SpringPython:

Spring Python - Reference Documentation

Version 1.1.1.BUILD-20101109171232

Copyright © 2006-2009 Greg Turnquist, Dariusz Suchojad

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

1=, =0 PR
Y T ST
R Q= Y s (= TP 1
1.2.What Spring PythoniSNOTccoiiiiiiieiiiiie et 2
G 300 o] o PP 2
1.3 L FOrumSandEmMalcccuuuiiiiiiee i e e 2
IR 17 1 PSSR 2
1.4.DoWNI0adS/ SOUICECOUEeeerieeiee e ettt e s e e e e e e e s e e e e e e e e e s s s ntaeeaeeaaeeesannnneeees 2
O I o= T o 3
1.6. SPriNGPYINON'SIEAM ... e e e e e e e e e e e e e s e aaaaaas 3
1.6.1. Howtobecomeateam memMbDErooiiii i 3
L1.7.DEPreCatEUCOUR. ...ttt e e e e e e e e e e e e — e e e e e e e a i r——rraaaeaaan 4
pZ0N I 1= o O o | =T = USRS PESRR
N I 4= 7= (= =0 ot = 6
2 o |] 1= SRR 6
2.2.1.0ObjectContainervs. ApplicatiONCONEEXTEcovieeeiiiiiiieieie e e e e e e e e eeeeee e e e e e 7
2.2.2.Scopeof Objects/ Lazy INitialiZatioNcooiecuiiiiieee e 7
PR X @041 (o [U1 = 1o o FO PP PPUPPRPPPPPIPN 8
2.3.1. XML Config- Spring Python'snative XML formatcccovereeeeiiiiiiiiiececce e 9
2.3.2. YamlConfig- Spring Python'SY AML fOrM@Lccuvvvieiiiiiieeiiiiiee e 16
2.3.3. PythonConfigand @Object - decorator-driven configurationcccccccevenennnnnnnnnnnnn. 23
2.3.4. PyContainerConfig - Spring Python'soriginal XML formatcccceeiviieeeiiiieneenne 25
G R o 1To N2= (V= X0 o 1 o R 26
2.3.6.MixingConfiguratioNMOUESccoiiiiiiiiiii e e e e e e e e e 27
2.4, ODJECIFBCIONES ...ttt ettt et e e e e e e e e e e e e e e abn e e 28
2.5. TESIADIECOUR ... ettt e e e e ettt e e e n et e e e e na e e e e a e e e anraeeeeans 28
2.6. Querying and modifyingthe ApplicationContext inrUNLIME...........oveiiieiieiriiiie e 29
3. ASPECt OrientedProgrammMiNgccoooeee i
S LEXIErNA AEPENUENCIESceeiieieie ettt ettt ettt e e et e e e e s bt e e e enbb e e e e anbneeeean 33
B2 IO CEIILOIS. . e 33
G o (o) VA = e (0 VA @ o= (=SSP 35
0 o1 1o U £ EERRR 36
RSN Fa1 (= o= ol o (@ o= o [P RPN 36
3.6.Coding AOPWITNPUIEPYNONcoiiiiiiii e 36
A DBEAACCESS ...ttt
DL 7 o= S = = 0 o] - RPN 39
4.1. 1. EXIErNal dEPENUENCIEScouieeeeeiiieie ettt s e e e e e e e e e 39
4.1.2. Traditional DatabaSEQUETYuvieiiieeiiiiiiiiieiee e e e e e s e et e e e e e e s st e e e e e e s s senbrreeeeaeas 39
4.1.3.DAtaDasETEMPIELEeeeeiiiieiee ittt e e e e e e 40
4.1.4. Mapping rowsinto objectsusing convention over configurationccccceeeeeeeeeinnnee, 40
4.1.5.MappingrowSINEOAICIIONAITESccoiiuriiieiiiiiiee ettt e eeeans 41
4.1.6.WhatisaConnectionFactory? ... 41
4.1.7. Creating/altering tables, databases, and other DDLccooviiiiiiiiiieeei i, 41
4.1.8.SQL INJECHIONATIACKSeeieiiiiiie ittt es 411
4.1.9. Haveyou used Spring Framework's JAbCTemplate?coveeeiiiciiiiieiieeee i 42
4.1.10. Notesonusing SQL ServerConneCtionNFaCIONYccoocvriieriiirieeisiiieeessiieeessineeee s 42
5.TransactionMan@gEMENLc.ccoiiiiiiiiiiiie e e e e e e e e e e s e s e e e e e e s s e st b e e e e eaaeesastabsaereaeeessansnreens
5. 1. EXtErNal AEPENUENCIEScoe ittt ettt e et e e e et e e st e e e e anbneeeean 44

Spring Python

Spring Python - Reference Documentation

5.2. S0lUtiONSIEqUITTNGTIANSACTIONS.eieee ettt e et e e e e e e annneees 44
5.3.TransaCtioNTEMPIELE........cccuiiiiiee e e e e e e s s s srrrre e e e e e e s s s snnrnneeeeee e DD
Y (@) = g1= o o = | OO | o
5.4.1.@transactional (["PROPAGATION_REQUIRED"])... ecoviiieeeiiiiiieenieeeeeniieeeesnnnenen A7
S o U |] Y PSP PR PPPPRP
6.1 EXIErNal dePenUENCIESeeeeeeeeee ettt e e e e e e e e e e e e e e e e e e aneeeeaas 49
S 0T = o (O] o 1= ok TSRO 49
LSRG AN 117 011 o7= (o o PSR SOORPRSRRRY - [
6.3. L AUthenti CatioNPrOVIAENS........ccoiiiiiiieiiiiiee e sneeee s snnnneee e 49
6.3. 2. AULNENTI CELIONMEBNEOEYeeeee ittt e e et e e e s e e s sbereeeans 53
L3 1110 2= 1 o o S 54
AL 3= 10101 oo T PO PRPPPPRR
7.1 EXIErNal dEPENUENCIESot e e e e e et e e e e e e e e et e e e e e e e e e e nnnereeeeeens 57
7.2. Remotingwith PY RO (Python REMOLEOLJECLS)vvvieiieeeiiiiiiiiieeee e 57
7.2.1. Decouplingasimpleservice, to SEtup fOr remMOtiNgeeeeeiiieeeeeiiiiiee e 57
7.2.2. ExportingaSpring ServiceUsing Inversion Of Controlcccoeciviveeeeecen i, 58
7.2.3. D01 haVetOUSEXML? ...ttt e e e e e e e et e e e e e e e s e nnneeees 59
7.2.4. Splittinguptheclient andtheServer ... 60
7.3. REMOtINGWItNHESSIAN ... e e e e e e e s et raaeeeaas 62
7.4.High-Availability/CluStENNGSOIULIONSccoiiiiiie e 62
LN 1Y BV =S Vo] o T TP EPPPRP
o300 I 1 Lo [o (o) SRRSO 64
B. 2. DEPENUENCIES. ...ttt ettt e e e e s e e e e e e e e e s s et b e e e e e e e e e aananrrraeeeaaeeesannnrrrereeaeesd 65
ST @ 1 ot = SRR 65
ST 0 0 o] oo S SUPRPSOPRR 65
B.3.2. RECEIVING. ... ittt e e e e e e e e s e e e e e e e s s a e rareeaaeeeeannrrne) 66
o @0 g 0= ot (0] = o (o =T USRS 68
8.4.1.springpython.jms.factory.WebSphereM QConnectionFactory.............coccvvveeeeeeeeeiccinnnd) 68
8.5.5pringpython.jmS.Core.JMSTEMPIELE.viiiieiiee ettt 71
SIS0 S 1o] oo PP SOPPRR 73
B.5.2.RECEIVING. ...ttt ettt et e et e e e e aa 75
8.5.3. DYNAMICHUEUES.....ceeeeeeeeeeeeeeeeeeeeeeeerereeeeeeeeeeeeeeeeeeereseseeeeeseeeseseseseseseseseresererereerrererernens 76
8.5.4. M ESSAPECONVENTEN'Seeeiereeeeieieeseeeeeeeeeeeeeeeeenes 77
8.6. springpython.jms.listener.SimpleM essagel istenerContainer and background JM Slisteners........ 78
8.7.90priNgPYthoN.jMS.COre. TEXIMESSAGE. ... uvvvriiieieeeiicciiteee e e e e e e e et e e e e e e e s s e e e e e e e s e eanrraeeeeeas 80
BB EXCEPLIONS. ...ttt e e e ar e e e 84
8.9.L.0ggingandtroubl €SN00LINGuuuruiiiiii e 85
9. SPringPython’SPIUGINSYSIEM ... e e s sneneeeen
LS00 I 1 L1 0o [') o S 87
9.2. Coily - Spring Python'scommand-linetoolcuuvieiieeiiiiicee e 87
S 0t o 1111 7= LT R 87
9.3.Officially SUPPOIEAPIUGINSeeeiiieeiie it e e e st e e e e e s e entaraeeeeeas 88
SR o 1= g o1 Y] o)V o o PSSP PP OUPPPPPPPPRR 89
S R VY Ay i e)Y 1U o 1LY ¥ o) U T o 89
9.4.1. ArchiteCtureof @PIUGINccoiiiiiieiiiiie e 89
9.4.2. Case Study - gen-cherrypy-appPRIUGineeeeieeeee e e 0
O S T g o] =S SRR
080 I = (11 oS OUUPRRRR 93
O T 0 T o [T o (1 PP PP PPPPPPPPP 93
LO.2.SPMINGWVIKI ..ttt e ettt e e e e st e e e et e e e e e annr e e e e nnes 94
0 G 20 T e = o 94
10.3. L. WRYWITEADOE?eeiiiieie ettt ettt e e snne s 94

Spring Python

Spring Python - Reference Documentation

O T2 | O o] Y S 95

L1033 WhELITBUITE ... et e st e e e nbaeeeean 95

T10.34.EXIErNAlLINKScccoiiiiiiiieeeeeeeeee e 101
Spring Python iv

Preface

Spring Python is an extension of the Java-based Spring Framework and Spring Security Framework, targeted
for Python. It is not a straight port, but instead an extension of the same concepts that need solutions applied in
Python.

This document provides a reference guide to Spring's features. Since this document is still to be considered
very much work-in-progress, if you have any requests or comments, please post them on the user mailing list or
on the Spring Python support forums.

What we mean by " Spring Java"

e
Throughout this documentation, the term Soring Java is used on occasion as shorthand for The
Soring Framework, referring to the original, java-based framework.

Before we go on, a few words of gratitude are due to the SpringSource team for putting together a framework
for writing this reference documentation.

Spring Python Y

http://springpython.webfactional.com
http://python.org
http://lists.springsource.com/listmanager/listinfo/springpython-users
http://forum.springframework.org/forumdisplay.php?f=45

Chapter 1. Overview

"Spring Python is an offshoot of the Java-based Spring Framework and Spring Security Framework, targeted
for Python. Spring provides many useful features, and | wanted those same features available when working
with Python."

--Greg Turnquist, Spring Python project lead

Spring Python intends to take the concepts that were devel oped, tested, and proven with the Spring Framework,
and carry them over to the language of Python. If anyone has developed a solution using multiple technologies
including Java, C#/.NET, and Python, they will realize that certain issues exist in all these platforms.

This is not a direct port of existing source code, but rather, a port of proven solutions, while still remaining
faithful to the style, idioms, and overall user community of Python.

1.1. Key Features

The following features have been implemented:

« Inversion Of Control - The idea is to decouple two classes at the interface level. This lets you build many
reusable parts in your software, and your whole application becomes more pluggable. You can use either
the Py Cont ai ner Conf i g or the Pyt honConf i g to plugin your object definition to an Appl i cat i onCont ext .

e Asgpect Oriented Programming - Spring Python provides great ways to wrap advice around objects. It is
utilized for remoting. Another useis for debug tracers and performance tracing.

« DatabaseTemplate - Reading from the database requires a monotonous cycle of opening cursors, reading
rows, and closing cursors, along with exception handlers. With this template class, al you need is the SQL
query and row-handling function. Spring Python does the rest.

» Database Transactions - Wrapping multiple database calls with transactions can make your code hard to
read. This module provides multiple ways to define transactions without making things complicated.

e Security - Plugin security interceptors to lock down access to your methods, utilizing both authentication
and domain authorization.

» Remoting - It is easy to convert your local application into a distributed one. If you have already built your
client and server pieces using the 10oC container, then going from local to distributed is just a configuration
change.

« JMS Messaging - Connect to Java or Python applications using queueing middleware. Spring Python can
act as a standalone client of aJM S provider with no Java EE infrastructure needed on Python side.

¢ Plug-ins/command-line tool - Use the plugin system designed to help you rapidly develop applications.

» Samples - to help demonstrate various features of Spring Python, some sample applications have been
created:

« PetClinic - Everybody's favorite Spring sample application has been rebuilt from the ground up using
various web containers including: CherryPy. Go check it out for an example of how to use this

Spring Python 1

http://python.org
http://cherrypy.org

Overview

framework.

e Spring Wiki - Wikis are powerful ways to store and manage content, so we created a simple one as a
demo!

e Spring Bot - Use Spring Python to build a tiny bot to manage the IRC channel of your open source
project.

1.2. What Spring Python is NOT

Spring Python is NOT another web framework. | think there are plenty that are fine to use, like Django,
TurboGears, Zope, CherryPy, Quixote, and more. Spring Python is meant to provide utilities to support any
python application, including a web-based one.

So far, the demos have been based on CherryPy, but the idea is that these features should work with any python
web framework. The Spring Python team is striving to make things reusable with any python-based web
framework. There is always the goal of expanding the samples into other frameworks, whether they are
web-based, RIA, or thick-client.

1.3. Support

1.3.1. Forums and Email

* You can read the messages on Spring Python's forums at the official Spring forum site.

e If you are interested, you can sign up for the springpython-developer mailing list.

¢ You can read the current archives of the spring-users mailing list.

¢ You can aso read the old archives of the retired spring-developer mailing list.

» |f you want to join this project, see How to become ateam member

1.3.2. IRC

Sorry, | can't seem to get along-term running IRC bot working for me. You'll have to resort to email to reach
me for questions or issues. -- Greg

1.4. Downloads / Source Code

If you want arelease, check out Spring's download site for Spring Python.

If you want the latest source code type:

svn co https://src.springfranmework. org/ svn/ se-springpython-py/trunk/springpython

That will create a new springpython folder. This includes both the source code and the demo applications

Spring Python 2

http://en.wikipedia.org/wiki/Rich_Internet_application
http://forum.springframework.org/forumdisplay.php?f=45
http://lists.springsource.com/listmanager/listinfo/springpython-users
http://lists.springsource.com/archives/springpython-users/
http://sourceforge.net/mailarchive/forum.php?forum=springpython-developer
http://s3browse.com/explore/dist.springframework.org/release/EXT/se-springpython-py/

Overview

(PetClinic and SpringWiki).

Y ou can browse the code at https://fisheye.springframework.org/browse/se-springpython-py.

1.5. Licensing

Spring Python is released under the Apache Server License 2.0 and the copyright is held by SpringSource.

1.6. Spring Python's team

Spring Python's official team (those with committer rights):

e Project Lead: Greg L. Turnquist

» SpringSource Sponsor: Mark Pollack
e Project Contributor: Russ Miles

e Project Contributor: Dariusz Suchojad

Many others have also contributed through reporting issues, raising questions, and even sending patches.

1.6.1. How to become a team member

We like hearing about new people interesting in joining the project. We are also excited in hearing from people
interested in working on a particular jirafeature.

The way we do things around here, we like to work through a few patches before granting you any committer
rights. You can checkout a copy of the code anonymously, and then work on your patch. Email your patch to
one of the official team members, and we will inspect things. From there we will consider committing your
patch, or send you feedback.

If we decide to commit your changes, we may choose to create a new branch for your feature, based on the
scope of the work, or simply commit it to the trunk. After testing, evaluation, and prioritization, we may
eventually merge your patch to the trunk. After a few patches, if things are looking good, we will evaluate
giving you committer rights.

Spring Python is a TDD-based project, meaning if you are working on code, be sure to write an automated test
case and write the test case FIRST. For insight into that, take a trip into the code repository's test section to see
how current things are run. Your patch can get sold off and committed much faster if you include automated
test cases and a pasted sample of your test case running successfully along with the rest of the baseline test
suite.

Y ou don't have to become a team member to contribute to this project, but if you want to contribute code, then
we ask that you follow the details of this process, because this project is focused on high quality code, and we
want to hold everyone to the same standard.

Getting Started

1. Firstof al, | suggest you sign up on our springpython-developer mailing list. That way, you'll get notified
about big items as well be on the inside for important developments that may or may not get published to

Spring Python 3

https://fisheye.springframework.org/browse/se-springpython-py
http://www.apache.org/licenses/LICENSE-2.0
http://en.wikipedia.org/wiki/Test-driven_development
http://lists.springsource.com/listmanager/listinfo/springpython-users

Overview

the web site. NOTE: Use the springsource list, NOT the sourceforge one.

2. Second, | suggest you register for ajira account, so you can leave comments, etc. on the ticket. | think that
works (I don't manage jira, so if it doesn't let me know, and we will work from there) NOTE: | like notes
and comments tracking what you have done, or what you think needs to be done. It gives us input in case
someone else eventually has to complete the ticket. That would also be the place where you can append
new files or patches to existing code.

3. Third, register at the SpringSource community forum, and if you want to kick ideas around or float a
concept, feel free to start athread in our Spring Python forum.

4. Finaly, we redlly like to have supporting documentation as well as code. That helps other people who
aren't as up-to-speed on your piece of the system. Go ahead and start your patch, but don't forget to ook
into the docs folder and update or add to relevant documentation. Our documentation is part of the source
code, so you can submit doc mods as patches also. Include information such as dependencies, design
notes, and whatever else you think would be valuable.

With al that said, happy coding!

1.7. Deprecated Code

To keep things up-to-date, we need to deprecate code from time to time. Python has built in functionality to put
warnings into certain sections of code, so that if you import a deprecated module, you will be properly warned.
With each major release (1.0, 2.0, 3.0, etc.), the Spring Python team has the option to remove any and all
deprecated code.

(1.1.1.BUILD-20101109171232)

http://jira.springframework.org
http://forum.springframework.org
http://forum.springframework.org/forumdisplay.php?f=45

Chapter 2. The loC container

Background

In early 2004, Martin Fowler asked the readers of his site: when talking about Inversion of Control: “the
question is, what aspect of control are [they] inverting?”. Fowler then suggested renaming the principle (or at
least giving it a more self-explanatory name), and started to use the term Dependency Injection. His article then
continued to explain the ideas underpinning the Inversion of Control (I0C) and Dependency Injection (DI)
principle.

If you need a decent insight into loC and DI, pleasse do refer to said article
http://martinfowl er.com/articles/injection.html.

Inversion Of Control (10C), aso known as dependency injection is more of an architectural concept than a
simple coding pattern.

The ideais to decouple classes that depend on each other from inheriting other dependencies, and instead link
them only at the interfacing level. This requires some sort of 3rd party software module to instantiate the
concrete objects and "inject" them into the class that needsto call them.

In Spring, there are certain classes whose instances form the backbone of your application and that are managed
by the Spring 10C container. While Spring Java calls them beans, Spring Python and Spring for .NET call them
objects. An object is simply a class instance that was instantiated, assembled and otherwise managed by a
Spring 10C container instead of directly by your code; other than that, there is nothing special about a object. It
isin al other respects one of probably many objects in your application. These objects, and the dependencies
between them, are reflected in the configuration meta-data used by a container.

The following diagram demonstrates a key Spring concept: building useful services on top of simple objects,
configured through a container's set of blueprints, provides powerful services that are easier to maintain.

Spring Python 5

http://martinfowler.com/articles/injection.html
http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/Javabean

The 1oC container

Portable Service Abstractions

This chapter provides the basics of Spring Python's 10C container by using examples with explanations. If you
are familiar with Spring Java, then you may notice many similarities. Also, this document points out key
differences. It shows how to define the objects, read them into a container, and then fetch the objects into your
code.

2.1. External dependencies

XML-based 10C configuration formats use ElementTree which is a part of Python's stantard library in Python
2.5 and newer. If you use Python 2.4 you can download ElementTree from here. YamlConfig requires
installation of PyY AML which may be found here. No additional dependencies needs beinstalled if you choose
PythonConfig.

2.2. Container

A container is an object you create in your code that receives the definitions for objects from various sources.
Y our code goes to the container to request the object, and the container then does everything it needs to create
an instance of that.

Depending on the scope of the object definition, the container may create a new instance right there on the spot,
or it may fetch a reference to a singleton instance that was created previously. If this is the first time a
singleton-scoped object is requested, is created, stored, and then returned to you. For a prototype-scoped object,
EVERY TIME you request an object, a new instance is created and NOT stored in the singleton cache.

Containers depend on various object factories to do the heavy lifting of construction, and then itself will set any
additional properties. There is also the possibility of additional behavior outside of object creation, which can
be defined by extending the j ect Cont ai ner class.

Spring Python 6

http://pypi.python.org/pypi/elementtree
http://pypi.python.org/pypi/PyYAML

The 1oC container

The reason it is called a container is the idea that you are going to a central place to get your top level object.
While it is also possible to get al your other objects, the core concept of dependency injection is that below
your top-most object, all the other dependencies have been injected and thus not require container access. That
iswhat we mean when we say most of your code does NOT have to be Spring Python-aware.

Present vs. Future Object Containers

A Pay special note that there is no fixed requirement that a container actually be in a certain location.
While the current solution is memory based, meaning your objects will be lost when your
application shuts down, there is always the possibility of implementing some type of distributed,
persistent object container. For example, it is within the realm of possibilities to implement a
container that utilizes a back-end database to "contain" things or utilizes some distributed memory
cache spread between nodes.

2.2.1. Obj ect Cont ai ner VS. Appl i cat i onCont ext

The name of the container is j ect Cont ai ner . Itsjob isto pull in object meta-data from various sources, and
then call on related object factories to create the objects. In fact, this container is capable of receiving object
definitions from multiple sources, each of differing types such as XML, YAML, python code, and other future
formats.

The following block of code shows an example of creating an object container, and then pulling an object out
of the container.

from springpython. context inport Applicati onContext
from springpyt hon. config i nport XM.Config

contai ner = ApplicationContext(XMConfig("app-context.xm"))
servi ce = contai ner. get_object ("sanpl eServi ce")

The first thing you may notice is the fact that Appl i cati onContext was used instead of vj ect Cont ai ner.
Appl i cationContext iS a subclass of bject Container, and is typically used because it also performs
additional pre- and post-creational logic.

For example, any object that implements Appl i cati onCont ext Aware Will have an additional app_cont ext
atribute added, populated with a copy of the ApplicationContext. If your object's class extends
j ect Post Processor and definesapost _process_after_initialization, theApplicationContext will run
that method against every instance of that object.

If your singleton objects hold references to some external resources, e.g. connections to a resource manager of
some sort, you may also want to subclass spri ngpyt hon. cont ext . Di sposabl eCbj ect t0 have a means for the
resources to get released. Any singleton subclassing spri ngpyt hon. cont ext . Di sposabl eCbj ect may define a
destroy method which is guaranteed to be executed on Appli cationContext shutdown. An alternative to
creating a dest r oy method is to define the dest roy_net hod attribute of an object which should be a name of
the custom method to be invoked on Appl i cati onCont ext shutdown. If an object defines both destroy and
destroy_nethod then the former will take precedence. It is an eror to extend
spri ngpyt hon. cont ext . Di sposabl eQbj ect without providing either destory or destroy_nethod. If this
occurs, an error will be written to Spring Python logs when the container shuts down.

2.2.2. Scope of Objects / Lazy Initialization

Another key duty of the container is to also manage the scope of objects. This means at what time that objects

Spring Python 7

http://en.wikipedia.org/wiki/Dependency_injection

The 1oC container

are created, where the instances are stored, how long before they are destroyed, and whether or not to create
them when the container isfirst started up.

Currently, two scopes are supported: SINGLETON and PROTOTY PE. A singleton-scoped object is cached in
the container until application shutdown. A prototype-scoped object is never stored, thus requiring the object
factory to create a new instance every time the object is requested from the container.

The default policy for the container isto make everything SINGLETON and also eagerly fetch all objects when
the container is first created. The scope for each object can be individually overriden. Also, the initialization of
each object can be shifted to "lazy", whereby the object is not created until the first time it is fetched or
referenced by another object.

2.3. Configuration

Spring Python support different formats for defining objects. This project first began using the format defined
by PyContainer, a now inactive project. The structure has been captured into an XSD spec. This format is
primarily to support legacy apps that have already been built with Spring Python from its inception. Thereis no
current priority to extend this format any further. Any new schema developments will be happening with
XM_Conf i g and Yani Confi g.

In the spirit of Spring JavaConfig and a blog posting by Rod Johnson, another format has been defined. By
extending Pyt honConfi g and using the @xj ect python decorator, objects may be defined with pure python
codein acentralized class.

Due to limitations in the format of PyContainer, another schema has been developed called xM.Confi g that
more closely models the original Spring Java version. It has support for referenced objects in many more places
than PyContainer could handle, inner objects as well, various collections (lists, sets, frozen sets, tuples,
dictionaries, and java-style props), and values.

Spring Python also hasa 'Y AML-based parser called Yam Confi g.

Spring Python is ultimately about choice, which is why developers may extend the Conf i g class to define their
own object definition scanner. By plugging an instance of their scanner into Appl i cat i onCont ext , definitions
can result in instantiated objects.

Y ou may be wondering, amidst all these choices, which one to pick? Here are some suggestions based on your
current solution space:

 New projects are encouraged to pick either Pyt honConfig, XM.Confi g, Or Yam Config, based on your
preference for pure python code, XML, or YAML.

« Projects migrating from Spring Java can use Spri ngdavaConf i g to ease transition, with along term goal of
migrating to XM.Conf i g, and perhaps finally Pyt honConfi g.

« Apps dready developed with Spring Python can use PyCont ai ner Confi g to keep running, but it is highly
suggested you work towards XM_Conf i g.

* Projects currently using XM_Conf i g should be pretty easy to migrate to Pyt honConfi g, Sinceit is basicaly a
one-to-one tranglation. The pure python configuration may turn out much more compact, especialy if you
are using lists, sets, dictionaries, and props.

It should also be relatively easy to migrate an XM_Conf i g-based configuration to Yam Config. YAML tends
to be more compact than XML, and some prefer not having to deal with the angle-bracket tax.

(1.1.1.BUILD-20101109171232)

http://springpython.webfactional.com/schema/context/spring-python-pycontainer-context-1.0.xsd
http://www.springframework.org/javaconfig
http://blog.springsource.com/2006/11/28/a-java-configuration-option-for-spring/
http://springpython.webfactional.com/schema/context/spring-python-context-1.1.xsd

The 1oC container

2.3.1. XM_Confi g - Spring Python's native XML format

XM_Confi g is aclass that scans object definitions stored in the new XML format defined for Spring Python. It
looks very similar to Spring Java's 2.5 XSD spec, with some small changes.

The following is a simple definition of objects. Later sections will show other options you have for wiring
things together.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranmework. org/springpyt hon/ schema/ obj ects/ 1. 1"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ spri ngpyt hon/ schema/ obj ects/ 1.1

http://springpyt hon. webf acti onal . conl schena/ cont ext/ spri ng- pyt hon-context-1. 1, xsd">

<obj ect id="MovielLister" class="springpythontest.support.testSupportC asses. MvielLister" scope="prototyy

<property nanme="finder" ref="MvieFinder"/>

<property name="description"><ref object="SingletonString"/></property>
</ obj ect >

<obj ect id="Movi eFinder" class="springpythontest.support.testSupportd asses. Col onMvi eFi nder" scope="sir

<property nanme="fil ename" ><val ue>support/ novi esl. t xt </ val ue></ property>
</ obj ect >

<obj ect id="SingletonString" class="springpythontest. support.testSupportC asses. StringHol der" |azy-init:=

<property name="str" val ue="There shoul d only be one copy of this string"></property>
</ obj ect >
</ obj ect s>

The definitions stored in this file are fed to an XM_Conf i g instance which scans it, and then sends the meta-data
to the Appl i cati onCont ext . Then, when the application code requests an object named Movielister from the
container, the container utilizes an object factory to create the object and return it.

from springpython. context inport Applicati onContext
from springpyt hon. config inport XM.Config

contai ner = ApplicationContext(XM.Confi g("app-context.xm "))
servi ce = container.get_object("MvieLister")

2.3.1.1. Referenced Objects

A referenced object is where an object is needed, but instead of providing the definition right there, there is,
instead, a name, referring to another object definition.

Object definitions can refer to other abjects in many places including: properties, constructor arguments, and
objects embedded inside various callections. This is the way to break things down into smaller pieces. It also
allows you more efficiently use memory and guarantee different objects are linked to the same backend object.

The following fragment, pulled from the earlier example, shows two different properties referencing other
objects. It demonstrates the two ways to refer to another object.

<obj ect id="MovieLister" class="springpythontest.support.testSupportd asses. Movi eLi ster" scope="prototype">

<property nanme="finder" ref="MvieFinder"/>

<property name="description"><ref object="SingletonString"/></property>
</ obj ect >

This means that instead of defining the object meant to be injected into the descri pti on property right there,

the container must look elsewhere amongst its collection of object definitions for an object named
SngletonString.

(1.1.1.BUILD-20101109171232)

The 1oC container

Referenced objectsdon’t have to be in same configuration

e
When a referenced object is encountered, finding its definition is referred back to the container.
This means ANY of the input sources provided to the container can hold this definition,
REGARDLESS of format.
Spring Python ONLY supportsglobal references

Ta

While Spring Java has different levels of reference like parent, local, and global, Spring Python
only supports global at thistime.

In the following subsections, other types of object definitions are given. Each will also include information
about embedding reference objects.

2.3.1.2. Inner Objects

Inner objects are objects defined inside another structure, and not at the root level of the XML document. The
following shows an alternative configuration of aMvi eLi st er wherethefi nder usesanamed inner object.

<obj ect id="MovieLister3" class="springpythontest.support.testSupportd asses. Movi eLi ster">
<property nanme="finder">
<obj ect id="nanmed" class="springpythontest.support.testSupportC asses. Col onMvi eFi nder" >
<property name="fil enane" ><val ue>support/ nmovi esl. t xt </ val ue></ property>
</ obj ect >
</ property>
<property nanme="description"><ref object="SingletonString"/></property>
</ obj ect >

The col onMovi eFi nder isindeed an inner object because it was defined inside the Movielister3 object. Objects
defined at the top level have a container-level name that matches their i d value. In this case, asking the
container for a copy of MovieLister3 will yield the top level object. However, named objects develop a
path-like name based on where they are located. In this case, the inner Col onMovi eFi nder object will have a
container-level name of MovieLister3.finder.named.

Typicaly, neither your code nor other object definitions will have any need to reference
MovieLister3.finder.named, but there may be cases where you need this. Thei d attribute of Col onMovi eFi nder
can be left out (it is optional for inner objects) like this:

<obj ect id="MovieLister2" class="springpythontest.support.testSupportd asses. Mvi eLister">
<property name="finder">
<obj ect class="springpythontest.support.testSupportC asses. Col onMovi eFi nder" >
<property name="fil enane" ><val ue>support/ nmovi esl. t xt </ val ue></ property>
</ obj ect >
</ property>
<property nanme="description"><ref object="SingletonString"/></property>
</ obj ect >

That is dightly more compact, and usually alright because you usualy wouldn't access this object from
anywhere. However, if you must, the name in this case is MovieLister2.finder.<anonymous> indicating an
anonymous obj ect.

It is important to realize that inner objects have all the same privileges as top-level objects, meaning that they
can also utilize reference objects, collections, and inner objects themselves.

2.3.1.3. Collections

Spring Python 10

The 1oC container

Spring Java supports many types of collections, including lists, sets, frozen sets, maps, tuples, and java-style
properties. Spring Python supports these as well. The following configuration shows usage of dict, Iist,
props, set, frozenset, andt upl e.

<obj ect id="Val ueHol der" cl ass="springpythontest. support.testSupportd asses. Val ueHol der">
<constructor-arg><ref object="SingletonString"/></constructor-arg>
<property name="sone_dict">
<di ct >
<entry><key><val ue>Hel | o</ val ue></ key><val ue>Wor | d</ val ue></ entry>
<ent ry><key><val ue>Spri ng</ val ue></ key><val ue>Pyt hon</ val ue></entry>
<entry><key><val ue>hol der </ val ue></ key><ref obj ect="Si ngl etonString"/></entry>
<entry><key><val ue>anot her copy</val ue></ key><ref object="SingletonString"/></entry>
</dict>
</ property>
<property name="sone_list">
<list>
<val ue>Hel | o, worl d! </val ue>
<ref object="SingletonString"/>
<val ue>Spri ng Pyt hon</val ue>
</list>
</ property>
<property name="sone_props">
<pr ops>
<prop key="adm ni strator">adm ni strator @xanpl e. org</ prop>
<prop key="support">support @xanpl e. or g</ prop>
<prop key="devel opnment " >devel opnment @xanpl e. or g</ pr op>
</ props>
</ property>
<property name="sone_set">

<set >
<val ue>Hel | o, worl d! </val ue>
<ref object="SingletonString"/>
<val ue>Spring Pyt hon</val ue>

</ set>

</ property>
<property name="sone_frozen_set">
<frozenset >
<val ue>Hel | o, worl d! </val ue>
<ref object="SingletonString"/>
<val ue>Spring Pyt hon</val ue>
</frozenset >
</ property>
<property nanme="sone_tupl e">
<t upl e>
<val ue>Hel | o, worl d! </val ue>
<ref object="SingletonString"/>
<val ue>Spring Pyt hon</val ue>
</tupl e>
</ property>
</ obj ect >

* sone_di ct isapython dictionary with four entries.

e sonme_list isapython list with three entries.

e sonme_props iSalso apython dictionary, containing three values.
e some_set isaninstance of python's mutable set.

* some_frozen_set isaninstance of python'sfrozen set.

* sone_tupl e isapython tuple with three values.

Java uses maps, Python uses dictionaries

-

"9
While java calls key-based structures maps, python calls them dictionaries. For this reason, the

code fragment shows a"dict" entry, which is one-to-one with Spring Java's "map" definition.

Spring Python 11

http://www.python.org/doc/2.5.2/lib/types-set.html
http://www.python.org/doc/2.5.2/lib/types-set.html

The 1oC container

Java also has a Property class. Spring Python trandates this into a python dictionary, making it
more like an aternative to the configuring mechanism of di ct .

2.3.1.4. Constructors

Python functions can have both positional and named arguments. Positional arguments get assembled into a
tuple, and named arguments are assembled into a dictionary, before being passed to a function call. Spring
Python takes advantage of that option when it comes to constructor cals. The following block of configuration
data shows defining positional constructors.

<obj ect id="Anot herSingletonString" class="springpythontest.support.testSupportC asses. Stri ngHol der">
<constructor-arg value="attributed val ue"/>
</ obj ect >

<obj ect id="AThirdSi ngletonString" class="springpythontest. support.testSupportC asses. StringHol der">
<constructor - ar g><val ue>el ement al val ue</val ue></constructor-arg>
</ obj ect >

Spring Python will read these and then feed them to the class constructor in the same order as shown here.

The following code configuration shows named constructor arguments. Spring Python converts these into
keyword arguments, meaning it doesn't matter what order they are defined.

<obj ect id="MiltiVal ueHol der" cl ass="springpythontest.support.testSupportC asses. Mul ti Val ueHol der" >
<constructor-arg nanme="a"><val ue>alt a</val ue></constructor-arg>
<constructor-arg name="b"><val ue>alt b</val ue></constructor-arg>

</ obj ect >

<obj ect id="MiltiVal ueHol der2" cl ass="springpythontest.support.testSupportC asses. Mul ti Val ueHol der" >
<constructor-arg name="c"><val ue>alt c</val ue></constructor-arg>
<constructor-arg nanme="b"><val ue>alt b</val ue></constructor-arg>

</ obj ect >

This was copied from the code's test suite, where a test case is used to prove that order doesn't matter. It is
important to note that positional constructor arguments are fed before named constructors, and that overriding a
the same constructor parameter both by position and by name is not allowed by Python, and will in turn,
generate arun-time error.

It isaso vauable to know that you can mix this up and use both.
2.3.1.5. Values

For those of you that used Spring Python before xm_cConf i g, you may have noticed that expressing values isn't
as succinct as the old format. A good example of the old PyContainer format would be:

<conponent id="user_details_service" class="springpython.security.userdetails.|nMnoryUserDetail sService">

<property nanme="user_dict">

"basi chi bl ueuser” : ("passwordl", ["ROLE BASIC', "ASS|IGNED BLUE", "LEVEL_H "],
"basi chi orangeuser": ("password2", ["ROLE BASIC', "ASS|IGNED ORANGE', "LEVEL_H "],
"ot her hi bl ueuser"” : ("password3", ["ROLE OTHER', "ASSI GNED BLUE", "LEVEL_H "],
"ot her hi orangeuser": ("password4", ["ROLE OTHER', "ASS|I GNED ORANGE', "LEVEL_H "],
"basi cl obl ueuser" : ("password5", ["ROLE_BASIC', "ASSIGNED BLUE", "LEVEL_LO'],
"basi cl oorangeuser": ("password6", ["ROLE_BASIC', "ASSI GNED CRANGE', "LEVEL_LO'],
"ot herl obl ueuser" : ("password7", ["ROLE_OTHER', "ASSIGNED BLUE", "LEVEL_LO'],
[

"ot herl oorangeuser": ("password8",

}
</ property>
</ conponent >

(1.1.1.BUILD-20101109171232)

"ROLE_OTHER', "ASSI GNED_ORANGE", "LEVEL_LO'],

True),
True),
True),
True),
True),
True),
True),
True)

The 1oC container

Why do | see components and not objects?

In the beginning, PyContainer was used and it tagged the managed instances as components. After
replacing PyContainer with a more sophisticated 10C container, the instances are now referred to as
objects, however, to maintain this legacy format, you will see component tags inside
PyCont ai ner Conf i g-based definitions.

While this is very succinct for expressing definitions using as much python as possible, that format makes it
very hard to embed referenced objects and inner objects, since PyCont ai ner Conf i g uses python's eval method
to convert the material.

The following configuration block shows how to configure the same thing for Xm.Conf i g.

<obj ect id="user_details_service" class="springpython.security.userdetails.|nMenoryUserDetailsService">
<property name="user_dict">
<di ct >
<entry>
<key><val ue>basi chi bl ueuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d1</ val ue>
<l i st ><val ue>ROLE_BASI C</ val ue><val ue>ASS| GNED_BLUE</ val ue><val ue>LEVEL_
<val ue>Tr ue</ val ue>
</t upl e></val ue>
</entry>
<entry>
<key><val ue>basi chi or angeuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d2</ val ue>
<l i st ><val ue>ROLE_BASI C</ val ue><val ue>ASSI GNED_ORANGE</ val ue><val ue>LEVE
<val ue>True</ val ue>
</ tupl e></val ue>
</entry>
<entry>
<key><val ue>ot her hi bl ueuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d3</ val ue>
<l i st ><val ue>ROLE_OTHER</ val ue><val ue>ASSI GNED_BLUE</ val ue><val ue>LEVEL_
<val ue>True</ val ue>
</t upl e></val ue>
</entry>
<entry>
<key><val ue>ot her hi or angeuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d4</ val ue>
<l i st ><val ue>ROLE_OTHER</ val ue><val ue>ASS| GNED_ORANGE</ val ue><val ue>LEVE
<val ue>True</ val ue>
</t upl e></val ue>
</entry>
<entry>
<key><val ue>basi cl obl ueuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d5</ val ue>
<l i st ><val ue>ROLE_BASI C</ val ue><val ue>ASS| GNED_BLUE</ val ue><val ue>LEVEL_
<val ue>Tr ue</ val ue>
</t upl e></val ue>
</entry>
<entry>
<key><val ue>basi cl oor angeuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d6</ val ue>
<l i st ><val ue>ROLE_BASI C</ val ue><val ue>ASSI GNED_ORANGE</ val ue><val ue>LEVE
<val ue>True</ val ue>
</t upl e></val ue>
</entry>
<entry>
<key><val ue>ot her| obl ueuser </ val ue></ key>
<val ue><t upl e>
<val ue>passwor d7</ val ue>
<l i st ><val ue>ROLE_OTHER</ val ue><val ue>ASSI GNED_BLUE</ val ue><val ue>LEVEL_
<val ue>True</ val ue>
</t upl e></ val ue>
</entry>
<entry>

(1.1.1.BUILD-20101109171232)

The 1oC container

<key><val ue>ot her| oor angeuser </ val ue></ key>

<val ue><t upl e>
<val ue>passwor d8</ val ue>
<l i st ><val ue>ROLE_OTHER</ val ue><val ue>ASSI GNED_ORANGE</ val ue><val ue>LEVE
<val ue>True</val ue>

</t upl e></val ue>

</entry>
</dict>
</ property>
</ obj ect >

Of course this is more verbose than the previous block. However, it opens the door to having a much higher
level of detail:

<obj ect id="user_details_service2" class="springpython.security.userdetails.|nMenoryUserDetail sService">
<property name="user_dict">

<list>
<val ue>Hel | o, worl d! </val ue>
<di ct >
<entry>
<key><val ue>yes</ val ue></ key>
<val ue>Thi s i s working</val ue>
</entry>
<entry>
<key><val ue>no</ val ue></ key>
<val ue>Maybe it's not ?</val ue>
</entry>
</dict>
<t upl e>
<val ue>Hel l o, from Spring Python!</val ue>
<val ue>Spring Pyt hon</val ue>
<di ct >
<entry>
<key><val ue>yes</ val ue></ key>
<val ue>Thi s i s working</val ue>
</entry>
<entry>
<key><val ue>no</ val ue></ key>
<val ue>Maybe it's not ?</val ue>
</entry>
</dict>
<list>
<val ue>This is a list element inside a tuple.</val ue>
<val ue>And so is this :)</val ue>
</list>
</ tupl e>
<set >
<val ue>1</val ue>
<val ue>2</ val ue>
<val ue>1</val ue>
</set>
<frozenset >
<val ue>a</ val ue>
<val ue>b</val ue>
<val ue>a</ val ue>
</frozenset >
</list>
</ property>

</ obj ect >

2.3.1.6. XMLConfig and basic Python types

Objects of most commonnly used Python types - str, uni code, i nt, | ong, fl oat, deci mal . Deci mal , bool and
conpl ex - may be expressed in XML Config using a shorthand syntax which allows for afollowing XML Config
file

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springframework. org/ springpython/ schema/ obj ects/1. 1"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

Spring Python 14

The 1oC container

xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ spri ngpyt hon/ schena/ obj ects/ 1.1
http://springpyt hon. webfacti onal . conl schema/ cont ext/ spri ng- pyt hon-context-1. 1, xsd">

<str id="MyString">My string</str>

<uni code id="M/Uni code" >Za#0## g##| # | a##</uni code>
<int id="Mylnt">10</int>

<l ong i d="M/Long">100000000000000000000000</ | ong>
<float id="MFl oat">3.14</fl oat >

<deci mal id="MDeci mal ">12. 34</ deci mal >

<bool id="M/Bool ">Fal se</ bool >

<conpl ex id="M/Conpl ex">10+0j </ conpl ex>

</ obj ect s>

2.3.1.7. Object definition inheritance

XMLConfig's definitions may be stacked up into hierarchies of abstract parents and their children objects. A
child object not only inherits all the properties and constructor arguments from its parent but it can also easily
override any of the inherited values. This can save a lot of typing when configuring non-trivial application
contexts which would otherwise need to repeat the same configuration properties over many objects definitions.

An abstract object is identified by having an abstract="True" attribute and the child ones are those which have
a parent attribute set to ID of an object from which the properties or constructor arguments should be inherited.
Child objects must not specify the class attribute, its value is taken from their parents.

An object may be both a child and an abstract one.

Here's a hypothetical configuration of a set of services exposed by a server. Note how you can easily change the
CRM environment you're invoking by merely changing the concrete service's (get_customer_id or
get_customer_profile) parent ID.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranmework. org/springpython/schema/ obj ects/1.1"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://ww. spri ngframewor k. or g/ spri ngpyt hon/ schena/ obj ects/ 1.1
http://springpython.webfactional .con schema/ cont ext/spri ng-python-context-1.1. xsd">

<obj ect id="service" class="springpythontest.support.testSupportC asses. Service" scope="singl eton" abstracts=

<property name="ip"><val ue>192. 168. 1. 153</ val ue></ property>
</ obj ect >

<obj ect id="crmservice_dev" parent="service" abstract="True">
<property nanme="port"><val ue>3392</val ue></ property>
</ obj ect >

<object id="crmservice_test" parent="service" abstract="True">
<property name="port"><val ue>3393</val ue></ property>
</ obj ect >

<obj ect id="get_custoner_id" parent="crmservice_dev">
<property name="path"><val ue>/ soap/ i nvoke/ get _cust onmer _i d</ val ue></ property>
</ obj ect >

<obj ect id="get_custoner_profile" parent="crmservice_test">
<property name="path"><val ue>/ soap/ i nvoke/ get _cust onmer_profil e</val ue></ property>
</ obj ect >

</ obj ect s>

Spring Python 15

The 1oC container

Here's how you can override inherited properties, both get customer id and get_customer profile object
definitions will inherit the path property however the actual objects returned by the container will use local,
overridden, values of the property.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springframework. org/springpython/ schema/ obj ects/1.1"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://ww. spri ngframewor k. or g/ spri ngpyt hon/ schenma/ obj ects/ 1.1
http://springpython.webfactional .conm schema/ cont ext/spring-python-context-1.1.xsd">

<obj ect id="service" class="springpythontest.support.testSupportC asses. Servi ce" scope="singl eton" abstract=

<property name="ip"><val ue>192. 168. 1. 153</ val ue></ property>

<property name="port"><val ue>3392</ val ue></ property>

<property nanme="pat h"><val ue>/ DOES- NOT- EXI ST</ val ue></ property>
</ obj ect >

<obj ect id="get_custoner_id" parent="service">
<property nanme="pat h"><val ue>/ soap/ i nvoke/ get _cust oner _i d</ val ue></ property>
</ obj ect >
<obj ect id="get_customer_profile" parent="service">
<property name="path"><val ue>/ soap/ i nvoke/ get _cust omer _profil e</val ue></ property>
</ obj ect >

</ obj ect s>

If you need to get an abstract object from a container, use the .get_object's ignore_abstract parameter,
otherwise springpython.container . AbstractObjectException will be raised. Observe the difference:

.. skip creating the context

No exception will be raised, even though 'service' is an abstract object
servi ce = ctx.get_object("service", ignore_abstract=True)

W1l show the object
print service

WII raise Abstract Object Exception
servi ce = ctx.get_object("service")

2.3.2. Yani Confi g - Spring Python's YAML format

Yani Confi g isaclassthat scans object definitions storedinaYAML 1.1 format using the PyY AML project.

The following is a simple definition of objects, including scope and lazy-init. Later sections will show other
options you have for wiring things together.

obj ect s:
- object: MvielLister
cl ass: springpythontest. support.testSupportC asses. Mvi eLi ster
scope: prototype
properties:
finder: {ref: MovieFinder}
description: {ref: SingletonString}

- object: MvieFi nder
cl ass: springpythontest. support.testSupportC asses. Col onvbvi eFi nder
scope: singleton
lazy-init: True
properties:
fil ename: support/noviesl.txt

- object: SingletonString
cl ass: springpythontest. support.testSupportd asses. Stri ngHol der
lazy-init: True

(1.1.1.BUILD-20101109171232)

http://www.yaml.org
http://pyyaml.org

The 1oC container

properties:
str: There should only be one copy of this string

The definitions stored in this file are fed to an Yanl Confi g instance which scans it, and then sends the
meta-data to the Appl i cat i onCont ext . Then, when the application code requests an object named MovieL.ister
from the container, the container utilizes an object factory to create the object and return it.

from springpython. context inport Applicati onContext
from springpyt hon. config inport Yam Config

contai ner = ApplicationContext(Yarm Config("app-context.xm"))
servi ce = container.get_object ("MvieLister")

2.3.2.1. Referenced Objects

A referenced object is where an object is needed, but instead of providing the definition right there, there is,
instead, a name, referring to another object definition.

Object definitions can refer to other objects in many places including: properties, constructor arguments, and
objects embedded inside various collections. This is the way to break things down into smaller pieces. It also
allows you more efficiently use memory and guarantee different objects are linked to the same backend object.

The following fragment, pulled from the earlier example, shows two different properties referencing other
objects. It demonstrates the two ways to refer to another object.

obj ect: Movielister
cl ass: springpythontest. support.testSupportC asses. Mvi eLi ster
scope: prototype
properties:
finder: {ref: MovieFinder}
description: {ref: SingletonString}

This means that instead of defining the object meant to be injected into the descri pti on property right there,
the container must look elsewhere amongst its collection of object definitions for an object named
SngletonString.

Referenced objectsdon't have to bein same configuration

"
When a referenced object is encountered, finding its definition is referred back to the container.
This means ANY of the input sources provided to the container can hold this definition,
REGARDLESS of format.
Spring Python ONLY supportsglobal references

“a

While Spring Java has different levels of reference like parent, local, and global, Spring Python
only supports global at thistime.

In the following subsections, other types of object definitions are given. Each will also include information
about embedding reference objects.

2.3.2.2. Inner Objects

Inner objects are objects defined inside another structure, and not at the root level of the YAML document. The
following shows an alternative configuration of aMvi eLi st er wherethefi nder usesanamed inner object.

(1.1.1.BUILD-20101109171232)

The 1oC container

obj ect: Movielister3
cl ass: springpythontest. support.testSupportC asses. Mvi eLi ster
properties:
finder:
obj ect: naned
cl ass: springpythontest. support.testSupportC asses. Col onMbvi eFi nder
properties:
fil ename: support/noviesl.txt
description: {ref: SingletonString}

The Col onMovi eFi nder isindeed an inner object because it was defined inside the MovieLister3 object. Objects
defined at the top level have a container-level name that matches their i d value. In this case, asking the
container for a copy of MovieLister3 will yield the top level object. However, nhamed objects develop a
path-like hame based on where they are located. In this case, the inner Col onMovi eFi nder object will have a
container-level name of MovielLister3.finder.named.

Typically, neither your code nor other object definitions will have any need to reference
MovieLister3.finder.named, but there may be cases where you need this. The value of the object key of
Col onMovi eFi nder can be left out (it isoptional for inner objects) like this:

obj ect: Movielister2
cl ass: springpythontest. support.testSupportC asses. Mvi eLi st er
properties:
finder:
obj ect :
cl ass: springpythontest. support.testSupportC asses. Col onvbvi eFi nder
properties:
fil ename: support/noviesl.txt
description: {ref: SingletonString}

That is dightly more compact, and usually aright because you usualy wouldn't access this object from
anywhere. However, if you must, the name in this case is MovieLister2.finder.<anonymous> indicating an
anonymous object.

It is important to realize that inner objects have all the same privileges as top-level objects, meaning that they
can also utilize reference objects, collections, and inner objects themselves.

2.3.2.3. Collections

Spring Java supports many types of collections, including lists, sets, frozen sets, maps, tuples, and java-style
properties. Spring Python supports these as well. The following configuration shows usage of di ct, | i st, set,
frozenset, andtupl e.

obj ect: Val ueHol der
cl ass: springpythontest. support.testSupportC asses. Val ueHol der
constructor-args:
- {ref: SingletonString}
properties:
sone_di ct:
Hello: World
Spring: Python
hol der: {ref: SingletonString}
anot her copy: {ref: SingletonString}
some_|ist:
- Hello, world!
- ref: SingletonString
- Spring Python
Sone_pr ops:
adm ni strator: adm ni strator @xanpl e. org
support: support @xanpl e.org
devel opnent : devel opnent @xanpl e. org
sonme_set :

Spring Python 18

The 1oC container

set:
- Hello, world!
- ref: SingletonString
- Spring Python
sonme_frozen_set:
frozenset:
- Hello, world!
- ref: SingletonString
- Spring Python
sone_t upl e:
tupl e:
- Hello, world!
- ref: SingletonString
- Spring Python

e sonme_di ct isapython dictionary with four entries.

e sone_list isapython list with three entries.

* some_props isalso apython dictionary, containing three values.

* sone_set isaninstance of python's mutable set.

e some_frozen_set isaninstance of python'sfrozen set.

e sone_t upl e isapython tuple with three values.

e

2.3.2.4. Support for Python builtin types and mappings of other types onto YAML syntax

Java uses maps, Python uses dictionaries

While java calls key-based structures maps, python calls them dictionaries. For this reason, the

code fragment shows a"dict" entry, which is one-to-one with Spring Java's "map" definition.

Java also has a Property class. Since YAML dready supports a key/value structure as-is,

Yani Confi g does not have a separate structural definition.

Objects of commonly used Python builtin types may be tersely expressed in YamlConfig. Supported types are

str, uni code,int,|ong, float, deci mal . Deci mal , bool , conpl ex, dict,list andtuple.

Here's a sample YamlConfig featuring their usage. Note that with the exception of deci mal . Deci mal , names of
the Y AML attributes are the same as the names of Python types.

obj ect

S:
object: MString
str: My string

- object: MUnicode

uni code: Za#O## g##l # | a#t#

- object: Mlnt

int: 10

- object: MlLong

| ong: 100000000000000000000000

- object: MFI oat

float: 3.14

- object: MDecinal

decimal : 12. 34

- object: MBool ean

bool : Fal se

Spring Python

19

http://www.python.org/doc/2.5.2/lib/types-set.html
http://www.python.org/doc/2.5.2/lib/types-set.html

The 1oC container

- object: M Conpl ex
conpl ex: 10+0j

- object: MList
list: [1, 2, 3, 4]

- object: MTuple
tuple: ["a", "b", "c"]

- object: MDict
dict:
1: "a"
2: "b"
3: "c"

- object: M/Ref
deci mal :
ref: MyDeci nal

Under the hood, while parsing the YAML files, Spring Python will trandate the definitions such as the one
aboveinto the following one:

obj ect s:
- object: MString
class: types. StringType
constructor-args: ["My string"]

- object: MUnicode
cl ass: types. Uni codeType
constructor-args: ["Za#0## g##l # ja##"]

- object: Mlnt
cl ass: types.|ntType
constructor-args: [10]

- object: Mlong
cl ass: types. LongType
constructor-args: [100000000000000000000000]

- object: MFI oat
cl ass: types. Fl oat Type
constructor-args: [3.14]

- object: MDecinal
cl ass: deci mal . Deci nal
constructor-args: ["12.34"]

- object: M/Bool ean
cl ass: types. Bool eanType
constructor-args: [False]

- object: MyConpl ex
cl ass: types. Conpl exType
constructor-args: [10+0j]

- object: MList
cl ass: types. ListType
constructor-args: [[1,2,3,4]]

- object: MyTuple
cl ass: types. Tupl eType
constructor-args: [["a", "b", "c"]]

- object: MDict
class: types. DictType
constructor-args: [{1: "a", 2: "b", 3: "c"}]

- object: M/Ref
cl ass: deci mal . Deci nal
constructor-args: [{ref: MDecimal}]

(1.1.1.BUILD-20101109171232)

The 1oC container

Configuration of how YAML eements are mapped onto Python types is stored in the
spri ngpyt hon. confi g. yam _mappi ngs dictionary which can be easily customized to fulfill one's needs. The
dictionary's keys are names of the Y AML elements and its values are the coresponding Python types, written as
strings in the form of "package_nane.nodul e_nane. cl ass_nane" - note tha the
“package_name. nodul e_name. " part isrequired, it needs to be afully qualified name.

Let's assume that in your configuration you're frequently creating objects of type
interest_rate. | nterestRat eFrequency, here's how you can save yourself alot of typing by customizing the
mappings dictionary. First, on Python side, create an | nt er est Rat e class, such as:

class InterestRate(object):
def __init__(self, val ue=None):
sel f.val ue = val ue

.. which will allow you to create such a Y AML context

obj ect s:
- object: base_interest _rate
interest_rate: "7.35"

.. then, before creating the context, update the mappings dictionary as needed and next you'll be able to access
the base_i nterest _rat e object asif it had been defined using the standard syntax:

from springpyt hon. cont ext inport ApplicationContext
from springpython. config inport Yam Config, yam _mappi ngs

yam _nmappi ngs. update({"interest_rate": "interest _rate.InterestRate"})

.. create the context now
contai ner = ApplicationContext(Yam Config("./app-ctx.yam "))

.. fetch the object
base_interest_rate = container.get_object("base_interest_rate")

.. will show "7.35", as defined in the "./app-ctx.yam " config
print base_interest_rate.val ue

2.3.2.5. Constructors

Python functions can have both positional and named arguments. Positional arguments get assembled into a
tuple, and named arguments are assembled into a dictionary, before being passed to a function call. Spring
Python takes advantage of that option when it comes to constructor cals. The following block of configuration
data shows defining positional constructors.

obj ect: Anot herSingletonString
cl ass: springpythontest. support.testSupportd asses. Stri ngHol der
constructor - args:

- position 1's constructor val ue

Spring Python will read these and then feed them to the class constructor in the same order as shown here.

The following code configuration shows named constructor arguments. Spring Python converts these into
keyword arguments, meaning it doesn't matter what order they are defined.

obj ect: Milti Val ueHol der
class: springpythontest.support.testSupportC asses. Mil ti Val ueHol der

(1.1.1.BUILD-20101109171232)

The 1oC container

constructor-args:
a: alt a
b: alt b

This was copied from the code's test suite, where a test case is used to prove that order doesn't matter. It is
important to note that positional constructor arguments are fed before named constructors, and that overriding a
the same constructor parameter both by position and by name is not alowed by Python, and will in turn,
generate arun-time error.

It isaso valuable to know that you can mix this up and use both.

2.3.2.6. Object definition inheritance

Just like XML Config, YamlConfig alows for wiring the objects definitions into hierarchies of abstract and
children objects, thus this section isin most parts a repetition of what's documented here

Definitions may be stacked up into hierarchies of abstract parents and their children objects. A child object not
only inherits all the properties and constructor arguments from its parent but it can also easily override any of
the inherited values. This can save a lot of typing when configuring non-trivial application contexts which
would otherwise need to repeat the same configuration properties over many objects definitions.

An abstract object isidentified by having an abstract attribute equal to True and the child ones are those which
have a parent attribute set to ID of an object from which the properties or constructor arguments should be
inherited. Child objects must not specify the class attribute, its value is taken from their parents.

An object may be both a child and an abstract one.

Here's ahypothetical configuration of a set of services exposed by a server. Note how you can easily change the
CRM environment you're invoking by merely changing the concrete service's (get_customer_id or
get_customer_profile) parent ID.

obj ect s:
- object: service
cl ass: springpythontest.support.testSupportC asses. Servi ce
abstract: True
scope: singleton
lazy-init: True
properties:
i p: 192.168.1.153

- object: crmservice_dev
abstract: True
parent: service
properties:
port: "3392"

- object: crmservice_test
abstract: True
parent: service
properties:
port: "3393"

- object: get_custoner_id
parent: crmservice_dev
properties:
pat h: /soap/invoke/ get _customer _id

- object: get_custoner_profile
parent: crmservice_test
properties:
path: /soap/invoke/get_custoner_profile

Spring Python 22

The 1oC container

Here's how you can override inherited properties, both get customer id and get_customer profile object
definitions will inherit the path property however the actual objects returned by the container will use local,
overridden, values of the property.

obj ect s:
- object: service
cl ass: foo. Service
abstract: True
scope: singleton
lazy-init: True
properties:
i p: 192.168.1.153
port: "3392"
pat h: / DOES- NOT- EXI ST

- object: get_custoner_id
parent: service
properties:
pat h: /soap/invoke/ get _customer _id

- object: get_custoner_profile
parent: service
properties:
pat h: /soap/invoke/get_custoner_profile

If you need to get an abstract object from a container, use the .get object's ignore abstract parameter,
otherwise springpython.container . AbstractObjectException will be raised. Observe the difference:

.. skip creating the context
No exception will be raised, even though 'service' is an abstract object
servi ce = ctx.get_object("service", ignore_abstract=True)

W1l show the object
print service

W1l raise Abstract Obj ect Exception
service = ctx.get_object("service")

2.3.3. Pyt honConfi g and @j ect - decorator-driven configuration

By defining a class that extends Pyt honConf i g and using the @j ect decorator, you can wire your application
using pure python code.

from springpyt hon. config inport PythonConfig
from springpyt hon. config inport Cbject
from spri ngpyt hon. context inport scope

cl ass Movi eBasedAppl i cati onCont ext (Pyt honConfi g):
def __init__(self):
super (Movi eBasedAppl i cati onContext, self)._ _init_ ()

@hj ect (scope. PROTOTYPE)
def MovieLister(self):
lister = MvielLister()
lister.finder = self.MvieFinder()
l'ister.description = self.SingletonString()
sel f. 1 ogger. debug("Description = %" %/l ister.description)
return lister

@j ect (scope. SI NGLETON)
def Movi eFi nder (sel f):
return Col onMovi eFi nder (fil enanme="support/nmovi esl.txt")

@j ect (1 azy_i ni t=True) # scope. SI NGLETON i s the defaul t
def SingletonString(self):

Spring Python 23

The 1oC container

return StringHol der (" There should only be one copy of this string")

def Not Exposed(sel f):
pass

As part of this example, the method Not Exposed is also shown. This indicates that using get _obj ect won't
fetch that method, since it isn't considered an object.

By using pure python, you don't have to deal with any XML. If you look closely, you will notice that the
container code below is only different in the line actually creating the container. Everything else is the same.

from springpyt hon. cont ext inport ApplicationContext

contai ner = ApplicationContext(Mvi eBasedApplicati onContext())
service = contai ner. get_obj ect (" MvieLister")

PythonConfig's support for abstract objects is different to that of XMLConfig or YamiConfig. With
PythonConfig, the children object do not automatically inherit nor override the parents' properties, they in fact
receive the values returned by their parents and it's up to them to decide, using Python code, whether to use or
to discard the values received.

A child object must have as many optional arguments as there are expected to be returned by its parent.

Observe that in the following example the child definitions must define an optional 'req’ argument; in runtime
they will be passed its value basing on what their parent object will return. Note also that request is of
PROTOTYPE scope, if it were a SINGLETON then both get customer id_request and
get_customer_profile request would receive the very same Reguest instance which, in other circumstances,
could be adesirable effect but not in the example.

stdlib
i mport uui d4

.. skip Spring Python inports

cl ass Request (object):
def __init__(self, nonce=None, user=None, password=None):
sel f. nonce = nonce
sel f.user = user
sel f. password = password

def _ str__ (self):
return "<id=% % % %>" % (hex(id(self)), self.nonce, self.user, self.password)

cl ass Test Abst ract Cont ext (Pyt honConfi g) :

@j ect (scope. PROTOTYPE, abstract=Tr ue)
def request(self):
return Request ()

@j ect (parent ="request")

def request_dev(self, reg=None):
req.user = "dev-user"
req. password = "dev-password"

return req

@j ect (parent ="request")

def request _test(self, reg=None):
req.user = "test-user"
reg. password = "test-password"

return req

@j ect (par ent ="r equest _dev")

(1.1.1.BUILD-20101109171232)

The 1oC container

def get_custoner_id_request(self, reg=None):
req. nonce = uui d4(). hex

return req

@j ect (parent ="request _test")
def get_customer_profile_request(self, reg=None):
req. nonce = uui d4(). hex

return req

Same as with the other configuration modes, if you need to get an abstract object from a container, use the
.get_object's ignore abstract parameter, otherwise springpython.container.AbstractObjectException will be
raised:

.. skip creating the context

No exception will be raised, even though 'request' is an abstract object
request = ctx.get_object("request"”, ignore_abstract=True)

WIIl show t he object
print request

WIIl raise Abstract Obj ect Exception
request = ctx.get_object("request")

2.3.4. PyCont ai ner Confi g - Spring Python's original XML format

PyCont ai ner Conf i g iS a class that scans object definitions stored in the format defined by PyContainer, which
was the original XML format used by Spring Python to define objects.

An important thing to note is that PyContainer used the term component, while Spring Python uses object. In
order to support this legacy format, component will show up in PyCont ai ner Conf i g-based configurations.

PyContainer'sformat is deprecated

-

e

PyContainer's format and the original parser was useful for getting this project started. However, it
has shown its age by not being easy to revise nor extend. So this format is being retired. This parser
is solely provided to help sustain existing Spring Python apps until they can migrate to either the
XML Config or the Y amlConfig format.

<?xm version="1.0" encodi ng="UTF-8"?>
<conponents xm ns="http://wwm. springframework. org/ spri ngpyt hon/ schema/ pycont ai ner - conponent s"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ spri ngpyt hon/ schema/ pycont ai ner - conponent s
htt p: //spri ngpyt hon. webf act i onal . conl schena/ cont ext/ spri ng- pyt hon- pycont ai ner - cont ext - 1. (

<conponent id="MovielLister" class="springpythontest.support.testSupportC asses. Mvi eLister" scope="prototype
<property name="finder" | ocal ="Mvi eFi nder"/>
<property nanme="description" |ocal ="SingletonString"/>
</ conponent >

<conponent id="MovieFi nder" class="springpythontest.support.testSupportC asses. Col onMvi eFi nder" scope="
<property name="fil enane">"support/novi esl.txt"</property>
</ conponent >

<conponent id="SingletonString" class="springpythontest.support.testSupportC asses. Stri ngHol der">
<property name="str">"There should only be one copy of this string"</property>
</ conponent >
</ conponent s>

The definitions stored in this file are fed in to a PyCont ai ner Confi g which scans it, and then sends the

(1.1.1.BUILD-20101109171232)

The 1oC container

meta-data to the ApplicationContext. Then, when the application code requests an object named
"MovieLister" from the container, the container utilizes an object factory to create an object and return it.

from springpython. context inport Applicati onContext
from springpyt hon. config inmport PyContai nerConfig

contai ner = ApplicationContext (PyCont ai ner Confi g("app-context.xm "))
servi ce = contai ner.get_object ("MvieLister")

2.3.5. SpringJavaConfig

The springJavaConfig is a class that scans object definitions stored in the format defined by the Spring
Framework's original java version. This makes it even easier to migrate parts of an existing Spring Java
application onto the Python platform.

Thisisabout configuring python objects NOT java objects

s

"8

It is important to point out that this has nothing to do with configuring java-backed beans from
Spring Python, or somehow injecting java-backed beans magically into a python object. This is
PURELY for configuring python-backed objects using a format that was originally designed for
pure java beans.

When idess like "converting java to python" are mentioned, it is meant that re-writing certain parts
of your app in python would require a similar 10C configuration, however, for the java and python
parts to integrate, you must utilize interoperable solutions like web service or other remoting
technologies.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schenma/ beans
http://ww. spri ngfranmework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd" >

<bean i d="Mbvi eLi ster" class="springpythontest. support.testSupportC asses. Mvi elLi ster" scope="prototype"
<property name="finder" ref="MvieFinder"/>
<property name="description"><ref bean="SingletonString"/></property>

</ bean>

<bean i d="Movi eFi nder" cl ass="springpythontest. support.testSupportC asses. Col onMvi eFi nder" scope="si ng
<property name="fil ename" ><val ue>support/ novi esl. t xt </ val ue></ property>
</ bean>

<bean i d="Si ngl etonString" class="springpythontest. support.testSupportC asses. StringHol der" >
<property name="str" val ue="There should only be one copy of this string"></property>
</ bean>
</ beans>

The definitions stored in thisfile are fed in to a Spri ngdavaConf i g which scans it, and then sends the meta-data
to the Appl i cat i onCont ext . Then, when the application code requests an object named "MovieLister" from the
container, the container utilizes an object factory to create an object and return it.

from springpyt hon. cont ext inport ApplicationContext
from springpython.config inport SpringJavaConfig

contai ner = ApplicationContext(SpringJavaConfig("app-context.xm"))
servi ce = container.get_object ("MvieLister")

Again, the only difference in your code is using Spri ngJavaConf i g instead of PyCont ai ner Confi g on oneline.
Everything isthe same, sinceitisall inside the Appl i cati onCont ext .

Spring Python 26

The 1oC container

What partsof Spring Java configuration ar e supported?

It is important to note that only spring-beans-2.5 has been tested at this point in time. It is possible
that older versions of the XSD spec may also work.

Spring Java's other names spaces, like tx and aop, probably DON'T work. They haven't been tested,
and thereis no special code that will utilize their feature set.

How much of Spring Java will be supported? That is an open question, best discussed on Spring
Python's community forum. Basically, this is meant to ease current Java developers into Spring
Python and/or provide a means to split up objects to support porting parts of your application into
Python. Thereisn't any current intention of providing full blown support.

2.3.6. Mixing Configuration Modes

Spring Python also supports providing object definitions from multiple sources, and allowing them to reference
each other. This section shows the same app context, but split between two different sources.

First, the XML file containing the key object that gets pulled:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<conponents xm ns="http://ww. springfranmework. or g/ spri ngpyt hon/ schema/ pycont ai ner - conponent s"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ spri ngpyt hon/ schema/ pycont ai ner - conponent s
http://springpython.webfactional .com schema/ cont ext/spri ng-pyt hon- pycont ai ner-cont ext- 1. C

<conponent id="MovielLister" class="springpythontest.support.testSupportC asses. Mvi elLister" scope="prototype
<property nanme="finder" |ocal ="Myvi eFi nder"/>
<property name="description" |ocal ="SingletonString"/>
</ conponent >

<conponent id="SingletonString" class="springpythontest.support.testSupportd asses. StringHol der">
<property name="str">"There should only be one copy of this string"</property>
</ conponent >
</ conponent s>

Notice that MovieLister is referencing MovieFinder, however that object is NOT defined in this location. The
definition is found elsewhere:

cl ass M xedAppl i cati onCont ext (Pyt honConfi g):
def __init__(self):
super (M xedAppl i cati onContext, self).__init_ ()

@j ect (scope. SI NGLETON)
def Movi eFi nder (sel f):
return Col onMbvi eFi nder (fil enane="support/novi esl.txt")

Object ref must match function name

-

"9
In this situation, an XML-based object is referencing python code by the name MovieFinder. It is

of paramount importance that the python function have the same name as the referenced string.

With some simple code, thisis all brought together when the container is created.

from springpython. context inport Applicati onContext
from springpyt hon. config inmport PyContainerConfig

contai ner = ApplicationContext([M xedApplicationContext(),
PyCont ai ner Confi g("m xed-app-context.xm ")])
novi eLi ster = contai ner. get_obj ect ("MovieLister")

Spring Python 27

http://forum.springframework.org/forumdisplay.php?f=45
http://forum.springframework.org/forumdisplay.php?f=45

The 1oC container

In this case, the XML-based object definition signals the container to look elsewhere for a copy of the
MovieFinder object, and it succeeds by finding it in MixedA pplicationContext.

It is possible to switch things around, but it requires a slight change.

cl ass M xedAppl i cati onCont ext 2(Pyt honConfi g):
def __init__(self):
super (M xedAppl i cati onContext2, self). init_ ()

@j ect (scope. PROTOTYPE)
def MovieLister(self):
lister = MvielLister()
lister.finder = sel f.app_context.get_object("MvieFinder") # <-- only line that is different
l'ister.description = self.SingletonString()
sel f. 1 ogger. debug("Description = %" %/l ister.description)
return lister

@j ect # scope. SI NGLETON i s the defaul t
def SingletonString(self):
return StringHol der (" There should only be one copy of this string")

<?xm version="1.0" encodi ng="UTF- 8" ?>
<conponents xm ns="http://ww. springfranmework. org/ spri ngpyt hon/ schema/ pycont ai ner - conponent s"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ spri ngpyt hon/ schema/ pycont ai ner - conponent s
http://springpython.webfactional .com scherma/ cont ext/spring-python-pycont ai ner-context-1.C

<conponent id="MovieFi nder" class="springpythontest.support.testSupportC asses. Col onMvi eFi nder" scope="
<property nanme="fil ename">"support/novi esl.txt"</property>
</ conponent >

</ conponent s>

An XML-based object definition can refer to a @bj ect by name, however, the python code has to change its
direct function call to a container lookup, otherwise it will fail.

PythonConfigis ApplicationContextAware

s

"8

In order to perform a get _obj ect , the configuration needs a handle on the surrounding container.
The base class Pyt honConf i g provides this, so that you can easily look for any object (local or not)
by using sel f . app_cont ext . get _obj ect (" name")

2.4. Object Factories

Spring Python offers two types of factories, ReflectiveObj ect Factory and Pyt honQbj ect Factory. These
classes should rarely be used directly by the developer. They are instead used by the different types of
configuration scanners.

2.5. Testable Code

One key value of using the 10C container is the how you can isolate parts of your code for better testing.
Imagine you had the following configuration:

from springpython.config inmport *
from springpython. context inmport *

(1.1.1.BUILD-20101109171232)

The 1oC container

cl ass Movi eBasedAppl i cati onCont ext (Pyt honConfi g):
def __init__(self):
super (Movi eBasedAppl i cati onContext, self).__init__ ()

@j ect (scope. PROTOTYPE)
def MovieLister(self):
lister = MvielLister()
lister.finder = sel f.MvieFinder()
l'ister.description = self.SingletonString()
sel f. 1 ogger. debug("Description = %" %/ ister.description)
return lister

@hj ect (scope. S| NGLETON)
def Movi eFi nder (self):
return Col onMovi eFi nder (fil enane="support/novi esl.txt")

@j ect # scope. SI NGLETON i s the defaul t
def SingletonString(self):
return StringHol der (" There should only be one copy of this string")

To inject atest double for Movi eFi nder, your test code would only have to extend the class and override the
Movi eFi nder method, and replace it with your stub or mock object. Now you have a nicely isolated instance of
Movi eLi ster.

cl ass MyTest abl eAppCont ext (Movi eBasedAppl i cati onCont ext) :
def __init__(self):
super (MyTest abl eAppContext, self). _init_ ()

@j ect
def Movi eFi nder (sel f):
return Movi eFi nder St ub()

2.6. Querying and modifying the ApplicationContext in runtime

ApplicationContext instances expose two attributes and an utility method which let you learn about their
current state and dynamically alter them in runtime.

e object_defs isadictionary of objects definitions, that is, the templates based upon which the container will
create appropriate objects, e.g. your singletons,

e objects isadictionary of already created objects stored for later use,

e get_objects_by_type(type, include_type=True) returns those ApplicationContext's objects which are
instances of a given type or of its subclasses. If include_type is False then only instances of the type's
subclasses will be returned.

Here's an example showing how you can easily query a context to find out what definitions and objects it holds.
The context itself is stored using PythonConfig in the sanpl e_cont ext . py module and dero. py contains the
code which examines the context.

#
sanpl e_cont ext. py
#

from springpyt hon. config inport Cbject
from springpyt hon. context inport scope
from springpyt hon. config inport PythonConfig

class Myd ass(object):
pass

(1.1.1.BUILD-20101109171232)

The 1oC container

cl ass MySubcl ass(M/C ass):
pass

cl ass Sanpl eCont ext (Pyt honConfi g) :
def __init_ (self):
super (Sanpl eContext, self).__init__()

@j ect
def http_port(self):
return 18000

@j ect
def https_port(self):
return sel f._get_https_port ()

def _get_https_port(self):
return self.http_port() + 443

@j ect
def ny_cl ass_object1(self):
return MyC ass()

@j ect
def ny_cl ass_object2(self):
return Myd ass()

@j ect
def ny_subcl ass_obj ect1(sel f):
return MySubcl ass()

@j ect
def ny_subcl ass_obj ect 2(sel f):
return MySubcl ass()

@j ect
def ny_subcl ass_obj ect 3(sel f):
return MySubcl ass()

#
denp. py
#

Spring Python
from springpython. context inport Applicati onContext

Qur sanpl e code
from sanpl e_cont ext inport Sanpl eContext, M/C ass, M/Subcl ass

Create the context
ctx = ApplicationContext (Sanpl eContext ())

Do we have an 'http_port' object?
print "http_port" in ctx.objects

Does the context have a definition of an 'ftp_port' object?
print "ftp_port" in ctx.object_defs

How many objects are there? Cbserve the result is 7, that's because one of
the nethods - _get_https_port - is not nanaged by the contai ner.
print |en(ctx.objects)

List the nanes of all objects defined
print ctx.object_defs. keys()

Returns all instances of MyClass and of its subcl asses.
print ctx.get_objects_by type(MC ass)

Returns all instances of MyCl ass' subcl asses only.
print ctx.get_objects_by_ type(M/C ass, Fal se)

Returns all integer objects.
print ctx.get_objects_by type(int)

The .object_defs dictionary stores instances of spri ngpyt hon. confi g. Obj ect Def class, these are the objects

Spring Python 30

The 1oC container

you need to inject into the container to later successfully access them as if they were added prior to the
application's start. An bj ect Def allows one to specify the very same set of parameters an @bj ect decorator
does. The next examples shows how to insert two definitions into a context, one will be a prototype - a new
instance of Foo will be created on each request, the second one will be a singleton - only one instance of Bar
will ever be created and stored in a cache of singletons. This time the example employs the Python's standard
library | oggi ng module to better show in the DEBUG mode what is going on under the hood.

#
sanpl e_cont ext 2. py
#

Spring Python
from springpyt hon. config inport PythonConfig

cl ass Sanpl eCont ext 2(Pyt honConfi g):
def __init__ (self):

super (Sanpl eContext2, self).__init__ ()
#
denp2. py
#
stdlib

i nport | ogging

Spring Python

from springpyt hon. config inport Cbject, ObjectDef

from springpython. context inport Applicati onContext

from springpython. factory inport PythonCbjectFactory

from springpyt hon. cont ext. scope i nport SINGLETON, PROTOTYPE

Qur sanpl e code.
from sanpl e_context2 inport Sanpl eCont ext 2

Configure | ogging.
log_format = "% nsecs)d - %I evel nane)s - % nane)s - % nessage)s"”
| oggi ng. basi cConfi g(| evel =l oggi ng. DEBUG, for mat =| og_f or mat)

cl ass Foo(object):

def run(self):
return "Foo!"

cl ass Bar (object):
def run(self):
return "Bar!"

Create the context - part 1. in the |ogs.
ctx = ApplicationContext (Sanpl eCont ext 2())

Definitions of objects that will be dynamically injected into container.
@j ect (PROTOTYPE)
def foo():
""" Returns a new instance of Foo on each call.
return Foo()
@j ect # SINGLETON is the default.
def bar():
""" Returns a singleton Bar every tine accessed.

return Bar()

A reference to the function wapping the actual 'foo' function.
foo_wapper = foo.func_global s["_call_"]

Create an object definition, note that we're telling to return

f oo_obj ect _def = Obj ect Def (i d="foo0", factory=PythonCbjectFactory(foo, foo_wrapper), scope=PROTOTYPE,

A reference to the function wapping the actual 'bar' function.

bar _wrapper = foo.func_globals[" _call_"]

bar _obj ect _def = Obj ect Def (i d="fo00", factory=PythonObjectFactory(bar, bar_w apper), scope=SI NGLETON,
Spring Python 31

lazy_init=f

lazy_init=k

The 1oC container

ct x. obj ect _defs["fo00"]
ct x. obj ect _def s["bar"]

Access "foo" -
for x in range(3):
foo_i nstance =

Access "bar" -
for x in range(3):
bar _i nstance =

part 2.

part 3.

f oo_obj ect _def
bar _obj ect _def

in the |ogs.

ct x. get _obj ect ("fo0")

in the |ogs.

ct x. get _obj ect ("bar")

Here's how it shows in the logs. For clarity, the log has been divided into three parts. Part 1. reads the object
definitions from SampleContext2, as we see, nothing has been read from it as it's still been empty at this point.
After adding definitions to the .object_defs dictionary, we're now at parts 2. and 3. - in 2. the 'foo’ object, a
prototype one, is being created three times, as expected. In part 3. the singleton 'bar' object is created and stored
in asingleton cache once only even though we're accessing it three timesin our code.

Part 1.

100 - DEBUG - springpython. config. PythonConfig -

100 - DEBUG - springpython. config. PythonConfig - Parsing <sanpl e_cont ext 2. Sanpl eCont ext 2 obj ect at 0x17e70d0>
101 - DEBUG - springpython. config. PythonConfig -

101 - DEBUG - springpython. cont ai ner. Obj ect Cont ai ner - === Done readi ng object definitions. ===

Part 2.

102 - DEBUG - springpython. cont ext. ApplicationContext - Did NOT find object 'foo' in the singleton storage.

102 - DEBUG - springpython. context. ApplicationContext - Creating an instance of id=foo props=[] scope=scope. PROI
102 - DEBUG - springpython.factory. Pythonbj ect Factory - Creating an instance of foo

102 - DEBUG - springpython. config. obj ect Prototype<function foo at 0x7f6d15db0a28> - ()scope. PROTOTYPE - This IS
102 - DEBUG - springpython. confi g. obj ect Prot ot ype<function foo at O0x7f6d15db0a28> - ()scope. PROTOTYPE - Found <_
102 - DEBUG - springpyt hon. cont ext. ApplicationContext - Did NOT find object 'foo' in the singleton storage.

102 - DEBUG - springpython. context. ApplicationContext - Creating an instance of id=foo props=[] scope=scope. PROI
102 - DEBUG - springpython. factory. Pyt honObj ect Factory - Creating an instance of foo

103 - DEBUG - springpython. config. obj ect Prototype<function foo at 0x7f6d15db0a28> - ()scope. PROTOTYPE - This IS
103 - DEBUG - springpython. config. obj ect Prototype<function foo at 0x7f6d15db0a28> - ()scope. PROTOTYPE - Found <_
103 - DEBUG - springpython. context. ApplicationContext - Did NOT find object 'foo' in the singleton storage.

103 - DEBUG - springpython. context. ApplicationContext - Creating an instance of id=foo props=[] scope=scope. PROI
103 - DEBUG - springpython.factory. PythonObj ect Factory - Creating an instance of foo

103 - DEBUG - springpython. config. obj ect Prototype<function foo at 0x7f6d15db0a28> - ()scope. PROTOTYPE - This IS
103 - DEBUG - springpython. config. obj ect Prototype<function foo at 0x7f6d15db0a28> - ()scope. PROTOTYPE - Found <_
Part 3.

103 - DEBUG - springpython. context. ApplicationContext - Did NOT find object 'bar' in the singleton storage.

103 - DEBUG - springpyt hon. cont ext. ApplicationContext - Creating an instance of id=foo props=[] scope=scope. Sl N
103 - DEBUG - springpython. factory. Pyt honCbj ect Factory - Creating an instance of bar

104 - DEBUG - springpython. confi g. obj ect Si ngl et on<functi on bar at 0x17e5aa0> - ()scope.SINGLETON - This IS the t
104 - DEBUG - springpython. config.objectSingleton<function bar at 0x17e5aa0> - ()scope. SINGLETON - Found <__mair
104 - DEBUG - springpython. context. ApplicationContext - Stored object 'bar' in container's singleton storage

Please note that what has been shown above applies to runtime only, adding object definitions to the container
doesn't mean the changes will be in any way serialized to the file system, they are transient and will be lost
when the application will be shutting down. Another thing to keep in mind is that you'll be modifying a raw
Python dictionary and if your application is multi-threaded, you'll have to serialize the access from concurrent

threads yourself.

(1.1.1.BUILD-20101109171232)

Chapter 3. Aspect Oriented Programming

Aspect oriented programming (AOP) is a horizontal programming paradigm, where some type of behavior is
applied to several classes that don't share the same vertical, object-oriented inheritance. In AOP, programmers
implement these cross cutting concerns by writing an aspect then applying it conditionally based on a join
point. Thisisreferred to as applying advice. This section shows how to use the AOP module of Spring Python.

3.1. External dependencies

Spring Python's AOP itself doesn't require any specia external libraries to work however the 10C configuration
format of your choice, unless you use PythonConfig, will likely need some. Refer to the |oC documentation for
more details.

3.2. Interceptors

Spring Python implements AOP advice using proxies and method interceptors. NOTE: Interceptors only apply
to method calls. Any request for attributes are passed directly to the target without AOP intervention.

Here is a sample service. Our goal is to wrap the results with "wrapped" tags, without modifying the service's
code.

cl ass Sanpl eServi ce
def method(self, data):
return "You sent me '%'" %data
def doSonet hi ng(self):
return "Ckay, |'m doing sonething"

If weinstantiate and call this service directly, the results are straightforward.

servi ce = Sanpl eService()
print service. met hod("sonethi ng")

"You sent nme 'sonething' "

To configure the same thing using the |oC container, put the following text into a file named app- cont ext . xm .

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranmework. org/springpyt hon/ schema/ obj ects/ 1. 1"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://ww. spri ngframewor k. or g/ spri ngpyt hon/ schenma/ obj ects/ 1.1
http://springpython.webfactional .conm schema/ cont ext/spring-python-context-1.1. xsd">

<obj ect id="service" class="Sanpl eService"/>

</ obj ect s>

To instantiate the |oC container, use the following code.

from springpython. context inport Applicati onContext
from springpyt hon. config i nport XM.Config

contai ner = ApplicationContext(XMConfig("app-context.xm"))
servi ce = container.get_object("service")

Spring Python 33

Aspect Oriented Programming

You can use either mechanism to define an instance of your service. Now, let's write an interceptor that will
catch any results, and wrap them with <Wrapped> tags.

from springpyt hon. aop i nport *
cl ass W appi ngl nt er cept or (Met hodl nt erceptor):
def invoke(self, invocation):
results = "<Wapped>" + invocation.proceed() + "</Wapped>"
return results

i nvoke(sel f, invocation) isa dispatching method defined abstractly in the Met hodl nt er cept or base class.
i nvocat i on holds the target method name, any input arguments, and also the callable target function. In this
case, we aren't interested in the method name or the arguments. So we call the actual function using
i nvocat i on. proceed(), and than catch its results. Then we can manipulate these results, and return them back
tothe caller.

In order to apply this advice to a service, a stand-in proxy must be created and given to the client. One way to
create this is by creating a ProxyFact ory. The factory is used to identify the target service that is being
intercepted. It is used to create the dynamic proxy object to give back to the client.

Y ou can use the Spring Python APIs to directly create this proxied service.

from springpyt hon. aop i nport *

factory = ProxyFactory()

factory.target = Sanpl eService()
factory.interceptors. append(W appi nglnterceptor())
service = factory. get Proxy()

Or, you can insert this definition into your app- cont ext . xni file.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springframework. org/ spri ngpyt hon/ schema/ obj ects/ 1. 1"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ spri ngpyt hon/ schema/ obj ects/ 1.1
http://springpyt hon. webf acti onal . conl schenma/ cont ext/ spri ng- pyt hon-context-1. 1. xsd">

<obj ect id="target Service" class="Sanpl eService"/>

<obj ect id="serviceFactory" class="springpython. aop. ProxyFactory">
<property name="target" ref="targetService"/>
<property nanme="interceptors">
<obj ect cl ass="W appi ngl nterceptor"/>
</ property>
</ obj ect >

</ obj ect s>

If you notice, the original Spring Python "service" object has been renamed as "targetService”, and there is,
instead, another object called "serviceFactory” which is a Spring AOP ProxyFactory. It points to the target
service and also has an interceptor plugged in. In this case, the interceptor is defined as an inner object, not
having a name of its own, indicating it is hot meant to be referenced outside the 10C container. When you get a
hold of this, you can request a proxy.

from springpyt hon. cont ext inport ApplicationContext
from springpyt hon. config i nport XM.Config

contai ner = ApplicationCont ext (XM.Confi g("app-context.xm "))
servi ceFactory = container.get_object("serviceFactory")

Spring Python 34

Aspect Oriented Programming

servi ce = serviceFactory. get Proxy()

Now, the client can call service, and al function calls will be routed to Sanpl eSer vi ce with one simple detour
through w appi ngl nt er cept or.

print service. nmethod("sonethi ng")

"<W apped>You sent ne 'sonething' </ Wapped>"

Notice how | didn't have to edit the original service at all? | didn't even have to introduce Spring Python into
that module. Thanks to the power of Python's dynamic nature, Spring Python AOP gives you the power to wrap
your own source code as well as other 3rd party modules.

3.3. Proxy Factory Objects

The earlier usage of a ProxyFact ory is useful, but often times we only need the factory to create one proxy.
Thereisashortcut called ProxyFact or yQbj ect .

from springpyt hon. aop i nmport *

servi ce = ProxyFact oryObj ect ()

servi ce.target = Sanpl eService()
service.interceptors = [Wappi nglnterceptor()]
print service.nmethod(" proxy factory object")

"You sent ne a 'proxy factory object'"

To configure the same thing into your app- cont ext . xni file, it looks like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranmework. org/springpyt hon/ schema/ obj ects/ 1. 1"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngf ranmewor k. or g/ spri ngpyt hon/ schema/ obj ects/ 1.1
http://springpython. webfactional .conm schenma/ cont ext/spri ng-python-context-1.1. xsd">

<obj ect id="target Service" class="Sanpl eService"/>

<obj ect id="service" class="springpython. aop. ProxyFact oryQhj ect">
<property name="target" ref="target Service"/>
<property nanme="interceptors">
<obj ect class="Wappi nglnterceptor"/>
</ property>
</ obj ect >

</ obj ect s>

In this case, the ProxyFact or yQbj ect acts as both a proxy and a factory. As a proxy, it behaves just like the
target service would, and it also provides the ability to wrap the service with aspects. It saved us a step of
coding, but more importantly, the Pr oxyFact or yObj ect took on the persona of being our service right from the
beginning.

To be more pythonic, Spring Python also allows you to initialize everything at once.

from springpyt hon. aop i nmport *
servi ce = ProxyFactoryObject(target = Sanpl eService(), interceptors = [Wappi nglnterceptor()])

Spring Python 35

Aspect Oriented Programming

3.4. Pointcuts

Sometimes we only want to apply advice to certain methods. This requires definition of ajoin point. Join points
are composed of rulesreferred to as point cuts.

In this case, we want to only apply our W appi ngl nt er cept or t0 methods that start with "do".

from springpython. aop inport *

poi nt cut Advi sor = RegexpMet hodPoi nt cut Advi sor (advice = [Wappi nglnterceptor()], patterns = [".*do.*"])
servi ce = ProxyFactoryObject(target = Sanpl eService(), interceptors = pointcutAdvisor)

print service. met hod("nothing changed here")

"You sent ne 'nothing changed here'"

print service. doSonet hing()

"<W apped>Ckay, |'m doi ng sonet hi ng</ W apped"

The power of RegexpM ethodPointAdvisor

RegexpMet hodPoi nt Advi sor is a powerful object in Spring Python that acts as pointcut, a join
point, and a method interceptor. It fetches the fullpath of the target's module, class, and method
name, and then checks to see if it matches any of the patterns in the patterns list using Python's
regular expression module.

By plugging this into a ProxyFact or yObj ect as an interceptor, it evaluates whether to route method calls
through the advice, or directly to the target service.

3.5. Interceptor Chain

You may have noticed by now that the w appi ngl nt er cept or is being specified inside a Python list. That is
because you can apply more than one piece of advice. When an interceptor callsi nvocati on. proceed(), it is
actually calling the next interceptor in the chain, until it gets to the end. Then it calls the actual target service.
When the target method returns back, everything backtracks back out the set of nested interceptors.

Spring Python is coded to intelligently detect if you are assigning a single interceptor to the interceptors
property, or alist. A single interceptor gets converted into alist of one. So, you can do either of the following:

servi ce = ProxyFact oryObj ect ()
service.interceptors = Wappi ngl nterceptor()

or

servi ce = ProxyFact oryObj ect ()
factory.interceptors = [Wappi ngl nterceptor()]

It produces the same thing.

3.6. Coding AOP with Pure Python

There is a long history of Spring being based on XML. However, Spring Python offers an easy to use
aternative: a pure python decorator-based PythonConfig. Imagine you had set up a simple context like this:

(1.1.1.BUILD-20101109171232)

Aspect Oriented Programming

from springpython.config inmport *
from springpyt hon. cont ext inport *

cl ass Movi eBasedAppl i cati onCont ext (Pyt honConfi g):
def __init_ (self):
super (Movi eBasedAppl i cati onContext, self).__init__ ()

@j ect (scope. PROTOTYPE)
def MovieLister(self):
lister = MovielLister()
lister.finder = self.MvieFinder()
l'ister.description = self.SingletonString()
sel f. | ogger. debug("Description = %" %/|ister.description)
return lister

@j ect (scope. SI NGLETON)
def Movi eFi nder (sel f):
return Col onMovi eFi nder (fil enane="support/novi esl.txt")

@j ect # scope. SINGLETON i s the defaul t
def SingletonString(self):
return StringHol der (" There should only be one copy of this string")

From an AOP perspective, it is easy to intercept Movi eFi nder and wrap it with some advice. Because you have
already exposed it as an injection point with this pure-python 10C container, you just need to make this change:

from springpython. aop inmport *
from springpyt hon. config inmport *
from springpython. context inmport *

cl ass Movi eBasedAppl i cati onCont ext (Pyt honConfi g):
def __init__(self):
super (Movi eBasedAppl i cati onContext, self). _init_ ()

@j ect (scope. PROTOTYPE)
def MovieLister(self):
l'ister = MvielLister()
lister.finder = self.MvieFinder()
l'ister.description = self.SingletonString()
sel f. 1 ogger. debug("Description = %" %/l ister.description)
return lister

By renaming the original service to this...
def targetMvieFinder(self):
return Col onMovi eFi nder (fil enanme="support/nmovi esl.txt")

#...we can substitute a proxy that will wap it with an interceptor
@bj ect (scope. SI NGLETON)
def Movi eFi nder (sel f):
return ProxyFactoryObj ect (target=sel f.targetMvieFinder(),
i nt erceptors=Myl nterceptor())

@j ect # scope. SINGLETON i s the defaul t
def SingletonString(self):
return StringHol der (" There should only be one copy of this string")

cl ass Myl nterceptor (Met hodl nterceptor):
def invoke(self, invocation):
results = "<Wapped>" + invocation.proceed() + "</Wapped>"
return results

Now, everything that was referring to the original Col onMbvi eFi nder instance, is instead pointing to a
wrapping interceptor. The caller and callee involved don't know anything about it, keeping your code isolated
and clean.

Shouldn't you decouple theinterceptor from the |oC configuration?

s

"8

It is usualy good practice to split up configuration from actual business code. These two were put

(1.1.1.BUILD-20101109171232)

Aspect Oriented Programming

together in the same file for demonstration purposes.

Spring Python

38

Chapter 4. Data Access

4.1. DatabaseTemplate

Writing SQL-based programs has a familiar pattern that must be repeated over and over. The
DatabaseTemplate resolves that by handling the plumbing of these operations while leaving you in control of
the part that matters the most, the SQL.

4.1.1. External dependencies

DatabaseTemplate requires the use of external libraries for connecting to SQL databases. Depending on which
SQL connection factory you're about to use, you need to install following dependencies:

e springpython. dat abase. fact ory. MySQLConnecti onFactory - needs MySQLdb for connecting to
MySQL,

e springpython. dat abase. f act ory. PgdbConnecti onFactory - needs PyGreSQL for connecting to
PostgreSQL,

e springpython. dat abase. factory. Sql i t e3ConnectionFactory - heeds PySQLite for connecting to
SQLite 3, note that PySQLite is part of Python 2.5 and later so you need to install it separately only if
you're using Python 2.4,

e springpyt hon. dat abase. f act ory. cxor aConnect i onFact ory - heeds cx_Oracle for connecting to Oracle,

e springpython. dat abase. f act ory. SQLSer ver Connect i onFact ory - needs PyODBC for connecting to SQL
Server.

4.1.2. Traditional Database Query

If you have written a database SELECT statement following Python's DB-API 2.0, it would something like this
(MySQL example):

conn = MySQ.. connection(usernanme="ne", password'secret", hostnanme="|ocal host", db="springpython")
cursor = conn. cursor()
results =[]
try:
cursor.execute("select title, air_date, episode_nunber, witer fromtv_shows where name = %", ('"Mnty Pythc
for rowin cursor.fetchall():
tvShow = TvShow(title=row O], airDate=rowf 1], episodeNunber=row 2], witer=row 3])
resul ts. append(tvShow)
finally:
try:
cursor. cl ose()
except Exception:
pass
conn. cl ose()
return results

I know, you don't have to open and close a connection for every query, but let's look past that part. In every
definition of a SQL query, you must create a new cursor, execute against the cursor, loop through the results,
and most importantly (and easy to forget) close the cursor. Of course you will wrap thisin a method instead of
plugging in this code where ever you need the information. But every time you need another query, you have to

Spring Python 39

http://sourceforge.net/projects/mysql-python/
http://www.pygresql.org/
http://pypi.python.org/pypi/pysqlite/
http://pypi.python.org/pypi/cx_Oracle
http://pypi.python.org/pypi/pyodbc
http://www.python.org/dev/peps/pep-0249/

Data Access

repeat this dull pattern over and over again. The only thing different is the actual SQL code you must write and
converting it to alist of objects.

I know there are many object relational mappers (ORMs) out there, but sometimes you need something simple
and sweet. That iswhere Dat abaseTenpl at e COMESin.

4.1.3. Database Template

The same query above can be written using a Dat abaseTenpl at e. The only thing you must provide is the SQL
and a RowMapper to process one row of data. The template does the rest.

""" The follow ng part only has to be done once."""

from spri ngpyt hon. dat abase. core inport *

from springpyt hon. dat abase. factory inport *

connectionFactory = MySQ.Connecti onFact ory(usernane="ne", password="secret", hostnanme="|ocal host", db="springpyt
dt = Dat abaseTenpl at e(connecti onFact ory)

cl ass TvShowMapper (Rowvapper) :
"""This will handle one row of database. It can be reused for many queries if they
are returning the sane col ums. """
def map_row(sel f, row, netadata=None):
return TvShow(title=row 0], airDate=rowf 1], episodeNunber=row 2], witer=row 3])

results = dt.query("select title, air_date, episode_nunber, witer fromtv_shows where nane = %", \
("Monty Python",), TvShowVapper())

Well, no sign of a cursor anywhere. If you didn't have to worry about opening it, you don't have to worry about
closing it. | know this is about the same amount of code as the traditional example. Where DatabaseTemplate
starts to shine is when you want to write ten different TV_SHOW queries.

results = dt.query("select title, air_date, episode_nunber, witer fromtv_shows where epi sode_nunber < %", \
(100,), TvShowvapper())

results = dt.query("select title, air_date, episode_nunber, witer fromtv_shows where upper(title) |ike %", \
("YCHEESE% ,), TvShowvapper ())

results = dt.query("select title, air_date, episode_nunber, witer fromtv_shows where witer in ('Ceese', 'Ge
r owhandl er =TvShowapper ())

Y ou don't have to reimplement the rowhandler. For these queries, you can focus on the SQL you want to write,
not the mind-numbing job of managing database cursors.

4.1.4. Mapping rows into objects using convention over configuration

A powerful feature provided by databases is the ability to look up column names. Spring Python harnesses this
by providing an out-of-the-box row mapper that will automatically try matching a query column name to an
class attribute name. This is known as convention over configuration because it relieves you of the need to code
the RowMapper provided you follow the convention of naming the attributes of your POPO after query columns.
The only requirement is that class have a default constructor that doesn't require any arguments.

results = dt.query("select title, air_date, episode_nunber, witer fromtv_shows where epi sode_nunber < %", \
(100,), Sinpl eRowivapper (TvShow))

results = dt.query("select title, air_date, episode_nunber, witer fromtv_shows where upper(title) |like %", \
(" %CHEESEY ,), Si npl eRowivapper (TvShow))

results = dt.query("select title, air_date, episode_nunber, witer fromtv_shows where witer in ('Cleese', 'Ge
r owhandl er =Si npl eRowapper (TvShow))

Spring Python 40

Data Access

Convention is based on query, not tables

Query metadata is based on the column names as defined in the query, NOT what is in the table.
This is important when you use expressions like COUNT(*). These columns should be aliased to
fit the attribute name.

4.1.5. Mapping rows into dictionaries

A convenient aternative to mapping database rows into python aobjects, it to map them into dictionaries. Spring
Python offers bi cti onar yRowMapper as an out-of-the-box way to query the database, and return a list of
dictionary entries, based on the column names of the queries. Using this mapper, you don't have to code a
TvRowvapper as shown earlier.

results = dt.query("select title, air_date, episode_nunmber, witer fromtv_shows where epi sode_nunber < %",

(100,), DictionaryRowvapper())

results = dt.query("select title, air_date, episode_nunber, witer fromtv_shows where upper(title) |ike %",

("9%CHEESE% ,), Dicti onar yRowVapper ())

results = dt.query("select title, air_date, episode_nunber, witer fromtv_shows where witer in ('C eese',

rowhandl er =Di ct i onar yRowivapper ())

Dictionary keys are based on query not original tables

Query metadata is based on the column names as defined in the query, NOT what is in the table.
This is important when you use expressions like COUNT(*). These columns should be aliased in
order to generate a useful key in the dictionary.

4.1.6. What is a Connection Factory?

You may have noticed | didn't make a standard connection in the example above. That is because to support
Dependency Injection, | need to setup my credentials in an object before making the actual connection.
MySQLConnect i onFact ory holds credentials specific to the MySQL DB-API, but contains a common function
to actualy create the connection. | don't have to use it myself. Dat abaseTenpl at e will use it when necessary to
create a connection, and then proceed to reuse the connection for subsequent database calls.

That way, | don't manage database connections and cursors directly, but instead let Spring Python do the heavy
lifting for me.

4.1.7. Creating/altering tables, databases, and other DDL

Data Definition Language includes the database statements that involve creating and altering tables, and so
forth. DB-API defines an execute function for this. Dat abaseTenpl at e Offers the same. Using the execute()
function will pass through your request to a cursor, along with the extra exception handler and cursor
management.

4.1.8. SQL Injection Attacks

You may have noticed in the first three example queries | wrote with the Dat abaseTenpl at e, | embedded a
"00s" in the SQL statement. These are called binding variables, and they require a tuple argument be included
after the SQL statement. Do NOT include quotes around these variables. The database connection will handle
that. This style of SQL programming is highly recommended to avoid SQL injection attacks.

For users who are familiar with Java database APIs, the binding variables are cited using "?" instead of "%s".

Spring Python 41

\

\

'Gre

http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/SQL_injection

Data Access

To make both parties happy and help pave the way for existing Java programmers to use this framework, | have
included support for both. You can mix-and-match these two binding variable types as you wish, and things
will still work.

4.1.9. Have you used Spring Framework's JdbcTemplate?

If you are a user of Java's Spring framework and have used the JdbcTemplate, then you will find this template
has afamiliar feel.

Table4.1. JdbcTenpl at e operations also found in Dat abaseTenpl at e

execut e(sql _statenment, args = None) execute any statement, return number of rows
affected

query(sgl _query, args = None, rowhandler = query, returnlist converted by rowhandler
None)

query for_list(sql_query, args = None) guery, return list of DB-API tuples (or a dictionary if
you use sglWrappy)

query_for_int(sql _query, args = None) guery for a single column of a single row, and return
an integer (throws exception otherwise)

query_for_long(sql _query, args = None) query for a single column of a single row, and return
along (throws exception otherwise)

query_for_object(sqgl _query, args = None, query for asinglecolumn of asinglerow, and return
requi red_type = None) the object with possibly no checking
update(sql _statement, args = None) update the database, return number of rows updated

Inserts are implemented through the execute() function, just like in JdbcTemplate.

4.1.10. Notes on using SQLServerConnectionFactory

SQ.Ser ver Connect i onFact ory uses ODBC for connecting to SQL Server instances and it expects you to pass
the ODBC parameters when creating connection factories or when injecting factory settings through 10C. The
ODBC parameters you provide are directly translated into an ODBC connection string.

That means that you use the exact ODBC parameters your ODBC provider understands and not the standard
username, password, hostname and db parameters as with other connection factories.

A simple example will demonstrate this. Here's how you would create a Dat abaseTenpl at e on Windows for
running queries against an SQL Server instance.

from springpyt hon. dat abase. core i nport DatabaseTenpl ate
from spri ngpyt hon. dat abase. factory i nport SQLServer Connecti onFactory

driver = "{SQ Server}"
server = "l ocal host"

dat abase = "springpyt hon"
uid = "springpython"

pwd " cdZS* RQRBdc9a"

factory = SQ.Server Connecti onFact ory(DRl VER=dri ver, SERVER=server, DATABASE=database, Ul D=uid, PW>=pwd)
dt = Dat abaseTenpl at e(factory)

(1.1.1.BUILD-20101109171232)

http://www.springframework.org
http://static.springframework.org/spring/docs/1.2.x/api/org/springframework/jdbc/core/JdbcTemplate.html
http://sqlwrappy.sourceforge.net

Data Access

SQL Server ConnectionFactory isdictionary driven

Due to SQLSer ver Connect i onFact or y's pass-through nature, it is coded to accept a dictionary. For
pure python, this means you MUST name the arguments and NOT rely on argument position.

For an XML-based application context, you must populate the argument odbc_i nfo with a
dictionary. See the following example.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranmework. org/springpyt hon/ schema/ obj ects/ 1. 1"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww:. spri ngframewor k. or g/ spri ngpyt hon/ schena/ obj ects/ 1.1
http://springpyt hon. webfacti onal . coml schema/ cont ext/ spri ng- pyt hon-cont ext-1. 1. xsd">

<obj ect id="connection_factory" class="springpython. database. factory. SQLServer Connecti onFact ory">
<property name="odbc_i nfo">

<di ct >
<entry>
<key><val ue>DRI VER</ val ue></ key>
<val ue>{ SQL Server}</val ue>
</entry>
<entry>
<key><val ue>SERVER</ val ue></ key>
<val ue>| ocal host </ val ue>
</entry>
<entry>
<key><val ue>DATABASE</ val ue></ key>
<val ue>spri ngpyt hon</ val ue>
</entry>
<entry>
<key><val ue>Ul D</ val ue></ key>
<val ue>spri ngpyt hon</ val ue>
</entry>
<entry>
<key><val ue>PWD</ val ue></ key>
<val ue>cdZS* RQRBdc9a</ val ue>
</entry>
</ dict>
</ property>
</ obj ect >

</ obj ect s>

(1.1.1.BUILD-20101109171232)

Chapter 5. Transaction Management

When writing a program with database operations, you may need to use transactions. Y our code can get ugly,
and it often becomes hard to read the business logic due to starting, committing, or rolling back for various
reasons. Another risk is that some of the transaction management code you write will have al the necessary
steps, while you may forget some important steps in others. Spring Python offers a key level of abstraction that
can remove that burden and allow you to focus on the business logic.

5.1. External dependencies

If you choose to use DatabaseTemplate along with Spring Python's support for transaction management you
need to install an appropriate SQL database driver module. Depending on the 10C configuration format you're
going to use you may also need to install one of its documented dependencies.

5.2. Solutions requiring transactions

For simple transactions, you can embed them programmatically.

Seen anything like this before?

def transfer(transfer_anount, source_account_num target_account_nunj:

conn

= MySQ.db. connecti on("springpython", "springpython", "local host", "springpython")

cursor = conn. cursor()

cursor. execut e("updat e ACCOUNT set BALANCE
cursor. execut e("updat e ACCOUNT set BALANCE

BALANCE - % where ACCOUNT_NUM = %", (transfer_anount, source_
BALANCE + % where ACCOUNT_NUM = %", (transfer_anount, target_

cursor. cl ose()

This business method defines a transfer between bank accounts. Notice any issues here? What happens if the
target account doesn't exist? What about transferring a negative balance? What if the transfer amount exceeded
the source account's balance? All these things require checks, and if something iswrong the entire transfer must
be aborted, or you find the first bank account leaking money.

To wrap this function transactionally, based on DB-2.0 API specifications, we'll add some checks. | have also
completed some refactorings and utilized the Dat abaseTenpl at e to clean up my database code.

from springpyt hon. dat abase i nport *
from springpyt hon. dat abase. core inmport *

i mport types
cl ass Bank:
def __init__(self):
self.factory = factory. MySQLConnecti onFact ory("spri ngpython", "springpython", "local host", "springpythor

def

def

def

def

sel f.dt = DatabaseTenpl ate(sel f.factory)

bal ance(sel f, account_nunj:
results = self.dt.query_for_list("select BALANCE from ACCOUNT where ACCOUNT_NUM = %", (account_num))
if len(results) !'= 1:

rai se I nvalidBankAccount ("There were % accounts that matched %." % (|l en(results), account_nunj)
return results[0][0]

checkFor Suf fi ci ent Funds(sel f, source_bal ance, anount):
i f source_bal ance < anount:
rai se InsufficientFunds("Account % did not have enough funds to transfer %" % (source_account_num

wi t hdraw(sel f, anpunt, source_account _nunj:
sel f. checkFor Suf fi ci ent Funds(sel f. bal ance(source_account _nunj), anount)
sel f. dt.execute("update ACCOUNT set BALANCE = BALANCE - % where ACCOUNT_NUM = %", (anopunt, source_accc

deposit(sel f, anmpunt, target_account_num:

Spring Python 44

Transaction Management

Inplicitly testing for valid account nunber
sel f. bal ance(target_account _num
sel f. dt. execut e("update ACCOUNT set BALANCE = BALANCE + % where ACCOUNT_NUM = %", (anount, target_accc

def transfer(self, transfer_anount, source_account_num target_account_nunj:
try:
cursor = self.factory. getConnection().cursor() # DB-2.0 APl spec says that creating a cursor inplici
sel f.w thdraw(transfer_anount, source_account_num
sel f. deposi t (transfer_anmount, target_account_nun
sel f.factory. get Connection().conm t()
cursor.close() # There wasn't anything in this cursor, but it is good to close an opened cursor
except | nvalidBankAccount, |nsufficientFunds:
sel f.factory. get Connection().roll back()

» This has some extra checks put in to protect from overdrafts and invalid accounts.
* Dat abaseTenpl at e removes our need to open and close cursors.

» Unfortunately, we still have to tangle with them as well as the connection in order to handle transactions.

5.3. Transacti onTenpl at e

We still have to deal with exceptions. What if another part of the code raised another exception that we didn't
trap? It might escape our try-except block of code, and then our data could lose integrity. If we plug in the
Transact i onTenpl at e, we can really simplify this and also guarantee management of any exceptions.

The following code block shows swapping out manual transaction for Tr ansact i onTenpl at e.

from springpyt hon. dat abase. transacti on i nmport *

cl ass Bank:
def __init__(self):
self.factory = factory. MyYSQLConnecti onFact ory("spri ngpython", "springpython", "local host", "springpythor
sel f.dt = DatabaseTenpl ate(sel f.factory)
sel f.txManager = Connecti onFact oryTransacti onManager (sel f.factory)
sel f.txTenpl ate = Transacti onTenpl at e(sel f.txManager)

def transfer(self, transfer_amount, source_account_num target_account_numn):
class txDefinition(TransactionCallbackWthoutResult):
def dol nTransacti onWt hout Result(s, status):
sel f.w thdraw(transfer_anount, source_account_num
sel f. deposi t (transfer_anmpunt, target_account_num
try:
sel f.txTenpl at e. execut e(t xDefinition())
print "If you made it to here, then your transaction has al ready been committed."
except | nvalidBankAccount, |nsufficientFunds:
print "If you made it to here, then your transaction has already been rolled back."

¢ We changed the init function to setup a Transacti onvanager (based on ConnectionFactory) and aso a
TransactionTenpl at e.

¢ Wealso rewrote the transfer function to generate a callback.

Now you don't have to deal with implicit cursors, commits, and rollbacks. Managing commits and rollbacks can
really complicated especially when dealing with exceptions. By wrapping it into a nice callback,
Transacti onTenpl at e does the work for us, and lets us focus on business logic, while encouraging us to
continue to define meaningful business logic errors.

Spring Python 45

Transaction Management

5.4. @ransacti onal

Another option is to use the @ransacti onal decorator, and mark which methods should be wrapped in a
transaction when called.

from springpyt hon. dat abase. transacti on inport *

cl ass Bank:
def __init__(self, connectionFactory):
sel f.factory = connectionFactory):
sel f.dt = DatabaseTenpl ate(sel f.factory)

@ransacti onal

def transfer(self, transfer_anount, source_account_num target_account_nun):
sel f.w t hdraw(transfer_anount, source_account_nun
sel f. deposit(transfer_anmount, target_account_num

This needs to be wired together with a Transacti onManager in an ApplicationContext. The following
example shows a Pyt honConf i g with three objects:

» thebank
e aTransacti onManager (inthiscase Connecti onFact oryTr ansact i onManager)

e an AutoTransact i onal Obj ect , which checks all objects to see if they have @ransacti onal methods, and
if so, links them with the Tr ansact i onManager .

The name of the method (i.e. component name) for Aut oTr ansact i onal Qbj ect doesn't matter.

cl ass Dat abaseTxTest Decor ati veTransacti ons(Pyt honConfi g):
def __init__(self, factory):
super (Dat abaseTxTest Decor ati veTransactions, self).__init__ ()
self.factory = factory

@j ect
def transactional Object(self):
return AutoTransactional Object(sel f.tx_mgr())

@j ect
def tx_ngr(self):
return Connecti onFactoryTransacti onManager (sel f.factory)

@j ect
def bank(self):
return Transacti onal Bank(sel f.factory)

This can also be configured using XM_Conf i g

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranmework. org/springpyt hon/ schema/ obj ects/ 1. 1"
xm ns: xsi ="http://wwmw. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ spri ngpyt hon/ schema/ obj ects/ 1.1

http://springpyt hon. webf acti onal . conl schena/ cont ext/ spri ng- pyt hon-context-1. 1. xsd">

<obj ect id="transactional Object" class="springpython. dat abase. transacti on. Aut oTransacti onal Qbj ect">

<constructor-arg ref="tx_mgr"/>
</ obj ect >

<object id="tx_mgr" class="springpython. database. transacti on. Connecti onFact oryTransacti onManager" >

Spring Python 46

Transaction Management

<constructor-arg ref="factory"/>
</ obj ect >

<object id="factory" class="...your DB connection factory definition here..."/>

<obj ect id="bank" class="Transacti onal Bank">
<constructor-arg ref="factory"/>
</ obj ect >

</ obj ect s>

5.4.1. @ransactional (["PROPAGATI ON_REQUI RED']) ...

Declarative transactions includes the ability to define transaction propagation. This alows you to define when a
transaction should be started, and which operations need to be part of transactions. There are severa levels of
propagation defined:

« PROPAGATION_SUPPORTS - Code can run inside or outside a transaction.

« PROPAGATION_REQUIRED - If thereis no current transaction, one will be started.

* PROPAGATION_MANDATORY - Code MUST be run inside an already started transaction.
* PROPAGATION_NEVER - Code must NOT be run inside an existing transaction.

Thefollowing codeis arevision of the Bank class, with this attribute plugged in:

cl ass Transacti onal BankW t hLot sOF Tr ansact i onal Ar gunent s(obj ect):

"""This sanple application can be used to denpbnstrate the value of atom c operations. The transfer operatior
nmust be wrapped in a transaction in order to performcorrectly. OGtherwi se, any errors in the deposit will

allow the fromaccount to | eak assets."""
def __init__(self, factory):

sel f.l ogger = | oggi ng. get Logger ("springpyt hon. test.test Supportd asses. Transacti onal BankW t hLot sOf Tr ansac

sel f.dt = DatabaseTenpl ate(factory)

@ransact i onal ([" PROPAGATI ON_REQUI RED"])
def open(sel f, account Nunj:
sel f. | ogger. debug(" Openi ng account % w th $0 bal ance." % account Num
sel f.dt.execute("I NSERT | NTO account (account_num bal ance) VALUES (?,?)", (accountNum O0))

@ransacti onal ([" PROPAGATI ON_REQUI RED'])
def deposit(self, ampunt, accountNum):
sel f. | ogger. debug("Depositing $% into %" % (anmount, account Num))
rows = sel f.dt.execute("UPDATE account SET bal ance = bal ance + ? WHERE account _num = ?", (anpunt,
if rows ==
rai se BankException("Account % does NOT exist" % account Num)

@ransacti onal ([" PROPAGATI ON_REQUI RED'])
def withdraw(sel f, anmount, accountNum):
sel f. | ogger. debug("Wthdrawi ng $% from %" % (anmount, accountNun))
rows = sel f.dt.execute("UPDATE account SET bal ance = bal ance - ? WHERE account _num = ?", (anpunt,
if rows == 0:
rai se BankException("Account % does NOT exist" % account Num)
return anmount

@ransacti onal ([" PROPAGATI ON_SUPPORTS", "readOnl y"])
def bal ance(sel f, account Num):
sel f. 1 ogger. debug(" Checki ng bal ance for %" % account Num
return sel f.dt.queryFor Obj ect (" SELECT bal ance FROM account WHERE account _num = ?", (account Num),

@r ansact i onal ([" PROPAGATI ON_REQUI RED"])

def transfer(self, amount, fromAccountNum toAccountNum):
sel f. 1 ogger. debug(" Transferring $% from % to %." % (anount, fromAccountNum toAccountNum))
sel f.w t hdraw amount, fromAccount Num
sel f. deposi t (anpbunt, toAccount Num

@ransacti onal ([" PROPAGATI ON_NEVER'])
def nonTransacti onal Operation(self):

(1.1.1.BUILD-20101109171232)

Transaction Management

sel f. | ogger. debug("Executing non-transacti onal operation.")

@ransacti onal ([" PROPAGATI ON_MANDATORY"])
def mandat oryOperation(self):
sel f. 1 ogger. debug("Executi ng mandatory transactional operation.")

@ransacti onal ([" PROPAGATI ON_REQUI RED'])

def mandat oryOperati onTransacti onal W apper (self):
sel f. mandat or yOper ati on()
sel f. mandat or yOper ati on()

@r ansact i onal ([" PROPAGATI ON_REQUI RED"])
def nonTransacti onal Operati onTransacti onal W apper (sel f):
sel f. nonTransacti onal Operati on()

You will notice severa levels are being utilized. This class was pulled directly from the test suite, so some of
the functions are deliberately written to generate controlled failures.

If you look closely at withdraw, deposit, and transfer, which are all set to PROPAGATION_REQUIRED, you
can see what this means. If you use withdraw or deposit by themselves, which require transactions, each will
start and complete a transaction. However, transfer works by re-using these business methods. Transfer itself
needs to be an entire transaction, so it starts one. When it calls withdraw and deposit, those methods don't need
to start another transaction because they are aready inside one. In comparison, balance is defined as
PROPAGATION_SUPPORTS. Since it doesn't update anything, it can run by itself without a transaction.
However, if itis called in the middle of another transaction, it will play along.

You may have noticed that balance also has "readOnly" defined. In the future, this may be passed onto the
RDBMS in case the relational engine can optimize the query given its read-only nature.

(1.1.1.BUILD-20101109171232)

Chapter 6. Security

Spring Python's Security module is based on Acegi Security's architecture. You can read Aceqgi's detailed
reference manual for a background on this module.

Spring Security vs. Acegi Security

“a
At the time this module was implemented, Spring Security was still Acegi Security. Links include
reference documentation that was used at the time to implement this security module.

6.1. External dependencies

springpyt hon. security. cherrypy3 package depends on CherryPy 3 being installed prior to using them. Other
than that, there are no specific external libraries required by Spring Python's security system, however the 10C
configuration format that you'll be using may need some, check 10C documentation for more details.

6.2. Shared Objects

The major building blocks of Spring Python Security are

e SecurityCont ext Hol der, to provide any type access to the Securi t yCont ext .
e SecurityCont ext, to hold the Authentication and possibly request-specific security information.

e HttpSessionContextlntegrationFilter,tostorethe SecurityContext inthe HTTP session between web
requests.

* Authentication, to represent the principal in an Acegi Security-specific manner.
e GrantedAut hori ty, to reflect the application-wide permissions granted to a principal.

These objects are needed for both authentication and authorization.

6.3. Authentication

The first level of security involves verifying your credentials. Most systems today use some type of
username/password check. To configure Spring Python, you will need to configure one or more
Aut henti cationProvider's. All Authentication implementations are required to store an array of
GrantedAut hority objects. These represent the authorities that have been granted to the principal. The
G ant edAut hori ty objects are inserted into the Aut hent i cat i on object by the Aut hent i cat i onManager and are
later read by AccessDeci si onManager's when making authorization decisions. These are chained together
inside an Aut hent i cat i onManager .

6.3.1. AuthenticationProviders

6.3.1.1. DaoAuthenticationProvider

This Aut henti cati onProvi der alows you to build a dictionary of user accounts, and is very handy for

Spring Python 49

http://acegisecurity.org/
http://acegisecurity.org/guide/springsecurity.html
http://acegisecurity.org/guide/springsecurity.html
http://cherrypy.org/

Security

integration testing without resorting to complex configuration of 3rd party systems.

To configure this using a pythonic, decorator-based |0C container...

cl ass Sanpl eCont ai ner (Pyt honConfi g):

@j ect

def i nMenoryDaoAut henti cati onProvi der (sel f):
provi der = DaoAut henti cati onProvi der ()
provi der. user _details_service = i nMenoryUser Det ai | sServi ce()
return provider

@j ect
def i nMenoryUserDetail sService(self):
user _details_service = I nMenoryUser Det ai | sServi ce()
user _details_service.user_dict = {
"vet1": ("passwordl", ["VET_ANY"], False),
"bdavi s": ("password2", ["CUSTOVER ANY"], Fal se)
"jblack": ("password3", ["CUSTOVER ANY"], Fal se)
"di sabl eduser": ("password4", ["VET_ANY"], True),
"enptyuser": ("", [], False) }

return user_details_service

XML configuration using XM_Conf i g:

<?xm version="1.0" encodi ng="UTF-8"?>
<obj ects xm ns="http://ww. springfranework. org/springpyt hon/ schema/ obj ects/ 1. 1"
xm ns: xsi ="http://wwmw. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww:. spri ngframewor k. or g/ spri ngpyt hon/ schema/ obj ects/ 1.1
htt p: // spri ngpyt hon. webf act i onal . conf schena/ cont ext/ spri ng- pyt hon- cont ext- 1. 1. xsd" >

<obj ect id="inMenoryUserDet ai | sServi ce" class="springpython. security.userdetails.|nMnoryUserDetail sServ
<property name="user_dict">
<di ct >
<entry>
<key><val ue>user 1</ val ue></ key>
<val ue>
<t upl e>
<val ue>passwor d1</ val ue>
<l i st ><val ue>r ol el</val ue><val ue>bl ue</ val ue></1i st >
<val ue>Tr ue</ val ue>
</ tupl e>
</val ue>
</entry>
<entry>
<key><val ue>user 2</ val ue></ key>
<val ue>
<t upl e>
<val ue>passwor d2</ val ue>
<l i st ><val ue>r ol el</ val ue><val ue>or ange</ val ue></1i st >
<val ue>True</val ue>
</ tupl e>
</ val ue>
</entry>
<entry>
<key><val ue>adni nuser </ val ue></ key>
<val ue>
<tupl e>
<val ue>passwor d3</ val ue>
<l i st ><val ue>r ol el</ val ue><val ue>adm n</val ue></1i st >
<val ue>Tr ue</ val ue>
</ tupl e>
</ val ue>
</entry>
<entry>
<key><val ue>di sabl eduser </ val ue></ key>
<val ue>
<t upl e>
<val ue>passwor d4</ val ue>
<l i st ><val ue>r ol el</val ue><val ue>bl ue</ val ue></1i st >
<val ue>Fal se</ val ue>
</ tupl e>
</val ue>
</entry>

Spring Python 50

Security

<entry>
<key><val ue>enpt yuser </ val ue></ key>
<val ue>
<t upl e>
<val ue/ >
<list/>
<val ue>Tr ue</ val ue>
</ tupl e>
</val ue>
</entry>
</dict>
</ property>
</ obj ect >

<obj ect id="inMenoryDaoAut henticati onProvider" class="springpython.security.providers. dao. DaoAut henti cat
<property nanme="user_details_service" ref="i nMenoryUserDet ai | sServi ce"/>
</ obj ect >

</ obj ect s>

This is the user map defined for one of the test cases. The first user, userl, has a password of passwordl, alist
of granted authorities ("rolel", "blue"), and is enabled. The fourth user, "disableduser”, has a password and a
list of granted authorities, but is NOT enabled. The last user has no password, which will cause authentication
to fail.

6.3.1.2. LDAP Authentication Provider

Spring Python has an LdapAut hent i cat i onProvi der that is able to authenticate users against an LDAP server
using either binding or password comparison. It will also search the LDAP server for groups in order to identify
roles.

Spring Python's LDAP only wor ks with CPython

“a
Currently, Spring Python only provides LDAP support for CPython. There is on-going effort to
extend support to Jython as well.

It is possible to the customize the query parameters, as well as inject an alternative version of authentication as
well as role identification.

There are two ways to verify a password in ldap: binding to the server using the password, or fetching the
password from ldap and comparing outside the server. Spring Python supports both. You can choose which
mechanism by injecting either a BindAuthenticator OF a PasswordConpari sonAut henticator into
LdapAut henti cati onProvi der.

The following XML fragment demonstrates how to configure Spring Python's LdapAut hent i cat i onPr ovi der
using aBi ndAut hent i cat or combined with a Def aul t LdapAut hori t i esPopul at or .

<obj ect id="context_source" class="springpython.security.providers.Ldap. DefaultSpringSecurityContextSour
<property name="url" val ue="I|dap://| ocal host: 53389/ dc=spri ngfranmework, dc=org"/ >
</ obj ect >

<obj ect id="bi ndAut henticator" class="springpython.security. providers.Ldap. Bi ndAut henti cator'>
<property nanme="cont ext_source" ref="context_source"/>
<property nanme="user_dn_patterns" val ue="ui d={0}, ou=peopl e"/ >

</ obj ect >

<obj ect id="authoritiesPopul ator" class="springpython.security.providers.Ldap. Defaul t LdapAut horiti esPoptL
<property name="cont ext_source" ref="context_source"/>
<property name="group_search_filter" val ue="nmenber={0}"/>

</ obj ect >

<obj ect id="|dapAuthenticati onProvider" class="springpython. security.providers.Ldap. LdapAut henti cati onPr
<property nanme="I|dap_aut henticator" ref="bindAut henticator"/>
<property name="I|dap_aut horities_popul ator" ref="authoritiesPopul ator"/>

Spring Python 51

Security

</ obj ect >

<obj ect id="|dapAuthenticati onManager" cl ass="springpython. security.providers. Authenti cati onManager">

<property nanme="aut h_provi ders">
<list><ref object="|dapAuthenticationProvider"/></list>
</ property>
</ obj ect >

context_source - pointsto an ldap server, defining the base DN to start searching for users and groups.

bindAuthenticator - configured to use the context_source, and does a user search based on sub-entry
uid={0},ou=people. {0} is the variable where an entered username will be substituted before executing the
Idap search.

authoritiesPopulator - assuming the user is found, it uses the group_search filter to find groups containing
this attribute pointed at the user's DN.

IdapAuthenticationProvider - combines together the bindAuthenticator and the authoritiesPopulator, in
order to process a User namePasswor dAut hent i cat i onToken.

IdapAuthenticationManager - just like the other examples, this Aut henti cati onManager iterates over the
list of providers, giving them a chance to authenticate the user.

The following shows the same configuration in pure Python, using Pyt honConf i g.

cl ass LdapCont ext (Pyt honConfi g):

def __init_ (self):
Pyt honConfig. __init__(self)

@j ect
def context_source(self):
return Defaul t SpringSecurityContext(url="1dap://|ocal host: 53389/ dc=spri ngframework, dc=org")

@j ect
def bind_authenticator(self):
return Bi ndAut henti cator (sel f.context_source(), user_dn_patterns="ui d={0}, ou=peopl e")

@j ect
def authorities_popul ator(self):
return Defaul t LdapAut horiti esPopul ator(sel f.context_source(), group_search_filter="nenber={0}")

@j ect
def provider(self):
return LdapAut henti cati onProvi der(sel f.bind _authenticator(), self.authorities_popul ator())

@j ect
def manager (sel f):
return Aut henticati onManager (aut h_provi ders=[sel f.provider()])

To use the password comparison mechanism, substitute PasswordConparisonAuthenticator for
Bi ndAut hent i cat or asfollows:

<obj ect id="context_source" class="springpython.security.providers.Ldap. DefaultSpringSecurityContextSour

<property name="url" val ue="|dap://| ocal host: 53389/ dc=spri ngf ramewor k, dc=or g"/ >
</ obj ect >

<obj ect id="passwordAut henticator" class="springpython.security.providers.Ldap. Passwor dConpari sonAut hent

<property nanme="context_source" ref="context_source"/>
<property nanme="user_dn_patterns" val ue="ui d={0}, ou=peopl e"/ >
</ obj ect >

<obj ect id="authoritiesPopul ator" class="springpython.security.providers.Ldap. Def aul t LdapAut horiti esPopt

(1.1.1.BUILD-20101109171232)

Security

<property name="context_source" ref="context_source"/>
<property name="group_search_filter" val ue="nmenber={0}"/>
</ obj ect >

<obj ect id="|dapAuthenticati onProvider" class="springpython. security.providers.Ldap. LdapAut henti cati onPr

<property name="I|dap_aut henticator" ref="bi ndAut henticator"/>
<property name="I|dap_aut horities_popul ator" ref="authoritiesPopul ator"/>
</ obj ect >

<obj ect id="|dapAuthenticati onManager" cl ass="springpython. security.providers. Aut henti cati onManager" >

<property name="aut h_provi ders">
<list><ref object="|dapAuthenticationProvider"/></list>
</ property>
</ obj ect >

The following block shows the same configuration using the pure Python container:

cl ass LdapCont ext (Pyt honConfi g):
def __init__(self):
Pyt honConfig. __init__ (self)

@hj ect
def context_source(sel f):
return Defaul t SpringSecurityContext (url="1dap://|ocal host: 53389/ dc=spri ngfranework, dc=or g")

@j ect
def password_aut henticator(self):
return Passwor dConpari sonAut henti cator(sel f.context_source(), user_dn_patterns="ui d={0}, ou=peopl e")

@j ect
def authorities_popul ator(self):
return Defaul t LdapAut horitiesPopul ator(sel f.context_source(), group_search_filter="nenber={0}")

@j ect
def provider(self):
return LdapAut henticati onProvi der(sel f.password_authenticator(), self.authorities_populator())

@j ect
def manager (self):
return Authenticati onManager (aut h_provi ders=[sel f.provider()])

By default, Passwor dConpar i sonAut hent i cat or handles SHA encrypted passwords as well passwords stored
in plain text. However, you can inject a custom Passwor dEncoder t0 support alternative password encoding
schemes.

6.3.1.3. Future AuthenticationProviders

So far, Spring Python has implemented a DaoAut hent i cat i onProvi der than can link with any database or use
an in-memory user data structure, as well as an LdapAut hent i cat i onProvi der . Future releases should include:

* (Openl DAut henti cati onProvi der
« Anonymous authentication provider - allows you to tag anonymous users, and constrain what they can
access, even if they don't provide a password

6.3.2. AuthenticationManager

An AuthenticationManager holds a list of one or more AuthenticationProvider's, and will go through the list
when attempting to authenticate. PetClinic configuresit like this:

(1.1.1.BUILD-20101109171232)

Security

cl ass Sanpl eCont ai ner (Pyt honConfi g):

@j ect
def authenticati onManager (self):
return Authenticati onManager (aut h_providers = [sel f.authenticationProvider()])

XML-based configuration with XM_Conf i g:

<obj ect id="authenticationManager" class="springpython.security.providers.Authenticati onManager">
<property nanme="aut h_provi ders">
<list><ref object="authenticationProvider"/></list>
</ property>
</ obj ect >

This Aut hent i cati onManager has a list referencing one object already defined in the Appl i cati onCont ext ,
authenticationProvider. The authentication manager is supplied as an argument to the security interceptor, so it
can perform checks as needed.

6.4. Authorization

After successful authentication, a user is granted various roles. The next step of security is to determine if that
user is authorized to conduct a given operation or access a particular web page. The AccessDeci si onManager S
called by the Abstract Securi tyl nter cept or and is responsible for making final access control decisions. The
AccessDeci si onManager interface contains two methods:

def decide(self, authentication, object, config)
def supports(self, attr)

As can be seen from the first method, the AccessDeci si onManager is passed via method parameters all
information that is likely to be of value in assessing an authorization decision. In particular, passing the secure
object enables those arguments contained in the actual secure object invocation to be inspected. For example,
let's assume the secure object was a Met hodl nvocat i on. It would be easy to query the Met hodl nvocati on for
any Customer argument, and then implement some sort of security logic in the AccessDeci si onManager tO
ensure the principal is permitted to operate on that customer. Implementations are expected to throw an
AccessDeni edExcepti on if accessisdenied.

Whilst users can implement their own AccessDeci si onvanager to control all aspects of authorization, Spring
Python Security includes several AccessDeci si onManager implementations that are based on voting. Using this
approach, a series of AccessDeci si onVoter implementations are polled on an authorization decision. The
AccessDeci si onManager then decides whether or not to throw an AccessDeni edException based on its
assessment of the votes.

The AccessDeci si onVot er interface has two methods:

def supports(self, attr)
def vote(self, authentication, object, config)

Concrete implementations return an integer, with possible values being reflected in the AccessDeci si onVot er
static fields ACCESS ABSTAIN, ACCESS DENIED and ACCESS GRANTED. A voting implementation will
return ACCESS_ABSTAIN if it has no opinion on an authorization decision. If it does have an opinion, it must
return either ACCESS_DENIED or ACCESS GRANTED.

Spring Python 54

Security

There are three concrete AccessDeci si onManager 's provided with Spring Python Security that tally the votes.
The ConsensusBased implementation will grant or deny access based on the consensus of non-abstain votes.
Properties are provided to control behavior in the event of an equality of votes or if all votes are abstain. The
AffirmativeBased implementation will grant access if one or more ACCESS GRANTED votes were received
(ie a deny vote will be ignored, provided there was at least one grant vote). Like the ConsensusBased
implementation, there is a parameter that controls the behavior if al voters abstain. The unani nousBased
provider expects unanimous ACCESS_GRANTED votes in order to grant access, ignoring abstains. It will
deny access if there is any ACCESS _DENIED vote. Like the other implementations, there is a parameter that
controls the behavior if all voters abstain.

It is possible to implement a custom AccessDeci si onManager that tallies votes differently. For example, votes
from a particular AccessDeci si onVoter might receive additional weighting, whilst a deny vote from a
particular voter may have aveto effect.

There are two concrete AccessDeci si onVot er implementations provided with Spring Python Security. The
Rol eVot er class will vote if any config attribute begins with ROLE_. It will vote to grant access if there is a
G ant edAut hori t y which returns a String representation exactly equal to one or more config attributes starting
with ROLE_. If there is no exact match of any config attribute starting with ROLE_, the Rol eVot er will vote to
deny access. If no config attribute begins with ROLE _, the voter will abstain. Rol evot er IS case sensitive on
comparisons as well asthe ROLE_ prefix.

PetClinic has two Rol eVot er 'sin its configuration:

cl ass Sanpl eCont ai ner (Pyt honConfi g):

@hj ect
def vet Rol eVoter(self):
return Rol eVoter(rol e_prefix="VET")

@j ect
def customer Rol eVoter (self):
return Rol eVoter(rol e_prefix="CUSTOVER")

XML-based configuration with XM_Conf i g:

<obj ect id="vetRol eVoter" class="springpython.security.vote. Rol eVoter">
<property nanme="rol e_prefix"><val ue>VET</ val ue></ property>
</ obj ect >

<obj ect id="customerRol eVoter" class="springpython.security.vote. Rol eVoter">

<property nanme="rol e_prefix"><val ue>CUSTOVER</ val ue></ property>
</ obj ect >

The first one votes on VET authorities, and the second one votes on CUSTOMER authorities.

The other concrete AccessDeci si onVot er S the Label BasedAcl Vot er . It can be seen in the test cases. Maybe
later it will be incorporated into a demo.

Petclinic has a custom AccessDeci si onVot er , which votes on whether a user "owns' arecord.

cl ass Sanpl eCont ai ner (Pyt honConfi g):

@j ect
def owner Voter(self):
return OmnerVoter(controller = self.controller())

Spring Python 55

Security

XML-based configuration using XM_Conf i g:

<obj ect id="ownerVoter" class="controller.OnnerVoter">
<property nanme="controller" ref="controller"/>
</ obj ect >

This class is wired in the PetClinic controller module as part of the sample, which demonstrates how easy it is
to plugin your own custom security handler to this module.

PetClinic wires together these AccessDeci si onVot er 'Sinto an AccessDeci si onManager :

cl ass Sanpl eCont ai ner (Pyt honConfi g):

@j ect
def accessDeci si onManager (sel f):
manager = AffirmativeBased()
manager. al low_i f _al | _abstain = Fal se
manager . access_deci sion_voters = [sel f.vet Rol eVoter(), self.custonerRol eVoter(), self.ownerVoter()]

return nanager

XML-based configuration using XM.Conf i g:

<obj ect id="accessDeci si onManager" cl ass="springpython.security.vote. AffirnmativeBased">
<property nanme="al |l ow_ i f_al | _abstai n"><val ue>Fal se</ val ue></ property>
<property name="access_deci si on_voters">

<list>
<ref object="vetRol eVoter"/>
<ref object="custonerRol eVoter"/>
<ref object="ownerVoter"/>
</list>
</ property>

</ obj ect >

(1.1.1.BUILD-20101109171232)

Chapter 7. Remoting

Coupling Aspect Oriented Programming with different types of Python remoting services makes it easy to
convert your local application into a distributed one. Technically, the remoting segment of Spring Python
doesn't use AOP. However, it is very similar in the concept that you won't have to modify either your servers or
your clients.

Distributed applications have multiple objects. These can be spread across different instances of the Python
interpreter on the same machine, as well on different machines on the network. The key factor is that they need
to talk to each other. The developer shouldn't have to spend a large effort coding a custom solution. Another
common practice in the realm of distributed programming is that fact that programmers often develop
standalone. When it comes time to distribute the application to production, the configuration may be very
different. Spring Python solves this by making the link between client and server objects a step of configuration
not coding.

In the context of this section of documentation, the term client refers to a client-application that is trying to
access some remote service. The serviceisreferred to as the server object. The term remote is subjective. It can
either mean a different thread, a different interpretor, or the other side of the world over an Internet connection.
Aslong as both parties agree on the configuration, they all share the same solution.

7.1. External dependencies

Spring Python currently supports and requires the installation of at least one of the libraries:

* Pyro (Python Remote Objects) - a pure Python transport mechanism

e Hessian - support for Hessian has just started. So far, you can call python-to-java based on libraries released
from Caucho.

7.2. Remoting with PYRO (Python Remote Objects)

7.2.1. Decoupling a simple service, to setup for remoting

For starters, |et's define a simple service.

cl ass Service(object):
def get_data(self, paran):
return "You got renpte data => %" % param

Now, we will createit locally and then call it.

service = Service()
print service.get_data("Hello")

"You got renpte data => Hell 0"

Okay, imagine that you want to relocate this service to another instance of Python, or perhaps another machine
on your network. To make this easy, let's utilize Inversion Of Control, and transform this service into a Spring

Spring Python 57

http://pyro.sourceforge.net
http://hessian.caucho.com

Remoting

service. First, we need to define an application context. We will create afile called applicationContext.xml.

<?xm version="1.0" encodi ng="UTF-8"?>
<obj ects xm ns="http://ww. springframework. org/ springpython/ schema/ obj ects/ 1. 1"
xm ns: xsi ="http://wwmw. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ spri ngpyt hon/ schema/ obj ects/ 1.1
http://springpython.webfactional .conf schema/ cont ext/spring-python-context-1.1.xsd">
<obj ect id="service" class="Service"/>

</ obj ect s>

The client code is changed to this:

appCont ext = ApplicationCont ext (XM.Confi g("applicationContext.xm"))
servi ce = appCont ext.get _obj ect ("service")
print service.get_data("Hello")

"You got renpte data => Hell 0"

Not too tough, ehh? Well, guess what. That little step just decoupled the client from directly creating the
service. Now we can step in and configure things for remote procedure calls without the client knowing it.

7.2.2. Exporting a Spring Service Using Inversion Of Control

In order to reach our service remotely, we have to export it. Spring Python provides Pyr oSer vi ceExporter to
export your service through Pyro. Add thisto your application context.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranmewor k. org/ springpyt hon/ schema/ obj ects/ 1. 1"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww:. spri ngframewor k. or g/ spri ngpyt hon/ schenma/ obj ects/ 1.1
http://springpyt hon. webfacti onal . conl schenma/ cont ext/ spri ng- pyt hon-context-1. 1. xsd">

<obj ect id="renoteService" class="Service"/>

<obj ect id="service_exporter" class="springpython.renoting. pyro.PyroServi ceExporter">
<property name="servi ce_nanme" val ue="Servi ceNane"/>
<property name="service" ref="renoteService"/>

</ obj ect >

<obj ect id="service" class="springpython.renoting.pyro.PyroProxyFactory">
<property name="service_url" val ue="PYROLCC://| ocal host: 7766/ Servi ceNane"/ >

</ obj ect >

</ obj ect s>

Three things have happened:

1. Our original service's object name has been changed to remoteService.

2. Another object was introduced called service_exporter. It references object remoteService, and provides a
proxied interface through a Pyro URL.

3. Wecreated aclient caled service. That is the same name our client code it looking for. It won't know the
difference!

7.2.2.1. Hostname/Port overrides

Spring Python 58

http://pyro.sourceforge.net/

Remoting

Pyro defaults to advertising the service at localhost: 7766. However, you can easily override that by setting the
service_host and service_port properties of the PyroServi ceExporter oObject, either through setter or
constructor injection.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springframework. org/springpython/ schema/ obj ects/1.1"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://ww. spri ngframewor k. or g/ spri ngpyt hon/ schenma/ obj ects/ 1.1
http://springpython.webfactional .conm schema/ cont ext/spring-python-context-1.1.xsd">

<obj ect id="renoteService" class="Service"/>

<obj ect id="service_exporter" class="springpython.renoting.pyro.PyroServi ceExporter">
<property nanme="servi ce_nane" val ue="Servi ceNane"/ >
<property nanme="service" ref="renoteService"/>
<property nanme="service_host" val ue="127.0.0.1"/>
<property name="service_port" val ue="7000"/>
</ obj ect >

<obj ect id="service" class="springpython.renoting.pyro.PyroProxyFactory">
<property name="service_url" val ue="PYROLOC://127.0.0.1: 7000/ Ser vi ceNane"/ >
</ obj ect >

</ obj ect s>

In this variation, your service is being hosted on port 7000 instead of the default 7766. This is also key, if you
need to advertise to another | P address, to make it visible to another host.

Now when the client runs, it will fetch the Pyr oPr oxyFact ory, which will use Pyro to look up the exported
module, and end up calling our remote Spring service. And notice how neither our service nor the client have
changed!

Python doesn't need an interface declaration for the client proxy

-

"9
If you have used Spring Java's remoting client proxy beans, then you may be used to the idiom of

specifying the interface of the client proxy. Due to Python's dynamic nature, you don't have to do
this.

We can now split up this application into two objects. Running the remote service on another server only
requires us to edit the client's application context, changing the URL to get to the service. All without telling
the client and server code.

7.2.3. Do | have to use XML?

No. Again, Spring Python provides you the freedom to do things using the |oC container, or programmatically.

To do the same configuration as shown above looks like this:

from springpyt hon. renoti ng. pyro i nport PyroServiceExporter
from springpython. renoting. pyro inport PyroProxyFactory

Create the service
renot eServi ce = Service()

Export it via Pyro using Spring Python's utility classes
servi ce_exporter = PyroServiceExporter()

servi ce_exporter.servi ce_name = "Servi ceNanme"

servi ce_exporter.service = renoteService

servi ce_exporter.after_properties_set()

Get a handle on a client-side proxy that will renpotely call the service
servi ce = PyroProxyFactory()

Spring Python 59

Remoting

service.service_url = "PYROLOC://127.0.0.1: 7000/ Ser vi ceNane"

Call the service just you did in the original, sinplified version
print service.get_data("Hello")

Againgt, you can override the hostname/port values as well

Export it via Pyro using Spring Python's utility classes
servi ce_exporter = PyroServi ceExporter()

servi ce_exporter.service_nane = "Servi ceNane"
servi ce_exporter.service = renoteService
servi ce_exporter.service_host = "127.0.0.1" # or perhaps the machi nes actual hostnane

servi ce_exporter.service_port = 7000
servi ce_exporter.after_properties_set()

That is effectively the same steps that the 10C container executes.

Don't forget after_properties set!

-

e

Since Pyr oSer vi ceExporter iSan I nitializi ngOj ect, you must call after_properties_set in
order for it to start the Pyro thread. Normally the 1oC container will do this step for you, but if you
choose to create the proxy yourself, you are responsible for this step.

7.2.4. Splitting up the client and the server

This configuration sets us up to run the server and the client in two different Python VMs. All we haveto dois
split things into two parts.

Copy thefollowing into server. xn :

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranmework. org/springpyt hon/ schema/ obj ects/ 1. 1"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ spri ngpyt hon/ schenma/ obj ects/ 1.1
http://springpython.webfactional .conm schema/ cont ext/spring-python-context-1.1.xsd">

<obj ect id="renoteService" class="server.Service"/>

<obj ect id="service_exporter" class="springpython.renoting. pyro.PyroServi ceExporter">
<property name="servi ce_nanme" val ue="Servi ceNanme"/>
<property name="service" ref="renoteService"/>
<property name="servi ce_host" val ue="127.0.0.1"/>
<property name="service_port" val ue="7000"/>
</ obj ect >

</ obj ect s>
Copy thefollowing into ser ver . py:

i nport | oggi ng
from springpyt hon. config i nport XM.Config
from springpython. context inport Applicati onContext

cl ass Service(object):
def get_data(self, paran):
return "You got renpote data => %" % param

if _name__ =="__min__"

Turn on sone logging in order to see what is happening behind the scenes..
| ogger = | oggi ng. get Logger (" spri ngpyt hon")

(1.1.1.BUILD-20101109171232)

Remoting

| oggi ngLevel = | oggi ng. DEBUG

| ogger . set Level (1 oggi ngLevel)

ch = | oggi ng. St reantHandl er ()

ch. set Level (1 oggi ngLevel)

formatter = | ogging. Formatter ("% asctinme)s - % name)s - %I evel nane)s - % nmessage)s"”)
ch.setFormatter(formatter)

| ogger . addHandl er (ch)

appCont ext = Applicati onCont ext (XM_Confi g("server.xm "))

Copy thefollowingintoclient. xn :

<?xm version="1.0" encodi ng="UTF- 8" ?>
<obj ects xm ns="http://ww. springfranmework. org/springpyt hon/ schema/ obj ects/ 1. 1"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schera- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ spri ngpyt hon/ schema/ obj ects/ 1.1

http://springpyt hon. webf acti onal . conl schena/ cont ext/ spri ng- pyt hon-context-1. 1. xsd">

<obj ect id="service" class="springpython.renoting.pyro.PyroProxyFactory">
<property name="service_url" val ue="PYROLCC://127.0.0.1: 7000/ Servi ceNane"/ >
</ obj ect >

</ obj ect s>

Copy thefollowingintocl i ent. py:

i mport | oggi ng
from springpyt hon. config i nport XM.Config
from springpyt hon. cont ext inport ApplicationContext

if __name__ == "__main__
Turn on sone logging in order to see what is happeni ng behind the scenes. ..
| ogger = | oggi ng. get Logger ("spri ngpyt hon")
| oggi ngLevel = | oggi ng. DEBUG
| ogger . set Level (1 oggi ngLevel)
ch = 1 oggi ng. St reanHandl er ()
ch. set Level (| oggi ngLevel)
formatter = | ogging. Formatter ("% asctinme)s - % name)s - %I evel nane)s - % nmessage)s"”)
ch.setFormatter(formatter)
| ogger . addHandl er (ch)

appCont ext = Applicati onContext (XM.Config("client.xm"))
servi ce = appCont ext.get_object("service")
print "CLIENT: %" % service.get_data("Hello")

First, launch the server script, and then launch the client script, both on the same machine. They should be able
to talk to each other with no problem at all, producing some log chatter like this:

$ python server.py &
[1] 20854

2009-01- 08 12: 06: 20, 021 - springpyt hon. contai ner. Obj ect Cont ai ner - DEBUG - === Scanni ng configurati on <springpyt

2009- 01- 08 12: 06: 20, 021 - springpython. config. XM_.Config - DEBUG -

2009-01- 08 12: 06: 20, 022 - springpython. config. XM_.Config - DEBUG - * Parsing server.xmn

2009- 01- 08 12: 06: 20, 025 - springpyt hon. config. XM_.Config - DEBUG -

2009- 01- 08 12: 06: 20, 025 - springpyt hon. cont ai ner. Obj ect Contai ner - DEBUG - renpteServi ce object definition does
2009- 01- 08 12: 06: 20, 026 spri ngpyt hon. cont ai ner. Obj ect Cont ai ner - DEBUG - service_exporter object definition dc
2009- 01- 08 12: 06: 20, 026 springpyt hon. cont ai ner. Obj ect Contai ner - DEBUG - === Done readi ng object definitions.
2009-01- 08 12: 06: 20, 026 springpyt hon. cont ext. Appl i cati onContext - DEBUG - Eagerly fetching renoteService

2009- 01- 08 12: 06: 20, 026 springpyt hon. cont ext. Appl i cati onContext - DEBUG - Did NOT find object 'renpteService'
2009- 01- 08 12: 06: 20, 026 - springpython. context. ApplicationContext - DEBUG - Creating an instance of id=renoteSer
2009- 01- 08 12: 06: 20, 026 springpyt hon. factory. Refl ecti veQbj ect Factory - DEBUG - Creating an instance of server.
2009- 01- 08 12: 06: 20, 027 - springpython. context. Applicati onContext - DEBUG - Stored object 'renoteService' in cor
2009- 01- 08 12: 06: 20, 027 spri ngpyt hon. cont ext . Appl i cati onCont ext - DEBUG - Eagerly fetching service_exporter
2009-01- 08 12: 06: 20, 027 spri ngpyt hon. cont ext. Appl i cati onContext - DEBUG - Did NOT find object 'service_exporte
2009- 01- 08 12: 06: 20, 027 spri ngpyt hon. cont ext. Appl i cati onContext - DEBUG - Creating an instance of id=service_e
2009- 01- 08 12: 06: 20, 028 springpyt hon. factory. Refl ecti vebj ect Factory - DEBUG - Creating an instance of springr
2009- 01- 08 12: 06: 20, 028 spri ngpyt hon. cont ext . Appl i cati onContext - DEBUG - Stored object 'service_exporter' in

(1.1.1.BUILD-20101109171232)

Remoting

2009- 01- 08 12: 06: 20, 028 - springpython. renoti ng. pyro. PyroServi ceExporter

- DEBUG - Exporting ServiceNane as a Py

2009-01- 08 12: 06: 20, 029 - springpyt hon. renoti ng. pyro. PyroDaenonHol der - DEBUG - Regi stering ServiceNane at 127.(
2009- 01- 08 12: 06: 20, 029 - springpyt hon. renoti ng. pyro. PyroDaenmonHol der - DEBUG - Pyro thread needs to be started
2009-01- 08 12: 06: 20, 030 - springpyt hon. renoti ng. pyro. PyroDaenonHol der. _PyroThread - DEBUG - Starting up Pyro ser

$ python client.py

2009-01- 08 12: 06: 26, 291 - springpyt hon. cont ai ner. Obj ect Cont ai ner - DEBUG

- === Scanni ng configuration <springpyt

2009- 01- 08 12: 06: 26, 292 - springpyt hon. config. XM_.Config - DEBUG -

2009-01- 08 12: 06: 26, 292 - springpyt hon. config. XM_.Config - DEBUG - * Parsing client.xn

2009- 01- 08 12: 06: 26, 294 - springpyt hon. config. XM_.Config - DEBUG -

2009- 01- 08 12: 06: 26, 294 - springpyt hon. cont ai ner. Obj ect Cont ai ner - DEBUG
2009- 01- 08 12: 06: 26, 294 - springpyt hon. cont ai ner. Cbj ect Cont ai ner - DEBUG

- service object definition does not ex
- === Done readi ng object definitions.

2009- 01- 08 12: 06: 26, 295 - springpyt hon. cont ext. Applicati onContext - DEBUG - Eagerly fetching service
2009- 01- 08 12: 06: 26, 295 - springpyt hon. context. Appli cationContext - DEBUG - Did NOT find object 'service' in the
2009- 01- 08 12: 06: 26, 295 - springpyt hon. cont ext. Applicati onContext - DEBUG - Creating an instance of id=service f

2009-01- 08 12: 06: 26, 295 - springpython.factory. Refl ectiveObj ect Factory -

DEBUG - Creating an instance of springr

2009- 01- 08 12: 06: 26, 295 - springpyt hon. cont ext. Applicati onContext - DEBUG - Stored object 'service' in container

CLI ENT: You got renpte data => Hello

This shows one instance of Python running the client, connecting to the instance of Python hosting the server
module. After that, moving these scripts to other machines only requires changing the hostname in the XML

files.

7.3. Remoting with Hessian

Caucho'spython library for Hessian isincomplete

s

"8

Due to minimal functionality provided by Caucho's Hessian library for python, there is minimal

documentation to show its functionality.

The following shows how to connect a client to a Hessian-exported service.

This can theoretically be any

technology. Currently, Java objects are converted into python dictionaries, meaning that the data and

transferred, but there are not method calls available.

<?xm version="1.0" encodi ng="UTF-8"?>

<obj ects xm ns="http://ww. springframework. org/springpython/schema/ obj ects/1.1"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://ww:. spri ngframewor k. or g/ spri ngpyt hon/ schema/ obj ects/ 1.1
http://springpython. webfactional .conf schema/ cont ext/spring-python-context-1.1.xsd">

<obj ect id="personService" class="springpython.renoting. hessi an. Hessi anPr oxyFact ory" >
<property name="service_url"><val ue>http://I| ocal host: 8080/ </ val ue></ property>

</ obj ect >

</ obj ect s>

The Caucho library appears to only support Python being a client, and not yet as a service, so there is no

Hessi anSer vi ceExport er available yet.

7.4. High-Availability/Clustering Solutions

This props you up for many options to increase availability. It is possible to run a copy of the server on multiple
machines. Y ou could then institute some type of round-robin router to go to different URLS. You could easily

run ten copies of the remote service.

pool =[]
for i in range(10):

Spring Python

62

Remoting

servi ce_exporter = PyroServi ceExporter(service_nanme = "Servi ceNane%" % i, service = Service())
pool . append(servi ce_exporter)

(Yeah, | know, you can probably do thisin one line with alist comprehension).
Now you have ten copies of the server running, each under a distinct name.

For any client, your configuration is a dight tweak.

services = []
for i in range(10):
servi ces. append(Pyr oProxyFact ory(service_url = "PYROLOC://| ocal host: 7766/ Servi ceName%s" %))

Now you have an array of possible services to reach, easily spread between different machines. With a little
client-side utility class, we can implement a round-robin solution.

class HighAvail abilityService(object):
def __init__(self, service_pool):
sel f. servi ce_pool = service_pool
self.index = 0
def get_data(self, paran):
sel f.index = (self.index+1) %l en(self.service_pool)

try:

return self.service_pool [sel f.index].get_data(param
except :

del (sel f.service_pool [i])

return sel f.get_data(paramn

service = HighAvail abilityService(service_pool = services)
servi ce.get _data("Hello")
servi ce. get_data("Wrld")

Notice how each call to the Hi ghAvai | abi | ityService class causes the internal index to increment and roll
over. If a service doesn't appear to be reachable, it is deleted from the list and attempted again. A little more
sophisticated error handling should be added in case there are no services available. And there needs to be a
way to grow the services. But this gets us off to agood start.

Spring Python 63

Chapter 8. JMS Messaging

Java Message Service has been awell known means for decoupling the Java application's parts or to provide an
integration service for otherwise disconnected Java applications. Thanks to JMS being purely an API, Spring
Python offers a way for connecting to JMS providers and to participate in IMS messaging scenarios. IMS
messages sent and received by a Spring Python powered application are no different than messages produced
and consumed by Java applications, in fact, you can use Spring Python and JMS with no Java applications
participating in message exchanging at all.

Spring Python works as a IM S client, you still need a IMS provider, the server part, for message brokering. The
only JMS provider currently supported by Spring Python is IBM's WebSphere MQ, formerly known as
MQSeries.

Although Spring Python's IMS API is loosely based on Spring Java's, it's not a direct port and features a highly
Pythonic look and fedl.

Spring Python
' (client)

JMS Provider

(server) ""'

Java

8.1. Introduction

Througout the chapter pure Python code or YAML syntax is used to illustrate the support for IMS however it
only represents the author's preferences and it's worth noting that you can use any of Spring Python's formats to
configure the 1oC container. Or you can use no 1oC at all asit's a completely optional feature and one that's not
strictly required by JMS.

JMS messaging with Spring Python revolves around the idea of using a connection factory for obtaining a
connection to a JMS provider and springpython. jns.core. JnsTenplate as a means for sending and
receiving messages. A JmsTemplate instance is tied to a connection factory however a single connection
factory may be safely reused across multiple JnsTemplates.

In addition to that, springpython.jns.listener.Si npl eMessageli st ener Cont ai ner alows for a purely

Spring Python 64

JMS Messaging

configuration-driven way to set up background JM S listeners to receive messages from JMS providers.

8.2. Dependencies

Support for IMS messaging with WebSphere MQ is built on top of the CPython-only PyMQI library which
provides Python applications an access to WebSphere MQ queue managers. You need to separately install
PyMQI in order to use spri ngpyt hon. j ms. f act ory. WebSpher eMQConnect i onFact ory. PyMQI, in turn, needs a
WebSphere MQ client, aruntime library which may be freely downloaded from IBM's site.

Si npl eMessageli st ener Cont ai ner, a Spring Python component which helps with running background JMS
listeners, requires the installation of Circuits 1.2+ and threadpool 1.2.7 or newer.

8.3. Quick start

Here's afew quick examples that will get you started with Spring Python and JMS. Both Python code and 10C
with YAML syntax are shown. It's assumed there's a QM.1 queue manager running on host 192.168.1.121 with
its listener on port 1434 and connections are made through the server connection channel SVRCONN.1 to
queues TEST.1 and TEST .2.

8.3.1. Sending

First, let's send a message using nothing but pure Python code.

from springpython.jnms.core inport JnsTenpl ate
from springpython.jns.factory inport WebSphereMQConnecti onFactory

gm _nane "QM 1"
channel = "SVRCONNL. 1"
host = "192.168.1.121"
i stener_port = "1434"
gueuel = "TEST. 1"

The connection factory we're going to use.
factory = WebSpher eMXConnect i onFact ory(qm nanme, channel, host, |istener_port)

Every JnsTenpl ate uses a connection factory for actually communicating with a JVMS provider.
jms_template = JnsTenpl at e(factory)

And that's it, now we put the nandatory "Hello worl d" message on a queue.
jms_tenpl ate. send("Hello world", queuel)

We're not using an 10C so we nust shut down the connection factory oursel ves.
factory. destroy()

Now do the same but use an 1oC container configured via springpython. config. Yam Config. The
configuration should be saved in a"jms-context.yml” file in the same directory the Python code using it will be
savedin.

obj ect s:
- object: MyConnectionFactory

cl ass: springpython.jns.factory. WebSpher eMXonnect i onFact ory

properties:
gueue_manager: QM 1
channel : SVRCONN. 1
host: 192.168.1.121
l'i stener _port: "1434"

- object: MyTenplate
cl ass: springpython.jms.core.JnsTenpl at e

Spring Python 65

https://launchpad.net/pymqi
http://code.google.com/p/circuits/
http://pypi.python.org/pypi/threadpool

JMS Messaging

properties:
factory: {ref: MConnectionFactory}

- object: MyQueue
str: TEST. 1

And the Python code using the above 10C configuration.

from springpython. context inport Applicati onContext
from springpython. config inport Yan Config

contai ner = ApplicationContext(Yam Config("./jnms-context.ym"))

Read the objects definitions from configuration.
gueuel = contai ner. get _obj ect (" MyQueue")
jms_tenplate = container.get_object("MTenpl ate")

Send the nessage.
jms_tenpl ate. send("Hell o world", queuel)

The connection factory is now bei ng nmanaged by the |10C contai ner which takes
care of shutting down the factory. No need for manually destroying it.

An obvious change is that the configuration is now kept separately from the implementation but another
advantage is that the container will shut down the connection factory on itsef as
spri ngpyt hon. j ns. f act or y. WebSpher eMJConnect i onFact ory is a subclass of
springpyt hon. cont ext . Di sposabl eCbj ect which means its .destroy method will be executed when the
container will be shutting down.

8.3.2. Receiving

The very same connection factory and JmsTemplate can be used for both sending and receiving. Examples
below use the same definitions of objects as the sending examples do, they are repeated here for the sake of
compl etness.

from springpython.jns.core inport JnsTenpl ate
from springpython.jms.factory inmport WebSphereMXonnecti onFactory

gm_nane "QM 1"
channel = "SVRCONN. 1"
host = "192.168. 1. 121"
i stener_port = "1434"
queuel = "TEST. 1"

The connection factory we're going to use.
factory = WebSpher eMXonnect i onFact ory(gm nanme, channel, host, |istener_port)

Every JnsTenpl ate uses a connection factory for actually communicating with a JVMS provider.
jms_tenplate = JnsTenpl ate(factory)

CGet a nessage off the queue. The call to receive will by default tine out
after 1000ns and rai se springpython.jns. NoMessageAvai | abl eException then.
jms_tenpl ate. recei ve(queuel)

We're not using an 10C so we need to shut down the connection factory oursel ves.
factory. destroy()

And here's a complementary example showing the usage of yan Confi g. The configuration should be saved in
a"jms-context.yml" file in the same directory the Python code using it will be saved in. Note that it's the same
configuration that was used in the sending example.

Spring Python 66

JMS Messaging

obj ect s:
- object: MConnectionFactory

cl ass: springpython.jmns. factory. WebSpher eMQConnect i onFact ory

properties:
gueue_manager: QM 1
channel : SVRCONN. 1
host: 192.168.1.121
l'i stener _port: "1434"

- object: MyTenpl ate
cl ass: springpython.jms. core.JnsTenpl at e
properties:
factory: {ref: MConnectionFactory}

- object: MyQueue
str: TEST.1

The Python code used for receiving a message from a queue configured using the Yam Confi g.

from springpyt hon. cont ext inport ApplicationContext
from springpyt hon. config inport Yam Config

contai ner = ApplicationContext(Yam Config("./jnms-context.ym"))

Read the objects definitions from configuration
gueuel = contai ner. get_obj ect (" M/ Queue")
jms_tenpl ate = container. get_object("MTenpl ate")

Get a message off the queue. The call to receive will by default time out
after 1000ns and rai se springpython.jns. NoMessageAvai | abl eExcepti on then.
jms_tenpl ate. recei ve(queuel)

The connection factory is now bei ng managed by the |10oC contai ner which takes
care of shutting down the factory. No need for manually destroying it.

Here's a sample YAML context utilizing the SimpleMessagelistenerContainer component and an
accompanying Python code using it. As you can see, a mere fact of providing the configuration allows for
receiving the messages.

obj ect s:
- object: connection_factory

cl ass: springpython.jns. factory. WebSpher eMQConnect i onFact ory

properties:
queue_nanager: QM 1
channel : SVRCONN. 1
host: 192.168.1.121
|'i stener _port: "1434"

- object: message_handl er
cl ass: app. M\yMessageHandl er

- object: |istener_container
cl ass: springpython.jms.|istener.Si npl eMessageli st ener Cont ai ner
properties:

factory: {ref: connection_factory}
handl er: {ref: nessage_handl er}
destination: TEST.1

app. py

from springpyt hon. config inport Yam Config
from springpyt hon. cont ext inport ApplicationCont ext

cl ass MyMessageHandl er (obj ect):
def handl e(sel f, nessage):
print "Cot nessage!", nessage

(1.1.1.BUILD-20101109171232)

JMS Messaging

i f nane =="_ main

Obtaining a context will autonatically start the SinpleMessageLi stenerContainer and its |listeners in backe
contai ner = ApplicationContext(Yam Config("./context.ym "))

whil e True:
Here goes the application's |logic. Any JMS nessages, as configured
#in ./context.ym, will be passed in to a singleton M/MessageHandl er i nstance.
pass

8.4. Connection factories

8.4.1. springpython.jms.factory.WebSphereMQConnectionFactory

WebSpher eMQConnect i onFactory implements access to WebSphere MQ JMS provider. Along with
JnsTenpl at e it'sthe class you'll be most frequently using for sending and receiving of messages.

Each webSpher eMQConnect i onFact ory object will hold at most one connection to WebSphere MQ, which will
be lazily established when it'll be actually needed, e.g. when a message will need to be put on a queue for the
first time. The connection will always be started in WebSphere MQ's client mode, there's no support for
connecting in the bindings mode.

Like all Spring Python's classes WebSpher eMConnect i onFact ory can be configured using pure Python or you
can use Spring Python's 10C to separate your business code from configuration. Using 10C has an added benefit
of taking care of destroying any open gqueues and closing the connection when the 10C shuts down - we'll get to
it in a moment.

WebSpher eMQConnect i onFact ory provides several options that let you customize its behaviour and apart from
the obvious ones which you must provide (like, the queue manager's host) al other options have sensible
defaults which you'll rarely need to change, if at al.

Here'safull initializer method reproduced for convenience and the explanation of default values used:

def __init__(self, queue_manager=None, channel =None, host=None, |i stener_port=None
cache_open_send_queues=True, cache_open_recei ve_queues=Tr ue,
use_shared_connecti ons=True, |ocal _queue_tenpl at e=" SYSTEM DEFAULT. MODEL. QUEUE") :

Table8.1. spri ngpyt hon. j ns. f act ory. WebSpher eMQConnect i onFact ory customizable options

gueue_manager
default: None

Must be set manually

Name of the queue manager, e.g. EAI.QM.1

channel
default: None

Must be set manually

Name of a server connection (SVRCONN) channel
through which the connection will be established, e.g.
EAI.SVRCONN.1

(1.1.1.BUILD-20101109171232)

JMS Messaging

host
default: None
Must be set manually
Host name or IP on which the queue manager is
running, e.g. 192.168.1.103
listener_port

default: None
Must be set manually

Port on which the queue manager's listener is
accepting TCP connections, e.g. 1434

cache open_send_queues
default: True

By default, wWebSpher eMQConnectionFactory Will
keep references to open queues in a cache for later
re-use. This speeds-up most operations as there's
usually no need for closing a queue if it's going to be
used in subsequent calls to queue manager. At times
however, it's prefered to close the queues as soon as
possible and cache open send queues controls
whether queues open for putting the messages on are
to be kept in the cache.

cache_open_receive_gueues
default: True

This setting controls whether queues open for
receving of messages should be kept in a cache. If set
to False, they will be closed after the call to get a
message off the queue will have finished.

use_shared_connections
default: True

A single webSpher eMConnecti onFactory object
may be shared between multiple threads to provide
better performance. This setting allows for marking
the underlying connection to a queue manager as a
non-shareable and makes sure that only one thread
will be able to use it, any call to the factory from a
thread that didn't open the connection will result in a
spri ngpyt hon. j ms. JMSExcepti on being raised. The
setting should only set to False when connecting to
gueue managers running on z/OS systems as it
otherwise can hurt the performance of multi-threaded
applications. It has no impact on performance of
single-threaded applications.

Spring Python 69

JMS Messaging

dynamic_queue_template

sd_cipher_spec

ssl_key repository

default: SYSTEM.DEFAULT.MODEL.QUEUE

The name of a model queue basing on which the
dynamic queues will be created. It is usualy desirable
to override the default value as, unless customized,
SYSTEM.DEFAULT.MODEL.QUEUE is a
non-shared (NOSHARE in MQ speak) queue and
doesn't allow for opening the dynamic queues for
both sending and receiving.

default; False

A boolean value which indicates whether connections
to the queue manager should use a client SSL/TLS
certificate. sd_cipher_spec and ss_key repository
must also be provided if ssl is True.

default: None

An SSL/TLS cipher spec to use for encrypted
connections, its value must be equal to that of the MQ
SVRCONN channel's SSL CIPH attribute.

default: None

On-disk location of an SSL/TLS client certificates
repository. The repository must be of type CMS, such
a repository can be created using gsk6cmd/gsk7cmd
command line tools. Note that the value of this
attribute must not contain a suffix; for instance, if
there are following files in /var/mgm/security:
client-repo.crl, client-repo.kdb, client-repo.rdb and
client-repo.sth, then ssl_key_repository must be set to
"fvar/mgm/security/client-repo”.

Here's an example of programatically creating awebSpher eMConnect i onFact ory object:

from springpython.jnms.factory inport WebSpher eMConnecti onFactory

gmnanme = "QM 1"

channel = "SVRCONN. 1"
host = "192.168.1.121"
|'i stener _port = "1434"

factory = WebSpher eMXonnecti onFact or y(qm nane,

... use factory here.

channel, host, |istener_port)

Always destroy the factory when not using an |oC contai ner.

factory. destroy()

Spring Python 70

JMS Messaging

An example of using YamlConfig for configuring webSpher eMXConnect i onFact ory inside of an 10C container.

obj ect s:
- object: MConnectionFactory

cl ass: springpython.jns.factory. WebSpher eMXonnect i onFact ory

properties:
gueue_manager: QM 1
channel : SVRCONN. 1
host: 192.168.1.121
|'i stener _port: "1434"

All cached queues will not be closed by a factory until after its .destroy will have been called which will
happen automatically if you're using an 10C container. If the factory is configured programatically in Python
you must call .destroy yourself in your code. A call to .destroy also closes the factory's connection to a queue
manager.

WebSpher eMQConnect i onFact ory oObjects are thread-safe and may be shared between multiple threads if the
queue manager supports sharing a single connection which is the case on al platforms except for zZ/OS.

For the curiousone

\"il springpython.jmns. factory. WebSpher eMXonnect i onFact ory and
spri ngpyt hon. j ms. f act ory. MORFH2IMS wrap the WebSphere MQ's native MQRFH2 wire-level
format in a set of Python classes and hide any intricate details of communicating with queue
managers. From the programmer's viewpoint, MQRFH2JMS is irrelevant, however it might be of
interest to anyone willing to improve or expand Spring Python's IM S support.

8.5. springpython.jms.core.JmsTemplate

JmsTemplate is the class to use for sending JM S messages; along with SimpleM essagel istenerContainer it may
also be used in order to receive them. A template must be associated with a connection factory and once
configured, may be used for communicating in both directions. It's up to you to decide whether in your
circumstances it makes sense to reuse a single template for all communications, to have a single template for
each queue involved or perhaps to use separate, dedicated, templates, one for sending and one for receiving.
Note however, that Jms Tenpl at e instances are not guaranteed to be thread-safe and no attempt has been made
to make them be so.

Remember that factories postpone connecting to a queue manager and creating a JnsTemplate instance doesn't
necessarily mean there will be no connection errors when it will be first time used for sending or receiving.

Here'show aJnsTenpl at e may be instantiated using Python code:

from springpython.jms.core inport JnsTenpl ate
from springpython.jms.factory inmport WebSpher eMXConnecti onFactory

gmnanme = "QM 1"

channel = "SVRCONNL. 1"
host = "192.168.1. 121"
i stener_port = "1434"

factory = WebSpher eMXonnecti onFact ory(gm nane, channel, host, |istener_port)
jms_tenplate = JnsTenpl at e(factory)

Al ways destroy the factory when not using |IoC
factory. destroy()

An example of using Y amlConfig to configure a JnsTemplate

(1.1.1.BUILD-20101109171232)

JMS Messaging

obj ect s:
- object: MConnectionFactory

cl ass: springpython.jns. factory. WebSpher eMQConnect i onFact ory

properties:
gqueue_manager: QM 1
channel : SVRCONN. 1
host: 192.168.1.121
l'i stener_port: "1434"

- object: jms_tenplate
class: springpython.jns.core.JnsTenpl ate
properties:
factory: {MyConnecti onFactory}

JmsTemplate allows for a number of options to customize its behaviour. The only options required to set
manually is the factory parameter. Except for factory, all the parameters may be overriden by individual callsto
sending or receiving of messages.

def __init__(self, factory=None, delivery_persistent=None,
priority=None, time_to_|ive=None, nessage_converter=None,
def aul t _desti nati on=None):

Table 8.2. spri ngpyt hon. j ns. core. JmsTenpl at e customizable options

factory
default: None

Must be set manually

A JIMS connection factory associated with this
JmsTemplate.

delivery_persistent
default: None

Tells whether messages sent to a JIM S provider are by
default persistent. If not set, the persistency of
messages is controlled on a per messages basis (and
defaultsto a persistent delivery).

priority
default: None

Messages sent to the provider may be of different
priority, usually on a scale from 1 to 9. The setting
controls the default priority of all messages sent by
this JmsTemplate, unless overridden by individual
messages. A JIMS provider will set the default priority
if no value is given here or when sending the
individual messages.

time_to_live
default: None

JMS alows for expiry of messages after a certain
time expressed in milliseconds. The time to live of a
message may be set here and it will be applied to all
messages sent or can be set per each message sent. If

(1.1.1.BUILD-20101109171232)

JMS Messaging

message_converter

default_destination

no vaue is provided here and when sending the
message to a destination, the message expiry time is
left to the discretion of aJM S provider.

default: None

It is sometimes desirable to not have to deal with raw
messages taken from or sent to JMS provider from
within a JmsTemplate object, it may make more sense
to delegate converting the objects from and to IMS
representation to an external helper class. A message
converter is an object that helps decoupling the
domain objects from the fact that JMS is the
transportation layer used for communicating. A single
converter may be used for converting the incoming as
well as outgoing messages. See the section on
message _converters for more details and code
examples. Setting the message converter here will
take precedence over setting it on a per-message
basis.

default: None

If al or most of the messages are sent to or received
from the same JMS destination, it's usually useful to
configure the destination's name here and have it used
in any subsequent calls to a JIMS provider. Note that
the value given is used as a default destination for
both sending and receiving of messages.

8.5.1. Sending

The basic approach isto send ASCI| strings or unicode objects, which must alow for encoding into UTF-8.

-*- coding: utf-8 -*-

from springpython.jns.core inport JnsTenpl ate

from springpython.jms.factory inport WebSpher eMConnecti onFactory

gm_nanme

"QM 1"

channel = "SVRCONN. 1"
host = "192.168. 1. 121"
i stener_port = "1434"

queuel = "TEST. 1"

The connection factory we're going to use
factory = WebSpher eMXConnect i onFact ory(gm nane,

channel , host, |istener_port)

Every JnmsTenpl ate uses a connection factory for actually communicating with a JVMS provider.

jme_tenmplate = JnsTenpl at e(factory)
jms_tenpl ate. defaul t _destinati on = queuel

Send sone ASCI |

jms_tenpl ate. send("Hi

Send uni code

j me_t enpl at e. send(u" Cze##,

Spring Python here")

z tej strony Spring Python")

Spring Python

73

JMS Messaging

We're not using an 1oC so we need to shut down the connection factory oursel ves.
factory. destroy()

Note that in an example above the message's destination has been taken from JnsTemplate. We can also
specify it on send time or we can combine both approaches, like here:

-*- coding: utf-8 -*-

from springpython.jms.core inport JnmsTenpl ate
from springpython.jns.factory inport WebSpher eMQConnecti onFactory

gm name = "QM 1"

channel = "SVRCONN. 1"
host = "192.168.1. 121"
i stener_port = "1434"

queuel = "TEST. 1"
gueue2 = "TEST. 2"

The connection factory we're going to use.
factory = WebSpher eMXonnect i onFact ory(gm nanme, channel, host, |istener_port)

Every JnsTenpl ate uses a connection factory for actually conmmunicating with a JVMS provider.
jms_tenplate = JnsTenpl at e(factory)
jms_tenpl ate. defaul t _destinati on = queuel

Send sonme ASCI| to one queue
jms_tenpl ate. send("H, Spring Python here")

Send uni code to anot her queue
jms_tenpl ate. send(u" Cze##, z tej strony Spring Python", queue2)

We're not using an 10oC so we need to shut down the connection factory oursel ves.
factory. destroy()

Sending is not limited to strings or unicode objects though. Y ou can customize alot of message's properties by
sending a springpython.jms.core. TextM essage instead. The following example shows how a custom message
ID and reply to destination can be specified for an outgoing message.

stdlib
fromuuid inmport uuid4

Spring Python
from springpython.jns.core inport JnsTenpl ate, Text Message
from springpython.jnms.factory inport WebSpher eMConnecti onFactory

gmnanme = "QM 1"

channel = "SVRCONN. 1"
host = "192.168.1.121"
i stener_port = "1434"

queuel = "TEST. 1"

The connection factory we're going to use.
factory = WebSpher eMXonnect i onFact ory(gm nanme, channel, host, |istener_port)

Every JnsTenpl ate uses a connection factory for actually communicating with a JVMS provider.
jms_template = JnsTenpl at e(factory)
jms_tenpl ate. defaul t _destinati on = queuel

CGenerate the correlation ID
jms_correlation_id = uuid4(). hex

nessage = Text Message("H, Spring Python here")
nessage. jns_correlation_id = jns_correlation_id
nmessage. jns_reply_to = "REPLY. TO. QUEUE"

Send the nessage
j ms_t enpl at e. send(nessage)

We're not using an 1oC so we need to shut down the connection factory oursel ves.
factory. destroy()

Spring Python 74

JMS Messaging

Using TextMessage instances instead of plain strings or unicode objects is also recommended when you're
interested in values a JIMS provider has given to M S properties of a message after the message had been sent.
Here you can see the values which were assigned automatically by the provider to jms timestamp and
jms_message id properties.

from springpython.jms.core inport JnmsTenpl ate, Text Message
from springpython.jns.factory inport WebSpher eMXConnecti onFactory

gm name = "QM 1"

channel = " SVRCONN. 1"
host = "192.168.1. 121"
i stener_port = "1434"

queuel = "TEST. 1"

The connection factory we're going to use.
factory = WebSpher eMQConnect i onFact ory(qm nane, channel, host, |istener_port)

Every JnsTenpl ate uses a connection factory for actually conmunicating with a JVMS provider.
jms_tenplate = JnsTenpl at e(factory)
jms_tenpl ate. def aul t _destinati on = queuel

Create a Text Message i nstance.
nessage = Text Message("Hi, Spring Python here")

Send the nessage
j ms_t enpl at e. send(nessage)

print "jms_tinmestanp = %" % nessage.j ns_ti nmestanp
print "jms_nessage_id = %" % nessage. | ns_nessage_i d

We're not using an 10C so we need to shut down the connection factory oursel ves.
factory. destroy()

Shows the follow ng here:

$ python jns_properties_overriding. py

jms_tinmestanp = 1255885622380

jms_message_id = 1 D 414d5120514d2e312020202020202020283cdb4a02220020
$

HHHHHHH

Take alook here for more information about how to use TextM essages.

8.5.2. Receiving

The same JmsTemplate instance may be used for both sending and receiving of messages. When you receive
messages you may optionally provide a timeout value in milliseconds after exceeding which a
springpyt hon. j ms. NoMessageAvai | abl eExcept i on Will be raised if no message will have been available for a
given JMS destination. Default timeout is 12000 milliseconds.

JmsTemplate may use a default IMS destination for each call to .receive or you can explicitly specify the
destination's name when you receive messages.

from springpython.jnms.core inport JnsTenpl ate, Text Message
from springpython.jns.factory inport WebSpher eMQConnecti onFactory

gm name = "QM 1"
channel = "SVRCONN. 1"
host = "192.168.1. 121"
listener_port = "1434"
queuel = "TEST. 1"
queue2 = "TEST. 2"

(1.1.1.BUILD-20101109171232)

JMS Messaging

The connection factory we're going to use.
factory = WebSpher eMXConnect i onFact ory(gqm nanme, channel, host, |istener_port)

Every JnsTenpl ate uses a connection factory for actually communicating with a JVMS provi der.
jms_tenmplate = JnsTenpl at e(factory)
jms_tenpl ate. defaul t _destinati on = queuel

Send a nessage to the first queue which is a default destination ..
jms_tenpl ate. send("H there!")

.. and now receive it.
print jns_tenplate.receive()

Now send a nessage to the second one ..
jms_tenpl ate. send("H there again!", queue2)

.. and now receive it
print jms_tenplate.recei ve(queue2)

.. try to receive a nessage again, this tine requesting a timeout of 2 seconds.
print jns_tenpl ate.receive(queue2, 2000)

We're not using an 10oC so we need to shut down the connection factory oursel ves.
factory. destroy()

Note that SimpleMessagel istenerContainer provides a complementary way for receiving the messages,
particularly well suited for long-running processes, such as servers.

8.5.3. Dynamic queues

A dynamic queue is a usually short-lived object created on-demand by JM S applications, most often found in
request-reply scenarios when there's no need for the response to be persistently stored. An application initiating
the communication will create a dynamic temporary queue, send the request to the other side providing the
name of the dynamic queue as a destination for the responses to be sent to and wait for a certain amount of
time. With Spring Python and WebSphere MQ, the requesting side must then explicitly close the dynamic queue
regardless of whether the response will be received or if the request timeouts.

The following example shows two JmsTemplate objects communicating via a dynamic queue and imitating an
exchange of messages between two dispersed applications. You can observe than from the responding
application's point of view a dynamic queue's name is like any other queue's name, the application doesn't need
to be - and indeed isn't - aware that it's responding to a dynamic queue and not to a predefined one. For the
requesting end a dynamic queue is also like a regular queue in that its name must be provided to the
JmsTemplate's .receive method. Note that WebSphere MQ allows only non-persistent messages to be put on
temporary dynamic queues which are the kind of dynamic queues you get by default with Spring Python.

from springpython.jms inport DELIVERY_MODE _NON_PERS|I STENT
from springpython.jnms.core inport JnsTenpl ate, Text Message
from springpython.jms.factory inport WebSpher eMXConnecti onFactory

gmnanme = "QM 1"

channel = "SVRCONN. 1"
host = "192.168.1.121"
l'i stener _port = "1434"

exchange_queue = "TEST. 1"

The connection factory we're going to use.
factory = WebSpher eMQConnect i onFact ory(qm nanme, channel, host, |istener_port)

requesting_side = JnsTenpl ate(factory)
requesting_si de. defaul t _destinati on = exchange_queue

respondi ng_si de = JnsTenpl ate(factory)
respondi ng_si de. def aul t _desti nati on = exchange_queue

Create a dynam c queue.

(1.1.1.BUILD-20101109171232)

JMS Messaging

dyn_queue_nane = requesting_si de. open_dynam c_queue()

Note that we wap the whole conversation in a try/finally block as we nust
always cl ose a WebSphere MQ dynam ¢ queue.

try:
Create a request nessage.
nessage = Text Message("Hey, what's up on the other side?")
WebSphere MQ nessages sent to dynamic tenporary queues nust not
be persistent.
nessage. j ns_del i very_npde = DELI| VERY_MODE_NON_PERS| STENT
Tell the other side where to send responses.
nessage. jnms_reply_to = dyn_queue_nane
Send the request
requesti ng_si de. send(message)
Recei ve the request
request = respondi ng_si de.receive()
.. prepare the response ..
response = Text Message("A bit stormy today!")
response. j ms_del i very_node = DELI VERY_MODE_NON_PERSI STENT
.. and send our response to a jns_reply_to destination which as we know
is a dynam c queue in this exanple.
respondi ng_si de. send(r esponse, request.jns_reply_to)
Receive the response. It's being read as usual, as from any other queue,
there's no special JnsTenplate's nethod for getting messages
of f dynam c queues.
print requesting_side.receive(dyn_queue_nane)
finally:

request i ng_si de. cl ose_dynam c_queue(dyn_queue_nane)

We're not using an 10C so we need to shut down the connection factory oursel ves.
factory. destroy()

It's worth mentioning again that you must close WebSphere MQ dynamic queues yourself as Spring Python
won't do that for you - it's adight deviation from how Java JM S works.

8.5.4. Message converters

It's quite possible that you'll like to separate the code responsible for core IMS communication with outside
systems from the logic needed for converting your business domain's objects back and forth to strings needed
for passing into JmsTemplate's methods. Y ou may utilize your own converting classes for it or you can use the
Spring Python's converters for such a work. A converter is a subclass of
spri ngpyt hon. j ms. cor e. MessageConverter Which must implement at least one of the to_message or
from_message methods. There's nothing magical about MessageConverter objects and they won't do any
automatic convertions for you, they're just interfaces you can implement as you'll likely need some sort of
separation between the objects you deal with and the IMS API.

There's one difference you must take into account when using message converters - you don't use the standard
send and receive methods but dedicated convert_and_send and receive_and_convert ones. Other than that, the
JMS API and features are exactly the same.

The code below shows a sample usage of MessageConverters. Note that you don't need to implement both
to_message and from message if that's not appropriate in your situation however it makes sense for the
example below to handle requests and responses using only one converter object.

from springpython.jms.factory inport WebSpher eMConnecti onFactory
from springpython.jms.core inport JnmsTenpl ate, MessageConverter, TextMessage

Spring Python 77

JMS Messaging

gm name = "QM 1"

channel = " SVRCONN. 1"
host = "192.168. 1. 121"
i stener_port = "1434"

Note that it's the same queue so we're going to |later receive the same invoice we sent.
request _queue = response_queue = "TEST. 1"

One of the business donmin's objects our application deals wth.
cl ass | nvoi ce(object):
def __init_ (self, custoner_account_i d=None, nonth=None, anount=None):
sel f. cust omer _account _id = customer _account _id
self.month = nonth
sel f. amount = anount

def __str__ (self):

return "<% at %, custoner_account_id=%, nonth=%, anount=%>" % (
self.__class__.__name__, hex(id(self)), self.custonmer_account_id

sel f. month, sel f.anmount)

Let's imagine the other side of a JM5 link wants to receive and send CSV data
cl ass | nvoi ceConverter (MessageConverter):

def to_nessage(self, invoice):
"" Converts a business object to CSV.

text = ";".join((invoice.custonmer_account_id, invoice.nonth, invoice.anmount))
return Text Message(text)

def from nessage(self, nessage):
Produces a busi ness object out of CSV data.

custonmer _account _id, nmonth, anpunt = nessage.text.split(";")
i nvoi ce = I nvoice()

i nvoi ce. cust oner _account _id = customer_account _i d

i nvoi ce. nonth = nonth

i nvoi ce. ambunt = anount

return invoice

The connection factory we're going to use
factory = WebSpher eMXonnecti onFact ory(gm nane, channel, host, |istener_port)

Qur JnsTenpl ate
jms_tenplate = JnsTenpl at e(factory)

Here we tell the tenplate to use our converter.
i nvoi ce_converter = |nvoiceConverter()
j ms_t enpl at e. nessage_converter = invoice_converter

See how we're now dealing only with business objects at the JnsTenpl ate | evel

i nvoi ce = | nvoi ce("00033010118", "200909", "136.32")
jms_tenpl ate. convert_and_send(i nvoi ce, request_queue)

print jnms_tenplate.receive_and_convert (response_queue)

We're not using an 10oC so we need to shut down the connection factory oursel ves.
factory. destroy()

8.6springpython.jms.listener.SimpleMessagelListenerContainer
and background JMS listeners
SimpleM essagelistenerContainer is a configuration-driven component which is used to receive messages from

JMS destinations. Once configured, the container starts as many background listeners as requested and each
listener gets assigned a pool of threads to handle the incoming requests. The number of listeners started and

Spring Python 78

JMS Messaging

threads in a pooal is fixed upon the configuration is read and the container is started, they cannot be dynamically
atered in runtime.

The advantage of using SimpleM essagelL istenerContainer comes from the fact that al you need to do in order
to receive the messages is to create your own handler class and to configure the container, no JMS coding is
required so you're focusing on creating the business logic, not on the IMS boilerplate.

Table 8.3. Si npl eMessageli st ener Cont ai ner properties

factory A reference to a IMS connection factory; defaults to
None and must be set manually.

destination Name of a JMS destination to read the messages off.
Defaultsto None and must be set manually.

handler A reference to an object which will be receiving
messages read from the JMS destination. A handler
must implement handle(self, message) method, of
which the message argument is a TextMessage
instance. There is a convenience class,
springpython.jms.|istener. MessageHandl er,
which exposes such a method. The exact number of
handlers available for message processing is
controlled via the handlers per_listener property.
The handler parameter defaults to None and must be
set manually.

concurrent_listeners Sets a number of background processes that connect
to a JMS provider and read messages off the
destination. Default valueis 1.

handlers _per_listener Each concurrent listener is assigned a thread pool of a
fixed size, given by the handlers per_listener
parameter. Upon receiving a message, it will be
dispatched to a thread which will in turn invoke the
message handler's handle method. The pool's size
defaultsto 2.

wait_interva A value in milliseconds expressing how often each of
the listeners will check for the arrival of a new
message. Defaults to 1000 (1 second).

Here's an example showing SimpleMessagelistenerContainer in action together with YamlConfig's abstract
objects definitions. customer_queue, credit_account_queue and deposit_account_queue subclass the
listener_container abject which holds the information common to all definitions of IMS destinations. 4 listeners
will be assigned to each of the IMS destination, every listener will be assigned a pool of 5 threads for handling
the messages read; await interval of 700 milliseconds has been set.

obj ect s:
- object: connection_factory
cl ass: springpython.jns.factory. WebSpher eMXonnect i onFact ory
properties:
gueue_manager: QM 1
channel : SVRCONN. 1

(1.1.1.BUILD-20101109171232)

JMS Messaging

host: 192.168.1.121
l'i stener _port: "1434"

- object: nessage_handl er
cl ass: app. M\yMessageHandl er

- object: listener_container
abstract: True
cl ass: springpython.jms.|istener.Si npl eMessageli st ener Cont ai ner
concurrent _|isteners: "4"
handl ers_per _|istener: "5"
wait_interval: "700"
properties:
factory: {ref: connection_factory}
handl er: {ref: nmessage_handl er}

- object: custoner_queue
parent: |istener_container
properties:

destination: CUST. QUEUE. 1

- object: credit_account_queue
parent: |istener_container
properties:

destinati on: CREDACCT. QUEUE. 1

- object: deposit_account_queue
parent: |istener_container
properties:

destinati on: DEPACCT. QUEUE. 1

Here's a Python code using the above 10C configuration. Note that the fact of reading a configuration alone
suffices for IMS listenersto be started and run in the background of the main application.

app. py

from springpyt hon. config inport Yam Config
from springpyt hon. cont ext inport ApplicationCont ext

cl ass MyMessageHandl er (obj ect):
def handl e(sel f, nessage):
print "Got nessage!", nessage

i f nane =" _ main

Obtaining a context will automatically start the Sinpl eMessageli st ener Cont ai ner
and its listeners in background
contai ner = ApplicationContext(Yam Config("./context.ym"))

whi l e True:
Here goes the main application's |ogic, wiich does nothing in this case
However, the listeners have been already started and i ncom ng nessages
will be passed in to MyMessageHandl er instance (as configured in Yanm Config).
pass

8.7. springpython.jms.core.TextMessage

TextMessage objects encapsul ate the data being sent to or received from a JMS provider. Even if you use the
plain jms_template.send("Foobar") to send an ordinary text, there's still a TextMessage instance created
automatically underneath for you.

If al you need from JMS is simply to send and receive some text then you're not likely to be required to use
TextMessages. However, if you have to set or read JM S attributes or you're interested in setting custom JMS
properties then TextMessage is what you're looking for.

In Spring Python there are no clumsy setters and getters as in Java JMS. If you need to set the property of a

(1.1.1.BUILD-20101109171232)

JMS Messaging

message, you just write it, like for instance message.jms correlation id = "1234567". Here's the list of all
TextMessage's attributes along with their explanation and usage notes.

Table8.4. spri ngpyt hon. j ms. cor e. Text Message default attributes

text The message contents, the actual business payload
carried by a message. May be both read and written
to. For messages sent to a JMS provider it must be
either a string or a unicode object encodable into
UTF-8.

The following two code snippets are equivalent:

nmessage = Text Message(" Hey")

message = Text Message()
message. text = "Hey"

Here's how to get the content of a message received
by a JmsTemplate.

.. skip creating the connection factory and a JnmsTenpl ate

message = jns_tenpl ate. receive()
print nessage.text

jms_correlation_id Equivalent to Javas JMSCorrdationlD message
header. It must be a string instance when set manually
- a good way to produce correlation identifiers is to
use the Python's uui d4 type, e.g.:

stdlib
fromuuid inport uuid4

Spring Python
from springpython.jns.core inport Text Message

Prapare the JMS correlation ID
jms_correlation_id = uui d4(). hex

message = Text Message(" Howdy")
message. jns_correlation_id = jns_correlation_id

Now t he message can be sent with a JMS correlation |ID suct
which is a 128 bits long identifier.

jms_delivery_mode Equivaent to Java's IMSDeliveryMode, can be both
read and written to and must be equal to one of the
following values

springpyt hon. j ns. DELI VERY_MODE_NON_PERSI STENT,
springpyt hon. j ms. DELI VERY_MODE_PERSI STENT Or
springpyt hon. j ms. DEFAULT_DELI VERY_MODE. The
default value - DEFAULT_DELI VERY_MODE - eguals to
DELI VERY_MODE_PERSI STENT.

Spring Python 81

JMS Messaging

jms_destination Equivalent to Java's IMSDestination, automatically
populated by JnsTemplate objects on send or receive
time. May be read from but must not be set manually.

jms_expiration Same as Java's IMSExpiration - alow for a message
to expire after a certain amount of time. The value is
automatically set by JmsTemplate for received
messages. For messages being sent the time
expressed isin milliseconds, as in the following code:

message = Text Message("l will expire in half a second")

Set the nessage's expiration tine to 500 s
message. j ms_expiration = 500

jms_message id Same as Java's IMSMessagel D. Automatically set by
JmsTemplate for received messages, may be set
manually but the value will be ignored by the IMS
provider.

jms_priority Equivaent to Javas JIMSPriority, may be set to an
integer value. If not set manually, the value will be
automatically computed by the JMS provider. An
incoming message will have the value set as given by
the IMS provider.

jms_redelivered Same as Java's IMSRedelivered header. Should not
be set manually. Default value for incoming messages
is False; for messages received from WebSphere MQ
(which is currently the only supported JM S provider)
it will be True if the underlying MQ message's
BackoutCount attributeis 1 or greater.

jms reply to Equivalent to Java's IM SReplyTo, the name of a IMS
destination to which responses to the currently sent
message should be delivered.

nmessage = Text Message("Pl ease, reply to nme.")

Set the reply to queue
message. jms_reply_to = "REPLY. TO. QUEUE. 1"

See here for an example of how to use jms reply to
in request/reply scenarios.

jms_timestamp Same as Javas JMSTimestamp, the timestamp of a
message returned as a number of milliseconds with a
centiseconds precision. Should not be set manually.

max_chars_printed Specifies how many characters of the business
payload (the . text attribute) will be returned by the
TextMessage instance's __str__ method, which is
used, for instance, for logging purposes. Default
valueis 100 characters.

Consider the code below, in both cases the message's

Spring Python 82

JMS Messaging

content is the same, the messages differ only by the
value of the max_chars_pri nt ed attribute.

Spring Python
from springpython.jms.core inport TextMessage

payl oad = "Busi ness payload. " * 8

msg = Text Message(payl oad)
nsg. max_chars_printed = 50

print nsg
WIl show in the console

JMS nessage cl ass: jnms_text
jms_delivery_node: 2

j ms_expi ration: None
jme_priority: None
j ms_message_i d: None
j ms_ti nest anp: None
jms_correl ation_id: None
j ms_destination: None
jms_reply_to: None
j ms_redelivered: None

Busi ness payl oad. Business payl oad. Busi ness payl o
Anot her 94 character(s) onmitted

Spring Python
from springpython.jms.core inport TextMessage

payl oad = "Busi ness payload. " * 8

msg = Text Message(payl oad)
nsg. max_chars_printed = 130

print nsg
WIIl show in the console

JM5 nmessage cl ass: jns_text
jms_delivery_node: 2

j ms_expi ration: None
jms_priority: None
j ms_nessage_i d: None
j ms_ti nest anp: None
jms_correl ation_id: None
j me_desti nati on: None
jms_reply_to: None
j ms_redel i vered: None

Busi ness payl oad. Busi ness payl oad. Busi ness payl oad. Busi ne
Anot her 14 character(s) omitted

Attributes shown in the table above are standard IM S headers, available regardless of the IMS provider used.
For WebSphereMQ - which is currently the only JMS provider supported by Spring Python - following
attributes are aso available: JMS IBM_Report_Exception, JMS IBM_Report_Expiration,
JMS IBM_Report COA, JMS IBM_Report COD, JMS IBM_Report PAN, JMS IBM_Report_NAN,
JMS IBM_Report Pass Msg ID, JMS IBM_Report Pass Correl ID, JMS IBM_Report_Discard_Msg,
IMSXGrouplD, JIMSXGroupSeq, JMS IBM_Feedback, JMS IBM_Last Msg_In_Group, IJMSXUserID,
JMS IBM_PutTime, IMS IBM_PutDate and IMSXAppID. Refer to the IBM's Java JMS documentation for
info on how to use them.

Creating custom JMS properties is simply a matter of assigning a value to an attribute, there are no special
methods such as set Stri ngProperty/ get StringProperty Which are used in Java JMS, thus the following

(1.1.1.BUILD-20101109171232)

JMS Messaging

code will create a custom MESSAGE_NAME property which can be read by get St ri ngProperty on the Java
side.

Spring Python

from springpython.jms.core inport TextMessage

nmsg = Text Message("Hello!")
nsg. MESSAGE_NAME = "Hel | oRequest "

Observe how custom properties will be printed to the console aong with standard IM S headers:

Spring Python
from springpython.jns.core inport Text Message

nsg = Text Message("Hello!")

nsg. MESSAGE_NAME = "Hel | oRequest "
nsg. CLI ENT = " CRM'

nsg. CUSTOMER | D = "201888228"
print msg

WIl show

JMS nmessage cl ass: jns_text
jms_delivery_node: 2

j me_expiration: None
jms_priority: None
j me_nessage_i d: None
j ms_ti mest anp: None
jms_correlation_id: None
j ms_desti nati on: None
jms_reply_to: None
jms_redel ivered: None
CLI ENT: CRM

CUSTOVER | D: 201888228
MESSAGE_NAME: Hel | oRequest
Hel | o!

Not all TextMessage's attributes can be set to a custom value, the exact list of reserved attributes' names is
available as spri ngpyt hon. j ms. core. reserved_attri but es. There's avery slim chance you'll ever encounter
the conflict with your application's message attributes, nevertheless be sure to check the list before using
custom JM S properties in your code.

8.8. Exceptions

spri ngpyt hon. j ms. JMSExcept i on iS the base exception class for all IMS-related issues that may be raised by
Spring Python's JMS and a par of its specidized subclasses is aso available
spri ngpyt hon. j ms. NoMessageAvai | abl eExcepti on and spri ngpyt hon. j ns. WebSpher eMQIMSExcept i on.

NoMessageAvailableException is raised when a call to receive or receive_and convert timeouts, which
indicates that there's no message available for a given IMS destination.

WebSphereM QIM SException is raised when the underlying error is known to be caused by a cal to
WebSphere MQ API, such as a call to connect to a queue manager. Spring Python tries to populate these
attributes of a WebSphereM QJIM SException object when an error condition arises:

message

eompletion_code

(1.1.1.BUILD-20101109171232)

JMS Messaging

feason_code

Note that message, completion _code and reason_code are all optional and there's no guarantee they will be
actually returned. Should you caught a WebSphereM QJM SException, you should always check for their
existence before making any use of them.

8.9. Logging and troubleshooting

Spring Python's IMS uses standard Python's | oggi ng module for emitting the messages. In general, you can
expect IMS to behave sane, it won't overflow your logs with meaningless entries, e.g. if you configure it to log
the messages at the ERROR level then you'll be notified of only truly erratic situtations.

In addition to I oggi ng's builtin levels, IMS uses one custom level - springpython. util. TRACEL, enabling
TRACE1 will degrade the performance considerably and will result in a huge number of messages written to
the logs. Use it sparingly at troubleshooting times when you'd like to see the exact flow of messages, raw bytes
and JM S headers passing by the Spring Python's IMS classes involved. Do not ever enable it in production
environments unless you have a very compelling reason and you're sure you're comfortable with paying the
performance penalty. Consider using the | oggi ng. DEBUG level instead of TRACE1L if al you're after is simply
seeing the messages' payload.

IMS loggers currently employed by Spring Python are
springpython. jns. factory. WebSpher eMXonnect i onFactory,
springpython.jns.listener.Si npl eMessagelLi st ener Cont ai ner and

springpython.jmns.|istener. WebSpher eMQLi st ener (LI STENER | NSTANCE_I D) .

Here's how the WebSphere MQ connection factory's logger can be configured to work at the | NFOlevel:

stdlib

i nport | oggi ng

log_format = "% asctine)s - %l evel nane)s - Y% process)d - %threadNane)s - % nane)s - % nessage)s"”
formatter = | oggi ng. Formatter (| og_format)

handl er = | oggi ng. StreanHandl er ()
handl er. set Formatter (fornmatter)

j ms_l ogger = | oggi ng. get Logger ("springpython.jms. factory. WebSpher eMConnect i onFact ory")

j ms_l ogger . set Level (I evel =l oggi ng. | NFO
j ms_I| ogger . addHandl er (handl er)

Here's how to configure it to log messages at the TRACEL level:

stdlib
i mport | oggi ng

Spring Python
from springpython.util inport TRACEl

log_format = "% asctine)s - %l evelnane)s - % process)d - %threadNane)s - % nane)s - % nessage)s"
formatter = | oggi ng. Formatter (|l og_format)

handl er = | oggi ng. St reanHandl er ()
handl er . set Formatter (formatter)

j ms_| ogger = | oggi ng. get Logger ("spri ngpython. jns. fact ory. WebSpher eMConnect i onFact ory")

j ms_l ogger . set Level (| evel =TRACEL)

Spring Python 85

JMS Messaging

j ms_| ogger . addHandl er (handl er)

springpython. jms. |istener. Si mpl eMessageli st ener Cont ai ner IS the logger used by the JMS listener
container itself.

Each WebSphere MQ listener is assigned a
springpython.jns.|istener. WbSpher eMQLi st ener (LI STENER | NSTANCE_| D) logger, where
LISTENER_INSTANCE_ID is an identifier uniquely associated with a listener to form a full name of a logger,
such as springpyt hon. j ms. | i st ener. WebSpher eMQLi st ener (0xc7f 5e0) . TO be precise, its value is obtained
by invoking hex(id(self)) on the listener's instance. Note that the value is not guaranteed to be globally unique,
it'sjust an identifier of the Python object so its value may be very well reused across application's restarts.

How much information is being logged depends on the logging level, the average message size, the messages
max_chars_pri nt ed attribute value and the message rate.

Here's an estimation of how fast log files will grow depending on the logging level. During the test, the
message size was 5kB, there were a total of 10,000 messages sent, the max_char s_pri nt ed attribute had value
of 100 and the log entries were written to an ordinary log file.

ERROR
P NFO
BEBUGTax_chars_pri nt ed

TRACE1tenfol dDEBUG

Spring Python 86

Chapter 9. Spring Python's plugin system

Spring Python's plugin system is designed to help you rapidly develop applications. Plugin-based solutions
have been proven to enhance developer efficiency, with examples such as Grails and Eclipse being market
leaders in usage and productivity.

This plugin solution was mainly inspired by the Grails demo presented by Graeme Rocher at the SpringOne
Americas 2008 conference, in which he created a Twitter application in 40 minutes. Who wouldn't want to have
something similar to support Spring Python development?

9.1. Introduction

Have you consider ed submitting your plugin asa Spring Extension?

Spring Extensionsis the officia incubator process for SpringSource. Y ou can always maintain your own plugin
separately, using whatever means you wish. But if want to get a larger adoption of your plugin, name
association with SpringSource, and perhaps one day becoming an official part of the software suite of
SpringSource, you may want to consider looking into the Spring Extensions process.

Spring Python will manage an approved set of plugins. These are plugins written by the committers of Spring
Python and are verified to work with an associated version of the library. These plugins are also hosted by the
same services used to host Spring Python downloads, meaning they have the same level of support as Spring
Python.

However, being an open source framework, developers have every right to code their own plugins. We fully
support the concept of 3rd party plugins. We want to provide as much support in the way of documentation and
extension points for you to develop your own plugins as well.

9.2. Coily - Spring Python's command-line tool

Caily is the command-line tool that utilizes the plugin system. It is similar to grails command-line tool, in that
through a series of installed plugins, you are able to do many tasks, including build skeleton apps that you can
later flesh out. If you look at the details of this app, you will find a sophisticated, command driven tool to built
to manage plugins. The real power isin the plugins themselves.

9.2.1. Commands

To get started, all you need is acopy of coily installed in some directory located on your path.

% coily --help

The results should list available commands.

Coily - the command-1ine managenment tool for Spring Python

Copyri ght 2006-2008 SpringSource (http://springsource.con), Al Rights Reserved
Li censed under the Apache License, Version 2.0

Spring Python 87

http://grails.org/
http://eclipse.org
http://www.springsource.org/extensions

Spring Python's plugin system

Usage:

coi ly [command]

--help
--list-installed-plugins
--list-avail abl e- pl ugi ns
--install-plugin [nane]
--uninstall-plugin [nane]
--reinstall-plugin [nane]

print this hel p nessage

list currently installed plugins
l'ist plugins avail able for downl oad
install coily plugin

uninstall coily plugin

reinstall coily plugin

--help - Print out the help menu being displayed

--list-installed-plugins - list the plugins currently installed in this account. It isimportant to know that each
plugin creates a directly underneath the user's home directory in a hidden directory . spri ngpyt hon. If you
delete this entire directory, you have effectively uninstalled all plugins.

--list-available-plugins - list the plugins available for installation. Coily will check certain network
locations, such as the S3 site used to host Spring Python downloads. It will also look on the loca file
system. Thisisin case you have a checked out copy of the plugins source code, and want to test things out
without uploading to the network.

--ingtall-plugin - install the named plugin. In this case, you don't have to specify a version number. Coily
will figure out which version of the plugin you need, download it if necessary, and finally copy it into
~/ . spri ngpyt hon.

--uninstall-plugin - uninstall the named plugin by deleting its entry from ~/ . spri ngpyt hon

--reinstall-plugin - uninstall then install the plugin. Thisis particulary useful if you are working on a plugin,
and need a shortcut step to deploy.

In this case, no plugins have been installed yet. Every installed plugin will list itself as another available
command to run. If you have already installed the gen-cherrypy-app plugin, you will seeit listed.

Coily - the command-|ine managenent tool for Spring Python

Copyri ght 2006-2008 SpringSource (http://springsource.con), Al Rights Reserved

Li censed under the Apache License,

Usage:

coi ly [command]

--hel p

--list-install ed-plugins
--list-avail abl e-pl ugi ns
--install-plugin [nane]
--uninstall-plugin [nane]
--reinstal |l -plugin [nane]
--gen-cherrypy-app [nane]

Version 2.0

print this hel p nessage

list currently installed plugins

l'ist plugins avail able for downl oad

install coily plugin

uninstall coily plugin

reinstall coily plugin

plugin to create skeleton CherryPy applications

Y ou should notice an extra option listed at the bottom: gen-cherrypy-app is listed as another command with one
argument. Later on, you can read official documentation on the existing plugins, and also how to write your

own.

9.3. Officially Supported Plugins

This section documents plugins that are developed by the Spring Python team.

Spring Python 88

Spring Python's plugin system

9.3.1. gen-cherrypy-app

This plugin is used to generate a skeleton CherryPy application based on feeding it a command-line argument.

9.3.1.1. External dependencies

gen-cherrypy-app plugin requires the installation of CherryPy 3.

% coily --gen-cherrypy-app tw tterclone

This will generate a subdirectory twi ttercl one in the user's current directory. Inside twitterclone are several
files, including t wi t t er cl one. py. If you run the app, you will see aworking CherryPy application, with Spring

Python security in place.

% cd twittercl one
% pyt hon twitterclone. py

Y ou can immediately start modifying it to put in your features.

9.4. Writing your own plugin

9.4.1. Architecture of a plugin

A plugin is pretty simple in structure. It is basically a python package with some special things added on.

gen-cherrypy-app plugin demonstrates this.

El:j gen-cherrypy-app
|:j images

=

[view.py 385 12/4/08 4:04 PM gregturn

The special things needed to define a plugin are as follows:

[} _init__.py 385 12/4/08 4:04 PM gregturn

ﬂ, app_context,.py 385 12/4/08 4:04 PM gregturn
----- [F} cherrypy-app.py 385 12/4/08 4:04 PM gregturn
: i_gj, controller.py 385 12/4/08 4:04 PM gregturn

* A oot folder with the same name asyour pluginanda__i nit __. py, making the plugin a python package

e A package-level variable named __descri ption__

This attribute should be assigned the string value description you want shown for your plugin when coily

--helpisrun.

* A package-level function named either cr eat e or appl y

* If your plugin needs one command line argument, define acr eat e method with the following signature:

Spring Python

89

http://cherrypy.org
http://cherrypy.org

Spring Python's plugin system

def create(plugin_path, nane)
* If your plugin doesn't need any arguments, define an appl y method with the following signature:
def appl y(pl ugi n_pat h)

In either case, your plugin gets passed an extra argument, pl ugi n_pat h, which contains the directory the
pluginisactualy instaled in. Thisistypically so you can reference other files your plugin needs access to.

What does " package-level" mean?

.

"8

The code needs to be in the __init__. py file. This file makes the enclosing directory a python
package.

9.4.2. Case Study - gen-cherrypy-app plugin

gen-cherrypy-app is a plugin used to build a CherryPy web application using Spring Python's feature set. It
saves the developer from having to re-configure Spring Python's security module, coding CherryPy's engine,
and so forth. This alows the developer to immediately start writing business code against a working
application.

Using this plugin, we will de-construct this simple, template-based plugin. This will involve looking
line-by-line at gen- cherrypy-app/ __init__. py.

9.4.2.1. Source Code

Copyri ght 2006- 2008 SpringSource (http://springsource.conm, Al Rights Reserved

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE-2. 0

Unl ess required by applicable |law or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perm ssi ons and
limtations under the License.

import re
i nport os
i mport shutil

__description__ = "plugin to create skeleton CherryPy applications"

def create(plugin_path, nane):
i f not os.path. exists(nane):
print "Creating CherryPy skeleton app %" % nanme
os. makedi r s(nane)

Copy/transformthe tenplate files
for file_nanme in ["cherrypy-app.py", “controller.py", "view py", "app_context.py"]:
input_file = open(plugin_path + "/" + file_nane).read()

lterate over a list of patterns, perform ng string substitution on the input file
patterns_to_replace = [("nanme", nane), ("properNane", nane[O0].upper() + nanme[1:])]
for pattern, replacenment in patterns_to_replace:

input_file = re.compile(r"\$\{%}" % pattern).sub(replacenment, input_file)

(1.1.1.BUILD-20101109171232)

http://cherrypy.org

Spring Python's plugin system

output _filename = name + "/" + file_name
if file_name == "cherrypy-app. py":
output _filename = name + "/" + name + ".py"
app = open(output_filenane, "w')
app.write(input_file)
app. cl ose()
Recursively copy other parts
shutil.copytree(plugin_path + "/images", name + "/" + "images")
el se:
print "There is already sonething called %. ABORT!" % nane

9.4.2.2. Deconstructing the factory

¢ The opening section shows the copyright statement, which should tip you off that thisis an official plugin.

e _ description__isarequired variable.

__description__ = "plugin to create skel eton CherryPy applications"

It contains the description displayed when a user runs:

% coily --help

Usage: coily [conmand]

--gen-cherrypy-app [nane] plugin to create skel eton CherryPy applications

¢ Opening line defines cr eat e with two arguments.

def create(plugin_path, nane):

The arguments allow both the plugin path to be fed along with the command-line argument that is filled in
when the user runs the command:

% coily --gen-cherrypy-app [nane]

It isimportant to realize that pl ugi n_pat h is needed in case the plugin needs to refer to any files inside its
installed directory. Thisis because plugins are not installed anywhere on the PYTHONPATH, but instead, in the
user's home directory underneath . spri ngpyt hon.

This mechanism was chosen because it gives users an easy ability to pick which plugins they wish to use,
without requiring system admin power. It aso eliminates the need to deal with multiple versions of plugins
being installed on your PYTHONPATH. This provides maximum flexibility which is needed in a development
environment.

» This plugin works by creating a directory in the user's current working directory, and putting all relevant
files into it. The argument passed into the command-line is used as the name of an application, and the

(1.1.1.BUILD-20101109171232)

Spring Python's plugin system

directory created has the same name.

i f not os.path. exists(nane):
print "Creating CherryPy skeleton app %" % nanme
os. makedi r s(nane)

However, if the directory already exists, it won't proceed.

el se:
print "There is already sonething called %. ABORT!" % nane

This plugin then iterates over alist of filenames, which happen to match the names of files found in the
plugin's directory. These are essentially template files, intended to be copied into the target directory.
However, the files are not copied directly. Instead they are opened and read into memory.

Copy/transformthe tenplate files
for file_name in ["cherrypy-app.py", "controller.py", "view py", "app_context.py"]:
input_file = open(plugin_path + "/" + file_nane).read()

Then, the contents are scanned for key phrases, and substituted. In this case, the substitution is a variant of
the name of the application being generated.

lterate over a list of patterns, perform ng string substitution on the input file
patterns_to_replace = [("nane", nane), ("properNane", nane[O0].upper() + nanmg[1l:])]
for pattern, replacenent in patterns_to_replace:

input_file = re.compile(r"\$\{%}" % pattern).sub(replacenment, input_file)

The substituted content is written to a new output file. In most cases, the original filename is also the target
filename. However, the key file, cher rypy- app. py isrenamed to the application's name.

output _filename = nanme + "/" + file_name
if file_name == "cherrypy-app. py":
output _filenanme = nane + "/" + nane + ".py"

app = open(output_filenane, "w')

app.write(input_file)
app. cl ose()

Finally, the images directory is recursively copied into the target directory.

Recursively copy other parts
shutil.copytree(plugin_path + "/inmages", name + "“/" + "inmages")

9.4.2.3. Summary

All these steps effectively copy a set of files used to template an application. With this template approach, the
major effort of developing this plugin is spent working on the templates themselves, not on this template
factory. While this is mostly working with python code for a python solution, the fact that this is a template
requires reinstalling the plugin everytime a change is made in order to test them.

Users are welcome to use gen-cherypy-app's __init__. py file to generate their own template solutions, and
work on other skeleton tools or solutions.

Spring Python 92

Chapter 10. Samples

10.1. PetClinic

PetClinic is a sample application demonstrating the usage of Spring Python.

e It uses CherryPy as the web server abject.

e A detailed design document (NOTE: find latest version, and click on raw) is part of the source code. You
can read it from here or by clicking on a hyperlink while running the application.

10.1.1. How to run

Assuming you just checked out a copy of the source code, here are the steps to run PetClinic.

bash$ cd /path/you/ checked/ out/springpyt hon
bash$ cd sanpl es/petclinic
bash$ python configure. py

At this point, you will be prompted for MySQL's root password. Thisis NOT your system's root password. This
assumes you have aMySQL server running. After that, it will have setup database petclinic.

bash$ cd cherrypy
bash$ pyt hon petclinic. py

This assumes you have CherryPy 3 installed. It probably won't work if you are still using CherryPy 2. NOTE: If
you are using Python 2.5.2+, you must install CherryPy 3.1.2+. The older version of CherryPy (3.1.0) only
works pre-2.5.2.

Finaly, after launching it, you should see a nice URL at the bottom: http://localhost:8080. Well, go ahead!
Things should look good now!

Spring Python 93

http://www.cherrypy.org
https://fisheye.springframework.org/browse/se-springpython-py/trunk/springpython/samples/petclinic/cherrypy/html/petclinic.html
http://www.cherrypy.org

File Edit WView History Bookmarks Tools Help

- B - @ ﬂ_l‘ LI http:/flocalhost:8001/ || B[]

W Wikipedia [Linux Man Pages [G|rec.games.pinball [| E-Mail [|Vonage []Stargate »

A4 PetClinic - Spring Python - T... [| PetClinic :: a Spring Pyt... [j -

SpringPython s
pringr’y =

Welcome

Find owner

Display all veterinarians:

Detailed description of this demo

Home Spring Python CherryPy

Build time: 0.003s, Page size: 1.51KB

http://localhost:8001/vets Adblock

Snapshot of PetClinic application

10.2. Spring Wiki

Spring Wiki is a wiki engine based that uses mediawiki's markup language. It utilizes the same stylesheets to
have avery wikipedia-like fedl to it.

TODO: Add persistence. Currently, Spring Wiki only stores content in current memory. Shutting it down will
cause all changesto be lost.

10.3. Spring Bot

This article will show how to write an IRC bot to manage a channel for your open source project, like the one |
have managing #springpython, the IRC chat channel for Spring Python.

10.3.1. Why write a bot?

| read an article, Building a community around your open source project, that talked about setting up an IRC
channel for your project. Thisis aroute to support existing users, and allow them to work with each other.

Spring Python 94

https://scifi.homelinux.net/coily
https://scifi.homelinux.net/coily
http://springpython.webfactional.com
http://www.redhatmagazine.com/2007/09/21/building-a-community-around-your-open-source-project/

Samples

| became very interested in writing some IRC bot, and | since my project is based on Python, well, you can
probably guess what language | wanted to writeit in.

10.3.2. IRC Library

To build abot, it paysto have use an aready written library. | discovered python-irclib.

For Ubuntu users:

% sudo apt-get install python-irclib

This bot also sports aweb page using CherryPy. Y ou also need to install that as well.

10.3.2.1. Articles

Well, of course | started reading. The documentation from the project's web site was minimal. Thankfully, |
found some introductory articles that work with python-irclib.

* http://www.devshed.com/c/a/Python/IRC-on-a-Higher-Level/
e http://mww.devshed.com/c/a/Python/IRC-on-a-Higher-L evel -Continued/

e http://www.devshed.com/c/a/Python/IRC-on-a-Higher-L evel -Concluded/

10.3.3. What | built

Using this, | managed to get something primitive running. It took me a while to catch on that posting private
messages on a channel name instead of a user is the way to publicly post to a channel. | guessit helped to trip
through the IRC RFC manual, before catching on to this.

At this stage, you may wish to get familiar with regular expressions in Python. You will certainly need thisin
order to make intelligent looking patterns. Anything more sophisticated would probably require PLY .

What | really like is that fact that | built this application in approximately 24 hours, counting the time to learn
how to use python-irclib. | already knew how to build a Spring Python/CherryPy web application. The history
pages on this article should demonstrate how long it took.

NOTE: Thiswhole script is contained in one file, and marked up as:

Copyri ght 2006-2008 SpringSource (http://springsource.con), Al Rights Reserved

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perm ssions and
limtations under the License.

Spring Python 95

http://sourceforge.net/projects/python-irclib
http://cherrypy.org
http://www.irchelp.org/irchelp/rfc/rfc.html
http://www.amk.ca/python/howto/regex/
http://www.dabeaz.com/ply/

Samples

10.3.3.1. IRC Bot

So far, this handy little bot is able to monitor the channel, log all communications, persistently fetch/store
things, and grant me operator status when | return to the channel. My next task isto turn it into aweb app using
Spring Python. That should let me have aweb page to go along with the channel!

class DictionaryBot (irchot. SingleServer| RCBot):

def __init__(self, server_list, channel, ops, logfile, nicknane, real nane):
ircbot.SingleServerl RCBot. init__(self, server_list, nicknanme, real nane)
sel f.datastore = "%. data" % sel f._ni ckname
sel f. channel = channe
self.definition = {}
try:

f = open(self.datastore, "r")
self.definition = cPickle.load(f)
f.close()
except | CError:
pass
self.whatlsR = re.conpile(",2\s*[WV [Hh] [Aa] [Tt]\s*[li][Ss]\s+([\w]+)[?]?")
self.definitionR = re.conmpile(", 2\s*([\w J+)\s+[Ii][Ss]\s+(.+)")
sel f. ops = ops
self.logfile = logfile

def on_wel come(sel f, connection, event):
"""This event is generated after you connect to an irc server, and shoul d be your signal to join your te
connection.join(sel f.channel)

def on_join(self, connection, event):
"""This catches everyone who joins. In this case, nmy bot has a |list of whomto grant op status to when t
sel f._| og_event (event)
source = event.source().split("!")[0]
if source in self.ops:
connecti on. node(sel f.channel, "+o0 %" % source)

def on_node(sel f, connection, event):
"""No real action here, except to log locally every node action that happens on ny channel."""
sel f. | og_event (event)

def on_pubnsg(sel f, connection, event):
"""This is the real nmeat. This event is generated everytine a nessage is posted to the channel."""
sel f._| og_event (event)

Capture who posted the nesssage, and what the nessage was.
source = event.source().split("!")[0]
argunments = event. argunents()[0]

Some nessages are neant to signal this bot to do sonething
if argunents.lower().startswith("!%" % self._nicknane):
"What is xyz" command
mat ch = sel f.what | sR search(argunents[| en(sel f._nicknane) +1:])
i f match:
sel f. _| ookup_definition(connection, match. groups()[0])
return

"xyz is blah blah" command

mat ch = sel f.definitionR search(argunents[len(self._nicknane)+1:])

i f match:
sel f._set_definition(connection, match. groups()[0], match. groups()[1])
return

There are al so sone shortcut commands, so you don't always have to address the bot.
if arguments.startswith("!"):
match = re.conpile("!([\w]+)").search(argunents)
i f match:
sel f. _| ookup_definition(connection, match. groups()[0])
return

def getDefinitions(self):
"""This is to support a parallel web app fetching data fromthe bot."""
return self.definition

def _log_event(self, event):
"""Log an event to a flat file. This can support archiving to a web site for past activity."""
f = open(self.logfile, "a")
f.wite("%::%::%::%\n" % (event.eventtype(), event.source(), event.target(), event.argunents()))

(1.1.1.BUILD-20101109171232)

http://wikipedia.org/wiki/Spring Python

Samples

f.close()

def _| ookup_definition(self, connection, keyword):
"""Function to fetch a definition fromthe bot's dictionary."""
if keyword.lower() in self.definition
connection. privnsg(self.channel, "% is %" %self.definition[keyword.|ower()])
el se:
connection. privnsg(sel f.channel, "I have no i dea what % neans. You can tell nme by sending '!%, %

def _set_definition(self, connection, keyword, definition):
"""Function to store a definition in cache and to disk in the bot's dictionary."""
sel f.definition][keyword.lower()] = (keyword, definition)
connection. privnsg(sel f.channel, "CGot it! % is %" %self.definition[keyword.lower()])
f = open(self.datastore, "w')
cPi ckl e. dump(sel f.definition, f)
f.close()

I have trimmed out the instantiation of this bot class, because that part isn't relevant. You can go and
immediately reuse this bot to manage any channel you have.

10.3.3.2. Web App

WEell, after getting an IRC bot working that quickly, | want a nice interface to see what it is up to. For that, |
will use Spring Python and build a Spring-based web app.

def header():
"""Standard header used for all pages"""
return """
<l--

Coily :: An | RC bot used to manage the #springpython irc channel (powered by CherryPy/ Spring Python)
S

<htm >
<head>
<title>Coily :: An | RC bot used to nanage the #springpython irc channel (powered by CherryPy/Spring Pytf
<style type="text/css">
td { padding: 3px; }
di v#t op {position:absolute; top: Opx; left: Opx; background-col or: #E4EFF3; hei ght: 50px; wi
di v#i mage {position:absolute; top: 50px; right: 0% background-image: url (inages/spring_pytt
</styl e>
</ head>

<body>
<di v id="top"> </ di v>
<di v id="image"> </ di v>
<br clear="all">
<p> </ p>

def footer():
"""Standard footer used for all pages."""
return """
<hr >
<tabl e styl e="wi dt h: 100% ><tr>
<t d>Hone</ A></td>
<td style="text-align:right;color:silver">Coily :: a <a href="http://springpython.webfactional.c
</tr></tabl e>

</ body>

def markup(text):
"""Convert any http://xyz references into real web Iinks."""
httpR = re.conmpile(r"(http://[\w.:/?2-1*\w)")
al teredText = httpR sub(r' \1', text)
return alteredText

class CoilyView
"""Presentation |ayer of the web application."""

(1.1.1.BUILD-20101109171232)

http://springpython.webfactional.com

Samples

def __init__ (self, bot = None):
"""Inject a controller object in order to fetch live data."""
sel f. bot = bot

@herrypy. expose

def index(self):
"""CherryPy will call this method for the root URI ("/") and send
its return value to the client."""

return header() + """
<H2>Wel conme</ H2>

<p>
H, I"'mCoily! I'ma bot used to manage the | RC channel <a href="irc://irc.ubuntu.coni#springpython"
<p>
If you visit the channel, you may find | have a lot of information to offer while you are there. I|f
<smal | >
<TABLE border="1">
<TH>Command</ TH>
<TH>Descri pti on</ TH>
<TR>
<TD>!coily, what is <i>xyz</i>?</TD>
<TD>This is how you ask ne for a definition of sonething.</TD>
</ TR>
<TR>
<TD>! <i >xyz</i></TD>
<TD>This is a shortcut way to ask the same question. </ TD>
</ TR>
<TR>
<TD>!coily, <i>xyz</i> is <i>sonme definition for xyz</i></TD>
<TD>This is how you feed me a definition.</TD>
</ TR>
</ TABLE>
</smal | >
<p>

To save you fromhaving to query nme for every current definition | have, there is a link on this wekt
that lists all my current definitions. NOTE: These definitions can be set by other users.

<p>

List current definitions

<p>

"""+ footer()

@herrypy. expose
def listDefinitions(self):
resul ts = header ()
results += """
<smal | >
<TABLE border="1">
<TH>Keywor d</ TH>
<TH>Defini tion</ TH>

for key, value in self.bot.getDefinitions().itens():
results += markup("""
<TR>
<TD>%s</ TD>
<TD>%s</ TD>
</ TR>
" % (val ue[0], value[1]))
results += "</ TABLE></snal | >"
results += footer()
return results

10.3.3.3. Putting it all together

Well, so far, | have two useful classes. However, they need to get launched inside a script. This means objects
need to be instantiated. To do this, | have decided to make this a Spring app and use inversion of control.

So, | defined two contexts, one for the IRC bot and another for the web application.

10.3.3.3.1. IRC Bot's application context

cl ass Coil yl RCServer (Pyt honConfi g):
"""This container represents the context of the IRC bot. It needs to export information, so the web app can

Spring Python 98

http://wikipedia.org/wiki/inversion of control

Samples

def __init_ (self):
super (Coi | yl RCServer, self).__init_ ()

@j ect
def renoteBot (self):
return DictionaryBot ([("irc.ubuntu.con, 6667)], "#springpython", ops=["Goldfisch"], nicknane="coily", r

@j ect

def bot(self):
exporter = PyroServi ceExporter()
exporter.service_nanme = "bot"
exporter.service = self.renoteBot ()
return exporter

10.3.3.3.2. Web App's application context

cl ass Coi |l yWebd i ent (Pyt honConfi g):

Thi s container represents the context of the web application used to interact with the bot and present a
nice frontend to the user comunity about the channel and the bot.\

def __init_ (self):
super (Coi |l ywebd ient, self).__init__ ()

@j ect
def root(self):
return CoilyView sel f.bot())

@j ect

def bot (self):
proxy = PyroProxyFactory()
proxy.service_url = "PYROLOC://| ocal host: 7766/ bot "
return proxy

10.3.3.3.3. Main runner

| fit al this into one executable. However, | quickly discovered that both CherryPy web apps and irclib bots
like to run in the main thread. This means | need to launch two python shells, one running the web app, the
other running the ircbot, and | need the web app to be able to talk to the irc bot. Thisis a piece of cake with
Spring Python. All | need to utilize is aremoting technology.

if __name__ == "__main__

Parse sone | aunchi ng options.
parser = OptionParser(usage="usage: Y%rog [-h|--help] [options]")

parser.add_option("-w', "--web", action="store_true", dest="web", default=False, hel p="Run the web server ok
parser.add_option("-i", "--irc", action="store_true", dest="irc", default=False, hel p="Run the | RC bot objec
parser.add_option("-d", "--debug", action="store_true", dest="debug", default=False, help="Turn up | ogging

(options, args) = parser.parse_args()

if options.web and options.irc
print "You cannot run both the web server and the IRC-bot at the same tine."
sys. exit(2)

if not options.web and not options.irc
print "You nust specify one of the objects to run."
sys. exit(2)

i f options. debug:
| ogger = | oggi ng. get Logger ("spri ngpyt hon")
| oggi ngLevel = | oggi ng. DEBUG
| ogger . set Level (1 oggi ngLevel)
ch = 1 oggi ng. Streantandl er ()
ch. set Level (1 oggi ngLevel)
formatter = | ogging. Formatter ("% asctinme)s - %nane)s - %I evel nane)s - % nessage)s")
ch.setFormatter(formatter)
| ogger . addHandl er (ch)

i f options.web:
This runs the web application context of the application. It allows a nice web-enabled view into

Spring Python 99

Samples

the channel and the bot that supports it.
appl i cati onCont ext = Appli cati onContext (Coil yWebd ient())

Configure cherrypy programatically.

conf = {"/": {"tools.staticdir.root": os.getcwd()},
"/images": {"tools.staticdir.on": True,
"tools.staticdir.dir": "imges"},
“/htm": {"tools.staticdir.on": True,
"tools.staticdir.dir": "htm"},
"/styles": {"tools.staticdir.on": True,
r

"tools.staticdir.dir": "css"}

}

cherrypy. config. update({' server.socket_port': 9001})
cherrypy. tree. nount (appl i cati onCont ext. get _obj ect (name = "root"), '/', config=conf)

cherrypy. engi ne. start ()
cherrypy. engi ne. bl ock()

if options.irc:
This runs the | RC bot that connects to a channel and then responds to various events.
appl i cati onCont ext = Appli cati onContext (Coilyl RCServer())
coily = applicationContext.get_object("bot")
coily.service.start ()
10.3.3.4. Releasing your CherryPy web app to the internet
Now that you have a CherryPy web app running, how about making it visible to the internet?

If you already have an Apache web server running, and are using a Debian/Ubuntu installation, you just need to
create afile in /etc/apache2/sites-available like coily.conf with the following lines:

Redi rect Mat ch ~/coily$ /coily/

ProxyPass /coily/ http://Iocal host: 9001/
ProxyPassReverse /coily/ http://Ilocal host: 9001/

<Locati onMatch /coily/.*>
Order all ow, deny
Al'low fromall

</ Locati onMat ch>

Now need to softlink thisinto /etc/apache2/sites-enabled.

% cd /etc/apache2/sites-enabl ed
% sudo I n -s /etc/apache2/sites-avail abl e/coily.conf 001-coily

This requires that enable mod_proxy.

% sudo a2ennod proxy proxy_http

Finally, restart apache.

% sudo /etc/init.d/ apache2 --force-rel oad

It should be visible on the site now.

10.3.3.5. Come and visit Coily

(1.1.1.BUILD-20101109171232)

Samples

If you haven't figured it out yet, | use this code to run my own bot, Coily. Unfortunately, at this time, | don't
have a mechanism to make it run persistently.

10.3.4. External Links

* Seethisarticle reported in LinuxToday

(1.1.1.BUILD-20101109171232)

http://www.linuxtoday.com/news_story.php3?ltsn=2007-10-12-009-26-OS-DV-NT

	Spring Python - Reference Documentation
	Preface
	Chapter 1. Overview
	1.1. Key Features
	1.2. What Spring Python is NOT
	1.3. Support
	1.3.1. Forums and Email
	1.3.2. IRC

	1.4. Downloads / Source Code
	1.5. Licensing
	1.6. Spring Python's team
	1.6.1. How to become a team member

	1.7. Deprecated Code

	Chapter 2. The IoC container
	2.1. External dependencies
	2.2. Container
	2.2.1. ObjectContainer vs. ApplicationContext
	2.2.2. Scope of Objects / Lazy Initialization

	2.3. Configuration
	2.3.1. XMLConfig - Spring Python's native XML format
	2.3.1.1. Referenced Objects
	2.3.1.2. Inner Objects
	2.3.1.3. Collections
	2.3.1.4. Constructors
	2.3.1.5. Values
	2.3.1.6. XMLConfig and basic Python types
	2.3.1.7. Object definition inheritance

	2.3.2. YamlConfig - Spring Python's YAML format
	2.3.2.1. Referenced Objects
	2.3.2.2. Inner Objects
	2.3.2.3. Collections
	2.3.2.4. Support for Python builtin types and mappings of other types onto YAML syntax
	2.3.2.5. Constructors
	2.3.2.6. Object definition inheritance

	2.3.3. PythonConfig and @Object - decorator-driven configuration
	2.3.4. PyContainerConfig - Spring Python's original XML format
	2.3.5. SpringJavaConfig
	2.3.6. Mixing Configuration Modes

	2.4. Object Factories
	2.5. Testable Code
	2.6. Querying and modifying the ApplicationContext in runtime

	Chapter 3. Aspect Oriented Programming
	3.1. External dependencies
	3.2. Interceptors
	3.3. Proxy Factory Objects
	3.4. Pointcuts
	3.5. Interceptor Chain
	3.6. Coding AOP with Pure Python

	Chapter 4. Data Access
	4.1. DatabaseTemplate
	4.1.1. External dependencies
	4.1.2. Traditional Database Query
	4.1.3. Database Template
	4.1.4. Mapping rows into objects using convention over configuration
	4.1.5. Mapping rows into dictionaries
	4.1.6. What is a Connection Factory?
	4.1.7. Creating/altering tables, databases, and other DDL
	4.1.8. SQL Injection Attacks
	4.1.9. Have you used Spring Framework's JdbcTemplate?
	4.1.10. Notes on using SQLServerConnectionFactory

	Chapter 5. Transaction Management
	5.1. External dependencies
	5.2. Solutions requiring transactions
	5.3. TransactionTemplate
	5.4. @transactional
	5.4.1. @transactional(["PROPAGATION_REQUIRED"])...

	Chapter 6. Security
	6.1. External dependencies
	6.2. Shared Objects
	6.3. Authentication
	6.3.1. AuthenticationProviders
	6.3.1.1. DaoAuthenticationProvider
	6.3.1.2. LDAP Authentication Provider
	6.3.1.3. Future AuthenticationProviders

	6.3.2. AuthenticationManager

	6.4. Authorization

	Chapter 7. Remoting
	7.1. External dependencies
	7.2. Remoting with PYRO (Python Remote Objects)
	7.2.1. Decoupling a simple service, to setup for remoting
	7.2.2. Exporting a Spring Service Using Inversion Of Control
	7.2.2.1. Hostname/Port overrides

	7.2.3. Do I have to use XML?
	7.2.4. Splitting up the client and the server

	7.3. Remoting with Hessian
	7.4. High-Availability/Clustering Solutions

	Chapter 8. JMS Messaging
	8.1. Introduction
	8.2. Dependencies
	8.3. Quick start
	8.3.1. Sending
	8.3.2. Receiving

	8.4. Connection factories
	8.4.1. springpython.jms.factory.WebSphereMQConnectionFactory

	8.5. springpython.jms.core.JmsTemplate
	8.5.1. Sending
	8.5.2. Receiving
	8.5.3. Dynamic queues
	8.5.4. Message converters

	8.6. springpython.jms.listener.SimpleMessageListenerContainer and background JMS listeners
	8.7. springpython.jms.core.TextMessage
	8.8. Exceptions
	8.9. Logging and troubleshooting

	Chapter 9. Spring Python's plugin system
	9.1. Introduction
	9.2. Coily - Spring Python's command-line tool
	9.2.1. Commands

	9.3. Officially Supported Plugins
	9.3.1. gen-cherrypy-app
	9.3.1.1. External dependencies

	9.4. Writing your own plugin
	9.4.1. Architecture of a plugin
	9.4.2. Case Study - gen-cherrypy-app plugin
	9.4.2.1. Source Code
	9.4.2.2. Deconstructing the factory
	9.4.2.3. Summary

	Chapter 10. Samples
	10.1. PetClinic
	10.1.1. How to run

	10.2. Spring Wiki
	10.3. Spring Bot
	10.3.1. Why write a bot?
	10.3.2. IRC Library
	10.3.2.1. Articles

	10.3.3. What I built
	10.3.3.1. IRC Bot
	10.3.3.2. Web App
	10.3.3.3. Putting it all together
	10.3.3.3.1. IRC Bot's application context
	10.3.3.3.2. Web App's application context
	10.3.3.3.3. Main runner

	10.3.3.4. Releasing your CherryPy web app to the internet
	10.3.3.5. Come and visit Coily

	10.3.4. External Links

