage(msg)

.withProducerCustomizer((pb) -> pb.intercept(interceptor))
.send();

Specifying Schema Information

If you use Java primitive types, the framework auto-detects the schema for you, and you need not
specify any schema types for publishing the data. However, if you use any complex types (such as
JSON, AVRO, PROTOBUF, and others), you need to set the proper schema type on the PulsarTemplate
before invoking any send operations, as the following example shows for JSON:

pulsarTemplate.setSchema(Schema.JSON(Foo.class));

o Complex Schema types that are currently supported are JSON, AVRO, PROTOBUF,
and KEY_VALUE w/ INLINE encoding.

See the Appendix for Pulsar producer properties.

Pulsar Producer Factory

The PulsarTemplate relies on a PulsarProducerFactory to actually create the underlying producer.
Spring Boot auto-configuration also provides this producer factory. Additionally, you can configure

the factory by specifying any of the available producer-centric application properties. See the
Appendix.

Pulsar Producer Caching

Each underlying Pulsar producer consumes resources. To improve performance and avoid

continual creation of producers, the producer factory caches the producers that it creates. They are
cached in an LRU fashion and evicted when they have not been used within a configured time
period. The cache key is composed of just enough information to ensure that callers are returned
the same producer on subsequent creation requests.

Additionally, you can configure the cache settings by specifying any of the
spring.pulsar.producer.cache prefixed application properties. See the Appendix.

Intercept Messages on the Producer

Adding a ProducerInterceptor lets you intercept and mutate messages received by the producer
before they are published to the brokers. To do so, you can pass a list of interceptors into the
PulsarTemplate constructor. When using multiple interceptors, the order they are applied in is the
order in which they appear in the list.

If you use Spring Boot auto-configuration, you can specify the interceptors as Beans. They are
passed automatically to the PulsarTemplate. Ordering of the interceptors is achieved by using the
@0rder annotation as follows:

@Bean
@0rder(100)
ProducerInterceptor firstInterceptor() {

}

@Bean
@0rder(200)
ProducerInterceptor secondInterceptor() {

}

2.1.4. Message Consumption

Pulsar Listener

When it comes to Pulsar consumers, we recommend that end-user applications use the
PulsarListener annotation. To use PulsarlListener, you need to use the @EnablePulsar annotation.
When you use Spring Boot support, it automatically enables this annotation and configures all the
components necessary for PulsarlListener, such as the message listener infrastructure (which is
responsible for creating the Pulsar consumer). PulsarMessagelistenerContainer wuses a
PulsarConsumerFactory to create and manage the Pulsar consumer.

This consumer factory is also auto-configured through Spring Boot. See the Appendix for Pulsar
consumer properties.

Let us revisit the PulsarListener code snippet we saw in the quick-tour section:

10

https://github.com/spring-projects-experimental/spring-pulsar/blob/8e33ac0b122bc0e75df299919c956cacabcc9809/spring-pulsar/src/main/java/org/springframework/pulsar/core/CachingPulsarProducerFactory.java#L159

@PulsarlListener(subscriptionName = "hello-pulsar-subscription”, topics = "hello-

pulsar")

public void listen(String message) {
System.out.println("Message Received:

+ message);

}

You can further simplify this method:

@Pulsarlistener
public void listen(String message) {
System.out.println("Message Received:

+ message);

}

In this most basic form, you must provide the following two properties with their corresponding
values:

spring.pulsar.consumer:
topic-names: hello-pulsar
subscription-name: hello-pulsar-subscription

In the PulsarListener method shown earlier, we receive the data as String, but we do not specify
any schema types. Internally, the framework relies on Pulsar’s schema mechanism to convert the
data to the required type. The framework detects that you expect the String type and then infers
the schema type based on that information. Then it provides that schema to the consumer. For all
the primitive types in Java, the framework does this inference. For any complex types (such as
JSON, AVRO, and others), the framework cannot do this inference and the user needs to provide the
schema type on the annotation using the schemaType property.

The following example shows another PulsarListener method, which takes an Integer:

@PulsarListener(subscriptionName = "my-subscription-1", topics = "my-topic-1")
public void listen(Integer message) {
System.out.println(message);

}

The following PulsarListener method shows how we can consume complex types from a topic:

11

@Pulsarlistener(subscriptionName = "my-subscription-2", topics = "my-topic-2",
schemaType = SchemaType.JSON)
public void listen(Foo message) {

System.out.println(message);

}

Note the addition of a schemaType property on PulsarlListener. That is because the library is not
capable of inferring the schema type from the provided type: Foo. We must tell the framework what
schema to use.

Let us look at a few more ways.

You can consume the Pulsar message directly:

@PulsarlListener(subscriptionName = "my-subscription", topics = "my-topic")

public void listen(org.apache.pulsar.client.api.Message<String> message) {
System.out.println(message.getValue());

}

The following example consumes the record by using the Spring messaging envelope:

@PulsarlListener(subscriptionName = "my-subscription", topics = "my-topic")

public void listen(org.springframework.messaging.Message<String> message) {
System.out.println(message.getPayload());

}

Now let us see how we can consume records in batches. The following example uses PulsarListener
to consume records in batches as POJOs:

@PulsarListener(subscriptionName = "hello-batch-subscription”, topics = "hello-

batch", schemaType = SchemaType.JSON, batch = true)

public void listen(List<Foo> messages) {
System.out.println("records received :" + messages.size());
messages.forEach((message) -> System.out.println("record :

+ message));

Note that, in this example, we receive the records as a collection (List) of objects. In addition, to
enable batch consumption at the PulsarlListener level, you need to set the batch property on the
annotation to true.

12

Based on the actual type that the List holds, the framework tries to infer the schema to use. If the
List contains a complex type, you still need to provide the schemaType on PulsarListener.

The following uses the Message envelope provided by the Pulsar Java client:

@Pulsarlistener(subscriptionName = "hello-batch-subscription", topics = "hello-
batch", schemaType = SchemaType.JSON, batch = true)
public void listen(List<Message<Foo>> messages) {
System.out.println("records received :" + messages.size());
messages.forEach((message) -> System.out.println("record : " +
message.getValue()));

}

The following example consumes batch records with an envelope of the Spring messaging Message
type:

@PulsarListener(subscriptionName = "hello-batch-subscription”, topics = "hello-

batch", schemaType = SchemaType.JSON, batch = true)

public void listen(List<org.springframework.messaging.Message<Foo>> messages) {
System.out.println("records received :" + messages.size());
messages.forEach((message) -> System.out.println("record : " +

message.getPayload()));

}

Finally, you can also use the Messages holder object from Pulsar for the batch listener:

@PulsarListener(subscriptionName = "hello-batch-subscription”, topics = "hello-

batch", schemaType = SchemaType.JSON, batch = true)

public void listen(org.apache.pulsar.client.api.Messages<Foo>> messages) {
System.out.println("records received :" + messages.size());
messages.forEach((message) -> System.out.println("record : " +

message.getValue()));

}

When you use PulsarlListener, you can provide Pulsar consumer properties directly on the
annotation itself. This is convenient if you do not want to use the Boot configuration properties
mentioned earlier or have multiple PulsarListener methods.

The following example uses Pulsar consumer properties directly on PulsarListener:

13

@PulsarlListener(properties = { "subscriptionName=subscription-1", "topicNames=foo-
1", "receiverQueueSize=5000" })
void listen(String message) {

}
(r) The properties used are direct Pulsar consumer properties, not the
- spring.pulsar.consumer application configuration properties

Specifying Schema Information

As indicated earlier, for Java primitives, the Spring Pulsar framework can infer the proper Schema
to use on the PulsarListener. However, for more complex types (such as JSON or AVRO), you need to
specify the schema type on the annotation.

o Complex Schema types that are currently supported are JSON, AVRO, PROTOBUF,
and KEY_VALUE w/ INLINE encoding.

Accessing the Pulsar Consumer Object

Sometimes, you need direct access to the Pulsar Consumer object. The following example shows
how to get it:

@PulsarlListener(subscriptionName = "hello-pulsar-subscription”, topics = "hello-
pulsar™)

public void listen(String message, org.apache.pulsar.client.api.Consumer<String>
consumer) {

System.out.println("Message Received: " + message);
ConsumerStats stats = consumer.getStats();

When accessing the Consumer object this way, do NOT invoke any operations that
o would change the Consumer’s cursor position by invoking any receive methods.
All such operations must be done by the container.

Pulsar Message Listener Container

Now that we saw the basic interactions on the consumer side through PulsarListener. Let us now
dive into the inner workings of how PulsarlListener interacts with the underlying Pulsar consumer.
Keep in mind that, for end-user applications, in most scenarios, we recommend using the
PulsarListener annotation directly for consuming from a Pulsar topic when using Spring for
Apache Pulsar, as that model covers a broad set of application use cases. However, it is important to
understand how PulsarListener works internally. This section goes through those details.

14

As briefly mentioned earlier, the message listener container is at the heart of message consumption
when you use Spring for Apache Pulsar. PulsarListener uses the message listener container
infrastructure behind the scenes to create and manage the Pulsar consumer. Spring for Apache
Pulsar provides the contract for this message listener container through
PulsarMessagelListenerContainer. The default implementation for this message listener container is
provided through DefaultPulsarMessagelistenerContainer. As its name indicates,
PulsarMessagelListenerContainer contains the message listener. The container creates the Pulsar
consumer and then runs a separate thread to receive and handle the data. The data is handled by
the provided message listener implementation.

The message listener container consumes the data in batch by using the consumer’s batchReceive
method. Once data is received, it is handed over to the selected message listener implementation.

The following message listener types are available when you use Spring for Apache Pulsar.

* PulsarRecordMessageListener
» PulsarAcknowledgingMessageListener

» PulsarBatchMessageListener

PulsarBatchAcknowledgingMessageListener
We see the details about these various message listeners in the following sections.
Before doing so, however, let us take a closer look at the container itself.

DefaultPulsarMessageListenerContainer

This is a single consumer-based message listener container. The following listing shows its
constructor:

public DefaultPulsarMessagelistenerContainer(PulsarConsumerFactory<? super T>
pulsarConsumerFactory,
PulsarContainerProperties pulsarContainerProperties)

It receives a PulsarConsumerFactory (which it uses to create the consumer) and a
PulsarContainerProperties object (which contains information about the container properties).
PulsarContainerProperties has the following constructors:

public PulsarContainerProperties(String... topics)

public PulsarContainerProperties(Pattern topicPattern)

You can provide the topic information through PulsarContainerProperties or as a consumer
property that is provided to the consumer factory. The following example uses the

15

https://github.com/spring-projects-experimental/spring-pulsar/blob/8e33ac0b122bc0e75df299919c956cacabcc9809/spring-pulsar/src/main/java/org/springframework/pulsar/listener/PulsarRecordMessageListener.java#L29
https://github.com/spring-projects-experimental/spring-pulsar/blob/ade2c74482d8ac1407ffe4840fa058475c07bcfc/spring-pulsar/src/main/java/org/springframework/pulsar/listener/PulsarAcknowledgingMessageListener.java#L28
https://github.com/spring-projects-experimental/spring-pulsar/blob/ade2c74482d8ac1407ffe4840fa058475c07bcfc/spring-pulsar/src/main/java/org/springframework/pulsar/listener/PulsarBatchMessageListener.java#L36
https://github.com/spring-projects-experimental/spring-pulsar/blob/ade2c74482d8ac1407ffe4840fa058475c07bcfc/spring-pulsar/src/main/java/org/springframework/pulsar/listener/PulsarBatchAcknowledgingMessageListener.java#L28

DefaultPulsarMessagelistenerContainer:

Map<String, Object> config = new HashMap<>();
config.put("topics", "my-topic");
PulsarConsumerFactory<String> pulsarConsumerFactorY
DefaultPulsarConsumerFactory<>(pulsarClient, config);

PulsarContainerProperties pulsarContainerProperties
PulsarContainerProperties();

new

pulsarContainerProperties.setMessagelistener((PulsarRecordMessagelistener<?>)
(consumer, msg) -> {

1

DefaultPulsarMessagelistenerContainer<String> pulsarListenerContainer = new
DefaultPulsarMessagelistenerContainer(pulsarConsumerFacotyr,
pulsarContainerProperties);

return pulsarListenerContainer;

DefaultPulsarMessagelistenerContainer creates only a single consumer. If you want to have multiple
consumers managed through multiple threads, you need to use
ConcurrentPulsarMessagelListenerContainer.

ConcurrentPulsarMessageListenerContainer

ConcurrentPulsarMessagelistenerContainer has the following constructor:

public ConcurrentPulsarMessagelistenerContainer(PulsarConsumerFactory<? super T>
pulsarConsumerFactory,
PulsarContainerProperties pulsarContainerProperties)

ConcurrentPulsarMessagelistenerContainer lets you specify a concurrency property through a setter.
Concurrency of more than 1 is allowed only on non-exclusive subscriptions (failover, shared, and
key-shared). You can only have the default 1 for concurrency when you have an exclusive
subscription mode.

The following example enables concurrency through the PulsarListener annotation for a failover
subscription.

16

@Pulsarlistener(topics = "my-topic", subscriptionName = "subscription-1",
subscriptionType = SubscriptionType.Failover, concurrency = "3")
void listen(String message, Consumer<String> consumer) {

System.out.println("Current Thread: " + Thread.currentThread().getName());
System.out.println("Current Consumer: " + consumer.getConsumerName());

In the preceding listener, it is assumed that the topic my-topic has three partitions. If it is a non-
partitioned topic, having concurrency set to 3 does nothing. You get two idle consumers in addition
to the main active one. If the topic has more than three partitions, messages are load-balanced
across the consumers that the container creates. If you run this PulsarListener, you see that
messages from different partitions are consumed through different consumers, as implied by the
thread name and consumer names printouts in the preceding example.

o When you use the Failover subscription this way on partitioned topics, Pulsar
guarantees message ordering.

The following listing shows another example of PulsarListener, but with Shared subscription and
concurrency enabled.

@PulsarListener(topics = "my-topic", subscriptionName = "subscription-1",
subscriptionType = SubscriptionType.Shared, concurrency = "5")
void listen(String message) {

In the preceding example, the PulsarlListener creates five different consumers (this time, we
assume that the topic has five partitions).

o In this version, there is no message ordering, as Shared subscriptions do not
guarantee any message ordering in Pulsar.

If you need message ordering and still want a shared subscription types, you need to use the
Key_Shared subscription type.

Message Consumption

Let us take a look at how the message listener container enables both single-record and batch-based
message consumption.

Single Record Consumption

Let us revisit our basic PulsarlListener for the sake of this discussion:

17

@PulsarlListener(subscriptionName = "hello-pulsar-subscription”, topics = "hello-

pulsar")

public void listen(String message) {
System.out.println("Message Received:

+ message);

}

With this PulsarListener method, we essential ask Spring for Apache Pulsar to invoke the listener
method with a single record each time. We mentioned that the message listener container
consumes the data in batches using the batchReceive method on the consumer. The framework
detects that the Pulsarlistener, in this case, receives a single record. This means that, on each
invocation of the method, it needs a singe record. Although the records are consumed by the
message listener container in batches, it iterates through the received batch and invokes the
listener method through an adapter for PulsarRecordMessagelListener. As you can see in the previous
section, PulsarRecordMessagelistener extends from the Messagelistener provided by the Pulsar Java
client, and it supports the basic received method.

Batch Consumption

The following example shows the PulsarlListener consuming records in batches:

@PulsarListener(subscriptionName = "hello-batch-subscription”, topics = "hello-

batch", schemaType = SchemaType.JSON, batch = true)

public void listen4(List<Foo> messages) {
System.out.println("records received :" + messages.size());
messages.forEach((message) -> System.out.println("record :

+ message));

When you use this type of PulsarListener, the framework detects that you are in batch mode. Since
it already received the data in batches by using the Consumer’s batchReceive method, it hands off
the entire batch to the listener method through an adapter for PulsarBatchMessagelListener.

Pulsar Headers

The Pulsar message metadata can be consumed as Spring message headers. The list of available
headers can be found in PulsarHeaders.java.

Accessing in Single Record based Consumer

The following example shows how you can access the various Pulsar Headers in an application that
uses the single record mode of consuming:

18

https://github.com/spring-projects-experimental/spring-pulsar/blob/main/spring-pulsar/src/main/java/org/springframework/pulsar/support/PulsarHeaders.java

@Pulsarlistener(topics = "simpleListenerWithHeaders")
void simplelListenerWithHeaders(String data, @Header(PulsarHeaders.MESSAGE_ID)
MessageId messageld,

@Header (PulsarHeaders.RAW_DATA) byte[] rawData,

@Header ("foo") String foo) {

In the preceding example, we access the values for the messageld and rawData message metadata as
well as a custom message property named foo. The Spring @Header annotation is used for each
header field.

You can also use Pulsar’s Message as the envelope to carry the payload. When doing so, the user can
directly call the corresponding methods on the Pulsar message for retrieving the metadata.
However, as a convenience, you can also retrieve it by using the Header annotation. Note that you
can also use the Spring messaging Message envelope to carry the payload and then retrieve the
Pulsar headers by using @Header.

Accessing in Batch Record based Consumer

In this section, we see how to access the various Pulsar Headers in an application that uses a batch
consumer:

@PulsarlListener(topics = "simpleBatchListenerWithHeaders", batch = true)
void simpleBatchListenerWithHeaders(List<String> data,
@Header (PulsarHeaders.MESSAGE_ID) List<MessageId> messagelds,
@Header (PulsarHeaders.TOPIC_NAME) List<String> topicNames,
@Header ("foo") List<String> fooValues) {

}

In the preceding example, we consume the data as a List<String>. When extracting the various
headers, we do so as a List<> as well. Spring Pulsar ensures that the headers list corresponds to the
data list.

You can also extract headers in the same manner when you use the batch listener and receive
payloads as List<org.apache.pulsar.client.api.Message<?>,
org.apache.pulsar.client.api.Messages<?>, or org.springframework.messaging.Messsge<?>.

Message Acknowledgment

When you use Spring for Apache Pulsar, the message acknowledgment is handled by the
framework, unless opted out by the application. In this section, we go through the details of how
the framework takes care of message acknowledgment.

19

Message ACK modes

Spring for Apache Pulsar provides the following modes for acknowledging messages:

* BATCH
* RECORD
* MANUAL

BATCH acknowledgment mode is the default, but you can change it on the message listener
container. In the following sections, we see how acknowledgment works when you use both single
and batch versions of PulsarlListener and how they translate to the backing message listener
container (and, ultimately, to the Pulsar consumer).

Automatic Message Ack in Single Record Mode

Let us revisit our basic single message based PulsarListener:

@PulsarlListener(subscriptionName = "hello-pulsar-subscription”, topics = "hello-
pulsar™)
public void listen(String message) {

System.out.println("Message Received: " + message);

}

It is natural to wonder, how acknowledgment works when you use PulsarlListener, especially if you
are familiar with using Pulsar consumer directly. The answer comes down to the message listener
container, as that is the central place in Spring for Apache Pulsar that coordinates all the consumer
related activities.

Assuming you are not overriding the default behavior, this is what happens behind the scenes
when you use the preceding PulsarListener:

1. First, the listener container receives messages as batches from the Pulsar consumer.
2. The received messages are handed down to PulsarListener one message at a time.

3. When all the records are handed down to the listener method and successfully processed, the
container acknowledges all the messages from the original batch.

This is the normal flow. If any records from the original batch throw an exception, Spring for
Apache Pulsar track those records separately. When all the records from the batch are processed,
Spring for Apache Pulsar acknowledges all the successful messages and negatively acknowledges
(nack) all the failed messages. In other words, when consuming single records by using
PulsarRecordMessagelistener and the default ack mode of BATCH is used, the framework waits for all
the records received from the batchReceive call to process successfully and then calls the
acknowledge method on the Pulsar consumer. If any particular record throws an exception when
invoking the handler method, Spring for Apache Pulsar tracks those records and separately calls
negativeAcknowledge on those records after the entire batch is processed.

20

If the application wants the acknowledgment or negative acknowledgment to occur per record, the
RECORD ack mode can be enabled. In that case, after handling each record, the message is
acknowledged if no error and negatively acknowledged if there was an error. The following
example enables RECORD ack mode on the Pulsar listener:

@PulsarlListener(subscriptionName = "hello-pulsar-subscription”, topics = "hello-
pulsar", ackMode = AckMode.RECORD)
public void listen(String message) {

System.out.println("Message Received: " + message);

}

You can also set the listener property, spring.pulsar.listner.ack-mode, to set the ack mode
application-wide. When doing this, you need not set this on the PulsarListener annotation. In that
case, all the PulsarListener methods in the application acquire that property.

Manual Message Ack in Single Record Mode

You might not always want the framework to send acknowledgments but, rather, do that directly
from the application itself. Spring for Apache Pulsar provides a couple of ways to enable manual
message acknowledgments. The following example shows one of them:

@Pulsarlistener(subscriptionName = "hello-pulsar-subscription”, topics = "hello-

pulsar", ackMode = AckMode.MANUAL)

public void listen(Message<String> message, Acknowledgment acknowledgment) {
System.out.println("Message Received: " + message.getValue());
acknowledgment.acknowledge();

A few things merit explanation here. First, we enablE manual ack mode by setting ackMode on
PulsarListener. When enabling manual ack mode, Spring for Apache Pulsar lets the application
inject an Acknowledgment object. The framework achieves this by selecting a compatible message
listener container: PulsarAcknowledgingMessagelListener for single record based consumption, which
gives you access to an Acknowledgment object.

The Acknowledgment object provides the following API methods:

21

void acknowledge();

void acknowledge(Messageld messageld);

void acknowledge(List<MessageId> messagelds);
void nack();

void nack(Messageld messageld);

You can inject this Acknowledgment object into your PulsarlListener while using MANUAL ack mode and
then call one of the corresponding methods.

In the preceding PulsarlListener example, we call a parameter-less acknowledge method. This is
because the framework knows which Message it is currently operating under. When calling
acknowledge(), you need not receive the payload with the Message enveloper but, rather, use the
target type—String, in this example. You can also call a different variant of acknowledge by
providing the message ID: acknowledge.acknowledge(message.getMessageId()); When you use
acknowledge(messageld), you must receive the payload by using the Message<?> envelope.

Similar to what is possible for acknowledging, the Acknowledgment API also provides options for
negatively acknowledging. See the nack methods shown earlier.

You can also call acknowledge directly on the Pulsar consumer:

@PulsarlListener(subscriptionName = "hello-pulsar-subscription”, topics = "hello-

pulsar", ackMode = AckMode.MANUAL)

public void listen(Message<String> message, Consumer<String> consumer) {
System.out.println("Message Received: " + message.getValue());

try {
consumer .acknowledge(message);

}
catch (Exception e) {

}

When calling acknowledge directly on the underlying consumer, you need to do error handling by
yourself. Using the Acknowledgment does not require that, as the framework can do that for you.
Therefore, you should use the Acknowledgment object approach when wusing manual
acknowledgment.

22

When using manual acknowledgment, it is important to understand that the

o framework completely stays from any acknowledgment at all. Hence, it is
extremely important to think through the right acknowledgment strategies when
designing applications.

Automatic Message Ack in Batch Consumption

When you consume records in batches (see “Message ACK modes”) and you use the default ack
mode of BATCH is used, when the entire batch is processed successfully, the entire batch is
acknowledged. If any records throw an exception, the entire batch is negatively acknowledged.
Note that this may not be the same batch that was batched on the producer side. Rather, this is the
batch that returned from calling batchReceive on the consumer

Consider the following batch listener:

@PulsarListener(subscriptionName = "hello-pulsar-subscription”, topics = "hello-
pulsar", batch = true)
public void batchListen(List<Foo> messages) {

for (Foo foo : messages) {

When all the messages in the incoming collection (messages in this example) are processed, the
framework acknowledges all of them.

When consuming in batch mode, RECORD is not an allowed ack mode. This might cause an issue, as
an application may not want the entire batch to be re-delivered again. In such situations, you need
to use the MANUAL acknowledgement mode.

Manual Message Ack in Batch Consumption

As seen in the previous section, when MANUAL ack mode is set on the message listener container, the
framework does not do any acknowledgment, positive or negative. It is entirely up to the
application to take care of such concerns. When MANUAL ack mode is set, Spring for Apache Pulsar
selects a compatible message listener container: PulsarBatchAcknowledgingMessagelistener for batch
consumption, which gives you access to an Acknowledgment object. The following are the methods
available in the Acknowledgment API:

23

void acknowledge();

void acknowledge(Messageld messageld);

void acknowledge(List<MessageId> messagelds);
void nack();

void nack(Messageld messageld);

You can inject this Acknowledgment object into your PulsarlListener while using MANUAL ack mode. The
following listing shows a basic example for a batch based listener:

@PulsarlListener(subscriptionName = "hello-pulsar-subscription”, topics = "hello-
pulsar")
public void listen(List<Message<String>> messgaes, Acknowlegement acknowledgment)

{

for (Message<String> message : messages) {
try {

acknowledgment.acknowledge(message.getMessageld());

}
catch (Exception e) {

acknowledgment.nack(message.getMessageld());

}

When you use a batch listener, the message listener container cannot know which record it is
currently operating upon. Therefore, to manually acknowledge, you need to use one of the
overloaded acknowledge method that takes a Messageld or a List<MessageId>. You can also negatively
acknowledge with the MessagelId for the batch listener.

Message Redelivery and Error Handling

Now that we have seen both PulsarListener and the message listener container infrastructure and
its various functions, let us now try to understand message redelivery and error handling. Apache
Pulsar provides various native strategies for message redelivery and error handling. We take a look
at them and see how we can use them through Spring for Apache Pulsar.

Specifying Acknowledgment Timeout for Message Redelivery

By default, Pulsar consumers does not redeliver messages unless the consumer crashes, but you can
change this behavior by setting an ack timeout on the Pulsar consumer. When you use Spring for
Apache Pulsar, you can enable this property by setting the spring.pulsar.consumer.ack-timeout Boot

24

property. If this property has a value above zero and if the Pulsar consumer does not acknowledge
a message within that timeout period, the message is redelivered.

You can also specify this property directly as a Pulsar consumer property on the PulsarListener
itself:

@PulsarlListener(subscriptionName = "subscription-1", topics = "topic-1"
properties = {"ackTimeout=60s"})
public void listen(String s) {

}

When you specify ackTimeout (as seen in the preceding PulsarlListener method), if the consumer
does not send an acknowledgement within 60 seconds, the message is redelivered by Pulsar to the
consumer.

If you want to specify some advanced backoff options for ack timeout with different delays, you can
do the following:

@EnablePulsar
@Configuration
class AckTimeoutRedeliveryConfig {

@PulsarListener(subscriptionName =
"withAckTimeoutRedeliveryBackoffSubscription",
topics = "withAckTimeoutRedeliveryBackoff-test-topic"”,
ackTimeoutRedeliveryBackoff = "ackTimeoutRedeliveryBackoff",
properties = { "ackTimeout=60s" })
void listen(String msg) {
// some long-running process that may cause an ack timeout

}

@Bean
RedeliveryBackoff ackTimeoutRedeliveryBackoff() {
return
MultiplierRedeliveryBackoff.builder().minDelayMs(1000).maxDelayMs(10 *
1000) .multiplier(2)
.build();
}

In the preceding example, we specify a bean for Pulsar’s RedeliveryBackoff with a minimum delay
of 1 second, a maximum delay of 10 seconds, and a backoff multiplier of 2. After the initial ack
timeout occurs, the message redeliveries are controlled through this backoff bean. We provide the

25

backoff bean to the PulsarListener annotation by setting the ackTimeoutRedeliveryBackoff property
to the actual bean name — ackTimeoutRedeliveryBackoff, in this case.

Specifying Negative Acknowledgment Redelivery

When acknowledging negatively, Pulsar consumer lets you specify how the application wants the
message to be re-delivered. The default is to redeliver the message in one minute, but you can
change it by setting spring.pulsar.consumer.negative-ack-redelivery-delay. You can also set it as a
consumer property directly on PulsarListener, as follows:

@PulsarlListener(subscriptionName = "subscription-1", topics = "topic-1"
properties = {"negativeAckRedeliveryDelay=10ms"})
public void listen(String s) {

}

You can also specify different delays and backoff mechanisms with a multiplier by providing a
RedeliveryBackoff bean and providing the bean name as the negativeAckRedeliveryBackoff property
on the PulsarProducer, as follows:

@EnablePulsar
@Configuration
class NegativeAckRedeliveryConfig {

@PulsarListener(subscriptionName = "withNegRedeliveryBackoffSubscription”,
topics = "withNegRedeliveryBackoff-test-topic",
negativeAckRedeliveryBackoff = "redeliveryBackoff",
subscriptionType = SubscriptionType.Shared)
void listen(String msg) {
throw new RuntimeException("fail " + msg);

}

@Bean
RedeliveryBackoff redeliveryBackoff() {
return
MultiplierRedeliveryBackoff.builder().minDelayMs(1000).maxDelayMs(10 *
1000) .multiplier(2)
.build();
}

Using Dead Letter Topic from Apache Pulsar for Message Redelivery and Error Handling

Apache Pulsar lets applications use a dead letter topic on consumers with a Shared subscription

26

type. For the Exclusive and Failover subscription types, this feature is not available. The basic idea
is that, if a message is retried a certain number of times (maybe due to an ack timeout or nack
redelivery), once the number of retries are exhausted, the message can be sent to a special topic
called the dead letter queue (DLQ). Let us see some details around this feature in action by
inspecting some code snippets:

@EnablePulsar
@Configuration
class DeadlLetterPolicyConfig {

@PulsarListener(id = "deadlLetterPolicyListener", subscriptionName =
"deadlLetterPolicySubscription”,
topics = "topic-with-d1lp", deadlLetterPolicy = "deadLetterPolicy",
subscriptionType = SubscriptionType.Shared, properties = {
"ackTimeout=1s" })
void listen(String msg) {
throw new RuntimeException("fail " + msg);

}

@PulsarListener(id = "dlglistener", topics = "my-dlg-topic")
void listenDlq(String msg) {

System.out.println("From DLQ: " + msqg);
}
@Bean
DeadlLetterPolicy deadlLetterPolicy() {

return
DeadlLetterPolicy.builder().maxRedeliverCount(10).deadLetterTopic("my-dlg-
topic").build();
}

First, we have a special bean for DeadlLetterPolicy, and it is named as deadlLetterPolicy (it can be
any name as you wish). This bean specifies a number of things, such as the max delivery (10, in this
case) and the name of the dead letter topic—my-dlq-topic, in this case. If you do not specify a DLQ
topic name, it defaults to <topicname>-<subscriptionname>-DLQ in Pulsar. Next, we provide this bean
name to Pulsarlistener by setting the deadLetterPolicy property. Note that the PulsarListener has a
subscription type of Shared, as the DLQ feature only works with shared subscriptions. This code is
primarily for demonstration purposes, so we provide an ackTimeout value of 1 second. The idea is
that the code throws the exception and, if Pulsar does not receive an ack within 1 second, it does a
retry. If that cycle continues ten times (as that is our max redelivery count in the DeadLetterPolicy),
the Pulsar consumer publishes the messages to the DLQ topic. We have another PulsarListener that
listens on the DLQ topic to receive data as it is published to the DLQ topic.

27

Special note on DLQ topics when using partitioned topics

If the main topic is partitioned, behind the scenes, each partition is treated as a separate topic
by Pulsar. Pulsar appends partition-<n>, where n stands for the partition number to the main
topic name. The problem is that, if you do not specify a DLQ topic (as opposed to what we did
above), Pulsar publishes to a default topic name that has this ‘partition-<n> info in it— for
example: topic-with-dlp-partition-0-deadlLetterPolicySubscription-DLQ. The easy way to
solve this is to provide a DLQ topic name always.

Native Error Handling in Spring for Apache Pulsar

As we noted earlier, the DLQ feature in Apache Pulsar works only for shared subscriptions. What
does an application do if it needs to use some similar feature for non-shared subscriptions? The
main reason Pulsar does not support DLQ on exclusive and failover subscriptions is because those
subscription types are order-guaranteed. Allowing redeliveries, DLQ, and so on effectively receives
messages out of order. However, what if an application are okay with that but, more importantly,
needs this DLQ feature for non-shared subscriptions? For that, Spring for Apache Pulsar provides a
PulsarConsumerErrorHandler, which you can use across any subscription types in Pulsar: Exclusive,
Failover, Shared, or Key_Shared.

When you use PulsarConsumerErrorHandler from Spring for Apache Pulsar, make sure not to set the
ack timeout properties on the listener.

Let us see some details by examining a few code snippets:

28

@EnablePulsar
@Configuration
class PulsarConsumerErrorHandlerConfig {

@Bean
PulsarConsumerErrorHandler<String> pulsarConsumerErrorHandler (
PulsarTemplate<String> pulsarTemplate) {
return new DefaultPulsarConsumerErrorHandler<>(
new PulsarDeadlLetterPublishingRecoverer<>(pulsarTemplate, (c, m)
-> "my-foo-d1t"), new FixedBackOff(100, 10));

}

@PulsarListener(id = "pulsarConsumerErrorHandler-id", subscriptionName =
"pulsatConsumerErrorHandler-subscription”,
topics = "pulsarConsumerErrorHandler-topic",
pulsarConsumerErrorHandler = "pulsarConsumerErrorHandler")
void listen(String msg) {
throw new RuntimeException("fail " + msg);

}

@PulsarListener(id = "pceh-dltListener", topics = "my-foo-dit")
void listenD1t(String msg) {
System.out.println("From DLT:

+ msqg);

}

Consider the pulsarConsumerErrorHandler bean. This <creates a bean of
PulsarConsumerErrorHandler and uses the default implementation provided out of the box by Spring
for Apache Pulsar: DefaultPulsarConsumerErrorHandler. DefaultPulsarConsumerErrorHandler has a

type

constructor that takes a PulsarMessageRecovererFactory and a
org.springframework.util.backoff.Backoff. PulsarMessageRecovererFactory is a functional interface
with the following API:

@Functionallnterface

public interface PulsarMessageRecovererFactory<T> {

/**

* Provides a message recoverer {@link PulsarMessageRecoverer}.

* @param consumer Pulsar consumer

* @return {@link PulsarMessageRecoverer}.

*/

PulsarMessageRecoverer<T> recovererForConsumer (Consumer<T> consumer);

29

The recovererForConsumer method takes a Pulsar consumer and returns a PulsarMessageRecoverer,
which is another functional interface. Here is the API of PulsarMessageRecoverer:

public interface PulsarMessageRecoverer<T> {

/**

* Recover a failed message, for e.g. send the message to a DLT.
* @param message Pulsar message

* @param exception exception from failed message

*/

void recoverMessage(Message<T> message, Exception exception);

Spring for Apache Pulsar provides an implementation for PulsarMessageRecovererFactory called
PulsarDeadLetterPublishingRecoverer that provides a default implementation that can recover the
message by sending it to a Dead Letter Topic (DLT). We provide this implementation to the
constructor for the preceding DefaultPulsarConsumerErrorHandler. As the second argument, we
provide a FixedBackOff. You can also provide the ExponentialBackoff from Spring for advanced
backoff features. Then we provide this bean name for the PulsarConsumerErrorHandler as a property
to the PulsarListener. The property is called pulsarConsumerErrorHandler. Each time the
PulsarListener method fails for a message, it gets retried. The number of retries are controlled by
the Backoff provided implementation values. In our example, we do 10 retries (11 total tries —the
first one and then the 10 retries). Once all the retries are exhausted, the message is sent to the DLT
topic.

The PulsarDeadlLetterPublishingRecoverer implementation we provide uses a PulsarTemplate that is
used for publishing the message to the DLT. In most cases, the same auto-configured PulsarTemplate
from Spring Boot is sufficient with the caveat for partitioned topics. When using partitioned topics
and using custom message routing for the main topic, you must use a different PulsarTemplate that
does not take the auto-configured PulsarProducerFactory that is populated with a value of
custompartition for message-routing-mode. You can use a PulsarConsumerErrorHandler with the
following blueprint:

30

@Bean
PulsarConsumerErrorHandler<Integer> pulsarConsumerErrorHandler (Pulsar(Client
pulsarClient) {
PulsarProducerFactory<Integer> pulsarProducerFactory = new
DefaultPulsarProducerFactory<>(pulsarClient, Map.of());
PulsarTemplate<Integer> pulsarTemplate = new
PulsarTemplate<>(pulsarProducerFactory);

BiFunction<Consumer<?>, Message<?>, String> destinationResolver =
(c, m) -> "my-foo-d1t";

PulsarDeadlLetterPublishingRecoverer<Integer>
pulsarDeadlLetterPublishingRecoverer =
new PulsarDeadlLetterPublishingRecoverer<>(pulsarTemplate,
destinationResolver);

return new
DefaultPulsarConsumerErrorHandler<>(pulsarDeadlLetterPublishingRecoverer,
new FixedBackOff(100, 5));
}

Note that we are provide a destination resolver to the PulsarDeadlLetterPublishingRecoverer as the
second constructor argument. If not provided, PulsarDeadlLetterPublishingRecoverer wuses
<subscription-name>-<topic-name>-DLT> as the DLT topic name. When using this feature, you should
use a proper destination name by setting the destination resolver rather than using the default.

When using a single record message listener, as we did with PulsarConsumerErrorHnadler, and if you
use manual acknowledgement, make sure to not negatively acknowledge the message when an
exception is thrown. Rather, re-throw the exception back to the container. Otherwise, the container
thinks the message is handled separately, and the error handling is not triggered.

Finally, we have a second PulsarListener that receives messages from the DLT topic.

In the examples provided in this section so far, we only saw how to use PulsarConsumerErrorHandler
with a single record message listener. Next, we look at how you can use this on batch listeners.

Batch listener with PulsarConsumerErrorHandler

First, let us look at a batch PulsarListener method:

31

@PulsarlListener(subscriptionName = "batch-demo-5-sub", topics = "batch-demo-4",
batch = true, concurrency = "3",

subscriptionType = SubscriptionType.Failover,

pulsarConsumerErrorHandler = "pulsarConsumerErrorHandler", ackMode =
AckMode . MANUAL)
void listen(List<Message<Integer>> data, Consumer<Integer> consumer,
Acknowledgment acknowledgment) {

for (Message<Integer> datum : data) {
if (datum.getValue() == 5) {
throw new PulsarBatchListenerFailedException("failed", datum);

}
acknowledgement.acknowledge(datum.getMessageId());

}

@Bean
PulsarConsumerErrorHandler<String> pulsarConsumerErrorHandler (
PulsarTemplate<String> pulsarTemplate) {
return new DefaultPulsarConsumerErrorHandler<>(
new PulsarDeadlLetterPublishingRecoverer<>(pulsarTemplate, (c, m) ->
"my-foo-d1t"), new FixedBack0ff(100, 10));

}

@Pulsarlistener(subscriptionName = "my-dlt-subscription", topics = "my-foo-dlt")
void dltReceiver(Message<Integer> message) {
System.out.println("DLT - RECEIVED: " + message.getValue());

}

Once again, we provide the pulsarConsumerErrorHandler property with the
PulsarConsumerErrorHandler bean name. When you use a batch listener (as shown in the preceding
example) and want to use the PulsarConsumerErrorHandler from Spring for Apache Pulsar, you need
to use manual acknowledgment. This way, you can acknowledge all the successful individual
messages. For the ones that fail, you must throw a PulsarBatchListenerFailedException with the
message on which it fails. Without this exception, the framework does not know what to do with
the failure. On retry, the container sends a new batch of messages, starting with the failed message
to the listener. If it fails again, it is retried, until the retries are exhausted, at which point the
message is sent to the DLT. At that point, the message is acknowledged by the container, and the
listener is handed over with the subsequent messages in the original batch.

2.1.5. Publishing and Consuming Partitioned Topics

In the following example, we publish to a topic called hello-pulsar-partitioned. It is a topic that is
partitioned, and, for this sample, we assume that the topic is already created with three partitions.

32

@SpringBootApplication
public class PulsarBootPartitioned {

public static void main(String[] args) {
SpringApplication.run(PulsarBootPartitioned.class, "--
spring.pulsar.producer.message-routing-mode=CustomPartition");

}

@Bean
public ApplicationRunner runner(PulsarTemplate<String> pulsarTemplate) {
pulsarTemplate.setDefaultTopicName("hello-pulsar-partitioned");
return args -> {
for (int i =0; i < 10; i++) {
pulsarTemplate.sendAsync("hello john doe @ ", new FooRouter());
pulsarTemplate.sendAsync("hello alice doe 1", new BarRouter());
pulsarTemplate.sendAsync("hello buzz doe 2", new BuzzRouter());

b
}

@PulsarListener(subscriptionName = "hello-pulsar-partitioned-subscription”,
topics = "hello-pulsar-partitioned")
public void listen(String message) {
System.out.println("Message Received:

+ message);

}

static class FooRouter implements MessageRouter {

@0verride
public int choosePartition(Message<?> msg, TopicMetadata metadata) {
return 0,
}
}

static class BarRouter implements MessageRouter {

@override
public int choosePartition(Message<?> msg, TopicMetadata metadata) {
return 1;
}
}

static class BuzzRouter implements MessageRouter {

@0verride
public int choosePartition(Message<?> msg, TopicMetadata metadata) {
return 2;

}

33

In the preceding example, we publish to a partitioned topic, and we would like to publish some data
segment to a specific partition. If you leave it to Pulsar’s default, it follows a round-robin mode of
partition assignments, and we would like to override that. To do so, we provide a message router
object with the send method. Consider the three message routers implemented. FooRouter always
sends data to partition 0, BarRouter sends to partition 1, and BuzzRouter sends to partition 2. Also
note that we now use the sendAsync method of PulsarTemplate that returns a CompletableFuture.
When running the application, we also need to set the messageRoutingMode on the producer to
CustomPartition (spring.pulsar.producer.message-routing-mode).

On the consumer side, we use a PulsarListener with the exclusive subscription type. This means
that data from all the partitions ends up in the same consumer and there is no ordering guarantee.

What can we do if we want each partition to be consumed by a single distinct consumer? We can
switch to the failover subscription mode and add three separate consumers:

@PulsarlListener(subscriptionName = "hello-pulsar-partitioned-subscription”, topics

= "hello-pulsar-partitioned”, subscriptionType = SubscriptionType.Failover)

public void listen1(String foo) {
System.out.println("Message Received 1:

+ foo);

}

@PulsarlListener(subscriptionName = "hello-pulsar-partitioned-subscription”, topics

= "hello-pulsar-partitioned", subscriptionType = SubscriptionType.Failover)

public void listen2(String foo) {
System.out.println("Message Received 2:

+ foo);

}

@PulsarListener(subscriptionName = "hello-pulsar-partitioned-subscription”,

topics = "hello-pulsar-partitioned", subscriptionType = SubscriptionType.Failover)

public void listen3(String foo) {
System.out.println("Message Received 3:

+ foo);

}

When you follow this approach, a single partition always gets consumed by a dedicated consumer.

In a similar vein, if you want to use Pulsar’s shared consumer type, you can use the shared
subscription type. However, when you use the shared mode, you lose any ordering guarantees, as a
single consumer may receive messages from all the partitions before another consumer gets a
chance.

Consider the following example:

34

@PulsarlListener(subscriptionName = "hello-pulsar-shared-subscription”, topics

"hello-pulsar-partitioned”, subscriptionType = SubscriptionType.Shared)

public void listen1(String foo) {
System.out.println("Message Received 1:

+ foo);

}

@PulsarlListener(subscriptionName = "hello-pulsar-shared-subscription”, topics

"hello-pulsar-partitioned", subscriptionType = SubscriptionType.Shared)

public void listen2(String foo) {
System.out.println("Message Received 2:

+ foo);

}

2.2. Reactive Support

The framework provides a Reactive counterpart for almost all supported features.

If you put the word Reactive in front of a provided imperative component, you will
likely find its Reactive counterpart.

O * PulsarTemplate » ReactivePulsarTemplate

- e PulsarListener » ReactivePulsarListener

PulsarConsumerFactory » ReactivePulsarConsumerFactory

e etc..

However, the following is not yet supported:

* Error Handling in non-shared subscriptions
* Accessing Pulsar headers via @Header in streaming mode

¢ Observations

2.2.1. Quick Tour

We will take a quick tour of the Reactive support in Spring for Apache Pulsar by showing a sample
Spring Boot application that produces and consumes in a Reactive fashion. This is a complete
application and does not require any additional configuration, as long as you have a Pulsar cluster
running on the default location - localhost:6650.

We recommend using a Spring-Boot-First approach for Spring for Apache Pulsar-

based applications, as that simplifies things tremendously. To do so, you can add
the spring-pulsar-reactive-spring-boot-starter module as a dependency.

Dependencies

Spring Boot applications need only the spring-pulsar-reactive-spring-boot-starter dependency.

35

The following listings show how to define the dependency for Maven and Gradle, respectively:

Maven

<dependencies>
<dependency>
<groupId>org.springframework.pulsar</groupId>
<artifactId>spring-pulsar-reactive-spring-boot-starter</artifactId>
<version>0.1.0</version>
</dependency>
</dependencies>

Gradle

dependencies {

implementation 'org.springframework.pulsar:spring-pulsar-reactive-spring-boot-
starter:0.1.0'
}

Application Code

Here is the application source code:

@SpringBootApplication
public class ReactiveSpringPulsarHelloWorld {

public static void main(String[] args) {
SpringApplication.run(ReactiveSpringPulsarHelloWorld.class, args);
}

@Bean
ApplicationRunner runner(ReactivePulsarTemplate<String> pulsarTemplate) {

return (args) -> pulsarTemplate.send("hello-pulsar-topic", "Hello Reactive
Pulsar World!").subscribe();

}

@ReactivePulsarListener(subscriptionName = "hello-pulsar-sub”, topics = "hello-
pulsar-topic")
Mono<Void> listen(String message) {
System.out.println("Reactive listener received: " + message);
return Mono.empty();

That is it, with just a few lines of code we have a working Spring Boot app that is producing and
consuming messages from a Pulsar topic in a Reactive fashion.

Once started, the application uses a ReactivePulsarTemplate to send messages to the hello-pulsar-
topic. It then consumes from the hello-pulsar-topic using a @ReactivePulsarListener.

36

o One of the key ingredients to the simplicity is the Spring Boot starter which auto-
configures and provides the required components to the application

2.2.2. Design

Here are a few key design points to keep in mind.

Apache Pulsar Reactive

The reactive support is ultimately provided by the Apache Pulsar Reactive client whose current
implementation is a fully non-blocking adapter around the regular Pulsar client’s asynchronous
API. This implies that the Reactive client requires the regular client.

Additive Auto-Configuration

Due to the dependence on the regular (imperative) client, the Reactive auto-configuration provided
by the framework is additive to the imperative auto-configuration. In other words, The imperative
starter only includes the imperative components but the reactive starter includes both imperative
and reactive components.

2.2.3. Reactive Pulsar Client

When you use the Reactive Pulsar Spring Boot Starter, you get the ReactivePulsar(Client auto-
configured. By default, the application tries to connect to a local Pulsar instance at
pulsar://localhost:6650. However, there are many application properties (inherited from the
adapted imperative client) available to configure.

See the Appendix for properties prefixed with spring.pulsar.client.

Authentication

To connect to a Pulsar cluster that requires authentication, follow the same steps as the imperative
client. Again, this is because the reactive client adapts the imperative client which handles all
security configuration.

2.2.4. Message Production

ReactivePulsarTemplate

On the Pulsar producer side, Spring Boot auto-configuration provides a ReactivePulsarTemplate for
publishing records. The template implements an interface called ReactivePulsarOperations and
provides methods to publish records through its contract.

The template provides send methods that accept a single message and return a Mono<MessageId>. It
also provides send methods that accept multiple messages (in the form of the ReactiveStreams
Publisher type) and return a Flux<MessageId>.

G The send methods that do not have a topic input parameter require the topic name
- to be provided via the property spring.pulsar.reactive.sender.topic-name.

37

https://github.com/apache/pulsar-client-reactive

Fluent API

The template provides a fluent builder to handle more complicated send requests.

Message customization

You can specify a MessageSpecBuilderCustomizer to configure the outgoing message. For example, the
following code shows how to send a keyed message:

template.newMessage(msg)
.withMessageCustomizer((me) -> mc.key("foo-msg-key"))
.send();

Sender customization

You can specify a ReactiveMessageSenderBuilderCustomizer to configure the underlying Pulsar
sender builder that ultimately constructs the sender used to send the outgoing message.

ﬁ Use with caution as this gives full access to the sender builder and invoking some
of its methods (such as create) may have unintended side effects.

For example, the following code shows how to disable batching and enable chunking:

template.newMessage(msg)
.withSenderCustomizer((sc) -> sc.enableChunking(true).enableBatching(false))
.send();

This other example shows how to use custom routing when publishing records to partitioned
topics. Specify your custom MessageRouter implementation on the sender builder such as:

template.newMessage(msg)
.withSenderCustomizer((sc) -> sc.messageRouter(messageRouter))

.send();
7 Note that, when wusing a MessageRouter, the only wvalid setting for
- spring.pulsar.reactive.sender.message-routing-mode is custom.

Specifying Schema Information

If you use Java primitive types, the framework auto-detects the schema for you, and you need not
specify any schema types for publishing the data. However, if you use any complex types (such as
JSON, AVRO, PROTOBUF, and others), you need to set the proper schema type on the

38

https://docs.spring.io/spring-pulsar/docs/0.1.0/api/org/springframework/pulsar/reactive/core/ReactivePulsarOperations.html#newMessage(T)

ReactivePulsarTemplate before invoking any send operations, as the following example shows for
JSON:

template.setSchema(Schema.JSON(Foo.class));

o Complex Schema types that are currently supported are JSON, AVRO, PROTOBUF,
and KEY_VALUE w/ INLINE encoding.

ReactivePulsarSenderFactory

The ReactivePulsarTemplate relies on a ReactivePulsarSenderFactory to actually create the
underlying sender.

Spring Boot provides this sender factory which can be configured with any of the
spring.pulsar.reactive.sender prefixed application properties.

Producer Caching

Each underlying Pulsar producer consumes resources. To improve performance and avoid
continual creation of producers, the ReactiveMessageSenderCache in the underlying Apache Pulsar
Reactive client caches the producers that it creates. They are cached in an LRU fashion and evicted
when they have not been used within a configured time period.

You can configure the cache settings by specifying any of the spring.pulsar.reactive.sender.cache
prefixed application properties.

2.2.5. Message Consumption

@ReactivePulsarListener

When it comes to Pulsar consumers, we recommend that end-user applications use the
ReactivePulsarListener annotation. To wuse ReactivePulsarListener, you need to wuse the
@EnableReactivePulsar annotation. When you use Spring Boot support, it automatically enables this
annotation and configures all necessary components, such as the message listener infrastructure
(which is responsible for creating the underlying Pulsar consumer).

Let us revisit the ReactivePulsarListener code snippet we saw in the quick-tour section:

@ReactivePulsarListener(subscriptionName = "hello-pulsar-sub", topics = "hello-
pulsar-topic")
Mono<Void> listen(String message) {

System.out.println(message);

return Mono.empty();

39

The listener method returns a Mono<Void> to signal whether the message was
o successfully processed. Mono.empty() indicates success (acknowledgment) and
Mono.error () indicates failure (negative acknowledgment).

You can also further simplify this method:

@ReactivePulsarlListener

Mono<Void> listen(String message) {
System.out.println(message);
return Mono.empty();

In this most basic form, you must still provide the topic name by setting the following property:

spring.pulsar.reactive.consumer:
topic-names: hello-pulsar-topic

o If subscription-name is not provided an auto-generated subscription name will be
used.

In the ReactivePulsarListener method shown earlier, we receive the data as String, but we do not
specify any schema types. Internally, the framework relies on Pulsar’s schema mechanism to
convert the data to the required type. The framework detects that you expect the String type and
then infers the schema type based on that information. Then it provides that schema to the
consumer. For all the primitive types in Java, the framework does this inference. For any complex
types (such as JSON, AVRO, and others), the framework cannot do this inference and the user needs
to provide the schema type on the annotation using the schemaType property.

This example shows how we can consume complex types from a topic:

@ReactivePulsarListener(topics = "my-topic-2", schemaType = SchemaType.JSON)
Mono<Void> listen(Foo message) {

System.out.println(message);

return Mono.empty();

Note the addition of a schemaType property on ReactivePulsarListener. That is because the library is
not capable of inferring the schema type from the provided type: Foo. We must tell the framework
what schema to use.

Let us look at a few more ways we can consume.

This example consumes the Pulsar message directly:

40

@ReactivePulsarListener(topics = "my-topic")

Mono<Void> listen(org.apache.pulsar.client.api.Message<String> message) {
System.out.println(message.getValue());
return Mono.empty();

This example consumes the record wrapped in a Spring messaging envelope:

@ReactivePulsarListener(topics = "my-topic")

Mono<Void> listen(org.springframework.messaging.Message<String> message) {
System.out.println(message.getPayload());
return Mono.empty();

Streaming

All of the above are examples of consuming a single record one-by-one. However, one of the
compelling reasons to use Reactive is for the streaming capability with backpressure support.

The following example uses ReactivePulsarlListener to consume a stream of POJOs:

@ReactivePulsarListener(topics = "streaming-1", stream = true)
Flux<MessageResult<Void>> listen(Flux<Message<String>> messages) {
return messages
.doOnNext((msg) -> System.out.println("Received: " + msg.getValue()))
.map(MessageResult::acknowledge);

Here we receive the records as a Flux of messages. In addition, to enable stream consumption at the
ReactivePulsarListener level, you need to set the stream property on the annotation to true.

The listener method returns a Flux<MessageResult<Void>> where each element

o represents a processed message and holds the message id, value and whether it
was acknowledged. The MessageResult has a set of static factory methods that can
be used to create the appropriate MessageResult instance.

Based on the actual type of the messages in the Flux, the framework tries to infer the schema to use.
If it contains a complex type, you still need to provide the schemaType on ReactivePulsarListener.

The following listener uses the Spring messaging Message envelope with a complex type :

41

@ReactivePulsarlListener(topics = "streaming-2", stream = true, schemaType =
SchemaType.JSON)
Flux<MessageResult<Void>> listen2(Flux<org.springframework.messaging.Message<Foo>>
messages) {
return messages
.doOnNext((msg) -> System.out.println("Received:
.map(MessageResult::acknowledge);

+ msg.getPayload()))

Configuration - Application Properties

The listener ultimately relies on ReactivePulsarConsumerFactory to create and manage the
underlying Pulsar consumer.

Spring Boot provides this consumer factory which can be configured with any of the
spring.pulsar.reactive.consumer prefixed application properties.

Consumer Customization

You can specify a ReactiveMessageConsumerBuilderCustomizer to configure the underlying Pulsar
consumer builder that ultimately constructs the consumer used by the listener to receive the
messages.

a Use with caution as this gives full access to the consumer builder and invoking
some of its methods (such as create) may have unintended side effects.

For example, the following code shows how to set the initial position of the subscription to the
earliest messaage on the topic.

@ReactivePulsarListener(topics = "hello-pulsar-topic", consumerCustomizer =
"myConsumerCustomizer")
Mono<Void> listen(String message) {

System.out.println(message);

return Mono.empty();

@Bean

ReactiveMessageConsumerBuilderCustomizer<String> myConsumerCustomizer() {
return b ->

b.subscriptionInitialPosition(SubscriptionInitialPosition.Earliest);

}

You can also use the customizer to provide direct Pulsar consumer properties to the consumer
builder. This is convenient if you do not want to use the Boot configuration properties mentioned
earlier or have multiple ReactivePulsarlListener methods whose configuration varies.

42

The following customizer example uses direct Pulsar consumer properties:

@Bean

ReactiveMessageConsumerBuilderCustomizer<String> directConsumerPropsCustomizer() {
return b -> b.property("subscriptionName", "subscription-

1").property("topicNames", "foo-1");

+

’ The properties used are direct Pulsar consumer properties, not the
spring.pulsar.reactive.consumer Spring Boot configuration properties

Specifying Schema Information

As indicated earlier, for Java primitives, the Spring Pulsar framework can infer the proper Schema
to use on the ReactivePulsarListener. However, for more complex types (such as JSON or AVRO),
you need to specify the schema type on the annotation.

o Complex Schema types that are currently supported are JSON, AVRO, PROTOBUF,
and KEY_VALUE w/ INLINE encoding.

Message Listener Container Infrastructure

In most scenarios, we recommend using the ReactivePulsarListener annotation directly for
consuming from a Pulsar topic as that model covers a broad set of application use cases. However,
it is important to understand how ReactivePulsarlListener works internally.

The message listener container is at the heart of message consumption when you use Spring for
Apache Pulsar. The ReactivePulsarListener uses the message listener container infrastructure
behind the scenes to create and manage the underlying Pulsar consumer.

ReactivePulsarMessageListenerContainer

The contract for this message listener container is provided through
ReactivePulsarMessagelistenerContainer whose default implementation creates a reactive Pulsar
consumer and wires up a reactive message pipeline that uses the created consumer.

ReactiveMessagePipeline

The pipeline is a feature of the underlying Apache Pulsar Reactive client which does the heavy
lifting of receiving the data in a reactive manner and then handing it over to the provided message
handler. The reactive message listener container implementation is much simpler because the
pipeline handles the majority of the work.

ReactivePulsarMessageHandler

The "listener" aspect is provided by the ReactivePulsarMessageHandler of which there are two
provided implementations:

43

* ReactivePulsarOneByOneMessageHandler - handles a single message one-by-one

* ReactivePulsarStreamingHandler - handles multiple messages via a Flux

Concurrency

When consuming records in streaming mode (stream = true) concurrency comes naturally via the
underlying Reactive support in the client implementation.

However, when handling messages one-by-one, concurrency can be specified to increase
processing throughput. Simply set the concurrency property on @ReactivePulsarlListener.
Additionally, when concurrency > 1 you can ensure messages are ordered by key and therefore sent
to the same handler by setting useKeyOrderedProcessing = "true" on the annotation.

Again, the ReactiveMessagePipeline does the heavy lifting, we simply set the properties on it.

Reactive vs Imperative

Concurrency in the reactive container is different from its imperative counterpart. The latter
creates multiple threads (each with a Pulsar consumer) whereas the former dispatches the
messages to multiple handler instances concurrently on the Reactive parallel scheduler.

One advantage of reactive concurrency is that it can be used with Exclusive and Failover
subscriptions to increase processing throughput if strict ordering is not required. In contrast
to imperative concurrency that can not currently be used with Exclusive and does not
provide more processing power with Failover.

Pulsar Headers

The Pulsar message metadata can be consumed as Spring message headers. The list of available
headers can be found in PulsarHeaders.java.

Accessing In OneByOne Listener

The following example shows how you can access Pulsar Headers when using a one-by-one
message listener:

@ReactivePulsarListener(topics = "some-topic")
Mono<Void> listen(String data,
@Header (PulsarHeaders.MESSAGE_ID) MessagelId messageld,
@Header ("foo") String foo) {
System.out.println("Received " + data + " w/ id=" + messageld +
foo);
return Mono.empty();

w/ foo=" +

In the preceding example, we access the values for the messageld message metadata as well as a

44

https://github.com/spring-projects-experimental/spring-pulsar/blob/main/spring-pulsar/src/main/java/org/springframework/pulsar/support/PulsarHeaders.java

custom message property named foo. The Spring @Header annotation is used for each header field.

You can also use Pulsar’s Message as the envelope to carry the payload. When doing so, the user can
directly call the corresponding methods on the Pulsar message for retrieving the metadata.
However, as a convenience, you can also retrieve it by using the Header annotation. Note that you
can also use the Spring messaging Message envelope to carry the payload and then retrieve the
Pulsar headers by using @Header.

Accessing In Streaming Listener

When using a streaming message listener the header support is limited. Only when the Flux
contains Spring org.springframework.messaging.Message elements will the headers be populated.
Additionally, the Spring @Header annotation can not be used to retrieve the data. You must directly
call the corresponding methods on the Spring message to retrieve the data.

Message Acknowledgment

The framework automatically handles message acknowledgement. However, the listener method
must send a signal indicating whether the message was successfully processed. The container
implementation then uses that signal to perform the ack or nack operation. This is a slightly
different from its imperative counterpart where the signal is implied as positive unless the method
throws an exception.

OneByOne Listener

The single message (aka OneByOne) message listener method returns a Mono<Void> to signal
whether the message was successfully processed. Mono.empty() indicates success (acknowledgment)
and Mono.error () indicates failure (negative acknowledgment).

Streaming Listener

The streaming listener method returns a Flux<MessageResult<Void>> where each MessageResult
element represents a processed message and holds the message id, value and whether it was
acknowledged. The MessageResult has a set of acknowledge and negativeAcknowledge static factory
methods that can be used to create the appropriate MessageResult instance.

Message Redelivery and Error Handling

Apache Pulsar provides various native strategies for message redelivery and error handling. We
will take a look at them and see how to use them through Spring for Apache Pulsar.

Acknowledgment Timeout

By default, Pulsar consumers do not redeliver messages unless the consumer crashes, but you can
change this behavior by setting an ack timeout on the Pulsar consumer. When you use Spring for
Apache Pulsar, you can enable this property by setting the spring.pulsar.reactive.consumer.ack-
timeout Boot property. If this property has a value above zero and if the Pulsar consumer does not
acknowledge a message within that timeout period, the message is redelivered.

You can also specify this property directly as a Pulsar consumer property via a consumer
customizer such as:

45

@Bean
ReactiveMessageConsumerBuilderCustomizer<String> consumerCustomizer() {
return b -> b.property("ackTimeout", "60s");

Negative Acknowledgment Redelivery Delay

When acknowledging negatively, Pulsar consumer lets you specify how the application wants the
message to be re-delivered. The default is to redeliver the message in one minute, but you can
change it by setting spring.pulsar.reactive.consumer.negative-ack-redelivery-delay.

You can also set it directly as a Pulsar consumer property via a consumer customizer such as:

@Bean
ReactiveMessageConsumerBuilderCustomizer<String> consumerCustomizer() {
return b -> b.property("negativeAckRedeliveryDelay", "10ms");

Dead Letter Topic

Apache Pulsar lets applications use a dead letter topic on consumers with a Shared subscription
type. For the Exclusive and Failover subscription types, this feature is not available. The basic idea
is that, if a message is retried a certain number of times (maybe due to an ack timeout or nack
redelivery), once the number of retries are exhausted, the message can be sent to a special topic
called the dead letter queue (DLQ). Let us see some details around this feature in action by
inspecting some code snippets:

46

@Configuration(proxyBeanMethods = false)
class DeadlLetterPolicyConfig {

@ReactivePulsarListener(
topics = "topic-with-dlp",
subscriptionType = SubscriptionType.Shared,
deadletterPolicy = "myDeadletterPolicy",
consumerCustomizer = "ackTimeoutCustomizer")
void listen(String msg) {
throw new RuntimeException("fail " + msg);

}

@ReactivePulsarListener(topics = "my-dlg-topic")
void listenDlq(String msg) {

System.out.println("From DLQ: " + msqg);
}
@Bean
DeadlLetterPolicy myDeadlLetterPolicy() {

return
DeadlLetterPolicy.builder().maxRedeliverCount(10).deadLetterTopic("my-dlg-
topic").build();
}

@Bean
ReactiveMessageConsumerBuilderCustomizer<String> ackTimeoutCustomizer() {
return b -> b.property("ackTimeout", "1s");

}

First, we have a special bean for DeadlLetterPolicy, and it is named as deadlLetterPolicy (it can be
any name as you wish). This bean specifies a number of things, such as the max delivery (10, in this
case) and the name of the dead letter topic—my-dlqg-topic, in this case. If you do not specify a DLQ
topic name, it defaults to <topicname>-<subscriptionname>-DLQ in Pulsar. Next, we provide this bean
name to ReactivePulsarListener by setting the deadlLetterPolicy property. Note that the
ReactivePulsarListener has a subscription type of Shared, as the DLQ feature only works with
shared subscriptions. This code is primarily for demonstration purposes, so we provide an
ackTimeout value of 1 second. The idea is that the code throws the exception and, if Pulsar does not
receive an ack within 1 second, it does a retry. If that cycle continues ten times (as that is our max
redelivery count in the DeadlLetterPolicy), the Pulsar consumer publishes the messages to the DLQ
topic. We have another ReactivePulsarListener that listens on the DLQ topic to receive data as it is
published to the DLQ topic.

47

Special note on DLQ topics when using partitioned topics

If the main topic is partitioned, behind the scenes, each partition is treated as a separate topic
by Pulsar. Pulsar appends partition-<n>, where n stands for the partition number to the main
topic name. The problem is that, if you do not specify a DLQ topic (as opposed to what we did
above), Pulsar publishes to a default topic name that has this ‘partition-<n> info in it— for
example: topic-with-dlp-partition-0-deadlLetterPolicySubscription-DLQ. The easy way to
solve this is to provide a DLQ topic name always.

Pulsar Reader Support

The framework provides support for using Pulsar Reader in a Reactive fashion via the
ReactivePulsarReaderFactory.

Spring Boot provides this reader factory which can be configured with any of the
spring.pulsar.reactive.reader prefixed application properties.

2.3. Pulsar Administration

2.3.1. Pulsar Admin Client

On the Pulsar administration side, Spring Boot auto-configuration provides a PulsarAdministration
to manage Pulsar clusters. The administration implements an interface called
PulsarAdminOperations and provides a createOrModify method to handle topic administration
through its contract.

When you use the Pulsar Spring Boot starter, you get the PulsarAdministration auto-configured. By
default, the application tries to connect to a local Pulsar instance at localhost:8080. However, there
are many application properties available to help you configure the client. See the Appendix for
application properties prefixed with spring.pulsar.administration.

Authentication

When accessing a Pulsar cluster that requires authentication, the admin client requires the same
security configuration as the regular Pulsar client. You can use the aforementioned security
configuration by replacing spring.pulsar.client with spring.pulsar.administration.

2.3.2. Automatic Topic Creation

On initialization, the PulsarAdministration checks if there are any PulsarTopic beans in the
application context. For all such beans, the PulsarAdministration either creates the corresponding
topic or, if necessary, modifies the number of partitions.

The following example shows how to add PulsarTopic beans to let the PulsarAdministration auto-
create topics for you:

48

https://pulsar.apache.org/docs/2.10.x/concepts-clients/#reader-interface
https://docs.spring.io/spring-pulsar/docs/current-SNAPSHOT/api/org/springframework/pulsar/core/PulsarAdminOperations.html
https://docs.spring.io/spring-pulsar/docs/current-SNAPSHOT/api/org/springframework/pulsar/core/PulsarAdminOperations.html
https://docs.spring.io/spring-pulsar/docs/current-SNAPSHOT/api/org/springframework/pulsar/core/PulsarAdminOperations.html
http://localhost:8080

@Bean

PulsarTopic simpleTopic {
// This will create a non-partitioned topic in the public/default namespace
return PulsarTopic.builder("simple-topic").build();

@Bean
PulsarTopic partitionedTopic {

// This will create a partitioned topic with 3 partitions in the provided
tenant and namespace

return PulsarTopic.builder("persistent://my-tenant/my-namespace/partitioned-
topic", 3).build();
}

2.4. Observability

Spring for Apache Pulsar includes a way to manage observability through Micrometer.

0 Observability has not been added to the Reactive components yet

2.4.1. Micrometer Observations

The PulsarTemplate and PulsarlListener are instrumented with the Micrometer observations API.
When a Micrometer ObservationRegistry bean is provided, send and receive operations are traced
and timed.

Custom tags

The default implementation adds the bean.name tag for template observations and listener.id tag
for listener observations. To add other tags to timers and traces, configure a custom
PulsarTemplateObservationConvention or PulsarlListenerObservationConvention to the template or
listener container, respectively.

You can subclass either DefaultPulsarTemplateObservationConvention or

(r) DefaultPulsarListenerObservationConvention or provide completely new
et implementations.

Observability - Metrics

Below you can find a list of all metrics declared by this project.

Listener Observation

Observation created when a Pulsar listener receives a message.

Metric name spring.pulsar.listener (defined by convention class

49

https://micrometer.io/

org.springframework.pulsar.observation.DefaultPulsarlListenerObservationConvention). Type timer.
Metric name spring.pulsar.listener.active (defined by convention class

org.springframework.pulsar.observation.DefaultPulsarListenerObservationConvention). Type long
task timer.

o KeyValues that are added after starting the Observation might be missing from the
*active metrics.

o Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

Fully qualified name of the enclosing class
org.springframework.pulsar.observation.PulsarListenerObservation.

o All tags must be prefixed with spring.pulsar.listener prefix!

Table 1. Low cardinality Keys

Name Description
spring.pulsar.listener.id (required) Id of the listener container that received the
message.

Template Observation

Observation created when a Pulsar template sends a message.

Metric name spring.pulsar.template (defined by convention class
org.springframework.pulsar.observation.DefaultPulsarTemplateObservationConvention). Type timer.

Metric name spring.pulsar.template.active (defined by convention class
org.springframework.pulsar.observation.DefaultPulsarTemplateObservationConvention). Type long
task timer.

o KeyValues that are added after starting the Observation might be missing from the
*active metrics.

o Micrometer internally uses nanoseconds for the baseunit. However, each backend
determines the actual baseunit. (i.e. Prometheus uses seconds)

Fully qualified name of the enclosing class
org.springframework.pulsar.observation.PulsarTemplateObservation.

o All tags must be prefixed with spring.pulsar.template prefix!

Table 2. Low cardinality Keys

50

Name Description

spring.pulsar.template.name (required) Bean name of the template that sent the

message.

Observability - Spans

Below you can find a list of all spans declared by this project.

Listener Observation Span

Observation created when a Pulsar listener receives a message.

Span name spring.pulsar.listener (defined by convention
org.springframework.pulsar.observation.DefaultPulsarListenerObservationConvention).
Fully qualified name of the enclosing
org.springframework.pulsar.observation.PulsarListenerObservation.

o All tags must be prefixed with spring.pulsar.listener prefix!
Table 3. Tag Keys
Name Description

spring.pulsar.listener.id (required) Id of the listener container that received the
message.

Template Observation Span

Observation created when a Pulsar template sends a message.
Span name spring.pulsar.template (defined by convention
org.springframework.pulsar.observation.DefaultPulsarTemplateObservationConvention).
Fully qualified name of the enclosing

org.springframework.pulsar.observation.PulsarTemplateObservation.
o All tags must be prefixed with spring.pulsar.template prefix!

Table 4. Tag Keys

Name Description
spring.pulsar.template.name (required) Bean name of the template that sent the
message.

See Micrometer Tracing for more information.

class

class

class

class

31

https://micrometer.io/docs/tracing

Manual Configuration without Spring Boot

If you do not use Spring Boot, you need to configure and provide an ObservationRegistry as well as
Micrometer Tracing. See Micrometer Tracing for more information.

Auto-Configuration with Spring Boot

If you use Spring Boot, the Spring Boot Actuator auto-configures an instance of ObservationRegistry
for you. If micrometer-core is on the classpath, every stopped observation leads to a timer.

Spring Boot also auto-configures Micrometer Tracing for you. This includes support for Brave
OpenTelemetry, Zipkin, and Wavefront. When using the Micrometer Observation API, finishing
observations leads to spans reported to Zipkin or Wavefront. You can control tracing by setting
properties under management.tracing. You can use Zipkin with management.zipkin.tracing, while
Wavefront uses management.wavefront.

Example Configuration

The following example shows the steps to configure your Spring Boot application to use Zipkin with
Brave.

1. Add the required dependencies to your application (in Maven or Gradle, respectively):

Maven

<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
<groupld>io.micrometer</groupld>
<artifactId>micrometer-tracing-bridge-brave</artifactId>
</dependency>
<dependency>
<groupId>io.zipkin.reporter2</groupld>
<artifactId>zipkin-reporter-brave</artifactId>
</dependency>
<dependency>
<groupld>io.zipkin.reporter2</groupld>
<artifactId>zipkin-sender-urlconnection</artifactId>
</dependency>
</dependencies>

32

https://micrometer.io/docs/tracing

Gradle

dependencies {
implementation 'org.springframework.boot:spring-boot-starter-actuator'
implementation 'io.micrometer:micrometer-tracing-bridge-brave'
implementation 'io.zipkin.reporter2:zipkin-reporter-brave'
implementation 'io.zipkin.reporter2:zipkin-sender-urlconnection'

NOTE

You need the 'io.zipkin.reporter2:zipkin-sender-urlconnection' dependency only if your
application does not have a configured WebClient or RestTemplate.

1. Add the required properties to your application:

management:
tracing.enabled: true
zipkin:
tracing.endpoint: "http://localhost:9411/api/v2/spans”

The tracing.endpoint above expects Zipkin is running locally as described here.

At this point, your application should record traces when you send and receive Pulsar messages.
You should be able to view them in the Zipkin UI (at localhost:9411, when running locally).

@ You can also see the preceding configuration on the Spring Pulsar Sample Apps.

The steps are very similar to configuring any of the other supported Tracing environments.

33

https://zipkin.io/pages/quickstart.html
http://localhost:9411
https://github.com/spring-projects-experimental/spring-pulsar/blob/main/spring-pulsar-sample-apps/README.adoc

Other Resources

In addition to this reference documentation, we recommend a number of other resources that may
help you learn about Spring and Apache Pulsar.

» Spring for Apache Pulsar GitHub Repository

* Apache Pulsar Project Home Page

* Apache Pulsar Java Client

» Apache Pulsar GitHub Repository

Apache Pulsar Reactive Client GitHub Repository

54

https://github.com/spring-projects-experimental/spring-pulsar
https://pulsar.apache.org/
https://pulsar.apache.org/docs/client-libraries-java/
https://github.com/apache/pulsar
https://github.com/apache/pulsar-client-reactive

Appendices

Appendix A: Application Properties

You can specify various properties inside your application.properties file, inside your
application.yml file, or as command line switches. This appendix provides a list of Spring Pulsar
properties and references to the underlying classes that consume them.

7 Spring Boot provides various conversion mechanisms with advanced value
- formatting. See the properties conversion section for more detail.

Pulsar Client Properties

Name Description Default Value

spring.pulsar.client.auth-params Authentication parameter(s)
as a JSON encoded string.

spring.pulsar.client.auth-plugin- Fully qualified class name of
class-name the authentication plugin.

spring.pulsar.client.authentication.* Authentication parameter(s)
as a map of parameter
names to parameter values.

spring.pulsar.client.connection- Duration to wait for a 10s
timeout connection to a broker to be
established.
spring.pulsar.client.dns-lookup-bind- DNS lookup bind address.
address
spring.pulsar.client.dns-lookup-bind- DNS lookup bind port. 0
port
spring.pulsar.client.enable-busy-wait Enables spin-waiting on false
executors and IO threads in
order to reduce latency
during context switches.
spring.pulsar.client.enable- Enables transactions. To use false
transaction this, start the
transactionCoordinatorClien
t with the pulsar client.
spring.pulsar.client.initial-backoff- Initial backoff interval. 100ms
interval
spring.pulsar.client.keep-alive- Keep alive interval for 30s
interval broker-client connection.

55

https://docs.spring.io/spring-boot/docs/3.0.0/reference/htmlsingle/#features.external-config.typesafe-configuration-properties.conversion

Name

spring.pulsar.client.listener-name

spring.pulsar.client.lookup-timeout

spring.pulsar.client.max-backoff-
interval

spring.pulsar.client.max-concurrent-

lookup-request

spring.pulsar.client.max-lookup-
redirects

spring.pulsar.client.max-lookup-
request

spring.pulsar.client.max-number-of-
rejected-request-per-connection

spring.pulsar.client.memory-limit

spring.pulsar.client.num-connections-

per-broker

spring.pulsar.client.num-io-threads

36

Description

Listener name for lookup.
Clients can use listenerName
to choose one of the
listeners as the service URL
to create a connection to the
broker. To use this,
"advertisedListeners" must
be enabled on the broker.

Client lookup timeout. -1ms

Maximum backoff interval. 30s

Number of concurrent 5000

lookup-requests allowed to
send on each broker-
connection to prevent
overload on broker.

Maximum number of times 20
a lookup-request to a broker
will be redirected.

Number of max lookup- 50000
requests allowed on each
broker-connection to

prevent overload on broker.
Maximum number of 50

broker-rejected requests in a
certain timeframe, after
which the current
connection is closed and a
new connection is created
by the client.

Limit of direct memory that 64MB
will be allocated by the
client.

Maximum number of 1
connections that the client
will open to a single broker.

Number of threads to be 1
used for handling
connections to brokers.

Default Value

Name

spring.pulsar.client.num-listener-
threads

spring.pulsar.client.

timeout

operation-

spring.pulsar.client.proxy-protocol

spring.pulsar.client.

url

proxy-service-

spring.pulsar.client.request-timeout

spring.pulsar.client.service-url

spring.pulsar.client.

address

socks5-proxy-

spring.pulsar.client.

password

socks5-proxy-

spring.pulsar.client.

username

socks5-proxy-

spring.pulsar.client.ssl-provider

spring.pulsar.client.stats-interval

spring.pulsar.client.tls-allow-

insecure-connection

Description Default Value

Number of threads to be 1
used for message listeners.
The listener thread pool is
shared across all the
consumers and readers that
are using a "listener" model
to get messages. For a given
consumer, the listener will
always be invoked from the
same thread, to ensure
ordering.

Client operation timeout. 30s

Protocol of proxy service.
proxyServiceUrl and
proxyProtocol must be
mutually inclusive.

URL of proxy service.
proxyServiceUrl and
proxyProtocol must be
mutually inclusive.

Maximum duration for m
completing a request.

Pulsar cluster URL to
connect to a broker.

SOCKSS5 proxy address.

SOCKSS5 proxy password.

SOCKSS5 proxy username.

Name of the security
provider used for SSL
connections.

Interval between each stat 60s

info.

Whether the client accepts ~ false

untrusted TLS certificates
from the broker.

57

Name

spring.pulsar.client.tls-ciphers

spring.pulsar.client.tls-hostname-
verification-enable

spring.pulsar.client.tls-protocols

spring.pulsar.client.tls-trust-certs-

file-path

spring.pulsar.client.tls-trust-store-

password

spring.pulsar.client.tls-trust-store-

path

spring.pulsar.client.tls-trust-store-

type

spring.pulsar.client.use-key-store-
tls

spring.pulsar.client.use-tcp-no-delay

spring.pulsar.client.use-tls

38

Description

Comma-separated list of
cipher suites. This is a
named combination of
authentication, encryption,
MAC and key exchange
algorithm used to negotiate
the security settings for a
network connection using
TLS or SSL network
protocol. By default, all the
available cipher suites are
supported.

Whether the hostname is false

validated when the proxy
creates a TLS connection
with brokers.

Comma-separated list of SSL
protocols used to generate
the SSLContext. Allowed
values in recent JVMs are
TLS, TLSv1.3, TLSv1.2 and
TLSv1.1.

Path to the trusted TLS
certificate file.

Store password for the key
store file.

Location of the trust store
file.

File format of the trust store
file.

Enable KeyStore instead of ~ false

PEM type configuration if
TLS is enabled.

Whether to use TCP no-delay true
flag on the connection, to
disable Nagle algorithm.

Whether to use TLS false

encryption on the
connection.

Default Value

Pulsar Producer Properties

Name

spring.pulsar.producer.auto-update-
partitions

spring.pulsar.producer.auto-update-
partitions-interval

spring.pulsar.producer.batching-
enabled

spring.pulsar.producer.batching-max-
bytes

spring.pulsar.producer.batching-max-
messages

spring.pulsar.producer.batching-max-
publish-delay

spring.pulsar.producer.batching-
partition-switch-frequency-by-
publish-delay

spring.pulsar.producer.block-if-
queue-full

spring.pulsar.producer.cache.expire-
after-access

spring.pulsar.producer.cache.initial-
capacity

spring.pulsar.producer.cache.maximum-
size

spring.pulsar.producer.chunking-
enabled

spring.pulsar.producer.compression-
type

spring.pulsar.producer.crypto-
failure-action

Description

Whether partitioned
producer automatically
discover new partitions at
runtime.

Interval of partitions
discovery updates.

Whether to automatically
batch messages.

Maximum number of bytes
permitted in a batch.

Maximum number of
messages to be batched.

Time period within which
the messages sent will be
batched.

Partition switch frequency
while batching of messages
is enabled and using round-
robin routing mode for non-
keyed message.

Whether the "send" and

"sendAsync" methods should

block if the outgoing
message queue is full.

Time period to expire
unused entries in the cache.

Initial size of cache.

Maximum size of cache
(entries).

Whether to split large-size
messages into multiple
chunks.

Message compression type.

Action the producer will
take in case of encryption
failure.

Default Value

true

m

true

128KB

1000

Tms

10

false

1000

false

39

Name Description Default Value

spring.pulsar.producer.encryption- Names of the public
keys encryption keys to use when
encrypting data.

spring.pulsar.producer.hashing-scheme Message hashing scheme to
choose the partition to
which the message is

published.
spring.pulsar.producer.initial- Baseline for the sequence
sequence-1id ids for messages published

by the producer.
spring.pulsar.producer.lazy-start- Whether producers in false
partitioned-producers Shared mode register and

connect immediately to the
owner broker of each
partition or start lazily on

demand.
spring.pulsar.producer.max-pending- Maximum number of 1000
messages pending messages for the

producer.
spring.pulsar.producer.max-pending- Maximum number of 50000
messages-across-partitions pending messages across all

the partitions.

spring.pulsar.producer.message- Message routing mode for a
routing-mode partitioned producer.
spring.pulsar.producer.multi-schema Whether the multiple true

schema mode is enabled.

spring.pulsar.producer.producer- Type of access to the topic
access-mode the producer requires.

spring.pulsar.producer.producer-name Name for the producer. If
not assigned, a unique name
is generated.

spring.pulsar.producer.properties.* Map of properties to add to
the producer.

spring.pulsar.producer.send-timeout Time before a message has 30s
to be acknowledged by the
broker.

spring.pulsar.producer.topic-name Topic the producer will
publish to.

60

Name

spring.pulsar.template.observations-
enabled

Pulsar Consumer Properties

Name

spring.pulsar.consumer.ack-receipt-
enabled

spring.pulsar.consumer.ack-timeout

spring.pulsar.consumer.acknowledgemen
ts-group-time

spring.pulsar.consumer.auto-ack-
oldest-chunked-message-on-queue-full

spring.pulsar.consumer.auto-update-
partitions

spring.pulsar.consumer.auto-update-
partitions-interval

spring.pulsar.consumer.batch-index-
ack-enabled

spring.pulsar.consumer.consumer -name

spring.pulsar.consumer.crypto-
failure-action

spring.pulsar.consumer.dead-letter-
policy.dead-letter-topic

spring.pulsar.consumer.dead-letter-
policy.initial-subscription-name

spring.pulsar.consumer.dead-letter-
policy.max-redeliver-count

Description

Whether to record true
observations for send

operations when the
Observations API is

available.

Description

Whether an false
acknowledgement receipt is
enabled.

Timeout for unacked 0
messages to be redelivered.

Time to group 100ms
acknowledgements before
sending them to the broker.

Whether to automatically ~ true
drop outstanding un-acked
messages if the queue is full.

Whether the consumer auto- true
subscribes for partition

increase. This is only for
partitioned consumers.

Interval of partitions m
discovery updates.

Whether the batch index false
acknowledgment is enabled.

Consumer name to identify
a particular consumer from
the topic stats.

Action the consumer will
take in case of decryption
failure.

Default Value

Default Value

61

Name

spring.pulsar.consumer.dead-letter-
policy.retry-letter-topic

spring.pulsar.consumer.expire-time-
of-incomplete-chunked-message

spring.pulsar.consumer.max-pending-
chunked-message

spring.pulsar.consumer.max-total-
receiver-queue-size-across-partitions

spring.pulsar.consumer.negative-ack-
redelivery-delay

spring.pulsar.consumer.pattern-auto-
discovery-period

spring.pulsar.consumer.pool-messages

spring.pulsar.consumer.priority-level

spring.pulsar.consumer.properties

spring.pulsar.consumer.read-compacted

spring.pulsar.consumer.receiver-
queue-size

spring.pulsar.consumer.regex-
subscription-mode

spring.pulsar.consumer.replicate-
subscription-state

62

Description Default Value

Time to expire incomplete 1M
chunks if the consumer

won't be able to receive all
chunks before.

Maximum number of 10
chunked messages to be kept
in memory.

Maximum number of 50000
messages that a consumer

can be pushed at once from

a broker across all

partitions.

Delay before re-delivering ~ 1m
messages that have failed to
be processed.

Auto-discovery period for 1
topics when topic pattern is
used in minutes.

Whether pooling of false
messages and the

underlying data buffers is

enabled.

Priority level for shared 0
subscription consumers.

Map of properties to add to
the consumer.

Whether to read messages ~ false
from the compacted topic

rather than the full message
backlog.

Number of messages that 1000
can be accumulated before
the consumer calls "receive".

Determines which topics the
consumer should be
subscribed to when using
pattern subscriptions.

Whether to replicate false
subscription state.

Name

spring.pulsar.consumer.reset-include-

head

spring.pulsar.consumer.

spring.pulsar.consumer.

spring.pulsar.consumer.
initial-position

spring.pulsar.consumer.

mode

spring.

name

spring.

pulsar.

pulsar.

properties.*

spring.

type

spring.

spring.

spring.

spring.

spring.

spring.

pulsar.

pulsar.

pulsar.

pulsar.

pulsar.

pulsar.

pulsar.

consumer .

consumer .

consumer .

consumer .

consumer .

consumer .

listener.

listener.

listener.

retry-enable

start-paused

subscription-

subscription-

subscription-

subscription-

subscription-

tick-duration

topics

topics-pattern

ack-mode

batch-timeout

max-num-bytes

Description Default Value

Whether to include the false
given position of any reset
operation like {@link
org.apache.pulsar.client.api.
Consumer#seek(long) or

{@link
Consumer#seek(Messageld)}

1

Whether to auto retry false
messages.

Whether to start the false
consumer in a paused state.

Position where to initialize a
newly created subscription.

Subscription mode to be
used when subscribing to
the topic.

Subscription name for the
consumer.

Map of properties to add to
the subscription.

Subscription type to be used
when subscribing to a topic.

Precision for the ack timeout 1s
messages tracker.

Comma-separated list of
topics the consumer
subscribes to.

Pattern for topics the
consumer subscribes to.

AckMode for
acknowledgements. Allowed
values are RECORD, BATCH,
MANUAL.

Duration to wait for enough 100ms
message to fill a batch
request before timing out.

Max size in a single batch ~ 10MB
request.

63

Name Description Default Value

spring.pulsar.listener.max-num- Max number of messages in -1
messages a single batch request.
spring.pulsar.listener.observations- Whether to record true
enabled observations for receive

operations when the
Observations API is
available.

spring.pulsar.listener.schema-type SchemaType of the
consumed messages.

Pulsar Administration Properties

Name Description Default Value
spring.pulsar.administration.auth- Authentication parameter(s)

params as a JSON encoded string.
spring.pulsar.administration.auth- Fully qualified class name of
plugin-class-name the authentication plugin.

spring.pulsar.administration.authenti Authentication parameter(s)
cation.* as a map of parameter
names to parameter values.

spring.pulsar.administration.auto- Certificates auto refresh om
cert-refresh-time time if Pulsar admin uses tls

authentication.
spring.pulsar.administration.connecti Duration to wait for a m
on-timeout connection to server to be

established.
spring.pulsar.administration.read- Server response read time ~ 1m
timeout out for any request.

spring.pulsar.administration.request- Server request time out for 5m
timeout any request.

spring.pulsar.administration.service- Pulsar service URL for the

url admin endpoint.
spring.pulsar.administration.ssl- Name of the security
provider provider used for SSL

connections.
spring.pulsar.administration.tls- Whether the client accepts false
allow-insecure-connection untrusted TLS certificates

from the broker.

64

Name

spring.pulsar.administration.tls-
ciphers

spring.pulsar.administration.tls-
hostname-verification-enable

spring.pulsar.administration.tls-
protocols

spring.pulsar.administration.tls-
trust-certs-file-path

spring.pulsar.administration.tls-
trust-store-password

spring.pulsar.administration.tls-
trust-store-path

spring.pulsar.administration.tls-
trust-store-type

spring.pulsar.administration.use-key-

store-tls

Description Default Value

List of cipher suites. This is a
named combination of
authentication, encryption,
MAC and key exchange
algorithm used to negotiate
the security settings for a
network connection using
TLS or SSL network
protocol. By default, all the
available cipher suites are
supported.

Whether the hostname is false
validated when the proxy

creates a TLS connection

with brokers.

List of SSL protocols used to
generate the SSLContext.
Allowed values in recent
JVMs are TLS, TLSv1.3,
TLSv1.2 and TLSv1.1.

Path to the trusted TLS
certificate file.

Store password for the key
store file.

Location of the trust store
file.

File format of the trust store
file.

Enable KeyStore instead of ~ false
PEM type configuration if
TLS is enabled.

Pulsar Reactive Sender Properties

Name

spring.pulsar.reactive.sender.auto-
update-partitions

spring.pulsar.reactive.sender.auto-
update-partitions-interval

Description Default Value

Whether partitioned true
producer automatically

discover new partitions at
runtime.

Interval of partitions m
discovery updates.

65

Name

spring.pulsar.reactive.
g-enabled

spring.pulsar.reactive.
g-max-bytes

spring.pulsar.reactive.
g-max-messages

spring.pulsar.reactive.
g-max-publish-delay

spring.pulsar.reactive.
xpire-after-access

spring.pulsar.reactive.
nitial-capacity

spring.pulsar.reactive.
aximum-size

spring.pulsar.reactive.
g-enabled

spring.pulsar.reactive.
sion-type

spring.pulsar.reactive.
failure-action

spring.pulsar.reactive.
ion-keys

spring.pulsar.reactive.
-scheme

spring.pulsar.reactive.
-sequence-id

spring.pulsar.reactive.sender.

start-partitioned-producers

66

sender.

sender.

sender.

sender.

sender.

sender.

sender.

sender.

sender.

sender.

sender.

sender.

sender.

batchin

batchin

batchin

batchin

cache.e

cache.i

cache.m

chunkin

compres

crypto-

encrypt

hashing

initial

lazy-

Description

Whether to automatically
batch messages.

Maximum number of bytes
permitted in a batch.

Maximum number of
messages to be batched.

Time period within which
the messages sent will be
batched.

Time period to expire
unused entries in the cache.

Initial size of cache.

Maximum size of cache
(entries).

Whether to split large-size
messages into multiple
chunks.

Message compression type.

Action the producer will
take in case of encryption
failure.

Names of the public
encryption keys to use when
encrypting data.

Message hashing scheme to
choose the partition to
which the message is
published.

Baseline for the sequence
ids for messages published
by the producer.

Whether producers in
Shared mode register and
connect immediately to the
owner broker of each
partition or start lazily on
demand.

Default Value

true

128KB

1000

Tms

m

50

1000

false

false

Name

spring.pulsar.reactive.sender.max-
pending-messages

spring.pulsar.reactive.sender.max-
pending-messages-across-partitions

spring.pulsar
-routing-mode

.reactive.sender.message

spring.pulsar.reactive.sender.multi-

schema

spring.pulsar.
r-access-mode

reactive.sender.produce

spring.pulsar.
r-name

reactive.sender.produce

spring.pulsar.
jes.*

reactive.sender.propert

spring.pulsar.reactive.sender.round-
robin-router-batching-partition-
switch-frequency

spring.pulsar.reactive.sender.send-
timeout

spring.pulsar.reactive.sender.topic-
name

Default Value
1000

Description

Maximum number of
pending messages for the
producer.

Maximum number of 50000

pending messages across all
the partitions.

Message routing mode for a
partitioned producer.

Whether the multiple true

schema mode is enabled.

Type of access to the topic
the producer requires.

Name for the producer. If
not assigned, a unique name
is generated.

Map of properties to add to
the producer.

Time before a message has ~ 30s

to be acknowledged by the
broker.

Topic the producer will
publish to.

Pulsar Reactive Consumer Properties

Name

spring.pulsar.reactive.consumer.ack-
timeout

spring.pulsar.reactive.consumer.ack-
timeout-tick-time

Description Default Value

Timeout for unacked 0
messages to be redelivered.

Precision for the ack timeout 1s
messages tracker.

67

Name

spring.pulsar.reactive.consumer.ackno
wledge-asynchronously

spring.pulsar.reactive.consumer.ackno
wledge-scheduler-type

spring.pulsar.reactive.consumer.ackno
wledgements-group-time

spring.pulsar.reactive.consumer.auto-
ack-oldest-chunked-message-on-queue-
full

spring.pulsar.reactive.consumer.auto-
update-partitions

spring.pulsar.reactive.consumer.auto-
update-partitions-interval

spring.pulsar.reactive.consumer.batch
-index-ack-enabled

spring.pulsar.reactive.consumer.consu
mer-name

spring.pulsar.reactive.consumer.crypt
o-failure-action

reactive.consumer.dead-
dead-letter-topic

spring.pulsar.
letter-policy.

reactive.consumer.dead-
initial-subscription-

spring.pulsar.
letter-policy.
name

spring.pulsar.reactive.consumer.dead-
letter-policy.max-redeliver-count

reactive.consumer.dead-
retry-letter-topic

spring.pulsar.
letter-policy.

68

Description Default Value

When set to true, ignores the true
acknowledge operation
completion and makes it
asynchronous from the

message consuming

processing to improve
performance by allowing

the acknowledges and

message processing to

interleave. Defaults to true.

Type of acknowledge
scheduler.
Time to group 100ms
acknowledgements before
sending them to the broker.
true

Whether to automatically
drop outstanding un-acked
messages if the queue is full.

Whether the consumer auto- true
subscribes for partition

increase. This is only for
partitioned consumers.

m
Whether batch index false
acknowledgement is
enabled.

Consumer name to identify
a particular consumer from
the topic stats.

Action the consumer will
take in case of decryption
failure.

Name Description Default Value

spring.pulsar.reactive.consumer.expir Time to expire incomplete 1m
e-time-of-incomplete-chunked-message chunks if the consumer

won't be able to receive all
chunks before in

milliseconds.
spring.pulsar.reactive.consumer.max- Maximum number of 10
pending-chunked-message chunked messages to be kept

in memory.
spring.pulsar.reactive.consumer.max- Maximum number of 50000
total-receiver-queue-size-across- messages that a consumer

partitions can be pushed at once from

a broker across all
partitions.

spring.pulsar.reactive.consumer.negat Delay before re-delivering 1m
ive-ack-redelivery-delay messages that have failed to
be processed.

spring.pulsar.reactive.consumer.prior Priority level for shared 0
ity-level subscription consumers.

spring.pulsar.reactive.consumer.prope Map of properties to add to
rties the consumer.

spring.pulsar.reactive.consumer.read- Whether to read messages false

compacted from the compacted topic
rather than the full message
backlog.
spring.pulsar.reactive.consumer.recei Number of messages that 1000
ver-queue-size can be accumulated before

the consumer calls "receive".

spring.pulsar.reactive.consumer.repli Whether to replicate false
cate-subscription-state subscription state.
spring.pulsar.reactive.consumer.retry Whether the retry letter false
-letter-topic-enable topic is enabled.

spring.pulsar.reactive.consumer.subsc Position where to initialize a

ription-initial-position newly created subscription.

spring.pulsar.reactive.consumer.subsc Subscription mode to be

ription-mode used when subscribing to
the topic.

spring.pulsar.reactive.consumer.subsc Subscription name for the
ription-name consumer.

spring.pulsar.reactive.consumer.subsc Map of properties to add to
ription-properties the subscription.

Name Description Default Value

spring.pulsar.reactive.consumer.subsc Subscription type to be used
ription-type when subscribing to a topic.

spring.pulsar.reactive.consumer.topic Comma-separated list of
S topics the consumer
subscribes to.

spring.pulsar.reactive.consumer.topic Pattern for topics the
s-pattern consumer subscribes to.

spring.pulsar.reactive.consumer.topic Auto-discovery period for m
s-pattern-auto-discovery-period topics when topic pattern is
used.

spring.pulsar.reactive.consumer.topic Determines which topics the
s-pattern-subscription-mode consumer should be

subscribed to when using
pattern subscriptions.

spring.pulsar.reactive.listener.handl Duration to wait before the 2m
ing-timeout message handling times out.

spring.pulsar.reactive.listener.schem SchemaType of the
a-type consumed messages.

spring.pulsar.reactive.listener.use- Whether per-key message false
key-ordered-processing ordering should be

maintained when

concurrent processing is

used.

Pulsar Reactive Reader Properties

Name Description Default Value

spring.pulsar.reactive.reader.crypto-
failure-action

spring.pulsar.reactive.reader.generat
ed-subscription-name-prefix

spring.pulsar.reactive.reader.key-
hash-ranges

spring.pulsar.reactive.reader.read-
compacted

spring.pulsar.reactive.reader.reader-
name

spring.pulsar.reactive.reader.receive
r-queue-size

spring.pulsar.reactive.reader.subscri
ption-name

70

Name Description Default Value

spring.pulsar.reactive.reader.topic-
names

Appendix B: Non-GA Versions
You can find snapshot or milestone versions of the dependencies in the following repositories:

Maven

<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<releases>
<enabled>false</enabled>
</releases>
</repository>
<repository>
<id>apache-snapshots</id>
<name>Apache Snapshots</name>
<url>https://repository.apache.org/content/repositories/snapshots</url>
<releases>
<enabled>false</enabled>
</releases>
</repository>
</repositories>

71

Gradle

repositories {
maven {
name = 'spring-milestones’
url = 'https://repo.spring.io/milestone’

}
maven {
name = 'spring-snapshots’
url = "https://repo.spring.io/snapshot’
}
maven {
name = 'apache-snapshot’
url = "https://repository.apache.org/content/repositories/snapshots’
}

Appendix C: GraalVM Native Image Support

GraalVM Native Images are standalone executables that can be generated by processing compiled
Java applications ahead-of-time. Native Images generally have a smaller memory footprint and
start faster than their JVM counterparts.

Support

The required AOT Runtime Hints are built-in to Spring for Apache Pulsar so that it can seamlessly
be used in native image based Spring applications.

The native image support in Spring for Apache Pulsar has been tested in basic

o scenarios, and we expect it to "just work". However, it is possible that more
advanced use cases could surface the need to add additional runtime hints to your
own application. If this occurs please file a Github issue with some details.

Next Steps

If you are interested in adding native image support to your own application then an excellent
place to start is the Spring Boot GraalVM Support section of the Spring Boot reference docs.

Although there is no reference to Spring for Apache Pulsar in the aforementioned guide, you can
find specific examples at the following coordinates:

» Spring for Apache Pulsar (imperative)

» Spring for Apache Pulsar (reactive)

72

https://www.graalvm.org/native-image/
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#core.aot.hints
https://github.com/spring-projects-experimental/spring-pulsar/issues
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#native-image
https://github.com/spring-projects/spring-aot-smoke-tests/tree/main/integration/spring-pulsar
https://github.com/spring-projects/spring-aot-smoke-tests/tree/main/integration/spring-pulsar-reactive

	Spring for Apache Pulsar
	Table of Contents
	Chapter 1. Introduction
	1.1. Minimum Supported Versions
	1.2. Building the Project

	Chapter 2. Reference
	2.1. Using Spring for Apache Pulsar
	2.1.1. Quick Tour
	Dependencies
	Application Code

	2.1.2. Pulsar Client
	Authentication

	2.1.3. Message Production
	Pulsar Template
	Simple API
	Fluent API
	Message customization
	Producer customization

	Specifying Schema Information
	Pulsar Producer Factory
	Pulsar Producer Caching

	Intercept Messages on the Producer

	2.1.4. Message Consumption
	Pulsar Listener
	Specifying Schema Information
	Accessing the Pulsar Consumer Object
	Pulsar Message Listener Container
	DefaultPulsarMessageListenerContainer
	ConcurrentPulsarMessageListenerContainer
	Message Consumption

	Pulsar Headers
	Accessing in Single Record based Consumer
	Accessing in Batch Record based Consumer

	Message Acknowledgment
	Message ACK modes
	Automatic Message Ack in Single Record Mode
	Manual Message Ack in Single Record Mode
	Automatic Message Ack in Batch Consumption
	Manual Message Ack in Batch Consumption

	Message Redelivery and Error Handling
	Specifying Acknowledgment Timeout for Message Redelivery
	Specifying Negative Acknowledgment Redelivery
	Using Dead Letter Topic from Apache Pulsar for Message Redelivery and Error Handling
	Native Error Handling in Spring for Apache Pulsar
	Batch listener with PulsarConsumerErrorHandler

	2.1.5. Publishing and Consuming Partitioned Topics

	2.2. Reactive Support
	2.2.1. Quick Tour
	Dependencies
	Application Code

	2.2.2. Design
	Apache Pulsar Reactive
	Additive Auto-Configuration

	2.2.3. Reactive Pulsar Client
	Authentication

	2.2.4. Message Production
	ReactivePulsarTemplate
	Fluent API
	Message customization
	Sender customization

	Specifying Schema Information
	ReactivePulsarSenderFactory
	Producer Caching

	2.2.5. Message Consumption
	@ReactivePulsarListener
	Streaming
	Configuration - Application Properties
	Consumer Customization

	Specifying Schema Information
	Message Listener Container Infrastructure
	ReactivePulsarMessageListenerContainer
	ReactiveMessagePipeline
	ReactivePulsarMessageHandler

	Concurrency
	Pulsar Headers
	Accessing In OneByOne Listener
	Accessing In Streaming Listener

	Message Acknowledgment
	OneByOne Listener
	Streaming Listener

	Message Redelivery and Error Handling
	Acknowledgment Timeout
	Negative Acknowledgment Redelivery Delay
	Dead Letter Topic

	Pulsar Reader Support

	2.3. Pulsar Administration
	2.3.1. Pulsar Admin Client
	Authentication

	2.3.2. Automatic Topic Creation

	2.4. Observability
	2.4.1. Micrometer Observations
	Custom tags
	Observability - Metrics
	Listener Observation
	Template Observation

	Observability - Spans
	Listener Observation Span
	Template Observation Span

	Manual Configuration without Spring Boot
	Auto-Configuration with Spring Boot
	Example Configuration

	Other Resources
	Appendices
	Appendix A: Application Properties
	Pulsar Client Properties
	Pulsar Producer Properties
	Pulsar Consumer Properties
	Pulsar Administration Properties
	Pulsar Reactive Sender Properties
	Pulsar Reactive Consumer Properties
	Pulsar Reactive Reader Properties

	Appendix B: Non-GA Versions
	Appendix C: GraalVM Native Image Support

