SpringPython:

Spring Python - Reference Documentation

Version 1.0.1.BUILD-20101109171136

Copyright © 2006-2009 Greg Turnquist

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

1=, =0 PR
Y T ST
R Q= Y s (= TP 1
1.2.What Spring PythoniSNOTccoiiiiiiieiiiiie et 2
G 300 o] o PP 2
1.3 L FOrumSandEmMalcccuuuiiiiiiee i e e 2
IR 17 1 PSSR 2
1.4.DoWNI0adS/ SOUICECOUEeeerieeiee e ettt e s e e e e e e e s e e e e e e e e e s s s ntaeeaeeaaeeesannnneeees 2
O I o= T o 3
1.6. SPriNGPYINON'SIEAM ... e e e e e e e e e e e e e s e aaaaaas 3
1.6.1. Howtobecomeateam memMbDErooiiii i 3
L1.7.DEPreCatEUCOUR. ...ttt e e e e e e e e e e e e — e e e e e e e a i r——rraaaeaaan 4
pZ0N I 1= o O o | =T = USRS PESRR
PN o | = 1= TP URRRR SRR 6
2.1.1.ObjectContainervs. APpPliCatiONCONIEXTuveeeeiiiiiie et 7
2.1.2. Scopeof Objects/ Lazy INitialiZationcoi i e 7
B o o) 1T 10 (o) o 1A SRR 7
2.2.1. XML Config- Spring Python'snative XML fOrmatcoccovieiiiiiieeiniiee e 8
2.2.2. PythonConfig and @Object - decorator-driven configurationccccccvveeveeeeeiiicnnnnne, 14
2.2.3. PyContainerConfig - Spring Python'soriginal XML formatccoceeevviieeeiiiienennne 15
WA o {110 N = Y= @0 1 o S 15
2.2.5.MixingConfiguratioNIMOUEScoeeiiiiiiiiiiiiie e ebee e e 17
PG @ o] = = (o 1 = TR 18
2. 4. TESIADIECOUR ... ettt ettt et e b e et e e e e bae e e 18
3. ASPECt Oriented ProgramIMINGcooiueeeeeiiite ettt e e e e e s e e s b e e e e nane e e e e enees
G I 1 g1 0= o 0 =SSP 20
3. 2. ProXy FaCtory ODJECESceiieiiiiiie ettt 22
G G 1 o 1o B 3SR 22
L 1= o= o) (0] ! g7 1 o [P OUPRPTPPPPRPN 23
3.5.Coding AOPWItNPUIEPYINONuiiiiiiieeee e e 23
A DALBACCESS ...ttt
4.1.DataaSET EMPIELE.ccieeeeee ettt 25
4.1.1. Traditional DatabaSEQUETYuuvieiiieeeiiiiiiitiiee e e e e s e et e e e e e s s st e e e e e e e s s esnbrreeeeaeas 25
4.1.2.DatabaseTEMPIELEeeeeiiiiiie ettt 25
4.1.3.WhatisaConnectionFactory? ... 26
4.1.4. Creating/altering tables, databases, and other DDLc..ccooviiiiiiiiiieeee i, 26
4.1.5.SQL INJECHIONATIACKSeeiiiiiiiie ettt es 26
4.1.6. Haveyou used Spring Framework's JAbCTemplate?oovveeiiicciiiieeeeee e 26
5. TranSaCtioNMANAGEIMENTiiiiiiiiie ettt e e et r e e e s b e e e e e asb e e e s e nne e e e e anbeeeesannreeeeans
5.1. SolUtiONSIeqUINTNGLraNSACIIONS.ce e ittt e e e e e e e e e e e s e st r e e e e e e s eennabraaeeeeas 28
5.2.TranSaCt ONTEMIPIELE.......eeeiieeeie ittt e et e e e st et e e s e e e e e enbe e e e e anbnneeeaas 29
SR @ = 1= o 1o g =) TR 29
5.3.1.@transactional (["PROPAGATION_REQUIRED"])... «eoviviieeiiiiieee it 31
S o U |] YT PP PP TPP PR PPPPRPI
IS 0= =0 (@ o 1= ok TR 33
L AN 117 11 o= (o o RS 33
6.2. L AUNENti CaLIONPIOVIAENS.eeiie it e e e e saeeeeeens 33
6.2. 2. AUtNENTI CELIONMBNEOEYeeeeeiieiie ettt e et e et e e e s nnbeeeeeans 35

Spring Python

Spring Python - Reference Documentation

LSRG A 1110] 14 1 o o TSRS 35
48 =210 11 T TR PPRRRR
7.1. Remotingwith PY RO (Python REMOLEODJECLS)vvvvieeiiiiiieeiiiiee et 39
7.1.1. Decouplingasimpleservice, tosetupforremoting ... 39
7.1.2. Exporting aSpring Service Using Inversion Of CONrolccooovveeeeiiiiieeeiiiieee e 40
7.1.3. D01 havetOUSE XML ? ...ttt e e e e et e e e e e e e e e enneees 41
7.1.4. Splittinguptheclient andtheSEIVErooiviiiiiee e 42
7.2.REMOUINGWITNHESSIAN ... s 44
7.3.High-Availability/ClusSteriNngSOIULIONScceiee it e e e s 44
8. SPringPython SPIUGINSYSIEMeiiiiieie e e e
o300 I 1 11 0o [o ') o P ERRRSOSRRRRRRRY - ¢
8.2. Caily - Spring Python'scommand-liNEto0loccueiiiiiiiiiiiiiiie e 46
8.2.1.COMMANGS.euieiiiiiee e it e e e e e e e st ee e e e e e e e s eenreeeeeeaeeesssnnneneeeeeeaessennnnseneeeeeeeeeennes 4O
8.3.Officially SUPPOIEAPIUGINSeeeiieeeii it e e e e et r e e e e e s s e enarreeeeaaas 47
8.3.1.9EN-CNEITYPY =GP «eveeeeeeiiieeeeetiee e e ettt e e e et e e e s s e e e snnn e e s s nnnneeesnnnneessnnnneeee e DO
8.4. WritingYOUIr OWNPIUGINeeeiiee ettt e e e e e et e e e e s e et e e e e e e e e e st b r e e e e e aeeessannrbrereeaaeeeaanns 48
8.4.1. ArchiteCtureof @PIUGINcoiiuiiiiiiiiiie e 48
8.4.2. Case Study - gen-Cherrypy-apP PIUGINeeee s nnannnnnes 49
SRS 1 0] 0] =S PPRERR
eI L (O T oSSR 52
O L L HOWTOTUN ... 52
0. 2. SPINGWWIKI .ottt ettt e e e e e e e e e e e e e e e e e e b e e n 53
OGS o 1 0o | = o RO 53
0.3 L. WRYWIITEADO?eeieeiiieeee ettt et e s e e e e e e ennees 53
0.3 2. IRCLIBIAIY .ttt e e e e e e e e e e et e e e e e e e e e nraeeeeans 54
0.3 3 WAL I DU ... e e e nnbaeeeen 54
ST N (= g7 | T TR 60

Spring Python

Preface

Spring Python is an extension of the Java-based Spring Framework and Spring Security Framework, targeted
for Python. It is not a straight port, but instead an extension of the same concepts that need solutions applied in
Python.

This document provides a reference guide to Spring's features. Since this document is still to be considered
very much work-in-progress, if you have any requests or comments, please post them on the user mailing list or
on the Spring Python support forums.

What we mean by " Spring Java"

e
Throughout this documentation, the term Soring Java is used on occasion as shorthand for The
Soring Framework, referring to the original, java-based framework.

Before we go on, a few words of gratitude are due to the SpringSource team for putting together a framework
for writing this reference documentation.

Spring Python iv

http://springpython.webfactional.com
http://python.org
http://lists.springsource.com/listmanager/listinfo/springpython-users
http://forum.springframework.org/forumdisplay.php?f=45

Chapter 1. Overview

"Spring Python is an offshoot of the Java-based Spring Framework and Spring Security Framework, targeted
for Python. Spring provides many useful features, and | wanted those same features available when working
with Python."

--Greg Turnquist, Spring Python project lead

Spring Python intends to take the concepts that were devel oped, tested, and proven with the Spring Framework,
and carry them over to the language of Python. If anyone has developed a solution using multiple technologies
including Java, C#/.NET, and Python, they will realize that certain issues exist in all these platforms.

This is not a direct port of existing source code, but rather, a port of proven solutions, while still remaining
faithful to the style, idioms, and overall user community of Python.

1.1. Key Features

The following features have been implemented:

« Inversion Of Control - The idea is to decouple two classes at the interface level. This lets you build many
reusable parts in your software, and your whole application becomes more pluggable. You can use either
the Py Cont ai ner Conf i g or the Pyt honConf i g to plugin your object definition to an Appl i cat i onCont ext .

e Asgpect Oriented Programming - Spring Python provides great ways to wrap advice around objects. It is
utilized for remoting. Another useis for debug tracers and performance tracing.

« DatabaseTemplate - Reading from the database requires a monotonous cycle of opening cursors, reading
rows, and closing cursors, along with exception handlers. With this template class, al you need is the SQL
query and row-handling function. Spring Python does the rest.

» Database Transactions - Wrapping multiple database calls with transactions can make your code hard to
read. This module provides multiple ways to define transactions without making things complicated.

e Security - Plugin security interceptors to lock down access to your methods, utilizing both authentication
and domain authorization.

» Remoting - It is easy to convert your local application into a distributed one. If you have already built your
client and server pieces using the 10oC container, then going from local to distributed is just a configuration
change.

* Plug-ins/command-line toal - Use the plugin system designed to help you rapidly develop applications.

» Samples - to help demonstrate various features of Spring Python, some sample applications have been
created:

« PetClinic - Everybody's favorite Spring sample application has been rebuilt from the ground up using
various web containers including: CherryPy. Go check it out for an example of how to use this
framework.

e Spring Wiki - Wikis are powerful ways to store and manage content, so we created a simple one as a

Spring Python 1

http://python.org
http://cherrypy.org

Overview

demo!

e Spring Bot - Use Spring Python to build a tiny bot to manage the IRC channel of your open source
project.

1.2. What Spring Python is NOT

Spring Python is NOT another web framework. | think there are plenty that are fine to use, like Zope,
CherryPy, Quixote, and more. Spring Python is meant to provide utilities to support any python application,
including a web-based one.

So far, the demos have been based on CherryPy, but the ideais that these features should work with any python
web framework. The Spring Python team is striving to make things reusable with any python-based web
framework. There is always the goal of expanding the samples into other frameworks, whether they are
web-based, RIA, or thick-client.

1.3. Support

1.3.1. Forums and Email

* You can read the messages on Spring Python's forums at the official Spring forum site.

e If you are interested, you can sign up for the springpython-developer mailing list.

¢ You can read the current archives of the spring-users mailing list.

* Youcan aso read the old archives of the retired spring-developer mailing list.

» |f you want to join this project, see How to become ateam member

1.3.2. IRC

Sorry, | can't seem to get along-term running IRC bot working for me. You'll have to resort to email to reach
me for questions or issues. -- Greg

1.4. Downloads / Source Code

If you want arelease, check out Spring's download site for Spring Python.

If you want the latest source code type:

svn co https://src.springfranmework. org/ svn/ se-springpyt hon-py/trunk/springpython

That will create a new springpython folder. This includes both the source code and the demo applications
(PetClinic and SpringWiki).

Y ou can browse the code at https://fisheye.springframework.ora/browse/se-springpython-py.

Spring Python 2

http://en.wikipedia.org/wiki/Rich_Internet_application
http://forum.springframework.org/forumdisplay.php?f=45
http://lists.springsource.com/listmanager/listinfo/springpython-users
http://lists.springsource.com/archives/springpython-users/
http://sourceforge.net/mailarchive/forum.php?forum=springpython-developer
http://s3browse.com/explore/dist.springframework.org/release/EXT/se-springpython-py/
https://fisheye.springframework.org/browse/se-springpython-py

Overview

1.5. Licensing

Spring Python is released under the Apache Server License 2.0 and the copyright is held by SpringSource.

1.6. Spring Python's team

Spring Python's official team (those with committer rights):

* Project Lead: Greg L. Turnquist
e SpringSource Sponsor: Mark Pollack
e Project Contributor: Russ Miles

Many others have also contributed through reporting issues, raising questions, and even sending patches.

1.6.1. How to become a team member

We like hearing about new people interesting in joining the project. We are also excited in hearing from people
interested in working on a particular jirafeature.

The way we do things around here, we like to work through a few patches before granting you any committer
rights. You can checkout a copy of the code anonymously, and then work on your patch. Email your patch to
one of the official team members, and we will inspect things. From there we will consider committing your
patch, or send you feedback.

If we decide to commit your changes, we may choose to create a new branch for your feature, based on the
scope of the work, or simply commit it to the trunk. After testing, evaluation, and prioritization, we may
eventually merge your patch to the trunk. After a few patches, if things are looking good, we will evaluate
giving you committer rights.

Spring Python is a TDD-based project, meaning if you are working on code, be sure to write an automated test
case and write the test case FIRST. For insight into that, take a trip into the code repository's test section to see
how current things are run. Your patch can get sold off and committed much faster if you include automated
test cases and a pasted sample of your test case running successfully along with the rest of the baseline test
suite.

Y ou don't have to become a team member to contribute to this project, but if you want to contribute code, then
we ask that you follow the details of this process, because this project is focused on high quality code, and we
want to hold everyone to the same standard.

Getting Started

1. Firstof al, | suggest you sign up on our springpython-developer mailing list. That way, you'll get notified
about big items as well be on the inside for important developments that may or may not get published to
the web site. NOTE: Use the springsource list, NOT the sourceforge one.

2. Second, | suggest you register for ajira account, so you can leave comments, etc. on the ticket. | think that
works (I don't manage jira, so if it doesn't let me know, and we will work from there) NOTE: | like notes
and comments tracking what you have done, or what you think needs to be done. It gives us input in case

Spring Python 3

http://www.apache.org/licenses/LICENSE-2.0
http://en.wikipedia.org/wiki/Test-driven_development
http://lists.springsource.com/listmanager/listinfo/springpython-users
http://jira.springframework.org

Overview

someone else eventually has to complete the ticket. That would also be the place where you can append
new files or patches to existing code.

3. Third, register at the SpringSource community forum, and if you want to kick ideas around or float a
concept, feel freeto start athread in our Spring Python forum.

4. Finaly, we redlly like to have supporting documentation as well as code. That helps other people who
aren't as up-to-speed on your piece of the system. Go ahead and start your patch, but don't forget to ook
into the docs folder and update or add to relevant documentation. Our documentation is part of the source
code, so you can submit doc mods as patches also. Include information such as dependencies, design
notes, and whatever else you think would be valuable.

With al that said, happy coding!

1.7. Deprecated Code

To keep things up-to-date, we need to deprecate code from time to time. Python has built in functionality to put
warnings into certain sections of code, so that if you import a deprecated module, you will be properly warned.
With each major release (1.0, 2.0, 3.0, etc.), the Spring Python team has the option to remove any and all
deprecated code.

(1.0.1.BUILD-20101109171136)

http://forum.springframework.org
http://forum.springframework.org/forumdisplay.php?f=45

Chapter 2. The loC container

Background

In early 2004, Martin Fowler asked the readers of his site: when talking about Inversion of Control: “the
question is, what aspect of control are [they] inverting?”. Fowler then suggested renaming the principle (or at
least giving it a more self-explanatory name), and started to use the term Dependency Injection. His article then
continued to explain the ideas underpinning the Inversion of Control (I0C) and Dependency Injection (DI)
principle.

If you need a decent insight into loC and DI, pleasse do refer to said article
http://martinfowl er.com/articles/injection.html.

Inversion Of Control (10C), aso known as dependency injection is more of an architectural concept than a
simple coding pattern.

The ideais to decouple classes that depend on each other from inheriting other dependencies, and instead link
them only at the interfacing level. This requires some sort of 3rd party software module to instantiate the
concrete objects and "inject" them into the class that needsto call them.

In Spring, there are certain classes whose instances form the backbone of your application and that are managed
by the Spring 10C container. While Spring Java calls them beans, Spring Python and Spring for .NET call them
objects. An object is simply a class instance that was instantiated, assembled and otherwise managed by a
Spring 10C container instead of directly by your code; other than that, there is nothing special about a object. It
isin al other respects one of probably many objects in your application. These objects, and the dependencies
between them, are reflected in the configuration meta-data used by a container.

The following diagram demonstrates a key Spring concept: building useful services on top of simple objects,
configured through a container's set of blueprints, provides powerful services that are easier to maintain.

Spring Python 5

http://martinfowler.com/articles/injection.html
http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/Javabean

The 1oC container

Portable Service Abstractions

This chapter provides the basics of Spring Python's 10C container by using examples with explanations. If you
are familiar with Spring Java, then you may notice many similarities. Also, this document points out key
differences. It shows how to define the objects, read them into a container, and then fetch the objects into your
code.

2.1. Container

A container is an object you create in your code that receives the definitions for objects from various sources.
Y our code goes to the container to request the object, and the container then does everything it needs to create
an instance of that.

Depending on the scope of the object definition, the container may create a new instance right there on the spot,
or it may fetch a reference to a singleton instance that was created previoudly. If this is the first time a
singleton-scoped object is requested, is created, stored, and then returned to you. For a prototype-scoped object,
EVERY TIME you request an object, a new instance is created and NOT stored in the singleton cache.

Containers depend on various object factories to do the heavy lifting of construction, and then itself will set any
additional properties. There is also the possibility of additional behavior outside of object creation, which can
be defined by extending the j ect Cont ai ner class.

The reason it is called a container is the idea that you are going to a central place to get your top level object.
While it is also possible to get all your other objects, the core concept of dependency injection is that below
your top-most object, all the other dependencies have been injected and thus not require container access. That
iswhat we mean when we say most of your code does NOT have to be Spring Python-aware.

Present vs. Future Object Containers

Pay special note that there is no fixed requirement that a container actually be in a certain location.

Spring Python 6

http://en.wikipedia.org/wiki/Dependency_injection

The 1oC container

While the current solution is memory based, meaning your objects will be lost when your
application shuts down, there is always the possibility of implementing some type of distributed,
persistent object container. For example, it is within the realm of possibilities to implement a
container that utilizes a back-end database to "contain" things or utilizes some distributed memory
cache spread between nodes.

2.1.1. Qbj ect Cont ai ner VS. Appl i cat i onCont ext

The name of the container is j ect Cont ai ner . Its job isto pull in object meta-data from various sources, and
then call on related object factories to create the objects. In fact, this container is capable of receiving object
definitions from multiple sources, each of differing types such as XML, python code, and other future formats.

The following block of code shows an example of creating an object container, and then pulling an object out
of the container.

from springpyt hon. cont ext inport ApplicationCont ext
from springpyt hon. config i nport XM.Config

contai ner = ApplicationContext(XM.Confi g("app-context.xm "))
servi ce = container.get_obj ect ("sanpl eService")

The first thing you may notice is the fact that Appl i cati onCont ext was used instead of bj ect Cont ai ner.
ApplicationContext iS a subclass of bject Container, and is typically used because it aso performs
additional pre- and post-creational logic.

For example, any object that implements Appl i cati onCont ext Aware Will have an additional app_cont ext
attribute added, populated with a copy of the ApplicationContext. If your object's class extends
bj ect Post Processor and definesapost _process_after _initialization,theApplicationContext will run
that method against every instance of that object.

2.1.2. Scope of Objects / Lazy Initialization

Another key duty of the container is to aso manage the scope of objects. This means at what time that objects
are created, where the instances are stored, how long before they are destroyed, and whether or not to create
them when the container isfirst started up.

Currently, two scopes are supported: SINGLETON and PROTOTY PE. A singleton-scoped object is cached in
the container until application shutdown. A prototype-scoped object is never stored, thus requiring the object
factory to create a new instance every time the object is requested from the container.

The default policy for the container isto make everything SINGLETON and also eagerly fetch all objects when
the container isfirst created. The scope for each object can be individually overriden. Also, the initiaization of
each object can be shifted to "lazy", whereby the object is not created until the first time it is fetched or
referenced by another object.

2.2. Configuration

Spring Python support different formats for defining objects. This project first began using the format defined
by PyContainer, a now inactive project. The structure has been captured into an XSD spec. This format is
primarily to support legacy apps that have already been built with Spring Python from its inception. Thereis no
current priority to extend this format any further. Any new schema developments will be happening with

Spring Python 7

http://springpython.webfactional.com/schema/context/spring-python-pycontainer-context-1.0.xsd

The 1oC container

XM_.Confi g

In the spirit of Spring JavaConfig and a blog posting by Rod Johnson, another format has been defined. By
extending Pyt honConfi g and using the @»j ect python decorator, objects may be defined with pure python
codein acentralized class.

Due to limitations in the format of PyContainer, another schema has been developed called XM.Confi g that
more closely models the original Spring Java version. It has support for referenced objects in many more places
than PyContainer could handle, inner_objects as well, various callections (lists, sets, frozen sets, tuples,
dictionaries, and java-style props), and values.

Spring Python is ultimately about choice, which is why developers may extend the Conf i g class to define their
own object definition scanner. By plugging an instance of their scanner into Appl i cati onCont ext , definitions
can result in instantiated objects.

Y ou may be wondering, amidst all these choices, which one to pick? Here are some suggestions based on your
current solution space:

* New projects are encouraged to pick either XM.Conf i g Or Pyt honConf i g based on your preference for XML
Vs. pure python coding.

« Projects migrating from Spring Java can use Spri ngdavaConf i g to ease transition, with along term goal of
migrating to XM.Conf i g, and perhaps finally Pyt honConfi g.

* Apps adready developed with Spring Python can use PyCont ai ner Conf i g to keep running, but it is highly
suggested you work towards XM_Conf i g.

* Projects currently using XM_Conf i g should be pretty easy to migrate to Pyt honConfi g, Sinceit isbasicaly a
one-to-one trandation. The pure python configuration may turn out much more compact, especially if you
are using lists, sets, dictionaries, and props.

2.2.1. xM.confi g - Spring Python's native XML format

XM_.Conf i g iS a class that scans object definitions stored in the new XML format defined for Spring Python. It
looks very similar to Spring Java's 2.5 XSD spec, with some small changes.

The following is a simple definition of objects. Later sections will show other options you have for wiring
things together.

<?xm version="1.0" encodi ng="UTF-8"?>
<obj ects xm ns="http://ww. springframework. org/springpython/ schema/ obj ects"
xm ns: xsi ="http://wwmw. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranework. or g/ spri ngpyt hon/ schema/ obj ect s

http://springpython.webfactional .conm schema/ cont ext/spring-python-context-1.0.xsd">

<obj ect id="MovieLister" class="springpythontest.support.testSupportC asses. Movi eLi ster"” scope="prot ot yf

<property nanme="finder" ref="MvieFinder"/>
<property name="description"><ref object="SingletonString"/></property>
</ obj ect >

<obj ect id="MovieFinder" class="springpythontest.support.testSupportd asses. Col onMvi eFi nder" scope="sir

<property name="fil enane" ><val ue>support/ nmovi esl. t xt </ val ue></ property>
</ obj ect >

<obj ect id="SingletonString" class="springpythontest.support.testSupportC asses. Stri ngHol der' >
<property name="str" val ue="There should only be one copy of this string"></property>
</ obj ect >
</ obj ect s>

(1.0.1.BUILD-20101109171136)

http://www.springframework.org/javaconfig
http://blog.springsource.com/2006/11/28/a-java-configuration-option-for-spring/
http://springpython.webfactional.com/schema/context/spring-python-context-1.0.xsd

The 1oC container

The definitions stored in this file are fed to an XM_Conf i g instance which scans it, and then sends the meta-data
to the Appl i cat i onCont ext . Then, when the application code requests an object named Movielister from the
container, the container utilizes an object factory to create the object and return it.

from springpyt hon. cont ext inport ApplicationContext
from springpyt hon. config i nport XM.Config

contai ner = ApplicationCont ext (XM.Confi g("app-context.xm "))
servi ce = container.get_object ("MvieLister")

2.2.1.1. Referenced Objects

A referenced object is where an object is needed, but instead of providing the definition right there, there is,
instead, a name, referring to another object definition.

Object definitions can refer to other abjects in many places including: properties, constructor arguments, and
objects embedded inside various collections. This is the way to break things down into smaller pieces. It also
allows you more efficiently use memory and guarantee different objects are linked to the same backend object.

The following fragment, pulled from the earlier example, shows two different properties referencing other
objects. It demonstrates the two ways to refer to another object.

<obj ect id="MovieLister" class="springpythontest.support.testSupportd asses. Movi eLi ster" scope="prototype">
<property name="finder" ref="MvieFinder"/>
<property name="description"><ref object="SingletonString"/></property>

</ obj ect >

This means that instead of defining the object meant to be injected into the descri pti on property right there,
the container must look elsewhere amongst its collection of object definitions for an object named
SngletonString.

Referenced objectsdon't have to bein same configuration

e
When a referenced object is encountered, finding its definition is referred back to the container.
This means ANY of the input sources provided to the container can hold this definition,
REGARDLESS of format.
Spring Python ONLY supportsglobal references

e

While Spring Java has different levels of reference like parent, local, and global, Spring Python
only supports global at thistime.

In the following subsections, other types of object definitions are given. Each will also include information
about embedding reference objects.

2.2.1.2. Inner Objects

Inner objects are objects defined inside another structure, and not at the root level of the XML. The following
shows an alternative configuration of aMvi eLi st er wherethefi nder uses anamed inner object.

<obj ect id="MovieLister3" class="springpythontest.support.testSupportC asses. Movi eLi ster">
<property name="finder">
<obj ect id="named" class="springpythontest.support.testSupportd asses. Col onMvi eFi nder ">
<property name="fil enane" ><val ue>support/ novi esl. t xt </ val ue></ property>
</ obj ect >

(1.0.1.BUILD-20101109171136)

The 1oC container

</ property>
<property name="description"><ref object="SingletonString"/></property>
</ obj ect >

The col onMovi eFi nder isindeed an inner object because it was defined inside the MovieLister3 object. Objects
defined at the top level have a container-level name that matches their i d value. In this case, asking the
container for a copy of MovieLister3 will yield the top level object. However, named objects develop a
path-like name based on where they are located. In this case, the inner Col onMovi eFi nder object will have a
container-level name of MovieLister3.finder.named.

Typicaly, neither your code nor other object definitions will have any need to reference
MovieLister3.finder.named, but there may be cases where you need this. Thei d attribute of Col onMovi eFi nder
can beleft out (it is optional for inner objects) like this:

<obj ect id="MovieLister2" class="springpythontest.support.testSupportd asses. Mvi eLi ster">
<property name="finder">
<obj ect class="springpythontest.support.testSupportC asses. Col onMovi eFi nder" >
<property name="fil enane" ><val ue>support/ novi esl. t xt </ val ue></ property>
</ obj ect >
</ property>
<property nanme="description"><ref object="SingletonString"/></property>
</ obj ect >

That is dightly more compact, and usually alright because you usualy wouldn't access this object from
anywhere. However, if you must, the name in this case is MovieLister2.finder.<anonymous> indicating an
anonymous object.

It is important to realize that inner objects have all the same privileges as top-level objects, meaning that they
can aso utilize reference objects, collections, and inner objects themselves.

2.2.1.3. Collections

Spring Java supports many types of collections, including lists, sets, frozen sets, maps, tuples, and java-style
properties. Spring Python supports these as well. The following configuration shows usage of dict, Iist,
props,set,frozenset,andtuple.

<obj ect id="Val ueHol der" cl ass="springpythontest. support.testSupportd asses. Val ueHol der" >
<constructor-arg><ref object="SingletonString"/></constructor-arg>
<property name="sone_dict">

<di ct >
<entry><key><val ue>Hel | o</ val ue></ key><val ue>Wr | d</ val ue></ entry>
<entry><key><val ue>Spri ng</ val ue></ key><val ue>Pyt hon</ val ue></entry>
<ent r y><key><val ue>hol der </ val ue></ key><ref object="Singl etonString"/></entry>
<entry><key><val ue>anot her copy</val ue></key><ref object="SingletonString"/></entry>
</ dict>

</ property>
<property name="sone_|ist">
<list>
<val ue>Hel | o, worl d! </val ue>
<ref object="SingletonString"/>
<val ue>Spring Pyt hon</val ue>
</list>
</ property>
<property name="sone_props">
<pr ops>
<prop key="adm ni strator">adm ni strator @xanpl e. org</ prop>
<prop key="support">support @xanpl e. or g</ prop>
<prop key="devel opnment " >devel opment @xanpl e. or g</ pr op>
</ props>
</ property>
<property name="sone_set">
<set >
<val ue>Hel | o, worl d! </val ue>

Spring Python 10

The 1oC container

<ref object="SingletonString"/>
<val ue>Spring Pyt hon</val ue>
</ set >
</ property>
<property nanme="some_frozen_set">
<frozenset >
<val ue>Hel | o, worl d! </val ue>
<ref object="SingletonString"/>
<val ue>Spri ng Pyt hon</val ue>
</frozenset >
</ property>
<property nanme="sone_tuple">
<t upl e>
<val ue>Hel | o, worl d! </val ue>
<ref object="SingletonString"/>
<val ue>Spring Pyt hon</val ue>
</ tupl e>
</ property>
</ obj ect >

e some_di ct isapython dictionary with four entries.

e sone_list isapython list with three entries.

e some_props isaso apython dictionary, containing three values.
e sonme_set isaninstance of python's mutable set.

e some_frozen_set isaninstance of python's frozen set.

* some_t upl e isapython tuple with three values.

Java uses maps, Python usesdictionaries

s

"9
While java calls key-based structures maps, python calls them dictionaries. For this reason, the

code fragment shows a"dict" entry, which is one-to-one with Spring Java's "map" definition.

Java also has a Property class. Spring Python trandlates this into a python dictionary, making it
more like an aternative to the configuring mechanism of di ct .

2.2.1.4. Constructors

Python functions can have both positional and named arguments. Positional arguments get assembled into a
tuple, and named arguments are assembled into a dictionary, before being passed to a function call. Spring
Python takes advantage of that option when it comes to constructor cals. The following block of configuration
data shows defining positional constructors.

<obj ect id="AnotherSingletonString" class="springpythontest.support.testSupportC asses. Stri ngHol der">
<constructor-arg value="attributed val ue"/>
</ obj ect >

<obj ect id="AThirdSingletonString" class="springpythontest.support.testSupportC asses. Stri ngHol der">

<constructor - arg><val ue>el ement al val ue</val ue></constructor-arg>
</ obj ect >

Spring Python will read these and then feed them to the class constructor in the same order as shown here.

The following code configuration shows named constructor arguments. Spring Python converts these into
keyword arguments, meaning it doesn't matter what order they are defined.

Spring Python 11

http://www.python.org/doc/2.5.2/lib/types-set.html
http://www.python.org/doc/2.5.2/lib/types-set.html

The 1oC container

<obj ect id="MiltiVal ueHol der" cl ass="springpythontest.support.testSupportC asses. Mul ti Val ueHol der" >
<constructor-arg name="a"><val ue>alt a</val ue></constructor-arg>
<constructor-arg name="b"><val ue>alt b</val ue></constructor-arg>

</ obj ect >

<obj ect id="MiltiVal ueHol der2" cl ass="springpythontest. support.testSupportd asses. Mil ti Val ueHol der" >
<constructor-arg name="c"><val ue>alt c</val ue></constructor-arg>
<constructor-arg nanme="b"><val ue>alt b</val ue></constructor-arg>

</ obj ect >

This was copied from the code's test suite, where a test case is used to prove that order doesn't matter. It is

important to note that positional constructor arguments are fed before named constructors, and that overriding a

the same constructor parameter both by position and by name is not alowed by Python, and will in turn,
generate arun-time error.

It isalso valuable to know that you can mix this up and use both.

2.2.1.5. Values

For those of you that used Spring Python before xm_Conf i g, you may have noticed that expressing values isn't
as succinct asthe old format. A good example of the old PyContainer format would be:

<conponent id="user_details_service" class="springpython.security.userdetails.|nMnoryUserDetail sService">

<property name="user_dict">

{
"basi chi bl ueuser" : ("passwordl", ["ROLE BASIC', "ASS|IG\NED BLUE", "LEVEL_HI "], True)
"basi chi orangeuser": ("password2", ["ROLE_BASIC', "ASSI GNED_ORANGE", "LEVEL_H "], True)
"ot her hi bl ueuser" ("password3", ["ROLE _OTHER', "ASSI GNED BLUE", "LEVEL_H "], True)
"ot her hi orangeuser": ("password4", ["ROLE_OTHER', "ASSI GNED_ORANGE", "LEVEL_H "], True)
"basi cl obl ueuser" ("password5", ["ROLE BASIC', "ASS|I GNED BLUE", "LEVEL_LO'], True),
"basi cl oorangeuser": ("password6", ["ROLE_BASIC', "ASSI GNED_ORANGE"', "LEVEL_LO'], True)
"ot her| obl ueuser" ("password7", ["ROLE _OTHER', "ASSI GNED BLUE", "LEVEL_LO'], True)
"ot herl oorangeuser": ("password8", ["ROLE_OTHER', "ASSI GNED_ORANGE', "LEVEL_LO'], True)

}

</ property>
</ conponent >

Why do | see components and not obj ects?

In the beginning, PyContainer was used and it tagged the managed instances as components. After
replacing PyContainer with a more sophisticated 10C container, the instances are now referred to as
objects, however, to maintain this legacy format, you will see component tags inside
Py Cont ai ner Conf i g-based definitions.

While this is very succinct for expressing definitions using as much python as possible, that format makes it
very hard to embed referenced objects and inner objects, since Py Cont ai ner Conf i g uses python's eval method
to convert the material.

The following configuration block shows how to configure the same thing for XM.Confi g.

<obj ect id="user_details_service" class="springpython.security.userdetails.|nMenoryUserDetail sService">

<property name="user_dict">

<di ct >

<entry>

</entry>
<entry>

<key><val ue>basi chi bl ueuser </ val ue></ key>

<val ue><t upl e>
<val ue>passwor d1</ val ue>
<l i st ><val ue>ROLE_BASI C</ val ue><val ue>ASSI GNED_BLUE</ val ue><val ue>LEVEL_
<val ue>True</ val ue>

</ tupl e></val ue>

(1.0.1.BUILD-20101109171136)

The 1oC container

<key><val ue>basi chi or angeuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d2</ val ue>
<l i st ><val ue>ROLE_BASI C</ val ue><val ue>ASSI GNED_ORANGE</ val ue><val ue>LEVE
<val ue>True</val ue>
</t upl e></val ue>
</entry>
<entry>
<key><val ue>ot her hi bl ueuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d3</ val ue>
<l i st ><val ue>ROLE_OTHER</ val ue><val ue>ASSI GNED_BLUE</ val ue><val ue>LEVEL_
<val ue>True</ val ue>
</ tupl e></val ue>
</entry>
<entry>
<key><val ue>ot her hi or angeuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d4</ val ue>
<l i st ><val ue>ROLE_OTHER</ val ue><val ue>ASS|I GNED_ORANCGE</ val ue><val ue>LEVE
<val ue>Tr ue</ val ue>
</t upl e></val ue>
</entry>
<entry>
<key><val ue>basi cl obl ueuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d5</ val ue>
<l i st ><val ue>ROLE_BASI C</ val ue><val ue>ASSI GNED_BLUE</ val ue><val ue>LEVEL_
<val ue>Tr ue</ val ue>
</t upl e></val ue>
</entry>
<entry>
<key><val ue>basi cl oor angeuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d6</ val ue>
<l i st ><val ue>ROLE_BASI C</ val ue><val ue>ASSI GNED_ORANGE</ val ue><val ue>LEVE
<val ue>True</val ue>
</t upl e></val ue>
</entry>
<entry>
<key><val ue>ot her| obl ueuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d7</ val ue>
<l i st ><val ue>ROLE_OTHER</ val ue><val ue>ASSI GNED_BLUE</ val ue><val ue>LEVEL_
<val ue>Tr ue</ val ue>
</ tupl e></val ue>
</entry>
<entry>
<key><val ue>ot her| oor angeuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d8</ val ue>
<l i st ><val ue>ROLE_OTHER</ val ue><val ue>ASSI GNED_CORANGE</ val ue><val ue>LEVE
<val ue>Tr ue</ val ue>
</t upl e></val ue>
</entry>
</dict>
</ property>
</ obj ect >

Of course this is more verbose than the previous block. However, it opens the door to having a much higher
level of detail:

<obj ect id="user_details_service2" class="springpython.security.userdetails.|nMenoryUserDetail sService">
<property name="user_dict">

<list>
<val ue>Hel | o, worl d! </val ue>
<di ct >
<entry>
<key><val ue>yes</ val ue></ key>
<val ue>Thi s i s worki ng</val ue>
</entry>
<entry>
<key><val ue>no</ val ue></ key>
<val ue>Maybe it's not ?</val ue>
</entry>

(1.0.1.BUILD-20101109171136)

The 1oC container

</dict>

<t upl e>
<val ue>Hel l o, from Spring Python!</val ue>
<val ue>Spri ng Pyt hon</val ue>

<di ct >
<entry>
<key><val ue>yes</ val ue></ key>
<val ue>Thi s i s working</val ue>
</entry>
<entry>
<key><val ue>no</ val ue></ key>
<val ue>Maybe it's not ?</val ue>
</entry>
</dict>
<list>
<value>This is a list elenment inside a tuple.</val ue>
<val ue>And so is this :)</val ue>
</list>
</ tupl e>
<set >
<val ue>1</val ue>
<val ue>2</val ue>
<val ue>1</val ue>
</ set >

<frozenset >
<val ue>a</ val ue>
<val ue>b</ val ue>
<val ue>a</ val ue>

</frozenset >

</list>
</ property>
</ obj ect >

2.2.2. Pyt honConfi g and @j ect - decorator-driven configuration

By defining a class that extends Pyt honConf i g and using the @j ect decorator, you can wire your application
using pure python code.

from springpyt hon. config inport PythonConfig
from springpyt hon. config i nport Cbject
from springpyt hon. cont ext inport scope

cl ass Movi eBasedAppl i cati onCont ext (Pyt honConfi g):
def __init_ (self):
super (Movi eBasedAppl i cati onContext, self).__init__ ()

@j ect (scope. PROTOTYPE)
def MovieLister(self):
lister = MvielLister()
lister.finder = self.MvieFinder()
l'ister.description = self.SingletonString()
sel f. 1 ogger. debug("Description = %" %/ ister.description)
return lister

@j ect (scope. SI NGLETON)
def Movi eFi nder (sel f):
return Col onMvi eFi nder (fil enane="support/novi esl.txt")

@j ect # scope. SINGLETON i s the defaul t
def SingletonString(self):
return StringHol der (" There should only be one copy of this string")

def Not Exposed(sel f):
pass

As part of this example, the method Not Exposed is also shown. This indicates that using get _obj ect won't
fetch that method, since it isn't considered an object.

By using pure python, you don't have to deal with any XML. If you look closely, you will notice that the

Spring Python 14

The 1oC container

container code below isonly different in the line actually creating the container. Everything else is the same.

from springpython. context inport Applicati onContext

contai ner = ApplicationContext (Mvi eBasedApplicati onContext())
servi ce = container.get_object ("MvieLister")

2.2.3. PyCont ai ner Confi g - Spring Python's original XML format

PyCont ai ner Confi g iS a class that scans object definitions stored in the format defined by PyContainer, which
was the original XML format used by Spring Python to define objects.

An important thing to note is that PyContainer used the term component, while Spring Python uses object. In
order to support this legacy format, component will show up in PyCont ai ner Conf i g-based configurations.

PyContainer'sformat is deprecated

s

"8

PyContainer's format and the original parser was useful for getting this project started. However, it
has shown its age by not being easy to revise nor extend. So thisformat is being retired. This parser
is solely provided to help sustain existing Spring Python apps until they can migrate to the new
XML Config format.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<conponents xm ns="http://ww. springframework. org/ spri ngpyt hon/ schema/ pycont ai ner - conponent s"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ spri ngpyt hon/ schema/ pycont ai ner - conponent s
http://springpython. webfactional.com schenma/ cont ext/spri ng-pyt hon-pycont ai ner-context-1.C

<conponent id="MovielLister" class="springpythontest.support.testSupportC asses. MvieLister" scope="prototype
<property name="finder" |ocal ="MvieFinder"/>
<property name="description" |ocal ="SingletonString"/>
</ conponent >

<conponent id="Movi eFi nder" class="springpythontest. support.testSupportC asses. Col onMvi eFi nder" scope="
<property name="fil enane">"support/novi esl.txt"</property>
</ conponent >

<conponent id="SingletonString" class="springpythontest.support.testSupportd asses. StringHol der">
<property name="str">"There should only be one copy of this string"</property>
</ conponent >
</ conponent s>

The definitions stored in this file are fed in to a PyCont ai ner Confi g which scans it, and then sends the
meta-data to the ApplicationContext. Then, when the application code reguests an object named
"MovieLister" from the container, the container utilizes an object factory to create an object and return it.

from springpyt hon. cont ext inport ApplicationContext
from springpython. config inport PyContainerConfig

contai ner = ApplicationCont ext (PyCont ai ner Confi g("app-context.xm "))
servi ce = container.get_object ("MvieLister")

2.2.4. SpringJavaConfig

The springJavaConfig is a class that scans object definitions stored in the format defined by the Spring
Framework's original java version. This makes it even easier to migrate parts of an existing Spring Java
application onto the Python platform.

Spring Python 15

The 1oC container

Thisisabout configuring python objects NOT java objects

It is important to point out that this has nothing to do with configuring java-backed beans from
Spring Python, or somehow injecting java-backed beans magically into a python object. This is
PURELY for configuring python-backed objects using a format that was originally designed for
pure java beans.

When ideas like "converting java to python" are mentioned, it is meant that re-writing certain parts
of your app in python would require a similar 10C configuration, however, for the java and python
parts to integrate, you must utilize interoperable solutions like web service or other remoting
technologies.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframewor k. or g/ schena/ beans"

xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans

http://ww. spri ngframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd" >

<bean i d="Mvi eLi ster" class="springpythontest. support.testSupportC asses. Mvi eLi ster" scope="prototype"

<property name="finder" ref="MvieFinder"/>
<property nanme="description"><ref bean="SingletonString"/></property>

</ bean>

<bean i d="Movi eFi nder" cl ass="springpythontest. support.testSupportC asses. Col onMyvi eFi nder" scope="si ngl

<property name="fil ename" ><val ue>support/novi esl. t xt </ val ue></ property>

</ bean>

<bean i d="Si ngl etonString" class="springpythontest. support.testSupportC asses. Stri ngHol der" >

<property name="str" val ue="There should only be one copy of this string"></property>

</ bean>
</ beans>

The definitions stored in thisfile are fed in to a Spri ngdavaConf i g which scansiit, and then sends the meta-data
to the Appl i cat i onCont ext . Then, when the application code requests an object named "MovieLister" from the
container, the container utilizes an object factory to create an object and return it.

from springpyt hon. cont ext inport ApplicationContext
from springpython. config inport SpringJavaConfig

contai ner = ApplicationContext(SpringJavaConfi g("app-context.xm "))
servi ce = container.get_object ("MvieLister")

Again, the only difference in your code is using Spri ngJavaConfi g instead of PyCont ai ner Confi g on oneline.
Everything isthe same, sinceit is all inside the Appl i cat i onCont ext .

e

What partsof Spring Java configuration are supported?

It isimportant to note that only spring-beans-2.5 has been tested at this point in time. It is possible
that older versions of the XSD spec may also work.

Spring Java's other names spaces, like tx and aop, probably DON'T work. They haven't been tested,
and thereis no special code that will utilize their feature set.

How much of Spring Java will be supported? That is an open question, best discussed on Spring
Python's community forum. Basically, this is meant to ease current Java developers into Spring
Python and/or provide a means to split up objects to support porting parts of your application into
Python. Thereisn't any current intention of providing full blown support.

(1.0.1.BUILD-20101109171136)

http://forum.springframework.org/forumdisplay.php?f=45
http://forum.springframework.org/forumdisplay.php?f=45

The 1oC container

2.2.5. Mixing Configuration Modes

Spring Python also supports providing object definitions from multiple sources, and allowing them to reference
each other. This section shows the same app context, but split between two different sources.

First, the XML file containing the key object that gets pulled:

<?xm version="1.0" encodi ng="UTF-8"?>
<conponents xm ns="http://ww. springframework. org/ springpyt hon/ schema/ pycont ai ner - conponent s"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ spri ngpyt hon/ schema/ pycont ai ner - conponent s
http://springpython. webfactional .com schema/ cont ext/spring-python-pycont ai ner-context-1.C

<conponent id="MovieLister" class="springpythontest.support.testSupportC asses. Mvi eLister" scope="prototype
<property name="finder" |ocal ="Mvi eFi nder"/>
<property nanme="description" |ocal ="SingletonString"/>
</ conponent >

<conponent id="SingletonString" class="springpythontest.support.testSupportd asses. Stri ngHol der">
<property name="str">"There should only be one copy of this string"</property>
</ conponent >
</ conponent s>

Notice that Movielister is referencing MovieFinder, however that object is NOT defined in this location. The
definition is found elsewhere:

cl ass M xedAppl i cati onCont ext (Pyt honConfi g):
def __init__(self):
super (M xedAppl i cati onContext, self).__init__ ()

@j ect (scope. SI NGLETON)
def Movi eFi nder (sel f):
return Col onMovi eFi nder (fil enane="support/novi esl.txt")

Object ref must match function name

s

"9
In this situation, an XML-based object is referencing python code by the name MovieFinder. It is

of paramount importance that the python function have the same name as the referenced string.

With some simple code, thisisall brought together when the container is created.

from springpython. context inport Applicati onContext
from springpyt hon. config inmport PyContai nerConfig

contai ner = ApplicationContext([M xedApplicationContext(),

PyCont ai ner Confi g("m xed- app-context.xm ")])
novi eLi ster = contai ner. get_obj ect ("Movi eLister")

In this case, the XML-based object definition signals the container to look elsewhere for a copy of the
MovieFinder object, and it succeeds by finding it in MixedA pplicationContext.

It is possible to switch things around, but it requires a slight change.

cl ass M xedAppl i cati onCont ext 2(Pyt honConfi g):
def __init__(self):
super (M xedAppl i cati onContext2, self). init_ ()

@j ect (scope. PROTOTYPE)
def MovieLister(self):
lister = MvielLister()
lister.finder = self.app_context.get_object("MvieFinder") # <-- only line that is different

(1.0.1.BUILD-20101109171136)

The 1oC container

l'ister.description = self.SingletonString()
sel f. 1 ogger. debug("Description = %" %/l ister.description)
return lister

@j ect # scope. SI NGLETON i s the defaul t
def SingletonString(self):
return StringHol der (" There should only be one copy of this string")

<?xm version="1.0" encodi ng="UTF- 8" ?>
<conponents xm ns="http://ww. springfranmework. or g/ spri ngpyt hon/ schema/ pycont ai ner - conponent s"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ spri ngpyt hon/ schema/ pycont ai ner - conponent s
http://springpython.webfactional .com schema/ cont ext/spring-python-pycont ai ner-context-1.C

<conponent id="Movi eFi nder" class="springpythontest. support.testSupportC asses. Col onMvi eFi nder" scope="
<property name="fil enane">"support/novi esl.txt"</property>
</ conponent >

</ conponent s>

An XML-based object definition can refer to a @bj ect by name, however, the python code has to change its
direct function call to a container lookup, otherwise it will fail.

PythonConfigis ApplicationContextAware

s

"8

In order to perform a get _obj ect , the configuration needs a handle on the surrounding container.
The base class Pyt honConf i g provides this, so that you can easily look for any object (local or not)
by using sel f . app_cont ext . get _obj ect (" nanme")

2.3. Object Factories

Spring Python offers two types of factories, ReflectiveObj ect Factory and Pyt honQbj ect Factory. These
classes should rarely be used directly by the developer. They are instead used by the different types of
configuration scanners.

2.4. Testable Code

One key value of using the 10C container is the how you can isolate parts of your code for better testing.
Imagine you had the following configuration:

from springpython.config inmport *
from springpython. context inmport *

cl ass Movi eBasedAppl i cati onCont ext (Pyt honConfi g):
def __init__(self):
super (Movi eBasedAppl i cati onContext, self).__init_ ()

@j ect (scope. PROTOTYPE)
def MovieLister(self):
lister = MovielLister()
lister.finder = self.MvieFinder()
l'ister.description = self.SingletonString()
sel f. 1 ogger. debug("Description = %" %/l ister.description)
return lister

@hj ect (scope. S| NGLETON)
def Movi eFi nder (self):
return Col onMbvi eFi nder (fil ename="support/nmovi esl.txt")

@j ect # scope. SI NGLETON i s the defaul t

Spring Python 18

The 1oC container

def SingletonString(self):
return StringHol der (" There should only be one copy of this string")

To inject atest double for Mvi eFi nder, your test code would only have to extend the class and override the
Movi eFi nder method, and replace it with your stub or mock object. Now you have a nicely isolated instance of
Movi eLi ster.

cl ass MyTest abl eAppCont ext (Movi eBasedAppl i cati onCont ext) :
def __init_ (self):
super (MyTest abl eAppContext, self).__init__()

@j ect
def Movi eFi nder (self):
return Movi eFi nder St ub()

Spring Python 19

Chapter 3. Aspect Oriented Programming

Aspect oriented programming (AOP) is a horizontal programming paradigm, where some type of behavior is
applied to several classes that don't share the same vertical, object-oriented inheritance. In AOP, programmers
implement these cross cutting concerns by writing an aspect then applying it conditionally based on a join
point. Thisisreferred to as applying advice. This section shows how to use the AOP module of Spring Python.

3.1. Interceptors

Spring Python implements AOP advice using proxies and method interceptors. NOTE: Interceptors only apply
to method calls. Any request for attributes are passed directly to the target without AOP intervention.

Here is a sample service. Our goal is to wrap the results with "wrapped" tags, without modifying the service's
code.

cl ass Sanpl eServi ce:
def nethod(self, data):
return "You sent ne '%'" %data
def doSoret hi ng(sel f):
return "Okay, |'m doing sonet hing"

If weinstantiate and call this service directly, the results are straightforward.

servi ce = Sanpl eServi ce()
print service. met hod("sonet hing")

"You sent me 'sonething' "

To configure the same thing using the 10C container, put the following text into a file named app- cont ext . xni .

<?xm version="1.0" encodi ng="UTF-8"?>
<obj ects xm ns="http://ww. springframework. org/springpython/ schema/ obj ects"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ spri ngpyt hon/ schema/ obj ect s
http://springpython.webfactional .conf schema/ cont ext/spri ng-python-context-1.0.xsd">

<obj ect id="service" class="Sanpl eService"/>

</ obj ect s>

To instantiate the 10C container, use the following code.

from springpyt hon. cont ext inport ApplicationCont ext
from springpython.config inmport XM.Config

contai ner = ApplicationContext(XM.Confi g("app-context.xm "))
servi ce = container.get_object("service")

You can use either mechanism to define an instance of your service. Now, let's write an interceptor that will
catch any results, and wrap them with <Wrapped> tags.

from springpython. aop inmport *
cl ass W appi ngl nt er cept or (Met hodl nt ercept or):
def invoke(self, invocation):

Spring Python 20

Aspect Oriented Programming

results = "<Wapped>" + invocation.proceed() + "</Wapped>"
return results

i nvoke(sel f, invocation) isa dispatching method defined abstractly in the Met hodl nt er cept or base class.
i nvocat i on holds the target method name, any input arguments, and also the callable target function. In this
case, we aren't interested in the method name or the arguments. So we call the actua function using
i nvocat i on. proceed(), and than catch its results. Then we can manipulate these results, and return them back
tothe caller.

In order to apply this advice to a service, a stand-in proxy must be created and given to the client. One way to
create this is by creating a ProxyFact ory. The factory is used to identify the target service that is being
intercepted. It is used to create the dynamic proxy object to give back to the client.

Y ou can use the Spring Python APIs to directly create this proxied service.

from springpyt hon. aop i nmport *

factory = ProxyFactory()

factory.target = Sanpl eService()
factory.interceptors. append(W appi nglnterceptor())
service = factory. get Proxy()

Or, you can insert this definition into your app- cont ext . xni file.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranmework. org/springpyt hon/ schema/ obj ect s"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ spri ngpyt hon/ schema/ obj ect s
http://springpyt hon. webf acti onal . conl schena/ cont ext/ spri ng- pyt hon- cont ext - 1. 0. xsd" >

<obj ect id="target Service" class="Sanpl eService"/>

<obj ect id="serviceFactory" class="springpython. aop. ProxyFactory">
<property name="target" ref="targetService"/>
<property name="interceptors">
<obj ect cl ass="W appi nglnterceptor"/>
</ property>
</ obj ect >

</ obj ect s>

If you notice, the original Spring Python "service" object has been renamed as "targetService”, and there is,
instead, another object called "serviceFactory” which is a Spring AOP ProxyFactory. It points to the target
service and also has an interceptor plugged in. In this case, the interceptor is defined as an inner object, not
having a name of its own, indicating it is not meant to be referenced outside the 10C container. When you get a
hold of this, you can request a proxy.

from springpyt hon. cont ext inport ApplicationContext
from springpyt hon. config i nport XM.Config

contai ner = ApplicationCont ext(XM.Confi g("app-context.xm "))

servi ceFactory = container. get_object("serviceFactory")
servi ce = serviceFactory. get Proxy()

Now, the client can call service, and all function calls will be routed to Sanpl eSer vi ce with one ssimple detour
through W appi ngl nt er cept or .

print service. met hod("sonet hing")

Spring Python 21

Aspect Oriented Programming

"<W apped>You sent ne 'sonething' </ Wapped>"

Notice how | didn't have to edit the original service at all? | didn't even have to introduce Spring Python into
that module. Thanks to the power of Python's dynamic nature, Spring Python AOP gives you the power to wrap
your own source code as well as other 3rd party modules.

3.2. Proxy Factory Objects

The earlier usage of a ProxyFact ory is useful, but often times we only need the factory to create one proxy.
Thereis ashortcut called Pr oxyFact or yObj ect .

from springpyt hon. aop i nmport *

servi ce = ProxyFact oryObj ect ()

servi ce.target = Sanpl eService()
service.interceptors = [Wappi ngl nterceptor()]
print service.nmethod(" proxy factory object")

"You sent ne a 'proxy factory object'"

To configure the same thing into your app- cont ext . xni file, it looks like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranework. org/springpyt hon/ schema/ obj ect s"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ spri ngpyt hon/ schema/ obj ect s
htt p://springpyt hon. webf acti onal . conl schena/ cont ext/ spri ng- pyt hon- cont ext - 1. 0. xsd" >

<obj ect id="target Service" class="Sanpl eService"/>

<obj ect id="service" class="springpython. aop. ProxyFact oryQhj ect">
<property name="target" ref="targetService"/>
<property name="interceptors">
<obj ect cl ass="Wappi ngl nterceptor"/>
</ property>
</ obj ect >

</ obj ect s>

In this case, the ProxyFact or yQbj ect acts as both a proxy and a factory. As a proxy, it behaves just like the
target service would, and it also provides the ability to wrap the service with aspects. It saved us a step of
coding, but more importantly, the pr oxyFact or yObj ect took on the persona of being our service right from the
beginning.

To be more pythonic, Spring Python also alows you to initialize everything at once.

from springpyt hon. aop i nmport *
servi ce = ProxyFactoryObject(target = SanpleService(), interceptors = [Wappi nglnterceptor()])

3.3. Pointcuts

Sometimes we only want to apply advice to certain methods. This requires definition of ajoin point. Join points
are composed of rules referred to as point cuts.

In this case, we want to only apply our W appi ngl nt er cept or t0 methods that start with "do".

Spring Python 22

Aspect Oriented Programming

from springpython. aop inmport *

poi nt cut Advi sor = RegexpMet hodPoi nt cut Advi sor (advi ce = [Wappi ngl nterceptor()],

patterns = [".*do.*"])

servi ce = ProxyFactoryObj ect(target = Sanpl eService(), interceptors = pointcutAdvi sor)

print service. method("nothing changed here")
"You sent ne 'nothing changed here'"
print service. doSonet hing()

"<W apped>Ckay, |'m doing sonet hi ng</ Wapped"

The power of RegexpM ethodPointAdvisor

RegexpMet hodPoi nt Advi sor IS @ powerful object in Spring Python that acts as pointcut, a join
point, and a method interceptor. It fetches the fullpath of the target's module, class, and method
name, and then checks to see if it matches any of the patterns in the patterns list using Python's

regular expression module.

By plugging this into a ProxyFact oryQhj ect as an interceptor, it evaluates whether to route method calls

through the advice, or directly to the target service.

3.4. Interceptor Chain

You may have noticed by now that the w appi ngl nt er cept or is being specified inside a Python list. That is
because you can apply more than one piece of advice. When an interceptor callsi nvocati on. proceed(), itis
actually calling the next interceptor in the chain, until it gets to the end. Then it calls the actual target service.
When the target method returns back, everything backtracks back out the set of nested interceptors.

Spring Python is coded to intelligently detect if you are assigning a single interceptor to the interceptors
property, or alist. A single interceptor gets converted into alist of one. So, you can do either of the following:

servi ce = ProxyFact oryQbj ect ()
service.interceptors = Wappi ngl nterceptor()

or
servi ce = ProxyFact oryQbj ect ()

factory.interceptors = [Wappi ngl nterceptor()]

It produces the same thing.

3.5. Coding AOP with Pure Python

There is a long history of Spring being based on XML. However, Spring Python offers an easy to use
aternative: a pure python decorator-based PythonConfig. Imagine you had set up a simple context like this:

from springpyt hon. config inmport *
from springpython. context inmport *

cl ass Movi eBasedAppl i cati onCont ext (Pyt honConfi g):
def __init__(self):
super (Movi eBasedAppl i cati onContext, self).__init__ ()

@j ect (scope. PROTOTYPE)
def MovieLister(self):
lister = MovielLister()

(1.0.1.BUILD-20101109171136)

Aspect Oriented Programming

lister.finder = self.MvieFinder()

l'ister.description = self.SingletonString()

sel f. | ogger. debug("Description = %" %/|ister.description)
return lister

@j ect (scope. SI NGLETON)
def Movi eFi nder (sel f):
return Col onMbvi eFi nder (fil enane="support/novi esl.txt")

@j ect # scope. SINGLETON i s the defaul t
def SingletonString(self):
return StringHol der (" There should only be one copy of this string")

From an AOP perspective, it is easy to intercept Movi eFi nder and wrap it with some advice. Because you have
already exposed it as an injection point with this pure-python |0C container, you just need to make this change:

from springpython. aop i nmport *
from springpyt hon. config inport *
from springpyt hon. cont ext inport *

cl ass Movi eBasedAppl i cati onCont ext (Pyt honConfi g):
def __init__(self):
super (Movi eBasedAppl i cati onContext, self).__init_ ()

@j ect (scope. PROTOTYPE)
def Movielister(self):
lister = MovieLister()
lister.finder = self.MvieFinder()
l'ister.description = self.SingletonString()
sel f. 1 ogger. debug("Description = %" %/l ister.description)
return lister

By renaming the original service to this...
def target MvieFinder(self):
return Col onMbvi eFi nder (fil enanme="support/nmovi esl.txt")

#...we can substitute a proxy that will wap it with an interceptor
@hj ect (scope. S| NGLETON)
def Movi eFi nder (self):
return ProxyFactoryObj ect (target=sel f.target MvieFi nder (),
i nt ercept ors=Myl nterceptor())

@j ect # scope. SI NGLETON i s the defaul t
def SingletonString(self):
return StringHol der (" There should only be one copy of this string")

cl ass Myl nterceptor (Mt hodl nterceptor):
def invoke(self, invocation):
results = "<Wapped>" + invocation.proceed() + "</ Wapped>"
return results

Now, everything that was referring to the original Col onMbvi eFi nder instance, is instead pointing to a
wrapping interceptor. The caller and callee involved don't know anything about it, keeping your code isolated
and clean.

Shouldn't you decouple theinterceptor from the loC configuration?

s

"8

It is usualy good practice to split up configuration from actual business code. These two were put
together in the same file for demonstration purposes.

(1.0.1.BUILD-20101109171136)

Chapter 4. Data Access

4.1. DatabaseTemplate

Writing SQL-based programs has a familiar pattern that must be repeated over and over. The
DatabaseTemplate resolves that by handling the plumbing of these operations while leaving you in control of
the part that matters the most, the SQL.

4.1.1. Traditional Database Query

If you have written a database SELECT statement following Python's DB-API 2.0, it would something like this
(MySQL example):

conn = MySQ.. connection(usernanme="ne", password'secret", hostnanme="|ocal host", db="springpython")
cursor = conn. cursor()
results =[]
try:
cursor.execute("select title, air_date, episode_nunber, witer fromtv_shows where name = %", ('"Mnty Pythc
for rowin cursor.fetchall():
tvShow = TvShow(title=row O], airDate=rowf 1], episodeNunber=row 2], witer=row 3])
resul ts. append(tvShow)
finally:
try:
cursor. cl ose()
except Exception:
pass
conn. cl ose()
return results

I know, you don't have to open and close a connection for every query, but let's look past that part. In every
definition of a SQL query, you must create a new cursor, execute against the cursor, loop through the results,
and most importantly (and easy to forget) close the cursor. Of course you will wrap thisin a method instead of
plugging in this code where ever you need the information. But every time you need another query, you have to
repeat this dull pattern over and over again. The only thing different is the actual SQL code you must write and
converting it to alist of objects.

| know there are many object relational mappers (ORMSs) out there, but sometimes you need something simple
and sweet. That iswhere Dat abaseTenpl at e COMESin.

4.1.2. Database Template

The same query above can be written using a Dat abaseTenpl at e. The only thing you must provide is the SQL
and a RowMvapper to process one row of data. The template does the rest.

" The follow ng part only has to be done once."""
from springpyt hon. dat abase i nmport *
connecti onFactory = MySQLConnecti onFact ory(usernane="nme", password"secret", hostnane="|ocal host", db="springpytt
dt = Dat abaseTenpl at e(connecti onFact ory)

cl ass TvShowMapper (RowVapper) :
"""This will handle one row of database. It can be reused for many queries if they
are returning the same colums. """
def map_row(self, row):
return TvShow(title=row O], airDate=rowf 1], episodeNunber=rowf 2], writer=row 3])

results = dt.query("select title, air_date, episode_nunber, witer fromtv_shows where nane = %", \

Spring Python 25

http://www.python.org/dev/peps/pep-0249/

Data Access

("Monty Python",), TvShowVapper())

WEll, no sign of a cursor anywhere. If you didn't have to worry about opening it, you don't have to worry about
closing it. | know this is about the same amount of code as the traditional example. Where DatabaseTemplate
starts to shine is when you want to write ten different TV_SHOW queries.

results = dt.query("select title, air_date, episode_nunber, witer fromtv_shows where epi sode_nunber < %",

(100,), TvShowvapper())

results = dt.query("select title, air_date, episode_nunber, witer fromtv_shows where upper(title) |ike %",

(" Y%CHEESE% ,), TvShowvapper ())

results = dt.query("select title, air_date, episode_nunber, witer fromtv_shows where witer in ('C eese',

r owhandl er =TvShowapper ())

Y ou don't have to reimplement the rowhandler. For these queries, you can focus on the SQL you want to write,
not the mind-numbing job of managing database cursors.

4.1.3. What is a Connection Factory?

You may have noticed | didn't make a standard connection in the example above. That is because to support
Dependency Injection, | need to setup my credentials in an object before making the actual connection.
MySQLConnect i onFact ory holds credentials specific to the MySQL DB-API, but contains a common function
to actualy create the connection. | don't have to use it myself. Dat abaseTenpl at e will use it when necessary to
create a connection, and then proceed to reuse the connection for subsequent database calls.

That way, | don't manage database connections and cursors directly, but instead let Spring Python do the heavy
lifting for me.

4.1.4. Creating/altering tables, databases, and other DDL

Data Definition Language includes the database statements that involve creating and altering tables, and so
forth. DB-API defines an execute function for this. Dat abaseTenpl at e offers the same. Using the execute()
function will pass through your request to a cursor, along with the extra exception handler and cursor
management.

4.1.5. SQL Injection Attacks

You may have noticed in the first three example queries | wrote with the Dat abaseTenpl at e, | embedded a
"%s" in the SQL statement. These are called binding variables, and they require a tuple argument be included
after the SQL statement. Do NOT include quotes around these variables. The database connection will handle
that. This style of SQL programming is highly recommended to avoid SQL injection attacks.

For users who are familiar with Java database APIs, the binding variables are cited using "?" instead of "%s".
To make both parties happy and help pave the way for existing Java programmers to use this framework, | have
included support for both. You can mix-and-match these two binding variable types as you wish, and things
will still work.

4.1.6. Have you used Spring Framework's JdbcTemplate?

If you are a user of Java's Spring framework and have used the JdbcTemplate, then you will find this template
has afamiliar feel.

Spring Python 26

\

\

'Gre

http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/SQL_injection
http://www.springframework.org
http://static.springframework.org/spring/docs/1.2.x/api/org/springframework/jdbc/core/JdbcTemplate.html

Data Access

Table4.1. ydbcTenpl at e operations also found in Dat abaseTenpl at e

execute(sql _statenment, args = None) execute any statement, return number of rows
affected

query(sql _query, args = None, rowhandler = query, returnlist converted by rowhandler
None)

query for_list(sql_query, args = None) guery, return list of DB-API tuples (or a dictionary if
you use sglWrappy)

query_for_int(sqgl _query, args = None) query for a single column of a single row, and return
an integer (throws exception otherwise)

query_for_long(sql _query, args = None) guery for a single column of a single row, and return
along (throws exception otherwise)

query_for_object(sqgl _query, args = None, query forasingle column of asinglerow, and return
required_type = None) the object with possibly no checking
update(sql _statement, args = None) update the database, return number of rows updated

Inserts are implemented through the execute() function, just like in JdbcTemplate.

Spring Python 27

http://sqlwrappy.sourceforge.net

Chapter 5. Transaction Management

When writing a program with database operations, you may need to use transactions. Y our code can get ugly,
and it often becomes hard to read the business logic due to starting, committing, or rolling back for various
reasons. Another risk is that some of the transaction management code you write will have al the necessary
steps, while you may forget some important steps in others. Spring Python offers a key level of abstraction that
can remove that burden and allow you to focus on the business logic.

5.1. Solutions requiring transactions

For simple transactions, you can embed them programmatically.

Seen anything like this before?

def transfer(transfer_anmpunt, source_account_num target_account_nun:
conn = MySQLdb. connection("springpython", "springpython", "local host", "springpython")
cursor = conn. cursor()

cursor. execut e("updat e ACCOUNT set BALANCE
cursor. execut e("updat e ACCOUNT set BALANCE

BALANCE - % where ACCOUNT_NUM = %", (transfer_anount, source_
BALANCE + % where ACCOUNT_NUM = %", (transfer_anount, target_

cursor. cl ose()

This business method defines a transfer between bank accounts. Notice any issues here? What happens if the
target account doesn't exist? What about transferring a negative balance? What if the transfer amount exceeded
the source account's balance? All these things require checks, and if something is wrong the entire transfer must
be aborted, or you find the first bank account leaking money.

To wrap this function transactionally, based on DB-2.0 API specifications, we'll add some checks. | have also
completed some refactorings and utilized the Dat abaseTenpl at e to clean up my database code.

from springpyt hon. dat abase i nmport *
from springpyt hon. dat abase. core inmport *

i mport types
cl ass Bank:

def

def

def

def

def

def

_init__(self):
self.factory = factory. MySQLConnect i onFact ory("spri ngpython", "springpython", "local host", "springpythor
sel f.dt = DatabaseTenpl ate(sel f.factory)

bal ance(sel f, account_num):
results = self.dt.query_for_list("select BALANCE from ACCOUNT where ACCOUNT_NUM = %", (account_num))
if len(results) != 1:

rai se I nvalidBankAccount ("There were % accounts that matched %." % (len(results), account_num)
return results[0][0]

checkFor Suf fi ci ent Funds(sel f, source_bal ance, anount):
i f source_bal ance < anpunt:
rai se InsufficientFunds("Account % did not have enough funds to transfer %" % (source_account_num

wi t hdraw(sel f, ampbunt, source_account_nunj:
sel f. checkFor Suf fi ci ent Funds(sel f. bal ance(source_account _num), anount)
sel f. dt. execute("update ACCOUNT set BALANCE = BALANCE - % where ACCOUNT_NUM = %", (anpunt, source_accc

deposit(sel f, anmpunt, target_account_num:

Inplicitly testing for valid account nunber

sel f. bal ance(target_account _num

sel f. dt. execute("updat e ACCOUNT set BALANCE = BALANCE + % where ACCOUNT_NUM = %", (anpunt, target_accc

transfer(self, transfer_anmount, source_account_num target_account_num:
try:
cursor = self.factory. getConnection().cursor() # DB-2.0 APl spec says that creating a cursor inplici
sel f.w thdraw(transfer_anount, source_account_num
sel f. deposi t (transfer_anmount, target_account_nun
sel f.factory. get Connection().conm t()

Spring Python 28

Transaction Management

cursor.close() # There wasn't anything in this cursor, but it is good to close an opened cursor
except | nvalidBankAccount, |nsufficientFunds:
sel f.factory. get Connection().roll back()

» This has some extra checks put in to protect from overdrafts and invalid accounts.
e Dat abaseTenpl at e removes our need to open and close cursors.

e Unfortunately, we still have to tangle with them as well as the connection in order to handle transactions.

5.2. Transacti onTenpl at e

We still have to deal with exceptions. What if another part of the code raised another exception that we didn't
trap? It might escape our try-except block of code, and then our data could lose integrity. If we plug in the
Transacti onTenpl at e, we can really simplify this and also guarantee management of any exceptions.

The following code block shows swapping out manual transaction for Tr ansact i onTenpl at e.

from springpyt hon. dat abase. transaction inport *

cl ass Bank:
def __init_ (self):
self.factory = factory. MySQLConnect i onFact ory("spri ngpython", "springpython", "local host", "springpythor
sel f.dt = DatabaseTenpl ate(sel f.factory)
sel f.txManager = Connecti onFactoryTransacti onManager (sel f.factory)
sel f.txTenpl ate = Transacti onTenpl at e(sel f.txManager)

def transfer(self, transfer_anount, source_account_num target_account_nunj:
class txDefinition(TransactionCallbackWthoutResult):
def dol nTransacti onWt hout Resul t (s, status):
sel f.w thdraw(transfer_anount, source_account_num
sel f. deposi t (transfer_anmount, target_account_nun
try:
sel f.txTenpl at e. execut e(t xDefinition())
print "If you made it to here, then your transaction has already been commtted."
except | nvalidBankAccount, |nsufficientFunds:
print "If you made it to here, then your transaction has already been rolled back."

e We changed the init function to setup a Transacti onvanager (based on ConnectionFactory) and also a
TransactionTenpl at e.

« Wealso rewrote the transfer function to generate a callback.

Now you don't have to deal with implicit cursors, commits, and rollbacks. Managing commits and rollbacks can
really complicated especialy when deaing with exceptions. By wrapping it into a nice callback,
Transacti onTenpl at e does the work for us, and lets us focus on business logic, while encouraging us to
continue to define meaningful business logic errors.

5.3. @ransacti onal

Another option is to use the @ransacti onal decorator, and mark which methods should be wrapped in a
transaction when called.

Spring Python 29

Transaction Management

from springpyt hon. dat abase. transacti on i nmport *

cl ass Bank:
def __init__(self, connectionFactory):
sel f.factory = connectionFactory):
sel f.dt = DatabaseTenpl ate(sel f.factory)

@ransacti onal

def transfer(self, transfer_anmount, source_account_num target_account_nun):
sel f.w t hdraw(transfer_anmount, source_account_nun
sel f. deposit(transfer_anmount, target_account_num

This needs to be wired together with a Transacti onManager in an ApplicationContext. The following
example shows a Pyt honConf i g with three objects:

» thebank
e aTransacti onManager (inthiscase Connecti onFact oryTr ansact i onManager)

e an AutoTransact i onal Obj ect , which checks all objects to see if they have @ransact i onal methods, and
if so, links them with the Tr ansact i onManager .

The name of the method (i.e. component name) for Aut oTr ansact i onal Qbj ect doesn't matter.

cl ass Dat abaseTxTest Decor ati veTransacti ons(Pyt honConfi g):
def __init_ (self, factory):
super (Dat abaseTxTest Decor ati veTransactions, self).__init_ ()
self.factory = factory

@hj ect
def transactional Object(self):
return AutoTransacti onal Object (sel f.tx_ngr())

@j ect
def tx_mgr(self):
return Connecti onFactoryTransacti onManager (sel f.factory)

@j ect
def bank(self):
return Transacti onal Bank(sel f.factory)

This can also be configured using XM_Conf i g

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranmework. org/springpyt hon/ schema/ obj ect s"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ spri ngpyt hon/ schema/ obj ect s

http://springpython. webfactional.conm schenma/ cont ext/spri ng-python-context-1.0. xsd">

<obj ect id="transactional Object" class="springpython. database.transacti on. AutoTransacti onal Obj ect">

<constructor-arg ref="tx_mgr"/>
</ obj ect >

<object id="tx_mgr" class="springpython. database. transacti on. Connecti onFact oryTransacti onManager" >

<constructor-arg ref="factory"/>
</ obj ect >

<obj ect id="factory" class="...your DB connection factory definition here..."/>
<obj ect id="bank" class="Transacti onal Bank">

<constructor-arg ref="factory"/>
</ obj ect >

Spring Python 30

Transaction Management

</ obj ect s>

5.3.1. @ransacti onal ([" PROPAGATI ON_REQUI RED']) ...

Declarative transactions includes the ability to define transaction propagation. This alows you to define when a
transaction should be started, and which operations need to be part of transactions. There are severa levels of
propagation defined:

¢ PROPAGATION_SUPPORTS - Caode can run inside or outside a transaction.

¢ PROPAGATION_REQUIRED - If thereis no current transaction, one will be started.

* PROPAGATION_MANDATORY - Code MUST berun inside an already started transaction.
* PROPAGATION_NEVER - Code must NOT be run inside an existing transaction.

Thefollowing codeis arevision of the Bank class, with this attribute plugged in:

cl ass Transacti onal BankW t hLot sOF Tr ansact i onal Ar gunent s(obj ect) :
"""This sanpl e application can be used to denpbnstrate the value of atom c operations. The transfer operatior
must be wrapped in a transaction in order to performcorrectly. Qtherwise, any errors in the deposit wll
allow the fromaccount to | eak assets."""
def __init__(self, factory):
sel f. 1 ogger = | oggi ng. getLogger ("springpython.test.testSupportd asses. Transacti onal BankW t hLot sO Tr ansac
sel f.dt = Dat abaseTenpl at e(factory)

@ransacti onal ([" PROPAGATI ON_REQUI RED'])
def open(self, accountNum):
sel f. | ogger. debug(" Qpeni ng account % w th $0 bal ance." % account Num
sel f.dt. execute("I NSERT | NTO account (account_num bal ance) VALUES (?,?)", (accountNum 0))

@ransacti onal ([" PROPAGATI ON_REQUI RED'])
def deposit(self, ampunt, accountNun):
sel f. | ogger. debug("Depositing $% into %" % (anmount, account Num))
rows = self.dt.execute("UPDATE account SET bal ance = bal ance + ? WHERE account _num = ?", (anbunt, accour
if rows == 0:
rai se BankException("Account % does NOT exist" % account Num

@ransacti onal ([" PROPAGATI ON_REQUI RED'])
def withdraw(sel f, amount, account Nunj:
sel f. 1 ogger. debug("Wthdrawi ng $% from %" % (anount, accountNum))
rows = self.dt.execute("UPDATE account SET bal ance = bal ance - ? WHERE account _num = ?", (anpunt, accour
if rows == 0:
rai se BankException("Account % does NOT exist" % account Num
return anmount

@ransacti onal ([" PROPAGATI ON_SUPPORTS", "readOnl y"])
def bal ance(sel f, account Num):
sel f. 1 ogger. debug(" Checki ng bal ance for %" % account Num
return sel f.dt.queryFor Qbj ect ("SELECT bal ance FROM account WHERE account _num = ?", (accountNum), types.

@ransact i onal ([" PROPAGATI ON_REQUI RED'])

def transfer(self, amount, fromAccountNum toAccountNunj:
sel f. | ogger. debug("Transferring $% from % to %." % (anmobunt, fromAccount Num toAccountNum))
sel f.w t hdraw anount, fromAccount Num
sel f. deposit (ambunt, toAccountNum

@r ansact i onal ([" PROPAGATI ON_NEVER'])
def nonTransacti onal Operation(self):
sel f. | ogger. debug("Executing non-transacti onal operation.")

@ransactional ([" PROPAGATI ON_MANDATORY"])
def mandat oryOperation(self):
sel f. 1 ogger. debug("Executi ng mandatory transactional operation.")

@ransacti onal ([" PROPAGATI ON_REQUI RED'])
def mandat oryOperati onTransacti onal W apper (sel f):

(1.0.1.BUILD-20101109171136)

Transaction Management

sel f. mandat or yOper ati on()
sel f. mandat oryQperati on()

@ransact i onal ([" PROPAGATI ON_REQUI RED'])
def nonTransacti onal Operati onTransacti onal W apper (sel f):
sel f. nonTransacti onal Operati on()

Y ou will notice several levels are being utilized. This class was pulled directly from the test suite, so some of
the functions are deliberately written to generate controlled failures.

If you look closely at withdraw, deposit, and transfer, which are all set to PROPAGATION_REQUIRED, you
can see what this means. If you use withdraw or deposit by themselves, which require transactions, each will
start and complete a transaction. However, transfer works by re-using these business methods. Transfer itself
needs to be an entire transaction, so it starts one. When it calls withdraw and deposit, those methods don't need
to start another transaction because they are aready inside one. In comparison, balance is defined as
PROPAGATION_SUPPORTS. Since it doesn't update anything, it can run by itself without a transaction.
However, if it is caled in the middle of another transaction, it will play along.

You may have noticed that balance aso has "readOnly" defined. In the future, this may be passed onto the
RDBMS in case the relational engine can optimize the query given its read-only nature.

(1.0.1.BUILD-20101109171136)

Chapter 6. Security

Spring Python's Security module is based on Acegi Security's architecture. You can read Aceqgi's detailed
reference manual for a background on this module.

Spring Security vs. Acegi Security

“a
At the time this module was implemented, Spring Security was still Acegi Security. Links include
reference documentation that was used at the time to implement this security module.

6.1. Shared Objects

The major building blocks of Spring Python Security are

e SecurityContext Hol der, to provide any type accessto the Securi t yCont ext .
e SecurityCont ext, to hold the Authentication and possibly request-specific security information.

* HttpSessionContextl|ntegrationFilter,to storethe SecurityContext inthe HTTP session between web
requests.

e Authenticati on, to represent the principal in an Acegi Security-specific manner.
e GrantedAut hori ty, to reflect the application-wide permissions granted to a principal.

These objects are needed for both authentication and authorization.

6.2. Authentication

The first level of security involves verifying your credentials. Most systems today use some type of
username/password check. To configure Spring Python, you will need to configure one or more
Aut henti cationProvider's. All Authentication implementations are required to store an array of
GrantedAut hority objects. These represent the authorities that have been granted to the principal. The
G ant edAut hori ty objects are inserted into the Aut hent i cat i on object by the Aut hent i cat i onManager and are
later read by AccessDeci si onManager's when making authorization decisions. These are chained together
inside an Aut hent i cat i onManager .

6.2.1. AuthenticationProviders

6.2.1.1. DaoAuthenticationProvider

This Aut hent i cati onProvi der alows you to build a dictionary of user accounts, and is very handy for
integration testing without resorting to complex configuration of 3rd party systems.

To configure this using a pythonic, decorator-based |0C container...

cl ass Sanpl eCont ai ner (Pyt honConfi g):

@j ect
def i nMenoryDaoAut henti cati onProvi der (sel f):
provi der = DaoAut henti cati onProvi der ()

Spring Python 33

http://acegisecurity.org/
http://acegisecurity.org/guide/springsecurity.html
http://acegisecurity.org/guide/springsecurity.html

Security

provi der. user_details_service = i nMenoryUser Det ai | sServi ce()
return provider

@j ect
def i nMenoryUserDetail sService(self):
user _details_service = I nMenoryUser Det ai | sService()
user _details_service.user_dict = {
"vet1": ("passwordl", ["VET_ANY"], False),
"bdavi s": ("password2", ["CUSTOVER _ANY"], Fal se)
"jblack": ("password3", ["CUSTOMER ANY"], Fal se)
"di sabl eduser": ("password4", ["VET_ANY"], True),
"emptyuser": ("", [], False) }

return user_details_service

XML configuration using XM_Conf i g:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranework. org/springpyt hon/ schema/ obj ect s"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ spri ngpyt hon/ schema/ obj ect s
http://springpython. webfactional.con schenma/ cont ext/ spri ng-pyt hon-cont ext-1.0. xsd">

<obj ect id="inMenoryUserDetail sService" class="springpython.security.userdetails.|nMenoryUserDetail sSer\
<property name="user_dict">
<di ct >
<entry>
<key><val ue>user 1</ val ue></ key>
<val ue>
<t upl e>
<val ue>passwor d1</ val ue>
<l i st ><val ue>r ol el</ val ue><val ue>bl ue</val ue></11i st >
<val ue>Tr ue</ val ue>
</ tupl e>
</ val ue>
</entry>
<entry>
<key><val ue>user 2</ val ue></ key>
<val ue>
<t upl e>
<val ue>passwor d2</ val ue>
<l i st ><val ue>r ol el</ val ue><val ue>or ange</ val ue></1i st >
<val ue>True</val ue>
</ tupl e>
</ val ue>
</entry>
<entry>
<key><val ue>adm nuser </ val ue></ key>
<val ue>
<t upl e>
<val ue>passwor d3</ val ue>
<l i st ><val ue>r ol el</ val ue><val ue>adm n</val ue></11i st >
<val ue>True</ val ue>
</tupl e>
</ val ue>
</entry>
<entry>
<key><val ue>di sabl eduser </ val ue></ key>
<val ue>
<t upl e>
<val ue>passwor d4</ val ue>
<l i st ><val ue>r ol el</ val ue><val ue>bl ue</val ue></11i st >
<val ue>Fal se</ val ue>
</ tupl e>
</ val ue>
</entry>
<entry>
<key><val ue>enpt yuser </ val ue></ key>
<val ue>
<t upl e>
<val ue/ >
<list/>
<val ue>True</val ue>
</ tupl e>
</ val ue>
</entry>

Spring Python 34

Security

</dict>
</ property>
</ obj ect >

<obj ect id="i nMenoryDaoAut henti cati onProvi der" class="springpython. security.providers. dao. DaoAut henti cat

<property name="user_details_service" ref="i nMenoryUserDetail sService"/>
</ obj ect >

</ obj ect s>

Thisis the user map defined for one of the test cases. The first user, userl, has a password of passwordl, alist
of granted authorities ("rolel”, "blue"), and is enabled. The fourth user, "disableduser”, has a password and a
list of granted authorities, but is NOT enabled. The last user has no password, which will cause authentication
to fail.

6.2.1.2. Future AuthenticationProviders

So far, Spring Python has implemented a DaoA uthenticationProvider than can link with any database or user an
in-memory user data structure. Future releases should include:

e LdapAut henti cati onProvi der
* Openl DAut henti cati onProvi der

« Anonymous authentication provider - allows you to tag anonymous users, and constrain what they can
access, even if they don't provide a password

6.2.2. AuthenticationManager

An AuthenticationManager holds a list of one or more AuthenticationProvider's, and will go through the list
when attempting to authenticate. PetClinic configuresit like this:

cl ass Sanpl eCont ai ner (Pyt honConfi g):

@j ect
def authenticati onManager (sel f):
return Authenticati onManager (auth_providers = [sel f.authenticationProvider()])

XML-based configuration with XM.Conf i g:

<obj ect id="authenticati onManager" class="springpython.security.providers.Authenti cati onManager">
<property nanme="aut h_provi ders">
<list><ref object="authenticationProvider"/></list>
</ property>
</ obj ect >

This Aut hent i cati onManager has a list referencing one object already defined in the Appl i cati onCont ext ,
authenticationProvider. The authentication manager is supplied as an argument to the security interceptor, so it
can perform checks as needed.

6.3. Authorization

After successful authentication, a user is granted various roles. The next step of security is to determine if that
user is authorized to conduct a given operation or access a particular web page. The AccessDeci si onManager iS

Spring Python 35

Security

called by the Abst ract Securi tyl ntercept or and is responsible for making final access control decisions. The
AccessDeci si onManager interface contains two methods:

def decide(self, authentication, object, config)
def supports(self, attr)

As can be seen from the first method, the AccessDeci si onManager is passed via method parameters all
information that is likely to be of value in assessing an authorization decision. In particular, passing the secure
object enables those arguments contained in the actual secure object invocation to be inspected. For example,
let's assume the secure object was a Met hodl nvocat i on. It would be easy to query the Met hodl nvocati on for
any Customer argument, and then implement some sort of security logic in the AccessDeci si onManager to
ensure the principal is permitted to operate on that customer. Implementations are expected to throw an
AccessDeni edExcepti on if accessisdenied.

Whilst users can implement their own AccessDeci si onvanager to control all aspects of authorization, Spring
Python Security includes several AccessDeci si onManager implementations that are based on voting. Using this
approach, a series of AccessDeci si onVot er implementations are polled on an authorization decision. The
AccessDeci si onManager then decides whether or not to throw an AccessDeni edException based on its
assessment of the votes.

The AccessDeci si onVot er interface has two methods:

def supports(self, attr)
def vote(self, authentication, object, config)

Concrete implementations return an integer, with possible values being reflected in the AccessDeci si onVot er
static fields ACCESS ABSTAIN, ACCESS DENIED and ACCESS GRANTED. A voting implementation will
return ACCESS_ABSTAIN if it has no opinion on an authorization decision. If it does have an opinion, it must
return either ACCESS_DENIED or ACCESS_GRANTED.

There are three concrete AccessDeci si onManager 's provided with Spring Python Security that tally the votes.
The ConsensusBased implementation will grant or deny access based on the consensus of non-abstain votes.
Properties are provided to control behavior in the event of an equality of votes or if al votes are abstain. The
AffirmativeBased implementation will grant access if one or more ACCESS _GRANTED votes were received
(ie a deny vote will be ignored, provided there was at least one grant vote). Like the ConsensusBased
implementation, there is a parameter that controls the behavior if al voters abstain. The unani nousBased
provider expects unanimous ACCESS GRANTED votes in order to grant access, ignoring abstains. It will
deny access if there is any ACCESS_DENIED vote. Like the other implementations, there is a parameter that
controls the behavior if al voters abstain.

It is possible to implement a custom AccessDeci si onManager that tallies votes differently. For example, votes
from a particular AccessDeci si onVoter might receive additional weighting, whilst a deny vote from a
particular voter may have aveto effect.

There are two concrete AccessDeci si onVot er implementations provided with Spring Python Security. The
Rol eVot er class will vote if any config attribute begins with ROLE_. It will vote to grant access if there is a
G ant edAut hori t y which returns a String representation exactly equal to one or more config attributes starting
with ROLE_. If there is no exact match of any config attribute starting with ROLE_, the Rol eVot er will vote to
deny access. If no config attribute begins with ROLE _, the voter will abstain. Rol evot er IS case sensitive on
comparisons as well asthe ROLE_ prefix.

PetClinic has two Rol evot er 'sin its configuration:

(1.0.1.BUILD-20101109171136)

Security

cl ass Sanpl eCont ai ner (Pyt honConfi g):

@j ect
def vet Rol eVoter(self):
return Rol eVoter(rol e_prefix="VET")

@j ect
def custoner Rol eVoter(sel f):
return Rol eVoter(rol e_prefix="CUSTOVER")

XML-based configuration with xMm_Conf i g:

<obj ect id="vetRol eVoter" class="springpython.security.vote. Rol eVoter">
<property name="rol e_prefix"><val ue>VET</ val ue></ property>
</ obj ect >

<obj ect id="custonerRol eVoter" class="springpython.security.vote.Rol eVoter">
<property nanme="rol e_prefix"><val ue>CUSTOVER</ val ue></ pr operty>
</ obj ect >

The first one votes on VET authorities, and the second one votes on CUSTOMER authorities.

The other concrete AccessDeci si onVot er S the Label BasedAcl Vot er . It can be seen in the test cases. Maybe
later it will be incorporated into a demo.

Petclinic has a custom AccessDeci si onVot er , which votes on whether a user "owns" arecord.

cl ass Sanpl eCont ai ner (Pyt honConfi g):

@j ect
def ownerVoter(self):
return OanerVoter(controller = self.controller())

XML-based configuration using XM_Conf i g:

<obj ect id="ownerVoter" class="controller.OmerVoter">
<property nanme="controller" ref="controller"/>
</ obj ect >

This class is wired in the PetClinic controller module as part of the sample, which demonstrates how easy it is
to plugin your own custom security handler to this module.

PetClinic wires together these AccessDeci si onVot er 'Sinto an AccessDeci si onManager :

cl ass Sanpl eCont ai ner (Pyt honConfi g):

@j ect
def accessDeci si onManager (sel f):
manager = AffirmativeBased()
manager. al low_i f _al | _abstain = Fal se
manager . access_deci sion_voters = [sel f.vetRol eVoter(), self.custonerRoleVoter(), self.ownerVoter()]
return nmanager

XML-based configuration using XM.Conf i g:

<obj ect id="accessDeci si onManager" cl ass="springpython.security.vote. AffirnmativeBased">
<property nanme="al |l ow_ i f_al | _abstai n"><val ue>Fal se</ val ue></ property>
<property name="access_deci si on_voters">
<list>

(1.0.1.BUILD-20101109171136)

Security

<ref object="vetRol eVoter"/>
<ref object="custonerRol eVoter"/>
<ref object="ownerVoter"/>
</list>
</ property>
</ obj ect >

Spring Python

38

Chapter 7. Remoting

Coupling Aspect Oriented Programming with different types of Python remoting services makes it easy to
convert your local application into a distributed one. Technically, the remoting segment of Spring Python
doesn't use AOP. However, it is very similar in the concept that you won't have to modify either your servers or
your clients.

Distributed applications have multiple objects. These can be spread across different instances of the Python
interpreter on the same machine, as well on different machines on the network. The key factor is that they need
to talk to each other. The developer shouldn't have to spend a large effort coding a custom solution. Another
common practice in the realm of distributed programming is that fact that programmers often develop
standalone. When it comes time to distribute the application to production, the configuration may be very
different. Spring Python solves this by making the link between client and server objects a step of configuration
not coding.

In the context of this section of documentation, the term client refers to a client-application that is trying to
access some remote service. The serviceisreferred to as the server object. The term remote is subjective. It can
either mean a different thread, a different interpretor, or the other side of the world over an Internet connection.
Aslong as both parties agree on the configuration, they all share the same solution.

Spring Python currently supports:

e Pyro (Python Remote Objects) - a pure Python transport mechanism

» Hessian - support for Hessian has just started. So far, you can call python-to-java based on libraries released
from Caucho.

7.1. Remoting with PYRO (Python Remote Objects)

7.1.1. Decoupling a simple service, to setup for remoting

For starters, let's define a simple service.

cl ass Service(object):
def get_data(self, paran):
return "You got renpte data => %" % param

Now, we will createit locally and then call it.

service = Service()
print service.get_data("Hello")

"You got renpte data => Hel |l 0"

Okay, imagine that you want to relocate this service to another instance of Python, or perhaps another machine
on your network. To make this easy, let's utilize Inversion Of Control, and transform this service into a Spring
service. First, we need to define an application context. We will create afile called applicationContext.xml.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springframework. org/ spri ngpyt hon/ schema/ obj ect s"

Spring Python 39

http://pyro.sourceforge.net
http://hessian.caucho.com

Remoting

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ spri ngpyt hon/ schema/ obj ect s
http://springpython.webfactional .con schema/ cont ext/spri ng-python-context-1.0.xsd">
<obj ect id="service" class="Service"/>

</ obj ect s>

The client code is changed to this:

appCont ext = ApplicationCont ext (XM-Confi g("applicationContext.xm"))
servi ce = appCont ext.get _obj ect ("service")
print service.get_data("Hello")

"You got renpte data => Hell 0"

Not too tough, ehh? Well, guess what. That little step just decoupled the client from directly creating the
service. Now we can step in and configure things for remote procedure calls without the client knowing it.

7.1.2. Exporting a Spring Service Using Inversion Of Control

In order to reach our service remotely, we have to export it. Spring Python provides Pyr oSer vi ceExporter to
export your service through Pyro. Add this to your application context.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springframework. org/ spri ngpyt hon/ schema/ obj ect s"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww:. spri ngframewor k. or g/ spri ngpyt hon/ schena/ obj ect s
http://springpyt hon. webf acti onal . conl schema/ cont ext/ spri ng- pyt hon- cont ext - 1. 0. xsd" >

<obj ect id="renoteService" class="Service"/>

<obj ect id="service_exporter" class="springpython.renoting.pyro.PyroServi ceExporter">
<property name="servi ce_nanme" val ue="Servi ceNane"/>
<property name="service" ref="renoteService"/>

</ obj ect >

<obj ect id="service" class="springpython.renoting.pyro.PyroProxyFactory">
<property name="service_url" val ue="PYROLCC://| ocal host: 7766/ Servi ceNane"/ >

</ obj ect >

</ obj ect s>

Three things have happened:

1. Our original service's object name has been changed to remoteService.

2. Another object was introduced called service_exporter. It references object remoteService, and provides a
proxied interface through a Pyro URL.

3. Wecreated aclient caled service. That is the same name our client code it looking for. It won't know the
difference!

7.1.2.1. Hostname/Port overrides

Pyro defaults to advertising the service at localhost: 7766. However, you can easily override that by setting the
servi ce_host and service_port properties of the PyroServi ceExporter object, either through setter or
constructor injection.

Spring Python 40

http://pyro.sourceforge.net/

Remoting

<?xm version="1.0" encodi ng="UTF-8"?>"M
<obj ects xm ns="http://ww. springfranmework. org/springpyt hon/ schema/ obj ect s"*M
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" "M
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ spri ngpyt hon/ schema/ obj ect s"M
http://springpyt hon. webf acti onal . conl schena/ cont ext/ spri ng- pyt hon- cont ext - 1. 0. xsd" >"M

<obj ect id="renoteService" class="Service"/>

<obj ect id="service_exporter" class="springpython.renoting.pyro.PyroServi ceExporter">
<property name="servi ce_nanme" val ue="Servi ceNane"/>
<property nanme="service" ref="renoteService"/>
<property name="servi ce_host" val ue="127.0.0.1"/>
<property nanme="service_port" val ue="7000"/>
</ obj ect >

<obj ect id="service" class="springpython.renoting.pyro.PyroProxyFactory">
<property name="service_url" val ue="PYROLCC://127.0.0.1: 7000/ Servi ceNane"/ >
</ obj ect >

</ obj ect s>

In this variation, your service is being hosted on port 7000 instead of the default 7766. This is also key, if you
need to advertise to another |P address, to make it visible to another host.

Now when the client runs, it will fetch the Pyr oPr oxyFact ory, which will use Pyro to look up the exported
module, and end up calling our remote Spring service. And notice how neither our service nor the client have
changed!

Python doesn't need an interface declaration for the client proxy

s

"9
If you have used Spring Java's remoting client proxy beans, then you may be used to the idiom of

specifying the interface of the client proxy. Due to Python's dynamic nature, you don't have to do
this.

We can now split up this application into two objects. Running the remote service on another server only
requires us to edit the client's application context, changing the URL to get to the service. All without telling
the client and server code.

7.1.3. Do | have to use XML?

No. Again, Spring Python provides you the freedom to do things using the |oC container, or programmatically.

To do the same configuration as shown above looks like this:

from springpython.renoting. pyro i nport PyroServi ceExporter
from springpyt hon. renoti ng. pyro i nport PyroProxyFactory

Create the service
renot eServi ce = Service()

Export it via Pyro using Spring Python's utility classes
servi ce_exporter = PyroServi ceExporter()

servi ce_exporter.service_nane = "Servi ceNanme"

servi ce_exporter.service = renoteService

servi ce_exporter.after_properties_set()

Get a handle on a client-side proxy that will renmotely call the service
servi ce = PyroProxyFactory()
servi ce.service_url = "PYROLOC://127.0.0. 1: 7000/ Ser vi ceNane"

Call the service just you did in the original, sinplified version
print service.get_data("Hello")

Spring Python 41

Remoting

Againgt, you can override the hostname/port values as well

Export it via Pyro using Spring Python's utility classes
servi ce_exporter = PyroServi ceExporter()

servi ce_exporter.servi ce_name = "Servi ceNanme"
servi ce_exporter.service = renoteService
servi ce_exporter.service_host = "127.0.0.1" # or perhaps the machi nes actual hostnane

servi ce_exporter.service_port = 7000
servi ce_exporter.after_properties_set()

That is effectively the same steps that the 10C container executes.

Don't forget after_properties set!

-

e

Since Pyr oSer vi ceExporter iSan I nitializi ngQj ect, you must call after_properties_set in
order for it to start the Pyro thread. Normally the 1oC container will do this step for you, but if you
choose to create the proxy yourself, you are responsible for this step.

7.1.4. Splitting up the client and the server

This configuration sets us up to run the server and the client in two different Python VMs. All we haveto dois
split things into two parts.

Copy thefollowing into ser ver. xn :

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranmework. org/springpyt hon/ schema/ obj ect s"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ spri ngpyt hon/ schena/ obj ect s
http://springpython. webfactional .conm schema/ cont ext/spri ng-python-context-1.0.xsd">

<obj ect id="renoteService" class="server.Service"/>

<obj ect id="service_exporter" class="springpython.renoting.pyro.PyroServi ceExporter">
<property name="servi ce_nanme" val ue="Servi ceNane"/>
<property name="service" ref="renoteService"/>
<property name="servi ce_host" val ue="127.0.0.1"/>
<property name="service_port" val ue="7000"/>
</ obj ect >

</ obj ect s>

Copy thefollowing into server . py:

i nport | oggi ng
from springpyt hon. config i nport XM.Config
from springpython. context inport Applicati onContext

cl ass Service(object):
def get_data(self, paran):
return "You got renpnte data => %" % param

if _name__ =="__min__"

Turn on sone |logging in order to see what is happening behind the scenes..

| ogger = | oggi ng. get Logger (" spri ngpyt hon")

| oggi ngLevel = | oggi ng. DEBUG

| ogger . set Level (1 oggi ngLevel)

ch = 1 o0ggi ng. St reanHandl er ()

ch. set Level (1 oggi ngLevel)

formatter = |ogging. Formatter ("% asctinme)s - % nane)s - %I evel nane)s - % nmessage)s")
ch.setFormatter(formatter)

| ogger . addHandl er (ch)

(1.0.1.BUILD-20101109171136)

Remoting

appCont ext = Applicati onCont ext (XM_Confi g("server.xm "))

Copy thefollowing intocli ent. xm :

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranework. org/ springpyt hon/ schema/ obj ect s"
xm ns: xsi ="http://wwmw. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. spri ngframework. or g/ spri ngpyt hon/ schema/ obj ect s
htt p: //springpyt hon. webf acti onal . conf schena/ cont ext/ spri ng- pyt hon- cont ext - 1. 0. xsd" >

<obj ect id="service" class="springpython.renoting.pyro.PyroProxyFactory">
<property name="service_url" val ue="PYROLOC://127.0.0. 1: 7000/ Ser vi ceNane"/ >
</ obj ect >

</ obj ect s>

Copy thefollowingintocl i ent. py:

i nport | oggi ng

from springpython.config inmport XM.Config

from springpython. context inport ApplicationContext
if __nane__ == "__main__":
Turn on sone logging in order to see what is happeni ng behind the scenes...

| ogger = | oggi ng. get Logger ("spri ngpyt hon")

| oggi ngLevel = | oggi ng. DEBUG

| ogger . set Level (1 oggi ngLevel)

ch = | oggi ng. St reantHandl er ()

ch. set Level (1 oggi ngLevel)

formatter = | ogging. Formatter ("% asctinme)s - % nanme)s - %I evel nane)s - % nmessage)s")
ch.set Formatter(formatter)

| ogger . addHandl er (ch)

appCont ext = ApplicationContext(XM.Config("client.xm"))
servi ce = appCont ext.get_object("service")
print "CLIENT: %" % service.get_data("Hello")

First, launch the server script, and then launch the client script, both on the same machine. They should be able
to talk to each other with no problem at all, producing some log chatter like this:

$ python server.py &
[1] 20854

2009- 01- 08 12: 06: 20, 021 - springpyt hon. cont ai ner. Obj ect Cont ai ner - DEBUG - === Scanni ng configurati on <springpyt

2009- 01- 08 12: 06: 20, 021 - springpython. config. XM.Config - DEBUG -

2009- 01- 08 12: 06: 20, 022 - springpython. config. XM_.Config - DEBUG - * Parsing server.xni

2009- 01- 08 12: 06: 20, 025 - springpyt hon. confi g. XM_Config - DEBUG -

2009- 01- 08 12: 06: 20, 025 - springpyt hon. cont ai ner. Obj ect Cont ai ner - DEBUG - renoteService object definition does

2009-01- 08 12: 06: 20, 026 spri ngpyt hon. cont ai ner. Obj ect Cont ai ner - DEBUG - service_exporter object definition dc
2009- 01- 08 12: 06: 20, 026 spri ngpyt hon. cont ai ner. Obj ect Cont ai ner - DEBUG - === Done readi ng obj ect definitions.
2009- 01- 08 12: 06: 20, 026 spri ngpyt hon. cont ext . Appl i cati onCont ext - DEBUG - Eagerly fetching renoteService

2009- 01- 08 12: 06: 20, 026 spri ngpyt hon. cont ext . Appl i cati onContext - DEBUG - Did NOT find object 'renpteService'
2009- 01- 08 12: 06: 20, 026 spri ngpyt hon. cont ext . Appl i cati onContext - DEBUG - Creating an instance of id=renpteSer
2009- 01- 08 12: 06: 20, 026 springpyt hon. factory. Refl ecti vebj ect Factory - DEBUG - Creating an instance of server.
2009- 01- 08 12: 06: 20, 027 springpyt hon. cont ext. Appl i cati onContext - DEBUG - Stored object 'renpteService' in cor
2009- 01- 08 12: 06: 20, 027 spri ngpyt hon. cont ext . Appl i cati onCont ext - DEBUG - Eagerly fetching service_exporter
2009- 01- 08 12: 06: 20, 027 springpyt hon. cont ext. Appl i cati onContext - DEBUG - Did NOT find object 'service_exporte
2009-01- 08 12: 06: 20, 027 springpyt hon. cont ext. Appl i cati onContext - DEBUG - Creating an instance of |d=service_e
2009- 01- 08 12: 06: 20, 028 springpyt hon. factory. Refl ecti veObj ect Factory - DEBUG - Creating an instance of springy
2009-01- 08 12: 06: 20, 028 spri ngpyt hon. cont ext . Appl i cati onContext - DEBUG - Stored object 'service_exporter' in
2009- 01- 08 12: 06: 20, 028 spri ngpyt hon. renoti ng. pyro. PyroServi ceExporter - DEBUG - Exporting ServiceNanme as a Py
2009-01- 08 12: 06: 20, 029 spri ngpyt hon. renoti ng. pyro. PyroDaenonHol der - DEBUG - Regi stering ServiceName at 127.C
2009- 01- 08 12: 06: 20, 029 spri ngpyt hon. renoti ng. pyro. PyroDaenonHol der - DEBUG - Pyro thread needs to be started
2009-01- 08 12: 06: 20, 030 spri ngpyt hon. renoti ng. pyro. PyroDaenonHol der. _PyroThread - DEBUG - Starting up Pyro ser

$ python client.py

(1.0.1.BUILD-20101109171136)

Remoting

2009- 01- 08 12: 06: 26,291 - springpyt hon. cont ai ner. Obj ect Cont ai ner - DEBUG - === Scanni ng configurati on <springpyt

2009- 01- 08 12: 06: 26, 292 - springpyt hon. config. XM_Config - DEBUG -

2009- 01- 08 12: 06: 26, 292 - springpython. config. XM_.Config - DEBUG - * Parsing client.xmn

2009- 01- 08 12: 06: 26, 294 - springpython. config. XM_Config - DEBUG -

2009- 01- 08 12: 06: 26, 294 - springpyt hon. cont ai ner. Obj ect Cont ai ner - DEBUG - service object definition does not ex
2009-01- 08 12: 06: 26, 294 - springpyt hon. cont ai ner. Obj ect Cont ai ner - DEBUG - === Done readi ng object definitions.

2009- 01- 08 12: 06: 26, 295 - springpyt hon. cont ext. Appl i cati onContext - DEBUG - Eagerly fetching service

2009- 01- 08 12: 06: 26, 295 - springpyt hon. cont ext. ApplicationContext - DEBUG - Did NOT find object 'service'
2009- 01- 08 12: 06: 26, 295 - springpyt hon. cont ext. Applicati onContext - DEBUG - Creating an instance of id=service j
2009-01- 08 12: 06: 26, 295 - springpython.factory. Refl ecti veObj ect Factory - DEBUG - Creating an instance of springy
2009- 01- 08 12: 06: 26, 295 - springpyt hon. cont ext. Appl i cati onContext - DEBUG - Stored object 'service' in container

CLI ENT: You got renmpte data => Hello

This shows one instance of Python running the client, connecting to the instance of Python hosting the server
module. After that, moving these scripts to other machines only requires changing the hostname in the XML
files.

7.2. Remoting with Hessian

Caucho's python library for Hessian isincomplete

-

e

Due to minimal functionality provided by Caucho's Hessian library for python, there is minimal
documentation to show its functionality.

The following shows how to connect a client to a Hessian-exported service. This can theoretically be any
technology. Currently, Java objects are converted into python dictionaries, meaning that the data and
transferred, but there are not method calls available.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranmework. org/springpyt hon/ schema/ obj ect s"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ spri ngpyt hon/ schema/ obj ect s
http://springpython.webfactional .conm schema/ cont ext/spri ng-python-context-1.0.xsd">

<obj ect id="personService" class="springpython.renoting. hessi an. Hessi anPr oxyFact ory" >
<property nanme="service_url"><val ue>http://| ocal host: 8080/ </ val ue></ property>
</ obj ect >

</ obj ect s>

The Caucho library appears to only support Python being a client, and not yet as a service, so there is no
Hessi anSer vi ceExport er available yet.

7.3. High-Availability/Clustering Solutions

This props you up for many options to increase availability. It is possible to run a copy of the server on multiple
machines. Y ou could then institute some type of round-robin router to go to different URLS. You could easily
run ten copies of the remote service.

pool =[]

for i in range(10):
servi ce_exporter = PyroServi ceExporter(service_name = "ServiceNane%" %i, service = Service())
pool . append(servi ce_exporter)

(Yeah, | know, you can probably do thisin one line with alist comprehension).

Spring Python 44

Remoting

Now you have ten copies of the server running, each under a distinct name.

For any client, your configuration is a slight tweak.

services = []
for i in range(10):
servi ces. append(Pyr oProxyFact ory(servi ce_url = "PYROLOC://| ocal host: 7766/ Servi ceName%s" %))

Now you have an array of possible services to reach, easily spread between different machines. With a little
client-side utility class, we can implement a round-robin solution.

cl ass HighAvail abilityService(object):
def __init__(self, service_pool):
sel f. service_pool = service_pool
self.index = 0
def get_data(self, paran):
self.index = (self.index+l) %/l en(self.service_pool)

try:

return sel f.service_pool [sel f.index].get_data(paran
except:

del (sel f.service_pool [i])

return sel f.get_data(paran

servi ce = HighAvail abilityService(service_pool = services)
servi ce. get_data("Hell o")
servi ce.get _data("Wrld")

Notice how each call to the Hi ghAvai | abi lityService class causes the internal index to increment and roll
over. If a service doesn't appear to be reachable, it is deleted from the list and attempted again. A little more
sophisticated error handling should be added in case there are no services available. And there needs to be a
way to grow the services. But this gets us off to agood start.

Spring Python 45

Chapter 8. Spring Python's plugin system

Spring Python's plugin system is designed to help you rapidly develop applications. Plugin-based solutions
have been proven to enhance developer efficiency, with examples such as Grails and Eclipse being market
leaders in usage and productivity.

This plugin solution was mainly inspired by the Grails demo presented by Graeme Rocher at the SpringOne
Americas 2008 conference, in which he created a Twitter application in 40 minutes. Who wouldn't want to have
something similar to support Spring Python development?

8.1. Introduction

Have you consider ed submitting your plugin asa Spring Extension?

Spring Extensionsis the officia incubator process for SpringSource. Y ou can always maintain your own plugin
separately, using whatever means you wish. But if want to get a larger adoption of your plugin, name
association with SpringSource, and perhaps one day becoming an official part of the software suite of
SpringSource, you may want to consider looking into the Spring Extensions process.

Spring Python will manage an approved set of plugins. These are plugins written by the committers of Spring
Python and are verified to work with an associated version of the library. These plugins are also hosted by the
same services used to host Spring Python downloads, meaning they have the same level of support as Spring
Python.

However, being an open source framework, developers have every right to code their own plugins. We fully
support the concept of 3rd party plugins. We want to provide as much support in the way of documentation and
extension points for you to develop your own plugins as well.

8.2. Coily - Spring Python's command-line tool

Caily is the command-line tool that utilizes the plugin system. It is similar to grails command-line tool, in that
through a series of installed plugins, you are able to do many tasks, including build skeleton apps that you can
later flesh out. If you look at the details of this app, you will find a sophisticated, command driven tool to built
to manage plugins. The real power isin the plugins themselves.

8.2.1. Commands

To get started, all you need is acopy of coily installed in some directory located on your path.

% coily --help

The results should list available commands.

Coily - the command-1ine managenment tool for Spring Python

Copyri ght 2006-2008 SpringSource (http://springsource.con), Al Rights Reserved
Li censed under the Apache License, Version 2.0

Spring Python 46

http://grails.org/
http://eclipse.org
http://www.springsource.org/extensions

Spring Python's plugin system

Usage:

coi ly [command]

--help
--list-installed-plugins
--list-avail abl e- pl ugi ns
--install-plugin [nane]
--uninstall-plugin [nane]
--reinstall-plugin [nane]

print this hel p nessage

list currently installed plugins
l'ist plugins avail able for downl oad
install coily plugin

uninstall coily plugin

reinstall coily plugin

--help - Print out the help menu being displayed

--list-installed-plugins - list the plugins currently installed in this account. It isimportant to know that each
plugin creates a directly underneath the user's home directory in a hidden directory . spri ngpyt hon. If you
delete this entire directory, you have effectively uninstalled all plugins.

--list-available-plugins - list the plugins available for installation. Coily will check certain network
locations, such as the S3 site used to host Spring Python downloads. It will also look on the loca file
system. Thisisin case you have a checked out copy of the plugins source code, and want to test things out
without uploading to the network.

--ingtall-plugin - install the named plugin. In this case, you don't have to specify a version number. Coily
will figure out which version of the plugin you need, download it if necessary, and finally copy it into
~/ . spri ngpyt hon.

--uninstall-plugin - uninstall the named plugin by deleting its entry from ~/ . spri ngpyt hon

--reinstall-plugin - uninstall then install the plugin. Thisis particulary useful if you are working on a plugin,
and need a shortcut step to deploy.

In this case, no plugins have been installed yet. Every installed plugin will list itself as another available
command to run. If you have already installed the gen-cherrypy-app plugin, you will seeit listed.

Coily - the command-|ine managenent tool for Spring Python

Copyri ght 2006-2008 SpringSource (http://springsource.con), Al Rights Reserved

Li censed under the Apache License,

Usage:

coi ly [command]

--hel p

--list-install ed-plugins
--list-avail abl e-pl ugi ns
--install-plugin [nane]
--uninstall-plugin [nane]
--reinstal |l -plugin [nane]
--gen-cherrypy-app [nane]

Version 2.0

print this hel p nessage

list currently installed plugins

l'ist plugins avail able for downl oad

install coily plugin

uninstall coily plugin

reinstall coily plugin

plugin to create skeleton CherryPy applications

Y ou should notice an extra option listed at the bottom: gen-cherrypy-app is listed as another command with one
argument. Later on, you can read official documentation on the existing plugins, and also how to write your

own.

8.3. Officially Supported Plugins

This section documents plugins that are developed by the Spring Python team.

Spring Python a7

Spring Python's plugin system

8.3.1. gen-cherrypy-app

This plugin is used to generate a skeleton CherryPy application based on feeding it a command-line argument.

% coily --gen-cherrypy-app tw ttercl one

This will generate a subdirectory twi ttercl one in the user's current directory. Inside twitterclone are several
files, including t wi t t er cl one. py. If you run the app, you will see aworking CherryPy application, with Spring
Python security in place.

% cd twi ttercl one
% pyt hon twi ttercl one. py

Y ou can immediately start modifying it to put in your features.

8.4. Writing your own plugin

8.4.1. Architecture of a plugin

A plugin is pretty simple in structure. It is basically a python package with some special things added on.
gen-cherrypy-app plugin demonstrates this.

El:j gen-cherrypy-app

|:j images

----- [} _init__.py 385 12/4/08 4:04 PM gregturn

ﬂ, app_rcontext.py 385 12/4/08 4:04 PM gregturn
----- iﬂ cherrvpy-app.py 335 12/4/05 4:04 PM gregturn
----- ii—g] controller.py 385 12/4/08 4:04 PM gregturn

=

“o B view.py 385 12/4/08 4:04 PM gregturn

The special things needed to define a plugin are as follows:

« A oot folder with the same name asyour pluginanda__i nit __. py, making the plugin a python package
* A package-level variable named __description__

This attribute should be assigned the string value description you want shown for your plugin when coily
--helpisrun.

e A package-level function named either creat e oOr appl y

» If your plugin needs one command line argument, define a cr eat e method with the following signature:

def create(plugin_path, nane)

» If your plugin doesn't need any arguments, define an appl y method with the following signature:

Spring Python 48

http://cherrypy.org

Spring Python's plugin system

def appl y(pl ugi n_pat h)

In either case, your plugin gets passed an extra argument, pl ugi n_pat h, which contains the directory the
pluginisactually installed in. Thisistypically so you can reference other files your plugin needs access to.

What does" package-level" mean?

s

"8

The code needs to be in the __init__. py file. This file makes the enclosing directory a python
package.

8.4.2. Case Study - gen-cherrypy-app plugin

gen-cherrypy-app is a plugin used to build a CherryPy web application using Spring Python's feature set. It
saves the developer from having to re-configure Spring Python's security module, coding CherryPy's engine,
and so forth. This alows the developer to immediately start writing business code against a working
application.

Using this plugin, we will de-construct this simple, template-based plugin. This will involve looking
line-by-line at gen- cherrypy-app/ __init__. py.

8.4.2.1. Source Code

Copyri ght 2006-2008 SpringSource (http://springsource.con), Al Rights Reserved

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ i censes/ LI CENSE-2. 0

Unl ess required by applicable law or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perm ssions and
limtations under the License.

i nport re
i mport os
i mport shutil

__description__ = "plugin to create skel eton CherryPy applications"

def create(plugin_path, nane):
i f not os.path. exists(nane):
print "Creating CherryPy skel eton app %" % nanme
os. makedi r s(nane)

Copy/transformthe tenplate files
for file_name in ["cherrypy-app.py", "controller.py", "view py", "app_context.py"]:
input _file = open(plugin_path + "/" + file_nane).read()

lterate over a list of patterns, perform ng string substitution on the input file
patterns_to_replace = [("name", nane), ("properNanme", name[O0].upper() + name[1l:])]
for pattern, replacenent in patterns_to_replace:

input_file = re.compile(r"\$\{%}" % pattern).sub(replacenent, input_file)

output _filename = name + "/" + file_name
if file_name == "cherrypy-app. py":
output _filename = name + "/" + name + ".py"

app = open(output_filenane, "w')

(1.0.1.BUILD-20101109171136)

http://cherrypy.org

Spring Python's plugin system

app.wite(input_file)
app. cl ose()

Recursively copy other parts

shutil.copytree(plugin_path + "/inmages", name + "/" + "images")
el se:

print "There is already sonething called %. ABORT!" % nane

8.4.2.2. Deconstructing the factory

« The opening section shows the copyright statement, which should tip you off that thisis an official plugin.

e _ _description__isarequired variable.

__description__ = "plugin to create skeleton CherryPy applications"

It contains the description displayed when a user runs:

%coily --help

Usage: coily [command]

--gen-cherrypy-app [nane] plugin to create skeleton CherryPy applications

* Opening line defines cr eat e with two arguments.

def create(plugin_path, nane):

The arguments allow both the plugin path to be fed along with the command-line argument that is filled in

when the user runs the command:

% coily --gen-cherrypy-app [nhane]

It is important to realize that pl ugi n_pat h is needed in case the plugin needs to refer to any files inside its
installed directory. Thisis because plugins are not installed anywhere on the PYTHONPATH, but instead, in the

user's home directory underneath . spri ngpyt hon.

This mechanism was chosen because it gives users an easy ability to pick which plugins they wish to use,

without requiring system admin power. It aso eliminates the need to deal with multiple versions of plugins

being installed on your PYTHONPATH. This provides maximum flexibility which is needed in a development
environment.

e This plugin works by creating a directory in the user's current working directory, and putting all relevant

files into it. The argument passed into the command-line is used as the name of an application, and the

directory created has the same name.

i f not os.path. exists(nane):
print "Creating CherryPy skeleton app %" % nane
os. makedi r s(nane)

(1.0.1.BUILD-20101109171136)

Spring Python's plugin system

However, if the directory already exists, it won't proceed.

el se:
print "There is already sonething called %. ABORT!" % name

This plugin then iterates over alist of filenames, which happen to match the names of files found in the
plugin's directory. These are essentially template files, intended to be copied into the target directory.
However, the files are not copied directly. Instead they are opened and read into memory.

Copy/transformthe tenplate files
for file_name in ["cherrypy-app.py", "controller.py", "view py", "app_context.py"]:
input _file = open(plugin_path + "/" + file_nane).read()

Then, the contents are scanned for key phrases, and substituted. In this case, the substitution is a variant of
the name of the application being generated.

lterate over a list of patterns, perform ng string substitution on the input file
patterns_to_replace = [("nanme", nane), ("properNane", nane[O0].upper() + name[1l:])]
for pattern, replacenent in patterns_to_replace:

input_file = re.compile(r"\$\{%}" % pattern).sub(replacenent, input_file)

The substituted content is written to a new output file. In most cases, the original filename is also the target
filename. However, the key file, cher rypy- app. py isrenamed to the application’'s name.

output_filename = name + "/" + file_nanme
if file_nane == "cherrypy-app.py":
output _filename = name + "/" + name + ".py"

app = open(output_filenane, "w')

app.write(input_file)
app. cl ose()

Finally, the images directory is recursively copied into the target directory.

Recursively copy other parts
shutil.copytree(plugin_path + "/imges", nane + "/" + "inages")

8.4.2.3. Summary

All these steps effectively copy a set of files used to template an application. With this template approach, the
major effort of developing this plugin is spent working on the templates themselves, not on this template
factory. While this is mostly working with python code for a python solution, the fact that this is a template
requires reinstalling the plugin everytime a change is made in order to test them.

Users are welcome to use gen-cherypy-app's __init__. py file to generate their own template solutions, and
work on other skeleton tools or solutions.

Spring Python 51

Chapter 9. Samples

9.1. PetClinic

PetClinic is a sample application demonstrating the usage of Spring Python.

e It uses CherryPy as the web server abject.

e A detailed design document (NOTE: find latest version, and click on raw) is part of the source code. You
can read it from here or by clicking on a hyperlink while running the application.

NOTICE: Spring Python's FilterSecuritylnterceptor has NOT been upgraded to CherryPy 3.1 yet (while the rest
of PetClinic has). Somes pages for certain users are not yet denying access as expected.

9.1.1. How to run

Assuming you just checked out a copy of the source code, here are the steps to run PetClinic.

bash$ cd /path/you/ checked/ out/springpyt hon
bash$ cd sanpl es/petclinic
bash$ python configure. py

At this point, you will be prompted for MySQL's root password. Thisis NOT your system's root password. This
assumes you have aMySQL server running. After that, it will have setup database petclinic.

bash$ cd cherrypy
bash$ python petclinic.py

This assumes you have CherryPy 3 installed. It probably won't work if you are still using CherryPy 2.

Finally, after launching it, you should see a nice URL at the bottom: http://localhost:8080. Well, go ahead!
Things should look good now!

Spring Python 52

http://www.cherrypy.org
https://fisheye.springframework.org/browse/se-springpython-py/trunk/springpython/samples/petclinic/cherrypy/html/petclinic.html
http://www.cherrypy.org

File Edit WView History Bookmarks Tools Help
- - & (i} |0 nttp:nocalhost:2001/ | B Q-

W Wikipedia [Linux Man Pages [G|rec.games.pinball [| E-Mail [|Vonage []Stargate »

A4 PetClinic - Spring Python - T... [| PetClinic :: a Spring Pyt... [j -

SpringPython s
pringr’y =

Welcome

Find owner

Display all veterinarians:

Detailed description of this demo

Home Spring Python CherryPy

Build time: 0.003s, Page size: 1.51KB

http://localhost:8001/vets Adblock

Snapshot of PetClinic application

9.2. Spring Wiki

Spring Wiki is a wiki engine based that uses mediawiki's markup language. It utilizes the same stylesheets to
have avery wikipedia-like fedl to it.

TODO: Add persistence. Currently, Spring Wiki only stores content in current memory. Shutting it down will
cause all changesto be lost.

9.3. Spring Bot

This article will show how to write an IRC bot to manage a channel for your open source project, like the one |
have managing #springpython, the IRC chat channel for Spring Python.

9.3.1. Why write a bot?

| read an article, Building a community around your open source project, that talked about setting up an IRC
channel for your project. Thisis aroute to support existing users, and allow them to work with each other.

Spring Python 53

https://scifi.homelinux.net/coily
https://scifi.homelinux.net/coily
http://springpython.webfactional.com
http://www.redhatmagazine.com/2007/09/21/building-a-community-around-your-open-source-project/

Samples

| became very interested in writing some IRC bot, and | since my project is based on Python, well, you can
probably guess what language | wanted to writeit in.

9.3.2. IRC Library

To build abot, it paysto have use an aready written library. | discovered python-irclib.

For Ubuntu users:

% sudo apt-get install python-irclib

This bot also sports aweb page using CherryPy. Y ou also need to install that as well.

9.3.2.1. Articles

Well, of course | started reading. The documentation from the project's web site was minimal. Thankfully, |
found some introductory articles that work with python-irclib.

* http://www.devshed.com/c/a/Python/IRC-on-a-Higher-Level/
e http://mww.devshed.com/c/a/Python/IRC-on-a-Higher-L evel -Continued/

e http://www.devshed.com/c/a/Python/IRC-on-a-Higher-L evel -Concluded/

9.3.3. What | built

Using this, | managed to get something primitive running. It took me a while to catch on that posting private
messages on a channel name instead of a user is the way to publicly post to a channel. | guessit helped to trip
through the IRC RFC manual, before catching on to this.

At this stage, you may wish to get familiar with regular expressions in Python. You will certainly need thisin
order to make intelligent looking patterns. Anything more sophisticated would probably require PLY .

What | really like is that fact that | built this application in approximately 24 hours, counting the time to learn
how to use python-irclib. | already knew how to build a Spring Python/CherryPy web application. The history
pages on this article should demonstrate how long it took.

NOTE: Thiswhole script is contained in one file, and marked up as:

Copyri ght 2006-2008 SpringSource (http://springsource.con), Al Rights Reserved

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perm ssions and
limtations under the License.

Spring Python 54

http://sourceforge.net/projects/python-irclib
http://cherrypy.org
http://www.irchelp.org/irchelp/rfc/rfc.html
http://www.amk.ca/python/howto/regex/
http://www.dabeaz.com/ply/

Samples

9.3.3.1. IRC Bot

So far, this handy little bot is able to monitor the channel, log all communications, persistently fetch/store
things, and grant me operator status when | return to the channel. My next task isto turn it into aweb app using
Spring Python. That should let me have aweb page to go along with the channel!

class DictionaryBot (irchot. SingleServer| RCBot):

def __init__(self, server_list, channel, ops, logfile, nicknane, real nane):
ircbot.SingleServerl RCBot. init__(self, server_list, nicknanme, real nane)
sel f.datastore = "%. data" % sel f._ni ckname
sel f. channel = channe
self.definition = {}
try:

f = open(self.datastore, "r")
self.definition = cPickle.load(f)
f.close()
except | CError:
pass
self.whatlsR = re.conpile(",2\s*[WV [Hh] [Aa] [Tt]\s*[li][Ss]\s+([\w]+)[?]?")
self.definitionR = re.conmpile(", 2\s*([\w J+)\s+[Ii][Ss]\s+(.+)")
sel f. ops = ops
self.logfile = logfile

def on_wel come(sel f, connection, event):
"""This event is generated after you connect to an irc server, and shoul d be your signal to join your te
connection.join(sel f.channel)

def on_join(self, connection, event):
"""This catches everyone who joins. In this case, nmy bot has a |list of whomto grant op status to when t
sel f._| og_event (event)
source = event.source().split("!")[0]
if source in self.ops:
connecti on. node(sel f.channel, "+o0 %" % source)

def on_node(sel f, connection, event):
"""No real action here, except to log locally every node action that happens on ny channel."""
sel f. | og_event (event)

def on_pubnsg(sel f, connection, event):
"""This is the real nmeat. This event is generated everytine a nessage is posted to the channel."""
sel f._| og_event (event)

Capture who posted the nesssage, and what the nessage was.
source = event.source().split("!")[0]
argunments = event. argunents()[0]

Some nessages are neant to signal this bot to do sonething
if argunents.lower().startswith("!%" % self._nicknane):
"What is xyz" command
mat ch = sel f.what | sR search(argunents[| en(sel f._nicknane) +1:])
i f match:
sel f. _| ookup_definition(connection, match. groups()[0])
return

"xyz is blah blah" command

mat ch = sel f.definitionR search(argunents[len(self._nicknane)+1:])

i f match:
sel f._set_definition(connection, match. groups()[0], match. groups()[1])
return

There are al so sone shortcut commands, so you don't always have to address the bot.
if arguments.startswith("!"):
match = re.conpile("!([\w]+)").search(argunents)
i f match:
sel f. _| ookup_definition(connection, match. groups()[0])
return

def getDefinitions(self):
"""This is to support a parallel web app fetching data fromthe bot."""
return self.definition

def _log_event(self, event):
"""Log an event to a flat file. This can support archiving to a web site for past activity."""
f = open(self.logfile, "a")
f.wite("%::%::%::%\n" % (event.eventtype(), event.source(), event.target(), event.argunents()))

(1.0.1.BUILD-20101109171136)

http://wikipedia.org/wiki/Spring Python

Samples

f.close()

def _| ookup_definition(self, connection, keyword):
"""Function to fetch a definition fromthe bot's dictionary."""
if keyword.lower() in self.definition
connection. privnsg(self.channel, "% is %" %self.definition[keyword.|ower()])
el se:
connection. privnsg(sel f.channel, "I have no i dea what % neans. You can tell nme by sending '!%, %

def _set_definition(self, connection, keyword, definition):
"""Function to store a definition in cache and to disk in the bot's dictionary."""
sel f.definition][keyword.lower()] = (keyword, definition)
connection. privnsg(sel f.channel, "CGot it! % is %" %self.definition[keyword.lower()])
f = open(self.datastore, "w')
cPi ckl e. dump(sel f.definition, f)
f.close()

I have trimmed out the instantiation of this bot class, because that part isn't relevant. You can go and
immediately reuse this bot to manage any channel you have.

9.3.3.2. Web App

WEell, after getting an IRC bot working that quickly, | want a nice interface to see what it is up to. For that, |
will use Spring Python and build a Spring-based web app.

def header():
"""Standard header used for all pages"""
return """
<l--

Coily :: An | RC bot used to manage the #springpython irc channel (powered by CherryPy/ Spring Python)
S

<htm >
<head>
<title>Coily :: An | RC bot used to nanage the #springpython irc channel (powered by CherryPy/Spring Pytf
<style type="text/css">
td { padding: 3px; }
di v#t op {position:absolute; top: Opx; left: Opx; background-col or: #E4EFF3; hei ght: 50px; wi
di v#i mage {position:absolute; top: 50px; right: 0% background-image: url (inages/spring_pytt
</styl e>
</ head>

<body>
<di v id="top"> </ di v>
<di v id="image"> </ di v>
<br clear="all">
<p> </ p>

def footer():
"""Standard footer used for all pages."""
return """
<hr >
<tabl e styl e="wi dt h: 100% ><tr>
<t d>Hone</ A></td>
<td style="text-align:right;color:silver">Coily :: a <a href="http://springpython.webfactional.c
</tr></tabl e>

</ body>

def markup(text):
"""Convert any http://xyz references into real web Iinks."""
httpR = re.conmpile(r"(http://[\w.:/?2-1*\w)")
al teredText = httpR sub(r' \1', text)
return alteredText

class CoilyView
"""Presentation |ayer of the web application."""

(1.0.1.BUILD-20101109171136)

http://springpython.webfactional.com

Samples

def __init__ (self, bot = None):
"""Inject a controller object in order to fetch live data."""
sel f. bot = bot

@herrypy. expose

def index(self):
"""CherryPy will call this method for the root URI ("/") and send
its return value to the client."""

return header() + """
<H2>Wel conme</ H2>

<p>
H, I"'mCoily! I'ma bot used to manage the | RC channel <a href="irc://irc.ubuntu.coni#springpython"
<p>
If you visit the channel, you may find | have a lot of information to offer while you are there. I|f
<smal | >
<TABLE border="1">
<TH>Command</ TH>
<TH>Descri pti on</ TH>
<TR>
<TD>!coily, what is <i>xyz</i>?</TD>
<TD>This is how you ask ne for a definition of sonething.</TD>
</ TR>
<TR>
<TD>! <i >xyz</i></TD>
<TD>This is a shortcut way to ask the same question. </ TD>
</ TR>
<TR>
<TD>!coily, <i>xyz</i> is <i>sonme definition for xyz</i></TD>
<TD>This is how you feed me a definition.</TD>
</ TR>
</ TABLE>
</smal | >
<p>

To save you fromhaving to query nme for every current definition | have, there is a link on this wekt
that lists all my current definitions. NOTE: These definitions can be set by other users.

<p>

List current definitions

<p>

"""+ footer()

@herrypy. expose
def listDefinitions(self):
resul ts = header ()
results += """
<smal | >
<TABLE border="1">
<TH>Keywor d</ TH>
<TH>Defini tion</ TH>

for key, value in self.bot.getDefinitions().itens():
results += markup("""
<TR>
<TD>%s</ TD>
<TD>%s</ TD>
</ TR>
" % (val ue[0], value[1]))
results += "</ TABLE></snal | >"
results += footer()
return results

9.3.3.3. Putting it all together

Well, so far, | have two useful classes. However, they need to get launched inside a script. This means objects
need to be instantiated. To do this, | have decided to make this a Spring app and use inversion of control.

So, | defined two contexts, one for the IRC bot and another for the web application.

9.3.3.3.1. IRC Bot's application context

cl ass Coil yl RCServer (Pyt honConfi g):
"""This container represents the context of the IRC bot. It needs to export information, so the web app can

Spring Python 57

http://wikipedia.org/wiki/inversion of control

Samples

def __init_ (self):
super (Coi | yl RCServer, self).__init_ ()

@j ect
def renoteBot (self):
return DictionaryBot ([("irc.ubuntu.con, 6667)], "#springpython", ops=["Goldfisch"], nicknane="coily", r

@j ect

def bot(self):
exporter = PyroServi ceExporter()
exporter.service_nanme = "bot"
exporter.service = self.renoteBot ()
return exporter

9.3.3.3.2. Web App's application context

cl ass Coi |l yWebd i ent (Pyt honConfi g):

Thi s container represents the context of the web application used to interact with the bot and present a
nice frontend to the user comunity about the channel and the bot.\

def __init_ (self):
super (Coi |l ywebd ient, self).__init__ ()

@j ect
def root(self):
return CoilyView sel f.bot())

@j ect

def bot (self):
proxy = PyroProxyFactory()
proxy.service_url = "PYROLOC://| ocal host: 7766/ bot "
return proxy

9.3.3.3.3. Main runner

| fit al this into one executable. However, | quickly discovered that both CherryPy web apps and irclib bots
like to run in the main thread. This means | need to launch two python shells, one running the web app, the
other running the ircbot, and | need the web app to be able to talk to the irc bot. Thisis a piece of cake with
Spring Python. All | need to utilize is aremoting technology.

if __name__ == "__main__

Parse sone | aunchi ng options.
parser = OptionParser(usage="usage: Y%rog [-h|--help] [options]")

parser.add_option("-w', "--web", action="store_true", dest="web", default=False, hel p="Run the web server ok
parser.add_option("-i", "--irc", action="store_true", dest="irc", default=False, hel p="Run the | RC bot objec
parser.add_option("-d", "--debug", action="store_true", dest="debug", default=False, help="Turn up | ogging

(options, args) = parser.parse_args()

if options.web and options.irc
print "You cannot run both the web server and the IRC-bot at the same tine."
sys. exit(2)

if not options.web and not options.irc
print "You nust specify one of the objects to run."
sys. exit(2)

i f options. debug:
| ogger = | oggi ng. get Logger ("spri ngpyt hon")
| oggi ngLevel = | oggi ng. DEBUG
| ogger . set Level (1 oggi ngLevel)
ch = 1 oggi ng. Streantandl er ()
ch. set Level (1 oggi ngLevel)
formatter = | ogging. Formatter ("% asctinme)s - %nane)s - %I evel nane)s - % nessage)s")
ch.setFormatter(formatter)
| ogger . addHandl er (ch)

i f options.web:
This runs the web application context of the application. It allows a nice web-enabled view into

Spring Python 58

Samples

the channel and the bot that supports it.
appl i cati onCont ext = Appli cati onContext (Coil yWebd ient())

Configure cherrypy programatically.

conf = {"/": {"tools.staticdir.root": os.getcwd()},
"/images": {"tools.staticdir.on": True,
"tools.staticdir.dir": "imges"},
“/htm": {"tools.staticdir.on": True,
"tools.staticdir.dir": "htm"},
"/styles": {"tools.staticdir.on": True,
r

"tools.staticdir.dir": "css"}

}

cherrypy. config. update({' server.socket_port': 9001})
cherrypy. tree. nount (appl i cati onCont ext. get _obj ect (name = "root"), '/', config=conf)

cherrypy. engi ne. start ()
cherrypy. engi ne. bl ock()

if options.irc:
This runs the | RC bot that connects to a channel and then responds to various events.
appl i cati onCont ext = Appli cati onContext (Coilyl RCServer())
coily = applicationContext.get_object("bot")
coily.service.start ()
9.3.3.4. Releasing your CherryPy web app to the internet
Now that you have a CherryPy web app running, how about making it visible to the internet?

If you already have an Apache web server running, and are using a Debian/Ubuntu installation, you just need to
create afile in /etc/apache2/sites-available like coily.conf with the following lines:

Redi rect Mat ch ~/coily$ /coily/

ProxyPass /coily/ http://Iocal host: 9001/
ProxyPassReverse /coily/ http://Ilocal host: 9001/

<Locati onMatch /coily/.*>
Order all ow, deny
Al'low fromall

</ Locati onMat ch>

Now need to softlink thisinto /etc/apache2/sites-enabled.

% cd /etc/apache2/sites-enabl ed
% sudo I n -s /etc/apache2/sites-avail abl e/coily.conf 001-coily

This requires that enable mod_proxy.

% sudo a2ennod proxy proxy_http

Finally, restart apache.

% sudo /etc/init.d/ apache2 --force-rel oad

It should be visible on the site now.

9.3.3.5. Come and visit Coily

(1.0.1.BUILD-20101109171136)

Samples

If you haven't figured it out yet, | use this code to run my own bot, Coily. Unfortunately, at this time, | don't
have a mechanism to make it run persistently.

9.3.4. External Links

* Seethisarticle reported in LinuxToday

(1.0.1.BUILD-20101109171136)

http://www.linuxtoday.com/news_story.php3?ltsn=2007-10-12-009-26-OS-DV-NT

	Spring Python - Reference Documentation
	Preface
	Chapter 1. Overview
	1.1. Key Features
	1.2. What Spring Python is NOT
	1.3. Support
	1.3.1. Forums and Email
	1.3.2. IRC

	1.4. Downloads / Source Code
	1.5. Licensing
	1.6. Spring Python's team
	1.6.1. How to become a team member

	1.7. Deprecated Code

	Chapter 2. The IoC container
	2.1. Container
	2.1.1. ObjectContainer vs. ApplicationContext
	2.1.2. Scope of Objects / Lazy Initialization

	2.2. Configuration
	2.2.1. XMLConfig - Spring Python's native XML format
	2.2.1.1. Referenced Objects
	2.2.1.2. Inner Objects
	2.2.1.3. Collections
	2.2.1.4. Constructors
	2.2.1.5. Values

	2.2.2. PythonConfig and @Object - decorator-driven configuration
	2.2.3. PyContainerConfig - Spring Python's original XML format
	2.2.4. SpringJavaConfig
	2.2.5. Mixing Configuration Modes

	2.3. Object Factories
	2.4. Testable Code

	Chapter 3. Aspect Oriented Programming
	3.1. Interceptors
	3.2. Proxy Factory Objects
	3.3. Pointcuts
	3.4. Interceptor Chain
	3.5. Coding AOP with Pure Python

	Chapter 4. Data Access
	4.1. DatabaseTemplate
	4.1.1. Traditional Database Query
	4.1.2. Database Template
	4.1.3. What is a Connection Factory?
	4.1.4. Creating/altering tables, databases, and other DDL
	4.1.5. SQL Injection Attacks
	4.1.6. Have you used Spring Framework's JdbcTemplate?

	Chapter 5. Transaction Management
	5.1. Solutions requiring transactions
	5.2. TransactionTemplate
	5.3. @transactional
	5.3.1. @transactional(["PROPAGATION_REQUIRED"])...

	Chapter 6. Security
	6.1. Shared Objects
	6.2. Authentication
	6.2.1. AuthenticationProviders
	6.2.1.1. DaoAuthenticationProvider
	6.2.1.2. Future AuthenticationProviders

	6.2.2. AuthenticationManager

	6.3. Authorization

	Chapter 7. Remoting
	7.1. Remoting with PYRO (Python Remote Objects)
	7.1.1. Decoupling a simple service, to setup for remoting
	7.1.2. Exporting a Spring Service Using Inversion Of Control
	7.1.2.1. Hostname/Port overrides

	7.1.3. Do I have to use XML?
	7.1.4. Splitting up the client and the server

	7.2. Remoting with Hessian
	7.3. High-Availability/Clustering Solutions

	Chapter 8. Spring Python's plugin system
	8.1. Introduction
	8.2. Coily - Spring Python's command-line tool
	8.2.1. Commands

	8.3. Officially Supported Plugins
	8.3.1. gen-cherrypy-app

	8.4. Writing your own plugin
	8.4.1. Architecture of a plugin
	8.4.2. Case Study - gen-cherrypy-app plugin
	8.4.2.1. Source Code
	8.4.2.2. Deconstructing the factory
	8.4.2.3. Summary

	Chapter 9. Samples
	9.1. PetClinic
	9.1.1. How to run

	9.2. Spring Wiki
	9.3. Spring Bot
	9.3.1. Why write a bot?
	9.3.2. IRC Library
	9.3.2.1. Articles

	9.3.3. What I built
	9.3.3.1. IRC Bot
	9.3.3.2. Web App
	9.3.3.3. Putting it all together
	9.3.3.3.1. IRC Bot's application context
	9.3.3.3.2. Web App's application context
	9.3.3.3.3. Main runner

	9.3.3.4. Releasing your CherryPy web app to the internet
	9.3.3.5. Come and visit Coily

	9.3.4. External Links

