Spring Roo - Reference Documentation

1.2.5.RELEASE

Copyright 2009-2013 VMware, Inc. All Rights Reserved. Copies of this document may be made for your
own use and for distribution to others, provided that you do not charge any fee for such copies and further
provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Preface xi

I. Welcometo Spring Roo ... 1
1. Introduction 2

11
1.2

13.
14.
15
1.6.
17.

What isR00?.... 2

Why Uselt 3

1.2.1. Higher Productivity 3

1.2.2. Stock-Standard Java.... 3

1.2.3. Usableand Learnable..... 4

1.2.4. No Engineering Trade-Offs.... 5
1.2.5. Easy Roo Remova 6
Installation 6

Optional ROO_OPTS Configuration 7

First Steps: Y our Own Web App in Under 10 Minutes.....

Exploring the Roo Samples 10
Suggested Steps to Roo Productivity 10

2. Beginning With Roo: The Tutorial 12

2.1
2.2.
2.3.
24.
2.5.
2.6.
2.7.
2.8.
2.9.

2.10.
2.11.
2.12.
2.13.
2.14.

What You'll Learn 12

Alternative Tutoria: The Wedding RSVP Application

Tutorial Application Details.... 13

Step 1: Starting a Typical Project 13

Step 2: Creating Entitiesand Fields 16

Step 3: Integration Tests ... 18

Step 4: Using Your IDE ... 18

Step 5: Creating A Web Tier 19

Step 6: Loading the Web Server 20
Securing the Application 21
Customizing the Look & Fedl of theWeb Ul 23
Selenium Tests ... 24
Backups and Deployment 24
Where To Next 25

3. Application Architecture.... 26

3.1
3.2

3.3.
34.
3.5.
3.6.
3.7.

Architectural Overview 26
Critical Technologies 26
3.2.1. Aspect].... 26

3.2.2. Spring 29

Entity Layer 30

Web Layer 31

Optional ServicesLayer 32
Goodbye DAOs ... 32

Maven 34

3.7.1. Packaging 34

3.7.2. Multi-Module Support 35

4. Usage and Conventions.... 38

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

Usability Philosophy 38

Shell Features.... 39

IDE Usage ... 41

Build System Usage ... 42

File System Conventions 43
Add-On Ingtallation and Removal 43

12

1.2.5.RELEASE

Spring Roo - Reference Documentation

4.7. Recommended Practices 43
4.8. Managing Roo Add-Ons.... 44
5. Existing Building Blocks 49
5.1. Existing Projects..... 49
5.2. Existing Databases 49
6. Removing Roo 50
6.1. How Roo Avoids Lock-In 50
6.2. Prosand Cons of Removing Roo 51
6.3. Step-by-Step Removal Instructions 52
6.3.1. Step 1. Push-In Refactor 52
6.3.2. Step 2: Annotation Source Code Removdl 52
6.3.3. Step 3: Annotation JAR Removal 53
6.4. Reenabling Roo After A Removal 53
[1. Base Add-Ons.... 54
7. Base Add-On Overview 55
8. Persistence Add-On 57
8.1. JPA setup command 57
8.2. Entity JPA command 59
8.3. Field commands 62
9. Incremental Database Reverse Engineering (DBRE) Add-On 65
9.1. Introduction 65
9.1.1. What are the benefits of Roo'sincremental reverse
engineering? 65
9.1.2. How does DBRE work?.... 65
9.2. Ingtalation 66
9.3. DBRE Add-On commands.... 67
9.4. The @RooDbManaged annotation 68
9.5. Supported JPA 2.0 features.... 70
9.5.1. Simple primary keys.... 70
9.5.2. Composite primary keys.... 70
9.5.3. Entity relationships.... 71
9.5.4. Other fields.... 73
9.5.5. Existing fields.... 73
9.6. Troubleshooting 74
10. Application Layering.... 76
10.1. TheBigPicture.... 76
10.2. PersistenceLayers.... 76
10.2.1. JPA Entities (Active Record style) 77
10.2.2. JPA Repository 77
10.2.3. MongoDB Persistence 78
10.3. Servicelayer 80
11. Web MVC Add-On 82
11.1. Controller commands.... 82
11.2. Application Conversion Service.... 85
11.3. JSPViews.... 86
12. JavaServer Faces (JSF) Add-On 91
12.1. JSF commands.... 91
12.2. The @RooJsfManagedBean annotation 92
12.3. The @RooJsfConverter annotation 92

1.2.5.RELEASE i

Spring Roo - Reference Documentation

12.4. The @RooJsfApplicationBean annotation 93
12.5. The bikeshop example..... 93
13. Cloud Foundry Add-On 94
13.1. Installing the Cloud Foundry Add-On 94
13.2. Getting Started 95
13.2.1. Logging In.... 95
13.2.2. The Commands.... 95
13.2.3. Deploying Your Application 96
13.2.4. Viewing Your Applications.... 97
13.2.5. Binding Services.... 97
13.2.6. Provisioning Memory 99
13.2.7. Starting Y our Application 99
13.3. Conclusion 100
14. Google Web Toolkit Add-On 101
14.1. GWT Add-On Commands 101
14.2. Running and Compiling 105
14.3. Desktop and Mobile Views.... 106
14.4. 1TDs. GWT Style..... 107
14.5. UiBinder ui.xml Files..... 107
14.6. Expected GWT Add-On Behaviour 108
14.7. Migrating aRoo GWT project (1.1 ->1.1.1+) 108
14.8. Troubleshooting 108
15. JSON Add-On 110
15.1. Adding JSON Functionality to Domain Types.... 110
15.2. JSON REST Interface in Spring MV C controllers.... 111
16. Apache Solr Add-On 115
16.1. Solr Server Installation 115
16.2. Solr Add-On Commands.... 115
16.3. The @RooSolrSearchable Annotation 117
[11. Internals and Add-On Development 119
17. Development Processes 120
17.1. GuidelinesWe Fallow 120
17.2. Source Repository 122
17.3. Setting Up for Development 122
17.4. Submitting Patches 122
17.5. Path to Committer Status 122
18. Simple Add-Ons.... 123
18.1. Project Setup 123
18.2. Fast Creation 125
18.3. Shdl Interaction 126
18.4. Operations.... 128
18.5. Packaging & Distribution 129
18.6. Publishing to RooBat 130
18.7. Upgrading Spring Roo Add-Onsfrom 1.0.xt0 1.1.0 131
19. Advanced Add-Ons.... 133
19.1. Metadata.... 133
19.2. Annotations.... 133
19.3. Inter-Type Declarations 133
19.4. Recommendations.... 133

1.2.5.RELEASE iv

Spring Roo - Reference Documentation

IV. External Add-Ons.... 134
20. Tailor Add-On 135
20.1. Introduction 135
20.2. How it works.... 135
20.3. Tailor Add-On Commands 136
20.4. Tailor Configuration 136

20.4.1. Actions.... 136
20.4.2. XML Configuration 137
20.4.3. Configuration Addon 139

V. Appendices.... 141
A. Command Index 142

A.lL

A.2

A3

A4

A.5.

A.6.

AT

Add On Commands.... 142

A.1.1. addon feedback bundle.... 142
A.1.2. addoninfo bundle.... 142
A.1.3. addoninfoid.... 142

A.1.4. addoningtall bundle.... 142
A.15. addoninstal id 143

A.16. addonlist 143

A.1.7. addonremove.... 143

A.1.8. addon search 143

A.1.9. addon upgradeall 144
A.1.10. addon upgrade available..... 144
A.1.11. addon upgrade bundle 144
A.1.12. addon upgradeid 145
A.1.13. addon upgrade settings 145
Backup Commands 145

A.2.1. backup.... 145

Classpath Commands 145

A.3.1. class.... 145

A.3.2. constructor 146

A.3.3. enum constant 146

A.3.4. enumtype.... 146

A.3.5. focus.... 147

A.3.6. interface 147

Controller Commands.... 147

A.4.1. controller dl 147

A.4.2. controller scaffold 147
A.4.3. webmvcal 148

A.4.4. web mvc scaffold 148
Creator Commands 148

A.5.1. addon create advanced 148
A.5.2. addon createil8n.... 149
A.5.3. addon create simple..... 149
A.5.4. addon create wrapper 150
Data On Demand Commands 150
A.6.1. dod.... 150

Dbre Commands..... 151

A.7.1. databaseintrospect 151
A.7.2. database reverse engineer 151

1.2.5.RELEASE

Spring Roo - Reference Documentation

A.8. Embedded Commands.... 152
A.8.1. web mvc embed document 152
A.8.2. web mvc embed generic 152
A.8.3. web mvc embed map 153
A.8.4. web mvc embed photos 153
A.8.5. web mvc embed stream video 153
A.8.6. web mvc embed twitter 153
A.8.7. web mvc embed video 154
A.8.8. web mvc embed wave 154
A.9. Equals Commands.... 154
A.9.1. equals.... 154
A.10. Felix Delegator 154
A.10.1. exit.... 155
A.10.2. osgi find 155
A.10.3. osgi framework command 155
A.10.4. osgi headers.... 155
A.10.5. oggi install 155
A.10.6. osgi log 155
A.10.7. osgi obr deploy 156
A.10.8. osgi obrinfo 156
A.10.9. osgi obr list 156
A.10.10. osgi obr start 156
A.10.11. osgi obr url add 156
A.10.12. osgi obr url list 156
A.10.13. osgi obr url refresh 157
A.10.14. osgi obr url remove..... 157
A.10.15. osgi ps.... 157
A.10.16. osgi resolve.... 157
A.10.17. osgi scr config 157
A.10.18. osgi scr disable ... 157
A.10.19. osgi scr enable ... 158
A.10.20. osgi scrinfo.... 158
A.10.21. osgi scr list 158
A.10.22. osgi start 158
A.10.23. osgi uninstal 158
A.10.24. osgi update.... 158
A.10.25. osgi version 159
A.11. Field Commands.... 159
A.11.1. field boolean 159
A.11.2. field date.... 160
A.11.3. field embedded 161
A.11.4. fieldenum.... 161
A.115. fieldfile.... 162
A.11.6. fieldlist 162
A.11.7. field number 163
A.11.8. field other 164
A.11.9. field reference.... 165
A.11.10. field set 166
A.11.11. fied string 167

1.2.5.RELEASE

Spring Roo - Reference Documentation

A.12. Finder Commands.... 168

A.12.1.
A.12.2.

finder add 168
finder list 168

A.13. Gwt Commands.... 169

A.13.1.
A.13.2.
A.13.3.
A.134.
A.13.5.
A.13.6.
A.13.7.
A.13.8.
A.13.9.

gwt setup 169

web gwt all 169

web gwt gae update 169

web gwt proxy all 169

web gwt proxy request al 169
web gwt proxy request type.... 169
web gwt proxy type.... 170

web gwt request all 170

web gwt request type..... 170

A.13.10. web gwt scaffold 170
A.13.11. web gwt setup 171
A.14. Hint Commands.... 171

A.14.1.

hint 171

A.15. Integration Test Commands.... 171

A.15.1.
A.15.2.
A.153.

test integration 171
test mock 171
test stub ... 172

A.16. JLine Shell Component 172

A.16.1.
A.16.2.
A.16.3.
A.16.4.
A.16.5.
A.16.6.
A.16.7.
A.16.8.

*[....172

[* ... 172

/I....172

date.... 172
flashtest 172

script ... 173

system properties.... 173
version 173

A.17. Jms Commands.... 173

A.17.1.
A.17.2.
A.17.3.

field jmstemplate 173
jmslistener class.... 174
jmssetup 174

A.18. JpaCommands.... 174

A.18.1.
A.18.2.
A.18.3.
A.184.
A.18.5.
A.18.6.
A.18.7.

database propertieslist 174
database properties remove 174
database properties set 174
embeddable 175

entity jpa.... 175

jpasetup 177

persistence setup 177

A.19. Jsf Commands.... 178

A.19.1.
A.19.2.
A.19.3.
A.194.

web jsfal 178

web jsf media.... 178
web jsf scaffold 178
web jsf setup 179

A.20. Json Commands.... 179

A.20.1.

jsonadd.... 179

1.2.5.RELEASE

Vii

Spring Roo - Reference Documentation

A.20.2. jsondl 179

A.21. Jsp Commands.... 180
A.21.1. controller class.... 180
A.21.2. web mvc controller 180
A.21.3. web mvcinstall language 180
A.21.4. web mvcinstal view 180
A.21.5. web mvc language 181
A.21.6. web mvc setup 181
A.21.7. web mvc updatetags.... 181
A.21.8. web mvcview 181

A.22. Logging Commands.... 182
A.22.1. logging setup 182

A.23. Mail Commands.... 182
A.23.1. email sender setup 182
A.23.2. email template setup 182
A.23.3. field email template 183

A.24. Maven Commands.... 183
A.24.1. dependency add 183
A.24.2. dependency remove.... 183
A.24.3. maven repository add 184
A.24.4. maven repository remove 184
A.24.5. module create 184
A.24.6. modulefocus.... 185
A.24.7. perform assembly 185
A.24.8. performclean.... 185
A.24.9. perform command 185
A.24.10. perform eclipse.... 185
A.24.11. perform package 185
A.24.12. performtests.... 186
A.24.13. project 186

A.25. Metadata Commands 186
A.25.1. metadata cache.... 186
A.25.2. metadataforid.... 186
A.25.3. metadatafor module 187
A.25.4. metadatafor type.... 187
A.25.5. metadata status.... 187
A.25.6. metadatatrace.... 187

A.26. Mongo Commands.... 187
A.26.1. entity mongo 187
A.26.2. mongo setup 188
A.26.3. repository mongo 188

A.27. OsCommands.... 188
A27.1. !...188

A.28. Pgp Commands.... 189
A.28.1. pgp automatic trust 189
A.28.2. pgp key view 189
A.28.3. pgp list trusted keys 189
A.28.4. pgprefreshdl 189
A.28.5. pgp status.... 189

1.2.5.RELEASE viii

Spring Roo - Reference Documentation

A.28.6. pgptrust 189
A.28.7. pgp untrust 190
A.29. Process Manager Commands 190
A.29.1. development mode.... 190
A.29.2. poll now 190
A.29.3. poll speed 190
A.29.4. poll status.... 190
A.30. Process Manager Diagnostics Listener ... 190
A.30.1. process manager debug 191
A.31. Prop File Commands.... 191
A.31.1. propertieslist 191
A.31.2. propertiesremove.... 191
A.31.3. propertiesset 191
A.32. Proxy Configuration Commands.... 192
A.32.1. proxy configuration 192
A.33. Repository Jpa Commands.... 192
A.33.1. repository jpa.... 192
A.34. Security Commands.... 192
A.34.1. permissionEvauator 192
A.34.2. security setup 192
A.35. Selenium Commands.... 193
A.35.1. seleniumtest.... 193
A.36. Service Commands.... 193
A.36.1. serviceadl 193
A.36.2. servicesecureall 193
A.36.3. service securetype.... 194
A.36.4. servicetype.... 194
A.37. Simple Parser Component 195
A.37.1. hep....195
A.37.2. referenceguide.... 195
A.38. Solr Commands.... 195
A.38.1. solradd.... 195
A.38.2. solradl 195
A.38.3. solr setup 196
A.39. Tailor Commands.... 196
A.39.1. tailor activate 196
A.39.2. tailor deactivate 196
A.39.3. tailorlist 196
A.40. Uaa Commands 196
A.40.1. download accept terms of use 196
A.40.2. download privacy level 196
A.40.3. download reject terms of use ... 197
A.40.4. download status.... 197
A.40.5. download view 197
A.41. Web Finder Commands.... 197
A.41.1. web mvc finder add 197
A.41.2. web mvc finder dl 197
A.42. Web Flow Commands.... 198
A.42.1. webflow 198

1.2.5.RELEASE

Spring Roo - Reference Documentation

A.43.

Web Json Commands 198
A.43.1. web mvcjsonadd 198
A.43.2. webmvcjsonal 198
A.43.3. web mvc json setup 198

B. Upgrade Notes and Known Issues..... 199

B.1.
B.2.
B.3.
B.4.
B.5.
B.6.
B.7.
B.8.
B.9.

B.10.
B.11.
B.12.
B.13.
B.14.
B.15.
B.16.
B.17.
B.18.

Known Issues 199
Version Numbering Approach 200
Upgrading To Any New Release 200
Upgradingto 1.2.0.RC1 201
Upgrading to 1.2.0.M1 202
Upgrading to 1.1.3.RELEASE 202
Upgrading to 1.1.2.RELEASE 202
Upgrading to 1.1.1.RELEASE 202
Upgrading to 1.1.0.RELEASE 203
Upgradingto 1.1.0.RC1 203
Upgradingto 1.1.0.M3 ... 203
Upgradingto 1.1.0.M2 204
Upgradingto 1.1.0.M1 204
Upgrading to 1.0.2.RELEASE 204
Upgrading to 1.0.1.RELEASE 204
Upgrading to 1.0.0.RELEASE 204
Upgrading to 1.0.0.RC4 205
Upgrading to 1.0.0.RC3 205

C. Project Background 207

C.lL
C.2

History 207
Mission Statement 208

D. Roo Resources.... 210

D.1.
D.2.
D.3.
D.4.
D.5.
D.6.
D.7.
D.8.
D.9.

Project Home Page 210

Downloads and Maven Repositories.... 210
Community Forums.... 210

Twitter 211

Issue Tracking 211

Source Repository 212

Source Web Browsing 212

Commercial Products and Services 212
Other 212

1.2.5.RELEASE

Preface

| still recall the moment when | realised that | would like to program. The motivation for me was
recognition that creativity with software is mostly constrained by your imagination and skills, whereas
creativity outside the software world istypically constrained by whatever physical items you happen
to possess. Of course at that early stage | hadn't yet come across the subtle constraintsin my optimistic
assessment of software (such as CPU capabilities, memory, CAP theory etc!), but the key principle
that software was amost boundlessly flexible sparked an interest that continues to this day.

Of course, the creativity potential of software implies an abundance of time, as it istime that is the
principal ingredient in building and maintaining software. Ever since the "castle clock” in 1206 we
have been exploring better ways of programming ever-increasingly sophisticated computers, and the
last decade in particular has seen a surge in new languages and techniques for doing so.

Despite this 800 year history of programming, software projects are no different from other projectsin
that they are still bound by the project management triangle: "cost, scope or schedule: pick any two".
Professional software developers grapple with thisreality every day, constantly striving for new tools
and techniques that might help them deliver quality software more quickly.

While initial delivery remains the key priority for most software projects, the long-term operational
dimensions of that software are even more critical. The criticality of these operational dimensionsis
easily understood given that most software needs to be executed, managed, maintained and enhanced
for many years into the future. Architectural standards are therefore established to help ensure that
software is of high quality and preferably based on well-understood, vendor-agnostic and standards-
based mainstream engineering approaches.

There is of course a natural tension between the visibility of initial delivery and the conservatism
typically embodied in architectural standards. Innovative new approaches often result in greater
productivity and in turn faster project delivery, whereas architectural standards tend to restrict these
new approaches. Furthermore, there is a social dimension in that most devel opers focus their time on
acquiring knowledge, skills and experience with those technologies that will realistically be used, and
thisin turn further cements the dominance of those technologies in architectural standards.

It waswithin this historical and present-day context that we set out to build something that would offer
both genuineinnovation and architectural desirability. We sought to build something that would deliver
compelling developer productivity without compromising on engineering integrity or discarding
mainstream existing technol ogies that benefit from architectural standards approval, excellent tooling
and amassive pool of existing developer knowledge, skills and experience.

Spring Roo is the modern-day answer to enterprise Java productivity. It's the normal Java platform
you know, but with productivity levels you're unlikely to have experienced before (at least on Javal).
It's simple to understand and easy to learn. Best of all, you can use Roo without needing to seek
architectural approval, as the resulting applications use nothing but the mainstream Java technologies
you aready use. Plus all your existing Java knowledge, skills and experience are directly applicable
when using Roo, and applications built with Roo enjoy zero CPU or memory overhead at runtime.

Thank you for taking the time to explore Spring Roo. We hope that you enjoy using Roo as much as
we've enjoyed creating it.

Ben Alex, Founder - Spring Roo

1.2.5.RELEASE Xi

Part I. Welcome to Spring Roo

Welcome to Spring Roo! In this part of the reference guide we will explore everything you need to know in order
to use Roo effectively. We've designed this part so that you can read each chapter consecutively and stop at any
time. However, the more you read, the more you'll learn and the easier you'll find it to work with Roo.

Partsll, I11 and 1V of thismanual are more designed for reference usage and people who wish to extend Roo itself.

1.2.5.RELEASE 1

Chapter 1. Introduction

1.1. What is Roo?

Spring Roo is an easy-to-use productivity tool for rapidly building enterprise applications in the Java
programming language. It allows you to build high-quality, high-performance, lock-in-free enterprise
applicationsin just minutes. Best of all, Roo works alongside your existing Java knowledge, skillsand
experience. Y ou probably won't need to learn anything new to use Roo, as there's no new language or
runtime platform needed. Y ou simply program in your normal Java way and Roo just works, sitting
in the background taking care of the things you don't want to worry about. It's an approach unlike
anything you've ever seen before, we guarantee it!

Y ouwork with Roo by loading its"shell" inawindow and leaving it running. Y ou caninteract with Roo
via commands typed into the shell if you like, but most of the time you'll just go about programming
inyour text editor or IDE as usual. Asyou make changesto your project, Roo intelligently determines
what you're trying to do and takes care of doing it for you automatically. This usualy involves
automatically detecting file system changes you've made and then maintaining files in response. We
say "maintaining files" because Roo is fully round-trip aware. This means you can change any code
you like, at any time and without telling Roo about it, yet Roo will intelligently and automatically
deal with whatever changes need to be made in response. It might sound magical, but it isn't. This
documentation will clearly explain how Roo works and you'll find yourself loving the approach - just
like so the many other people who are already using Roo.

Before you start wondering how Roo works, let's confirm afew things it isNOT:

* Rooisnot a runtime. Roo is hot involved with your project when it runs in production. Y ou won't
find any Roo JARs in your runtime classpath or Roo annotations compiled into your classes. Thisis
actually awonderful thing. It means you have no lock-in to worry about (you can remove Roo from
your project in just a couple of minutes!). It probably also means you won't need to get approval to
use Roo (what's to approve when it's more like a command line tool than a critical runtime library
like Spring Framework?). It also means there is no technical way possible for Roo to slow your
project down at runtime, waste memory or bloat your deployment artefacts with JARs. We'rerealy
proud of the fact that Roo imposes no engineering trade-offs, as it was one of our central design
objectives.

¢ RooisnotanIDE plugin. Thereisno requirement for a"Roo Eclipse plugin” or "Roo IntelliJplugin®.
Roo works perfectly fine in its own operating system command window. It sits there and monitors
your file system, intelligently and incrementally responding to changes as appropriate. This means
you're perfectly able to use vi or emacs if you'd like (Roo doesn't mind how your project files get
changed).

* Roo is not an annotation processing library. There is a Java 6 feature known as the annotation
processing API. Roo does not use this API. This alows Roo to work with Java 5, and also gives us
access to amuch more sophisticated and extensible internal model.

So how does Roo actually work then? The answer to that question depends on how much detail you'd
like. In super-summary form, Roo uses an add-on based architecture that performs a combination of
passive and active code generation of inter-type declarations. If you'reinterested in how that worksat a
practical project level, we cover that shortly in the "Beginning With Roo: The Tutorial" chapter. Or for
an advanced look at Roo internals, we've covered that in Part 111: Internals and Add-On Devel opment.

1.2.5.RELEASE 2

http://projects.spring.io/spring-roo/
http://projects.spring.io/spring-framework/

Introduction

1.2. Why Use It

There are dozens of reasons peopleliketo use Roo. We've worked hard to makeit an attractivetool that
delivers real value without imposing unpleasant trade-offs. Nonetheless, there are five major reasons
why people like Roo and useiit. Let's discuss these major reasons below.

1.2.1. Higher Productivity

With Roo it is possible for Java developers to build sophisticated enterprise applications in a best-
practice manner within minutes. This is not just a marketing claim, but it's a practical fact you can
experience yourself by trying the ten minute test.

Anyone who has programmed Java for a few years and looked at the alternatives on other platforms
will befully aware that enterprise Java suffersfrom productivity problems. It takes daysto start anew
project and incredibly long cycle times as you go about normal development. Still, we remain with
Java because it's a highly attractive platform. It's the most widely used programming language on the
planet, with millions of competent developers. It hasfirst-classtooling, excellent runtime performance,
numerous mature libraries and widely-supported standards. Java is aso open source, has multiple
vendors and countless choice.

We built Roo because we want enterprise Java developers to enjoy the same productivity levels that
developers on other platforms take for granted. Thanks to Roo, Java developers can now enjoy this
higher productivity plusahighly efficient, popular, scalable, open, reliable platform. Best of al, infive
yearstimeit will still be possible to hire millions of people who can look at those Roo-based projects
and understand what is going on and maintain them (even if you've stopped using Roo by then).

Roo's higher productivity is provided both at original project creation, and also as a developer builds
out the rest of the project. Because Roo provides round-trip support, the higher productivity is
automatically provided over thefull lifespan of aproject. Thisisparticularly important given the long-
term maintenance costs of a project far outweigh theinitial development costs. While you can use Roo
just for an initial jump-start if you so wish, your return on investment is exponential as you continue
using it throughout a project lifespan.

Finally, while individual productivity isimportant, most of us work in teams and know that someday
someone else will probably maintain the code we've written. As professionals we follow architectural
standards and conventions to try and ensure that our present and future colleagues will be able to
understand what we did, why, and have an easy time maintaining it. Our organisations often establish
standards for us to follow in an effort to ensure other projects are tackled in similar ways, thus
allowing peopleto transfer between projectsand still be productive. Of course, most organisations also
have people of greatly differing backgrounds and experiences, with hew graduates typically working
alongside more experienced devel opers and architect-level experts. Roo helpssignificantly inthistype
of real-world environment because it automatically implements specific design patternsin an optimal
convention-over-configuration manner. This ensures consistency of implementation within a given
Roo-based project, as well as across all other Roo-based projects within an organisation (and even
outside your organisation, which greatly helps with hiring). Of course, the fact Roo builds on stock-
standard Java also means people of vastly different experience levels can all be highly productive and
successful with Roo.

1.2.2. Stock-Standard Java

It'snolonger necessary to switch platform or languageto achieve extremely high levelsof productivity!
We designed Roo from the outset so those people with existing Java5 knowledge, skillsand experience

1.2.5.RELEASE 3

http://www.tiobe.com/content/paperinfo/tpci/index.html
http://www.oreillynet.com/onjava/blog/2007/01/1_in_every_10_java_developer_i.html

Introduction

would fedl right at home. If you've ever built an enterprise application with Java, some or al of the
technologies that Roo uses by default will already be familiar to you.

Some of the common technol ogies Roo projects use include Spring (such as Spring Framework, Spring
Security and Spring Web Flow), Maven, Java Server Pages (JSP), Java Persistence APl (JPA, such
as Hibernate), Tiles and AspectJ. We've chosen technologies which are extremely commonly used in
enterprise Java projects, ensuring you've probably either already used them or at least will have no
difficulty finding hundreds of thousands of other people who have (and the resultant books, blogs,
samples etc that exist for each). Also, because most of these technologies are implemented using add-
ons, if you'd like Roo to use a different technology on your project it's quite easy to do so.

By using standard Java technologies, Roo avoids reinventing the wheel or providing a limited-value
abstraction over them. The technologies are available to you in their normal form, and you can use
them in the same way as you always have. What Roo brings to the table is automatic setup of those
technologies into a Spring-certified best-practice application architecture and, if you wish, automatic
maintenance of al files required by those technologies (such as XML, JSP, Java etc). You'll see this
in action when you complete the ten minute test.

You'll aso find that Roo adopts a very conservative, incremental approach to adding technologies to
your project. This means when you first start a new project Roo will only assume you want to build
asimple JAR. As such it will have next to no dependencies. Only when you ask to add a persistence
provider will JPA be installed, and only when you add a field using JavaBean Validation annotations
will that library be installed. The same holds true for Spring Security, Spring Web Flow and the other
technologies Roo supports. With Roo you really do start small and incrementally add technologies if
and when you want to, which is consistent with Roo's philosophy of there being no engineering trade-
offs.

1.2.3. Usable and Learnable

There are many examples of promising technologies that are simply too hard for most people to learn
and use. With Roo we were inspired by the late Jef Raskin's book, "The Humane Interface”. In the
book Raskin argued we have a duty to make things so easy to use that people naturally "habituate"
to the interface, that text-based interfaces are often more appropriate than GUIs, and that your "locus
of attention" is all that matters to you and a machine should never disrupt your locus of attention and
randomly impose its idiosyncratic demands upon you.

With Roo we took these ideas to heart and designed a highly usable interface that lets you follow your
locus of attention. This means you can do things in whatever order you fedl is appropriate and never
be subservient to the Roo tool. Y ou want to delete afile? Just do it. Y ou want to edit afile? Just do it.
Y ou want to change the version of Spring you're using? Just doit. Y ou want to remove Roo? Just do it.
Y ou want to hand-write some code Roo was hel ping you with? Just do it. Y ou want to use Emacs and
Vim at the same time? No problem. Y ou forgot to load Roo when you were editing some files? That's
no problem either (in fact you can elect to never |load Roo again and your project will remain just fine).

Because Roo uses a text-based interface, there is the normal design trade-off between learnability,
expressability and conciseness. No text-based interface can concurrently satisfy all three dimensions.
With Roo we decided to focus on learnability and expressability. We decided conciseness was less
important given the Roo shell would provide an intuitive, tab-based compl etion system. We a so added
other featuresto deliver conciseness, such as contextual awareness (which means Roo determines the
target of your command based on the command completed beforeit) and command abbreviation (which
means you need only type in enough of the command so Roo recognises what you're trying to do).

1.2.5.RELEASE 4

http://spring.io/
http://en.wikipedia.org/wiki/The_Humane_Interface

Introduction

The learnability of Roo is concurrently addressed on three fronts. First, we favor using standard Java
technologies that you probably already know. Second, we are careful to keep Roo out of your way.
The more Roo simply works in the background automatically without needing your involvement, the
less you need to learn about it in the first place. Thisis consistent with Raskin's recommendation to
never interrupt your locus of attention. Third, we offer alot of learnability featuresin Roo itself. These
include the "hint" command, which suggests what you may wish to do next based on your present
project's state. It's quite easy to build an entire Roo project simply by typing "hint", pressing enter, and
following the instructions Roo presents (we do this all the time during conference talks; it's always
easier than remembering commands!). There's also the intelligent tab completion, which has natural,
friendly conventions like completing all mandatory arguments step-by-step (without distracting you
with unnecessary optional arguments). There's also the online "help" command, sample scripts, this
documentation and plenty of other resources.

Roo also follows a number of well-defined conventions so that you always know what it's doing. Plus
it operatesin a"fail safe" manner, like automatically undoing any changes it makes to the file system
should something go wrong. Y ou'll quickly discover that Roo isafriendly, reliable companion on your
development journey. It doesn't require special handling and it's alwaysthere for you when you need it.

In summary, we've spent alot of timethinking about usability and learnability to help ensure you enjoy
your Roo experience.

1.2.4. No Engineering Trade-Offs

Roo doesn't impose any engineering trade-offs on your project. In fact, compared with most Spring-
based enterprise applications, we're almost certain you'll find a Roo application will have a smaller
deployment artefact, operate more quickly in terms of CPU time, and consume less memory. You'll
also find you don't miss out on any of the usual IDE serviceslike code assist, debugging and profiling.
WEe'll explore how Roo achievesthisbelow, but thisinformation isrelatively advanced and is provided
mainly for architectswho areinterested in Roo's approach. Asthisknowledgeis not required to smply
use Roo, feel free to jump ahead to the next section if you wish.

Smaller deployment artefacts are achieved due to Roo's incremental dependency addition approach.
You start out with a small JAR and then we add dependencies only if you actually need them. As
of Roo 1.0.0, a typical Roo-based web application WAR is around 13 Mb. This includes major
components like Spring, Spring JavaScript (with embedded Dojo) and Hibernate, plus a number of
smaller components like URL rewriting. As such Roo doesn't waste disk space or give you 30+ Mb
WARSs, which results in faster uploads and container startup times.

Speaking of startup times, Roo uses AspectJs excellent compile-time weaving approach. Thisgivesus
alot more power and flexibility than we'd ordinarily have, allowing usto tackle advanced requirements
like advising domain objects and dependency injecting them with singletons. It al so meansthe dynamic
proxies typically created when loading Spring are no longer required. Roo applications therefore
startup more quickly, as there's no dynamic proxy creation overhead. Plus Roo applications operate
more quickly, as there's no dynamic proxy objects adding CPU time to the control flow.

Because Roo's Aspect] usage means there are no proxy objects, you also save the memory expense
of having to hold them. Furthermore, Roo has no runtime component, so you won't lose any memory
or CPU time there either. Plus because Roo applications use Java as their programming language,
there won't be any classes being created at runtime. This means anormal Roo application won't suffer
exhaustion of permanent generation memory space.

1.2.5.RELEASE 5

Introduction

While some people would argue these deployment size, CPU and memory considerations are minor,
thefact isthey add up when you have alarge application that needsto scale. With Roo your applications
will use your system resources to their full potential. Plus as we move more and more enterprise
applicationsinto virtualized and cloud-hosted environments, the requirement for performant operation
on shared hardware will become even more relevant.

You'll also find that Roo provides awell thought out application architecture that delivers pragmatism,
flexibility and ease of maintainability. Y ou'll see we've made architectural decisions like eliminating
the DA O layer, using annotation-based dependency injection, and automatically providing dependency
injection on entities. These decisions dramatically reduce the amount of Javaand XML code you have
to write and maintain, plus improve your development cycle times and refactoring experiences.

With Roo, you don't have to make a trade-off between productivity or performance. Now it's easy to
have both at the same time.

1.2.5. Easy Roo Removal

One of the biggest risks when adopting a new tool like Roo is the ease at which you can change
your mind in the future. Y ou might decide to remove a tool from your development ecosystem for
many different reasons, such as changing regquirements, a more compelling alternative emerging, the
tool having an unacceptable number of bugs, or the tool not adequately supporting the versions of
other software you'd like to use. These risks exist in the real world and it's important to mitigate the
consequencesif a particular tool doesn't work out in the long-term.

Because Roo does not exist at runtime, your risk exposure from using Roo is already considerably
diminished. You can decide to stop using Roo and implement that decision without even needing to
change any production deployment of the application.

If you do decide to stop using Roo, this can be achieved in just a few minutes. There is no need to
write any code or otherwise make significant changes. We've covered the short removal processin a
dedicated removing Roo chapter, but in summary you need to perform a "push in refactor" command
within Eclipse and then do a quick regular expression-based find and replace. That's all that is needed
to 100% remove Roo from your project. We often remove Roo from a project during conference
demonstrationsjust to proveto people how incredibly easy itis. It really only takestwo to three minutes
to complete.

We believe that productivity tools should earn their keep by providing you such avaluable service that
you want to continue using them. We've ensured Roo will never lock you in because (@) it'ssimply the
right and credible thing to do engineering-wise and (b) we want Roo to be such an ongoing help on
your projects that you actually choose to keep it. If you're considering alternative productivity tools,
consider whether they also respect your right to decide to leave and easily implement that decision, or
if they know you're locked in and can't do much about it.

1.3. Installation

Roo is a standard Java application that is fully self-contained within the Roo distribution ZIPs. Y ou
can download Roo from one of the download sites, or build adistribution ZIP yourself from our source
control repository.

If you are upgrading from an existing version of Spring Roo, you should consult the upgrade notes
for important information.

1.2.5.RELEASE 6

Introduction

Before attempting to install Roo, please ensure you have the following system dependencies.

e A Linux, Apple or Windows-based operating system (other operating systems may work but are
not guaranteed)

¢ A Sun, JRocket or IBM Java 5 or Java 6 installation, with the $JAvA HOVE environment variable
pointing to the installation

» Apache Maven 2.0.9 or aboveinstalled and in the path

We have listed various considerations concerning the Java Development Kit (JDK) and operating
systems in the known issues section of this documentation. We always recommend you use the latest
version of Java and Maven that are available for your platform. We also recommend that you use
Spring Tool Suite (STS), which is our free Eclipse-based I DE that includes a number of features that
make working with Roo even easier (you can of course use Roo with normal Eclipse or without an
IDE at al if you prefer).

Once you have satisfied the initial requirements, you can install Roo by following these steps:

1. Unzip the Roo installation ZIP to a directory of your choice; this will be known as $R0OO_HOME in
the directions below

2. If using Windows, add $ROO_HOVE\ bi n t0 your %PATH%environment variable

3. If using Linux or Apple, create asymbolic link using acommand such assudo I n -s $ROO_HOVE/

bi n/roo.sh /usr/bin/roo
Next verify Roo has been installed correctly. This can be done using the following commands:

$ nkdir roo-test
$ cd roo-test
$ roo quit

I N\
NN
I

I 1]\ I\ / WX.Y.ZZ [rev RRR]

Wel come to Spring Roo. For assistance press TAB or type "hint" then hit ENTER
$cd ..
$ rndir roo-test

If you seethe logo appear, you'veinstalled Roo successfully. For those curious, the"[rev RRR]" refers
to the Git commit ID used to compile that particular build of Roo.

1.4. Optional ROO_OPTS Configuration

The standalone Roo shell supports fine-tuning display-related configuration via the ROO_OPTS
environment variable. An environment variable is used so that these configuration settings can be
applied before the shell isinstantiated and the first messages displayed. The ROO_OPT S settings does
not apply within Spring Tool Suite's embedded Roo shell.

At present the only configuration settings available is roo.bright. This causes foreground messagesin
the shell to be displayed with brighter colors. This is potentially useful if your background color is
light (e.g. white). Y ou can set the variable using the following commands:

1.2.5.RELEASE 7

http://spring.io/tools/sts

Introduction

$ export ROO_OPTS="-Droo. bright=true" /1 Linux or Apple
$ set ROO OPTS="-Droo. bright=true" /1 Wndows users

There is an enhancement request within our issue tracker for customisable shell color schemes. If
you're interested in seeing this supported by Roo, you may wish to consider voting for ROO-549.

1.5. First Steps: Your Own Web App in Under 10 Minutes

Now that you have installed Roo, let's spend a couple of minutes building an enterprise application
using Roo.

The purpose of this application isjust to try out Roo. We won't explain what's going on in these steps,
but don't worry - we'll do that in the next chapter, Beginning With Roo: The Tutorial. We will try to
teach you about some usability features as we go along, though.

Please start by typing the following commands:

$ nkdir ten-m nutes
$ cd ten-minutes
$ roo

[\ __ N\
i rrrrrr
[B B B B B

T A O A S A / WX. Y. ZZ [rev RRR]

Wel cone to Spring Roo. For assistance press TAB or type "hint" then hit ENTER
roo> hint
Wl come to Roo! W hope you enjoy your stay!

Bef ore you can use nmany features of Roo, you need to start a new project.
To do this, type 'project' (without the quotes) and then hit TAB.

Enter a --toplLevel Package |ike 'com myconpany. proj ect name' (no quotes).
When you' ve finished conpleting your --topLevel Package, press ENTER

Your new project will then be created in the current working directory.
Note that Roo frequently allows the use of TAB, so press TAB regul arly.

Once your project is created, type 'hint' and ENTER for the next suggestion.
You're al so welcome to visit http://forum springframework.org for Roo hel p.

Notice the output from the "hint" command guides you through what to do next. Let's do that:

roo> project --topLevel Package com t enm nut es

Creat ed / hone/ bal ex/t en-m nut es/ pom xmni

Created SRC_MAI N_JAVA

Creat ed SRC_MAI N_RESOURCES

Created SRC TEST_JAVA

Creat ed SRC_TEST_RESOURCES

Creat ed SRC_MAI N_WEBAPP

Creat ed SRC_MAI N_RESOURCES/ META- | NF/ spri ng

Creat ed SRC_MAI N_RESOURCES/ META- | NF/ spri ng/ appl i cati onCont ext . xmi
roo> hint

Roo requires the installation of a JPA provider and associ ated dat abase.

Type 'jpa setup' and then hit TAB three tines.

We suggest you type 'H then TAB to conpl ete "H BERNATE".
After the --provider, press TAB twi ce for database choi ces.
For testing purposes, type (or TAB) HYPERSON C_| N_MEMORY.

If you press TAB again, you'll see there are no nore options.

1.2.5.RELEASE 8

http://jira.springframework.org/browse/ROO-549

Introduction

As such, you're ready to press ENTER to execute the command.

Once JPA is installed, type 'hint' and ENTER for the next suggestion.

At this point you've now got a viable Maven-based project setup. But let's make it more useful by
setting up JPA.. In the interests of time, I'll just include the commands you should type below. Be sure
to try using the TAB key when using the shell, asit will save you from having to type most of these
commands:

roo> jpa setup --provider H BERNATE --database HYPERSONI C | N MEMORY
roo> hint

roo> entity jpa --class ~. Timer --testAutonatically
roo> hint

roo> field string --fiel dName nmessage --not Nul |

roo> hint web mvc

roo> web nmvc setup

roo> web nvc all --package ~.web

roo> seleniumtest --controller ~. web. TimerController
roo> performtests

roo> perform package

roo> perform eclipse

roo> quit

$ nmvn tontat:run

The "perform" commands could have been easily undertaken from the command prompt using "mvn"
instead. We just did them from within Roo to benefit from TAB completion. You could have also
skipped the "perform eclipse" command if you are using the m2eclipse plugin. If you are using Spring
Tool Suite (STS), it automatically includes m2eclipse and as such you do not need to use the "perform
eclipse" command. Indeed if you're an STS user, you could have started your Roo project right from
within the I DE by selecting the File > New > Spring Roo menu option and compl eting the steps. In that
case a Roo Shell view will open within STS and from there you can enter the remaining commands.

Now that you've loaded Tomcat, let's run the Selenium tests. You can do this by loading
a new command window, changing into the ten-minutes directory, and then executing nvn
sel eni um sel enese. Y ou should see your FireFox web browser execute the generated Selenium tests.
Y ou can aso visit your new web application at http://local host:8080/tenminutes, which should look
similar to the picture below.

L4
Spring,

-

bz rew Timer
151 all fimars Wolcomae to fenminutes
SELENIUN TESTS
- - |-] pivre dem inlar wEhsd |G sqi Ani Sar EHEET asla kg mal enabhsa
aal Suile rapld delvers =f=qh pafamance stamiss Java sppliostons
Larguage e | .| K=o posion |

Naturally inthisshort ten minute test we've skipped dozens of featuresthat Roo can provide, and didn't
go into any detail on how you could have customised the application. We just wanted to show you that
Roo works and you can build an application in record-time. The Beginning With Roo: The Tutorial
chapter will go through the process of building an application in much more depth, including how to
work with your IDE and so on.

1.2.5.RELEASE 9

http://localhost:8080/tenminutes

Introduction

1.6. Exploring the Roo Samples

Now that you've built your first application during the ten minute test, you have a rough idea of how
Roo works. To help you learn Roo we ship several sample scripts that can be used to build new
applications. These sample scripts can be found in your $ROO_HOM E/classpath/src/main/resources/
directory. These sample scripts available from roo classpath. Y ou can run any sample script by using
the following command format:

$ nkdir sanple

$ cd sanple

$ roo

roo> script --file filenane.roo
roo> quit

$ nvn tontat:run

Thefi | ename. r oo shown in the statements above should be substituted with one of thefilenamesfrom
thislist (note that you get filename completion using TAB):

 clinic.roo: The Petclinic sample script is our most comprehensive. It builds a large number of
entities, controllers, Selenium tests and dynamic finders. It also sets up Log4J and demonstrates
entity relationships of different cardinalities.

« voteroo: The Voting sample script was built live on-stage during SpringOne Europe 2009, as
detailed in the project history section. Thisis a nice sample script because it's quite small and only
has two entities. It also demonstrates Spring Security usage.

¢ wedding.roo: The Wedding RSV P sample script isthe result of thewedding RSV P tutorial. If you're
looking for another Roo tutorial, this sample script (along with the associated blog entry) is a good
choice. This project includes Selenium tests, dynamic finders and Log4j configuration.

« expenses.roo: The Expenses sampl e script produces a Google Web Toolkit (GWT) application using
Spring Roo. This shows you the new GWT scaffolding support we added to Roo 1.1.

» pizzashop.roo: The PizzaShop sample script demonstrates Roo's integration of JPA composite
primary keys. It produces a headless application which is accessible via JISON (available through
Spring MV C REST integration). To add aWeb Ul on top of it, simply run theweb mvc all command.
The application is described in greater detail in our tutorial.

1.7. Suggested Steps to Roo Productivity

As we draw to the close of this first chapter, you know what Roo is, why you'd like to use it, have
installed it and completed the ten minute test, plus you know which samples are available. Y ou could
probably stop at this point and apply Roo productively to your projects, but we recommend that you
spend a couple of hours learning more about Roo. It will be time well spent and easily recouped by
the substantialy greater productivity Roo will soon deliver on your projects.

Thenext stepisto complete the Beginning With Roo: The Tutoria chapter. Inthetutoria chapter you'll
learn how to use Roo with your preferred IDE and how flexible and natural it isto develop with Roo.
After that you should read the application architecture chapter to understand what Roo applications
look like. From there you might wish to wrap up the recommended tour of Roo with a skim over the
usage and conventions chapter. Thisfinal recommended chapter will focus more on using the Roo tool
and less on the applications that Roo creates.

1.2.5.RELEASE 10

http://code.google.com/webtoolkit/

Introduction

If you can't find the information you're looking for in this reference guide, the resources chapter
contains numerous Roo-related web sites and other community resources.

We welcome your comments and suggestions as you go about using Roo. One convenient way to
share your experiences is to Tweet with the @springroo hash code. Y ou can aso follow Roo's core
development team via Twitter for the latest Roo updates. In any event, we thank you for exploring
Roo and hope that you enjoy your Roo journey.

1.2.5.RELEASE 11

http://search.twitter.com/search?q=@SpringRoo

Chapter 2. Beginning With Roo: The Tutorial

In this chapter wel'll build an app step-by-step together in arelatively fast manner so that you can see
how to typically use Roo in a normal project. We'll leave detailed features and side-steps to other
sections of this manual.

2.1. What You'll Learn

In this tutorial you will learn to create a complete Web application from scratch using Roo. The
application we are going to develop will demonstrate many of the core features offered by Roo. In
particular you will learn how to use the Roo shell for:

e project creation

« creation and development of domain abjects (JPA entities)
 adding fields of different types to the domain objects

« creating relationships between domain objects

e automatic creation of integration tests

* creating workspace artifacts to import the project into your IDE

» automatic scaffolding of aWeb tier

* running the application in a Web container

« controlling and securing access to different views in the application
» customizing the look and feel of the Web Ul for our business domain
* creating and running Selenium tests

« deployment and backup of your application

2.2. Alternative Tutorial: The Wedding RSVP Application

In addition to the tutoria in this chapter, we've published a separate step-by-step tutoria in the form
of a blog entry. This blog entry covers the process of building a wedding RSVP application. It is
kept updated to reflect the current major version of Roo, and features a number of interesting Roo
capabilities:

e Standard MV C web application with JPA entities etc
» Spring Security usage, including login page customisation

* Sending emailsviaSMTP

Testing both via JUnit and Selenium

» Usage with Eclipse

1.2.5.RELEASE 12

Beginning With Roo: The Tutorial

e Creating a WAR for deployment

Y ou can find the wedding tutorial at http://blog.springsource.com/2009/05/27/roo-part-2/.

2.3. Tutorial Application Details

To demonstrate the development of an application using Spring Roo we will create a Web site for a
Pizza Shop. The requirements for the Roo Pizza Shop application include the ability to create new
Pizzatypesby the staff of the Roo Pizza Shop. A pizzais composed of abase and one or moretoppings.
Furthermore, the shop owner would like to alow online orders of Pizzas by his customersfor delivery.

After this short discussion with the Pizza Shop owner, we have created a simple class diagram for the
initial domain model:

Topping Buase

Pirzalrder Bizen name: String name: String

While this class diagram represents a simplified model of the problem domain for the pizza shop
problem domain, it isagood starting point for the project at hand in order to deliver afirst prototype of
the application to the Pizza Shop owner. Later tutorials will expand this domain model to demonstrate
more advanced features of Spring Roo.

2.4. Step 1: Starting a Typical Project

Now that we have spoken with our client (the Pizza Shop owner) to gather the first ideas and
requirements for the project we can get started with the development of the project. After installing a
JDK, Spring Roo and Maven, we create a new directory for our project:

> nkdir pizza
> cd pizza
pi zza>

Next, we start Spring Roo and type 'hint' to obtain context-sensitive guidance from the Roo shell:

pi zza> roo

I N\
0111111111
I

[I A S A W 1.2.1. RELEASE [rev 6eae723]

Vel come to Spring Roo. For assistance press TAB or type "hint" then hit ENTER
roo>

roo> hint

Vel comre to Roo! We hope you enjoy your stay!

Bef ore you can use nmany features of Roo, you need to start a new project.

To do this, type 'project' (w thout the quotes) and then hit TAB

1.2.5.RELEASE 13

http://blog.springsource.com/2009/05/27/roo-part-2/

Beginning With Roo: The Tutorial

Enter a --toplLevel Package |ike 'com myconpany. proj ect nanme' (no quotes).
When you' ve finished conpleting your --topLevel Package, press ENTER
Your new project will then be created in the current working directory.

Note that Roo frequently allows the use of TAB, so press TAB regul arly.
Once your project is created, type 'hint' and ENTER for the next suggestion.
You're al so welconme to visit http://forum springframework.org for Roo hel p.
roo>

There are quite a few usability features within the Roo shell. After typing hint you may have noticed
that this command guides you in a step-by-step style towards the completion of your first project. Or
if you type help you will see alist of all commands available to you in the particular context you
arein. In our case we have not created a new project yet so the help command only reveals higher
level commands which are available to you at this stage. To create an actual project we can use the
project command:

roo> project --toplLevel Package com springsource. roo. pi zzashop
Creat ed ROOT/ pom xmi

Created SRC_MAI N_RESOURCES

Creat ed SRC_MAI N_RESOURCES/ | og4j . properties

Creat ed SPRI NG_CONFI G_ROOT

Creat ed SPRI NG_CONFI G_ROOT/ appl i cat i onCont ext . xm

com springsource. roo. pi zzashop roo>

When you used the project command, Roo created you a Maven pom xni file as well as a Maven-
style directory structure. The top level package you nominated in this command was then used as the
<gr oupl d> within the pom xni . When typing later Roo commands, you can use the "~" shortcut key to
refer to thistop-level-package (it isread in by the Roo shell from thepom xni each time you load Roo).

The following folder structure now exists in your file system:

[| pizza
log.roo
pom.xml
Bl src
I main
[java
[resources
[] META-INF
b spring
applicationContext.xml
log4|.properties
[webapp
L test
[java

Ll resources

For those familiar with Maven you will notice that this folder structure follows standard Maven
conventions by creating separate folders for your main project resources and tests. Roo also installs a

1.2.5.RELEASE 14

http://maven.apache.org/

Beginning With Roo: The Tutorial

default application context and alog4j configuration for you. Finally, the project pom file contains all
required dependencies and configurations to get started with our Pizza Shop project.

Once the project structure is created by Roo you can go ahead and install a persistence configuration
for your application. Roo leverages the Java Persistence APl (JPA) which provides a convenient
abstraction to achieve object-relational mapping. JPA takes care of mappings between your persistent
domain objects (entities) and their underlying database tables. To install or change the persistence
configuration in your project you can use the jpa setup command (note: try using the <T AB> as often
as you can to auto-complete your commands, options and even obtain contextual help):

com springsource. roo. pi zzashop roo> hint
Roo requires the installation of a persistence configuration,
for exanple, JPA or MongoDB.

For JPA, type 'jpa setup’ and then hit TAB three tines.

We suggest you type 'H then TAB to conpl ete "H BERNATE".
After the --provider, press TAB twi ce for database choi ces.
For testing purposes, type (or TAB) HYPERSONI C_| N MEMORY.

If you press TAB again, you'll see there are no nore options.
As such, you're ready to press ENTER to execute the conmand.

Once JPA is installed, type 'hint' and ENTER for the next suggestion.

Simlarly, for MngoDB persistence, type 'nobngo setup' and ENTER
com springsource. r00. pi zzashop roo>

com springsource. roo. pi zzashop roo> jpa setup --provi der H BERNATE --dat abase HYPERSONI C | N MEMORY
Creat ed SPRI NG CONFI G ROOT/ dat abase. properties
Updat ed SPRI NG_CONFI G_ROOT/ appl i cati onCont ext . xmi
Creat ed SRC_MAI N_RESOURCES/ META- | NF/ per si st ence. xm
Updat ed ROOT/ pom xml [added dependenci es org. hsql db: hsqgl db: 1. 8. 0. 10, or g. hi ber nat e: hi ber nat e- core: 3. 6.
or g. hi bernat e: hi bernat e-entitynmanager: 3. 6. 9. Fi nal, org. hi bernate.javax. persi stence: hi bernate-j pa-2.0-¢
or g. hi bernat e: hi bernate-val i dator: 4.2.0. Final, javax.validation:validation-api:1.0.0.GA cglib:cglib-r
javax.transaction:jta: 1.1, org.springfranmework:spring-jdbc: ${spring.version},
org. springframewor k: spring-orm ${spring. version}, commons-pool : commons-pool : 1.5.6, commons; dbcp: conmor
com springsource. roo. pi zzashop roo>

So in this case we have installed Hibernate as the object-relational mapping (ORM)-provider.
Hibernate is one of ORM providers which Roo currently offers. EclipseLink, OpenJPA, and
DataNucleus represent the alternative choices. In a similar fashion we have chosen the Hypersonic
in-memory database as our target database. Hypersonic is a convenient database for Roo application
development because it relieves the devel oper from having to install and configure a production scale
database.

When you are ready to test or install your application in a production setting, the j pa setup command
can be repeated. This allows you to nominate a different database, or even ORM. Roo offers TAB
completion for production databasesincluding Postgres, MySQL , Microsoft SQL Server, Oracle, DB2,
Sybase, H2, Hypersonic and more. Another important step is to edit the SRC_MAI N_RESOURCES/ META-
I NF/ per si st ence. xni fileand modify your JPA provider's DDL (schema management) configuration
setting so it preserves the database between restarts of your application. To help you with this, Roo
automatically lists the valid settings for your JPA provider as a comment in that file. Note that by
default your JPA provider will drop all database tables each time it reloads. As such you'll certainly
want to change this setting.

Please note: The Oracle and DB2 JDBC drivers are not available in public maven repositories. Roo
will install standard dependenciesfor these drivers (if selected) but you may need to adjust the version
number or package name according to your database version. You can use the following maven
command to install your driver into your local maven repository: nvn install:install-file -

1.2.5.RELEASE 15

Beginning With Roo: The Tutorial

Dgr oupl d=com oracl e -Dartifactld=ojdbcl4 -Dversion=10.2.0.2 -Dpackagi ng=jar -Dfile=/
pat h/to/ fil e (examplefor the Oracle driver)

2.5. Step 2: Creating Entities and Fields

Now it istime to create our domain objects and fields which we have identified in our class diagram.
First, we can use the entity j pa command to create the actual domain object. The entity jpa command
has a number of optional attributes and one required attribute which is - - cl ass. In addition to the
required - - cl ass attribute we use the - -t est Aut omati cal | y attribute which conveniently creates
integration tests for adomain object. So let's start with the Toppi ng domain object:

com springsource. roo. pi zzashop roo> hint
You can create entities either via Roo or your |DE
Using the Roo shell is fast and easy, especially thanks to the TAB conpl eti on.

Start by typing 'ent' and then hitting TAB twi ce.
Enter the --class in the form'~. donai n. MyEntit yC assNane'
In Roo, '~' neans the --toplLevel Package you specified via 'create project'.

After specify a --class argunment, press SPACE then TAB. Note nothing appears.
Because not hing appears, it neans you've entered all mandatory argunents.
However, optional arguments do exist for this command (and nobst others in Roo).
To see the optional argunments, type '--' and then hit TAB. Mostly you won't
need any optional argunments, but let's select the --testAutomatically option
and hit ENTER You can al ways use this approach to view optional argunents.

After creating an entity, use 'hint' for the next suggestion.
com springsource. roo. pi zzashop roo>

com springsource. roo. pi zzashop roo> entity jpa --class ~. domain. Topping --testAutomatically
Creat ed SRC_MAI N_JAVA/ coni spri ngsour ce/ r oo/ pi zzashop/ donai n

Creat ed SRC_MAI N_JAVA coni spri ngsour ce/ r oo/ pi zzashop/ domai n/ Toppi ng. j ava

Creat ed SRC _TEST_JAVA/ coni spri ngsour ce/ r oo/ pi zzashop/ domai n

Creat ed SRC TEST_JAVA/ coni spri ngsour ce/ r oo/ pi zzashop/ donai n/ Toppi ngDat aOnDenand. j ava

Creat ed SRC TEST_JAVA coni spri ngsour ce/ r oo/ pi zzashop/ domai n/ Toppi ngl nt egrati onTest . j ava
Creat ed SRC_MAI N _JAVA/ conl spri ngsour ce/ roo/ pi zzashop/ domai n/ Toppi ng_Roo_Confi gur abl e. aj
Creat ed SRC_MAI N_JAVA/ coni spri ngsour ce/ r oo/ pi zzashop/ domai n/ Toppi ng_Roo_ToStri ng. aj

Creat ed SRC_MAI N_JAVA coni spri ngsour ce/ r oo/ pi zzashop/ domai n/ Toppi ng_Roo_Jpa_Entity. aj

Creat ed SRC_MAI N_JAVA/ coni spri ngsour ce/ r oo/ pi zzashop/ domai n/ Toppi ng_Roo_Jpa_Acti veRecord. a
Creat ed SRC TEST_JAVA/ coni spri ngsour ce/ r oo/ pi zzashop/ donai n/ Toppi ngDat aOnDenmand_Roo_Conf i gur abl e. aj
Creat ed SRC TEST_JAVA coni spri ngsour ce/ r oo/ pi zzashop/ donai n/ Toppi ngDat aOnDenmand_Roo_Dat aOnDenand. aj
Creat ed SRC TEST_JAVA/ coni spri ngsour ce/ r oo/ pi zzashop/ domai n/ Toppi ngl nt egrati onTest _Roo_Confi gur abl e. aj
Creat ed SRC TEST_JAVA/ coni spri ngsour ce/ r oo/ pi zzashop/ donai n/ Toppi ngl nt egr ati onTest _Roo_|I nt egrati onTest

Y ou will notice that besides the creation of Java and AspectJ sources, the entity jpa command in the
Roo shell takes care of creating the appropriate folder structurein your project for thetop level package
you defined earlier. You will notice that we used the '~' character as a placeholder for the project's
top level package. While this serves a convenience to abbreviate long commands, you can aso tab-
complete the full top level package in the Roo shell.

As anext step we need to add the 'name' field to our Toppi ng domain class. This can be achieved by
using the field command as follows:

~. domai n. Toppi ng roo> hint
You can add fields to your entities using either Roo or your |DE.

To add a new field, type 'field and then hit TAB. Be sure to sel ect

your entity and provide a |legal Java field name. Use TAB to find an entity
name, and '~' to refer to the top | evel package. Al so renmenber to use TAB
to access each mandatory argunment for the conmand.

1.2.5.RELEASE 16

Beginning With Roo: The Tutorial

After conpleting the mandatory argunents, press SPACE, type '--' and then TAB.
The optional argunments shown reflect official JSR 303 Validation constraints.
Feel free to use an optional argunent, or delete '--' and hit ENTER

If creating nultiple fields, use the UP arrow to access conmand hi story.

After adding your fields, type '"hint' for the next suggestion.

To | earn about setting up nmany-to-one fields, type 'hint relationships'.
~. domai n. Toppi ng roo>

~. domai n. Toppi ng roo> field string --fieldNane nane --notNull --sizeMn 2
Updat ed SRC_MAI N_JAVA/ cont spri ngsour ce/ r oo/ pi zzashop/ domai n/ Toppi ng. j ava
Updat ed SRC_TEST_JAVA/ cont spri ngsour ce/ r oo/ pi zzashop/ donai n/ Toppi ngDat aOnDenmand_Roo_Dat aOnDenand. aj
Creat ed SRC_MAI N_JAVA/ coni spri ngsour ce/ r oo/ pi zzashop/ domai n/ Toppi ng_Roo_JavaBean. aj

As explained in the documentation by typing the hint command you can easily add constraints to
your fields by using optional attributes such as--not Nul | and - -si zeM n 2. These attributes result
in standards-compliant JSR-303 annotations which Roo will add to your field definition in your Java
sources. You will also notice that the Roo shell is aware of the current context within which you are
using the field command. It knows that you have just created a Topping entity and therefore assumes
that the field command should be applied to the Topping Java source. Roo's current context is visible
in the shell prompt.

If you wish to add the field to a different target type you can specify the - - ¢l ass attribute as part of
the field command which then allows you to tab complete to any type in your project.

Asanext step you can create the Base and the Pi zza domain object in asimilar fashion by issuing the
following commands (shell output omitted):

entity jpa --class ~. domain. Base --testAutomatical ly

field string --fieldName name --notNull --sizeMn 2
entity jpa --class ~. domain. Pizza --testAutomatically
field string --fieldName name --notNull --sizeMn 2

field nunber --fieldNane price --type java.lang. Fl oat

After adding the name and the price field to the pi zza domain class we need to deal with its
relationships to Base and Toppi ng. Let's start with the m:m (one pi zza can have many Toppi ngs and
one Toppi ng can be applied to many Pi zzas) relationship between pPi zza and Toppi ngs. To create
such many-to-many relationships Roo offers the field set command:

~. domai n. Pi zza roo> field set --fieldNanme toppings --type ~.domai n. Toppi ng

As you can see it is easy to define this relationship even without knowing about the exact JPA
annotations needed to create this mapping in our Pi zza domain entity. In a similar way you can
define the m: 1 relationship between the Pi zza and Base domain entities by using the field reference
command:

~.domai n. Pi zza roo> field reference --fiel dNanme base --type ~.domain. Base

In asimilar fashion we can then continue to create the Pi zzaor der domain object and add itsfields by
leveraging the field date and field number commands:

entity jpa --class ~. domain. PizzaOrder --testAutomatically
field string --fieldNane nane --notNull --sizeMn 2

field string --fiel dName address --sizeMax 30

field nunber --fieldName total --type java.lang. Fl oat
field date --fiel dNane deliveryDate --type java.util.Date
field set --fieldNanme pizzas --type ~.donmain. Pi zza

1.2.5.RELEASE 17

http://jcp.org/en/jsr/detail?id=303

Beginning With Roo: The Tutorial

This concludes this step since the initial version of the domain model is now complete.

2.6. Step 3: Integration Tests

Once you are done with creating the first iteration of your domain model you naturally want to see if
it works. Luckily we have instructed Roo to create integration tests for our domain objects all aong.
Hint: if you have not created any integration tests while developing your domain model you can still
easily create them using the test integration command. Once your tests are in place it istime to run
them using the perform tests command:

~. domai n. Pi zzaOrder roo> performtests

Tests run: 36, Failures: 0, Errors: 0, Skipped: O

[INFQ Total tine: 3.860s
[INFQ Finished at: Tue Feb 14 18:01: 45 EST 2012
[INFQ Final Menory: 6M 81M

Asyou can see Roo has issued a Maven command (equivalent to running 'nvn t est ' outside the Roo
shell) in order to execute the integration tests. All tests have passed, Roo has generated 9 integration
tests per domain object resulting in atotal of 36 integration tests for all 4 domain objects.

2.7. Step 4: Using Your IDE

Of course Roo projects can be used in your favorite IDE. We recommend the use of SpringSource
Tool Suite (STS), which isavailable at no charge from SpringSource. If you're not using SpringSource
Tool Suite, please refer to the IDE usage section of this reference guide for amore detailed discussion
of IDE interoperability.

By default Roo projects do not contain any | DE-specific workspace configuration artifacts. Thismeans
your IDE won't be able to import your Pizza Shop project by default. The Roo shell can help us create
| DE-specific workspace configuration artifacts by means of the perfor m eclipse command. However,
you should not use this command if you have the m2eclipse plugin installed. If you're an STS user,
you have the m2eclipse plugin installed and as such you can skip the "perform eclipse" command. All
people not using STS or m2eclipse should use the following command:

~. domai n. Pi zzaOrder roo> perform eclipse

[INFQ Adding support for WP version 2.0.
[INFQ Using Eclipse Wrkspace: null
[INFQ Adding default classpath container: org.eclipse.jdt.|aunching. JRE_CONTAI NER
[INFO Wote settings to /Users/stewartalprojects/roo-test/pizzashop/.settings/org.eclipse}jdt.core.pr
[INFO Wote Eclipse project for "pizzashop" to /Users/stewartal/projects/roo-test/pizzashop.
[INFQ n.PizzaO der roo>
Javadoc for some artifacts is not avail able.
Pl ease run the sane goal with the -Ddownl oadJavadocs=true paraneter in order to check renpte re
Li st of artifacts without a javadoc archive:
o org. springframework. roo: org. springframewor k. roo. annot ati ons: 1. 2. 1. RELEASE

1.2.5.RELEASE 18

http://www.springsource.com/products/sts
http://www.springsource.com/products/sts

Beginning With Roo: The Tutorial

[INFOQ Total tine: 1.685s
[INFQ Finished at: Tue Feb 14 18:04: 20 EST 2012
[INFQ Final Menory: 7M 81M

Note, when issuing this command for the first time you can expect delays while Maven downloads
the dependencies and their sources into your local repository. Once this command has completed you
are ready to import your project into STS by clicking 'File > Import > General > Existing Projects
into Workspace'. Once your project isimported into STS you can take alook at the Java sources. For
example you can run theincluded JUnit tests by right clicking the pizzashop project and then selecting
'Run As > JUnit Test'.

If you're using STS or have installed m2eclipse into an Eclipse-based IDE, as mentioned earlier you
can skip the perform eclipse command entirely. In this case you simply need to select in STS/Eclipse
the 'File > Import > General > Maven Projects menu option.

As detailed in the Application Architecture chapter of this documentation Roo projects leverage
Aspect] Intertype declarations extensively. This does not, however, affect your ability to use code
compl etion featuresoffered by STS. To see code compl etion working in action you can open an existing
integration test and use the t est Mar ker Met hod() method to test it. For example you can open the
Basel nt egr ati onTest . j ava sourcefileand try it out:

3 - pirrashop e Eeat) pea ok L g &1 rosa) i raanhog errien [g slrslie gy 55 e

o0 Q.- |l eE TS o g | g

- Rayad g e Tagr palbldE g S iEpea gy

| IRyt g Tl e huincnrt .l dn Al et L8
N ——

& gEki] | Lisag ~ PR D
T Ty Ay

M agEt |

Fe e e e 9P

Note, most of the methods visible in the STS code assist are actually not in the Java sources but rather
part of the Aspectd ITD and are therefore introduced into the Java bytecode at compile time.

2.8. Step 5: Creating A Web Tier

As a next step we want to scaffold a Web tier for the Pizza Shop application. This is accomplished
via the web mvc commands. The most convenient way to generate controllers and al relevant Web
artifactsis to use the web mvc setup command followed by the web mvc all command:

~. domai n. Pi zzaOrder roo> web nvc setup

1.2.5.RELEASE 19

Beginning With Roo: The Tutorial

~. domai n. Pi zzaOrder roo> web nvc all --package ~.web

This command will scan the Pizza Shop project for any domain entities and scaffold a Spring MV C
controller for each entity detected. The - - package attribute is needed to specify in which package the
controllers should be installed. This command can be issued from your normal Roo shell or from the
Roo shell, which shipswith STS. In order to use the integrated Roo shell within STS you need to right
click on the pizzashop application and select 'Spring Tools > Open Roo Shell'.

Note, that with the web mvc setup command the nature of the project changes from a normal Java
project nature to a Web project nature in STS. This command will also add additional dependencies
suchas Spring MV C, Tiles, etc to your project. In order to update the project classpath within STSwith
these new dependencies you can issue ‘perform eclipse’ again, followed by a project refreshin STS.

All newly added Web artifacts which are needed for the view scaffolding can be found under the sr ¢/

mai n/ webapp folder. This folder includes graphics, cascading style sheets, Java Server pages, Tiles
configurations and more. The purpose of these foldersis summarized in the Ul customization section.
The Roo generated Spring MV C controllersfollow the REST pattern as much as possible by leveraging
new features introduced with the release of Spring Framework v3. The following URI - Resource
mappings are applied in Roo generated controllers:

Resource ____| GeT Pt __| POST DELETE |

List the members of fmat: bt
Collection URI such as the collection. For ”‘;’;E‘n‘?ﬁ’ y
hittp: ffdomailn.com. example list all the Mot used. hen N TR Mot used.

the 1D Is assigned
automatically by
the collection.

pizzashop/topping toppings available in
the application,

" - Update the Delete the
Hr:m t"!‘_r "'IFIH f"'tﬁ_a.E Retrieve the addressed addressed Not used addressed
e ko topping with id=5 topping with topping
sl R id=5, with id=5.
Member URI such as Create Form - retums
hitn: Hdarmaln F
hitto:f ,,,.;n:,J Oy an Initialized, but Not usad. Mot used. Mot used.
plzzasnop/tonpng. empty topping for form
form binding.
Member URI such as Update Form metums
NEED L QO N, SO the topp g reSource . ;

- Mok used. Mot used. Mot used.

pizzashop/topping/ s/ which is pre-populated
form far farm binding

2.9. Step 6: Loading the Web Server

To deploy your application in a Web container during project development you have several options
available:

« Deploy from your shell / command line (without the need to assemble awar archive):

* run 'mvn tomcat:run' in the root of your project (not inside the Roo shell) to deploy to a Tomcat
container

e run 'mvn jetty:run' in the root of your project (not inside the Roo shell) to deploy to a Jetty
container

» Deploy to aintegrated Web container configured in STS:

1.2.5.RELEASE 20

http://tomcat.apache.org/
http://www.eclipse.org/jetty/

Beginning With Roo: The Tutorial

« Drag your project to the desired Web container inside the STS server view

» Right-click your project and select 'Run As > Run on Server' to deploy to the desired Web
container
After selecting your preferred deployment method you should see the Web container starting and the
application should be available under the following URL http://localhost:8080/pizzashop

o Wk o 10 REraihop

&« 3 O ﬂ' ﬁ hatp: f letalbodt 8080 pi rasbopipizzacnder farm | 2
ROO b
Spring
Croate now Topping =
TR
PEZZA ORDER
Cranbs firw PLEEN Oeglie
Lisi bl Fizea Orders
oase | T
Croabe norw Basn
Dacombes
T
Lkt Al Flidadn " ¥ - - : - -
Criviihs niras PR -] 7 B ¥ 10 1 1
THETARETRETNET
=i ol Firras
[ry ol o F1]
Iy | i 30 31
SAVE
a8 e S0
1 _IZTHI= i

2.10. Securing the Application

Asdiscussed with the Pizza Shop owner we heed to control accessto certain viewsin the Web frontend.
Securing accessto different viewsin the application isachieved by installing the Spring Security addon
viathe security setup command:

~.web roo> security setup

Creat ed SPRI NG CONFI G ROOT/ appl i cati onCont ext - security. xn
Creat ed SRC_MAI N VEBAPP/ EEB- | NF/ vi ews/ | ogi n. j spx

Updat ed SRC_MAI N_WEBAPP/ VEEB- | NF/ vi ews/ vi ews. xn

Updat ed ROOT/ pom xml [added property 'spring-

org. springframework. security:spring-
org. springframework. security: spring-
org. springframewor k. security:spring-
org. springframework. security:spring-

security-
security-
security-
security-

security.version' = '3.1.0. RELEASE ;
core: ${spring-security.version},
confi g: ${spri ng-security.version},
web: ${ spri ng-security. version},
taglibs: ${spring-security.version}]

added de

pendenci es

Updat ed SRC_MAI N_VEBAPP/ \EB- | NF/ web. xm
Updat ed SRC_MAI N_WEBAPP/ VEB- | NF/ spri ng/ webmvc- confi g. xm

Note, the Roo shell will hide the security setup command until you have created a Web layer. As
shown above, the security setup command manages the project pom xmi file. This means additional
dependencies have been added to the project. To add these dependencies to the STS workspace you
should run the perform eclipse command again followed by a project refresh (if you're using STS
or m2eclipse, the "perform eclipse” command should be skipped as it will automatically detect and
handle the addition of Spring Security to your project).

1.2.5.RELEASE 21

http://localhost:8080/pizzashop

Beginning With Roo: The Tutorial

In order to secure the viewsfor the Toppi ng, Base, and Pi zza resourcesin the Pizza Shop application
you need to open the appl i cati onCont ext -security.xm file in the src/ mai n/ r esour ces/ META-
I NF/ spri ng folder:

<l-- HTTP security configurations -->

<http auto-config="true" use-expressions="true">
<forml ogin | ogi n-processing-url="/static/j_spring_security_check" |ogin-page="/1o0gin" #

aut hentication-failure-url="/1ogin?l ogin_error=t{/>

<l ogout | ogout-url="/static/j_spring_security_|logout"/>
<!-- Configure these elenments to secure URIs in your application -->
<intercept-url pattern="/pizzas/**" access="hasRol e(' ROLE_ADM N)"/ >
<intercept-url pattern="/toppings/**" access="hasRol e(' ROLE_ ADM N)"/ >
<intercept-url pattern="/bases/**" access="hasRol e(' ROLE_ADM N)"/ >
<intercept-url pattern="/resources/**" access="permtAIl" />
<intercept-url pattern="/static/**" access="permtAl" />
<intercept-url pattern="/**" access="permtAll" />

</ http>

As anext step you can use the Spring Security JSP tag library to restrict access to the relevant menu
itemsin the menu. j spx file:

<div xmns:jsp="..." xmns:sec="http://wwm. springframework. org/security/tags" id="nenu" version="2.0">
<jsp:directive. page content Type="text/html ; charset =UTF-8"/>
<j sp:output omt-xm -decl aration="yes"/>
<menu: menu i d="_nenu" z="nZaf 43Bj Ugli M)v70H]VEsXDopc=">
<sec: aut hori ze ifAl | G ant ed="ROLE_ADM N'>
<menu: cat egory id="c_toppi ng" z="XmL3w68r Cl yzL6W zqBt cpfi NQU=">
<menu:itemid="i_topping_new' .../>
<menu:itemid="i_topping_list" .../>
</ menu: cat egory>
<menu: cat egory id="c_base" z="yTpmmM\Mi hWy3yf +aPcdUX2At 8=" >
<nenu:itemid="i_base_new' .../>
<menu:itemid="i_base list" .../>
</ menu: cat egor y>
<menu: cat egory id="c_pizza" z="mXqKCLELexS039/ pkkCrZVcSry0=">
<menu:itemid="i_pizza_new' .../>
<menu:itemid="i_pizza_list" .../>
</ menu: cat egor y>
</ sec: aut hori ze>
<menu: cat egory id="c_pi zzaorder" z="gBYi BODEJr zQe3g+el 5kt XI Sc4U=">
<menu:itemid="i_pizzaorder_new' .../>
<menu:itemid="i_pizzaorder_list" .../>
</ menu: cat egor y>
</ menu: menu>
</ div>

This leaves the pizza order view visible to the public. Obviously the delete and the update use case
for the pizza order view are not desirable. The easiest way to take care of this is to adjust the
@RooVebScaf f ol d annotation in the i zzaOr der Cont rol | er. j ava SOUrCe:

@RooWebScaf f ol d(path = "pizzaorder",
f or mBacki ngQbj ect = PizzaOrder. cl ass,
del et e=f al se,
updat e=f al se)

This will trigger the Roo shell to remove the delete and the update method from the
Pi zzaOr der Cont rol | er and also adjust the relevant view artifacts.

With these steps completed you can restart the application and the 'admin’ user can navigate to http://
| ocal host:8080/pi zzashop/login to authenticate.

1.2.5.RELEASE 22

http://localhost:8080/pizzashop/login
http://localhost:8080/pizzashop/login

Beginning With Roo: The Tutorial

2.11. Customizing the Look & Feel of the Web Ul

Roo generated Web Uls can be customized in various ways. To find your way around the installed
Web-tier artifacts take alook at the following table:

Directory Purpose

/styles style sheets (CSS)

fimages graphics

/WEB-INF/classes/™.properties theme configurations
JWEB-IMNF/config/®.xml Web-related Spring application contexts
SWEB-INF/i18n/* properties internationalization message files
/WEB-INF/layouts/layout.jspx Tiles definition for master layout

/WEB-INF/tags/*.tagx Tag libraries (pagination, language, etc)
JWEB-INF/views/**/* Tiles and other view artifacts
JWEB-INF/web.xml Web application context
JSWEB-IMNF/urlrewrite.xmil URL rewrite filter configuration

The easiest way to customizethelook & feel of the Roo Web Ul isto change CSS and image resources
to suit your needs. The following look & feel was created for the specific purpose of the Pizza Shop
application:

5 Wekiome o Pieraihop

= = & & 'ﬂ? http: f flocalbost- 80 &0/ plzzashop/topping Toage = 2isize= 10 -

taa:}:;} Pilzza Skc})

= Lisz il Toppdngs

b v THREAG

Name
_ — ‘_- u List ol Tagpings
7 Tomam . A
P & W Creats inew Piren Oeces
i S rmety & » List il Pz Ordars
Wy moms & 4 Creatn mew Bl
L a o List o'l Hasos
24 Ordan ™] Creat rew Pizza
Halmen [F? 5 List & PiEras
I List rosuits per page: § 10 15 20 251 W 4 Page Zofd p b
thorm | LD | Langulgsc 71 MmN ss T 1 | Trema: gaandn | 65 ? [

Spring Roo also configures theming support offered by Spring framework so you can leverage this
feature with ease.

To achieve a higher level of customization you can change the default Tiles template (WEB-INF/
layouts/default.jspx) and adjust the JSP pages (WEB-INF/views/* .jspx). WIth release 1.1 of Spring

1.2.5.RELEASE 23

http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-themeresolver

Beginning With Roo: The Tutorial

Roo jspx artifacts can now be adjusted by the user while Roo can still make adjustments as needed if
domain layer changes are detected. See the JSP Views section for details.

Furthermore the Spring Roo 1.1 release introduced a set of JSP tags which not only reduce the
scaffolded jspx files by 90% but also offer the most flexible point for view customization. Roo will
install these tags into the user project where they can be accessed and customized to meet specific
requirements of the project. For example it would be fairly easy to remove the integrated Spring JS/
Dojo artifacts and replace them with your JS framework of choice. To make these changes available
for installation in other projectsyou can create asimple add-on which replacesthe default tagsinstalled
by Roo with your customized tags.

2.12. Selenium Tests

Roo offersa core addon which can generate Selenium test scriptsfor you. Y ou can create the Selenium
scripts by using the selenium test command. Tests are generated for each controller and are integrated
in atest suite:

l
l

.web roo> seleniumtest --controller
~.web roo> seleniumtest --controller
.web roo> seleniumtest --controller
.web roo> seleniumtest --controller

. web. Toppi ngControl | er

. web. BaseControl | er

. web. Pi zzaControl | er
.web. Pi zzaOrder Control | er

l

l

l

l
l

The generated tests are located in the src/ mai n/ webapp/ sel eni um folder and can be run via the
following maven command (executed from command line, not the Roo shell):

pi zza> nmvn sel eni um sel enese

Running the maven selenium addon will start a new instance of the FireFox browser and run tests
against the Pizza Shop Web Ul by using Roo generated seed data.

Please note that the maven selenium plugin configured in the project pom xni assumesthat the FireFox
Web browser is already installed in your environment. Running the maven selenium plugin also
assumes that your application is already started as discussed in step 6. Finally, there are limitations
with regardsto locales used by the application. Please refer to the known issues section for details.

2.13. Backups and Deployment

One other very useful command is the backup command. Issuing this command will create you a
backup of the current workspace with all sources, log files and the script log file (excluding the target
directory):

~.web roo> backup

Creat ed ROOT/ pi zzashop_2012- 02-14_18: 10: 19. zi p
Backup conpleted in 35 ns

~.web roo>

Finally, you may wish to deploy your application to a production Web container. For this you can
easily create awar archive by taking advantage of the perform package command:

~.web roo> perform package
[INFQ Scanning for projects...

Y 0 PO S s
[INFQ Buil di ng pi zzashop
[INFQ t ask- segnent: [package]

1.2.5.RELEASE 24

http://seleniumhq.org/
http://www.mozilla.com/en-US/firefox/firefox.html

Beginning With Roo: The Tutorial

[INFQ [war:war {execution: default-war}]
[NFQ Expl odi ng webapp. ..

[INFQ Assenbling webapp pizzashop in /Users/stewartalprojects/roo-test/pizzashop/target/pizzashop-0. 1
[INFOQ Copy webapp webResources to /Users/stewartalprojects/roo-test/pizzashop/target/pizzashop-0. 1. 0-
[INFQ Generating war /Users/stewartal/projects/roo-test/pizzaltarget/pizzashop-0. 1. 0- SNAPSHOT. war
[INFQ Building war: /Users/stewartal/projects/roo-test/pizzal/target/pizzashop-0. 1. 0- SNAPSHOT. war

[INFQ Total tine: 5.881s
[INFQ Finished at: Tue Feb 14 18:07:54 EST 2012
[INFQ Final Menory: 8M 81M

This command produces your war file which can then be easily copied into your production Web
container.

2.14. Where To Next

Congratuations! Y ou've now completed the Roo Pizza Shop tutorial. Y ou're now in agood position to
try Roo for your own projects. While reading the next few chapters of this reference guide will help
you understand more about how to use Roo, we suggest the following specific sections if you'd like
to know more about commonly-used Roo add-ons:

¢ Dynamic Finders

Spring Web Flow addon

Logging addon

JM S addon

Email (SMTP) addon

1.2.5.RELEASE 25

Chapter 3. Application Architecture

In this chapter we'll introduce the architecture of Roo-created projects. In later chapters we'll cover
the architecture of Roo itself.

This chapter focuses on web applications created by Roo, as opposed to add-on projects.

3.1. Architectural Overview

Spring Roo focuses on the devel opment of enterprise applicationswrittenin Java. Inthe current version
of Roo these applicationstypically will have arelational database backend, JavaPersistence API (JPA)
persistence approach, Spring Framework dependency injection and transactional management, JUnit
tests, a Maven build configuration and usually a Spring MV C-based front-end that uses JSP for its
views. As such a Roo-based application is like most modern Java-based enterprise applications.

While most people will be focusing on developing these Spring MV C-based web applications, it's
important to recognise that Roo does not impose any restrictions on the sort of Java applications that
can be built with it. Even with Roo 1.0.0 it was easy to build any type of self-contained application.
Some examples of the types of requirements you can easily address with the current version of Roo
include (but are not limited to):

 Listening for messages on a JM S queue and sending replies over IMS or SMTP (Roo can easily set
up JM 'S message producers, consumers and SMTP)

» Writing a services layer (perhaps annotated with Spring's @Service stereotype annotation) and
exposing it using aremoting protocol to arich client (Spring's remoting services will help here)

» Executing a series of predefined actions against the database, perhaps in conjunction with Spring's
new @Scheduled or @A sync timer annotations

» Experimentation with the latest Spring and AspectJ features with minimal time investment

One of the mgjor differences between Roo and traditional, hand-written applications is we don't add
layers of abstraction unnecessarily. Most traditional Java enterprise applications will have a DAO
layer, services layer, domain layer and controller layer. In atypica Roo application you'll only use
an entity layer (which is similar to adomain layer) and aweb layer. Asindicated by the list above, a
serviceslayer might be added if your application requiresit, although aDAO layer is extremely rarely
added. Welll look at some of these layering conventions (and the rationale for them) as we go through
the rest of this chapter.

3.2. Critical Technologies

Two technologies are very important in al Roo projects, those being Aspectd and Spring. We'll have
alook at how Roo-based applications use these technol ogies in this section.

3.2.1. AspectJ

AspectJisapowerful and mature aspect oriented programming (AOP) framework that underpins many
large-scale systems. Spring Framework has offered extensive support for Aspect] since 2004, with
Spring 2.0 adopting AspectJ's pointcut definition language even for expressing Spring AOP pointcuts.

1.2.5.RELEASE 26

http://docs.spring.io/spring/docs/3.0.0.RELEASE/spring-framework-reference/html/beans.html#beans-stereotype-annotations
http://docs.spring.io/spring/docs/3.0.0.RELEASE/spring-framework-reference/html/remoting.html
http://docs.spring.io/spring/docs/3.0.0.RELEASE/spring-framework-reference/html/scheduling.html#scheduling-annotation-support

Application Architecture

Many of the official Spring projects offer support for Aspectd or are themselves heavily dependent
on it, with several examples including Spring Security (formerly Acegi Security System for Spring),
Spring Insight, SpringSource tc Server, SpringSource dm Server, Spring Enterprise and Spring Roo.

While AspectJis most commonly known for its aspect oriented programming (AOP) features such as
applying advice at defined pointcuts, Roo projects use AspectJ's powerful inter-type declaration (ITD)
features. Thisis where the real magic of Roo comes from, as it allows us to code generate members
(artifacts like methods, fields etc) in adifferent compilation unit (i.e. sourcefile) from the normal .java
code you'd write as a developer. Because the generated code is in a separate file, we can maintain
that file'slifecycle and contents completely independently of whatever you are doing to the .javafiles.
Your .java files do not need to do anything unnatural like reference the generated I1TD file and the
whole processis completely transparent.

Let's have alook at how 1TDs work. In a new directory, type the following commands and note the
console output:

roo> project --toplLevel Package com aspectj.rocks

roo> jpa setup --database HYPERSONI C_| N MEMORY --provider H BERNATE
roo> entity jpa --class ~. Hello

Creat ed SRC _MAI N_JAVA/ coni aspectj/rocks

Creat ed SRC_MAI N_JAVA coni aspectj/rocks/ Hel |l o.java

Created SRC_MAI N _JAVA/ coni aspectj/rocks/ Hel | o_Roo_JpaActi veRecord. aj
Creat ed SRC _MAI N_JAVA/ coni aspectj/rocks/ Hel | o_Roo_JpaEntity. aj

Creat ed SRC_MAI N_JAVA coni aspectj/rocks/ Hel | o_Roo_ToStri ng. aj
Created SRC_MAI N _JAVA/ coni aspectj/rocks/ Hel | o_Roo_Confi gurabl e. aj
roo> field string --fiel dNane comment

Managed SRC_MAI N_JAVA/ conm aspectj/rocks/ Hel |l o.java

Managed SRC_MAI N_JAVA/ cont aspect j /rocks/ Hel | o_Roo_JavaBean. aj
Managed SRC_MAI N_JAVA/ cont aspectj/rocks/ Hel | o_Roo_ToStri ng. aj

Notice how there is a standard Hel | o. j ava file, aswell asa seriesof Hel | o_Roo_*. aj files. Any file
endingin*_Roo_*. aj isan AspectJ I TD and will be managed by Roo. Y ou should not edit these files
directly, as Roo will automatically maintain them (thisincludes even deleting filesthat aren't required,
aswe'll see shortly).

TheHel | 0. j ava isjust anormal Javafile. It looks like this:

package com aspect]j . rocks;

i mport org.springframework. roo. addon. j avabean. RooJavaBean;
i mport org.springframework. roo. addon. tostring. RooToStri ng;
i nport org. springfranework.roo. addon. entity. RooJpaActi veRecor d;

@RooJavaBean
@RooToSt ring
@RooJpaActi veRecord
public class Hello {

private String comment;

Asshown, there'svery littlein the.. j ava file. There are some annotations, plus of course the field we
added. Note that Roo annotations are always source-level retention, meaning they're not compiled into
your . cl ass file. Also, as per our usability goals you'll note that Roo annotations also always start
with @oo* to help you find them with code assist.

By this stage you're probably wondering what the ITD fileslook like. Let's have alook at one of them,
Hel | o_Roo_ToString. aj :

1.2.5.RELEASE 27

Application Architecture

package com aspectj.rocks;

i mport org. apache. conmons. | ang3. bui | der. Ref | ecti onToSt ri ngBui | der;
i mport org. apache. commons. | ang3. bui | der. ToStri ngStyl e;

privil eged aspect Hell o_Roo_ToString {

public String Hello.toString() {
return ReflectionToStringBuilder.toString(this, ToStringStyle. SHORT_PREFI X_STYLE) ;
}

Notice how the ITD is very similar to Java code. The main differences are that it is declared with
"privil eged aspect ", pluseach member identifiesthetarget type (inthiscaseitis"Hel | 0. t oSt ri ng",
which means add the "t oSt ri ng" method to the "Hel | 0" type). The compiler will automatically
recognizethese I TD files and cause the correct membersto be compiledinto Hel | o. cl ass. We can see
that quite easily by using Javasj avap command. All we need to do is run the compiler and view the
resulting class. From the same directory as you created the project in, enter the following commands
and observe the final output:

$ nmvn conpile
$ javap -classpath target/classes/.:target/test-classes/. com aspectj.rocks. Hello
Conpi l ed from"Hello.java"
public class com aspectj.rocks. Hell o extends java.l ang. Object inplenments org.springframework. beans. f ac
transi ent javax. persistence. EntityManager entityManager;
public com aspectj.rocks. Hello();
public static java.lang. String aj c$get Scomment (com aspectj.rocks. Hel | 0);
public static void aj c$set $conment (com aspectj.rocks. Hello, java.lang. String);
public static java.lang.Long aj c$get $i d(com aspectj.rocks. Hel | 0);
public static void ajc$set $id(com aspectj.rocks. Hello, java.lang.lLong);
public static java.lang.|nteger ajcgetversi on(com aspectj.rocks. Hello);
public static void ajc$set $versi on(com aspectj.rocks. Hel l o, java.lang.|nteger);
static {};
public static |ong countHelloes();
public static final javax.persistence. EntityManager entityManager();
public static java.util.List findAllHelloes();
public static com aspectj.rocks.Hello findHello(java.lang.Long);
public static java.util.List findHelloEntries(int, int);
public void flush();
public java.lang. String get Conment () ;
public java.lang.Long getld();
public java.lang.|nteger getVersion();
public com aspectj.rocks. Hello nmerge();
public void persist();
public void renove();
public void set Conment (java.l ang. String);
public void setld(java.lang.Long);
public void setVersion(java.lang.|nteger);
public java.lang. String toString();

While the javap output might look a little daunting at first, it represents al the members that
Roo has added (via Aspect] ITDs) to the origina Hel | o.java file. Notice there isn't just the
toString method we saw in the earlier ITD, but we've also made the Hel | o class implement
Spring's Conf i gur abl ebj ect interface, provided access to a JPA Enti t yManager , included arange
of convenient persistence methods plus even getters and setters. All of these useful features are
automatically maintained in around-trip compatible manner viathe ITDs.

A careful reader might be wondering about the long field names seen for introduced fields. Y ou can
see that these field names start with "aj ¢$" in the output above. The reason for thisisto avoid name

1.2.5.RELEASE 28

Application Architecture

collisions with fields you might have in the . j ava file. The good news is that you won't ever need
to deal with this unless you're trying to do something clever with reflection. It's just something to be
aware of for introduced fieldsin particular. Note that the names of methods and constructors are never
modified.

Naturally as a normal Roo user you won't need to worry about the internals of ITD source code and
theresulting . cl ass files. Roo automatically manages al 1TDs for you and you never need deal with
them directly. It's just nice to know how it all works under the hood (Roo doesn't believe in magic!).
The benefit of thisI TD approach ishow easily and gracefully Roo can handle code generation for you.

To see this in action, go and edit the Hello.java in your favourite text editor with Roo
running. Do something ssimple like add a new field. You'll notice the Hel | o_Roo_ToStri ng. aj and
Hel | o_Roo_JavaBean. aj files are instantly and automatically updated by Roo to include your new
field. Now go and write your own toString method in the .java file. Notice Roo deletes the
Hel | o_Roo_ToStri ng. aj file, asit detectsyourt oSt ri ng method should take priority over agenerated
t oSt ri ng method. But let's say you want a generated t oSt ri ng as well, so change the Hel 1 0. j ava's
@RooToString annotation to read @ooToString(toStringMet hod="generatedToString"). Now
you'll notice the Hel 1 o_Roo_ToSt ri ng. aj file is immediately re-created, but this time it introduces
a gener at edToSt ri ng method instead of the original tostring. If you comment out both fields in
Hel | 0. j ava you'll also see that Roo deletes both ITDs. You can aso see the same effect by quitting
the Roo shell, making any changes you like, then restarting the Roo shell. Upon restart Roo will
automatically perform a scan and discover if it needs to make any changes.

Despite the admittedly impressive nature of 1TDs, AspectJ is also pretty good at aspect oriented
programming features like pointcuts and advice! To this end Roo applications also use AspectJ for all
other AOP requirements. It is AspectJ that provides the AOP so that classes are dependency injected
with singletons when instantiated and transactional services are called as part of method invocations.
All Roo applications are preconfigured to use the Spring Aspects project, which ships as part of Spring
Framework and represents a comprehensive "aspect library" for AspectJ.

3.2.2. Spring

Spring Roo applications all use Spring. By "Spring” we not only mean Spring Framework, but also the
other Spring projects like Spring Security and Spring Web Flow. Of course, only Spring Framework
isinstalled into auser project by default and there are fine-grained commands provided to install each
additional Spring project beyond Spring Framework.

All Roo applications use Spring Aspects, which was mentioned in the AspectJ section and ensures
Spring Framework's @oonfi gur abl e dependency injection and transactional advice is applied.
Furthermore, Roo applications use Spring's annotation-driven component scanning by default and
also rely on Spring Framework for instantiation and dependency injection of features such as JPA
providers and access to database connection pools. Many of the optional features that can be used
in Roo applications (like IMS and SMTP messaging) are also built upon the corresponding Spring
Framework dependency injection support and portable service abstractions.

Those Roo applications that include a web controller will aso receive Spring Framework 3's MVC
features such asits conversion API, web content negotiation view resolution and REST support. It is
possible (and indeed encouraged) to write your own web Spring MV C controllersin Roo applications,
and you are also free to use aternate page rendering technologiesif you wish (i.e. not just JSP).

Generaly speaking Roo will not modify any Spring-related configuration or setting file (e.g.
properties) unless specifically requested via a shell command. Roo also ensures that whenever it

1.2.5.RELEASE 29

Application Architecture

creates, modifies or deletes afileit explicitly tells you about this via a shell message. What this means
isyou can safely edit your Spring application context files at any time and without telling Roo. This
isvery useful if the default configuration offered by Roo is unsuitable for your particular application's
needs.

Because Spring projectsare so extensively documented, and Roo just uses Spring featuresinthe normal
manner, we'll refrain from duplicating Spring's documentation in this section. Instead please refer to
the excellent Spring documentation for guidance, which can be found in the downl oadabl e distribution
files and also on the Spring web site.

3.3. Entity Layer

When people use Roo, they will typically start a new project using the steps detailed in the Beginning
With Roo: The Tutorial chapter. That is, they'll start by creating the project, installing some sort of
persistence system, and then beginning to create entities and add fields to them. As such, entities and
fields represent the first point in a Roo project that you will be expressing your problem domain.

Therole of an entity in your Roo-based application is to model the persistent "domain layer" of your
system. As such, a domain object is specific to your problem domain but an entity is a special form
of adomain object that is stored in the database. By default a single entity will map to a single table
in your database, and a single field within your entity class will map to a single column within the
corresponding table. However, like most things in Roo this is easily customised using the relevant
standard (in this case, JPA annotations). Indeed most of the common customisation options (like
specifying acustom column or table name etc) can be expressed directly in the relevant Roo command,
freeing you from even needing to know which annotation(s) should be used.

Let'sconsider asimple entity that has been created using the entity jpacommand and following it with
asingle field command:

package com springsource. vot e. domai n;

i mport org.springframework. roo. addon. j avabean. RooJavaBean;

i mport org.springframework. roo. addon. t ostring. RooToStri ng;

i nport org. springfranework.roo. addon. entity. RooJpaActi veRecor d;
i mport javax.validation.constraints. Not Null;

i mport javax.validation.constraints. Size;

@RooJavaBean

@RooToSt ri ng
@RooJpaAct i veRecord
public class Choice {

@\ot Nul |
@i ze(mn = 1, max = 30)
private String nam ngChoi ce;

@i ze(max = 80)
private String description;

The above entity is simply a JPA entity that contains two fields. The two fields are annotated with
JavaBean Validation APl (JSR 303) annotations, which are useful if your JPA provider supports this
standard (as is the case if you nominate Hibernate as your JPA provider) or you are using a Roo-
scaffolded web application front end (in which case Roo will use Spring Framework 3's JSR 303
support). Of course you do not need to use the JavaBean Validation APl annotations at all, but if you

1.2.5.RELEASE 30

http://spring.io/docs

Application Architecture

would like to use them the relevant Roo field commands provide tab-compl etion compatible options
for each. The first time you use one of these Roo field commands, Roo will add required JavaBean
Validation API librariesto your project (i.e. these libraries will not be in your project until you decide
to first use JavaBean Validation).

What's interesting about the above entity is what you can actually do with it. There are a series of
methods automatically added into the choi ce. cl ass courtesy of Roo code-generated and maintained
Aspect] ITDs. These include static methods for retrieving instances of Choice, JPA facade methods
for persisting, removing, merging and flushing the entity, plus accessors and mutators for both the
identifier and version properties. You can fine-tune these settings by modifying attributes on the
@rooJpaAct i veRecor d annotation. Y ou can also have Roo remove these services by simply removing
the @ooJpaAct i veRecor d annotation from the class, in which case you'll be left with a normal JPA
@Entity that you'll need to manage by hand (e.g. provide your own persistence methods, identifier,
Version etc).

The @ooJavaBean annotation causes an accessor and mutator (getter and setter) to automatically be
generated for each field in the class. These accessors and mutators are automatically maintained in
an AspectJ ITD by Roo. If you write your own accessor or mutator in the normal .javafile, Roo will
automatically remove the corresponding generated method from the ITD. You can also remove the
@RooJavaBean annotationif you don't want any generated accessors or mutators (although those rel ated
to the version and identifier fields will remain, as they are associated with @ooJpaActi veRecord
instead of @ooJavaBean).

Finally, the @ooTost ri ng annotation causes Roo to createand maintainapubl i ¢ String toString()

method in a separate ITD. This method currently is used by any scaffolded web controllers if they
need to display a related entity. The generated method takes care to avoid circular references that
are commonly seen in bidirectional relationships involving collections. The method also formats Java
Cal endar Objectsin an attractive manner. As always, you can write your ownt oSt ri ng() method by
hand and Roo will automatically remove its generated t oSt ri ng() method, even if you still have the
@rooToSt ri ng annotation present. Y ou can of course also removethe @ooToSt ri ng annotation if you
no longer wish to have agenerated t oSt ri ng() method.

Before leaving this discussion on entities, it's worth mentioning that you are free to create your own
entity . j ava classes by hand. You do not need to use the Roo shell commands to create entities or
maintain their fields - just use any IDE. Also, you are free to use the @ooToSt ri ng OF @RooJavaBean
(or both) annotations on any class you like. Thisis especially useful if you have a number of domain
objects that are not persisted and are therefore not entities. Roo can still help you with those objects.

3.4. Web Layer

Roo 1.0 can optionally provide a scaffolded Spring MV C web layer. The scaffolded MV C web layer
features are explored in some depth in the Beginning With Roo: The Tutorial chapter, including how
to customise the appearance. From an architectural perspective, the scaffolded layer includes anumber
of URL rewriting rules to ensure requests can be made in accordance with REST conventions. Roo's
scaffolding model aso includes Apache Tiles, Spring JavaScript, plus ensures easy setup of Spring
Security with a single command.

In Spring Roo 1.1 we al so added comprehensive support for Google Web Toolkit (GWT). Thisallows
you to build Generation IV web HTML5-based web front-ends. These front-ends access the Spring
backend using highly optimized remoting protocols, and the GWT application represents the GWT

1.2.5.RELEASE 31

Application Architecture

team's recommended best practice architecture. In fact, the GWT team at Google wrote most of the
Roo GWT add-on, so you can be sure it uses the best GWT 2.1 features.

Scaffolded web controllers always del egate directly to methods provided on an @ooJpaAct i veRecor d
class. For maximum compatibility with scaffolded controllers, it isrecommended to observethe default
identifier and version conventions provided by @ooJpaAct i veRecor d implementations. If you write
a web controller by hand (perhaps with the assistance of the web mvc controller command), it is
recommended you also use the methods directly exposed on entities. Most Roo applications will place
their business logic between the entities and web controllers, with only occasional use of services
layers. Please refer to the services layer section for a more complete treatment of when you'd use a
services layer.

3.5. Optional Services Layer

As discussed at the start of this chapter, web applications are the most common type of application
created with Roo 1.0.0. A web application will rarely require a services layer, as most logic can be
placed in the web controller handle methods and the remainder in entity methods. Still, aserviceslayer
makes sense in specific scenarios such as:

e There is business logic that spans multiple entities and that logic does not naturally belong in a
specific entity

* You need to invoke business logic outside the scope of a natural web request (e.g. atimer task)

« Remote client accessis required and it is therefore more convenient to simply expose the methods
viaaremoting protocol

« An architectural policy requires the use of a services layer

« A higher level of cohesion is sought in the web layer, with the web layer solely responsible for
HTTP-related management and the services layer solely responsible for business logic

« A greater level of testing is desired, which is generally easier to mock than simulating web requests

« itispreferred to place transactional boundaries and security authorization metadata on the services
layer (as opposed to aweb controller)

As shown, there are a large number of reasons why services layers remain valuable. However, Roo
does not code generate services layers because they are not strictly essential to building a normal web
application and Roo achieves separation of concern viaits AspectJ I TD-based architecture.

If you would like to use a services layer, since release 1.2.0 Roo offers automatic service layer
integration for your application. Please refer to the service layer section in the application layering
chapter for further details.

3.6. Goodbye DAOs

One change many existing JEE developerswill notice when using Roo-based applicationsisthat there
isno DAO layer (or "Repository"” layer). Aswith the services layer, we have removed the DAO layer
because it is not strictly essential to creating the typical web applications that most people are trying
to build.

1.2.5.RELEASE 32

Application Architecture

If we reflect for a moment on the main motivations for DAQs, it is easy to see why these are not
applicable in Roo applications:

Testing: In anormal application aDAO provides an interface that could be easily stubbed as part of
unit testing. The interesting point about testing is that most people use mocking instead of stubbing
in modern applications, making it attractive to simply mock the persistence method or two that you
actually require for atest (rather than the crudeness of stubbing an entire DAO interface). In Roo-
based applications you simply mock the persistence-related methods that have been introduced to
the entity. Y ou can use normal mocking approaches for the instance methods on the Roo entity, and
use Spring Aspect's @bckSt at i cEnti t yMet hods support for the static finder methods.

Separation of concern: Onereason for having aDAO layer isthat it allows ahigher cohesion object-
oriented design to be pursued. The high cohesion equates to a separation of concern that reducesthe
conceptual weight of implementing the system. In a Roo-based application separation of concern
is achieved via the separate ITDs. The conceptual weight is also reduced because Roo handles the
persistence methods rather than force the programmer to deal with them. Therefore separation of
concern still existsin a Roo application without the requirement for aDAO layer.

Pluggable implementations: A further benefit of DAQOs is they simplify the switching from one
persistence library to another. In modern applications this level of API abstraction is provided via
JPA. As Roo uses JPA in its generated methods, the ability to plug in an alternate implementation
is already fully supported despite there being no formal DAO layer. Y ou can see this yourself by
issuing the jpa setup command and specifying alternate implementations.

Non-JPA persistence: It is possible that certain entities are stored using a technology that does not
have a JPA provider. In this case Roo does not support those entities out of the box. However, if
only a small number of entities are affected by this consideration there is no reason one or more
hand-written ITDs could not be provided by the user in order to maintain conceptual parity with
the remainder of the Roo application (which probably does have some JPA). If alarge number of
entities are affected, the project would probably benefit from the user writing a Roo add-on which
will automatically manage the ITDs just as Roo does for JPA.

Security authorisation: Sometimes DAOs are used to apply security authorisation rules. It
is possible to protect persistence methods on the DAOs and therefore go relatively low
in the control flow to protecting the accessibility of entities. In practice this rarely works
well, though, as most authorisation workflows will target a use case as opposed to the
entities required to implement a use case. Further, the approach is unsafe as it is possible
to transitively acquire one entity from another without observing the authorisation rules (e.g.
per son. get Part ner (). get Chi I dren(). get (1).set First Name("Ben")). It is aso quite crude in
that it does not support transparent persistence correctly, in that the example modification of the
first name would flush to the database without any authorisation check (assuming this mutative
operation occurred within the context of a standard transactional unit of work). While it's possible
to work around many of these issues, authorisation isfar better tackled using other techniques than
the DAO layer.

Security auditing: In a similar argument to authorisation, sometimes DAQOs are advocated for
auditing purposes. For the same types of reasons expressed for authorisation, this is a suboptimal
approach. A better way isto use AOP (e.g. AspectJ field set pointcuts), a JPA flush event handle,
or atrigger-like model within the database.

Finders: If you review existing DAOs, you'll find the main difference from one to another is the
finder methods they expose. Dynamic finders are automatically supported by Roo and introduced

1.2.5.RELEASE 33

Application Architecture

directly to the entity, relieving the user from needing DAOs for this reason. Furthermore, it is quite
easy to hand-write afinder within the entity (or an ITD that adds the finder to the entity if a separate
compilation unit is desired).

« Architectural reasons: Often people express a preference for a DAO because they've aways done
it that way. While maintaining a proven existing approach is generally desirable, adopting Roo for
an application diminishes the value of a DAO layer to such an extent that it leaves little (if any)
engineering-related reasons to preserveit.

It's also worth observing that most modern RAD frameworks avoid DA O layers and add persistence
methods directly to entities. If you compare similar technologies to Roo, you will see this avoidance
of aDAO layer is commonplace, mainstream and does not cause problems.

Naturally you can still write DAOs by hand if you want to, but the majority of Roo add-ons will not
be compatible with such DAOs. As such you will not receive automated testing or MV C controllers
that understand your hand-written DA Os. Our adviceistherefore not to hand write DAOs. Simply use
the entity methods provided by @ooJpaAct i veRecor d, asit's engineering-wise desirable and it's also
far less effort for you to write and maintain.

If you are interested in DAO support despite the above Roo offers support for different repository
layers as of release 1.2.0. Please refer to the application layering chapter for details.

3.7. Maven

3.7.1. Packaging

Roo supports a number of Maven packaging types out of the box, such asj ar, war, pom and bundl e.
These are provided via Roo's Packagi ngPr ovi der interface. If you wish to customise the POMs or
other artifacts that Roo generates for a given packaging type when creating aproject or module, either
for one of the above packaging types or a completely different one, you can implement your own
Packagi ngPr ovi der that creates exactly the filesyou want with the contents you want. The procedure
for doing thisis asfollows:

* Inanew directory, start Roo and run "addon create simpl€e” to create a ssmple addon.
e Delete
 thefour .javafilescreatedinsrc/ main/j ava
« thetwo .tagx files created in src/ mai n/ r esour ces
« Create your custom packaging class (e.g. MyPackagi ng. j ava) in your preferred package.

« Pick aunique ID for the Roo shell to use when referring to your PackagingProvider (e.g. "custom-
jar"). Do not use any of the core Maven packaging type names, asthese are reserved for use by Roo.

« Make your packaging class implement the o.s.r.project.packagi ng. Packagi ngProvi der
interface, either by:

* Implementing Packagi ngPr ovi der directly, withfull control over (but no assistance with) artifact
generation, or

1.2.5.RELEASE 34

Application Architecture

e Extending o.s.r.project.packagi ng. Abst ract Packagi ngProvi der to have Roo create the
POM from a template you specify, with various substitutions made automatically (e.g. groupld
and artifactld). This approach requires you to:

 Create your custom POM templatein src/ mai n/ resour ces plus whatever package you chose
above.

» Createapublic no-arg constructor that callsthe Abst r act Packagi ngPr ovi der constructor with
the following arguments:

» Theunigue ID of your custom packaging type (see above).

» The Maven name of your packaging type (typicaly jar/war/ear/etc, but could be something
elseif you've extended Maven to support custom packaging types).

» The path to your POM template relative to your concrete Packagi ngPr ovi der (e.g. "my-
pom-template.xml” if it's in the same package). Note that this POM can contain as much or
as little content as you like, with the following cavests:

It must have the standard Maven "project” root element with al the usual namespace
details.

» If you extend Abstract Packagi ngProvi der, that class will ensure that the POM's
coordinates can be resolved either from a "parent" element or from explicit "groupld”,
"artifactld", and "version" el ements.

* Add the Felix annotations @Component and @Service to your concrete PackagingProvider, so that
it's detected by RoO'S Packagi ngPr ovi der Regi stry.

» Build and install the addon in the usual way, i.e.:
* Run"nmvn instal " inthe addon directory to create the OSGi bundle.
» Changeto the directory of the project that will be using the custom packaging provider.

¢ Run "osgi start --url file:///path/to/addon/ project/target/
com exanpl e. f 00- 0. 1. 0. BUI LD- SNAPSHOT. j ar "

* Run"osgi scr list"; your custom PackagingProvider component should appear somewhere
inthelist.

« Whenever you run the "project" or "module create" commands, your custom PackagingProvider's
ID should appear in the list of possible completions for the "--packaging” option

3.7.2. Multi-Module Support

Sinceversion 1.2.0, Roo supports multi-module Maven projects, i.e. those containing multiple projects
in anested directory structure, each with their own POM. The non-leaf POMs have "pom™ packaging
and theleaf POMsusually have an artifact creation packaging (jar, war, etc). If you're not familiar with
multi-module projects and want to see how they're structured, there's an embedded nul t i nodul e. r oo
script that generates a simple multi-module project; used as follows:

« At your operating system prompt, type "roo script rmul ti modul e. r 0o".

1.2.5.RELEASE 35

http://www.sonatype.com/books/mvnref-book/reference/pom-relationships-sect-pom-best-practice.html

Application Architecture

Change into the "ui/mvc"" directory.
Run"nmvn toncat:run™ or"nvn jetty:run".

Point your browser to ht t p: / /1 ocal host : 8080/ mvc.

The rest of this section assumes that you are familiar with multi-module projects, in particular the
difference between POM inheritance (one POM has another as its parent) and project nesting (one
project isin a sub-directory of ancther, i.e. isamodule of that parent project).

3.7.2.1. Features

Roo's multi-modul e support hasthefollowing features (aformal list of Roo's Maven-related commands
appearsin Appendix C):

Roo now has the concept of amodule, which in practice means a directory tree whose root contains
aMaven POM. A project consists of zero or more modules. When you run Roo from the operating
system prompt, you do so from the directory of the root module.

Once any modules exist, one of them always has the "focus’, in other words will be used as the
context for any shell commands that interact with the user project (as opposed to housekeeping
commands such as "osgi ps"). For example, running the "web 1 ow' command will add Spring
Web Flow support to the currently focused module.

The"nodul e focus" command, available once the project contains more than one module, changes
the currently focused module. Tab completion is available, with the module name "~" signifying
the root module.

The"nodul e create”" command creates a new module as a sub-directory of the currently focused
module. The latter module's POM will be updated to ensure it has "pom" packaging, allowing the
Maven reactor to properly recurse the module tree at build time. Note that the newly created POM
will by default not inherit from the parent module's POM. If the new module's POM should have
a parent, specify it viathe "modul e create" command's optional "par ent " parameter. The parent
POM need not be located within the user project. A typical use case is that a development team
might have a standard base POM from which al their projectsinherit, or a standard web POM from
which al their web modules inherit. As with the "proj ect " command, the new module's Maven
packaging can be specified via the optional "packagi ng" parameter. Custom packaging behaviour
is supported, as described above.

3.7.2.2. Limitations

Roo's multi-modul e support has the following limitations:

Limited automatic creation of dependencies between modules. If your project needs any inter-
modul e dependencies beyond those added by Roo, simply create them using the "dependency add"
command.

No command for removing a module; this isin line with the absence of commands for removing
other project artifacts such as classes, enums, JSPs, and POMSs. In any event, it's simple enough to do
manually; just delete the directory, delete the relevant "<modul e>" element from the parent module's
POM, and delete the module as a dependency from any other modules POMs.

One area where there's considerable scope for improvement is in the management of
dependencies in genera. In an ideal Maven project, dependency information in the form of both

1.2.5.RELEASE 36

Application Architecture

"dependencyManagerent " entries and live "dependency" elements themselves would be pushed as
far up the POM inheritance hierarchy as possible, in order to minimise duplication and reduce the
incidence of version conflicts. Asit stands, Roo adds and removes dependencies to and from the
currently focused module in response to shell commands, regardless of what dependencies are in
effect for other modules in the project.

Likewise, plugin management is currently quite basic. Roo adds/removes plugins to the POM of
the currently focused modul e with no attempt to rationalise them in concert with the POMs of other
modules (for example, two Spring MV C modules will independently have the Jetty plugin declared
in their own POMs rather than having this plugin declared in the lowest common ancestor POM).
Aswith dependencies (see above), thisis an areain which Roo could conceivably take some of the
load off developers.

There's no Roo command for changing a module’ s packaging between two arbitrary values, asthis
could require too many other changes to the user’s project. However, Roo does change a modul€'s
packaging in two specific circumstances:

» Adding a module to the currently focused module changes the latter's packaging to "pom", as
described above under the "nodul e creat e”" command.

¢ Adding web support to a module changes its packaging to "war".

Roo does not create any parent-child relationships between different modules Spring application
contexts; the user can always create these relationships manually, and Roo will not remove them.

1.2.5.RELEASE 37

Chapter 4. Usage and Conventions

In this chapter well introduce how to use the Roo tool itself. Well cover typical conventions you'll
experience when using Spring Roo.

4.1. Usability Philosophy

As mentioned in earlier chapters and is easily experienced by simply using Spring Roo for a project,
we placed agreat deal of emphasis on usability during Roo's design. It is our experience that a normal
enterprise Java devel oper is able to pass the ten minute test with Roo and build a new project without
referring to documentation. There are several conventions that we use within Roo to ensure a highly
usable experience:

* Numerous shell features which ensure the primary Roo-specific user interface is friendly and
learnable

¢ Only using popular, mainstream technologies and standards within Roo applications
» Ensuring Roo works with your choice of IDE or no IDE at al

» Deélivering an application architecture that is easy to understand and avoids "magic"
» Making sure Roo works the way a reasonable person would expect it to
 Forgiving mistakes

The last two points are what we're going to discussin this section.

Making sure Roo works the way you would expect it to is reflected in a number of key design
decisions that basically boil down to "you can do whatever you want, whenever you want, and Roo
will automatically work in with you". There are obviously limits to how far we can take this, but as
you use Roo you'll notice afew operational conventions that underpin this.

Let'sstart by looking at file conventions. Roo will never changea. j ava filein your project unlessyou
explicitly ask it to via a shell command. In particular, Roo will not modify a. j ava file just because
you apply an annotation. Roo a so handles .xml filesin the same manner. There are only two file types
that may be created, updated or deleted by Roo in an automatic manner, those being . j spx files and
also AspectJ files which match the*_Roo_*. aj wildcard.

In terms of the Aspect] files, Roo operates in a very specific manner. A given AspectJ filename
indicates the "target type" the members will be introduced into and a so the add-on which governs the
file. Roo will only ever permit a given AspectJ file to be preserved if the target type exists and the
corresponding add-on requests an ITD for that target type. Nearly al add-onswill only create an ITD
if thereisa"trigger annotation™ on the target type, with the trigger annotation alwaysincorporating an
@Roo prefix. Assuch, if you never put any @Roo0 annotation on agiven .javafile, you can be assured
Roo will never create any AspectJITD for that target type. Refer to the file system conventions section
for related information.

You'll also notice when using Roo that it automatically responds to changes you make outside Roo.
This is achieved by an auto-scaling file system monitoring mechanism. This basically allows you to
create, edit or delete any file within your project and if the Roo shell is running it will immediately
detect your change and take the necessary action in response. Thisishow round-tripping workswithout
you needing to include Roo as part of your build system or undertake any crude mass generation steps.

1.2.5.RELEASE 38

Usage and Conventions

What happensif the Roo shell isn't running? Will there be a problem if you forget to load it and make
a change? No. When Roo starts up it performs a full scan of your full project file system and ensures
every automatically-managed file that should be created, updated or deleted is handled accordingly.
This includes a full in-memory rebuild of each file, and a comparison with the file on disk to detect
changes. This results in a lot more robust approach than relying on relatively coarsely-grained file
system timestamp models. It also explainswhy if you have avery big project it can take afew moments
for the Roo shell to startup, asthereisno alternative but to compl ete this check for actionsthat happened
when Roo wasn't running.

The automated startup-time scan is also very useful asyou upgrade to newer versions of Roo. Often a
new version of Roo will incorporate enhancements to the add-ons that generate files in your project.
The startup-time scan will therefore automatically deliver improvementsto al generated files. Thisis
also why you cannot edit filesthat Roo is responsible for managing, because Roo will simply consider
your changesassome "old format” of thefileand rewritethefilein accordancewithitscurrent add-ons.

Not being able to edit the generated files may sound restrictive, as often you'll want to fine-tune just
some part of the file that Roo has emitted. In this case you can either write a Roo add-on, or more
commonly just write the method (or field or constructor etc) directly in your .java file. Roo has a
convention of detecting if any member it intends to introduce already exists in the target type, and if
it does Roo will not permit the ITD to include that member. In plain English that meansif you write a
method that Roo was writing, Roo will remove the method from its generated file automatically and
without needing an explicit directive to do so. In fact the Roo core infrastructure explicitly detects
buggy add-ons that are trying to introduce members that an end user has written and it will throw an
exception to prevent the add-on from doing so.

This talk of exceptions also lets us cover the related usability feature of being forgiving. Every time
Roo changes your file system or receives a shell command, it is executed within a quasi-transactional
context that supports rollback. Asaresult, if anything goes wrong (such as you made a mistake when
entering acommand or an add-on has a problem for whatever reason) the file system will automatically
rollback to the state it was before the change was attempted. The cascading nature of many changes (i.e.
you add afield to a. j ava file and that changes an Aspectd ITD and that in turn changes aweb . j spx
etc) is handled in the same unit of work and therefore rolled back as an atomic group when required.

Before leaving this discussion on usability, it's probably worth pointing out that although the Roo
shell contains numerous commands, you don't need to use them. You are perfectly free to perform
any change to your file system by hand (without the help of the Roo shell). For example, there are
commands which let you create . j ava files or add fields to them. Y ou can use these commands or you
can simply do thiswithinyour IDE or text editor. Roo's automatic file system monitoring will detect the
changes and respond accordingly. Just work the way you feel most comfortable - Roo will respect it.

4.2. Shell Features

Many people who first look at Roo love the shell. In fact when we first showed Roo to an internal
audience, one of the developers present said tounge-in-cheek, "That could only have come from
someone with a deep love of the Linux command line!". All jokes aside, the shell is only one part of
the Roo usability story - although it's a very important part. Here are some of the usability features
that make the shell so nice to work with:

» Tab completion: The cornerstone of command-line usability is tab assist. Hit TAB (or CTRL
+SPACE if you're in SpringSource Tool Suite) and Roo will show you the applicable options.

1.2.5.RELEASE 39

Usage and Conventions

Command hiding: Command hiding will remove commands which do not make sense given the
current context of your project. For example, if you're in an empty directory, you can type project,
hit TAB, and see the options for creating a project. But once you've created the project, the project
command is no longer visible. The same applies for most Roo commands. Thisis nice as it means
you only see commands which you can actually use right now. Of course, afull list of commands
applicable to your version of Roo is available in the command index appendix and also via help.

Contextual awareness. Roo remembersthe last Javatype you are working with in your current shell
session and automatically treats it as the argument to a command. You always know what Roo
considersthe current context because the shell prompt will indicate thisjust beforeit writesroo>. In
the command index you might find some optionswhich have adefault value of *+'. Thisisthe marker
which indicates "the current context will be used for this command option unless you explicitly
specify otherwise". Y ou change the context by simply working with adifferent Javatype (i.e. specify
an operation that involves a different Java type and the context will change to that Javatype).

Hinting: Not sure what to do next? Just use the hint command. It's the perfect lightweight substitute
for documentation if you'rein a hurry!

Inbuilt help: If you'd like to know all the options available for a given command, use the help
command. It lists every option directly within the shell.

Automatic inline help: Of course, it's a bit of a pain to have to go to the trouble of typing help then
hitting enter if you're in the middle of typing a command. That's why we offer inline help, which
isautomatically displayed whenever you press TAB. It islisted just before the completion options.
To save screen space, we only list the inline help once for a given command option. So if you type
project --tenplate TAB TAB TAB, the first time you press TAB you'd see the inline help and
the completion options

Scripting and script recording: Save your Roo commands and play them again later.

The scripting and script recording features are particularly nice, because they let you execute a series
of Roo commands without typing them in.

To execute a Roo script, just use the script command. When you use the script command you'll need
to indicate the script to run. We ship a number of sample scripts with Roo, as discussed earlier in the
Exploring Roo Samples section.

What if you want to create your own scripts? All you need is atext editor. The syntax of the script is
identical to what you'd type at the Roo shell. Both the Roo shell and your scripts can contain inline
commentsusing the; and// markers, aswell asblock commentsusing the/* */ syntax.

A redlly nice script-related feature of the Roo shell isthat it will automatically build a script containing
the commands you entered. Thisfile is named | og. r oo and exists in your current working directory.
Here's a quick example of the contents:

/1l Spring Roo ENG NEERI NG BUI LD [rev 553:554M | o0g opened at 2009-12-31 08: 10: 58
project --topLevel Package roo.shell.is. neat

/] [failed] jpa setup --database DELI BERATE ERROR --provi der H BERNATE

j pa setup --database HYPERSONI C_| N MEMORY --provider H BERNATE

qui t

/1 Spring Roo ENG NEERI NG BUI LD [rev 553:554M |og closed at 2009-12-31 08: 11: 37

In the recorded script, you can see the version number, session start time and session close times are
all listed. Also listed is a command | typed that was intentionally incorrect, and Roo has turned that

1.2.5.RELEASE 40

Usage and Conventions

command into acomment within the script (prefixed with// [fail ed]) sothat | canidentify it and it
will not execute should | run the script again later. Thisis agreat way of reviewing what you've done
with Roo, and sharing the results with others.

4.3. IDE Usage

Despite Roo's really nice shell, in reality most people develop most of their application using an IDE
or at least text editor. Roo fully expects this usage and supportsiit.

Before we cover how to use an IDE, it's worth mentioning that you don't strictly need one. With Roo
you can build an application at the command line, although to be honest you'll get more productivity via
an IDE if it's anything beyond atrivial application. If you would prefer to use the command line, you
can start a fresh application using the Roo shell, edit your . j ava and other files using any text editor,
and use the perform commands to compile, test and package your application ready for deployment.
You can even use nvn tontat : run to execute a servlet container, and Roo add-ons let you deploy
straight to a cloud environment like Google App Engine. Again, you'll be more productive in an IDE,
but it's nice to know Roo doesn't force you to use an IDE unless you'd like to use one.

In relation to IDEs, we highly recommend that you use SpringSource Tool Suite (STS). STSis a
significantly extended version (and free!) of the pervasive Eclipse IDE. From a Roo perspective, STS
preintegrates the latest AspectJ Development Tools (AJDT) and aso offers an inbuilt Roo shell. The
inbuilt Roo shell means you do not need to run the normal Roo shell if you are using STS. You'll also
have other neat Roo-IDE integation features, like the ability to press CTRL+R (or Apple+R if you're
on an Apple) and a popup will allow you to type a Roo command from anywhere within the IDE.
Another nice feature is the shell message hotlinking, which means all shell messages emitted by Roo
are actually linksthat you can click to open the corresponding filein an Eclipse editor. There are other
goodies too, like extra commands to deploy to SpringSource tc Server.

You'll need to use STS 2.5 if you'd like to use Roo 1.1, which at the time of writing represents the
latest version of both tools. Because the release cycle of STS and Roo differ, when you download
STS you'll generally find it includes a version of Roo that might not be the absolute latest. Thisis
not a problem. All you need to do is ensure you're using the latest release of STS and then within the
IDE select Window > Preferences > Spring > Roo Support. Next select "Add..." and find the directory
which contains the latest Roo release. Y ou probably also want to tick the newly-selected Roo release,
making it the default for your projects when they're imported into STS.

Naturaly Roo works well with standard Eclipse as well. All you need to do is ensure you install
the latest Aspectd Development Tools (AJDT) plugin. This will ensure code assist and incremental
compilation works well. We aso recommend you go into Window > Preferences > General >
Workspace and switch on the "Refresh automatically" box. That way Eclipse will detect changes made
to the file system by the externally-running Roo shell. It's also recommended to install the m2eclipse
plugin, which is automatically included if you use STS and is particularly suitable for Roo-based
projects.

When using AJDT you may encounter a configuration option enabling you to "weave" the JDT. This
ison by default in STS, so you're unlikely to see the message if using STS. If you are prompted (or
locate the configuration settings yourself under the Window > Preferences > JDT Weaving menu),
you should enable weaving. This ensures the Java Editor in Eclipse (or STS) gives the best AspectJ
based experience, such as code assist etc. Y ou can also verify this setting is active by loading Eclipse
(or STS) and selecting Window > Preferences > JDT Weaving.

1.2.5.RELEASE 41

http://www.springsource.com/products/sts
http://www.eclipse.org/ajdt/
http://www.eclipse.org/ajdt/

Usage and Conventions

If you're using m2eclipse, you won't need to use the perform eclipse command to setup your
environment. A simpleimport of the project using Eclipse's File > Import > General > Maven Projects
menu option is sufficient.

Irrespective of how you import your project into Eclipse (i.e. viathe perform eclipse command or via
mZ2eclipse) you should be aware that the project will not be a Web Tools Project (WTP) until such
time as you install your first web controller. This is usually undertaken via the web mvc al or web
mvc controller command. If you have already imported your project into Eclipse, simply complete the
relevant web mve command and then re-import. The project will then be aWTP and offer the ability
to deploy to an IDE-embedded web container. If you attempt to start a WTP server and receive an
error message, try right-clicking the project and selecting Maven > Update Project Configuration. This
often resolves the issue.

If you're using IntelliJ, we are pleased to report that IntelliJ now supports Roo. This follows the
completion of ticket IDEA-26959, where you can obtain more information about the AspectJ support
now availablein IntelliJ.

If you're using any IDE other than STS, the recommended operating pattern is to load the standalone
Roo shell in one operating system window and leave it running while you interact with your IDE.
Thereisno formal link between the IDE and Roo shell. The only way they "talk” to each other is by
both monitoring the file system for changes made by the other. This happens so quickly that you're
unlikely to notice, and indeed internally to Roo we have an API that allowsthe polling-based approach
to be replaced with a formal notification API should it ever become necessary. As discussed in the
usability section, if you forget to load the Roo shell and start modifying your project anyway, all you
need to do isload the Roo shell again and it will detect any changes it heeds to make automatically.

4.4. Build System Usage

Roo currently supports the use of Apache Maven. This is a common build system used in many
enteprise applications. Weroutinely poll our community and look at public surveyswhich consistently
show that nearly all enterprise development projects use either Maven or Ant, so we believe thisis
a good default for Roo projects. As per the installation instructions, you must ensure you are using
Maven 2.0.9 or above. We do recommend you use Maven 2.2 for best results, though.

Roo will create a new pom xm file whenever you use the project command. The POM will contain
the following Roo-specific considerations:

« A referenceto the Roo annotations JAR. This JAR exists at devel opment time only and has a scope
that preventsit from being included in resultant WAR files.

A correct configuration of the Maven Aspectdplugin. Thisincludesareferenceto the Spring Aspects
library, which is important to Roo-based applications. Spring Aspects is included within Spring
Framework.

There are no other Roo changes to the POM. In particular, there is no requirement for the POM to
include Roo as part of any code generation step. Roo is hever used in this "bulk generation style".

If you are interested in ensuring a build includes the latest Roo code generation output, you can cause
Maven or equivalent build system to execute r oo qui t . The presentation of the quit command line
option will cause the Roo shell to load, perform its startup-time scan (which identifies and completes
any required changes to generated files) and then exit.

1.2.5.RELEASE 42

http://youtrack.jetbrains.net/issue/IDEA-26959

Usage and Conventions

Those seeking Ant/lvy instead of Maven support are encouraged to vote for issue ROO-91. The
internals of Roo do not rely on Maven at all. Nonetheless we have deferred it until we see sufficient
community interest to justify maintaining two build system environments.

4.5. File System Conventions

We have already covered some of Roo'sfile system conventionsin the Usability Philosophy section. In
summary Roo will automatically monitor thefile system for changes and code generate only thosefiles
which matchthe* _Roo_*. aj wildcard. It will also code generate those JSPs associated with scaffol ded
MV C controllers that have the annotation @oowebScaf f ol d.

Roo applications follow the standard Maven-based directory layout. We have also placed Spring
application context-related files (both . xmi and . properti es) in the recommended classpath sub-
directory for Spring applications, META- | NF/ spri ng.

4.6. Add-On Installation and Removal

Roo supports the installation and removal of third-party add-ons. Roo 1.1 added significant
enhancementsto its add-on model, as more thoroughly discussed in Part I11 of this manual.

4.7. Recommended Practices

Following some simple recommendationswill ensure you have the best possible experience with Roo:
« Don't edit any files that Roo code generates (see the Usability Philosophy for details).

» Before installing any new technology, check if Roo offers a setup command and use it if present
(thiswill ensure the seutp reflects our recommendations and the expectations of other add-ons).

« Ensure you leave the Roo shell running when creating, updating or deleting filesin your project.

* Remember you'll still need to write Java code (and JSPs for custom controllers). Have the right
expectations before you start using Roo. It just helps you - it doesn't replace the requirement to
program.

« Check the Known Issues section before upgrading or if you experience any problems.

» Refer to the Roo Resources section for details of how to get assistance with Roo, such as the forum
and issue tracking database. We're happy to hear from you.

1.2.5.RELEASE 43

https://jira.springsource.org/browse/ROO-91

Usage and Conventions

4.8. Managing Roo Add-Ons

Modifying PGP Trusts For httppgp:// Scheme Operation

As detailed in the main text, Roo supports a specia protocol scheme called ht t ppgp: //. This
performs a Pretty Good Privacy (PGP) detached signature verification before proceeding to
download the main resource. We use this as a key foundation of our add-on security model.
Many Roo commands download items from the Internet, and anytime a ht t ppgp: // schemeis
encountered a PGP verification will take place.

One common caseisif you are using the addon install command. An example of the error if the
PGP detached signature is untrusted is shown bel ow:

roo> addon install --bundleSynbolicNane de. saxsys.roo. equal s. addon
Downl oad URL 'http://[...]equal s.addon-1.2.0.jar"' failed

This resource was signed with PGP key I D ' OxC3A61B10"

which is not currently trusted

Use 'pgp key view to viewthis key, 'pgp trust' to trust it,

or 'pgp automatic trust' to trust any keys

Essentially you need to decide if you trust the PGP key ID or not. There is a pgp key view
command that will help you learn more about a given key ID if you would like to use it. You
can also view keys at public PGP key servers such as http://pgp.mit.edu/. You essentialy have
two options to cause an untrusted httppgp download to be performed by Roo:

1. Use the pgp trust command to trust the PGP key ID shown in the error message. This will
permanently trust thekey ID, and it will show up if you usethe pgp list trusted keys command
(you can of course remove it viathe pgp untrust command as well). All of the keys you trust
are stored in ~/ . spri ng_r oo_pgp. bpg, which is a binary encoded PGP key store which you
can also view and manage using normal PGP tools. An example of the command to trust a
key is shown below:

roo> pgp trust --keyld 0xC3A61B10

2. Alternately, you can decide to simply switch off key verification and automatically trust any
keys encountered. Such keysare stored inyour ~/ . spri ng_r oo_pgp. bpg file. Y ou should use
caution with this command, although it can be convenient if you'd simply liketo install some
new add-ons and their dependencies without considering every key used to sign them. To use
automatic trust, smply type pgp automatic trust and press enter:

roo> pgp autonmtic trust
Aut omatic PGP key trusting enabled (this is potentially unsafe);
di sable by typing 'pgp automatic trust' again

Once one of the above have been completed, you can repeat the command that attempted to
download aht t ppgp: // resource and it should succeed.

It is easy to extend the capabilities of Spring Roo with installable add-ons. This section will offer
a basic overview of Roo's add-on distribution model and explain how to install new add-ons. If
you're considering writing an add-on, please refer to the more advanced information in Part I11 of this
reference guide.

First of al, it'simportant to recognize that Roo ships with alarge number of base add-ons. These built-
in add-onsmay beall you ever require. Nevertheless, there isagrowing community of add-onswritten

1.2.5.RELEASE 44

http://pgp.mit.edu/

Usage and Conventions

by people outside the core Roo team. Because the core Roo team do not write these add-ons, we've
needed to implement an infrastructure so that external people can share their add-ons and make it easy
for you to install them.

Roo's add-on distribution system encourages individual add-on developers to host their add-on web
site (we don't believe in a central model where we must host add-ons on our servers). The main
requirement an add-on developer needs to fulfill is their add-ons must be in OSGi format and their
web site must include an OSGi Bundle Repository (OBR) index file. While Roo internally uses OSGi
and all modules are managed as OSGi bundles, thisis transparent and you do not need any familiarity
with OSGi or bundles to work with the Roo add-on installation system. An OBR file is usualy
named reposi tory. xnl and it is available over HTTP. If you're curious what these OBR files look
like, you can view the Spring Roo OBR repository at http://spring-roo-repository.springsource.org/
repository.xml. Within an OBR file each available Roo-related add-on is listed, along with the URL
where it is published. The URLs look similar to normal URLS, except they will usually specify a
ht t ppgp: / / protocol scheme (instead of the more common htt p: //).

Theht t ppgp: // protocol schemeishow we achieve alevel of security with add-ons. Obviously with
every add-on developer able to host add-ons on any web site they nominate, it would be difficult
for you to know whether a particular add-on can be trusted. You probably only want to trust add-
ons from people you aready trust or have cause to trust. To this end Roo offers automatic PGP-
related signature capabilities for any URL that uses the ht t ppgp: // scheme. Most Roo add-ons use
this scheme. The internal step-by-step process that takes place is Roo essentially downloads the URL
+ ".asc" over HTTP. Thisfileis a standard PGP detached signature file. PGP detached signature files
are increasingly common, with most Maven Central artifacts now also offering a signature file. If the
user's Roo installation trusts the key 1D that signed the PGP detached signature, Roo will proceed to
download the URL. If theuser'sRoo installation does not trust thekey ID, an error will bedisplayed and
the download will fail (and in turn the add-on installation process will fail if the bundle was specified
asahttppgp: // URL). Please see the side-bar for details on how you can trust different key IDs and
use the PGP-related commandsin Roo.

Completing the picture of Roo's add-on distribution infrastructureis RooBot. ThisisaVVMware-hosted
service that essentially indexes the important content in all public Roo OBR files. RooBot ensures that
add-ons it indexes are only available over htt ppgp: / /, reflecting the security model above. Add-on
developers can be added into RooBot's index in just a couple of minutes via an automated process.
Every time Roo loads, it automatically downloads the latest RooBot index file. Thisis how it knows
which public add-ons are available.

Enough with the theory, let's move on to the fun piece. In Spring Roo you simply use the shell to
locate new add-ons. To review the list of known add-ons you can use the addon list or addon search
command. Thislists all add-ons that are in the RooBot-maintained index mentioned above:

roo> addon search

1234 found, sorted by rank; T = trusted devel oper; R = Roo 1.1 conpatible

ID T R DESCRI PTI ON = - - - - - o m o m o e oo e oo oo e oo oo

01 Y Y 2.3.0.0001 This bundle waps the standard Maven artifact:
protobuf-java-2.3.0-lite.

02 Y - 0.3.0. RELEASE Addon for Spring Roo to provide generic DAO and query
nmet hods based on Hades.

03 Y Y 0.9.94.0001 This bundl e waps the standard Maven artifact:
jline-0.9.94.S2-A (S2-Ais a private patched version; see ROO 350 for...

04 - - 1.1.6 Addons that adds Content Negotiating View Resol ver configuration
to your application context: MVC nultiple representations By defaul t...

...(output truncated for reference guide inclusion)...

1.2.5.RELEASE 45

http://spring-roo-repository.springsource.org/repository.xml
http://spring-roo-repository.springsource.org/repository.xml

Usage and Conventions

[HINT] use 'addon info id --searchResultld ..' to see details about a search result
[HINT] use 'addon install id --searchResultld ..' to install a specific search result, or
[HINT] use 'addon install bundle --bundl eSynbolicNane TAB' to install a specific add-on version

There are various options you can pass to the search command to see more lines per result, perform
filtering and so on. Just use --TAB as usual to see these options.

If you can't seethe add-on you'relooking for, you can repeat the command with theoptional - - ref r esh
option. Thiswill refresh your local RooBot index from our server.

To review details about a specific add-on, use the addon info id command as mentioned in the hint
at the bottom of the search results. There is also a related command called addon info bundle which
requires a "bundle symbolic name", which is usualy the add-on's top-level package. However, it's
often more convenient to use the search result "I1D" number (to the left hand side of each row) rather
than typing out abundle symbolic name. Let'stry this. To view details about the second add-on listed,
enter this command:

roo> addon info id --searchResultld 02

An example of the output of addon info id is shown below:

roo> addon info id --searchResultld 02

Nane.........: Hades - Roo addon

BSN..........: org.synyx. hades. roo. addon

Version......: 0.3.0. RELEASE

Roo Version..: 1.1.0

Ranking......: 1.0

JAR Size.....: 20458 bytes

PGP Signature: O0xF2C57936 signed by Oiver Gerke (info@livergierke.de)

OBR URL......: http://hades.synyx.org/static/roo/repo/repository.xm

JAR URL......: httppgp://hades. synyx. org/static/roo/ repo/org/synyx/ hades/ org. syn
yX. hades. r 0o. addon/ 0. 3. 0. RELEASE/ or g. synyx. hades. r 0o. addon- 0. 3. 0.
RELEASE. j ar

Commands.: 'hades install' [lInstalls Hades for the project]

Commands.: 'hades repository' [Creates a Hades repository interface]

Description..: Addon for Spring Roo to provide generic DAO and query nethods
based on Hades.

Comment 1....: Rating [GOOD], Date [17/12/10], Conment [Nice add-on for those
who want to use a separate repository |layer, can be inproved in
functionality]

In the above output "BSN" means bundle symbolic name, which is the alternate way of referring to a
given add-on. The output also shows you the Roo shell commands that are available via the add-on.
These commands are automatically seen by the Roo shell, so if you typed in this case "hades install”
without first having installed the add-on, Roo would have performed a search and shown you this add-
on offered the command. Thisis a great feature and means you can often just type commands you
think you might need and find out which add-ons offer them without performing an explicit search. A
similar feature exists for JIDBC resolution if you try to reverse engineer a database for which thereis
no installed JDBC driver (Roo will automatically suggest the add-on you need and instruct you which
command to useto install it).

If you decideto install a specific add-on, ssmply use the addon install id command:

roo> addon install id --searchResultld 02
Successfully installed add-on: org.synyx. hades. roo. addon
[Hi nt] Please consider rating this add-on with the foll owi ng command:

[H nt] addon feedback bundl e --bundl eSynbol i cNane org. synyx. hades. roo. addon --rating ... -:conmment "..

1.2.5.RELEASE 46

Usage and Conventions

If the add-on installation is aborted with awarning that the add-on author is currently not trusted, please
review the sidebar about modifying PGP trusts. To simplify identifying add-ons from developers you
aready trust, the addon search resultsinclude a"T" column which means "trusted developer”. If you
see a"Y" in that column, you've aready trusted that developer's PGP key and thus installation will
work without needing to add their key. If you seea"-" in that column, you'll need to first tell Roo you
trust their key (as explained in the PGP sidebar).

As per the [HINT] messages that appear immediately after installing an add-on, we appreciate your
feedback about the add-onsyou use. Y ou can use the addon feedback bundle command for this purpose,
as shown in the consoletext above. If you provide arating or comment, it will show up for other people
to see when they use the addon info command.

It is generaly recommended to restart Roo to ensure the add-on is properly initialized. This
theoretically isn't necessary in most cases, but it doesn't hurt.

Y ou can also upgrade your existing add-ons by using the addon upgrade commands. To do this you
should first run the addon upgrade settings command which allows you to define the desired stability
level which istaken into account when performing the addon upgrade all command:

roo> addon upgrade settings --addonStabilityLevel ANY| M LESTONE| RELEASE| RELEASE_CANDI DATE

If you don't define a stability level through the addon upgrade settings command it defaults to
RELEASE - meaning only release versions will be upgraded (if upgrades for thislevel are available).
Other stahility levels to choose from are RELEASE_CANDIDATE, MILESTONE, and ANY (i.e.
snapshots).

Tolist all available upgrades for currently installed add-ons you can use the addon upgrade available
command. This will provide an overview of add-ons which can be upgraded and their respective
stability levels. Furthermore, you can also upgrade individual add-ons by using the addon upgrade
bundle command which allows you to specify the add-on bundle symbolic name (and the add-on
version in case multiple versions are available). Finally, you can use the addon upgrade id command
to upgrade a specific add-on which has appeared in a search result to the latest version available.

Of course, you can remove add-ons as well. To uninstall any given add-on, just use the addon
remove command. On this occasion we'll use the bundle symbolic name (which is available via TAB
completion asis usual with Roo):

roo> addon renove --bundl eSynbol i cNane de. saxsys. roo. equal s. addon
Successful ly renpved add-on: de.saxsys.roo. equal s. addon

Note that al of the "addon" commands only work with add-onslisted in the central RooBot index file.
This is fine, as most public Roo add-ons are listed there. However, sometimes an add-on cannot be
published into the RooBot index file. The most common reason is that it's an add-on internal to your
organization, or perhapsit's simply not ready for public consumption.

Evenif an add-on isnot listed in RooBat, you can still install it. The "osgi obr url add" command can
be used to add the add-on's OBR URL to your Roo installation. This command is typically followed
by an "osgi obr start" command to download and start the add-on. Importantly, the additional security
verifications performed by RooBot are skipped given RooBot is not used with these commands (or
other related commands such as osgi start). That means bundles you start using the "osgi obr start”
command may not useht t ppgp: / / for PGP signature verification. Assuch you should exercise caution
when using any installation-related commands that do not start with "addon”, as such commands do

1.2.5.RELEASE 47

Usage and Conventions

not use resources subject to the RooBot security verifications. Noneless there remain legitimate use
casesfor such distribution styles, soit'sgood to know Roo supportsthem aswell asthe more common,
user-friendly and more secure "addon" commands.

1.2.5.RELEASE 48

Chapter 5. Existing Building Blocks

Sometimes you have an existing project or database. This chapter covers how to make Spring Roo
work with it.

5.1. Existing Projects

If you have an existing project that you'd like to use with Roo, we recommend that you follow these
steps:

1

Decide whether your project files are easier to migrate to a new Roo project or it's easier to amend
your current project into a Roo project. Both approaches are valid. The following steps reflect
migrating your current project into a Roo project.

. Convert the project to use Maven. Ensure you use the correct Maven directory layouts.

. Move your Spring configuration and other files to the same directories as used by Roo. Start a new

Roo-based project if you're unsure where these files are typically stored.

. Add the Roo annotations JAR and Maven AspectJ plugin to your POM. Use the same syntax as a

new Roo-based project would use.

. Load Roo on your project and verify it does not report any errors. Resolve any errors before

continuing.

. Add atest @R0o0T 0String annotation to one of your existing classes. Verify the ITD is created and

can be used within your IDE (if you're using an IDE). Check the new toString() method is used.

. Startincrementally using the simpler Roo add-onsliketoString support and JavaBeans. Whenyou're

confident, move onto other Roo commands and add-ons.

If you encounter any difficulty, we recommend you consult the Roo Resources section of the reference
guide for help.

5.2. Existing Databases

Many organisations have existing databases that they'd like to use with Roo.

A significant new feature added to Spring Roo 1.1 was support for incremental database reverse
engineering. Thisfeature is robust and comprehensive, and allows you to reverse engineer an existing
database in asingle command. The single command doesn't even ask you any questions asit operates,
and it gracefully handles changes to your schema over time.

We recommend that you consult the incremental database reverse engineering chapter if you'd like to
work with an existing relational database.

1.2.5.RELEASE 49

Chapter 6. Removing Roo

While we'll be sad to see you go, we're happy that Roo was able to help you in some way with your
Spring-based projects. We also know that most people reading this chapter aren't actually likely to
remove Roo at al, and are simply wondering how they'd go about it in the unlikely event they ever
actually wanted to. If you have a source control system, it's actually a good idea to complete these
instructions (without checking in the result!) just to satisfy yourself that it's very easy and reliable to
remove Roo.

6.1. How Roo Avoids Lock-In

At the time we created the mission statement for Roo, a key dimension was "without compromising
engineering integrity or flexibility”. To usthat meant not imposing an unacceptable burden on projects
likeforcing them to use the Roo API or runtime or locking them in. Whileit complicated our design to
achievethis, we'revery proud of thefact Roo's approach hasno downside at runtime or lock-in or future
flexibility. Y ou really can have your cake and est it too, to reflect on the common English expression.

Roo avoids locking you in by adopting an active code generation approach, but unlike other code
generators, we place Roo generated code in separate compilation units that use Aspect] inter-type
declarations. Thisis vastly better than traditional active code generation alternatives like forcing you
to extend a particular class, having the code generator extend one of your classes, or forcing you to
program amodel in an unnatural diagrammatic abstraction. With Roo you just get on with writing Java
code and let Roo take care of writing and maintaining the code you don't want to bother writing.

The other aspect of how Roo avoids lock-in is using annotations with source-level retention. What this
means is the annotations are not preserved in your . cl ass files by the time they are compiled. This
in turn means you do not need the Roo annotation library in your runtime classpath. If you look at
your VEB- | NF/ | i b directory (if you're building aweb project), you will find absolutely no Roo-related
JARs. They simply don't exist. In fact if you look at your development-time classpath, only the Roo
annotation JAR library will be present - and that JAR doesn't contain a single executable line of code.
The entire behaviour of Roo isaccomplished at devel opment time when you load the Roo shell. If you
also think about the absence of executable code anywhere in your project classpath, thereis no scope
for possible Roo bugsto affect your project, and there isno risk of upgrading to alater version of Roo.

Because we recommend people check their Roo-generated *_Roo_*. aj filesinto source control, you
don't even need to load Roo to perform a build of your project. The source-level annotation library
referred to in the previous paragraph is in a public Maven repository and will automatically be
downloaded to your computer if it's not already present. This means Roo is not part of your build
process and your normal source control system branching and tagging processes will work.

This also means that a project can "stop using Roo" by simply never loading the Roo shell again.
Because the * _Roo_*. aj files are written to disk by the Roo shell when it last ran, even if it's never
loaded again those fileswill still be present. The removal proceduresin this chapter therefore focus on
amore complete removal, in that you no longer even want the* _Roo_*. aj filesany more. That said,
there's nothing wrong with just never loading Roo again and keeping the *_Roo_*. aj files. The only
possible problem of adopting the "never load Roo again" approach is that someone might load Roo
again and those files will be updated to reflect the latest optimisations that Roo can provide for you.

1.2.5.RELEASE 50

http://docs.oracle.com/javase/7/docs/api/java/lang/annotation/RetentionPolicy.html#SOURCE

Removing Roo

6.2. Pros and Cons of Removing Roo

By removing Roo, you eliminate the Roo-generated source files from your project. These are inter-
type declarations stored in *_Roo_*. aj files. Y ou aso remove the Roo annotation library from your
project. This might be attractive if you've made a decision to no longer use Roo for some reason, or
you'd like to ship the finished project to your client and they'd prefer asimple Java project where every
piece of code isin standard . j ava files. Another reason you might like to remove Roo is to smply
satisfy yourself it's easy to do so and therefore eliminate a barrier to adopting Roo for rea projects
in the first place.

Even though it's easy to do so, there are downsides of removing Roo from your project:

» Cluttered Java classes: If the*_Roo_*. aj files are removed, their contents need to go somewhere.
That somewhere is into your . java source files. This means your .java source files will be
considerably longer and contain code that no devel oper actually wrote. When devel opers open your
. j ava source files, they'll need to figure out what was written by hand and is unique to the class,
what was automatically generated and then modified, and what was automatically generated and
never modified. If using Roo this problem is eliminated, as anything automatically generated isin
a separate, easily-identified source file.

« No round-trip support: Let'simagine for a moment that you've written (either by hand or via your
IDE's code generation feature) at oSt ri ng() method and getter/setter pairs for all your fields. You
then decide to rename afield. Suddenly the getter, setter andt oSt ri ng() methodsareall in error. If
you use Roo, it automatically detects your change and appropriately updates the generated code. If
you remove Roo, you'll lose this valuable round-trip support and be doing a lot more tedious work
by hand.

* No optimisations to generated files: With each version of Roo we make improvements to the
automatically-created *_Roo_*. aj files. These improvements are automatically made to your
* _Roo_*. aj fileswhen you load anew version of Roo. These improvements occasionally fix bugs,
but more often provide new features and implement existing features more efficiently (remember
eliminating engineering trade-offs and therefore maximising efficiency is a maor objective in our
mission statement). If you remove the*_Roo_*. aj files, you'll receive the code as of that date and
you'll miss out on further improvements we make.

 Lossof Roo commands: There are dozens of Roo commands availableto assist you adapt to evolving
project requirements. Next month you might be asked to add JM S servicesto your project. With Roo
you just "jms setup”. The month after you're asked about SMTP, so you just "email sender setup”.
If you've eliminated Roo, you'll need to resort to much more time-consuming manual configuration
(with its associated trial and error).

e Deprecated library versions. Because Roo automatically updates your code and has a good
knowledge of your project, it's easy to aways use the latest released versions of important runtime
technologies like Spring and JPA. If you stop using Roo, you'll need to manually do all of the work
involved in upgrading your project to newer versions. This will mean you're likely to end up on
older runtime library versions that have bugs, fewer features and are not maintained or supported.
With Roo you significantly mitigate this risk.

« Undesirable architectural outcomes: With Roo you achieve team-wide consistency and a solution
with a high level of engineering integrity. If developers are forced to write repetitious code

1.2.5.RELEASE 51

Removing Roo

themselves and no longer enjoy optimised Roo commands, you'll likely find that over time you lose
some of the consistency and engineering advantages of having used Roo in the first place.

» Higher cost: With the above in mind, you'll probably find development takes longer, maintenance
takes longer and your runtime solution will be less efficient than if you'd stayed with Roo.

As such we believe using Roo and continuing to use Roo makes a lot of sense. But if you're willing
to accept the trade-offs of removing Roo (which basically means you switch to writing your project
the unproductive "old fashioned way"), you can remove Roo very easily. Don't forget when in doubt
you can always defer the decision. It's not asif Roo won't let you removeit just aseasily in six months
or two years from now!

6.3. Step-by-Step Removal Instructions

The following instructions explain how to remove Spring Roo from one of your projects that has to
date been using Roo. Naturally if you'd simply like to remove Roo from your computer (as opposed
to from an existing project), the process is as simple as removing the Roo installation directory and
symbolic link. This section instead focuses on the removal from your projects.

As mentioned above, a simple way of stopping to use Roo is to simply never load it again. The
* _Roo_*. aj fileswill still be on disk and your project will continue to work regardless of whether the
Roo shell is never launched again. You can even uninstall the Roo system from your computer and
your project will still work. The advantage of this approach is you haven't lost most of the benefits of
using Roo and it's very easy to simply reload the Roo shell again in the future. This section coversthe
more complete removal option should you not even want the* _Roo_*. aj files any more.

Please be aware that enhancement request ROO-222 existsto replace step 1 with aRoo command, and
ROO-330 similarly focuses on steps 2 and 3. Please vote for these enhancement requests if you'd like
them actioned, although the instructions below still provide afast and usable removal procedure.

6.3.1. Step 1: Push-In Refactor

Before proceeding, ensure you have quit any running Roo shell. We also recommend you run any tests
and load your web application interface (if there is one) to verify your project works correctly before
starting this procedure. We also recommend that you create a branch or tag in your source control
repository that representsthe present "Roo-inclusive” version, asit will help you should you ever wish
to reenable Roo after aremoval.

Toremove Roo from aproject, you need to import the project into Eclipse or SpringSource Tool Suite.
Once the project has been imported into Eclipse, right-click the project name in Package Explorer
and select Refactor > Push-In Refactor. If this option is missing, ensure that you have a recent
version of AJDT installed. After selecting the push-in refactor menu option, alist of all Roo inter-type
declarations will be displayed. Simply click OK. AJDT will have now moved all of the Roo inter-type
declarations into your standard . j ava files. The old *_Roo_*. aj files will have automatically been
deleted.

6.3.2. Step 2: Annotation Source Code Removal

While your project is now free of inter-type declarations, your .| ava files will still have @roo
annotations within them. In addition, there will bei nport directives at the top of your . j ava filesto
import those @oo annotations. Y ou can easily remove these unwanted members by clicking Search

1.2.5.RELEASE 52

https://jira.springsource.org/browse/ROO-222
https://jira.springsource.org/browse/ROO-330

Removing Roo

> Search > File Search, containing text "\ n. *[@.] Roo[~t _] +?. *$" (without the quotes), file name
pattern "+ j ava" (without the quotes), ticking the "Regular expression” and "Case sensitive" check-
boxes and clicking "Replace". When the next window appears and asks you for areplacement pattern,
leave it blank and continue. All of the Roo statements will have now been removed. We have noticed
for an unknown reason that sometimes this operation needs to be repeated twice in Eclipse.

6.3.3. Step 3: Annotation JAR Removal

By now your .java files do not contain any Roo references at al. You therefore don't
require the org. springframework.roo. annotations-*.jar library in your development-time
classpath. Simply open your pom xmi and locate the <dependency> element which contains
<artifactld>org.springframework.roo. annotations</artifact|d>. Delete (or comment out) the
entire <dependency> element. If you're running m2Eclipse, there is no need to do anything further.
If you used the command-line nvn command to create your Eclipse . cl asspat h file, you'll need to
execute mvn eclipse: cl ean eclipse: eclipse torebuild the. cl asspat h file.

Roo has now been entirely removed from your project and you should re-run your tests and user
interface for verification of expected operation. It's probably a good ideato perform ancther branch or
tag in your source control repository so the change set is documented.

6.4. Reenabling Roo After A Removal

If you decide to change your mind and start using Roo again, the good news is that it's
relatively easy. This is because your project already uses the correct directory layout and has
Aspect] etc properly configured. To re-enable Roo, simply open your pom.xml and re-add the
org. spri ngfranmewor k. roo. annot at i ons <dependency> element. Y ou can obtain the correct syntax
by simply making a new directory, changing into that directory, executingr oo scri pt vote. roo, and
inspecting the resulting pom xm .

Once you've added the dependency, you're free to load Roo from within your project's directory and
start using the Roo commands again. You're also free to add @oo annotations to any . j ava file that
would benefit from them, but remember that Roo is "hands off by default”. What that meansisif you
used the push-in refactor command to move members (e.g. fields, methods, annotations etc) into the
.java file, Roo has no way of knowing that they originated from a push-in refactor as opposed to
you having written them by hand. Roo therefore won't delete any members from your . j ava file or
override them in an inter-type declaration.

Our advice istherefore (a) don't remove Roo in the first place or (b) if you have removed Roo and go
back to using Roo again, delete the members from your . j ava files that Roo is able to automatically
manage for you. By deleting the members that Roo can manage for you from the . j ava files, you'll
gain the maximum benefit of your decision to resume using Roo. If you're unsure which members Roo
can automatically manage, simply comment them out and see if Roo provides them automatically for
you. Naturally you'll need the relevant @roo annotation(s) in your . j ava files before Roo will create
any members automatically for you.

A final tip if you'd like to return to having ITDs again is that AJDT 2.0 and above offers a Refactor
> Push Out command. This may assist you in moving back to ITDs. The Edit > Undo command also
generally works if you decide to revert immediately after a Refactor > Push In operation.

1.2.5.RELEASE 53

Part Il. Base Add-Ons

This part of the reference guide provides a detailed reference to the major Roo base add-ons and how they work.
This part goesinto more detail than the tutorial chapter and offersa"bigger picture” discussion than the command
reference appendix.

1.2.5.RELEASE 54

Chapter 7. Base Add-On Overview

When you download the Spring Roo distribution ZIP, there are actually two major logical components
in use. The first of these is the "Roo core", which provides an environment in which to host add-ons
and provide services to them. The other component is what we call "base add-ons'. A base add-on
is different from athird party add-on only in that it isincluded in the Roo distribution by default and
does not require you to separately install it. In addition, you cannot remove a base add-on using normal
Roo commands.

Base add-ons aways adopt the package name prefix org. spri ngf r amewor k. r 0o. addon. We also
have a part of Roo known as "Roo core". This relates to the core modules, and these always have
package names that start with or g. spri ngf r amewor k. r oo (but excluding those with "addon" as the
next package name segment, as in that case they'd be a "base add-on"). Roo core provides very few
commands, and whatever commands it provides are generally internal infrastructure-related features
(like "poll status' or "metadata for id") or sometimes aggregate the features provided by severa
individual base add-ons (e.g. "entity jpa --testAutomatically").

Add-ons that do not ship with Spring Roo but are neverthel ess about to be used with it are known as
"installable add-ons"' (these were previously called "third-party add-ons', but we decided to change
the name in Roo 1.1 in view that SpringSource itself was publishing add-ons that were not shipping
as part of Roo and the use of the term "third-party” was confusing). Such add-ons do not appear under
theor g. spri ngf r amewor k. r oo package name space. A large number of individual s and organizations
publish installable add-ons, and indeed even within the SpringSource division of VMware we have
teams publishing installable add-ons. The decision as to whether an add-on becomes a base add-on or
an installable add-on depends on a large number of factors, but in general we prefer installable add-
ons over base add-ons. This offers flexibility around release cycles, licenses, deployment footprint,
code maintenance and so on.

Of courseasauser of Roo you do not need to be aware of whether aparticular component is part of Roo
core, a base add-on or an installable add-on. It's just useful for us to formally define these commonly-
used terms and explain the impact on whether you need to install or uninstall a component or not.

Theindividual base add-ons provided by Roo provide capabilitiesinthefollowing key functional areas:
 Project management (like project creation, dependency management, "perform” commands)

* Genera type management (like creation of types, toString method, JavaBean methods)

e Persistence (like JPA setup, entities)

» Field management (like JSR 303 and field creation with JPA compliance)

 Database introspection and reverse engineering

« Dynamic finders (creation of finders without needing to write the JPA-QL for them)

* JUnit testing (with integration and mock testing)

e Spring MV C (including URL rewriting, JSP services, controller management)

e Spring Web Flow

 Spring Security

1.2.5.RELEASE 55

Base Add-On Overview

e Selenium testing

» JavaMessage Service (IMS)

Simple Mail Transfer Service (SMTP)

Log4J configuration

We have added dedicated chapters for many of these functional areas in this, Part Il of our
documentation. Y ou can also find more introductory material concerning these areas in Part |, along
with our samples, the command reference and project resources.

1.2.5.RELEASE 56

Chapter 8. Persistence Add-On

The persistence add-on provides a convenient way to create Java Persistence APl (JPA v2) compliant
entities. There are different commands avail able to configure JPA, create new JPA-compliant entities,
and add fields to these entities. In the following a summary of the features offered by the Spring Roo
persistence add-on:

8.1. JPA setup command
The jpa setup command provides the following options and attributes:
Database Options:

e HSQL (in memory)
e HSQL (persistent)
e H2 (in memory)

* MySQL

* Postgres

« MSSQL Server

* Sybase

« Oracle*

. DB2*

» DB2/400

« Google App Engine (GAE)

» Apache Derby (Java DB)
* Firebird

* The JIDBC driver dependenciesfor these databases are not available in public Maven repositories. As
such, Roo configures a default dependency in your project pom xni . You need to adjust it according
to your specific version of your database driver available in your private Maven repository.

Some useful hintsto get started with Oracle Express (Oracle XE): After installing Oracle X E you need
to find the JDBC driver under ${ or acl e- xe}/ app/ or acl e/ product/ 10. 2. 0/ server/j dbc/ | i b and
run the command:

nmvn install:install-file -Dfil e=ojdbcl4_g.jar -Dgroupld=comoracle -Dartifactld=o0jdbcl4 - D}mrsi on=10. 2

Also, if you dont want Jetty (or Tomcat) to be conflicting with oracle-xe web-server, you should use
the following command: mvn jetty:run -Djetty. port=8090.

ORM Provider Options:

e EclipselLink

¢ Hibernate

1.2.5.RELEASE 57

http://java.sun.com/javaee/6/docs/tutorial/doc/bnbpz.html
http://hsqldb.org/
http://hsqldb.org/
http://www.h2database.com/html/main.html
http://www.mysql.com/
http://www.postgresql.org/
http://www.microsoft.com/sqlserver
http://www.sybase.com/
http://www.oracle.com/index.html
http://www.ibm.com/db2
http://www.ibm.com/db2
http://code.google.com/appengine/
http://db.apache.org/derby/
http://www.firebirdsql.org/
http://www.eclipse.org/eclipselink/
http://www.hibernate.org/

Persistence Add-On

* OpenJPA

+ DataNucleus 3.0

In addition, the jpa setup command accepts optional databaseName, user Name and passwor d attributes
for your convenience. However, it's not necessary to use this command. You can easily edit these
details in the dat abase. properti es file at any time. Finally, you can also specify a pre-configured
JNDI datasource via the jndiDataSour ce attribute.

The jpa setup command can be re-run at any time. This means you can change your ORM provider or
database when you plan to move your application between your devel opment setup (e.g. Hibernatewith
HSQLDB) to your production setup (e.g. EclipseLink with DB2). Of coursethisisaconvenience only.
Y ou'll naturally experience fewer deployment issuesif you use the same platform for both devel opment
and production.

Running the jpa setup command in the Roo shell takes care of configuring several aspects in your
project:

1. JPA dependencies are registered in the project pom xm Maven configuration. It includes the JPA
API, ORM provider (and its dependencies), DB driver, Spring ORM, Spring JDBC, Commons
DBCP, and Commons Pool

2. Persistence XML configuration with apersistence-unit preconfigured based on your choice of ORM
provider and Database. Hereis an example for the EclipseLink ORM provider and HSQL database:

<persi stence xm ns="http://java. sun. conl xm / ns/ per si st ence"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" versi on="2.0"
xsi : schemaLocation="http://java. sun. conf xm / ns/ per si st ence
http://java. sun. conl xm / ns/ per si st ence/ persi stence_2_0,/xsd" >

<persi stence-unit name="persistenceUnit" transaction-type="RESOURCE LOCAL" >
<provi der >or g. ecl i pse. persi st ence. j pa. Persi st enceProvi der </ provi der >
<properties>
<property nanme="eclipselink.target-database"
val ue="org. ecl i pse. persi st ence. pl at f or m dat abase. HSQLPI at f or nt'/ >

<I--val ue='drop-and-create-tables' to build a new database on each run
val ue=' create-tabl es' creates new tables if needed
val ue=' none' nekes no changes to the database-->

<property nanme="ecl i pselink.ddl -generation" val ue="drop-and-create-tables"/>»

<property name="ecl i pselink. ddl - generati on. out put - nbde" val ue="dat abase"/ >

<property nanme="ecl i psel i nk. weavi ng" val ue="static"/>
</ properties>
</ per si st ence- uni t >
</ persi st ence>

By default the persistence unit is configured to build a new database on each application restart.
This helps to avoid data inconsistencies during application development when the domain model
is not yet finalized (new fields added to an entity will yield new table columns). If you feel that
your domain model is stable you can manually switch to a mode which allows data persistence
across application restarts in the persistence.xml file. Thisis documented in the comment abovethe
relevant property. Each ORM provider uses different property names and values to achieve this.

3. A database properties file (src/main/resources/ META- I NF/ spring/ dat abase. properti es)
which contains user name, password, JDBC driver name and connection URL details:

1.2.5.RELEASE 58

http://openjpa.apache.org/
http://www.datanucleus.org/

Persistence Add-On

dat abase. url =j dbc\: hsql db\: mem : f oo

dat abase. user nane=sa

dat abase. passwor d=

dat abase. dri ver d assNane=or g. hsql db. j dbcDri ver

This file can be edited manualy, or you can use the properties set command, or by using the
databaseName, userName and password attributes of the jpa setup command. Y ou can edit the
properties file or use any of these commands at any time.

4. A DataSource definition and a transaction manager are added to the Spring application context:

[...]
<bean cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy-net hod="cl ose" i d="dat aSource">
<property nanme="driverCl assNane" val ue="${dat abase. dri ver Cl assNane}"/ >
<property nanme="url" val ue="${dat abase. url}"/>
<property name="usernane" val ue="${dat abase. usernane}"/>
<property name="password" val ue="${dat abase. password}"/>
</ bean>

<bean cl ass="org. spri ngfranmewor k. orm j pa. JpaTransacti onManager" i d="transacti onManager" >
<property name="entityManagerFactory" ref="entityManagerFactory"/>
</ bean>

<t x:annotation-driven node="aspectj" transaction-manager="transacti onManager"/>

<bean cl ass="org. spri ngfranmewor k. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean"
i d="entityManager Fact ory" >
<property nanme="dat aSource" ref="dataSource"/>
</ bean>

8.2. Entity JPA command

Using the entity jpa command you can create simple Java beans which are annotated with JPA
annotations. There are several optional attributes which can be used as part of this command but in its
simplest form it will generate the following artifacts:

roo> entity jpa --class ~. Person

Creat ed SRC_MAI N_JAVA/ coni f oo

Creat ed SRC_MAI N_JAVA/ coni f oo/ Per son. j ava

Creat ed SRC_MAI N_JAVA coni f oo/ Per son_Roo_JavaBean. aj

Creat ed SRC_MAI N_JAVA/ coni f oo/ Person_Roo_Jpa_Entity. aj

Creat ed SRC_MAI N_JAVA/ coni f oo/ Per son_Roo_Jpa_Acti veRecord. aj
Creat ed SRC_MAI N_JAVA coni f oo/ Per son_Roo_ToSt ri ng. aj

Creat ed SRC_MAI N_JAVA/ coni f oo/ Per son_Roo_Confi gur abl e. aj

~. Person roo>

Asyou can see from the Roo shell messages there are 6 files generated (al so, note that the context has
changed to the Person type in the Roo shell):

1. Person.java:

@RooJavaBean

@RooToSt ring
@RooJpaActi veRecord
public class Person {

}

Y ou will notice that by default, the Person type does not contain any fields (these will be added
with the field commands or manually in the type) or methods.

1.2.5.RELEASE 59

Persistence Add-On

2. Person_Roo_JavaBean.gj (thiswill only be generated when fields are added to the Person type)

The first annotation added by the entity jpa command is the @RooJavaBean annotation. This
annotation will automatically add public accessors and mutators viaan I TD for each field added to
the Person type. This annotation (like all Roo annotations) has source retention (so it will not be
present in the generated byte code).

3. Person_Roo_ToString.aj

The second annotation added to the Person type is the @RooToString annotation. This annotation
will generate a toString method for the Person type via an ITD. The toSring() method will
contain a concatenated representation of all field names and their values using the commons-
lang RefectionToStringBuilder by default. If you want to provide your own toString() method
alongside the Roo generated toString() method you can declare the toStringMethod attribute in the
@RooToString annotation. This attribute allows you to change the default method name of the
Roo-managed toString() (default name) method, thereby allowing your custom toString() method
alongside the Roo-managed method.

4. Person_Roo_Configurable.gj

This ITD is automatically created and does not require the @RooConfigurable annotation to
be introduced into the Person.java type. It takes care of marking the Person type with Spring's
@Configurable annotation. This annotation allows you to inject any types from the Spring bean
factory into the Person type. The injection of the JPA entity manager (which isdefined asabean in
the application context) is possible due to the presence of the @Configurable annotation.

5. Person_Roo_Jpa Entity.gj

Theforth annotation isthe @RooJpaA ctiveRecord annotation. Thisannotation triggersthe creation
of two ITDs: the Person _Roo_Jpa Entity.g) ITD and the Person_Roo _Jpa ActiveRecord.g ITD.
Note that If you do not want ActiveRecord-style methods in your domain object you can just use
the @RooJpaEntity annotation.

The JPA @Entity annotation isadded to the Person_Roo_Jpa Entity.gj ITD. Thisannotation marks
the Person as persistable. By default, the JPA implementation of your choice will create a table
definitionin your databasefor thistype. Oncefields are added to the Person type, they will be added
as columns to the Person table.

privil eged aspect Person_Roo_Jpa_Entity {
declare @ype: Person: @ntity;

@d

@zener at edVal ue(strategy = Generati onType. AUTO)
@ol um(nanme = "id")

private Long Person.id;

@/er si on
@Col um(name = "version")
private |nteger Person.version;

public Long Person.getld() {
return this.id,

}

public void Person.setld(Long id) {
this.id = id;

1.2.5.RELEASE 60

Persistence Add-On

}

public | nteger Person.getVersion() {
return this.version;

}

public void Person. setVersion(lnteger version) {
this.version = version;

}

As can be seen, the Person_Roo_Jpa Entity.gj ITD introduces two fields by default. Anid field
(which is auto-incremented) and a version field (used for JPA-managed optimistic locking).

6. Person_Roo_Jpa ActiveRecord.gj

As mentioned previoudy, the @RooJpaActiveRecord annotation also triggers the creation of
the Person_Roo_Jpa ActiveRecord.gj ITD. This contains a number of persistence related CRUD
methods into your Person type viathe ITD:

privil eged aspect Person_Roo_Jpa_ActiveRecord {

@rer si st enceCont ext
transi ent EntityManager Person. entityManager;

@r ansacti onal

public void Person. persist() {
if (this.entityManager == null) this.entityManager
this.entityManager. persist(this);

entityManager ();

}

@r ansacti onal
public void Person.renove() {
if (this.entityManager == null) this.entityManager
if (this.entityManager.contains(this)) {
thi s. entityManager.renove(this);
} else {
Person attached = this.entityManager.find(this.getdass(), this.id);
this. entityManager.renove(attached);

entityManager ();

}

@ransacti onal

public void Person.flush() {
if (this.entityManager == null) this.entityManager
this.entityManager.flush();

entityManager();

}

@r ansact i onal

public Person Person. nmerge() {
if (this.entityManager == null) this.entityManager
Person nerged = this.entityManager. nerge(this);
this. entityManager.flush();
return nmerged,;

entityManager ();

public static final EntityManager Person.entityManager() {
EntityManager em = new Person().entityManager;
if (em==null) throw new ||| egal St ateException("Entity manager has not been \
injected (is the Spring Aspects JAR configured as an AJC/ AJDT \
aspects library?)");
return em

1.2.5.RELEASE 61

Persistence Add-On

public static |ong Person. count People() {
return entityManager().createQuery("select count(o) from Person o", Long.class)
. get Si ngl eResul t ();
}

@uppr essWar ni ngs(" unchecked")
public static List<Person> Person. findAl Il People() {
return entityManager().createQuery("select o from Person o", Person.class).getResultList();

}

public static Person Person.findPerson(Long id) {
if (id==null) return null;
return entityManager (). find(Person.class, id);

}

@uppr essWar ni ngs("unchecked")
public static List<Person> Person.findPersonEntries(int firstResult, int maxResults) {
return entityManager().createQuery("select o from Person o", Person.cl ass)

.setFirstResult(firstResult).set MaxResul t s(maxResul t s). get Resul tLi st

~

The Person_Roo_Jpa ActiveRecord.gj ITD introduces a number of methods such as persist(),
remove(), merge(), flush() which allow the execution of ActiveRecord-style persistence operations
on each Roo-managed JPA entity. Furthermore, a number of persistence-related convenience
methods are provided. These methods are countPeople(), findAllPeople(), findPerson(..), and
findPersonEntries(..).

All persistence methods are configured with Spring's Transaction support
(Propagation.REQUIRED, Isolation.DEFAULT).

Similar to the @RooToString annotation you can change the default method name for
al persistence-related methods generated through the @RooJpaActiveRecord annotation. For
example:

@RooJpaActi veRecord(persi st Method = "save")

The entity jpacommand offers anumber of optional (but very useful) attributesworth mentioning. For
examplethe--testAutomatically attribute can be used to have Roo to generate and maintain integration
tests for the Person type (and the persistence methods generated as part of it). Furthermore, the --
abstract and --extends attributes alow you to mark classes as abstract or inheritance patterns. Of
course this can also be done directly in the Java sources of the Person type but sometimesit isuseful to
do this through a Roo command which can be scripted and replayed if desired. Other attributes allow
you to define the identifier field name as well astheidentifier field type which, in turn, allows the use
of complex identifier types.

8.3. Field commands

As mentioned earlier in this chapter the field commands alow you to add pre-configured field
definitionsto your target entity type (Person.javain our example). In addition to simply adding thefield
names and types as defined via the command the appropriate JPA annotations are added to the field
definitions. For example adding abirth day field to the Person.javatypewith thefollowing command. ...

~. Person roo> field date --fieldNanme birthDay --type java.util.Date
Managed SRC_MAI N_JAVA/ conl f oo/ Person. j ava

Creat ed SRC_MAI N_JAVA coni f oo/ Per son_Roo_JavaBean. aj

Managed SRC_MAI N_JAVA/ coni f oo/ Per son_Roo_ToSt ri ng. aj

1.2.5.RELEASE 62

http://en.wikipedia.org/wiki/Active_record_pattern
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/transaction.html

Persistence Add-On

~. Person roo>

... yields the following field definition in Person.java:

@enpor al (Tenpor al Type. TI MESTAMP)
@pat eTi meFormat (style = "M")
private Date birthDay;

You'll notice that the @Temporal annotation is part of the JPA specification and defines how date
valuesare persisted to and retrieved from the database in atransparent fashion. The @DateTimeFormat
annotation is part of the Spring framework and takes care of printing and parsing Dates to and from
String values when necessary (especially Web frontends frequently take advantage of this formatting

capability).

Also note that Roo created a Person_Roo_JavaBean.gj I TD to generate accessors and mutators for the
birthDay field and it also updated the toString() method to take the birthDay field into account.

Aside from the Date (and Calendar) type, the field command offers String, Boolean, Enum, Number,
Reference and Set types. The Reference and Set types are of special interest here since they alow you
to define relationships between your entities:

1. Thefield reference command will create a JPA many-to-one (default) or one-to-one relationship:

~.Person roo> field reference --fieldNane car --type com foo. Car

The field definition added to the Person type contains the appropriate JPA annotations:

@manyToOne
@oi nCol um
private Car car;

The optional --cardinality command attribute allows you to define a one-to-one relationship (via
JPAs @OneToOne annotation) between Person and Car if you wish:

@neToOne
@oi nCol um
private Car car;

Y ou can add the mappedBY attribute to the @OneT 0One annotation to define the FK name handled
by the inverse side (Car) of this relationship.

Consider the following constraint: when you delete a Person, any Car they have should aso be
deleted, but not vice versa (i.e. you should be able to delete a Car without deleting its owner). In
the database, the foreign key should be in the "car" table.

@ntity

@RooJavaBean
@RooJpaActi veRecord
public class Person {

/'l Inverse side ("car" table has the FK col um)
@neToOne(cascade = CascadeType. ALL, nmappedBy = "owner")
private Car car;

@Entity

1.2.5.RELEASE 63

Persistence Add-On

@RooJavaBean
@RooJpaActi veRecord
public class Car {

// Oming side (this table has the FK col um)
@neToOne

@oi nCol um

private Person owner;

If you del ete a Person from the Person list, both the Person and the Car are del eted. So the cascading
works. But if you delete a Car, the transaction will roll back and you will see an exception due
it being referenced by a person. To overcome this situation you can add the following method to
your Car.java

@r eRenpve

private void preRenmove() {
this.getOaner().setCar(null);

}

This hooks into the JPA lifecycle callback function and will set the reference between Person and
Car to null before attempting to remove the record.

2. The field set command will allow you to create a many-to-many (default) or a one-to-many
relationship:

field set --fieldName cars --type com f oo. Car ‘

The field definition added to the Person type contains the appropriate JPA annotation:

@manyToMany(cascade = CascadeType. ALL)
private Set<Car> cars = new HashSet <Car >();

To change the mapping type to one-to-many simply use the --cardinality attribute. To achieve a
true m:n relationship you will need to issuethefield set commandsfor both sides of the relationship.

Like the entity jpa command, the field command offeres a number of optiona (but very useful)
attributes worth mentioning. For example, you can change the field / column name tranglations with
the --column attribute. Furthermore there are a number of attributes which translate directly to their
equivalents defined in JSR 303 (Bean Validation). These attributes include --notNull, --sizeMin, --
sizeM ax and other related attributes. Please refer to the field command in the appendix to review the
different attributes offered.

1.2.5.RELEASE 64

http://jcp.org/en/jsr/detail?id=303

Chapter 9. Incremental Database Reverse
Engineering (DBRE) Add-On

Theincrementa database reverse engineering (DBRE) add-on alows you to create an application tier
of JPA 2.0 entities based on the tables in your database. DBRE will also incrementally maintain your
application tier if you add or remove tables and columns.

9.1. Introduction

9.1.1. What are the benefits of Roo's incremental reverse engineering?

Traditional JPA reverse engineering tools are designed to introspect a database schema and produce
a Java application tier once. Roo's incremental database reverse engineering feature differs because
it has been designed to enable developers to repeatedly re-introspect a database schema and update
their Java application. For example, consider if a column or table has been dropped from the database
(or renamed). With Roo the re-introspection process would discover this and helpfully report errors
in the Javatier wherever the now-missing field or entity was referenced. In simple terms, incremental
database reverse engineering ensures Java type safety and easy application maintenance even if the
database schema is constantly evolving. Just as importantly, Roo's incremental reverse engineering
is implemented using the same unique design philosophy as the rest of Roo. This means very fast
application delivery, clutter-free .java sourcefiles, extensive usability featuresin the shell (such astab
completion and hinting) and so on.

9.1.2. How does DBRE work?

9.1.2.1. Obtaining database metadata

The DBRE commands (see Section 9.3, “DBRE Add-On commands’ below) make live connections
to the database configured in your Roo project and obtain database metadata from the JDBC driver's
implementation of the standard java.sgl.DatabaseM etadata interface. When the database is reverse
engineered, the metadata information is converted to XML and is stored and maintained in the
dbrexml file in the sre/main/resources directory of your project. DBRE creates JPA entities based
on the table names in your database and fields based on the column names in the tables. Simple and
composite primary keys are supported (see Section 9.5.2, “ Composite primary keys’ for more details)
and relationships between entities are also created using the imported and exported key information
obtained from the metadata.

9.1.2.2. Class and field name creation

DBRE creates entity classes with namesthat are derived from the associated table name using asimple
algorithm. If atable's name contains an underscore, hyphen, forward or back slash character, an upper
case |etter is substituted for each of these characters. Thisis also similar for column and field names.
The following tables contain some examples.

Table name DBRE-produced entity class name
order Order.java
line_item Lineltem.java

1.2.5.RELEASE 65

http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html

Incremental Database Reverse Engineering (DBRE) Add-On

Table name DBRE-produced entity class name
EAM_MEASUREMENT DATA_1H EamMeasurementDatalh.java
COM-FOO\BAR ComFooBar.java

Column name DBRE-produced field name
order order
EMPLOYEE_NUMBER employeeNumber
USR_CNT usrCnt

9.2. Installation

DBRE supports most of the relational databases that can be configured for Roo-managed projects
such as MySQL, MS SQL, and PostgreSQL. These drivers are auto-detected by Roo and you will
be prompted by the Roo shell to download your configured database's JDBC driver when you first
issuethe database introspect or database reverse engineer commands (see Section 9.3, “DBRE Add-On
commands’ below). For example, if you have configured your Roo project to use aMySQL database,
when the database introspect command is first issued, you will see the following console output:

roo> dat abase introspect --schema no-schena-required

Located add-on that may offer this JDBC driver

1 found, sorted by rank; T = trusted devel oper; R = Roo 1.1 conpatible

IDT RDESCRIPTI ON ------mmmmmm oo o e oo oo oo oo

01 Y Y 5.1.13.0001 #j dbcdriver driverclass:comnysqgl.jdbc.Driver. This..

[HINT] use 'addon info id --searchResultld ..' to see details about a search result
[HINT] use 'addon install id --searchResultld .." to install a specific search result, or
[H NT] use 'addon install bundle --bundl eSynbolicNane TAB' to install a specific add-on version
JDBC driver not available for 'comnysql.jdbc.Driver'

Y ou can get further information about the search result with the following command:

roo> addon info id --searchResultld 01

Thismay list several versions of adriver if available.

Y ou can then install the latest MySQL JDBC driver by entering the following Roo command:

roo> addon install id --searchResultld 01

Alternatively, to install a different version (if available) of the driver you can use the following
command:

roo> addon install bundle --bundl eSynbol i cNane org.springfranEwDrk.roo.mwapping.nysql-conn%ctor-java;<

The JDBC driver for MySQL isimmediately available for you to use. Y ou can now enter the database
introspect and database reverse engineer commands (see Section 9.3, “DBRE Add-On commands’
below).

Note: currently there are no open-source JDBC drivers for Oracle or DB2 and Roo does not provide
OSGi driversfor these databases. If you are an Oracle or DB2 user, you will need to obtain an OSGi-

1.2.5.RELEASE 66

http://www.mysql.com/
http://www.microsoft.com/sqlserver
http://www.postgresql.org/

Incremental Database Reverse Engineering (DBRE) Add-On

enabled driver from Oracle or IBM respectively or wrap your own Oracle or DB2 driver jars using
Roo's wrapping facility. Use the addon create wrapper to turn an existing Oracle JDBC driver into an
OSGi bundle you can ingtall into Roo. Roo does provide a wrapping pom.xml for the DB2 Express-
C edition that can be used to convert your db2jcc4.jar into an OSGi-compliant driver. You can then
use the osgi start command to install the jar, for example:

roo> osgi start --url file:///tnp/org.springframework.roo.w appi ng. db2j cc4-9.7.2.0001.jar

9.3. DBRE Add-On commands

After you have configured your persistence layer with the jpa setup command and installed all the
JDBC drivers, you can introspect and reverse engineer the database configured for your project. DBRE
contains two commands:

1. roo> database introspect --schema --file --enabl eViews

This command displays the database structure, or schema, in XML format. The --schema is
mandatory and for databases which support schemas, you can presstab to display alist of schemas
from your database. Y ou can use the --file option to save the information to the specified file.

The --enableViews option when specified will also retrieve database views and display them with
the table information.

Notes:

e The term "schema' is not used by all databases, such as MySQL and Firebird, and for these
databasesthetarget database nameis contained in the IDBC URL connection string. However the
--schema option is till required but Roo's tab assist feature will display "no-schema-required”.

» PostgreSQL upper case schema names are not supported.

2. roo> database reverse engi neer --schema --package --activeRecord --repository
--service --testAutomatically --enabl eVi ews
--includeTabl es --excl udeTabl es
--includeNonPortabl eAttri butes

--di sabl eVer si onFi el ds --di sabl eGeneratedl dentifiers

This command creates JPA entities in your project representing the tables and columns in your
database. Asfor the database introspect command, the --schemaoptionisrequired and tab assistance
is available. You can use the --package option to specify a Java package where your entities will
be created. If you do not specify the --package option on second and subsequent executions of the
database reverse engineer command, new entities will be created in the same package as they were
previously created in.

Use the --activeRecord option to create 'Active Record' entities (default if not specified).

Use the --repository option to create Spring Data JPA Repositories for each entity. If specified as
true, the --activeRecord option isignored.

Use the --service option to create a service layer for each entity.

Use the --testAutomatically option to create integration tests automatically for each new entity
created by reverse engineering.

1.2.5.RELEASE 67

Incremental Database Reverse Engineering (DBRE) Add-On

The --enableViews option when specified will also retrieve database views and reverse engineer
them into entities. Note that this option should only be used in specialised use cases only, such as
those with database triggers.

Y ou can generate non-portable JPA @Column attributes, such as ‘columnDefinition' by specifying
the --includeNonPortabl eAttributes option.

Use the --disableV ersionFields option to disable the generation of 'version' fields.
Use the --disableGeneratedl dentifiers option to disable auto generated identifiers.

Since the DBRE Add-on provides incremental database reverse engineering, you can execute the
command as many times as you want and your JPA entitieswill be maintained by Roo, that is, new
fields will be added if new columns are added to atable, or fields will be removed if columns are
deleted. Entities are also deleted in certain circumstances if their corresponding tables are dropped.

Examples of the database reverse engineer command:

° roo> dat abase reverse engi neer --schema order --package ~.domain --excludeTabl es "fook

Thiswill reverse engineer all tables except any table whose name starts with 'foo' and any table
called bar with one extra character, such as 'barl' or 'bars.

You can use the --includeTables and --excludeTables option to specify tables that you want or
do not want reverse engineered respectively. The options can take one or more table names. If
more than one table is required, the tables must be enclosed in double quotes and each separated
by a space. Wild-card searching is also permitted using the asterisk (*) character to match one or
more characters or the '? character to match exactly one character. For example:

Note: excluding tables not only prevent entities from being created but associations are also not
created in other entities. Thisis done to prevent compile errors in the source code.

roo> dat abase reverse engi neer --schema order --package ~.domain --includeTables "fook

Thiswill reverse engineer al tables who table whose name starts with 'foo’ and any table called
bar with one extra character, such as'barl' or 'bars.

* You can also reverse engineer more than one schema by specifying a doubled-quoted space-
separated list of schemas. Reverse engineering of foreign-key releationships between tables in
different schemas is supported. For example:

roo> dat abase reverse engi neer --schema "schemal schema2 schema3" --package ~.domain

Thiswill reverse engineer al tables from schemas "schemal”, "schema2", and "schema3".

9.4. The @RooDbManaged annotation

The @RooDbManaged annotation is added to all new entities created by executing the database
reverse engineer command. Other Roo annotations, @RooJpaA ctiveRecord, @RooJavaBean, and
@RooToString are also added to the entity class. The attribute "automaticallyDelete” is added to the
@RooDbManaged annotation and is set to "true" so that Roo can delete the entity if the associated

1.2.5.RELEASE 68

bar ?"

bar ?"

Incremental Database Reverse Engineering (DBRE) Add-On

table has been dropped. However, if "automaticallyDelete" is set to "false”, or if any annotations,
fields, constructors, or methods have been added to the entity (i.ein the .javafile), or if any of the Roo
annotations are removed, the entity will not be deleted.

The presence of the @RooDbmanaged annotation on an entity classtriggersthe creation of an AspectJ
inter-type declaration (ITD) ".g" file where fields and their getters and setters are stored matching
the columns in the table. For example, if an entity called Employeejava is created by the database
reverse engineer command, afile called Employee Roo_DbManaged.gj isalso created and maintained
by Roo. All the columns of the matching employee table will cause fieldsto be created in the entity's
DbManaged ITD. An example of a DBRE-created entity is as follows:

@RooJavaBean

@RooToSt ring

@RooDbManaged(aut onati cal | yDel ete = true)

@RooJpaActi veRecord(tabl e = "enpl oyee", schema = "expenses")

public class Enpl oyee {
}

Along with the standard entity, toString, configurable ITDs, aDbManaged I TD is created if there are
more columns in the employee table apart from a primary key column. For example, if the employee
table has mandatory employee name and employee number columns, and a nullable age column the
ITD could look like this:

privil eged aspect Enpl oyee_Roo_DbManaged {

@Col um(nanme = "enpl oyee_nunber")
@\ot Nul |
private String Enpl oyee. enpl oyeeNunber ;

public String Enpl oyee. get Enpl oyeeNunber () {
return this.enpl oyeeNunber;

}

public void Enpl oyee. set Enpl oyeeNunber (Stri ng enpl oyeeNunber) {
t hi s. enpl oyeeNunber = enpl oyeeNunber ;
}

@ol um(nane = "enpl oyee_nane", length = "100")
@\ot Nul |
private String Enpl oyee. enpl oyeeNane;

public String Enpl oyee. get Enpl oyeeNane() {
return this.enpl oyeeNaneg;

}

public void Enpl oyee. set Enpl oyeeNane(String enpl oyeeNane) {
t hi s. enpl oyeeNane = enpl oyeeNane;
}

@Col um(name = "age")
private |nteger Enployee. age;

public Integer Enployee.getAge() {
return this.age;

}

public void Enpl oyee. set Age(l nteger age) {
this. age = age;

}

1.2.5.RELEASE 69

Incremental Database Reverse Engineering (DBRE) Add-On

If you do not want DBRE to manage your entity any more, you can "push-in" refactor the fields and
methods in the DbManaged I TD and remove the @RooDbManaged annotation from the .javafile.

9.5. Supported JPA 2.0 features

DBRE will produce and maintain primary key fields, including composite keys, entity relationships
such as many-val ued and single-val ued associations, and other fields annotated with the JPA @Column
annotation.

The following sections describe the features currently supported.
9.5.1. Simple primary keys

For atablewith asingle primary key column, DBRE causes anidentifier field to be created in the entity
ITD annotated with @Id and @Column. Thisis similar to executing the entity jpa command by itself.

9.5.2. Composite primary keys

For tables with two or more primary key columns, DBRE will create a primary key class annotated
with @Rool dentifier(dbManaged = true) and add the "identifier Type" attribute with theidentifier class
name to the @RooJpaActiveRecord annotation in the entity class. For example, a line_item table
has two primary keys, line_item _id and order_id. DBRE will create the Lineltem entity class and
LineltemPK identifier class asfollows:

@RooJavaBean

@RooToSt ri ng

@RooDbManaged(aut onati cal | yDel ete = true)

@RooJpaActi veRecord(identifierType = LineltenPK class, table = "line_itenl, schema = "order"

public class Lineltem {

}

@Rool dent i fi er (dbManaged = true)
public class LineltenPK {

}

Roo will automatically create the JPA entity ITD containing a field annotated with @Embeddedid
with type LineltemPK asfollows:

privileged aspect Lineltem Roo_JpaEntity {
declare @ype: Lineltem @ntity;
declare @ype: Lineltem @able(name = "line_iten, schema = "order");

@ nbedded| d
private LineltenPK Lineltemid;

public LineltenPK Lineltemgetld() {
return this.id;

}

public void Lineltemsetld(LineltenPK id) {
this.id = id;
}

1.2.5.RELEASE 70

Incremental Database Reverse Engineering (DBRE) Add-On

and an identifier ITD for the LineltemPK class containing the primary key fields and the type
annotation for @Embeddable, as follows:

privil eged aspect LineltenPK Roo |dentifier {
decl are @ype: LineltenPK: @tnbeddabl e;

@ol um(nane = "line_itemid", nullable = false)
private BigDecimal LineltenPK |ineltem d;

@ol um(nanme = "order_id", nullable = fal se)
private BigDeci mal LineltenPK orderld;

public LineltenPK new(Bi gDeci mal |ineltemd, BigDecimal orderld) {
super ();
this.lineltemd = lineltenmd;
this.orderld = orderld;

}
private LineltenPK new() {

super ();

}

}

If you decide that your table does not require a composite primary key anymore, the next time you
execute the database reverse engineer command, Roo will automatically change the entity to use a
single primary key and remove the identifier classif it is permitted.

9.5.3. Entity relationships

One of the powerful features of DBRE is its ability to create relationships between entities
automatically based on the foreign key information in the dbre.xml file. The following sections
describe the associations that can be created.

9.5.3.1. Many-valued associations with many-to-many multiplicity

Many-to-many associationsare created if ajoin tableis detected by DBRE. To beidentified asamany-
to-many join table, the table must have exactly two primary keys and have exactly two foreign-keys
pointing to other entity tables and have no other columns.

For exampl e, the database contains a product table and asupplier table. The database has been model led
such that aproduct can have many suppliers and a supplier can have many products. A join table called
product_supplier also exists and links the two tables together by having acomposite primary key made
up of the product id and supplier id and foreign keys pointing to each of the primary keys of the product
and supplier tables. DBRE will create abi-directional many-to-many association. DBRE will designate
which entities are the owning and inverse sides of the association respectively and annotate the fields
accordingly as shown in the following code snippets.

privil eged aspect Product_ Roo_DbManaged {

@anyToMany
@oi nTabl e(nanme = "product _supplier"”,
j oi nCol ums = {
@oi nCol um(nane = "prod_id") },
i nver seJoi nCol ums = {
@oi nCol uim(name = "supp_id") })
private Set<Supplier> Product.suppliers;

1.2.5.RELEASE 71

Incremental Database Reverse Engineering (DBRE) Add-On

privil eged aspect Supplier_Roo_DbManaged {

@anyToMany(mappedBy = "suppliers")
private Set<Product> Supplier. products;

DBRE will also create many-to-many associations where the two tables each have composite primary
keys. For example:

privileged aspect Foo_Roo_DbManaged {

@manyToMany
@oi nTabl e(nane = "foo_bar",
j oi nCol ums = {
@oi nCol um(name = "foo_bar_idl", referencedCol umNanme = "foo_idl"),

@oi nCol um(nane "foo_bar_id2", referencedCol umNane = "foo_id2") },

i nver seJoi nCol utms =
@oi nCol utm(name "foo_bar_idl", referencedCol umNanme = "bar_idl"),
@oi nCol um(nane = "foo_bar_id2", referencedCol umNane = "bar_id2") })

private Set<Bar> Foo. bars;

I = 1

9.5.3.2. Single-valued associations to other entities that have one-to-one multiplicity

If the foreign key column represents the entire primary key (or the entire index) then the relationship
between the tables will be one to one and a bi-directional one-to-one association is created.

For example, the database contains a customer table and an address table and a customer can only have
one address. The following code snippets show the one-to-one mappings:

privil eged aspect Address_Roo_DbManaged {
@neToOne

@oi nCol um(name = "address_i d")
private Party Address. customer;

privil eged aspect Custoner_Roo_DbManaged {

@neToOne(mappedBy = "custoner")
private Address Party. address;

9.5.3.3. Many-valued associations with one-to-many multiplicity

If the foreign key column is part of the primary key (or part of an index) then the relationship between
the tables will be one to many. An exampleis shown below:

privil eged aspect Order_Roo_DbManaged {

@neToMany(meppedBy = "order")

1.2.5.RELEASE 72

Incremental Database Reverse Engineering (DBRE) Add-On

private Set<Lineltem> Oder.lineltens;

}

9.5.3.4. Single-valued associations to other entities that have many-to-one multiplicity

When a one-to-many association is created, for example a set of Lineltem entities in the Order entity
inthe example above, DBRE will also create a corresponding many-to-one association in the Lineltem
entity, asfollows:

privil eged aspect Lineltem Roo_DbManaged {
@manyToOne

@oi nCol um(name = "order_id", referencedCol umNanme = "order_id")
private Order Lineltem order;

}

9.5.3.5. Multiple associations in the same entity

DBRE will ensure field names are not duplicated. For example, if an entity has more than one
association to another entity, the field names will be created with unique names. The following code
snippet illustrates this:

privil eged aspect Foo_Roo_DbManaged {

@manyToMany
@oi nTabl e(name = "foo_bar",
j oi nCol ums = {

@oi nCol um(name = "“foo_bar _idl", referencedCol umNane = “foo_idl"),
@oi nCol um(name = "foo_bar_id2", referencedCol umNanme = "foo_id2") },
i nverseJoi nCol ums = {
@oi nCol um(name = "“foo_bar _idl", referencedCol umNane = "bar_idl"),
@oi nCol um(name = "foo_bar_id2", referencedCol umNanme = "bar_id2") })
private Set<Bar> Foo. bars;
@anyToMany
@oi nTabl e(name = "foo_coni,
j oi nCol ums = {
@oi nCol um(name = "foo_com.idl", referencedCol umNane = "foo_idl"),
@oi nCol um(nanme = "foo_com.id2", referencedCol umName = "foo_id2") },
i nver seJoi nCol ums = {
@oi nCol um(name = "foo_com.idl", referencedCol umNane = "bar_idl"),
@oi nCol um(nanme = "foo_com.id2", referencedCol umNanme = "bar_id2") })

private Set<Bar> Foo. barsi1;

9.5.4. Other fields

DBRE will detect column types from the database metadata and create and maintain fields and
field annotations appropriately. Strings, dates, booleans, numeric fields, CLOBs and BLOBs are all
supported by DBRE, as well asthe JSR 303 @NotNull validation constraint.

9.5.5. Existing fields

Roo checksthe .javafilefor afield beforeit createsitinthe ITD. If you code afield in the entity's .java
file, Roo will not create the field in the DbManaged ITD if detected in the database metadata. For

1.2.5.RELEASE 73

Incremental Database Reverse Engineering (DBRE) Add-On

example, if your table has a column called 'name’ and you have added afield called 'name' to the .java
file, Roo will not create thisfield in the ITD when reverse engineered.

Roo aso ensures the entity's identity field is unique. For exampleif the @Id field iscalled 'id' but you
also add a field with the same name to the .java file, DBRE will automatically rename the @Id field
by prefixing it with an underscore character.

9.6. Troubleshooting

This section explains scenarios that may be encountered when using the DBRE feature.

¢ Executingthedatabaseintrospect or databaserever seengineer commands causesthe message
'JDBC driver not available for oracle.jdbc.OracleDriver' to be displayed

This is due to the Oracle JDBC driver not having been installed. The driver must be installed if
you have installed Roo for the first time. See Section 9.2, “Installation”. This aso applies to other
databases, for example, HSQL and H2.

» Executing the database introspect or database reverse engineer commands with the
Firebird database configured causes the message 'Exception in thread "JLine Shell"
java.lang.NoClassDefFoundError: javax/resour ce/Resour ceException’ to be displayed

Thisisdueto the javax.resource connector jar not installed. Remove the cache directory under your
Roo ingtallation directory, start the Roo shell, and run the command:

osgi start --url
http://spring-roo-repository.springsource.org/rel ease/ org/ spri ngframewor k/ r oo/ wrappi ng/ org. ¢

Re-install the Firebird driver. See Section 9.2, “Installation”.

* Theerror message' Caused by: org.hiber nate.Hiber nateException: Missing sequenceor table:
hibernate_sequence' appearswhen starting Tomcat

When the database reverse engineer command is first run, the property determining whether tables
are created and dropped which is defined in the persistence.xml file is modified to a value that
prevents new database artifacts from being created. Thisis done to avoid deleting the data in your
tables when unit tests are run or aweb application is started. For example, if you use Hibernate as
your JPA 2.0 provider the property is called 'hibernate.nbm2ddl.auto’ and isinitially set to 'create
when the project is first created. This value causes Hibernate to create tables and sequences and
allows you to run unit tests and start a web application. However, the property's value is changed
to 'validate' when the database reverse engineer command is executed. Other JPA providers such
as EclipseLink and OpenJPA have a similar property which are also changed when the command
is run. If you see this issue when running unit tests or when starting your web application after
reverse engineering, you may need to change the property back to 'create’ or 'update’. Check your
persistence.xml for the property values for other JPA providers.

« The message 'Unable to maintain database-managed entity <entity name> because its
associated table name could not be found' appears in the Roo console during reverse
engineering

When DBRE first creates an entity it puts in the table name in the 'table’ attribute of the
@RooJpaA ctiveRecord annotation. Thisisthe only mechanism DBRE has for associating an entity

1.2.5.RELEASE 74

Incremental Database Reverse Engineering (DBRE) Add-On

with atable. If you remove the 'tabl€' attribute, DBRE has no way of determining what the entity's
corresponding table is and as aresult cannot maintain the entity's fields and associations.

1.2.5.RELEASE 75

Chapter 10. Application Layering

Java enterprise applications can take many shapes and forms depending on their requirements.
Depending on these requirements, you need to decide which layers your application needs. Many
applications won't benefit from additional complexity and maintenance cost of service or repository
layers unless there is a need. With version 1.2.0 Spring Roo offers support for specific application

layering tailored to the needs of the application. This section provides an overview of Roo's support
for service and repository layers.

Note: This section provides an overview of the application layering options Spring Roo offers
since the 1.2.0.M 1 release. It does not discuss the merits of different approaches to architecting
enterprise applications.

10.1. The Big Picture

With the Roo 1.2.0 release internal s have been changed to allow theintegration of multiple application
layers. This is particularly useful for the support of different persistence mechanisms. In previous
releases the only persistence supported in Roo core was the JPA Entity Active Record pattern. With

the internal changes in place Roo can now support alternative persistence providers which support
application layering.

Consumer Layar

Consumer
[2.g. MVWC, GWT, Integration
I asis, Hemabng ..}

Y

JEA Achve JEA, Mongolx JER Ackivip JER Mongole
Record Raposlany Repository Racord Repository Repositony

While there are a number of new layering and persistence choices available, by default Roo will
continueto support the JPA Active Record Entity by default (marked orange). However, you can easily
change existing applications by adding further service or repository layers (details below). If you add
new layers Roo will automatically changeits I TDsin the consumer layer or service layer respectively.
For exampleit will automatically inject and call anew servicelayer within an existing MV C controller,
Integration test or data on demand for a given domain type.

10.2. Persistence Layers

There are now three options available in Roo core to support data persistence, JPA Entities (Active
Record style), JPA Repositories and MongoDB Repositories.

1.2.5.RELEASE 76

Application Layering

10.2.1. JPA Entities (Active Record style)

Active record-style JPA Entities have been the default since the first release of Spring Roo and will
remain so. In order to configure your project for JPA persistence, you can run the jpa setup command:

roo> jpa setup --provider H BERNATE --dat abase HYPERSONI C_PERS| STENT

This configures your project to use the Hibername object relational mapper along with a in-memory
database (HSQLDB). Further details about this persistence option can be found here.

Activerecord-style JPA entities supported by Roo need to have a @R ooJpaA ctiveRecor d annotation
whichtakes careof providing an 1D field along with itsaccessor and mutator, I n addition thisannotation
creates the typical CRUD methods to support data access.

roo> entity jpa --class ~.domain.Pizza

This command will create a Pizza domain type along with active record-style methods to persist,
update, read and delete your entity. The following example also contains a number of fieldswhich can
be added through the field command via the Roo shell.

@RooJavaBean
@RooToSt ri ng
@RooJpaActi veRecord
public class Pizza {

@\ot Nul |
@i ze(mn = 2)
private String nane;

private BigDeci mal price;

@/mnyToMany(cascade = CascadeType. ALL)
private Set<Toppi ng> toppi ngs = new HashSet <Toppi ng>() ;

@manyToOne
private Base base;

}

Further detail s about command options and functionalities provided by active record-style JPA Entities
please refer to the Persistence Add-on chapter.

10.2.2. JPA Repository

Developers who require arepository / DAO layer instead of the default Roo entity-based persistence
approach can do so by creating a Spring Data JPA backed repository for a given JPA domain type.
The domain type backing the repository needs have a JPA @Entity annotation and also a ID field
defined along with accessors and mutators. After configuring your project for JPA persistence viathe
jpa setup command, this functionality is automatically provided by annotating the domain type with
Roo's @RooJpaEntity annotation.

roo> entity jpa --class ~.domain.Pizza --activeRecord fal se

By defining --activeRecord false you can opt out of the otherwise default Active Record style. The
following example also contains a number of fields which can be added through the field command
viathe Roo shell.

@RooJavaBean
@RooToSt ring

1.2.5.RELEASE 77

http://projects.spring.io/spring-data-jpa/

Application Layering

@RooJpaEntity
public class Pizza {

@ot Nul |
@i ze(mn = 2)
private String nane;

private BigDecimal price;

@manyToMany(cascade = CascadeType. ALL)
private Set<Toppi ng> toppi ngs = new HashSet <Toppi ng>() ;

@manyToOne
private Base base;

}

With adomain type in place you can now create anew repository for this type by using the repository
jpa command:

roo> repository jpa --interface ~.repository. PizzaRepository --entity ~.domain.Pizza

Thiswill create asimple interface definition which leverages Spring Data JPA:

@RooJpaReposi t ory(donmai nType = Pi zza. cl ass)
public interface PizzaRepository {

}

Of course, you can simply add the @RooJpaRepository annotation on any interface by hand in lieu
of issuing the repository jpa command in the Roo shell.

The adition of the @RooJpaRepository annotation will trigger the creation of afairly trivial Aspect]
ITD which adds an extends statement to the PizzaRepository interface resulting in the equivalent of
thisinterface definition:

public interface PizzaRepository extends JpaRepository<Pizza, Long> {}

Note, the JpaRepository interface is part of the Spring Data JPA APl and provides al CRUD
functionality out of the box.

10.2.3. MongoDB Persistence

As an alternative to JPA persistence, Spring Roo offers MongoDB support by leveraging the Spring
Data MongoDB project.

10.2.3.1. Setup

To configure a project for MongoDB persistence you can use the mongo setup command:

roo> nongo setup

This will configure your Spring Application context to use a MongoDB installation running on
localhost and the default port. Optional command attributes alow you to define host, port, database
name, username and password. Furthermore, to configure your application for deployment on VMware
CloudFoundry you can use the --cloudFoundry attribute.

10.2.3.2. Entities

Once the application is configured for MongoDB support, the entity mongo and repository mongo
commands become available:

1.2.5.RELEASE 78

http://docs.spring.io/spring-data/data-jpa/docs/current/api/org/springframework/data/jpa/repository/JpaRepository.html
http://projects.spring.io/spring-data-jpa/
http://www.mongodb.org/
http://projects.spring.io/spring-data-mongodb/
http://projects.spring.io/spring-data-mongodb/
http://cloudfoundry.com/
http://cloudfoundry.com/

Application Layering

roo> entity nongo --class ~.dommin.Pizza

This command will create a Pizza domain type annotated with @R0ooM ongoEntity. This annotation
isresponsibe for triggering the creation of an I'TD which provides a Spring Data I D annotated field as
well as its accessor and mutator. The following example also contains a number of fields which can
be added through the field command viathe Roo shell.

@RooJavaBean
@RooToSt ring
@RooMongoENtity
public class Pizza {

@\ot Nul |
@i ze(mn = 2)
private String nane;

private BigDeci mal price;

@mnyToMany(cascade = CascadeType. ALL)
private Set<Toppi ng> toppi ngs = new HashSet <Toppi ng>() ;

@mnyToOne
private Base base;

10.2.3.3. Repository

With adomain type in place you can now create a new repository for thistype by using the repository
mongo command (or by applying the @RooM ongoRepository annotation to an arbitrary interface:

roo> repository nongo --interface ~.repository.PizzaRepository --entity ~.domain.Pizza

Thiswill create asimple interface definition which leverages Spring Data MongoDB:

@RooMongoReposi t or y(donai nType = Pi zza. cl ass)
public interface PizzaRepository {

Li st<Pizza> findAl();
}

Similar the Spring Data JPA driven repository seen above, thisinterface is augmented through an ITD
which introduces the PagingAndSortingRepository provided by the Spring Data APl andisresponsible
for providing all necessary CRUD functionality. In addition this interface defines a 'custom' finder
which isnot offered by the PagingAndSortingRepository implementation: List<Pizza> findAll();. This
method iis required by Spring Roo's Ul scaffolding and is automatically implemented by the query
builder mechanism offered by Spring Data MongoDB.

10.2.3.4. Example & Cloud Foundry Deployment

Similar to applicationswhich use JPA persistence (seethisblog for details on using JPA with Postgres)
MongoDB applications can be easily deployed to VMware CloudFoundry. The following script
provides an example of the Pizza Shop sample application which has been adjusted for use with a
MongoDB-backed repository layer:

/'l Create a new project.
proj ect com springsource. pi zzashop

1.2.5.RELEASE 79

http://projects.spring.io/spring-data-mongodb/
http://docs.spring.io/spring-data/data-commons/docs/1.1.0.RELEASE/api/org/springframework/data/repository/PagingAndSortingRepository.html
http://docs.spring.io/spring-data/data-commons/docs/1.1.0.RELEASE/api/org/springframework/data/repository/PagingAndSortingRepository.html
http://docs.spring.io/spring-data/data-document/docs/1.0.0.M4/reference/html/#repositories.definition-tuning
http://docs.spring.io/spring-data/data-document/docs/1.0.0.M4/reference/html/#repositories.definition-tuning
http://blog.springsource.com/2011/08/30/using-postgres-on-cloud-foundry/
http://cloudfoundry.com/

Application Layering

/'l Create configuration for MongoDB peri stence
nongo setup --cl oudFoundry true

/1 Define domai n nodel
entity nongo --class ~.domai n. Base --testAutomatically

field string --fieldName nanme --sizeMn 2 --notNull --class ~.donain. Base
entity nongo --class ~.domain. Topping --testAutonatically

field string --fieldName nane --sizeMn 2 --notNull --class ~.domain. Toppi ng
entity nongo --class ~. domain.Pizza --testAutomatically

field string --fieldName name --notNull --sizeMn 2 --class ~. domain.Pizza

field nunber --fieldName price --type java.lang. Fl oat

field set --fiel dName toppings --type ~.donain. Toppi ng

field reference --fiel dNanme base --type ~.donmin. Base

entity nongo --class ~.domain.PizzaOrder --testAutomatically

field string --fieldName name --notNull --sizeMn 2 --class ~.domain.PizzaO der
field string --fiel dName address --sizeMax 30

field nunber --fieldName total --type java.lang. Fl oat

field date --fiel dName deliveryDate --type java.util.Date

field set --fieldNanme pizzas --type ~.domain. Pi zza

/1 Add | ayer support.

repository nongo --interface ~.repository. Toppi ngRepository --entity ~.donai n. Toppi ng
repository nongo --interface ~.repository. BaseRepository --entity ~. donmin. Base

repository nongo --interface ~.repository.PizzaRepository --entity ~.domain. Pizza
repository nongo --interface ~.repository.PizzaOrderRepository --entity ~.donmain. PizzaOr de
service type --interface ~.service. Toppi ngService --entity ~.domai n. Toppi ng

service type --interface ~. service.BaseService --entity ~. domin. Base

service type --interface ~.service.PizzaService --entity ~.domain. Pi zza

service type --interface ~.service.PizzaOrderService --entity ~.domai n. Pi zzaOr der

/] Create a Wb U .
web nmvc setup
web mvc all --package ~.web

/| Package the application into a war file.
per f orm package

/] Deploy and start the application in C oudFoundry
cloud foundry | ogin
cloud foundry depl oy --appNanme roo-pizzashop --path /target/pi zzashop-0. 1. 0. BU LD- SNAPSHOT| war - - menor
cloud foundry create service --serviceNanme pi zzashop-nmongo --servi ceType nongodb
cloud foundry bind service --serviceNane pi zzashop- nongo --appNane roo- pi zzashop
cloud foundry start app --appNane roo-pi zzashop

10.3. Service Layer

Developers can also choose to create a service layer in their application. By default, Roo will create a
serviceinterface (and implementation) for one or moredomain entities. If apersistence-providing layer
such as Roo's default entity layer or arepository layer is present for agiven domain entity, the service
layer will expose the CRUD functionality provided by this persistence layer through its interface and
implementation.

As per Roo's conventions al functionality will be introduced via Aspect] ITDs therefore providing
the devel oper a clean canvas for implementing custom business logic which does not naturally fit into
domain entities. Other common use casesfor servicelayersare security or integration of remoting such
as Web Services. For amore detailed discussion please refer to the architecture chapter.

The integration of a services layer into a Roo project is similar to the repository layer by using the
@Ro0Service annotation directly or the service command in the Roo shell:

roo> service --interface ~.service.PizzaService --entity ~. domain. Pizza

1.2.5.RELEASE 80

Application Layering

This command will create the PizzaService interface in the defined package and additionally a
PizzaServicelmpl in the same package (the name and package of the PizzaServicelmpl can be

customized via the optional --class attribute).

@RooSer vi ce(domai nTypes = { Pizza.class })
public interface PizzaService {

}

Following Roo conventions the default CRUD method definitions can be found in the ITD:

voi d savePi zza(Pi zza pizza);

Pi zza findPizza(Long id);

Li st <Pi zza> findAl | Pi zzas();

Li st <Pi zza> findPi zzaEntries(int firstResult, int nmaxResults);
| ong count Al'l Pi zzas();

Pi zza updat ePi zza(pi zza pi zza);

voi d del et ePi zza(Pi zza pi zza);

Similarly, the PizzaServicelmpl is rather empty:

public class PizzaServicel npl inplenents PizzaService {

}

Through the Aspect ITD the PizzaServicelmpl type is annotated with the @Service and
@Transactional annotations by default. Furthermore the ITD will introduce the following methods

and fields into the target type:

@\ut owi red Pi zzaRepository pizzaRepository;

public void savePi zza(Pi zza pizza) {
pi zzaReposi tory. save(pi zza);

}

public Pizza findPizza(Long id) {
return pi zzaRepository.findOne(id);
}

public List<Pizza> findAllPizzas() {
return pi zzaRepository.findAll();
}

public List<Pizza> findPizzaEntries(int firstResult, int maxResults) {
return pizzaRepository.findAl | (new PageRequest (firstResult / nmaxResults,
}

public long countAllPizzas() {
return pi zzaRepository.count();

}

public Pizza updatePi zza(Pi zza pi zza) {
return pi zzaRepository. save(pizza);

}

public void del etePi zza(Pi zza pi zza) {
pi zzaReposi tory. del et e(pi zza);
}

maxResul t s)) . get Cont ent ()

As you can see, Roo will detect if a persistence provider layer exists for a given domain type and
automatically inject this component in order to delegate all service layer callsto thislayer. In case no
persistence (or other 'lower level' layer exists, the service layer ITD will simply provide method stubs.

1.2.5.RELEASE

81

Chapter 11. Web MVC Add-On

CSS considerations: The Web Ul has been tested successfully with FireFox, Opera, Safari,
Chrome, and |E. Given that IE6 is not supported any more by most players in the market, it has
a number of severe technical limitations and it has a fast declining user base Spring Roo does
not support IE6. Y our mileage may vary - there will likely be issues with CSS support.

TheWeb MV C add-ons allow you to conveniently scaffold Spring MV C controllers and JSP(X) views
for an existing domain model. Currently this domain model is derived from the Roo supported JPA
integration through the entity jpa and related field commands. As shown in the Introduction and the
Beginning With Roo: The Tutorial the Web MV C scaffolding can deliver a fully functional Web
frontend to your domain model. The following features are included:

e Automatic update of JSPX view artifacts reflecting changes in the domain model

« A fully customizable set JSP of tagsis provided, all tags are XML only (no tag-backing Java source
code is required)

» Tags offer integration with the Dojo Ajax toolkit for client-side validation, date pickers, tool tips,
filtering selects etc

e Automatic URL rewriting to provide best-practice RESTful URIs

* Integration of Apache Tiles templating framework to allow for structural customization of the Web
user interface

» Use of cascading stylesheetsto allow for visual customization of the Web user interface
» Use of Spring MV C themeing support to dynamically adjust Web user interface by changing CSS

 Internationalization of complete Web Ul is supported by simply adding new message bundles (6+
languages are already suppprted)

e Pagination integration for large datasets
* Client- and server-side validation based on JSR 303 constraints defined in the domain layer
« Generated controllers offer best-practice use of Spring framework MV C support

The following sections will offer further details about available commands to generate Web MVC
artifacts and also the new JSP(X) round-tripping model introduced in Roo 1.1.

11.1. Controller commands
The Web MV C addon offers a number of commands to generate and maintain various Web artifacts:

1. - Person roo> web nvc set up

The first time the web mvc setup command is executed Roo will install al artifacts required for
the Web UI.

1.2.5.RELEASE 82

http://en.wikipedia.org/wiki/Internet_Explorer_6#Criticism
http://www.dojotoolkit.org/
http://tiles.apache.org/

Web MVC Add-On

2.

~. Person roo> web nmvc scaffold --class com foo.web. PersonControl | er

Method Signature

public String create(@Valid Person person,
BindingResult result, ModelMap modelMap) { ..}

The controller scaffold command will create a Spring MV C controller for the Person entity with
the following method signatures:

Comment

The create method is triggered by HTTP POS
reguests to /<app-name>/people. The submitted fort
datawill be converted to a Person object and validate
against JSR 303 constraints (if present). Response |
redirected to the show method.

public String createFor m(ModelMap modelMap) { ..}

public String show(@PathVariable("id") Long id,
ModelMap modelMap) { ..}

The create form method is triggered by aHTTP GE
request to /<app-name>/people?orm. The resultin
form will be prepopulated with a new instance «
Person, referenced Cars and datepatterns (if needed
Returnsthe Tiles view name.

The show method istriggered by aHTTP GET reque
to /<app-name>/people/<id>. The resulting form |
populated with a Person instance identifier by the i
parameter. Returns the Tiles view name.

public String list(@RequestParam(value = "page”,
required = false) Integer page, @RequestParam(value
= "size", required = fase) Integer size, ModelMap
modelMap) {..}

public String update(@Vaid Person person,
BindingResult result, ModelMap modelMap) {..}

The list method is triggered by a HTTP GET regue
to /<app-name>/people. This method has option:
parameters for pagination (page, size). Returns tt
Tiles view name.

The update method is triggered by a HTTP PU
request to /<app-name/people. The submitted fort
datawill be converted to a Person object and validate
against JSR 303 constraints (if present). Response |
redirected to the show method.

public String updateFor m(@PathVariable("id") Long
id, ModelMap modelMap) {

public String delete(@PathVariable("id") Long id,
@RequestParam(value = "page’, required = false)
Integer page, @RequestParam(value="size", required
= false) Integer size) {..}

The update form method is triggered by a HTT
GET request to /<app-name>/people/<id>?form. T
resulting form will be prepopulated with a Persc
instanceidentified by theid parameter, referenced Ca
and datepatterns (if needed). Returns the Tiles vie
name.

The delete method is triggered by a HTTP DELET
request to /<app-name>/people/<id>. This methc
has optional parameters for pagination (page, size
Response is redirected to the list method.

public Collection<Car> populateCars() { ..}

This method prepopulates the 'car' attribute. Th
method can be adjusted to handle larger collectionsi
different ways (pagination, caching, etc).

1.2.5.RELEASE

83

Web MVC Add-On

Method Signature Comment

void addDateTimeFor matPatterns(ModelMap Method to register date and time patterns used for dal
modelMap) {..} and time binding for form submissions.

Asyou can see Roo implements a number of methods to offer a RESTful MV C frontend to your
domain layer. All of these methods can be found in the PersonController_Roo_Controller.g 1TD.
Feel freeto push-in any (or all) of these methodsto change default behaviour implemented by Roo.

The web mvc scaffold command offers a number of optional attributes which let you refine
the way paths are managed and which methods should be generated in the controller. The --
disallowedOper ations attribute helps you refine which methods should not be generated in the
scaffolded Roo controller. If you want to prevent several methods from being generated provide
a comma-separated list (i.e.; --disallowedOperations delete,update,create). You can also specify
which methods should be generated and which not in the PersonController.java source:

@RooWebScaf fol d(path = "peopl e", fornmBacki nglbject = Person.class, create = fal se,
update = fal se, delete = fal se)

@Request Mappi ng("/ peopl e")

@Controller

public class PersonController {}

If you don't define a custom path Roo will use the plural representation of the simple name of the
form backing entity (in our case 'peopl€). If you wish you can define more complex custom paths
like /public/people or /my/specia/person/uri (try to to stick to REST patternsif you can though). A
good use case for creating controllers which map to custom pathsis security. Y ou can, for example
create two controllers for the Person entity. One with the default path (/people) for public access
(possibly with delete, and update functionality disabled) and one for admin access (fadmin/people).
Thisway you can easily secure the /admin/* path with the Spring Security addon.

roo> web nvc all --package ~.web

The web mvc all command provides a convenient way to quickly generate Web MV C controllers
for all JPA entities Roo can find in your project. You need to specify the --package attribute to
define a package where these controllers should be generated. While the web mvc all command
is convenient, it does not give you the same level of control compared to the web mvc scaffold
command.

roo> web nmvc controller --class comfoo.web. CarController --preferredMappi ng /public/car
Creat ed SRC_MAI N_JAVA/ coni f oo/ web/ Car Control |l er.java

Creat ed SRC_MAI N_VEBAPP/ VIEB- | NF/ vi ews/ publ i c/ car

Creat ed SRC_MAI N_VEBAPP/ VIEB- | NF/ vi ews/ publ i c/ car/ i ndex. j spx

Managed SRC_MAI N WEBAPP/ WEB- | NF/ i 18n/ appl i cati on. properties

Managed SRC_MAI N WEBAPP/ VEEB- | NF/ vi ews/ nenu. j spx

Creat ed SRC_MAI N_VEBAPP/ VIEB- | NF/ vi ews/ publ i c/ car/ vi ews. xm

The web mvc controller command is different from the other two controller commands shown
above. It does not generate an I TD with update, create, delete and other methods to integrate with a
specific form backing entity. Instead, this command will create a simple controller to help you get
started for developing a custom functionality by stubbing asimple get(), post() and index() method
inside the controller:

@Request Mappi ng("/ public/car/**") ‘

1.2.5.RELEASE 84

Web MVC Add-On

@ontrol | er
public class CarController {

@Request Mappi ng
public void get(Mdel Map nodel Map, HttpServl et Request request,
Ht t pSer vl et Response response) {

}

@Request Mappi ng(net hod = Request Met hod. POST, value = "{id}")
public void post(@PathVariable Long id, Mdel Map nodel Map, HttpServl et Request reques
Ht t pSer vl et Response response) {

—

}

@Request Mappi ng
public String index() {
return "public/car/index";

}

In addition, this controller isregistered in the Web MV C menu and the application Tiles definition.
Furthermore, asimple view (under WEB-INF/views/public/car/index.jspx).

5. roo> web mvc finder add --class ~. web. PersonController --fornBacki ngType ~. donmi n. Perso+

Theweb mvc finder add command used from the Roo shell will introdroduce the @RooW ebFinder
annotation into the specified target type.

6. roo> web nvc finder all

The web mvc finder al command used from the Roo shell will introdroduce the @RooW ebFinder
annotations to all existing controllers which have aform backing type that offers dynamic finders.

11.2. Application Conversion Service

Whenever acontroller iscreated for thefirst timein an application, Roo will alsoinstall an application-
wide ConversionService and configure it for use in webmvc-config.xml as follows:

<mvc: annot ati on-driven conversion-servi ce="applicati onConversi onServi ce"/ >

<bean i d="appl i cati onConver si onServi ce" cl ass="com spri ngsource. vot e. web. Appl i cati onConver si onSer vi ceF

Spring MV C uses the ConversionService when it needs to convert between two objects types -- e.g.
Date and String. To become more familiar with its features we recommend that you review the (brief)
sections on "Type Conversion” and "Field Formatting" in the Spring Framework documentation.

The ApplicationConversionServiceFactoryBean is a Roo-managed Java class and it looks like this:

@RooConver si onSer vi ce
public class ApplicationConversionServi ceFact oryBean extends FormattingConversi onServi ceFact oryBean {

@verride

protected void install Formatters(FormatterRegistry registry) {
super.install Formatters(registry);
/'l Register application converters and fornmatters

1.2.5.RELEASE 85

Web MVC Add-On

As the comment indicates you can use the instal|Formatters() method to register any Converters and
Formatters you wish to add. In addition to that Roo will automatically maintain an I TD with Converter
registrations for every associated entity that needs to be displayed somewherein aview. A typical use
case is where entities from a many-to-one association need to be displayed in one of the JSP views.
Rather than using the toString() method for that, a Converter defines the formatting logic for how to
present the associated entity as a String.

Note, a custom written or pushed in converter method needs to be registered
manualy via the installFormatters method which is aready present in your
ApplicationConversionServiceFactoryBean.java source code.

In some cases you may wish to customize how a specific entity is formatted as a String in JSP views.
For example suppose we have an entity called Vote. To customize how it isdisplayed in the JSP views
add amethod like this:

@RooConver si onSer vi ce
public class ApplicationConversionServi ceFact oryBean extends Formatti ngConversi onServi ceFact oryBean {

...

public Converter<Vote, String> getVoteConverter() {
return new Converter<Vote, String>() {
public String convert(Vote source) {
return new StringBuil der().append(
source. getlp()).append(" ").append(source.getRegistered()).toString

~

At this point Roo will notice that the addition of the method and will remove it from the ITD much
like overriding the toString() method in a Roo entity works.

Note, in some casesyou may create aform backing entity which does not contain any suitablefieldsfor
conversion. For example, the entity may only contain afield indicating arelationship to another entity
(i.e. type one-to-one or one-to-many). Since Roo does not use these fieldsfor itsgenerated convertersit
will simply omit the creation of aconverter for such form backing entities. In these casesyou may have
to provide your own custom converter to convert from your entity to a suitable String representation
in order to prevent potential converter exceptions.

11.3. JSP Views

As mentioned in the previous section, Roo copies a number of static artifacts into the target project
after issuing the controller command for the first time. These artifacts include Cascading Style Sheets,
images, Tileslayout definitions, JSP files, message property files, acompletetag library and aweb.xml
file. These artifacts are arranged in different folders which is best illustrated in the following picture:

1.2.5.RELEASE 86

http://tiles.apache.org/

Web MVC Add-On

¥ [webapp
» @l Images
> L styles
¥ @l WEB-INF
> [l classes
¥ il i138n
application.properties
messages_de.properties
messages_es.properties
messages_it.properties
messages_nl.properties
messages_sv.properties
® messages.properties
¥ B layouts
| default.jspx
® layouts.xml
¥ @l spring
® webmvc-config.xml
¥ il tags
¥ @ form
| create.tagx
» [fields
1 find.tagx

s w el ie e i e

: list.tagx
- page.tagx
show.tagx
update.tagx
* Ll menu
» B util
2 urlrewrite.xml
¥ Wl views
: controller-index.jspx
" dataAccessFailure.jspx
: index.jspx
' menu.jspx
> @l people
¥ B pubic
v - car
1 index.jspx
2 views.xml
| | resourceNotFound.jspx
" uncaughtException.jspx
) views.xml
web,xml

',

1.2.5.RELEASE

Web MVC Add-On

The i18n folder contains trandations of the Web Ul. The messages XX.properties files are static
resources (which will never be adjusted after the initial installation) which contain commonly used
literalswhich are part of the Web Ul. The application.propertiesfilewill be managed by Roo to contain
application-specific literals. New types or fields added to the domain layer will result in new key/
value combinations being added to thisfile. If you wish to translate the values generated by Roo in the
application.properties file, just create a copy of this file and rename it to application_XX.properties
(where XX represents your language abbreviation).

Roo uses XML compliant JSP files (JSPX) instead of the more common JSP format to allow round-
tripping of views based on changes in the domain layer of your project. Not all jspx filesin the target
project are managed by Roo after theinitial installation (although future addons may choose to do so).
Typically jspx filesin sub folders under WEB-INF/views are maintained in addition to the menu.jspx.

Here is an example of atypical roo managed jspx file (i.e.: WEB-INF/views/people/update.j spx):

<?xm version="1.0" encodi ng="UTF-8" standal one="no" ?>
<div xmns:field="urn:jsptagdir:/WEB-1NF/tags/formfields"
xm ns: form="urn:jsptagdir:/WEB-| NF/ tags/fornt
xm ns:jsp="http://java. sun. coml JSP/ Page" versi on="2.0">
<j sp:output omt-xm-declaration="yes"/>

<formupdate i d="fu_com foo_Person" nodel Attri bute="person" path="/peopl e"
z=" 3| X+*WWICQVBb70 vBOAvdghGRQ=" >
<fiel d:dateti me dateTi nePattern="${person_birthday_date_format}" field="birthDay"
i d="c_com foo_Person_birthDay" z="dXnEoWaz4r| 4CKDOm z+cl bSUP4="/ >
<field:select field="car" id="c_comfoo_Person_car" itenValue="id" items="${cars}"
pat h="/cars" z="z2LA3LVNKRO9O SnZur G EczHkc="/>
<field:select field="cars" id="c_comfoo_Person_cars" itenValue="id" itens="${cars}"
mul tipl e="true" path="/cars" z="cOrdAl SxzHsNvJPFf AnEEGz2LU4="/ >
</ f or m updat e>
</ di v>

Y ouwill noticethat thisfileisfairly concise compared to anormal jsp file. Thisisdueto the extensive
use of the tag library which Roo has installed in your project in the WEB-INF/tags folder. Each tag
offeres a number of attributes which can be used to customize the appearance / behaviour of the tag
- please use code completion in your favourite editor to review the options or take a peek into the
actual tags.

All tags are completely self-reliant to provide their functionality (there are no Java sources needed to
implement specific behaviour of any tag). This should makeit very easy to customize the behaviour of
the default tags without any required knowledge of traditional Java JSP tag development. Y ou arefree
to customize the contents of the Roo provided tag library to suit your own requirements. Y ou could
even offer your customized tag library as a new addon which other Roo users could instal to replace
the default Roo provided tag library.

Most tags have afew common attributes which adhere with Roo conventions to support round-tripping
of the jspx artifacts. The following rules should be considered if you wish to customize tags or jspx
filesin a Roo managed project:

« Theid attribute is used by Roo to find existing elements and also to determine message labels used
as part of the tag implementation. Changing a tag identifier will result in another element being
generated by Roo when the Roo shell is active.

* Roo provided tags are registered in the root element of the jspx document and are assigned a
namespace. Y ou should be able to see element and attribute code completion when using a modern
IDE (i.e. SpringSource Tool Suite)

1.2.5.RELEASE 88

Web MVC Add-On

« The z attribute represents a hash key for a given element (see a detailed discussion of the hash key
attribute in the paragraph below).

The hash key attribute is important for Roo because it helps determining if a user has atered a Roo
managed element. This is the secret to round-trip support for JSPX files, as you can edit anything at
any time yet Roo will be able to merge in changes to the JSPX successfully. The hash key shown in
the "z" attribute is calculated as shown in the following table:

Included in hash key calculation Not included in hash key calculation
Element name (name only, not namespace) Namespace of element name
Attribute names present in el ement White spaces used in the element
Attribute values present in the element Potential child elements

The z key and its value
Any attribute (and value) whose name startswith *_'

The order of the attributes does not contribute to the
value of ahash key

The hash code thus allows Roo to determine if the element is in its "origina" Roo form, or if the
user has modified it in some way. If auser changes an element, the hash code will not match and this
indicates to Roo that the user has customized that specific element. Once Roo has detected such an
event, Roo will changethe"z" attribute valueto "user-managed". This helps clarify to the user that Roo
has adopted a"hands of f" approach to that element and it'sentirely the user'sresponsibility to maintain.
If the user wishes for Roo to take responsibility for the management of a "user-managed” element
once again, he or she can simply change the value of "z" to "?'. When Roo sees this, it will replace
the questionmark character with a calculated hash code. This simple mechanism allows Roo to easily
round trip JSPX files without interfering with manual changes performed by the user. It represents a
significant enhancement from Roo 1.0 where afilewasentirely user managed or entirely Roo managed.

Roo will order fields used in formsin the same sequence they appear in the domain object. The user can
freely change the sequence of form elements without interfering with Roo's round tripping approach
(Roo will honour user chosen element sequences as long as it can detect individual elements by their
id).

The user can nest Roo managed elements in in any structure he wishes without interfering with Roo
jspx round tripping. For example elements can be enclosed by HTML div or span tags to change visual
or structural appearance of a page.

Most default tags installed by Roo have arender attribute which is of boolean type. This allows users
to completely disable the rendering of agiven tag (and potential sub tags). Thisisuseful in caseswhere
you don't wishindividual fieldsinaform to be presented to the user but rather have them autopopul ated
through other means (i.e. input type="hidden"). The value of the render attribute can also be calcul ated
dynamically through the Spring Expression L anguage (SpEL) or normal JSP expression language. The
generated create.jspx in Roo application demonstrates this.

Scaffolding of JPA referencerelationships

The Roo JSP addon will read JSR 303 (bean validation API) annotations found in a form-backing
object. Thefollowing convention is applied for the generation of create and update (and finder) forms:

1.2.5.RELEASE 89

Web MVC Add-On

Datatype/ JPA annotation Scaffolded HTML Element
String (sizeMax < 30; @Size) Input
String (sizeMax >=30, @Size) Textarea

Number (@Min, @Max, @DecimaMin & Input
@DecimaMax are recognized)

Boolean Checkbox

Date / Cdendar (@Future & @Past are recognized) Input (with JS Date chooser)
(Spring's @DateTimeFormat in combination with the
style or pattern attributes is recognized)

Enum / @Enumerated Select

@OneToOne Select

@ManyToMany Select (multi-select)

@ManyToOne Select

@OneToMany * Nothing: A message is displayed explaining that this

relationship is managed from the many-side

* As mentioned above, Roo does not scaffold a HTML form element for the ‘one' side of a
@OneToMany relationship. To make this relationship work, you need to provide a @ManyToOne
annotated field on the opposite side:

field set --fieldName students --type com foo. domai n. Person --cl ass com f oo. domai n. School +-cardinalit

field reference --fieldName school --type com foo. domain. School --class com foo.domain. Person --cardir

In case afield is annotated with @Pattern, the regular expression is passed on to the tag library where
it may be applied through the use of the JS framework of choice.

Automatic Scaffolding of dynamic finders

Roo will attempt to scaffold Spring MV C JSP views for al dynamic finders registered in the form
backing object. Thisis done by using the web mvc finder al or web mvc finder add command.

Due to file name length restrictions by many file systems (see http://en.wikipedia.org/wiki/
Comparison_of file_systems) Roo can only generate JSP views for finders which have 244 characters
or less (including folders). If the finder name is longer than 244 characters Roo will silently skip the
generation of jsp view artifacts for the dynamic finder in question). More detail can be found in ticket
ROO-1027.

1.2.5.RELEASE 90

http://en.wikipedia.org/wiki/Comparison_of_file_systems
http://en.wikipedia.org/wiki/Comparison_of_file_systems
https://jira.springsource.org/browse/ROO-1027

Chapter 12. JavaServer Faces (JSF) Add-On

The JSF add-on allows you to conveniently scaffold JSF managed beans and XHTML views for an
existing domain model. Currently thisdomain model isderived from the Roo supported JPA integration
through the entity jpa and related field commands. The following features are included:

Automatic update of JSF managed beans and converters reflecting changes in the domain model
Choice of either Oracle Mojarraor Apache MyFaces JSF 2 implementations
Server-side validation based on JSR 303 constraints defined in the domain layer

Integration of PrimeFaces JSF Component Suite, including automatic scaffolding of PrimeFaces
controls such as:

e AutoComplete

» Calendar

» FileUpload

e InputText

* InputTextarea

* Media

o SelectManyMenu
e Spinner

User-sel ectabl e PrimeFaces themes

12.1. JSF commands

The JSF add-on contains four commands:

1

roo> web jsf setup --inplenentation --library --thene

When this command is run for the first time in a single-module project or an empty module, the
necessary JSF artifacts are copied to the project or module such as the pom dependencies and
repositories and the web.xml file. A default PrimeFaces theme called "south-street" is configured
aswell in the web.xml.

Theweb jsf setup command can be run as many times asyou like to change the JSF implementation
and the theme.

The --implementation option when specifed allows you to chouse either the Oracle Mojarra or
Apache MyFaces JSF implementations.

The --library option has only one selectable value, being PRIMEFACES.

The --theme option lets you select one of 30 PrimeFaces themes for your Ul.

1.2.5.RELEASE 91

http://primefaces.org/

JavaServer Faces (JSF) Add-On

2. roo> web jsf all --package

Theweb jsf all command creates JSF managed beans and convertersfor all entitiesin the specified
package. A JISF XHTML pageisalso created in the src/main/webapp/pages directory for each entity.

3. roo> web jsf scaffold --class --entity --beanNane --incl udeOnMenu

Theweb jsf scaffold command lets you create amanaged bean for aparticular entity in your project.
The --class option is where you specify the name of the managed bean class.

The --entity option lets you specify the entity for the managed bean and isonly required if the focus
is not on the entity you want to create the managed bean for.

If you do not wish the 'create’ and 'list’ menu selections to appear for the entity in the menu on the
generated Ul, specify falsein the --includeOnMenu option.

4. roo> web jsf nedia --url --player

The web jsf media command is used for embedding multimedia content such as videos and music
on your JSF home page.

The --url option is where you specify the url of the the media content, such asa Y ouTube video.

The media player used is automaticallly selected based on the url or file extension of the mediafile
in the url if applicable, however, where this cannot be determined you can use the --player option
to select a suitable player.

12.2. The @RooJsfManagedBean annotation

The @RooJsfM anagedBean annotation is added to all new classes created by the web jsf al and web
jsf scaffold commands. The annotation causes the introduction of the javax.faces.bean.ManagedBean
and javax.faces.bean.SessionScoped annotationsin the* _Roo_ManagedBean.gj I TD. Notethat if you
specify a scope other than @SessionScoped in the managed bean .java file, the scope annotation is
removed from the ITD. For example, if you want your bean to be @RequestScoped, simply annotate
your managed bean with the @RequestScoped annotation.

Use the beanName attribute to force the naming of the managed bean referred to by other beans and
in XHTML pages.

Asmentioned before, the includeOnMenu attribute when set to fal se prevents the 'Create’ and 'List all'
menu selections for the entity from showing in the Ul's menu.

12.3. The @RooJsfConverter annotation

When a new managed bean is created, a converter class is aso created containing the
@RooJsfConverter annotation. The JSF converter classimplementsthe javax.faces.convert.Converter
interface and hasimplementations of the getAsObject and getAsString methods (introduced in an I TD)
to perform Object-to-String and String-to-Object conversions between model data objects and a String
representation of those objects that is suitable for rendering.

1.2.5.RELEASE 92

JavaServer Faces (JSF) Add-On

12.4. The @RooJsfApplicationBean annotation

Whenever a managed bean is created for the first time, Roo will install a class containing
the @RooJsfApplicationBean annotation. The ITD generated from this annotation contains the
PrimeFacesmenu with the'Create’ and 'List all' operationsfor each entity. Whenever amanaged beanis
created, provding the @RooJsfM anagedBean includeOnMenu attribute is either not specifed or set to
'true’, new menu selections are automatically added tothe* Roo_ApplicationBean.gj ITD. Similarly,
when a managaed bean is deleted or the includeOnMenu attribute is set to false, the menu selections
are removed.

12.5. The bikeshop example

The Roo distribution contains ascript called bikeshop.roo that demonstrates the JSF add-on capability.
Please note that the --equals attribute should be specified as true on the entity jpa command for all
entities intended to be scaffolded with JSF. Alternatively, add the @RooEqual's annotation to existing
entities.

In the Roo shell, type:

roo> script bikeshop.roo

When complete, exit the shell and run Jetty as follows:

m/n jetty:run-expl oded

View the application at http://local host:8080/bikeshop:

e Welcome to Blkeshop Q
4 Spring Roo provides interactive, lightweight and user customizable tooling that enables rapid delivery of high performance enterprise

roo Java applications.

Product

4 Create Home | Language: 53 B8 12 ¢
= Listall
Supplier

5 Create

G List all

1.2.5.RELEASE 93

Chapter 13. Cloud Foundry Add-On

VMware Cloud Foundry is arecently-released platform as a service (PaaS) offering for developers on
many popular programming languages, including Java.

Spring Roo provides comprehensive integration with Cloud Foundry. With Roo you can easily login
to Cloud Foundry, view your applications, bind to services, deploy applications and gather statistics.
In fact there are more than 30 unique Cloud Foundry commands added to the Spring Roo shell to help
you explore and benefit from Cloud Foundry.

13.1. Installing the Cloud Foundry Add-On

The Cloud Foundry add-on provides the mechanism through which Cloud Foundry features are
available in Spring Roo. To install this add-on, you simply load Spring Roo 1.1.3 and type (most of
which can be completed using the TAB key, or CTRL + SPACE if using STS):

pgp automatic trust
addon install bundl e --bundl eSynbol i cName org. spri ngf ramewor k. r oo. addon. cl oud. f oundry

,,:1, Y Spring Roo 1.1.3.RELEASE rev HI.HHI:-E — jawa — 112319

icMane =rg. ipring|

=

The “pgp” command simply ensures the signed bundles needed by the Cloud Foundry add-on can
be installed. The “addon install” command instructs Roo to download and install the Cloud Foundry
support. The add-on is successfully installed once you see the “ Successfully installed add-on: Spring
Roo - Addon - Cloud Foundry [version: a.b.c.d]” message on your screen.

As with all Roo add-ons, you could also install the Cloud Foundry add-on by simply attempting to
useit. Tofollow this aternate installation path, enter the “pgp automatic trust” command, then “cloud
foundry” and press enter. A list of matching add-onswill be displayed. Y ou'll probably want to install
thefirst (and currently only match), so use the “addon install id --searchResultld 1" command.

Alternatively you can just executing the following command which will prompt youtoinstall the Cloud
Foundry add-on, it is still required that you enable automatic trust prior to installation.

pgp automatic trust
cloud foundry |login

1.2.5.RELEASE 94

www.cloudfoundry.org

Cloud Foundry Add-On

- Sprang Roo 1.1 3 RELEASE |rew 4404 (k] — java — Sfx24

13.2. Getting Started

The integration of Cloud Foundry into Roo has added alot of new functionality and commandsto the
Roo shell, in this chapter we will explore these new commands and deploy a sample application to
the cloud. After installing the Cloud Foundry add-on you will first need to login. To do this, use the
following command:

13.2.1. Logging In

cloud foundry | ogin

This command takes in three options. email, password, and cloudControllerUrl. The
cloudControllerUrl is optional, but the when logging into Cloud Foundry for the first login the email
and password are mandatory. Y ou aren't required to enter the email and password everytimeyou login,
Roo will store these locally for you. The cloudControllerUrl defaults the Cloud service provided by
VMware, api.cloudfoundry.com, but can be changed to point to private Cloud Foundry instances.

13.2.2. The Commands

After logging in amany new Cloud Foundry comands will be presented to you. Y ou can see these by
typing "cloud foundry" in the shell and then pressing TAB.

1.2.5.RELEASE 95

Cloud Foundry Add-On

[W] Sprang Roo 1.1.3 RELEASE [rev 4404ffb] — java — S%x24

13.2.3. Deploying Your Application

As the creation of sample application that will be used in this chapter has already been covered in the
GWT chapter we will skip to the deploying it.

The first command that is likely to be of use is "cloud foundry deploy". With this command you
are are able to deploy an application to Cloud Foundry. The deploy command has a number of
options: appName (mandatory), path (mandatory), urls, instances, and memory. Roo will automatically
present you with existing deployed applications to enable you to choose a unigue name, and will also
present any WARSs found in the project. If a WAR isn't found the "CREATE" option presented. By
selecting create you will trigger a Maven package, which will create a deployable application. Onece
the application has been successfully deployed when you see "The application 'new-expenses was
successfully pushed”.

N Speing Rooc org.apringioencerooextrack — joea — 1001=25

1.2.5.RELEASE 96

Cloud Foundry Add-On

13.2.4. Viewing Your Applications

After running the above command, and assuming that you had created a project in the first place your
application will be deployed to Cloud Foundry. To verify thisyou can run the command " cloud foundry
list apps", which will display all applications currently deployed.

ﬂ T

Spring Foo: org.springsourcereo.exirack — java — 92x35

There are two other application deployed, both of which are started and bound to services. Y ou will
also notice that a URL has been mapped to the each application and that the application that was just
deployed "new-expenses’ is currently stopped and no services have been bound to it. The URL has

been created and mapped based on the application name, which is what Roo defaults to if a URL is
not provided.

13.2.5. Binding Services

RN spring Roo: org.apringiowrcerooextrack — java — 10125

1.2.5.RELEASE 97

Cloud Foundry Add-On

Thenext stepisto bind theapplication " new-expenses' to aservice, beforewe do thisthough we need to
check that we have aserviceto bind to. To thiswe usethe"cloud foundry list services' command which
will display alist of possible services we can create instances of and currently provisioned services.
As can be seen above Cloud Foundry currently provides 4 services: Redis, MongoDB, RabbitMQ, and
MySQL. Thereis currently one provisioned service, that is an instance of MySQL called "misgl”. As
thereisalready aMySQL service present we are going to bind thisto our "new-expenses' application.

To bind "new-expenses’ to a service we use the "cloud foundry bind service --serviceName misqgl --
appName new-expenses’ command. Roo's auto-compl etion makes navigating the options a breeze.

W Speing Rooc org.springsoencerooestrack — java — 101=25

If you were to run "cloud foundry list apps" at this point you would see that the application "new-
expenses' is now bound to the MySQL service instance "misgl”. We should now be ready to start the
application, but beforewedo letstake alook at how much memory has been assigned to the application.
To do this we run "cloud foundry view app memory". When we first deployed the application no
memory value was specified so, as you can see below, the default value provisioned is 256 megabytes.

1.2.5.RELEASE 98

Cloud Foundry Add-On

13.2.6. Provisioning Memory

M Epreng Boo: 0rgus paingsource oo, eairack — java — 10635

To change the alotted memory we could run "cloud foundry update app memory --appName new-
expenses' but as GWT allows state to be stored client side the default should be enough.

13.2.7. Starting Your Application

Now that we have verified that we should have enough memory to start we simple run "cloud foundry
start app --appName new-expenses’.

MM Spreng Roo: Orges paingsourcoe oo, eatrack — java — 10%xES

cart apg o pp

To verify that the application has actually started simply navigate to the URL you previously mapped
to the application, in this case it is "new-expenses.cloudfoundry.com”, and you should see your
application.

1.2.5.RELEASE 99

Cloud Foundry Add-On

LTS Tk o rgplm Flpenat Appiomal CElEgory okl ded i "' ek Y

13.3. Conclusion

Cloud Foundry is a ground breaking service and open source platform that alows developers to
maximise there productivity by not having to manage the platform to which they deploy. The initial
integration with Roo allows devel opers to deploy and manage their applications with very little effort
from with in the shell. In this chapter we have installed the Cloud Foundry Add-On in Roo which
enabled applications to be deployed to and managed on Cloud Foundry. We have shown how easy
Cloud Foundry makesit for the devel oper to take advantage of the cloud from with Roo, by going the
deployment process step-by-step. There are other commands that haven't been explicity covered by
this guide and may be expanded on in the future.

1.2.5.RELEASE 100

Chapter 14. Google Web Toolkit Add-On

Google Web Toolkit (GWT) is a technolgy developed by Google to alow the use of existing Java
knowledge and tools to build high performance, desktop-esk web applications. Whilst GWT abstracts
away many complexities of web application development by not requiring you to learn Javascript and
HTML nor worry about browser quirks and memory leaks thereis still a start-up cost associated
with GWT and the combination of Roo and GWT doesn’'t absolve you completely from getting your
hands a little dirty. This chapter aims to explain how Roo can reduce the time cost involved with
getting started with GWT and does not attempt to provide a complete guide on GWT or its use. The
GWT team has written excellent documentation to help you in understanding and using GWT in your
project, the GWT documentation is especially useful when it comesto customising your application.

The GWT add-on enables you to create a complete web application for your domain model with a
single command. Once enabled, the GWT add-on will maintain your application to ensure it reflects
changes to the domain model. Currently the add-on only has a single command, which can be used to
setup GWT in any Roo project. As such, Beginning With Roo: The Tutorial can be leveraged when
starting out with Roo and GWT.

The first iteration of the add-on allowed you to generate a fully fledged GWT web application in
under a minute via the expenses script (to run the expenses script just execute the command script
expenses.roo from the Roo shell). The resulting application incorporated several hot new features
found in GWT 2.1, these include:

« the new lightweight RequestFactory infrastructure for client-server communication;
« the built-in best practice MVP (Model View Presenter) framework;

» ultraefficient new data presentation widgets; and,

* data-binding support.
In Roo 1.1.1 we have built upon this by:
» making the add-on more Roo-like, viaafaux-ITD model;

* incorporating all the improvements and fixes found in GWT 2.1.1, such as support for inheritance
in proxied entities; and,

* ensuring that user customisation remains intact upon each launch of Roo.

This chapter will outline each of these improvements in more detail.

14.1. GWT Add-On Commands

The main GWT add-on commands are as follows:
» web gwt setup - turn an existing Roo project it a GWT web application.
« web gwt all - create GWT request and proxy classes for al domain typesin your project

If your project has a domain model, which is currently represented by Roo’s JPA support via the
entity and related field commands, additional viewswill be created to mirror entitiesin the domain.

1.2.5.RELEASE 101

http://code.google.com/webtoolkit/doc/latest/DevGuide.html
http://code.google.com/webtoolkit/doc/latest/DevGuideRequestFactory.html
http://code.google.com/webtoolkit/doc/latest/DevGuideMvpActivitiesAndPlaces.html
http://code.google.com/webtoolkit/doc/latest/DevGuideUiCellWidgets.html
http://code.google.com/webtoolkit/doc/latest/DevGuideUiEditors.html

Google Web Toolkit Add-On

(A full run down of how to implement your domain model viathe Roo shell can be found in section
2.5 of Beginning With Roo: The Tutorial)

« web gwt gae update - to be run when the database is changed to Google App Engine from an SQL
database or back again

To demostrate the basic structure of the conjured GWT application a new Roo project, with a very
basic domain model, will be created using the following commands:

proj ect --topLevel Package com spri ngsource. roo. zoo

j pa setup --provider H BERNATE --database HYPERSON C_| N_MVEMORY

enum type --class ~.shared. domai n. Speci es

enum const ant --
enum const ant - -
enum const ant --
enum const ant --
enum const ant --

entity jpa --class ~.

nane
nane
nane
nane
nane

Fi sh

Bird
Mammal
Reptile
Anphi bi an

server. domai n. Ani mal

field string --fiel dName nane --not Nul |
field enum--fiel dNane species --type ~.shared. domai n. Speci es

Thiswill create project with alayout as presented in Figure GWT.1.

Figure 14.1. Figure GWT.1: Basic Roo project

Upon running the gwt setup command, regardl ess of the presence of adomain model, anumber of static
scaffold files will be copied into your project. Figure GWT.2 displays the new files and directories

(highlighted).

1.2.5.RELEASE

102

Google Web Toolkit Add-On

v zoo
v [src
¥ [= main
v [java
¥ |57 com.springsource.roo.zoo
> client
» [E1 server.domain
» [E31 shared
Ei ApplicationScaffold.gwt.xml
» [resources
v = webapp
¥ & WEB-INF

B ApplicationScaffold.html
B index.html
» [test

2 log.roo
& pom.xml

Figure14.2. Figure GWT.2: New packages and files created from running “gwt setup”

Most of the interesting stuff happens in the client package so we will concentrate on its sub-packages
and files. The two sub-packages of interest are:

¢ managed

« this package contains all the files that are maintained by Roo. These are files that are created and
updated to reflect changes in the domain model. The GWT add-on enforces a number of rules
that mean that the add-on will not touch source. As GWT doesn’t currently support AspectJ the
standard definition of what constitutes source is different than in other add-ons, such asthe entity
add-on. Thiswill be expanded upon in the section ITDs: GWT Style below.

» scaffold

« this package contains static files that provide a framework for the other parts of the application.
The filesin this package are never updated or changed, they are copied to the Roo project upon
running the gwt setup command.

Afterinitia setup all the action occursin the managed package. The managed packageis comprised of:

o activity

« contains al classes that leverage the Activity infrastructure which is part of the new MVP
framework in GWT. These files are changed as new entities are added or removed from the
domain model.

1.2.5.RELEASE 103

Google Web Toolkit Add-On

* request

» containsall classes that revolve around the use of RequestFactory. For each entity in the domain
model a*Proxy and * Request classis created as highlighted in Figure GWT.3. More information
can be found on RequestFactory viathe GWT documentation, a basic synopsisis. a* Proxy class
represents a server-side entity and a* Request class represents a server-side service.

v &7 request

@ - AnimalProxy

€ - AnimalRequest
&) & ApplicationEntityTypesProcessor
I '@ ApplicationRequestFactory

Figure 14.3. Figure GWT.3: *Proxy and *Request classes
* Ui

 contains al the managed view and ui related classes and files. When an entity is added to the
domain model 8 view sets are created (a set generally includes a concrete-abstract type pair and
aui.xml file, an example of two file sets appear in Figure GWT.4) and a ProxyRenderer class.
Thefile sets are as follows:

1. *DetailsView
2. *EditView

3. *ListEditor

e

*ListView

o

*MobileDetailsView

o

*MobileEditView

~

*MobileListView

©

* SetEditor

v & ui
(C) T AnimalDetailsView
AnimalDetailsView.ui.xml
) % AnimalDetailsView_Roo_Gwt
(E) & AnimalEditView
AnimalEditView.ui.xml
%) % AnimalEditview_Roo_Gwt

Google Web Toolkit Add-On

14.2. Running and Compiling

A GWT application can be run in two waysit can be run via Development Mode or once compiled to
JavaScript from a standard application server such as Jetty.

Development Mode

Development mode allows you to make changes to your application without having to recompile to
JavaScript, atime consuming operation, it also letsyou to debug your application asif it wereastandard
Javaapplication. More can be found on Development Mode viathe GWT team’ s documentation here.
To run the application in Development Mode from the command line execute the Maven goal mvn
gwt:run, this will open the Development Mode console where you can launch the application by
clicking “Launch Default Browser”.

= CWT Developmaent Mode
| B Deerlapment Mede Jeany
awnch LT Mosiule
Statiap LRI {ApplicationScaffold . kiml B | Laumch Defautt Browser Copy to Clipboard
Exnand All Codlzpae all

Development Mode requires that you are using a browser that supports the Development Mode plug-
in, you should be prompted to install the plug-in upon first launch of the application if the browser that
doesn’t currently have the plug-in installed. Alternatively you can check to see whether your browser
is supported and download the plug-in from here.

Jetty

To compile the application to JavaScript and run it in Jetty execute the Maven goal mvn jetty:run-
exploded from the command line. For larger applications compilation can take sometime, so running
the application outside of Development Mode is often not practical but can be beneficial when wanting
to test the speed and size of the compiled application or to run the application in browsers that are not
currently supported by the Development Mode plug-in.

1.2.5.RELEASE 105

http://code.google.com/webtoolkit/doc/latest/DevGuideCompilingAndDebugging.html
http://gwt.google.com/missing-plugin/

Google Web Toolkit Add-On

14.3. Desktop and Mobile Views

Theapplication created viaGWT add-on comesin two flavours; Desktop and Mobile. Thedefault view

depends on the device accessing the application. If you are viewing the application from a desktop
browser then the following Desktop view would be displayed:

N oo

a1 - 4 F -
L Wi binh Marmn et e

1 -] Ly il drrora

W marsgaross [1)

12 1

YWernken O

If you are viewing the application from a smartphone such as an Android device or an iPhone the
following Mobile views would be displayed:

Enkiiies
* Mew Animal

Kangaroo
1

Wallaby
2

1.2.5.RELEASE 106

Google Web Toolkit Add-On

To force the desktop browser to display the Mobile view instead of the Desktop the “m=true’ query
string needs to be added to the URL used to access the application. For example to access the Mobile
view from a desktop browser whilst using Development M ode the URL would be:

http://127.0.0.1: 8888/ Appl i cati onScaf fol d. ht M ?gwt . codesvr=127. 0. 0. 1: 9997&m=t r ue

14.4. ITDs: GWT Style

One of the critical technologiesthat underpin Roo is AspectJwith Roo relying heavily onitsinter-type
declaration (ITD) features. GWT doesn't currently support ITDs, but will in the future (please vote
here to register your support), due to this a different approach had to be created which mimics how
ITDs works abeit with an impact on class hierarchy. To achieve the same end as ITDs an abstract-
concrete model has been introduced in Roo 1.1.1, this replicates how I TDs are used within Roo and
provides clear separation between Roo and end-user modifications.

To demonstrate the changes a view class that is created, as part of running the expenses script, will
be examined, EmployeedMobileEditView.java. Prior to 1.1.1, only Roo managed source files were
created, so upon running expenses.roo a singular EmployeedMobileEditView.java was created. Any
changes that Roo needed to make to this file as result of modifying the server-side Employee entity
would cause user made changes to be overwritten.

As of Roo 111 two class files ae created for each class tha Roo may
need to manage as a result of changes to entities. In addition to the singular
EmployeedMobileEditView.java a EmployeedMobileEditView Roo Gwt.java file is also created
from which EmployeedMobileEditView extends. All changes that Roo needs to make to will occur
ONLY in EmployeedMobileEditView_Roo_Gwt and the end-user has the ability to leverage the Roo
managed code or overrideit.

Following Roo convention a managed abstract class from which a concrete class extends is suffixed
with“ Roo Gwt”, awarning is also placed at the top of the source file. If a class is not referenced
by another type only awarning is placed at the top of the source file. These naming conventions and
warnings serve to highlight that this file is “owned” by Roo and a user shouldn’t make changes to
thefile.

14.5. UiBinder ui.xml Files

In addition to Roo respecting user modificationsto GWT client-side types changes made to UiBinder
xml filesare aso preserved. The current implementation isfairly basic and round-tripping support will
be added in afuture release.

The management of ui.xml file works in the following way:

1. Roo looks for an e€element that has an “id=boundElementHolder” attribute, if a
“pboundElementHolder” element is not found Roo leaves the file.

2. If a “boundElementHolder” element is found each element contained within the
“boundElementHolder” element is examined to seeif there is an element which has an id attribute
which corresponds to each bound field declared in the bound type. If an element is not found it is
added based upon what has been specified as part of the original scaffolded application.

1.2.5.RELEASE 107

Google Web Toolkit Add-On

« To stop the add-on recreating a field just create an invisible element with an id attribute equal
to the field not be displayed. For example if the field “supervisor” wasn't to be displayed the
declared element in “boundElementHolder” would need to be replaced by <div id="supervisor”
style="display:none” />. Alternatively aadding “display:none” to the standard declared element’ s
style attribute can just be added.

Roo will re-order elements based on the order found in the underlying entity.

14.6. Expected GWT Add-On Behaviour

Prior to Roo 1.1.1 the behaviour of the GWT add-on was largely undefined, the following clarifies
what can be expected of the add-onin Roo 1.1.1.

» The add-on will only make changes to the abstract class, never the concrete type. NEVER.

* Roo managed files are suffixed with _Roo_Gwt and have a warning comment in the first line
notifying the user should not edit the file.

« When auser addg/del eteg/editsafield inamonitored Entity the addon will make appropriate changes
in the mirrored types abstract classes.

« When an entity is deleted, or the @RooJpaA ctiveRecord annotation is removed, the mirrored types
will remain in play as to remain consistent with not touch user source.

* Roo non-destructively manages a UiBinder xml file, thought formatting is lost in the process.

14.7. Migrating a Roo GWT project (1.1 -> 1.1.1+)

Unfortunately a number of breaking API changesin GWT happened with the release of GWT 2.1.1.
Like any application built against an external library, you will need to refactor your application to deal
with these changes.

The transition to the new abstract-concrete model and its associated benefitsis not automatic. To take
advantage of the new abstract-concrete model used by the GWT add-on, you will need to inherit from
therespective* _Roo_Gwit filesand optionally remove the methods in the concrete type that have been
declared inthe* _Roo_Gwit file.

14.8. Troubleshooting

Known GWT |ssues

Whilst a number of issues have been resolved in GWT 2.1.1, there are still afew problems you will
most likely come across:

* RequestFactory doesn't support is*()/had*() methods for primitive booleans and EditorModel
doesn't realise that primitive types are now supported in Proxies, which means that primitives are
still not supported in the GWT add-on.

* “mvn clean gwt:compile” doesn’t work and a“mvn clean compile gwt:compile” needs to be used.

1.2.5.RELEASE 108

Google Web Toolkit Add-On

e The"Deprecated use of id="boundElementHolder"” warning will be removed when round-tripping
support is added.

1.2.5.RELEASE 109

Chapter 15. JSON Add-On

There are a number of ways to work with JISON document serialization and desrialization in
Roo projects:

Option 1: Built-in JISON handling managed in domain layer (discussed in this section)
e This offers customizable FlexJson integration

Option 2: Spring MV C detects the Jackson library in the application classpath

e simply use Spring's @RequestBody and @ResponseBody annotations in the controllers, or

« take advantage of Spring's ContentNegotiatingViewResolver

The JSON add-on offers JSON support in the domain layer aswell as the Spring MV C scaffolding. A
number of methods are provided to facilitate serialization and deserialization of JSON documentsinto
domain objects. The JSON add-on makes use of the Flexjson library.

15.1. Adding JSON Functionality to Domain Types

The add-on offers an annotation aswell astwo commandsthat support theintegration of JSON support
into the project's domain layer:

1. Annotating atarget type with the default @R ooJson annotation will prompt Roo to create an ITD
with the following four methods:

public String toJdson() {
return new JSONSeri al i zer().exclude("*.class").serialize(this);

}

This method returns a JSON representation of the current object.

public static Omer fromlsonToOmer(String json) {
return new JSONDeseri al i zer <Oaner >().use(null, Owner.class).deserialize(json);

}

This method has a String parameter representing the JSON document and returns a domain type
instance if the document can be serialized by the underlying deserializer.

public static String toJsonArray(Collecti on<Omer> collection) {
return new JSONSeri al i zer().exclude("*.class").serialize(collection);

}

This method will convert acollection of the target type, provided as method parameter, into avalid
JSON document containing an array.

public static Collection<Omer> fromlsonArrayToOmers(String json) {
return new JSONDeseri al i zer <Li st <Oaner >>() . use(nul |,
Arrayli st.cl ass).use("val ues", Owner.class). deserialize(json);

}

Thismethod will convert aJSON array document, passed in asamethod parameter, into a collection
of the target type.

1.2.5.RELEASE 110

http://flexjson.sourceforge.net/
http://jackson.codehaus.org/
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-ann-requestbody
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-ann-responsebody
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-multiple-representations
http://flexjson.sourceforge.net/

JSON Add-On

The @RooJson annotation can be used to customize the names of the methods being introduced
to the target type. Furthermore, you can disable the creation of any of the above listed methods
by providing an empty String argument for the unwanted method in the @RooJson annotation.
Example:

@RooJson(t oJsonMet hod="", fromlsonMet hod="nmyOmnMet hodNane")

2. Thejson add Roo shell command will introduce the @RooJson annotation into the specified target
type.

3. The json all command will detect all domain entities in the project and annotate all of them with
the @Ro0Json annotation.

15.2. JSON REST Interface in Spring MVC controllers

Once your domain types are annotated with the @RooJson annotation, you can create Spring MVC
scaffolding for your JSON enabled types.

1. The web mvc json setup Roo shell command configures the current project to support JSON
integration using Spring MV C.

2. The web mvc json add Roo shell command introduces the @RooW ebJson annotation into the
specified target type.

3. Theweb mvc json all Roo shell command finds all JSON-enabled types (@RooJson) in the project
and creates Spring MV C controllers for each (if a controller does not aready exist), or adds
@RooW ebJson to existing controllers (should they already exist).

4. Annotating an existing Spring MV C controller with the @RooWebJson annotation will prompt Roo
to create an I TD with a number of methods:

* |jistJson

@Request Mappi ng(headers = "Accept =appl i cation/json")
@ResponseBody
publ i ¢ ResponseEntity<String> Toppi ngController.listJson() {
Ht t pHeader s headers = new Htt pHeaders();
headers. add(" Cont ent - Type", "application/json; charset=utf-8");
Li st <Toppi ng> result = toppi ngService. findAl | Toppi ngs();
return new ResponseEntity<String>(Toppi ng.toJsonArray(result), headers, H tpStatus. OK);
}

As you can see this method takes advantage of Spring's request mappings and will respond
to HTTP GET requests that contain an 'Accept=application/json' header. The @ResponseBody
annotation is used to serialize the JSON document.

To test the functionality with curl, you can try out the Roo "pizza shop" sample script (run roo>
script pizzashop.roo; then quit the Roo shell and start Tomcat 'mvn tomcat:run'):

curl -i -H "Accept: application/json" http://]ocal host: 8080/ pi zzashop/t oppi ngs ‘

* showlson

@Request Mappi ng(value = "/{id}", headers = "Accept=application/json") ‘

1.2.5.RELEASE 111

JSON Add-On

@ResponseBody
publ i c ResponseEntity<String> Toppi ngControl |l er.showlson(@at hVariabl e("id") Long id)
Toppi ng toppi ng = toppi ngService. fi ndToppi ng(id);
Ht t pHeader s headers = new Htt pHeaders();
headers. add(" Cont ent - Type", "application/json; charset=utf-8");
if (topping == null) {
return new ResponseEntity<String>(headers, HttpStatus. NOT_FOUND);

-~

}
return new ResponseEntity<String>(topping.toJson(), headers, HttpStatus. OK);

This method accepts an HTTP GET request with a @PathV ariable for the requested Topping
ID. The entity is serialized and returned as a JSON document if found, otherwise an HTTP 404
(NOT FOUND) status code is returned. The accompanying curl command is as follows:

curl -i -H "Accept: application/json" http://|ocal host: 8080/ pi zzashop/ t oppi ngs/ 1

* createFromison

@Request Mappi ng(met hod = Request Met hod. POST, headers = "Accept =appl i cation/json")
publ i c ResponseEntity<String> Toppi ngControl | er.createFromlson(@Request Body String json) {
Toppi ng toppi ng = Toppi ng. fromlsonToToppi ng(j son);
t oppi ngSer vi ce. saveToppi ng(t oppi ng) ;
Ht t pHeader s headers = new Htt pHeaders();
headers. add(" Cont ent - Type", "application/json");
return new ResponseEntity<String>(headers, HttpStatus. CREATED);

Thismethod acceptsaJSON document sent viaHT TP POST, convertsit into a Topping instance,
persiststhat new instance, and returnsan HTTP 201 (CREATED) status code. The accompanying
curl command is as follows:

curl -i -X POST -H "Content-Type: application/json" -H "Accept: application/json"
-d '{"name": "Thin Crust"}' http://I|ocal host: 8080/ pi zzashop/ bases

® createFrondsonArray

@Request Mappi ng(val ue = "/jsonArray", nethod = Request Met hod. POST, headers = "Accept=application/
publ i c ResponseEntity<String> Toppi ngController.createFromlsonArray(@RequestBody String json) {
for (Topping topping: Topping.fromlsonArrayToToppi ngs(json)) {
t oppi ngSer vi ce. saveToppi ng(t oppi ng) ;
}
Ht t pHeader s headers = new Htt pHeaders();
header s. add(" Cont ent - Type", "application/json");
return new ResponseEntity<String>(headers, HttpStatus. CREATED);

This method accepts adocument containing a JSON array sent viaHTTP POST and convertsthe
array into instances that are then persisted. The method returnsan HTTP 201 (CREATED) status
code. The accompanying curl command is as follows:

curl -i -X POST -H "Content-Type: application/json" -H "Accept: application/json"
-d '[{"name": " Cheesy Crust"},{"name":"Thick Crust"}]"’
http://1 ocal host: 8080/ pi zzashop/ bases/ j sonArr ay

* updat eFromlson

@Request Mappi ng(met hod = Request Met hod. PUT, headers = "Accept=application/json")
publ i c ResponseEntity<String> Toppi ngControll er. updat eFromlson(@Request Body String json) {
Ht t pHeader s headers = new Htt pHeaders();

1.2.5.RELEASE 112

http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-ann-requestparam

JSON Add-On

headers. add(" Cont ent - Type", "application/json");
Toppi ng toppi ng = Toppi ng. fromJsonToToppi ng(j son) ;
if (toppingService.updateToppi ng(topping) == null) {
return new ResponseEntity<String>(headers, HttpStatus. NOT_FOUND);

}
return new ResponseEntity<String>(headers, HttpStatus. OK);

This method accepts a JSON document sent via HTTP PUT and converts it into a Topping
instance before attempting to merge it with an existing record. If no existing record is found, an
HTTP 404 (NOT FOUND) status code is sent to the client, otherwise an HTTP 200 (OK) status
code is sent. The accompanying curl command is as follows:

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json"
-d '{id: 6, name: "Mzzarell a", version: 1}'
http://1 ocal host: 8080/ pi zzashop/ t oppi ngs

updat eFr omJsonArr ay

@Request Mappi ng(val ue = "/jsonArray", nethod = Request Met hod. PUT,
headers = "Accept =application/json")
publ i c ResponseEntity<String> BaseControll er.updat eFromlsonArray(@equestBody String json) {
Ht t pHeader s headers = new Htt pHeaders();
headers. add(" Cont ent - Type", "application/json");
for (Base base: Base.fromJsonArrayToBases(json)) {
if (baseService. updateBase(base) == null) {
return new ResponseEntity<String>(headers, HttpStatus. NOT_FOUND);
}
}

return new ResponseEntity<String>(headers, HttpStatus. K);

This method accepts a document containing a JSON array sent via HTTP PUT and converts
the array into transient entities which are then merged. The method returnsan HTTP 404 (NOT
FOUND) status code if any of the instances to be updated are not found, otherwise it returns an
HTTP 200 (OK) status code. The accompanying curl command is as follows:

curl -i -X PUT -H "Content-Type: application/json" -H "Accept: application/json"
-d '[{id:1, "nanme": "Cheesy Crust",version: 0}, {id:2, "nanme": "Thick Crust",version:0}]"'
http://1 ocal host: 8080/ pi zzashop/ bases/j sonArr ay

del et eFromlson

@Request Mappi ng(value = "/{id}", nmethod = Request Met hod. DELETE, headers = "Accept =application/jsc
publ i c ResponseEntity<String> Toppi ngControl | er. del et eFromlson(@Pat hVari abl e("id") Long id) {

Toppi ng toppi ng = toppi ngService. findToppi ng(id);

Ht t pHeader s headers = new Htt pHeaders();

headers. add(" Cont ent - Type", "application/json");

if (topping == null) {

return new ResponseEntity<String>(headers, HttpStatus. NOT_FOUND);

}

t oppi ngSer vi ce. del et eToppi ng(t oppi ng) ;

return new ResponseEntity<String>(headers, HttpStatus. OK);

Thismethod acceptsan HTTP DELETE request with an @PathV ariableidentifying the Topping
instance to be deleted. HTTP status code 200 (OK) is returned if a Topping with that ID was
found, otherwise HTTP status code 404 (NOT FOUND) is returned. The accompanying curl
command is as follows:

1.2.5.RELEASE 113

JSON Add-On

curl -i -X DELETE -H "Accept: application/json" http://I|ocal host: 8080/ pi zzashop/ t oppi %gs/ 1

* jsonFind...

[Optional] Roo will also generate a method to retrieve a document containing a JSON array if
the form backing object defines dynamic finders. Here is an example taken from VisitController
in the pet clinic sample application, after adding JSON support to it:

@Request Mappi ng(parans = "find=ByDescri pti onAndVi si t Date", nethod = Request Met hod. CET
headers = "Accept=application/json")

public String jsonFindVisitsByDescripti onAndVi sit Dat e(@Request Par an(" descri ption") St

@Request Paran("vi sitDate") @DateTi mneFormat(style = "M") Date visitDate, Mde

This method accepts an HTTP GET request with a number of request parameters which define

the finder method as well as the finder method arguments. The accompanying curl command is
asfollows:

curl -i -H Accept:application/json

ing desc,

return Visit.toJsonArray(Visit.findVisitsByDescriptionAndVisitDate(desc, visitDate).getResult

http://1 ocal host: 8080/ petclinic/visits?find=ByDescri pti onAndVi si t Dat e¥26descri pt| on=t est %26\

If you need help configuring how FlexJson serializes or deserializes JISON documents, please refer to
their reference documentation.

1.2.5.RELEASE 114

http://flexjson.sourceforge.net/

Chapter 16. Apache Solr Add-On

The Apache Solr add-on provides integration between the Roo generated domain model and the
Apache Solr search platform. If you haven't heard of the open source Solr system, here's a quick
description from the project web site:

“Solr is the popular, blazing fast open source enterprise search platform from the Apache Lucene
project. Its major features include powerful full-text search, hit highlighting, faceted search, dynamic
clustering, database integration, and rich document (e.g., Word, PDF) handling. Solr ishighly scalable,
providing distributed search and index replication, and it powers the search and navigation features of
many of the world's largest internet sites.”

“Solr is written in Java and runs as a standalone full-text search server within a servlet container
such as Tomcat. Solr uses the Lucene Java search library at its core for full-text indexing and
search, and has REST-like HTTP/ XML and JSON APIs that make it easy to use from virtually
any programming language. Solr's powerful external configuration allows it to be tailored to amost
any type of application without Java coding, and it has an extensive plugin architecture when more
advanced customization is required.”

16.1. Solr Server Installation

The addon requires a running instance of the Apache Solr server. To install a Solr server just follow
these four easy steps:

1. Download the server: http://www.apache.org/dyn/closer.cgi/lucene/solr/

2. Unzip (untar) the download: tar xf apache-solr-1.4.0.tgz
3. Change into the solr example directory: cd apache-solr-1.4.0/example
4. Start the Solr server: java-jar start.jar

5. Verify Solr isrunning correctly: http://localhost:8983/solr/admin/

16.2. Solr Add-On Commands

Once the server isrunning you can setup the Solr integration for your project using the following Roo
commands:

1 roo> solr set up ‘

Thiscommand installs the SolrJ driver dependency into the project pom.xml and registersyour Solr
server in application context so it can be injected whereever you need it in your project.

2. ~. Person roo> solr add ‘

This command allows you to mark an individual entity for automatic Solr indexing. The
@RooSolrSearchable annotation will be added to the target entity (Person). Furthermore, the
following ITD is generated:

privil eged aspect Person_Roo_Sol r Search {

©@Aut owi r ed

1.2.5.RELEASE 115

http://lucene.apache.org/solr/
http://www.apache.org/dyn/closer.cgi/lucene/solr/
http://localhost:8983/solr/admin/

Apache Solr Add-On

transi ent Sol r Server Person. sol rServer;

public static QueryResponse Person.search(String queryString) {
return search(new Sol r Query("person. solrsunmary_t:" + queryString.toLowerCase()));

public static QueryResponse Person. search(Sol rQuery query) {
try {
QueryResponse rsp = sol rServer().query(query);
return rsp;
} catch (Exception e) {
e. printStackTrace();
}

return new QueryResponse();

public static void Person.indexPerson(Person person) {
Li st <Per son> peopl e = new ArraylLi st <Person>();
peopl e. add(per son);
i ndexPeopl e(peopl e);

public static void Person.indexPeopl e(Col | ecti on<Person> people) {
Li st <Sol r | nput Docunent > docunents = new ArrayLi st <Sol r | nput Docunent >();
for (Person person : people) {
Sol r I nput Docunent sid = new Sol rl nput Docunent () ;
sid.addField("id", "person." + person.getld());
si d. addFi el d("person. birthday_dt", person.getBirthDay());
sid. addFi el d("person.id_|", person.getld());
si d. addFi el d(" person. nane_s", person. get Name());
//add sumary field to all ow searching docunments for objects of this type
si d. addFi el d(" person. sol rsunmary_t", new StringBuil der().append(
person. getBirthDay()).append(" ").append(
person. getld()).append(" ").append(person.getNanme()));
docunent s. add(si d);

try {
Sol r Server solrServer = solrServer();
sol r Server. add(docunent s) ;
sol rServer.commit();

} catch (Exception e) {
e.printStackTrace();

public static void Person. del et el ndex(Person person) {
Sol r Server solrServer = solrServer();
try {
sol rServer. del et eByl d("person."” + person.getld());
sol rServer.comit();
} catch (Exception e) {
e.printStackTrace();

@Post Updat e

@Post Per si st

private void Person. post Persi st O Update() ({
i ndexPerson(this);

@r eRenpve
private void Person. preRemove() {
del et el ndex(this);

public static final SolrServer Person.solrServer() {

1.2.5.RELEASE 116

Apache Solr Add-On

Sol r Server _solrServer = new Person().solrServer;
if (_solrServer == null) throw new ||| egal StateException("Entity manager \
has not been injected (is the Spring Aspects JAR \
configured as an AJC/ AJDT aspects library?)");
return _sol rServer;

}

ThelTD introducestwo search methods; onefor conducting simple searches against Solr documents
for Person, and another one which works with a preconfigured SolrQuery object. The SolrQuery
object allowsyouto leverage all functionalities of the Solr search server (like faceting, sorting, term
highliting, pagination, €tc).

The indexPerson(..) and indexPeople(..) methods allow you to add new person instances or even
collections of personsto the Solr index. The deletelndex(..) method allows you to remove a person
from the Solr index.

All indexing, and delete operations are executed in s separate thread and will therefore
not impact the performance of your Web application (this is currently achieved through the
Solr Sear chAsyncTaskExecutor.aj aspect).

Furthermore, to trigger automatic indexing of new person instances (or updated person instances)
thisitd registers the postPersistOr Update() method which hooks into the JPA lifecycle through the
JPA @PostUpdate and @PostPersist annotations. Similarly, the preRemove() method hooks in the
JPA lifecylce through the @PreRemove annotation.

3. roo> solr all

This command will mark al entities in the project for automatic Solr indexing. The generated
functionality is the same as shown above.

16.3. The @RooSolrSearchable Annotation

The @Ro0SolrSearchable annotation allows you to change al method names through their respective
attributes in the annotation. Marking a method name with an empty String will instruct the Roo Solr
add-on to not generate that method (i.e. @RooSolrSearchabl e(preRemoveMethod="")).

By default all fieldsinadomain entity areindexed asdynamic fields (defined in the default schema.xml
which Solr ships with). The default format of afield nameisasfollows:

<sinpl e-entity-name>. <fiel d-name>_<field-type>
person. bi rt hday_dt

This ensures each field is uniquely mapped across your domain model by prepending the entity name
followed by the field name and field type (which is used to trigger the dynamic field mapping). Y ou
can change field names by adding a @Field annotation to a field in the domain object (i.e. Person)
which contains your own field (you need to provide afield definition in the Solr schemafor it aswell):

@i el d("ny: field:nane: bi rthday")
@enpor al (Tenpor al Type. TI MESTAMP)
@at eTi neFor mat (style = "M")
private Date birthDay;

1.2.5.RELEASE 117

Apache Solr Add-On

To index existing DB entity tables each entity exposes a convenience method (example for Person
entity):

Per son. i ndexPeopl e(Per son. fi ndAl | Peopl e());

The URL of the solr server location can be changed in the project src/main/resources META-INF/
spring/solr.properties config file.

Front-end (controller and MV C/JSP views) are currently awork-in-progress. However, the following
Ajax Library offers a neat front-end for those who want to take this a step further: http://github.com/
evolvingweb/ajax-salr It is planned to provide a out of the box integration with the Ajax-Solr front-
end through this addon in the medium term.

1.2.5.RELEASE 118

http://github.com/evolvingweb/ajax-solr
http://github.com/evolvingweb/ajax-solr

Part Ill. Internals and
Add-On Development

In this part of the guide we reveal how Roo works internally. With this knowledge you'll be well-positioned to
be able to check out the Roo codebase, build a development release, and write add-ons to extend Roo.

Y ou should be familiar with Part | of this reference guide and ideally have used Roo for a period of time to gain
the most value from this part.

1.2.5.RELEASE 119

Chapter 17. Development Processes

In this chapter we'll cover how we devel op Roo, and how you can check it out and get involved.

17.1. Guidelines We Follow

Whether you are part of the Roo core devel opment team, you want to contribute patches, or you want
to develop add-ons there are afew guidelines we would like to bring to your attention.

1. Design Goals
 High productivity for Java developers
» Encourage reuse of existing knowledge, skills and experience

« Eliminate barriers to adoption, no runtime component, minimal size, best possible development
experience

» Avoid lock-in
+ No runtime component
* Minimal download size
» Best possible development experience
» Embrace the strengths of Java
« Development-time: tooling, popularity, APl quality, static typing
» Deploy-time: performance, memory use, footprint
2. Embrace the advantages of AspectJ
« Use AspectJinter-type declarations (ITDs) for “active” generation
 Active generation automatically maintains output
« Delivers compilation unit separation of concerns
» Easier for users, and easier for us as developers
* Instant IDE support
* Reduce time to market and adoption barriers
» Other good reasons
* Mature, “pushin” refactor, compile-time is welcome
3. ITD Model
* Rooowns* Roo *.g files

» Will delete them if necessary

1.2.5.RELEASE 120

Development Processes

e Every ITD-providing add-on registers a 'suffix' (namespace)
+ E.g. the 'Entity’ add-on provides*_ROO_JPA_ACTIVE_RECORD.3
* A missing ITD provider causes AJfile removal

¢ |TDs have proper import management
» Sothey look and feel normal to developers
» Sothey 'push-in refactor' in anatural form

4. Usability = Highest Priority
* Interactivity of Roo Shell
« Tab completion, context awareness, command hiding, hint support, etc

« Background monitoring of externally made changes (alows integration with any devel opment
style)

» Background monitoring to avoid crude 'generation’ steps

5. Immutability of Metadata Types

Immutability as afirst step to manage concurrency

String-based keys (start with 'MID:")

Metadata and keys built on demand only (never persisted)

Metadata can depend on other metadata
* if 'upstream' metadata changes, 'downstream' metadatais notified

« Some metadata will want to monitor the file system

Central metadata service available and cache is provided to enhance performance
6. Conventionswe follow

« Ensure usability isfirst-class

* Minimize the JAR footprint that Roo requires

» Relocate runtime needs to sister Spring projects

¢ Embrace immutability as much as possible

* Maximize performance in generated code

¢ Minimize memory consumption in generated code

« Uselong artifact IDsto facilitate identification

e Don't put into @Roo* what you could calculate

1.2.5.RELEASE 121

Development Processes

« Don't violate generator predictability conventions

17.2. Source Repository

We develop against a public Git repository from which you can anonymously checkout the code:

git clone git://git.springsource.org/roo/roo.git spring-roo

Review source code without Git http://git.Springsource.org/roo/roo/treesmaster or https://
fisheye.springsource.org/changel og/spring-roo.

Roo itself uses Maven, soit's very easy to build the standard package, install, assembly and site goals.
PGP should beinstalled, see the 'Setting Up for Development' section below for details.

17.3. Setting Up for Development

We maintain up-to-date documentation in ther eadne. t xt in the root of the checkout location. Please
follow these instructions carefully.

17.4. Submitting Patches

Submitting a patch for abug, improvement or even anew feature which you always wanted addressed
can be of great help to the Spring Roo project.

To get started, you could build Roo from sources (as described above), and locally start changing
source code as you seefit. Then test your changes and if all workswell, you can create agit patch and
attach it to a ticket in our bug tracker. To create a patch with Git you can simply use the following
command in Roo's source code root directory:

<spring-roo>$ git status

<spring-roo>$ git add (files)

<spring-roo>$ git commt -m'Explain what | changed'

<spring-roo>$ git format-patch origin/master --stdout > ROO XXXX. pat ch

The resulting .patch file can then be attached to the ROO-X XX X ticket in our bug tracker.

17.5. Path to Committer Status

Essentidly if you submit a patch and we think it is useful to commit to the code base, we will ask
you to complete our contributor agreement. Thisis just a ssimple web form that deals with issues like
patents and copyrights. Once thisis done, we can apply your patch to the source code repository.

If you're working on alarge module that is part of the Roo Git repository, and you have a history of
providing quality patches and "looking after" the code you've previously written, we will likely invite
you to join us as a committer. We have certain commit policies which are more fully detailed in the
readme. t xt that isin the root of the checkout location. We have numerous committers external to
VMware, so Roo is very much awelcoming project in terms of committers. We look forward to you
joining us.

1.2.5.RELEASE 122

http://git.springsource.org/roo/roo/trees/master
https://fisheye.springsource.org/changelog/spring-roo
https://fisheye.springsource.org/changelog/spring-roo

Chapter 18. Simple Add-Ons

Pretty Good Privacy in Spring Roo

The introduction of PGP with Spring Roo 1.1 alows the Roo user to indicate exactly which
devel opers he trusts to sign software that Roo will download and activate in the Roo Shell. Roo
itself is now also PGP signed in every release. To support these capabilities, a new protocol
handler called ht t ppgp: // has been introduced into Roo. Thistells Roo that agiven HTTP URL
also has a PGP armour detached signature available. By requiring PGP signatures for all add-
ons, we're able to conveniently and safely host all Roo add-ons for the community. It's up to
the user to decide if he trusts a given PGP key, and without trusting that key, Roo will refuse
to even spend time downloading the ht t ppgp: // resource. Roo's approach also means you can
use standalone PGP tools like GnuPG to perform signature-related operations to independently
verify Roo's correct operation.

This chapter will provide an introduction to Spring Roo add-on development. The intention is to
provide a step-by-step guide that walks the devel oper from zero codeto afully deployed and published
add-on that isimmediately availableto all Spring Roo users. With the release of Spring Roo 1.1, anew
set of commands is available that are designed to provide a fast introduction to add-on devel opment,
aswell as easy accessto registered add-ons by Spring Roo 1.1 users.

OSGi in Spring Roo

Spring Roo runsin an OSGi container since version 1.1. Thisinternal changeisideal for Roo’s
add-on model because it allows Roo users to install, uninstall, start, and stop different add-ons
dynamically without restarting the Roo shell. Furthermore, OSGi allows automatic provisioning
of external add-on repositories and provides very good infrastructure for developing modular,
as well as embedded, and service-oriented applications. Under the hood, Spring Roo uses the
Apache Felix OSGi implementation.

A new add-on named 'Add-On Creator' has been devel oped that facilitates the creation of anew Spring
Roo add-on. Furthermore, it offers out of the box support for the Subversion integration provided by
Google Code aswell as zero setup for hosting the add-on in apublic Maven repository hosted as part of
aGoogle Code project. In order to register the add-on with RooBot - a Spring Roo add-on registration
service - the add-on is also required to be OSGi compliant, needs to be signed with PgP keys and the
addon bundle needs to be registered through the httppgp protocol. Add-on developers get all these
features automatically configured if they use the new 'Add-On Creator' feature that ships with Spring
Roo 1.1.

The following sections will present a complete step-by-step guide demonstrating how to bootstrap a

new Spring Roo add-on, publish and release it as your own Google Code project, and register it with
the RooBot service.

18.1. Project Setup

In addition to the general installation steps discussed in the development process chapter (section 4),
you should aso follow the following project specific steps:

1.2.5.RELEASE 123

http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/OSGi
http://en.wikipedia.org/wiki/OSGi
http://felix.apache.org/site/index.html
http://subversion.apache.org/
http://code.google.com/
http://code.google.com/
http://en.wikipedia.org/wiki/OSGi

Simple Add-Ons

1. Create a new project in Google Code: Sign in with your Google Account and navigate to http://
code.google.com/hosting/createProject where you can create your project:

* Project Name - a meaningful name such as spring-roo-addon-mvc-i18n-french

¢ Project Summary - a summary of your project such as 'Spring Roo Add-On to provide French
tranglation for Spring MV C scaffolding'

* Project Description - description that could include aversion compatibility matrix for your add-on
e Version control system - Subversion

» Source code license - GNU General Public License v3

e Project Labels- Spring Roo, Java, Add-On

2. By default, SVN hosting in Google Code will give you atrunk, tags, branches and awiki folder. In
order to host a Maven repository in your Google code project, you should also create arepo folder
asroot for the new repository:

$ svn nkdir -m "create maven repository" https://<project-nanme>. googl ecode. conif svn/repo|--usernane

3. Check out your newly created project from SV N:

$ svn checkout https://<project-nanme>. googl ecode. con’ svn/trunk/ <project-nanme> --userna+e <user nane

4. (optiona) Enter your Google Code SV N credentialsinto your local maven repository settings.xml:

<settings xm ns="http://maven. apache. or g/ SETTI NGS/ 1. 0. 0" xm ns: xsi ="htt p: //ww. w3. or g/ 2001/ XM_Schen
<servers>
<server>
<i d>Googl e Code</i d>
<user nane>nyuser nane</ user nane>
<passwor d>nypasswor d</ passwor d>
</ server>
</ servers>
</settings>

1.2.5.RELEASE 124

???
http://code.google.com/hosting/createProject
http://code.google.com/hosting/createProject

Simple Add-Ons

18.2. Fast Creation

Roo's Add-On Creator Commands

With release 1.1, Spring Roo offers the following commands to help devel opers quickly create
new add-ons:

e addon create simple
* What: Command & Operations support

» When: Simple add-ons that want to add dependencies and/or configuration artifacts to a
project

e addon create advanced
» What: Command, Operations & 1TD support

« When: Full-fledged add-onsthat offer new functionality to project enhancementsto existing
Javatypesin project introduction of new Javatypes (+ ITDs)

» addon createil8n

» What: Extension to the existing ‘web mvc install language’ command

* When: A new tranglation is added to the Spring MV C admin Ul scaffolding
e addon create wrapper

» What: Wrapping of a Maven artifact with an OSGi compliant manifest

* When: A dependency is needed to complete other functionality offered by a Roo add-on
(for example a JDBC driver for the DBRE add-on)

Once you have installed Java, Maven, PGP, and SV N tools, and have created and checked out your
Google Code project, you can change into the <project-name> directory, which at this stage should
contain only the .svn directory. In the <project-name> directory, you can start the Spring Roo shell
and use one of the new commands for add-on creation:

roo> addon create sinple --topLevel Package com foo --projectNane <project-nane>
The addon create simple command will scaffold a number of artefacts:

[1] pom xm

[2] readne.txt

[3] |egal /LI CENSE. TXT

[4] src/main/javal con foo/ bat ch/ Bat chConmands. j ava

[5] src/main/javal conl foo/ batch/Bat chOperations.java

[5] src/main/javal/conifoo/batch/BatchOperationslnpl.java
[6] src/main/javal conl foo/ bat ch/ Bat chPropertyNane. java
[7] src/ main/assenbly/assenbly. xm

This newly created add-on project can be imported into the SpringSource Tool Suite viaFile > Import
> Maven > Existing Maven projects. Let's discuss some of these artefacts in more detail:

1.2.5.RELEASE 125

Simple Add-Ons

1. pom.xml - This is the Maven project configuration. This configuration ships with a number of
preinstalled Maven plugins that facilitate the PGP artefact signing process as well as the project
release process (including tagging etc). It also adds the OSGi and Felix dependencies needed for
the addon to run in the Roo Shell. Furthermore, severa commonly used Spring Roo modules
are preinstalled. These modules provide functionalities such as file system monitoring, Roo shell
command registration, etc. Moreinformation about these functionalitiesisprovided in thefollowing
sections.

The add-on devel oper should open up the pom.xml file and modify some project specific references
and documentation (marked in bold font):

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<project [...]>

[...]

<name>com f 0o- bat ch</ nane>

<organi zati on>

<nane>Your project/conmpany nane goes here (used in copyright and vendor information|in the man

</ organi zati on>

[...]

<descri pti on>An add-on created by Spring Roo's addon creator feature.</description>

<url >http://ww. sone. conpany</url >

<properties>

Some of these properties can aso be provided when issuing the addon create command.

2. readme.txt - You can provide any setup or installation information about your add-on in this
file. Thisfile is used by other developers who checkout your add-on source code from the SVN
repository.

3. legal/LICENSE.TXT - Copy the appropriate license text for your add-on into thisfile.

4. src/main/java/com/foo/batch/BatchCommandsjava - This is a fully working code example
demonstrating how to register commands offered by your addon into the Spring Roo Shell (more
detailed information in the next section).

5. src/main/java/com/foo/batch/BatchOperationsjava & BatchOperationsimpl.java - These
artefacts are used to perform operations triggered by a command (more information in the next
sections).

6. src/main/java/com/foo/batch/BatchPropertyNamejava - This type provides a simple example
demonstrating the use of static command completion optionsfor the Spring Roo Shell. An example
of static command completion options are for exampl e the database sel ection options as part of the
jpa setup command.

7. src/main/assembly/assembly.xml - This artefact defines configurations used for the packaging of
the add-on.

18.3. Shell Interaction

Spring Roo provides an easy way for external add-ons to contribute new commands to the Roo Shell.
Looking at the code extract below, there are really only two artefacts needed in your command type
to register a new command in the Roo Shell; your type needs to implement the CommandM arker
interface, and you need to create amethod annotated with @CliCommand. Let usreview somedetails:

[1] @Zonponent
[1] @pervice

1.2.5.RELEASE 126

Simple Add-Ons

[2] public class BatchCommands i npl enents ConmandMar ker {

[3] @Ref erence private BatchOperations operations;
@Ref erence private StaticFiel dConverter staticFieldConverter;

[4] protected void activat e(Conponent Cont ext context) {
stati cFi el dConvert er. add(Bat chPropertyNane. cl ass);

}

[4] protected voi d deacti vat e(Conponent Cont ext context) {
stati cFi el dConverter.renove(Bat chPropertyNane. cl ass);

}

[5] @ i Avai |l abi l'i tyl ndi cat or ("wel cone property")
public bool ean i sPropertyAvail able() {
return operations.isProjectAvail abl e();

}

[6] @ i Command(val ue="wel cone property", hel p="Obtains a pre-defined system property")
[7] public String property(@ i Option(key="nanme", mandatory=fal se, specifiedDefaul tVal ue=" USERNAME"
return operations. get Property(propertyNane);

}

There are afew artefacts of interest when developing Spring Roo add-ons:

1. To register components and services in the Roo shell, the type needs to be annotated with the
@Component & @Ser vice annotations provided by Felix. These components can be injected into
other add-ons (more interesting for functionalities exposed by operations types).

2. The command type needs to implement the CommandM ar ker interface, which Spring Roo scans
for in order to detect classes that contribute commands to the Roo Shell.

3. The Felix @Reference annotations are used to inject services and components offered by other
Spring Roo core components or even other add-ons. In this example, we are injecting a reference
to the add-on's own BatchOperations interface and the StaticFieldConverter component offered by
the Roo Shell OSGi bundle. The Felix @Reference annotation is similar in purpose to Spring's
@Autowired and @I nject annotations.

4. The activate and deactivate methods can optionally be implemented to get access to the lifecycle
of the addon's bundle as managed by the underlying OSGi container. Roo add-on devel opers can
use these lifecycle hooks for registration and deregistration of converters (typically in command
types) or for the registration of metadata dependencies (typically in ITD-providing add-ons) or any
other component initialization activities.

5. The optional @CliAvailabilitylndicator annotation allows you to limit when a command is
available in the Spring Roo Shell. Methods thus annotated should return a boolean to indicate
whether a command should be visible to the Roo Shell. For example, many commands are hidden
before a project has been created.

6. The @CliCommand annotation plays a central role for Roo add-on developers. It alows the
registration of new commands for the Roo Shell. Methods annotated with @CliCommand can
optionally return a String val ue to contribute alog statement to the Spring Roo Shell. Another, more
flexible, option to provide log statements in the Roo Shell is to register a standard JDK logger,
which allows the devel oper to present color-coded messages to the user in the Roo shell, with the
color coding being dependent on the log level (warning, info, error, etc).

7. Theoptional @CIiOption annotation can be used to annotate method parameters. These parameters
define command attributes that are presented as part of a command. Roo will attempt to

1.2.5.RELEASE 127

Simple Add-Ons

automatically convert user-entered values into the Java type of the annotated method parameter.
In the example above, Roo will convert the user-entered String to a BatchPropertyName. By
default, Roo offers converters for common number types, String, Date, Enum, Locale, boolean and
Character. See the org.springframework.roo.shell.converters package for examples if you need to
implement a custom converter.

18.4. Operations

Almost all Spring Roo add-ons provide operations types. These types do most of the work behind
Roo's passive generation principle (active generation istaken care of by Aspect] Intertype declarations
(ITDs) - more about that later). Methods offered by the operations types provided by the add-on are
typically invoked by the accompanying "command" type. Alternatively, operations types can aso be
invoked by other add-ons (thisis a rather unusual case).

Implementations of the Operations interface need to be annotated with the Felix @Component
and @Service annotations to make their functionality available within Roo's OSGi container.
Dependencies can be injected into operations types via the Felix @Reference annotation. If the
dependency existsin apackage that is not yet registered in the add-on's pom.xml, you need to add the
dependency there to add the relevant bundle to the add-on's classpath.

The Add-On Creator generated project includes example code which uses Roo's source path
abstractions, file manager and various Util classes that take care of project file management.

Typical functionality offered by operations types include:
¢ Adding new dependencies, plugins, & repositories to the Maven project pom.xml.

e Copying static artefacts from the add-on jar into the user project (i.e. CSS, images, tagx,
configuration files, etc).

 Configuring application contexts, web.xml, and other config artefacts.
* Managing propertiesfilesin the user project.

« Creating new Java source types in the user project.

Adding trigger (or other) annotations to target types (most common), fields or methods.

Spring Roo offers a wide range of abstractions and metadata types that support these use cases. For
example, the following services are offered:

* org.springframework.roo.process.manager.FileM anager

 usefile manager for all file system operations in project (offers automatic undo on exception)
« org.springframework.roo.project.PathResolver

« offersabstraction over common project paths
* org.springframework.roo.metadata.M etadataSer vice

 offers access to Roo metadata bean info metadata for mutators/accessors of target type

« org.springframework.roo.project.Pr oj ectM etadata

1.2.5.RELEASE 128

Simple Add-Ons

* project name, top level package read access to project dependencies, repositories, etc
« org.springframework.roo.project.Pr oj ectOper ations

 add, remove project Maven dependencies, plugins, repositories, filters, properties, etc

In addition the org.springframework.roo.support bundle provides a number of useful utils classes:
* org.springframework.roo.support.util Assert

 similar to Spring’ s Assert, exceptions thrown by Assert will cause Roo's File manager abstraction
to roll back.

« org.springframework.roo.support.util.FileCopyUtils
« useful for copying resources from add-on into project
« org.springframework.roo.support.util. TemplateUtils
 useful for obtaining InputStream of resourcesin bundle
* org.springframework.roo.support.util. XmlUtils
e hides XML ugliness
» writeXml methods
» Xpath abstraction & cache

e XML Transformer setup

18.5. Packaging & Distribution

Once your add-on is complete, you can test its functionality locally by generating an OSGi-compliant
jar bundle and installing it in the Spring Roo Shell:

<proj ect-nanme>$ nvn clean install

Thiswill generate your add-on OSGi bundle in the project's target directory. In a separate directory,
you can start the Spring Roo Shell and use the following command to test your new add-on:

roo> osgi start --url file:///<path-to-addon-project/target/<addon-bundl e- nane>. <versi on>. | ar

This should install and activate your new Spring Roo Add-On. For troubleshooting, Roo offers the
following OSGi commands:

e 0ggi ps- Displays OSGi bundle information & status. This should list your add-on as active.

* 0sgi log - Access OSGi container logs. This could identify possible issues occurring during add-
on activation.

e oggi scr list - Listsall currently registered services and components. This should list your add-on's
command, metadata provider, and operations types.

1.2.5.RELEASE 129

Simple Add-Ons

e o0ggi scr info - Info about a specific component. This can be used to identify possible unresolved
dependencies.

e 0ggi start - install a new add-on directly from alocal or remote location.
* help osgi - Help on Roo's ~20 osgi commands.

Once you have tested the add-on successfully in your development environment, you can release the
add-on source code to your Google Code project, create atag, and install all relevant artifacts in the
project's Maven repository:

<proj ect-nanme>$ svn add pom xml src/ legal/ readne.txt
<proj ect-nanme>$ svn commit -m"initial commt"

<proj ect-name>$ nvn rel ease: prepare rel ease: perform

The Maven release plugin will ask for tag and release artefact names. Roo follows the OSGi
convention of using the major, minor and micro version numbers followed by atextual identifier, e.g.
0.1.1.RELEASE, 0.1.2.BUILD-SNAPSHOT, etc.

Deployment for bundles created with Roo's "wrapping" command can be deployed rather than rel eased.
For example, to create awrapped bundle of the PostgreSQL JDBC driver, use this command:

roo> addon create w apper --toplLevel Package com f oo. w apper --projectNane spring-roo-postgres-w apper
--groupld postgresqgl --version 9.0-801.jdbc3 --description "Postgres #jdbcdriver driverclass: org. postg
--licenseUrl http://jdbc.postgresqgl.org/license.htm --docUl http://jdbc. postgresql.org/ t-vendor Nane

This can then be deployed to a Google code project (set up in the same way as described above) with
asimple deploy command:

<proj ect - nanme>$ nvn depl oy

18.6. Publishing to RooBot

Once the release is complete, check your Google Code project to see that your add-on's pom.xml has
been updated to the new version (e.g. 0.1.2.BUILD-SNAPSHQOT), that a new tag has been committed
to the tags directory, and that the repo directory has been populated with all the artifacts seen in a
typical Maven repository. All artefacts have been signed with your private PGP key, and your public
key isavailablein therelevant .ascfiles. In the repo directory, you should also find the repository.xml
file which contains al relevant information for an OSGi OBR repository.

Raw URLs in Google Code Source Browser

When reviewing file contents via the HTTP interface provided by Google Code, the reader
is presented with HTML documents (which provide syntax highlighting, etc). To get access
to the real (raw) URL of a document (e.g. repo/repository.xml) you need to click the 'View
raw file' link found in the 'File info' section in the right-hand menu. Example of a raw
URL.: http://<project-name>.googlecode.com/svn/repo/repository.xml. Make sure the version
appendix is removed from the URL before clicking the 'View raw file' link (i.e. http://<project-
name>.googlecode.com/svn/repo/repository.xml?r =25)

The URL to the raw (see sidebar) repository.xml artefact can then be registered with RooBot:

1.2.5.RELEASE 130

mailto:s2-roobot@vmware.com

Simple Add-Ons

Register your new add-on repository by sending an email to s2-roobot@vmware.com where the subject
line MUST be the raw URL to OSGi repository.xml. The email body is not currently used (but you
can send greetings to the Roo team ;-). Other registration methods are being considered (web front-
end, Roo shell command, etc).

RooBot verifies afew aspects before publishing your new add-on to the community:
» The provided repository.xml must be avalid OSGi repository

« Theresource URI must use the httppgp prefix i.e.: <resource uri="httppgp://fr-test.googlecode.com/
svn/...[>

« Thebundle referenced in the repository has a corresponding .asc file containing the PgP public key

e The public PGP key of the add-on signer needs to be available at http://keyserver.ubuntu.com/ A
guideto PGP key management can befound here. Make sureto publish your key with thiscommand:

gpg --send-keys --keyserver keyserver.ubuntu.com <your-key-i d>

« RooBot will retrieve publicly accessible key information (key owner name, email) from public key
server

» Thereferenced bundle contains an OSGi-compliant manifest.mf file. For example, it will verify that
the add-on version defined in your repository.xml matches the version defined in the manifest of
your add-on.

 [Important] To ensure your repository is valid, RooBot will download all defined resources in the
repository. To do that, it will read the uri attribute and perform an HTTP GET request against the
defined URL (after replacing the httppgp:// protocol handler with http://). Should the download or
verification of any of the defined resourcesin the respository fail, RooBot will abort the processing
of the entire repository and try again later.

If al tests pass, RooBot will publish your add-on in a publicly accessible XML registry http://spring-
roo-repository.springsource.org/roobot/roobot.xml. This registry is available to the RooBot client
integrated into the Spring Roo Shell.

Once you have sent your email to s2-roobot@vmware.com, you should receive a response from
RooBot indicating that the processing of your repository has started. If successful, you will
see your add-on listed at http://spring-roo-repository.springsource.org/roobot/roobot.xml within a
few hours. If this does not happen, you can visit the RooBot error log at http://spring-roo-
repository.springsource.org/roobot/roobot-log.txt, which is refreshed every 5 minutes.

Once RooBot has published your add-on sucessfully, it will periodically process your repository to
verify its ongoing validity. As part of this periodic processing, it will also automatically pick up new
versions (add-on releases) in your repository.xml. Therefore it should not be necessary to explicitly
notify RooBot of any changes in your repository.

18.7. Upgrading Spring Roo Add-Ons from 1.0.x to 1.1.0

As OSGi isthe runtime platform for Roo 1.1.0 onwards, porting addons from a previous version will
require some small tweaks to your code. Here's a step-by-step guide on what you need to do:

1. Change packaging of your project to bundle

1.2.5.RELEASE 131

mailto:s2-roobot@vmware.com
http://keyserver.ubuntu.com/
https://help.ubuntu.com/community/GnuPrivacyGuardHowto
http://spring-roo-repository.springsource.org/roobot/roobot.xml
http://spring-roo-repository.springsource.org/roobot/roobot.xml
mailto:s2-roobot@vmware.com
http://spring-roo-repository.springsource.org/roobot/roobot.xml
http://spring-roo-repository.springsource.org/roobot/roobot-log.txt
http://spring-roo-repository.springsource.org/roobot/roobot-log.txt

Simple Add-Ons

Asyour pluginwill result in an OSGi bundle, you heed to change the packaging fromj ar tobundl e.
Thiswill cause the Maven bundle plugin to create the necessary metadata for you out of the box.

2. Change the type of the dependenciesto bundle

Similar to the point above, you need to reference dependencies as bundles. Again, let the Maven
bundle plugin doitsjob.

3. Sync the build section of your pom with the one provided in the addon template

Compare your add-on's original pom xm with a pom.xml generated by the addon create command
(see below). Thisis mostly related to the Maven bundle plugin as well as the Maven SCR plugin
(see next point for details).

Example 18.1. Creating a Roo addon pr oject

addon create sinple --topLevel Package com nmyconpany. nyproj ect.roo. addon

The easiest way to do so is simply creating adummy addon project using the template and copying
the plugin configuration into your pom.

4. Replace @ScopeDevelopment annotations with @Component and @Service

Roo uses Apache Felix as OSGi runtime and thus uses @onponent and @er vi ce annotations in
combination with the Maven SCR plugin® to create descriptors for the OSGi declarative services
infrastructure.

Example 18.2. Component declaration with Apache Felix annotations

@ser vi ce
@Conponent

public class MyCommands i npl ements ConmandMar ker {

@Ref erence MyOper ati ons operations;

/1 Your code goes here

}

So every @copeDevel opnent annotation you used in your command and operations classes has to
be replaced by @ser vi ce and @onponent . If you had injected other servicesinto your command or
operationsclass, you can use @ref er ence to wirethem into your component instance. Notethat your
class will have to implement at least one interface under which Felix can publish the component
instance. Check the output of the Maven SCR plugin for errors to see whether any further tweaks
are necessary.

Yor details see http://felix.apache.org/site/apache-felix-maven-scr-plugin.html

1.2.5.RELEASE 132

http://felix.apache.org/site/apache-felix-maven-scr-plugin.html

Chapter 19. Advanced Add-Ons

TBC.

19.1. Metadata

TBC

19.2. Annotations

TBC

19.3. Inter-Type Declarations

TBC

19.4. Recommendations

TBC

1.2.5.RELEASE 133

Part IV. External Add-Ons

In this part of the guide we detail external Roo add-ons.

1.2.5.RELEASE 134

Chapter 20. Tailor Add-On

20.1. Introduction

Roo has been become more and more powerful and offers more options for users on how to use Roo.
This in turn makes it more challenging in some scenarios to use Roo in a consistent way throughout
aproject.

The tailor addon enables:

« Teams working on large projects to ensure streamlined Roo usage according to their project's
standards and guidelines

» Single users to define the approach they usually take in onefile to reuse it over multiple projects
Examples of use cases:

« A team does not want to use the Active Record pattern for entities, but always wants devel opers to
specify "--activeRecord false", and create a JPA repository based on every new entity.

« A developer always uses a certain project structure to create web projects, for exmple a Maven
project with 2 modules called "domain" and "web". The developer wants to be able to reuse this
structurewith the project command, and make sure that the shell automatically focuses on the correct
module for certain commands (e.g. entity > domain, web mvc > web).

20.2. How it works

When tailoring is activated, Roo commands are intercepted by the shell and transformed to a new set
of commands according to user specifications obtained from configuration file, if any exist for that
particular command. The shell then executes this transformed set of commands instead of the initial
command. A user can define one or multiple tailor configurations and activate and deactivate them
while working with the shell.

With thetailor add-on, you can define:

« Reusable project structures to use with the "project” command

» Default target modules for commands.

« Default values for command arguments.

« Chains of commands, either triggered by an existing command or composed by an dias

Note that although a tailor configuration can save you a lot of time and effort, it cancels out some
of the shell's command compl etion benefits at the same time. For example, some commands are only
available in certain modules (e.g. JPA commands are only available in modules with JPA setup).
Tailoring a default module for JPA commands like "entity jpa’ means that you can execute those
commands while focused on modules without JPA setup. But the tailoring only kicksin at execution
time, so the shell won't know about it while you are typing. Thus, the shell won't offer command
completion for these commands because it thinks they are not available.

1.2.5.RELEASE 135

Tailor Add-On

20.3. Tailor Add-On Commands

tailor list - Showsthe list of available tailor configurations. A tailor configuration defines the set of
transformation you want executed for certain commands (see next section "Tailor Configuration™).

roo> tailor |ist
Avail abl e tail or configurations:
0 webstyle - Web project with 2 nodul es, DOVAI N and PRESENTATI ON

tailor activate — Activate one of the available configurations.

roo> tailor activate --nane webstyle

"tailor list" indicates which configuration is currently activated:

roo> tailor |ist
Avail abl e tail or configurations:
o webstyle [ACTIVE] - Wb project with 2 npodul es, DOVAIN and PRESENTATI ON

tailor deactivate — Deactivate the tailor mode. There is no active configuration after this command

roo> tailor deactivate

20.4. Tailor Configuration

A tailor configuration can be created in two ways:
» XML configuration file (no add-on devel opment required)
* Directly in Java (requires creation and installation of a new add-on)

Each tailor configuration has one or more command configurations. A command configuration defines
aset of Actionsthat aretriggered whenever acertain command is executed. Execution of those actions
results in a new list of output commands that will eventually be executed by the shell. A command
configuration is triggered whenever acommand that starts with a defined string is executed. E.g., if a
command configuration defines "web mvc" as atrigger, then it will be used by the tailor every time
a "web mvc" subcommand is executed. The order in which you define the command configurations
might matter, the tailor will always take the first command configuration that matches a command.

An action is atransformation step to be applied to the command defined in acommand configuration.
Each action type defines a set of parameters that can be set in atailor definition. The tailor addon can
be extended with more action types by the community.

Actions are executed sequentially by the tailor, so the order in which they are declared matters.

The following actions are currently available:
20.4.1. Actions

20.4.1.1. execute

Adds a command to the list of commands to be executed. Note that each command configuration
should have at least one execute action, otherwise the tailor will not lead to any command executions.

1.2.5.RELEASE 136

Tailor Add-On

command
Command line to be executed. If empty, this action will add the original command to the list of
output commands at this point. (optional)

exclude
A comma separated list of argumentsthat should be removed from the command before execution.
This can be useful if the original command is executed ("command” argument not set), and it was
enhanced with additional arguments for the benefit of the tailoring. (optional)

20.4.1.2. defaultvalue

If the Roo user does not provide avalue for an argument with the given name on the shell, this default
value will be chosen.

argument
Name of the Roo command's argument that will get a default value. (mandatory)

value
Default value for the argument. (mandatory)

force
If "true”, the default value will be chosen even if the user specified an alternative value in the
command. (optional, defaultsto "false")

20.4.1.3. focus

module
Focus on a module, in form of a simple pattern to match against the module names. Does not
support regular expressions, just a simple "contains' match. Use this instead of an "execute
command 'module focus...™ if you do not want to hard code your module names into the reusable
tailor configuration. (mandatory)

Advanced usage: Use a comma-separated list of strings to look for in module names. The comma
will be interpreted as"AND" by the search for amodule. Use aslash "/" before astring in the list
to indicate that this next string must "NOT" be contained in the module name.

20.4.2. XML Configuration

This section describes how to create atailor configuration with XML by examples.

The XML configuration file“tailor.xml” must be placed into theroot project folder. Alternatively, you
can put a"tailor.xml" into your system's user folder, to maintain tailor configurations that you want to
reuse over several projects. Thetailor addon will only look for thisfileif it does not find a tailor.xml
filein the project raoot.

20.4.2.1. Example 1: Tailor the "project” command

The following configuration defines a chain of commands that will be triggered by the project
command, to create a parent project with packaging “pom” with two modules named “ projectname-
domain” and “projectname-data’.

Note how you can use argument values from the input command as placeholders by using
“${argumentname}”.

tailor .xml:

1.2.5.RELEASE 137

Tailor Add-On

<tail or name="nmywebstyl e" description="Standards for web projects with 2 nodul es">
<confi g conmand="project">
<action type="defaul tval ue" argument="packagi ng" val ue="pont />
<action type="execute" />
<action type="execute" command="nodul e create --nmodul eNanme ${proj ect Nane}-domai n --topLevel Packe
<action type="focus" nodul e="~"/>
<action type="execute" command="npdul e create --nopdul eNane ${proj ect Nane}-web --topLevel Package
<action type="focus" nodul e="${proj ect Nane}-domai n"/ >
</ confi g>
</tail or>

Shell:

tailor activate --name nywebstyle
project --topLevel Package com foo. sanpl e --proj ect Name nyapp

Will result in:

project --topLevel Package com foo. sanpl e --proj ect Nane nywebapp --packagi ng pom
nodul e create --nodul eNane nyapp-donain --toplLevel Package com f oo. sanpl e

nmodul e focus --nodul eNanme ~

nodul e create --nodul eNane nyapp-web --toplLevel Package com f 0o. sanpl e --packagi ng war
nodul e focus --nodul eName nyapp- domai n

20.4.2.2. Example 2: Default target modules and default values

The following example shows how to tailor the “entity jpa’ command with a default value for the
"activeRecord" argument, and a default module to put all entitiesin.

Note that the module name value for the "focus' action is interpreted as "module name contains x".
That is why this example works with the project setup described in the previous example, which sets
up a module named " ${ projectName]-domain”.

tailor.xml:

<config command="entity jpa">
<action type="focus" nodul e="domain"/>
<action type="defaul tval ue" argument="--activeRecord" val ue="fal se"/>
<action type="execute"/>

</ confi g>

Shell:

entity jpa --class ~.Custoner

Resultsin:

nmodul e focus --nodul eName webapp- domai n
entity jpa --class ~. Custoner --activeRecord false

20.4.2.3. Example 3: Alias command to create layers

In this example, the tailor configuration defines a new alias command that will trigger a set of other
commands to scaffold repository, service and web layer for an entity. Note that this configuration does
not define the "execute" action to execute the origina "layer" command.

Although "layer" is not a command known to the shell, it won’t produce an error, because the tailor
will transform it into a set of different commands, excluding the original. The downside is that you
won't get command completion support for this alias from the shell.

1.2.5.RELEASE 138

Tailor Add-On

tailor .xml:

<confi g command="I| ayer">
<action type="focus" nodul e="domain"/>
<l-- Create spring data JPA repository -->

<action type="execute" command="repository jpa --interface ${entity}Repository --entity ${entity}"/
<l-- Create service interface and inplenentation class-->
<action type="execute" command="service --interface ${entity}Service --class ${entity}Servicelnpl -

<action type="focus" nodul e="web"/>
<action type="execute" command="web nvc scaffold --class ${entity}Controller --backingType ${entity
</ config>

Shell:

| ayer --entity ~.Custoner

Resultsin:

nodul e focus --nodul eName webapp- domai n

repository jpa --interface ~. CustonerRepository --entity ~.Custoner

service --interface ~. CustonerService --class ~. CustonerServicelnpl --entity ~.Customner
nodul e focus --nodul eName webapp-web

web mvc scaffold --class ~. CustonerControl |l er --backingType ~. Custoner

20.4.3. Configuration Addon

A new tailor configuration can also be defined in Java, instead of XML. Thisrequiresthe creation of a
new simple addon that you would need to build and install as a bundle in your Roo installation. Once
your tailor extension bundleis running, the “tailor” commands will recognize all tailor configurations
you implemented in that addon.

Thisis amore static and elaborate way of creating tailor configurations. However, it might be useful
if you want to distribute a configuration to alarge group of users.

After you created a new (simple) addon, you need to do the following:

Add dependency to addon-tailor

<dependency>
<gr oupl d>or g. spri ngf r amewor k. r oo</ gr oupl d>
<artifactld>org. springframework.roo.addon.tailor</artifactld>
</ dependency>

Create a class that implements TailorConfigurationFactory

@Conponent
@servi ce
public class Tail or WbSi npl eConfiguration i nplements Tail orConfigurati onFactory {

}

Override createTailorConfiguration()

@verride

public Tail orConfiguration createTail orConfiguration() {
String description = "Web project with 2 nodul es DOVAI N- PRESENTATI ON';
Tai |l or Configuration configurati on = new Tail or Confi gurati on("webstyl e-sinple", description);
confi guration. addCommandConf i g(cr eat eCommandConfi gProj ect ());
confi guration. addConmandConfi g(cr eat eCommandConfi gJpaSet up());
return configuration;

1.2.5.RELEASE 139

Tailor Add-On

Implement and add the CommandConfiguration objects you want to support.

Add a chain of actions similar to how you would do in an XML configuration file, as described

above.

private CommandConfi gurati on creat eCommandConfi gJpaSetup() {
CommandConfi guration config = new ConmandConfi gurati on();
confi g. set CommandNane("j pa setup");
config. addActi on(Acti onConfi gFactory. focusActi on(
"domai n"));
confi g. addActi on(Acti onConfi gFact ory. def aul t Argunment Acti on(
"dat abase", "HYPERSONI C_| N MEMORY"));
confi g. addActi on(Acti onConfi gFact ory. def aul t Argunment Act i on(
"provider", "H BERNATE"));
config. addActi on(Acti onConfi gFactory. executeAction());
return config;

1.2.5.RELEASE

140

Part V. Appendices

The fourth and final part of the reference guide provides appendices and background information that does
not neatly belong within the other parts. The information is intended to be treated as a reference and not read
consecutively.

1.2.5.RELEASE 141

Appendix A. Command Index

This appendix was automatically built from Roo 1.2.5.RELEASE [rev 8341dc2].

Commands are listed in alphabetic order, and are shown in monospaced font with any mandatory
optionsyou must specify when using the command. Most commands accept alarge number of options,
and all of the possible options for each command are presented in this appendix.

A.1. Add On Commands

Add On Commandsare contained in org.springframework.roo.addon.roobot.client. AddOnCommands.

A.1.1. addon feedback bundle

Provide anonymous ratings and comments on a Spring Roo Add-on (your feedback will be published
publicly)

addon feedback bundl e --bundl eSynbolicNanme --rating

--bundleSymbolicName
The bundle symbolic name for the add-on of interest; no default value (mandatory)

--rating
How much did you like this add-on?; no default value (mandatory)

--comment
Y our comments on this add-on eg "thisis my comment!"; limit of 140 characters; no default value

A.1.2. addon info bundle

Provide information about a specific Spring Roo Add-on

addon info bundl e --bundl eSynbol i cNane

--bundleSymbolicName
The bundle symbolic name for the add-on of interest; no default value (mandatory)

A.1.3. addon info id

Provide information about a specific Spring Roo Add-on

addon info id --searchResultld

--searchResultld
The bundle ID as presented via the addon list or addon search command; no default value

(mandatory)

A.1.4. addon install bundle

Install Spring Roo Add-on

addon install bundl e --bundl eSynbol i cNanme

1.2.5.RELEASE 142

Command Index

--bundleSymbolicName
The bundle symbolic name for the add-on of interest; no default value (mandatory)

A.1.5. addon install id

Install Spring Roo Add-on

addon install id --searchResultld

--searchResultld
The bundle ID as presented via the addon list or addon search command; no default value
(mandatory)

A.1.6. addon list

List al known Spring Roo Add-ons (up to the maximum number displayed on a single page)

addon i st

--refresh
Refresh the add-on index from the Internet; default if option present: 'true’; default if option not
present: ‘false

--linesPerResult
The maximum number of lines displayed per add-on; default: '2'

--maxResults
The maximum number of add-onsto list; default: '99'

--trustedOnly
Only display trusted add-ons in search results; default if option present: ‘'true’; default if option
not present: 'false’

--communityOnly
Only display community provided add-onsin search results; default if option present: ‘true’; default
if option not present: ‘false

--compatibleOnly
Only display compatible add-onsin search results; default if option present: ‘true’; default if option
not present: 'false

A.1.7. addon remove

Remove Spring Roo Add-on

addon renove --bundl eSynbol i cNanme

--bundleSymbolicName
The bundle symbolic name for the add-on of interest; no default value (mandatory)

A.1.8. addon search

Search al known Spring Roo Add-ons

1.2.5.RELEASE 143

Command Index

addon search

--requiresDescription
A comma separated list of search terms; default: ™*'

--refresh
Refresh the add-on index from the Internet; default if option present: 'true’; default if option not
present: ‘false

--linesPerResult
The maximum number of lines displayed per add-on; default: '2'

--maxResults
The maximum number of add-onsto list; default: '20'

--trustedOnly
Only display trusted add-ons in search results; default if option present: 'true’; default if option
not present: 'false

--compatibleOnly
Only display compatible add-onsin search results; default if option present: ‘true’; default if option
not present: 'false’

--communityOnly
Only display community provided add-onsin search results; default if option present: 'true’; default
if option not present: 'false

--requiresCommand
Only display add-onsin search results that offer this command; no default value

A.1.9. addon upgrade all

Upgrade al relevant Spring Roo Add-ons/ Components for the current stability level

addon upgrade al

This command does not accept any options.

A.1.10. addon upgrade available

List available Spring Roo Add-on / Component upgrades

addon upgrade avail abl e

--addonStabilityLevel
The stability level of add-ons or components which are presented for upgrading (default: ANY);
no default value

A.1.11. addon upgrade bundle

Upgrade a specific Spring Roo Add-on / Component

addon upgrade bundl e --bundl eSynbol i cNane

1.2.5.RELEASE 144

Command Index

--bundleSymbolicName
The bundle symbolic name for the add-on to upgrade; no default value (mandatory)

A.1.12. addon upgrade id
Upgrade a specific Spring Roo Add-on / Component from a search result ID

addon upgrade id --searchResultld

--searchResultld
The bundle ID as presented via the addon list or addon search command; no default value
(mandatory)

A.1.13. addon upgrade settings
Settings for Add-on upgrade operations

addon upgrade settings

--addonStabilityL evel
The stability level of add-ons or components which are presented for upgrading; no default value

A.2. Backup Commands
Backup Commands are contained in org.springframework.roo.addon.backup.BackupCommands.
A.2.1. backup

Backup your project to azipfile

backup

This command does not accept any options.

A.3. Classpath Commands

Classpath Commands are contained in
org.springframework.roo.classpath.operations.ClasspathCommands.

A.3.1. class

Creates anew Java class source file in any project path

class --class

--class
The name of the classto create; no default value (mandatory)

--rooAnnotations
Whether the generated class should have common Roo annotations; default if option present: 'true’;
default if option not present: 'false

--path
Source directory to create the class in; default: 'FOCUSED|SRC_MAIN_JAVA'

1.2.5.RELEASE 145

Command Index

--extends
The superclass (defaults to javalang.Object); default if option not present: ‘java.lang.Object’

--implements
The interface to implement; no default value

--abstract
Whether the generated class should be marked as abstract; default if option present: 'true’; default
if option not present: 'false

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false

A.3.2. constructor

Creates a class constructor

constructor

--class
The name of the classto receive this constructor; default if option not present: *'

--fields
Thefieldstoincludeinthe constructor. Multiplefield names must be adouble-quoted list separated
by spaces

A.3.3. enum constant

Inserts a new enum constant into an enum

enum const ant --nane

--class
The name of the enum class to receive thisfield; default if option not present: ™'

--name
The name of the constant; no default value (mandatory)

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false'

A.3.4. enum type

Creates anew Java enum source file in any project path

enum type --class

--class
The name of the enum to create; no default value (mandatory)

--path
Source directory to create the enum in; default: 'FOCUSED|SRC_MAIN_JAVA'

1.2.5.RELEASE 146

Command Index

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false'

A.3.5. focus

Changes focusto a different type

focus --class

--Class
The type to focus on; no default value (mandatory)

A.3.6. interface

Creates a new Java interface source file in any project path

interface --class

--class
The name of the interface to create; no default value (mandatory)

--path
Source directory to create the interface in; default: 'FOCUSED|SRC_MAIN_JAVA'

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false’

A.4. Controller Commands

Controller Commands are contained in
org.springframework.roo.addon.web.mvc.controller.ControllerCommands.

A.4.1. controller all

Scaffold controllers for all project entities without an existing controller - deprecated, use 'web mvc
setup' + ‘web mvc al' instead

controller all --package

--package
The package in which new controllers will be placed; no default value (mandatory)

A.4.2. controller scaffold

Create a new scaffold Controller (ie where we maintain CRUD automatically) - deprecated, use ‘web
mvc scaffold' instead

controller scaffold --class

--class
The path and name of the controller object to be created; no default value (mandatory)

1.2.5.RELEASE 147

Command Index

--entity
The name of the entity object which the controller exposes to the web tier; default if option not
present: ™

--path
The base path under which the controller listensfor RESTful requests (defaultsto the simple name
of the form backing object); no default value

--disallowedOperations
A comma separated list of operations (only create, update, delete allowed) that should not be
generated in the controller; no default value

A.4.3. web mvc all

Scaffold Spring MV C controllers for all project entities without an existing controller

web mvc all --package

--package
The package in which new controllers will be placed; no default value (mandatory)

A.4.4. web mvc scaffold

Create anew scaffold Controller (ie where Roo maintains CRUD functionality automatically)

web nmvc scaffold --class

--class
The path and name of the controller object to be created; no default value (mandatory)

--backingType
The name of the form backing type which the controller exposes to the web tier; default if option
not present: *'

--path
The base path under which the controller listensfor RESTful requests (defaultsto the simple name
of the form backing object); no default value

--disallowedOperations
A comma separated list of operations (only create, update, delete alowed) that should not be
generated in the controller; no default value

A.5. Creator Commands
Creator Commands are contained in org.springframework.roo.addon.creator.CreatorCommands.

A.5.1. addon create advanced

Create anew advanced add-on for Spring Roo (commands + operations + metadata + trigger annotation
+ dependencies)

addon create advanced --topLevel Package

1.2.5.RELEASE 148

Command Index

--topL evel Package
The top level package of the new addon; no default value (mandatory)

--description
Description of your addon (surround text with double quotes); no default value

--projectName
Provide a custom project name (if not provided the top level package name will be used instead);
no default value

A.5.2. addon create i18n

Create a new Internationalization add-on for Spring Roo

addon create i18n --toplLevel Package --1ocal e --nmessageBundl e

--topL evel Package
Thetop level package of the new addon; no default value (mandatory)

--locale
The locale abbreviation (ie: en, or more specific like en_AU, or de_DE); no default value
(mandatory)

--messageBundle
Fully qualified path to the messages xx.propertiesfile; no default value (mandatory)

--language
The full name of the language (used as alabel for the Ul); no default value

--flagGraphic
Fully qualified path to flag xx.png file; no default value

--description
Description of your addon (surround text with double quotes); no default value

--projectName
Provide a custom project name (if not provided the top level package name will be used instead);
no default value

A.5.3. addon create simple

Create anew simple add-on for Spring Roo (commands + operations)

addon create sinple --topLevel Package

--topL evel Package
Thetop level package of the new addon; no default value (mandatory)

--description
Description of your addon (surround text with double quotes); no default value

--projectName
Provide a custom project name (if not provided the top level package name will be used instead);
no default value

1.2.5.RELEASE 149

Command Index

A.5.4. addon create wrapper
Create anew add-on for Spring Roo which wraps amaven artifact to create a OSGi compliant bundle

addon create w apper --topLevel Package --groupld --artifactld --version --vendorNane --1i c%nseUrI

--topL evel Package
The top level package of the new wrapper bundle; no default value (mandatory)

--groupld
Dependency group id; no default value (mandatory)

--artifactld
Dependency artifact id); no default value (mandatory)

--version
Dependency version; no default value (mandatory)

--vendorName
Dependency vendor name); no default value (mandatory)

--licenseUrl
Dependency license URL; no default value (mandatory)

--docUrl
Dependency documentation URL ; no default value

--description
Description of the bundle (use keywords with #-tagsfor better search integration); no default value

--projectName
Provide a custom project name (if not provided the top level package name will be used instead);
no default value

--0sgil mports

Contents of Import-Package in OSGi manifest; no default value

A.6. Data On Demand Commands

Data On Demand Commands are contained in
org.springframework.roo.addon.dod.DataOnDemandCommands.

A.6.1. dod

Creates a new data on demand for the specified entity

dod

--entity
The entity which this data on demand class will create and modify as required; default if option
not present: *'

--class
The class which will be created to hold this data on demand provider (defaults to the entity name
+ 'DataOnDemand'); no default value

1.2.5.RELEASE 150

Command Index

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false'

A.7. Dbre Commands

Dbre Commands are contained in org.springframework.roo.addon.dbre.DbreCommands.

A.7.1. database introspect

Displays database metadata
dat abase introspect --schem
--schema

The database schema names. Multiple schema names must be a double-quoted list separated by
spaces; no default value (mandatory)

--file
The file to save the metadata to; no default value

--enableViews
Display database views; default if option present: 'true’; default if option not present: 'false

A.7.2. database reverse engineer

Create and update entities based on database metadata

dat abase reverse engi neer --schema

--schema
The database schema names. Multiple schema names must be a double-quoted list separated by
spaces; no default value (mandatory)

--package
The package in which new entities will be placed; no default value

--testAutomatically
Create automatic integration tests for entities; default if option present: 'true’; default if option not
present: ‘false

--enableViews
Reverse engineer database views; default if option present: 'true’; default if option not present:
‘false

--includeTables
The tables to include in reverse engineering. Multiple table names must be a double-quoted list
separated by spaces

--excludeTables
The tables to exclude from reverse engineering. Multiple table names must be a double-quoted
list separated by spaces

1.2.5.RELEASE 151

Command Index

--includeNonPortabl eAttributes
Include non-portable JPA @Column attributes such as 'columnDefinition’; default if option
present: 'true’; default if option not present: ‘false

--disableVersionFields
Disable 'version' field; default if option present: 'true’; default if option not present: 'false’

--disableGeneratedldentifiers
Disable identifier auto generation; default if option present: 'true’; default if option not present:
‘false

--activeRecord
Generate CRUD active record methods for each entity; default: ‘true’

--repository
Generate arepository for each entity; default if option present: 'true’; default if option not present:
false

--service
Generate a service for each entity; default if option present: 'true’; default if option not present:
‘false

A.8. Embedded Commands

Embedded Commands are contained in
org.springframework.roo.addon.web.mvc.embedded. EmbeddedCommands.

A.8.1. web mvc embed document

Embed a document for your WEB MV C application

web mvc enbed docunent --provider --docunentld

--provider
Theid of the document; no default value (mandatory)

--documentld
Theid of the document; no default value (mandatory)

--viewName
The name of the jspx view; no default value

A.8.2. web mvc embed generic

Embed media by URL into your WEB MV C application

web mvc enbed generic --url

--url
The url of the source to be embedded; no default value (mandatory)

--viewName
The name of the jspx view; no default value

1.2.5.RELEASE 152

Command Index

A.8.3. web mvc embed map

Embed a map for your WEB MV C application

web mvc enbed map --1ocation

--location
The location of the map (ie "Sydney, Australia"); no default value (mandatory)

--viewName
The name of the jspx view; no default value

A.8.4. web mvc embed photos

Embed a photo gallery for your WEB MV C application

web mvc enbed photos --provider --userld --al bund

--provider
The provider of the photo gallery; no default value (mandatory)

--userld
The user id; no default value (mandatory)

--albumid
The album id; no default value (mandatory)

--viewName
The name of the jspx view; no default value

A.8.5. web mvc embed stream video
Embed a video stream into your WEB MV C application

web mvc enbed stream video --provider --streamd

--provider
The provider of the video stream; no default value (mandatory)

--streamld
The stream id; no default value (mandatory)

--viewName
The name of the jspx view; no default value

A.8.6. web mvc embed twitter

Embed twitter messages into your WEB MV C application

web mvc enbed twitter --searchTerm

--searchTerm
The search term to display results for; no default value (mandatory)

1.2.5.RELEASE

153

Command Index

--viewName
The name of the jspx view; no default value

A.8.7. web mvc embed video

Embed a video for your WEB MV C application

web mvc enbed video --provider --videold

--provider
Theid of the video; no default value (mandatory)

--videold
Theid of the video; no default value (mandatory)

--viewName
The name of the jspx view; no default value

A.8.8. web mvc embed wave

Embed Google wave integration for your WEB MV C application

web mvc enbed wave --waveld

--waveld
The key of the wave; no default value (mandatory)

--viewName
The name of the jspx view; no default value

A.9. Equals Commands
Equals Commands are contained in org.springframework.roo.addon.equal s.Equal sCommands.

A.9.1. equals

Add equals and hashCode methods to a class

equal s

--class
The name of the class; default if option not present: "*'

--appendSuper
Whether to call the super class equals and hashCode methods; default if option present: 'true’;
default if option not present: 'false

--excludeFields
Thefieldsto excludein the equals and hashcode methods. Multiple field names must be adouble-
quoted list separated by spaces

A.10. Felix Delegator

Felix Delegator are contained in org.springframework.roo.felix.FelixDel egator.

1.2.5.RELEASE 154

Command Index

A.10.1.

A.10.2.

A.10.3.

A.10.4.

A.10.5.

A.10.6.

exit
Exits the shell
exit
This command does not accept any options.
osgi find

Finds bundles by name

osgi find --bundl eSynbol i cNane

--bundleSymbolicName
A bundle symbolic name to find; no default value (mandatory)

osgi framework command

Passes a command directly through to the Felix shell infrastructure

osgi framework conmand

--[default]
The command to pass to Felix (WARNING: no validation or security checks are performed);
default: 'help’

0sgi headers

Display headers for a specific bundle

osgi headers

--bundleSymbolicName
Limit results to a specific bundle symbolic name; no default value

osgi install

Installs abundle JAR from a given URL

osgi install --url

--url
The URL to obtain the bundle from; no default value (mandatory)

osgi log

Displays the OSGi log information

osgi |og

--maximumEntries
The maximum number of log messages to display; no default value

1.2.5.RELEASE 155

Command Index

--level
The minimum level of messages to display; no default value

A.10.7. osgi obr deploy

Deploys a specific OSGi Bundle Repository (OBR) bundle

osgi obr depl oy --bundl eSynbol i cNane

--bundleSymbolicName
The specific bundle to deploy; no default value (mandatory)

A.10.8. osgi obr info

Displays information on a specific OSGi Bundle Repository (OBR) bundle

osgi obr info --bundl eSynbol i cNanme

--bundleSymbolicName
The specific bundle to display information for; no default value (mandatory)

A.10.9. osgi obr list

Lists all available bundles from the OSGi Bundle Repository (OBR) system

osgi obr |ist

--keywords
Keywordsto locate; no default value

A.10.10. osgi obr start

Starts a specific OSGi Bundle Repository (OBR) bundle

osgi obr start --bundl eSynbol i cNanme

--bundleSymbolicName
The specific bundle to start; no default value (mandatory)

A.10.11. osgi obr url add

Adds anew OSGi Bundle Repository (OBR) repository file URL

osgi obr url add --url

--url
The URL to add (eg http://felix.apache.org/obr/releases.xml); no default value (mandatory)

A.10.12. osgi obr url list

Liststhe currently-configured OSGi Bundle Repository (OBR) repository file URLS

osgi obr url 1ist

1.2.5.RELEASE 156

Command Index

This command does not accept any options.

A.10.13. osgi obr url refresh

Refreshes an existing OSGi Bundle Repository (OBR) repository file URL

osgi obr url refresh --ur

--url
The URL to refresh (list existing URLs via'osgi obr url list); no default value (mandatory)

A.10.14. osgi obr url remove

Removes an existing OSGi Bundle Repository (OBR) repository file URL

osgi obr url renove --url

--url
The URL to remove (list existing URLs via'osgi obr url list"); no default value (mandatory)

A.10.15. osgi ps

Displays OSGi bundle information

0sgi ps

--format
The format of bundle information; default: 'BUNDLE_NAME'

A.10.16. osgi resolve

Resolves a specific bundle ID

osgi resolve --bundl eSynbol i cNanme

--bundleSymbolicName
The specific bundle to resolve; no default value (mandatory)

A.10.17. osgi scr config

Liststhe current SCR configuration

osgi scr config

This command does not accept any options.

A.10.18. osgi scr disable

Disables a specific SCR-defined component

osgi scr disable --conponentld

--componentld
The specific component identifier (use'osgi scr list' to list component identifiers); no default value
(mandatory)

1.2.5.RELEASE 157

Command Index

A.10.19. osgi scr enable

Enables a specific SCR-defined component

osgi scr enable --conponentld

--componentld
The specific component identifier (use'osgi scr list' to list component identifiers); no default value
(mandatory)

A.10.20. osgi scr info

Lists information about a specific SCR-defined component

osgi scr info --conponentld

--componentld
The specific component identifier (use'osgi scr list' to list component identifiers); no default value
(mandatory)

A.10.21. osgi scr list
Lists all SCR-defined components

osgi scr list

--bundleld
Limit results to a specific bundle; no default value

A.10.22. osgi start

Starts abundle JAR from a given URL

osgi start --ur

--url
The URL to obtain the bundle from; no default value (mandatory)

A.10.23. osgi uninstall
Uninstalls a specific bundle

osgi uninstall --bundl eSynbol i cNane

--bundleSymbolicName
The specific bundle to uninstall; no default value (mandatory)

A.10.24. osgi update

Updates a specific bundle

osgi update --bundl eSynbol i cNane

--bundleSymbolicName
The specific bundle to update ; no default value (mandatory)

1.2.5.RELEASE 158

Command Index

--url
The URL to obtain the updated bundle from; no default value

A.10.25. osgi version

Displays OSGi framework version

osgi version

This command does not accept any options.

A.11. Field Commands

A.11.1.

Field Commands are contained in org.springframework.roo.classpath.operations.FieldCommands.

field boolean

Adds a private boolean field to an existing Java sourcefile

field bool ean --fiel dNane

--fieldName
The name of the field to add; no default value (mandatory)

--class
The name of the classto receive thisfield; default if option not present: '**

--notNull
Whether this value cannot be null; default if option present: 'true’; default if option not present:
'false

--nullRequired
Whether thisvalue must be null; default if option present: 'true’; default if option not present: 'false'

--assertFalse
Whether this value must assert false; default if option present: 'true’; default if option not present:
‘false

--assertTrue
Whether this value must assert true; default if option present: ‘true’; default if option not present:
‘false

--column
The JPA @Column name; no default value

--value
Inserts an optional Spring @V alue annotation with the given content; no default value

--comment
An optional comment for JavaDocs; no default value
--primitive
Indicatesto use aprimitivetype; default if option present: 'true’; default if option not present: 'false'

1.2.5.RELEASE 159

Command Index

A.11.2.

--transient
Indicatesto mark thefield astransient; default if option present: ‘true’; default if option not present:
‘false

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false'

field date

Adds a private date field to an existing Java source file

field date --fiel dNane --type

--fieldName
The name of the field to add; no default value (mandatory)

--type
The Java type of the entity; no default value (mandatory)

--persistenceType
The type of persistent storage to be used; no default value

--class
The name of the classto receive thisfield; default if option not present: "'

--notNull
Whether this value cannot be null; default if option present: 'true’; default if option not present:
‘false

--nullRequired
Whether thisvalue must be null; default if option present: 'true’; default if option not present: 'false'

--future
Whether this value must be in the future; default if option present: ‘'true’; default if option not
present: ‘false

--pas[
Whether thisvalue must bein the past; default if option present: 'true’; default if option not present:
false

--column
The JPA @Column name; no default value

--comment
An optional comment for JavaDocs; no default value

--value
Inserts an optional Spring @V alue annotation with the given content; no default value

--transient
Indicatesto mark thefield astransient; default if option present: ‘true’; default if option not present:
‘false

1.2.5.RELEASE 160

Command Index

A.11.3.

A.11.4.

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false'

--dateFormat
Indicates the style of the date format (ignored if dateTimeFormatPattern is specified); default:
'MEDIUM'

--timeFormat
Indicates the style of the time format (ignored if dateTimeFormatPattern is specified); default:
'NONE'

--dateTimeFormatPattern
Indicates a DateTime format pattern such as yyyy-MM-dd hh:mm:ss a; no default value

field embedded

Adds a private @Embedded field to an existing Java source file

field enbedded --fieldNanme --type

--fieldName
The name of the field to add; no default value (mandatory)

--type
The Java type of the @Embeddabl e class; no default value (mandatory)

--class
The name of the @Entity classto receive thisfield; default if option not present; ™'

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false'

field enum
Adds a private enum field to an existing Java source file

field enum--fiel dNane --type

--fieldName
The name of the field to add; no default value (mandatory)

--type
The enum type of thisfield; no default value (mandatory)

--class
The name of the classto receive thisfield; default if option not present: "'

--column
The JPA @Column name; no default value

--notNull
Whether this value cannot be null; default if option present: 'true’; default if option not present:
'false'

1.2.5.RELEASE 161

Command Index

A.115.

A.11.6.

--nullRequired
Whether thisvalue must be null; default if option present: 'true’; default if option not present: 'false'

--enumType
The fetch semantics at a JPA level; no default value

--comment
An optional comment for JavaDocs; no default value

--transient
Indicatesto mark thefield astransient; default if option present: 'true’; default if option not present:
‘false

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false

field file

Adds abyte array field for storing uploaded file contents (JSF-scaffolded Uls only)

field file --fiel dNanme --content Type

--fieldName
The name of the file upload field to add; no default value (mandatory)

--class
The name of the classto receive thisfield; default if option not present: "'

--contentType
The content type of the file; no default value (mandatory)

--autoUpload
Whether the file is uploaded automatically when selected; default if option present: 'true’; default
if option not present: 'false

--column
The JPA @Column name; no default value

--notNull
Whether this value cannot be null; default if option present: 'true’; default if option not present:
false'

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false’

field list
Adds aprivate List field to an existing Java source file (eg the 'one' side of a many-to-one)

field list --fieldNane --type

--fieldName
The name of the field to add; no default value (mandatory)

1.2.5.RELEASE 162

Command Index

A.l1l.7.

--type
The entity which will be contained within the Set; no default value (mandatory)

--class
The name of the class to receive this field; default if option not present: "'

--mappedBy
The field name on the referenced type which owns the relationship; no default value

--notNull
Whether this value cannot be null; default if option present: 'true’; default if option not present:
‘false

--nullRequired
Whether thisvalue must be null; default if option present: 'true’; default if option not present: 'false'

--sizeMin
The minimum number of e ements in the collection; no default value

--sizeMax
The maximum number of e ements in the collection; no default value

--cardinality
Therelationship cardinality at a JPA level; default: ' MANY_TO_MANY'

--fetch
The fetch semantics at a JPA level; no default value

--comment
An optional comment for JavaDocs; no default value

--transient
Indicatesto mark thefield astransient; default if option present: 'true’; default if option not present:
‘false

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false

field number

Adds a private numeric field to an existing Java sourcefile

field nunber --fieldNane --type

--fieldName
The name of the field to add; no default value (mandatory)

--type
The Javatype of the entity; no default value (mandatory)

--class
The name of the class to receive this field; default if option not present: ™'

1.2.5.RELEASE 163

Command Index

A.11.8.

--notNull
Whether this value cannot be null; default if option present: ‘true’; default if option not present:
false'

--nullRequired
Whether thisvalue must be null; default if option present: 'true’; default if option not present: 'false'

--decimaMin
The BigDecimal string-based representation of the minimum value; no default value

--decimalMax
The BigDecimal string based representation of the maximum value; no default value

--digitsinteger
Maximum number of integral digits accepted for this number; no default value

--digitsFraction
Maximum number of fractional digits accepted for this number; no default value

--min
The minimum value; no default value

--max
The maximum value; no default value

--column
The JPA @Column name; no default value

--comment
An optional comment for JavaDocs; no default value

--value
Inserts an optional Spring @V alue annotation with the given content; no default value

--transient
Indicatesto mark thefield astransient; default if option present: ‘true’; default if option not present:
‘false

--primitive
Indicates to use a primitive type if possible; default if option present: 'true’; default if option not

present: ‘false

--unique
Indicateswhether to mark thefield with aunique constraint; default if option present: 'true’; default
if option not present: 'false'

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false’

field other
Inserts a private field into the specified file

field other --fieldNane --type

1.2.5.RELEASE 164

Command Index

A.11.9.

--fieldName
The name of the field; no default value (mandatory)

--type
The Javatype of thisfield; no default value (mandatory)

--class
The name of the classto receive thisfield; default if option not present: '*'

--notNull
Whether this value cannot be null; default if option present: 'true’; default if option not present:
'false

--nullRequired
Whether thisvalue must be null; default if option present: ‘true’; default if option not present: 'false’

--comment
An optional comment for JavaDocs; no default value

--column
The JPA @Column name; no default value

--value
Inserts an optional Spring @V alue annotation with the given content; no default value

--transient
Indicatesto mark thefield astransient; default if option present: 'true’; default if option not present:
‘false

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present; ‘false

field reference

Adds a private reference field to an existing Java source file (eg the 'many’ side of a many-to-one)

field reference --fieldNane --type

--fieldName
The name of the field to add; no default value (mandatory)

--type
The Javatype of the entity to reference; no default value (mandatory)

--class
The name of the class to receive this field; default if option not present: ™'

--notNull
Whether this value cannot be null; default if option present: 'true’; default if option not present:
false

--nullRequired
Whether thisvalue must be null; default if option present: 'true’; default if option not present: 'false'

1.2.5.RELEASE 165

Command Index

--joinColumnName
The JPA @JoinColumn name; no default value

--referencedColumnName
The JPA @JoinColumn referencedColumnName; no default value

--cardinality
Therelationship cardinality at a JPA level; default: 'MANY_TO_ONE'

--fetch
The fetch semantics at a JPA level; no default value

--comment
An optional comment for JavaDocs; no default value

--transient
Indicatesto mark thefield astransient; default if option present: 'true’; default if option not present:
‘false

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: ‘false'

A.11.10. field set

Adds a private Set field to an existing Java source file (eg the 'one' side of a many-to-one)

field set --fieldNanme --type

--fieldName
The name of the field to add; no default value (mandatory)

--type
The entity which will be contained within the Set; no default value (mandatory)

--class
The name of the classto receive thisfield; default if option not present: "'

--mappedBYy
The field name on the referenced type which owns the relationship; no default value

--notNull
Whether this value cannot be null; default if option present: 'true’; default if option not present:
false

--nullRequired
Whether thisvalue must be null; default if option present: 'true’; default if option not present: 'false'

--sizeMin
The minimum number of e ements in the collection; no default value

--sizeMax
The maximum number of e ementsin the collection; no default value

1.2.5.RELEASE 166

Command Index

--cardinality
Therelationship cardinaity at a JPA level; default: ' MANY_TO_MANY"

--fetch
The fetch semantics at a JPA level; no default value

--comment
An optional comment for JavaDocs; no default value

--transient
Indicatesto mark thefield astransient; default if option present: ‘true’; default if option not present:
‘false

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false’

A.11.11. field string

Adds a private string field to an existing Java source file

field string --fiel dNanme

--fieldName
The name of the field to add; no default value (mandatory)

--class
The name of the classto receive thisfield; default if option not present: "'

--notNull
Whether this value cannot be null; default if option present: 'true’; default if option not present:
‘false

--nullRequired
Whether thisvalue must be null; default if option present: 'true’; default if option not present: 'false'

--decimaMin
The BigDecimal string-based representation of the minimum value; no default value

--decimalMax

The BigDecimal string based representation of the maximum value; no default value
--sizeMin

The minimum string length; no default value

--SizeMax
The maximum string length; no default value

--regexp
The required regular expression pattern; no default value

--column
The JPA @Column name; no default value

1.2.5.RELEASE 167

Command Index

--value
Inserts an optional Spring @V alue annotation with the given content; no default value

--comment
An optional comment for JavaDocs; no default value

--transient
Indicatesto mark thefield astransient; default if option present: 'true’; default if option not present:
'false

--unique
Indicateswhether to mark the field with aunique constraint; default if option present: ‘true’; default
if option not present: ‘false

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false’

--lob
Indicates that this field is a Large Object; default if option present: 'true’; default if option not
present: ‘false

A.12. Finder Commands

A.12.1.

A.12.2.

Finder Commands are contained in org.springframework.roo.addon.finder.FinderCommands.

finder add

Install findersin the given target (must be an entity)

finder add --finderNanme

--class
The controller or entity for which the finders are generated; default if option not present: *"

--finderName
The finder string as generated with the 'finder list' command; no default value (mandatory)

finder list

List al findersfor a given target (must be an entity)

finder |ist

--class
The controller or entity for which the finders are generated; default if option not present: *'

--depth
The depth of attribute combinations to be generated for the finders; default: '1'

--filter
A comma separated list of strings that must be present in afilter to be included; no default value

1.2.5.RELEASE 168

Command Index

A.13. Gwt Commands

A.13.1.

A.13.2.

A.13.3.

A.13.4.

A.13.5.

A.13.6.

Gwt Commands are contained in org.springframework.roo.addon.gwt.GwtCommands.

gwt setup

Install Google Web Toolkit (GWT) into your project - deprecated, use ‘web gwt setup' instead

gw setup
This command does not accept any options.

web gwt all

Locates all entitiesin the project and creates GWT requests, proxies and creates the scaffold

web gwt all --proxyPackage --requestPackage

--proxyPackage
The package in which created proxies will be placed; no default value (mandatory)

--requestPackage
The package in which created requests will be placed; no default value (mandatory)

web gwt gae update

Updates the GWT project to support GAE

web gwt gae update
This command does not accept any options.

web gwt proxy all

Locates all entitiesin the project and creates GWT proxies

web gwt proxy all --package

--package
The package in which created proxies will be placed; no default value (mandatory)

web gwt proxy request all

Locates all entitiesin the project and creates GWT requests and proxies

web gwt proxy request all --package

--package
The package in which created proxies and requests will be placed; no default value (mandatory)

web gwt proxy request type

Creates a proxy and request based on the specified type

1.2.5.RELEASE 169

Command Index

web gwt proxy request type --package --type

--package
The package in which created proxies and requests will be placed; no default value (mandatory)

--type
The type to base the created proxy and request on; no default value (mandatory)

A.13.7. web gwt proxy type

Createsa GWT proxy based on the specified type

web gwt proxy type --package --type

--package
The package in which created proxies will be placed; no default value (mandatory)

--type
The type to base the created request on; no default value (mandatory)

A.13.8. web gwt request all

Locates all entitiesin the project and creates GWT requests

web gwt request all --package

--package
The package in which created requests will be placed; no default value (mandatory)

A.13.9. web gwt request type
Createsa GWT proxy based on the specified type

web gwt request type --package --type

--package
The package in which created requests will be placed; no default value (mandatory)

--type
The type to base the created request on; no default value (mandatory)

A.13.10. web gwt scaffold
Createsa GWT request, proxy and scaffold for the specified

web gwt scaffold --proxyPackage --request Package --type

--proxyPackage
The package in which created proxies will be placed; no default value (mandatory)

--requestPackage
The package in which created requests will be placed; no default value (mandatory)

--type
The type to base the created scaffold on; no default value (mandatory)

1.2.5.RELEASE 170

Command Index

A.13.11. web gwt setup

Install Google Web Toolkit (GWT) into your project

web gwt setup

This command does not accept any options.

A.14. Hint Commands

A.14.1.

Hint Commands are contained in org.springframework.roo.classpath.operations.HintCommands.
hint
Provides step-by-step hints and context-sensitive guidance

hi nt

--topic
The topic for which advice should be provided

A.15. Integration Test Commands

A.15.1.

A.15.2.

Integration Test Commands are contained in
org.springframework.roo.addon.test.I ntegrationTestCommands.

test integration
Creates a new integration test for the specified entity

test integration

--entity
The name of the entity to create an integration test for; default if option not present: "**

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present; ‘false

--transactional
Indicates whether the created test cases should be run withing a Spring transaction; default: 'true

test mock

Creates amock test for the specified entity

test nock

--entity
The name of the entity this mock test is targeting; default if option not present: "*'

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false'

1.2.5.RELEASE 171

Command Index

A.15.3. test stub

Creates atest stub for the specified class

test stub

--class
The name of the class this mock test is targeting; default if option not present: *'

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false'

A.16. J Line Shell Component

J Line Shell Component are contained in
org.springframework.roo.shell.jline.osgi.JLineShell Component.

A.16.1. %/

End of block comment

*/

This command does not accept any options.

A.16.2. [*

Start of block comment

/*

This command does not accept any options.

A.16.3. /1

Inline comment markers (start of line only)

Il

This command does not accept any options.

A.16.4. date

Displaysthelocal date and time

date

This command does not accept any options.

A.16.5. flash test

Tests message flashing

1.2.5.RELEASE 172

Command Index

A.16.6.

A.16.7.

A.16.8.

flash test

This command does not accept any options.
script

Parses the specified resource file and executes its commands

script --file

--file
Thefile to locate and execute; no default value (mandatory)

--lineNumbers
Display line numbers when executing the script; default if option present: 'true’; default if option
not present: 'false

system properties

Shows the shell's properties

system properties

This command does not accept any options.

version

Displays shell version

ver si on

--[default]
Special version flags; no default value

A.17. Jms Commands

A.l7.1.

Jms Commands are contained in org.springframework.roo.addon.jms.JmsCommands.

field jms template

Insert a JmsOperations field into an existing type

field jms tenplate

--fieldName
The name of the field to add; default: jmsOperations

--class
The name of the classto receive thisfield; default if option not present: "'

--async
Indicates if the injected method should be executed asynchronously; default if option present:
'true’; default if option not present: 'false

1.2.5.RELEASE 173

Command Index

A.l7.2.

A.17.3.

jms listener class

Create an asynchronous JM S consumer

jms listener class --class

--class
The name of the class to create; no default value (mandatory)

--destinationName
The name of the destination; default: 'myDestination’

--degtinationType
The type of the destination; default: 'QUEUE'

jms setup

Install aJMS provider into your project

jme setup --provider

--provider
The persistence provider to support; no default value (mandatory)

--destinationName
The name of the destination; default: 'myDestination’

--degtinationType
The type of the destination; default: 'QUEUE'

A.18. Jpa Commands

A.18.1.

A.18.2.

A.18.3.

Jpa Commands are contained in org.springframework.roo.addon.jpa.JpaCommands.

database properties list

Shows database configuration details

dat abase properties |ist
This command does not accept any options.

database properties remove

Removes a particul ar database property

dat abase properties renove --key

__key
The property key that should be removed; no default value (mandatory)

database properties set

Changes a particular database property

1.2.5.RELEASE

174

Command Index

A.18.4.

A.18.5.

dat abase properties set --key --val ue

__key
The property key that should be changed; no default value (mandatory)

--value
The new vale for this property key; no default value (mandatory)

embeddable

Creates a new Java class source file with the JPA @Embeddable annotation in SRC_MAIN_JAVA

enbeddabl e --cl ass

--class
The name of the class to create; no default value (mandatory)

--seridizable
Whether the generated class should implement java.io.Serializable; default if option present: 'true’;
default if option not present: 'false

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: ‘false'

entity jpa
Creates a new JPA persistent entity in SRC_MAIN_JAVA

entity jpa --class

--class
Name of the entity to create; no default value (mandatory)

--extends
The superclass (defaults to javalang.Object); default if option not present: ‘java.lang.Object’

--implements
The interface to implement; no default value

--abstract
Whether the generated class should be marked as abstract; default if option present: 'true’; default
if option not present: 'false

--testAutomatically
Create automatic integration tests for this entity; default if option present: 'true’; default if option
not present: 'false

--table
The JPA table name to use for this entity; no default value

--schema
The JPA table schema name to use for this entity; no default value

1.2.5.RELEASE 175

Command Index

--catalog
The JPA table catalog name to use for this entity; no default value

--identifierField
The JPA identifier field name to use for this entity; no default value

--identifierColumn
The JPA identifier field column to use for this entity; no default value

--identifierType
The data type that will be used for the JPA identifier field (defaults to javalang.Long); default:
'javalang.Long’

--versionField
The JPA version field name to use for this entity; no default value

--versionColumn
The JPA version field column to use for this entity; no default value

--versionType
The data type that will be used for the JPA version field (defaults to javalang.Integer); default if
option not present: 'java.lang.Integer'

--inheritanceType
The JPA @I nheritance value (apply to base class); no default value

--mappedSuperclass
Apply @MappedSuperclass for this entity; default if option present: 'true’; default if option not
present: 'false

--equals
Whether the generated class should implement equals and hashCode methods; default if option
present: 'true’; default if option not present: ‘false'

--seridizable
Whether the generated class should implement java.io.Serializable; default if option present: 'true’;
default if option not present: ‘false'

--persistenceUnit
The persistence unit name to be used in the persistence.xml file; no default value

--transactionManager
The transaction manager name; no default value

--permitReservedWords
Indicates whether reserved words are ignored by Roo; default if option present: 'true’; default if
option not present: 'false'

--entityName
The name used to refer to the entity in queries; no default value

--sequenceName
The name of the sequence for incrementing sequence-driven primary keys; no default value

1.2.5.RELEASE 176

Command Index

A.18.6.

A.18.7.

--activeRecord
Generate CRUD active record methods for this entity; default: ‘true’

jpa setup
Install or updates a JPA persistence provider in your project

jpa setup --provider --database

--provider
The persistence provider to support; no default value (mandatory)

--database
The database to support; no default value (mandatory)

--applicationid
The Google App Engine application identifier to use; default if option not present: 'the project's
name'

--jndiDataSource
The INDI datasource to use; no default value

--hostName
The host name to use; no default value

--databaseName
The database name to use; no default value

--userName
The username to use; no default value

--password
The password to use; no default value

--transactionM anager
The transaction manager name; no default value

--persistenceUnit
The persistence unit name to be used in the persistence.xml file; no default value

persistence setup
Install or updates a JPA persistence provider in your project - deprecated, use 'jpa setup' instead

persi stence setup --provider --database

--provider
The persistence provider to support; no default value (mandatory)

--database
The database to support; no default value (mandatory)

--applicationld
The Google App Engine application identifier to use; default if option not present: ‘the project's
name'

1.2.5.RELEASE 177

Command Index

--jndiDataSource
The INDI datasource to use; no default value

--hostName
The host name to use; no default value

--databaseName
The database name to use; no default value

--userName
The username to use; no default value

--password
The password to use; no default value

--transactionM anager
The transaction manager name; no default value

--persistencelnit

The persistence unit name to be used in the persistence.xml file; no default value

A.19. Jsf Commands

A.19.1.

A.19.2.

A.19.3.

Jsf Commands are contained in org.springframework.roo.addon.jsf.JsfCommands.

web jsf all

Create JSF managed beans for all entities

web jsf all --package

--package

The package in which new JSF managed beans will be placed; no default value (mandatory)

web jsf media

Add a cross-browser generic player to embed multimedia content

web jsf media --url

--url

The url of the media source; no default value (mandatory)

--player
The name of the media player; no default value

web jsf scaffold

Create JSF managed bean for an entity

web jsf scaffold --class

--class

The path and name of the JSF managed bean to be created; no default value (mandatory)

1.2.5.RELEASE

178

Command Index

A.19.4.

--entity
The entity which this JSF managed bean class will create and modify as required; default if option
not present: *'

--beanName
The name of the managed bean to use in the 'name' attribute of the @M anagedBean annotation;
no default value

--includeOnMenu
Include this entity on the generated JSF menu; default: 'true

web jsf setup

Set up JSF environment

web jsf setup

--implementation
The JSF implementation to use; no default value

--library
The JSF component library to use; no default value

--theme
The name of the theme; no default value

A.20. Json Commands

A.20.1.

A.20.2.

Json Commands are contained in org.springframework.roo.addon.json.JsonCommands.

json add

Adds @RooJson annotation to target type

j son add

--class
The javatype to apply this annotation to; default if option not present: "*'

--rootName
The root name which should be used to wrap the JISON document; no default value

--deepSerialize
Indication if deep serialization should be enabled.; default if option present: 'true’; default if option
not present: 'false

--is08601Dates
Indication if dates should be formatted according to 1SO 8601; default if option present: 'true’;
default if option not present: ‘false

json all

Adds @RooJson annotation to all types annotated with @RooJavaBean

1.2.5.RELEASE 179

Command Index

j son al

--deepSerialize
Indication if deep serialization should be enabled; default if option present: 'true’; default if option
not present: 'false

--is08601Dates
Indication if dates should be formatted according to 1SO 8601; default if option present: ‘true’;
default if option not present: ‘false

A.21. Jsp Commands
Jsp Commands are contained in org.springframework.roo.addon.web.mvc.jsp.JspCommands.

A.21.1. controller class

Createanew manual Controller (iewhereyou writethe methods) - deprecated, use ‘'web mvc controller'
instead

controller class --class

--class
The path and name of the controller object to be created; no default value (mandatory)

--preferredM apping
Indicates a specific request mapping path for this controller (eg /foo/); no default value

A.21.2. web mvc controller

Create anew manual Controller (ie where you write the methods)

web mvc controller --class

--Class
The path and name of the controller object to be created; no default value (mandatory)

--preferredMapping
Indicates a specific request mapping path for this controller (eg /foo/); no default value

A.21.3. web mvc install language

Install new internationalization bundle for MV C scaffolded Ul.

web nmvc install |anguage --code

--code
The language code for the desired bundle; no default value (mandatory)

A.21.4. web mvc install view

Create anew static view.

web mvc install view --path --viewNane --title

1.2.5.RELEASE 180

Command Index

--path
The path the static view to create in (required, ie /foo/blah’); no default value (mandatory)

--viewName
The view name the mapping this view should adopt (required, ie 'index’); no default value
(mandatory)

--title
Thetitle of the view; no default value (mandatory)

A.21.5. web mvc language

Install new internationalization bundle for MV C scaffolded Ul.

web mvc | anguage --code

--code
The language code for the desired bundle; no default value (mandatory)

A.21.6. web mvc setup

Setup abasic project structure for a Spring MV C / JSP application

web mvc setup
This command does not accept any options.

A.21.7. web mvc update tags

Replace an existing application tagx library with the latest version (use --backup option to backup your
application first)

web mvc update tags

--backup
Backup your application before replacing your existing tag library; default if option present: 'true’;
default if option not present: 'false

A.21.8. web mvc view

Create anew static view.

web mvc view --path --viewName --title

--path
The path the static view to create in (required, ie '/foo/blah’); no default value (mandatory)

--viewName
The view name the mapping this view should adopt (required, ie 'index’); no default value
(mandatory)

--title
Thetitle of the view; no default value (mandatory)

1.2.5.RELEASE 181

Command Index

A.22. Logging Commands
Logging Commands are contained in org.springframework.roo.addon.logging.L oggingCommands.
A.22.1. logging setup

Configure logging in your project

| oggi ng setup --1evel

--level
Thelog level to configure; no default value (mandatory)

--package
The package to append the logging level to (all by default); no default value

A.23. Mail Commands

Mail Commands are contained in org.springframework.roo.addon.email.Mail Commands.

A.23.1. email sender setup

Install a Spring JavaMailSender in your project

emai | sender setup --host Server

--hostServer
The host server; no default value (mandatory)

--protocol
The protocol used by mail server; no default value

--port
The port used by mail server; no default value

--encoding
The encoding used for mail; no default value

--username
The mail account username; no default value

--password
The mail account password; no default value

A.23.2. email template setup

Configures atemplate for a SimpleMailM essage

emai|l tenplate setup

--from
The 'from' email (optional); no default value

1.2.5.RELEASE 182

Command Index

A.23.3.

--subject
The message subject (obtional); no default value

field email template
Inserts a Mail Template field into an existing type

field enmil tenplate

--fieldName
The name of the field to add; default: ‘'mail Template'

--class
The name of the classto receive thisfield; default if option not present: '**

--async
Indicates if the injected method should be executed asynchronously; default if option present:
'true’; default if option not present: 'false

A.24. Maven Commands

A.24.1.

A.24.2.

Maven Commands are contained in org.springframework.roo.project.MavenCommands.

dependency add

Adds a new dependency to the Maven project object model (POM)

dependency add --groupld --artifactld --version

--groupld
The group ID of the dependency; no default value (mandatory)

--artifactld
The artifact 1D of the dependency; no default value (mandatory)

--version
The version of the dependency; no default value (mandatory)

--classifier
The classifier of the dependency; no default value

--scope
The scope of the dependency; no default value

dependency remove

Removes an existing dependency from the Maven project object model (POM)

dependency renove --groupld --artifactld --version

--groupld
The group ID of the dependency; no default value (mandatory)

--artifactld
The artifact 1D of the dependency; no default value (mandatory)

1.2.5.RELEASE 183

Command Index

A.24 3.

A.24.4,

A.24.5.

--version
The version of the dependency; no default value (mandatory)

--classifier
The classifier of the dependency; no default value

maven repository add

Adds a new repository to the Maven project object model (POM)

maven repository add --id --url

--id
The ID of the repository; no default value (mandatory)

--name
The name of the repository; no default value

--url
The URL of the repository; no default value (mandatory)

maven FGDOSitOI‘y remove

Removes an existing repository from the Maven project object model (POM)

maven repository renove --id --url

--id
The ID of the repository; no default value (mandatory)

--url
The URL of the repository; no default value (mandatory)

module create

Creates a new Maven module

nodul e create --nodul eNane --toplLevel Package

--moduleName
The name of the module; no default value (mandatory)

--topL evel Package

The uppermost package name (this becomes the <groupld> in Maven and also the '~' value when

using Roo's shell); no default value (mandatory)

--java

Forces aparticular major version of Javato be used (will be auto-detected if unspecified; specify

6 or 7 only); no default value

--parent

The Maven coordinates of the parent POM, in the form "groupld:artifactld:version"; no default

value

1.2.5.RELEASE

Command Index

--packaging
The Maven packaging of this module; default if option not present: 'jar’

--artifactld
The artifact ID of this module (defaults to moduleName if not specified); no default value

A.24.6. module focus

Changes focusto a different project module

nodul e focus --nodul eNane

--moduleName
The module to focus on; no default value (mandatory)

A.24.7. perform assembly

Executes the assembly goal viaMaven

perform assenbl y
This command does not accept any options.

A.24.8. perform clean

Executes afull clean (including Eclipse files) viaMaven

perform cl ean

This command does not accept any options.

A.24.9. perform command

Executes a user-specified Maven command

per form conmand - - mavenComrand

--mavenCommand
User-specified Maven command (eg test:test); no default value (mandatory)

A.24.10. perform eclipse

Sets up Eclipse configuration viaMaven (only necessary if you have not installed the m2eclipse plugin
in Eclipse)

perform eclipse
This command does not accept any options.

A.24.11. perform package

Packages the application using Maven, but does not execute any tests

per f or m package

1.2.5.RELEASE 185

Command Index

This command does not accept any options.

A.24.12. perform tests

Executes the tests via Maven

performtests

This command does not accept any options.

A.24.13. project

Creates anew Maven project

proj ect --topLevel Package

--topL evel Package
The uppermost package name (this becomes the <groupld> in Maven and aso the '~' value when
using Roo's shell); no default value (mandatory)

--projectName
The name of the project (last segment of package name used as default); no default value

--java
Forces a particular magjor version of Javato be used (will be auto-detected if unspecified; specify
5or 6 or 7 only); no default value

--parent
The Maven coordinates of the parent POM, in the form "groupld:artifactld:version"; no default
value

--packaging
The Maven packaging of this project; default if option not present: 'jar'

A.25. Metadata Commands

A.25.1.

A.25.2.

Metadata Commands are contained in org.springframework.roo.classpath.M etadataCommands.

metadata cache

Shows detailed metadata for the indicated type

nmet adat a cache - - naxi munCapacity

--maximumCapacity
The maximum number of metadata items to cache; no default value (mandatory)

metadata for id

Shows detailed information about the metadata item

netadata for id --netadatald

1.2.5.RELEASE 186

Command Index

A.25.3.

A.25.4.

A.25.5.

A.25.6.

--metadatald
The metadata |D (should start with M1D:); no default value (mandatory)

metadata for module

Shows the ProjectM etadata for the indicated project module

net adata for nodul e

--module
The module for which to retrieve the metadata (defaults to the focused module); no default value

metadata for type
Shows detailed metadata for the indicated type

net adata for type --type

--type
The Java type for which to display metadata; no default value (mandatory)

metadata status

Shows metadata statistics

net adat a st at us
This command does not accept any options.

metadata trace

Traces metadata event delivery notifications

net adata trace --1evel

--level
The verbosity of notifications (O=none, 1=some, 2=all); no default value (mandatory)

A.26. Mongo Commands

A.26.1.

Mongo Commands are contained in
org.springframework.roo.addon.layers.repository.mongo.MongoCommands.

entity mongo

Creates a domain entity which can be backed by a MongoDB repository

entity nongo --class

--class
Implementation class for the specified interface; no default value (mandatory)

--identifierType
The ID type to be used for this domain type (defaults to Biginteger); no default value

1.2.5.RELEASE 187

Command Index

A.26.2.

A.26.3.

--testAutomatically
Create automatic integration tests for this entity; default if option present: 'true’; default if option
not present: 'false

mongo setup

Configures the project for MongoDB peristence.

nongo set up

--username
Username for accessing the database (defaults to "); no default value

--password
Password for accessing the database (defaults to "); no default value

--databaseName
Name of the database (defaults to project name); no default value

--port
Port for the database (defaultsto '27017"); no default value

--host
Host for the database (defaultsto '127.0.0.1"); no default value

--cloudFoundry
Deploy to CloudFoundry (defaults to 'false); default if option present: ‘true’; default if option not
present: ‘false

repository mongo

Adds @RooM ongoRepository annotation to target type

repository nongo --interface

--interface
The javainterface to apply this annotation to; no default value (mandatory)

--entity
The domain entity this repository should expose; default if option not present: "'

A.27. Os Commands

A.27.1.

Os Commands are contained in org.springframework.roo.addon.oscommands.OsCommands.
|

Allows execution of operating system (OS) commands.

--command
The command to execute; default: "

1.2.5.RELEASE 188

Command Index

A.28. Pgp Commands

A.28.1.

A.28.2.

A.28.3.

A.28.4.

A.28.5.

A.28.6.

Pgp Commands are contained in org.springframework.roo.felix.pgp.PgpCommands.

pgp automatic trust

Indicates to automatically trust all keys encountered until the command isinvoked again

pgp automatic trust
This command does not accept any options.
pgp key view

Downloads aremote key and displaysit to the user (does not change any trusts)

pgp key view --keyld

--keyld
The key 1D to view (eg 00B5050F or 0x00B5050F); no default value (mandatory)

pgp list trusted keys

Liststhe keysyou currently trust and have not been revoked at the time last downloaded from a public
key server

pgp list trusted keys
This command does not accept any options.

pgp refresh all

Refreshes all keys from public key servers

pgp refresh all
This command does not accept any options.

pgp status

Displays the status of the PGP environment

pgp status
This command does not accept any options.
pgp trust

Grantstrust to a particular key ID

pgp trust --keyld

--keyld
Thekey 1D to trust (eg 00B5050F or 0x00B5050F); no default value (mandatory)

1.2.5.RELEASE 189

Command Index

A.28.7. pgp untrust

Revokes your trust for a particular key 1D

pgp untrust --keyld

--keyld

The key I1D to remove trust from (eg 00B5050F or 0xO0B5050F); no default value (mandatory)

A.29. Process Manager Commands

Process Manager Commands are contained
org.springframework.roo.process.manager . ProcessM anagerCommands.

A.29.1. development mode

Switches the system into development mode (greater diagnostic information)

devel opment node

--enabled
Activates development mode; default: 'true’

A.29.2. poll now

Perform amanual file system poll

pol | now
This command does not accept any options.

A.29.3. poll speed

Changes the file system polling speed

pol | speed --ns

--ms
The number of milliseconds between each poll; no default value (mandatory)

A.29.4. poll status

Display file system polling information

pol | status

This command does not accept any options.

A.30. Process Manager Diagnostics Listener

Process Manager Diagnostics Listener are contained
org.springframework.roo.process.manager.internal .ProcessM anagerDiagnosti csListener.

1.2.5.RELEASE

190

Command Index

A.30.1.

process manager debug
Indicates if process manager debugging is desired

process manager debug

--enabled
Activates debug mode; default: 'true

A.31. Prop File Commands

A.31.1.

A.31.2.

A.31.3.

Prop File Commands are contained in org.springframework.roo.addon.propfiles.PropFileCommands.

properties list

Shows the details of a particular propertiesfile

properties list --name --path

--name
Property file name (including .properties suffix); no default value (mandatory)

--path
Source path to property file; no default value (mandatory)

properties remove
Removes a particular properties file property

properties renove --name --path --key

--name
Property file name (including .properties suffix); no default value (mandatory)

--path
Source path to property file; no default value (mandatory)

__key
The property key that should be removed; no default value (mandatory)

properties set

Changes a particular properties file property

properties set --name --path --key --value

--name
Property file name (including .properties suffix); no default value (mandatory)

--path
Source path to property file; no default value (mandatory)

__key
The property key that should be changed; no default value (mandatory)

1.2.5.RELEASE 191

Command Index

--value

The new vale for this property key; no default value (mandatory)

A.32. Proxy Configuration Commands

Proxy Configuration Commands are contained in
org.springframework.roo.url.stream.jdk.ProxyConfigurationCommands.

A.32.1. proxy configuration

Shows the proxy server configuration

proxy configuration

This command does not accept any options.

A.33. Repository Jpa Commands

A.33.1.

Repository Jpa Commands are contained in
org.springframework.roo.addon.layers.repository.jpa.RepositoryJpaCommands.

repository jpa

Adds @RooJpaRepository annotation to target type

repository jpa --interface

--interface

The javainterface to apply this annotation to; no default value (mandatory)

--entity

The domain entity this repository should expose; default if option not present; '

A.34. Security Commands

Security Commands are contained in org.springframework.roo.addon.security. SecurityCommands.

A.34.1. permissionEvaluator

Create a permission evaluator

per mi ssi onEval uat or - - package

--package

The package to add the permission evaluator to; no default value (mandatory)

A.34.2. security setup

Install Spring Security into your project

security setup

1.2.5.RELEASE 192

Command Index

This command does not accept any options.

A.35. Selenium Commands

A.35.1.

Selenium Commands are contained in
org.springframework.roo.addon.web.sel enium.Sel eniumCommands.

selenium test

Creates a new Selenium test for a particular controller

sel eniumtest --controller

--controller
Controller to create a Selenium test for; no default value (mandatory)

--name
Name of the test; no default value

--serverUrl
URL of the server where the web application is available, including protocol, port and hostname;
default: 'http://localhost: 8080/

A.36. Service Commands

A.36.1.

A.36.2.

Service Commands are contained in
org.springframework.roo.addon.layers.service.ServiceCommands.

service all

Adds @RooService annotation to all entities

service all --interfacePackage

--interfacePackage
The javainterface package; no default value (mandatory)

--classPackage
The java package of the implementation classes for the interfaces; no default value

--useXmlConfiguration
When true, Spring Roo will configure servicesusing XML. Thisisthedefault behavior for services
using GAE; no default value

service secure all

Adds @RooService annotation to al entities with options for authentication, authorization, and a
permission evaluator

service secure all --interfacePackage

--interfacePackage
The javainterface package; no default value (mandatory)

1.2.5.RELEASE 193

Command Index

A.36.3.

A.36.4.

--classPackage
The java package of the implementation classes for the interfaces; no default value

--requireAuthentication
Whether or not users must be authenticated to use the service; default if option present: 'true’;
default if option not present: 'false'

--authorizedRole
Theroleauthorized the use the methodsin the service (additional roles can be added after creation);
no default value

--usePermissionEval uator
Whether or not to use a PermissionEval uator; default if option present: 'true’; default if option not
present: ‘false

--useXmlConfiguration
When true, Spring Roo will configure services using XML.; no default value

service secure type

Adds @RooService annotation to target type with options for authentication, authorization, and a
permission evaluator

servi ce secure type --interface

--interface
The javainterface to apply this annotation to; no default value (mandatory)

--class
Implementation class for the specified interface; no default value

--entity
The domain entity this service should expose; default if option not present; '

--requireAuthentication
Whether or not users must be authenticated to use the service; default if option present: 'ture’;
default if option not present: 'false

--authorizedRoles
The role authorized the use the methods in the service; no default value

--usePermissionEval uator
Whether or not to use a PermissionEvaluator; default if option present: 'true’; default if option not
present: ‘false

--useXmlConfiguration
When true, Spring Roo will configure services using XML.; no default value

service type

Adds @RooService annotation to target type

service type --interface

1.2.5.RELEASE 194

Command Index

--interface
The javainterface to apply this annotation to; no default value (mandatory)

--Class
Implementation class for the specified interface; no default value

--entity
The domain entity this service should expose; default if option not present: *'

--useXmlConfiguration
When true, Spring Roo will configure services using XML.; no default value

A.37. Simple Parser Component

A.37.1.

A.37.2.

Simple Parser Component are contained in
org.springframework.roo.shell.osgi.SimpleParserComponent.

help

Shows system help

hel p

--command
Command name to provide help for; no default value

reference guide

Writes the reference guide XML fragments (in DocBook format) into the current working directory

ref erence gui de

This command does not accept any options.

A.38. Solr Commands

A.38.1.

A.38.2.

Solr Commands are contained in org.springframework.roo.addon.solr.SolrCommands.

solr add

Make target type searchable

sol r add

--class
The type to be made searchable; default if option not present: ™*'

solr all

Make all eligible project types searchable

solr al

This command does not accept any options.

1.2.5.RELEASE 195

Command Index

A.38.3. solr setup

Install support for Solr search integration

solr setup

--searchServerUrl
The URL of the Solr search server; default: 'http://localhost:8983/solr'

A.39. Tailor Commands

Tailor Commands are contained in org.springframework.roo.addon.tailor.TailorCommands.

A.39.1. tailor activate

Activate atailor configuration.

tailor activate --name

--name
The name of the tailor configuration; no default value (mandatory)

A.39.2. tailor deactivate

Deactivate the tailor.

tailor deactivate
This command does not accept any options.

A.39.3. tailor list

List availabletailor configurations.

tailor |ist

This command does not accept any options.

A.40. Uaa Commands
Uaa Commands are contained in org.springframework.roo.uaa.UaaCommands.

A.40.1. download accept terms of use

Accepts the Spring User Agent Analysis (UAA) Terms of Use

downl oad accept ternms of use
This command does not accept any options.

A.40.2. download privacy level

Changes the Spring User Agent Analysis (UAA) privacy level

1.2.5.RELEASE 196

Command Index

downl oad privacy |evel --privacylLevel

--privacyLevel
The new UAA privacy level to use; no default value (mandatory)

A.40.3. download reject terms of use

Rejects the Spring User Agent Analysis (UAA) Terms of Use

downl oad reject ternms of use
This command does not accept any options.

A.40.4. download status

Provides a summary of the Spring User Agent Analysis (UAA) status and commands

downl oad st at us
This command does not accept any options.
A.40.5. download view
Displays the Spring User Agent Analysis (UAA) header content in plain text
downl oad vi ew

--file
Thefile to save the UAA JSON content to; no default value

A.41. Web Finder Commands

Web Finder Commands are contained in
org.springframework.roo.addon.web.mvc.controller.finder.WebFinderCommands.

A.41.1. web mvc finder add
Adds @RooWebFinder annotation to MV C controller type

web mvc finder add --fornBackingType

--formBackingType
The finder-enabled type; no default value (mandatory)

--Class
The controller javatype to apply this annotation to; default if option not present: "'

A.41.2. web mvc finder all

Adds @RooWebFinder annotation to existing MV C controllers

web nmvc finder all

This command does not accept any options.

1.2.5.RELEASE 197

Command Index

A.42. Web Flow Commands

A.42.1.

Web Flow Commands are contained in
org.springframework.roo.addon.web.flow.WebF owCommands.

web flow

Install Spring Web Flow configuration artifacts into your project

web flow

--flowName
The name for your web flow; no default value

A.43. Web Json Commands

A.43.1.

A.43.2.

A.43.3.

Web Json Commands are contained in
org.springframework.roo.addon.web.mvc.controller.json.WebJsonCommands.

web mvc json add

Adds @RooJson annotation to target type

web nmvc json add --jsonObj ect

--jsonObject
The JSON-enabled object which backsthis Spring MV C controller.; no default value (mandatory)

--class
The javatype to apply this annotation to; default if option not present: "*'

web mvc json all

Adds or creates MV C controllers annotated with @RooWebJson annotation

web mvc json all

--package
The package in which new controllers will be placed; no default value

web mvc json setup

Set up Spring MV C to support JSON

web mvc json setup

This command does not accept any options.

1.2.5.RELEASE 198

Appendix B. Upgrade Notes and Known
Issues

B.1. Known Issues

Because Spring Roo integrates a large number of other technologies, invariably some people using
Roo may experience issues when using certain combinations of technologies together. This section
aims to list such known issues in an effort to help you avoid experiencing any problems. If you are
able to contribute further information, a solution or workaround to any of these known issues, we'd
certainly appreciate hearing from you via the community forums.

JDK compatibility: Spring Roo has been tested with Sun, IBM, JRockit and Apache Harmony JVMs
for Java 5 and Java 6. We do not formally support other JVMs or other versions of JVMs. We have
also had an issue reported with versions of Java 6 before 1.6.0_17 due to Java bug 6506304 and
therefore recommend you always use the | atest released version of Java 6 for your platform. There
is aso a known issue with OpenJDK. You can read about our testing of different JDKs in issue
ROO-106.

Human language support: Pluralisation within Roo delegates to the Inflector library. Due to some
issues with Inflector, only English pluralisation is supported. If you wish to override the plural
selected by Inflector (and in turn used by Roo), you can specify a particular plural for either a Java
type or Java field by using the @rooPl ural annotation. Longer term it would be nice if someone
ported the I nflector code into the Roo pluralisation add-on so that we can fix these issues and support
other languages. We are receptive to contributions from the community along these lines.

Shell wrapping: In certain cases typing along command into the shell that wraps over asingle line
may prevent you from being able to backspace to the prior line. Thisis caused by the JLine library
(not Roo). We expect to rewrite the shell at some future time and will likely stop using JLine at
that point.

Hibernate issues: Hibernate is one of the JPA providerswetest with, however, Hibernate has issues
with - - mappedSuper cl ass as detailed in ROO-292 and ROO-747. We recommend you do not use
- - mappedSuper cl ass in combination with Hibernate. We have found OpenJPA works reliably in
al cases, so you might want to consider switching to OpenJPA if you are seriously impacted by
thisissue (the "jpa setup” command can be used multiple times, which is useful for experimentally
switching between different JPA providers).

Integration testing limitations: The data on demand mechanism (which is used for integration
tests) has limited JSR 303 (Bean Validator) compatibility. Roo supports fields using @NotNull,
@Past and @Future, @Size, @Min, and @Max. No other validator annotations are formally
supported, although many will work. To use other validator annotations, you may need to edit
your DataOnDemand.javafile and add amanual get NewTr ansi ent Enti t y(i nt) method. Refer toa
generated *_Roo_Dat aOnDemand. aj file for an example. Alternately, do not use the integration test
functionality in Roo unless you have relatively simple validation constraints or you are willing to
provide this data on demand method.

Tomcat 5.5: Tomcat 5.5 can not be supported by the scaffolded Spring MV C Web Ul. Tomcat 5.5
does not support the JSP 2.1 API. Roo makes extensive use of the JSP 2.1 API in the scaffolded Web

1.2.5.RELEASE 199

https://jira.springsource.org/browse/ROO-347
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6506304
https://jira.springsource.org/browse/ROO-106
https://inflector.dev.java.net/
https://jira.springsource.org/browse/ROO-292
https://jira.springsource.org/browse/ROO-747

Upgrade Notes and Known |ssues

Ul (specifically expression language features). Furthermore, the JSP 2.0 API does not support JDK
5 enums (afeature that Roo would need). See ROO-680 for more details. Thefollowing forum post
offers a workaround for the JSP 2.1 incompatibility issue. Please be aware that this has not been
tested by the Roo team and Tomcat 5.5 does officially support the JSP 2.0 API.

« Applicationswith a scaffolded Spring MV C Ul are currently not deployable to Google App Engine
due to incompatibilities in the JSP support and JSTL. See ROO-1006 for details.

« Applications with a scaffolded GWT Ul require a manual adjustment in src/ mai n/ webapp/ W\EB-
| NF/ spri ng/ webnve-config. xm (thiswill not be required when using Spring Framework 3.0.5+):

<nvc: defaul t-servl et-handl er defaul t-servlet-nanme="_ah_default" />

B.2. Version Numbering Approach

Spring Roo observes version number standards based on the Apache Portable Runtime (APR)
versioning guidelines as well as the OSGi specifications. In summary this means al Roo releases
adopt the format of MAJOR.MINOR.PATCH.TY PE. Each segment is separated by a period without
any spaces. The MAJOR.MINOR.PATCH are alwaysinteger numbers, and TY PE is an a phanumeric
value. For example, Roo 1.0.3.M 1 means major version 1, minor version 0, patch number 3 and rel ease
type M 1.

You can always rely on the natural sort order of the version numbers to arrive at the latest available
version. For example, 1.0.4.RELEASE is more recent than 1.0.4.RC2. This is because "RELEASE"
sorts alphabetically lower than "RC2". The TY PE segment can generally be broken into two further
undelimited portions, being the rel ease type and anumeric increment. For example, RC1 meansrel ease
candidate 1 and RC4 means release candidate 4. One exception to this is RELEASE means the final
general availability of that release. Other common release types include "A" for alpha and "M" for
milestone.

We make no guarantees regarding the compatibility of any release that has a TYPE other than
"RELEASE". However, for "RELEASE" releases we aim to ensure you can use agiven "RELEASE"
with any other "REL EASE" which hasthe same MAJOR.MINOR version number. Assuch you should
be ableto switch from 1.0.4.RELEASE to 1.0.9.REL EA SE without any changes. However, you might
have trouble with 1.0.4.RELEASE to 1.0.9.RC1 as RCL1 is a work-in-progress and we may not have
identified all regression issues. Obviously thisversion portability isonly our objective, and sometimes
we need to make exceptions or may inadvertently overlook an issue. We appreciate you logging a bug
report if you identify aversion regression that viol ates the conventions expressed in this section, so that
at least we can confirm it and either attempt to remedy it on the next release of that MAJOR.MINOR
version range or bring it to peopl€e's attention in the other sections of this appendix.

When upgrading you should review the issue tracker for what has changed since the last version.
Because most releases include a large number of issues in the release notes, we attempt to highlight
any major issues that may require your attention in the sections below. These notes are not all-
encompassing but simply pointersto the main upgrade-rel ated i ssues that most people should be aware
of. They are also written assuming you are maintaining currency with the latest public releases of
Spring Roo and therefore the changes you may need to make to your project are cumulative.

B.3. Upgrading To Any New Release

Before upgrading any project to the next release of Spring Roo, you should always:

1.2.5.RELEASE 200

https://jira.springsource.org/browse/ROO-680
http://forum.springsource.org/showpost.php?s=10e2df3cc266c9a85f8d473716d9b0c3&p=287652&postcount=15
https://jira.springframework.org/browse/ROO-1006
http://apr.apache.org/versioning.html
http://apr.apache.org/versioning.html
http://www.osgi.org

Upgrade Notes and Known |ssues

¢ Run the backup command using your currently-installed (i.e. existing) version of Spring Roo. This
will help create a ZIP of your project, which may help if you need to revert. Don't install the new
version of Roo until you've firstly completed this backup. Naturally you can skip this step if you
have an aternate backup technique and have confidence in it.

 Edityour project'spom xni and verify the Spring Roo annotations JAR matches the new Roo release
you are installing. Spring Roo 1.1.0.M3 and above will do this automatically on your behalf when
you load it on an existing project.

» Edit your project's pom xm and verify that major libraries match the new versions that are now
used by Roo. The simplest approach to doing thisisto create anew directory and use "roo scri pt
clinic.roo" andthendiff your existing pom xm against the newly-created Petclinic pom xni .

« After modifying the pom xm as described above, you will need to update your Eclipse. cl asspat h
file. The simplest way to achieve thisisto use nvn eclipse: cl ean ecli pse: ecl i pse from the
command prompt, or use the perform eclipse command at the r oo> shell prompt. Y ou can skip this
step if you use m2eclipse, as would be the case for any SpringSource Tool Suite user.

Please refer to the specific upgrade section of this appendix for further instructions concerning
upgrading to a particular version of Roo.

If you experience any difficulty with upgrading your projects, please use the community support forum
for assistance.

B.4. Upgrading to 1.2.0.RC1

The main changes you need to be aware of when upgrading from Spring Roo 1.2.0.M1 to Spring Roo
1.2.0.RC1 are asfollows:

« To align with the new persistence and repository choices introduced with Roo 1.2.0.M1 the entity
command has been adjusted to take the target persistence type into account. Please change your
log.roo scriptsto use the new entity jpa command. More detail s about the new entity JPA command
aswell asrelated annotation changes please refer to ROO-2833:

TableB.1. Old Annotations & Commands

Active Record Repository Entity Command
JPA @RooEntity entity
Spring Data JPA @RooRepositoryJpa @RooJpaEntity entity -

activeRecord false -
repository jpa

Spring Data @RooRepositoryMong@RooMongoEntity entity mongo
MongoDB repository mongo

1.2.5.RELEASE 201

https://jira.springsource.org/browse/ROO-2833

Upgrade Notes and Known |ssues

Table B.2. New Annotations & Commands

Active Record Repository Entity Command
JPA @RooJpaActiveRecord entity jpa
Spring Data JPA @RooJpaRepository @RooJpaEntity entity jpa -
activeRecord false-

repository jpa

Spring Data @RooM ongoReposit@irRooMongoEntity entity mongo
MongoDB repository mongo

B.5. Upgrading to 1.2.0.M1

The main changes you need to be aware of when upgrading from Spring Roo 1.1.5.RELEASE to
Spring Roo 1.2.0.M1 are asfollows:

» The presence of @RooWebScaffold does not automatically trigger Spring MV C JSON integration
any more. The exposelJson attribute in this annotation has been deprecated and will be removed
for subsequent releases. To create Spring MV C JSON integration please see the JSON chapter or
simply use the web mvc json all command.

« The presence of @RooWebScaffold does not automatically trigger Spring MV C Finder integration
any more. The exposeFinders attribute in this annotation has been deprecated and will be removed
for subsequent releases. To create Spring MV C Finder integration please see MV C chapter or smply
use the web mvc finder all command.

e To update a Roo GWT project please run web gwt setup

B.6. Upgrading to 1.1.3.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.1.2.RELEASE to
Spring Roo 1.1.3.RELEASE are asfollows:

« Complete the steps recommended in the Upgrading To Any New Release section.

* For MVC scaffolded applications it is recommended to manually replace the list.tagx in your
application by creating adummy project and copying thelist.tagx fileinto your project. This process
will be automated through a new ‘web mvc update tags' command in Roo 1.1.4+.

B.7. Upgrading to 1.1.2.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.1.1.RELEASE to
Spring Roo 1.1.2.RELEASE are asfollows:

» Complete the steps recommended in the Upgrading To Any New Release section.

B.8. Upgrading to 1.1.1.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.1.0.RELEASE to
Spring Roo 1.1.1.RELEASE are asfollows:

1.2.5.RELEASE 202

Upgrade Notes and Known |ssues

« Complete the steps recommended in the Upgrading To Any New Release section.

» Converters for displaying related entities on JSP pages are now registered from
a centralized ConversionService artifact rather than from individual controllers. The
change is transparent if you've never set @ooWebScaf f ol d(regi st er Converters=fal se) Or
plugged in a custom ConversionService through <nvc:annotation-driven conversion-
servi ce="nyConver si onSer vi ce"/ >. If you have then read on.

Remove all "registerConverters' attributes from @oowebScaffold annotations and
make sure the "conversion-service' attribute from <mvc:annotation-driven conversion-
service="applicationConversionService'/> is set. Then run the Spring Roo 1.1.1 shell and let it
install the new ConversionService. When Roo is done making changes, manually move any custom
get XxxConvert er () methods to the new ConversionService, delete the GenericConversionService
field from all controllers that have it, and delete any @ost Cont ruct methods used to register the
converters. If you had previously configured your own ConversionService, move any converters or
formatter registrations to the new ConversionService installed by Spring Roo.

B.9. Upgrading to 1.1.0.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.1.0.RC1 to Spring Roo
1.1.0.RELEASE are asfollows:

« Complete the steps recommended in the Upgrading To Any New Release section.

B.10. Upgrading to 1.1.0.RC1

The main changes you need to be aware of when upgrading from Spring Roo 1.1.0.M 3 to Spring Roo
1.1.0.RELEASE are asfollows:

« Complete the steps recommended in the Upgrading To Any New Release section.

e There have been changes made to the web. xni configuration to allow deployment of GWT
scaffolded applications to GAE. Please compare aweb. xni produced in a new Spring Roo project
with your current project'sweb. xni to identify differences.

« The GWT maven artifactsin your local maven repository should be removed so they can be replaced
with the latest versions. Make sure to delete ~/.m2/repository/com/google/gwt and org/codehaus/
moj o/gwt-maven-plugin.

B.11. Upgrading to 1.1.0.M3

The main changes you need to be aware of when upgrading from Spring Roo 1.1.0.M 2 to Spring Roo
1.1.0.M3 are asfollows:

« Complete the steps recommended in the Upgrading To Any New Release section.

» There have been changes made to the web. xm configuration following the adoption of Spring
Framework 3.0.4 improvements around root servlet mapping of b spatcher Servlet. Please
compare aweb. xm produced in a new Spring Roo project with your current project's web. xm to
identify differences.

1.2.5.RELEASE 203

Upgrade Notes and Known |ssues

« |f you are trying the early-access Google Web Toolkit (GWT) support, please be aware that from
Spring Roo 1.1.0.M3 until Spring Roo 1.1.0.RELEASE wewill beusing GWT 2.1 "snapshot” JARS.
This enables you to have access to the latest improvementsin GWT 2.1.

B.12. Upgrading to 1.1.0.M2

The main changes you need to be aware of when upgrading from Spring Roo 1.1.0.M 1 to Spring Roo
1.1.0.M2 are asfollows:

« Complete the steps recommended in the Upgrading To Any New Release section.

B.13. Upgrading to 1.1.0.M1

The main changes you need to be aware of when upgrading from Spring Roo 1.0.2.RELEASE to
Spring Roo 1.1.0.M1 are asfollows:

« Complete the steps recommended in the Upgrading To Any New Release section.

 If you used Roo 1.0.2's web MV C scaffolding, be aware there are considerable changes to the
web tier to support our new MVC features (such as JSPX round-tripping and easy tags). The
recommended approach istherefore to start anew project with Roo 1.1.0.M1 to identify the changes
that are needed to sr ¢/ mai n/ webapp.

B.14. Upgrading to 1.0.2.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.0.1.RELEASE to
Spring Roo 1.0.2.RELEASE are asfollows:

« Complete the steps recommended in the Upgrading To Any New Release section.

 If you are using Spring Security in your Roo application, it is recommended you review issue
ROO-579 and consider disabling the shal | owEt agHeader Fi | t er filter in your web. xm .

B.15. Upgrading to 1.0.1.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.0.0.RELEASE to
Spring Roo 1.0.1.RELEASE are asfollows:

» Complete the steps recommended in the Upgrading To Any New Release section.

B.16. Upgrading to 1.0.0.RELEASE

The main changes you need to be aware of when upgrading from Spring Roo 1.0.0.RC4 to Spring Roo
1.0.0.RELEASE are asfollows:

» Complete the steps recommended in the Upgrading To Any New Release section.

» Dueto CSSissues discovered in the Roo RC4 release (ROO-480), the st andar d. css, al t. css and
thel ayout . j spx filesrequired adjustment. To update these three files, please replace them with the
same files generated in a dummy project using Roo 1.0.0.RELEASE.

1.2.5.RELEASE 204

http://jira.springframework.org/browse/ROO-579
http://jira.springframework.org/browse/ROO-480

Upgrade Notes and Known |ssues

B.17. Upgrading to 1.0.0.RC4

When upgrading from Spring Roo 1.0.0.RC3 to Spring Roo 1.0.0.RC4 you should be aware that a
large number of changes have been applied to the web scaffolding functionality. This has impacted
the Web layer. We therefore recommend the following:

Complete the steps recommended in the Upgrading To Any New Release section.

Roo 1.0.0.RC4 takes advantage of the new type conversion API introduced in Spring Framework
3.0.0.RC3 (see chapter 5 of the Spring reference documentation) which isaimed to replace property
editors. To remove existing property editors from your current project you can issue the following
command: rm -rf src/ main/javal com f oo/ domai n/ *Edi t or . j ava (depending on your package
naming convention)

The easiest way to update the web artifacts is to delete the old ones completely. You can use the
following command from a* nix prompt to achievethis: rm -rf src/ nai n/ webapp/ *

Another (optional) step is to replace the web controllers. This step is only required if you have
used the dateFormat @oowWebScaf f ol d(dat eFor mat =". . ") attribute in the @RooWebScaffold
annotation: rm -rf src/ main/javal conf foo/ web/* (depending on your package naming
convention). Alternatively, you can simply remove this attribute from the @RooWebScaffold
annotation. Note, date formats can now be defined viathefiel d date command (see ROO-453
for further information).

Run the controller command again to regenerate all necessary web artifacts. Y ou might wish to use
either the controller all or controller scaffold command. Thiswill recreate all web artifacts.

B.18. Upgrading to 1.0.0.RC3

The main changes you need to be aware of when upgrading from Spring Roo 1.0.0.RC2 to Spring Roo
1.0.0.RC3 are asfollows:

Complete the steps recommended in the Upgrading To Any New Release section.

Edit your project'ssr c/ mai n/ webapp/ VEB- | NF/ ur | rewr i t e. xmi and ensureit protectsthe resources
as discussed in the ROO-271.

If you had previoudy used the "test nock" oOr "persistence exception translation”
commands, we have moved the resulting Aspect) files to the Spring Aspects project
(which has aways been a dependency of all Roo projects). This will mean you
automatically receive improvements made to these features in the future as part of the
Spring Framework release cycle. You should therefore delete the following files if your
project contains them: Jpa_Exception_Transl ator.aj, AbstractMethodMckingControl.aj,
JUni t StaticEntityMcki ngControl.aj andMckStaticEntityMethods. aj . Youmust alsoensure
you use Spring Framework 3.0.0.RC2 or above (which is the project which contains the Spring
Aspects project). See ROO-315 and ROO-316 for further information.

Do not attempt to use the Spring Roo integration built into SpringSource Tool Suite (STS) 2.2.0 or
earlier with Spring Roo 1.0.0.RC3 or above. Y ou must upgradeto STS 2.2.1 or aboveif you wish to
use Roo 1.0.0.RC3 with the STSintegration. Thisis due to an internal APl change made to support
third-party add-on development. If you are using STS 2.2.0 (or earlier) and are unable to upgrade,

1.2.5.RELEASE 205

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/ch05.html
https://jira.springsource.org/browse/ROO-453
https://jira.springsource.org/browse/ROO-271
https://jira.springsource.org/browse/ROO-315
https://jira.springsource.org/browse/ROO-314

Upgrade Notes and Known |ssues

you can of course use Roo outside of any version of STSwithout any issue. The upgrade requirement
issmply to accessthe STSintegration, such asCTRL + R commandsand STS embedded Roo shell.

1.2.5.RELEASE 206

Appendix C. Project Background

Thischapter briefly coversthe history of the Spring Roo project, and al so explainsits mission statement
in detail.

C.1. History

The Spring Roo available today is the result of relatively recent engineering, but the inspiration for
the project can be found several years earlier.

The historical motivation for "ROQO" can be traced back to 2005. At that time the project's founder,
Ben Alex, was working on several enterprise applications and had noticed he was repeating the same
steps time and time again. Back in 2005 it was common to use atraditional layering involving DAOSs,
services layer and web tier. A good deal of attention was also focused around that time on avoiding
anaemic domain objects and instead pursuing Domain Driven Design principles.

Pursuing a rich domain model led to domain objects that reflected proper object oriented principles,
such as careful application of encapsulation, immutability and properly defining the role of domain
objects within the enterprise application layering. Rich behaviour was added to these entities
via Aspectd and Spring Framework's recently-created @Configurable annotation (which enabled
dependency injection on entities irrespective of how the entities were instantiated). Naturally the web
frameworks of the era didn't work well with these rich domain objects (due to the lack of accessors,
mutators and no-argument constructors), and as such data transfer objects (DTOs) were created. The
mapping between DTOs and domain objects was approached with assembly technologies like Dozer.
Tomakeall of thiswork nicely together, acode generator called Real Object Oriented - or "ROQ" - was
created. The Real Object Oriented name reflected the rich domain object principles that underpinned
the productivity tool.

ROO was presented to audiences at the SpringOne Americas 2006 and TSSJS Europe 2007
conferences, plusthe Stockholm Spring User Group and Enterprise Java Association of Australia. The
audiences were enthusiastic about the highly productive solution, with remarks like "it is the really
neatest and newest stuff I've seenin thisconference” and"if ROO ever becomes an open source project,
I'm guessing it will be very polished and well-received”. Nonetheless, other priorities (like the existing
Spring Security project) prevented the code from becoming release-ready. More than twelve months
later Ben was still regularly being asked by people, "whatever happened to the ROO framework?"' and
as such he set out about resuming the project around August 2008.

By October 2008 a large amount of research and development had been undertaken on the new-and-
improved ROOQ. The original productivity ideas within ROO had been augmented with considerable
feedback from real-life use of ROO and the earlier conferences. In particular a number of projects
in Australia had used the unreleased ROO technology and these projects provided a great deal of
especially useful feedback. It was recognised from this feedback that the original ROO model suffered
from two main prablems. First, it did not provide a highly usable interface and as such developers
required a reasonable amount of training to fully make use of Roo. Second, it imposed a high level
of architectural purity on all applications - such as the forced use of DTOs - and many people simply
didn't want such purity. While there were valid engineering reasons to pursue such an architecture, it
was the productivity that motivated people to use ROO and they found the added burden of issueslike
DTO mapping cancelled out some of the gains that ROO provided. A mission statement was drafted
that concisely reflected the vision of the project, and this was used to guide the technical design.

1.2.5.RELEASE 207

http://domaindrivendesign.org/
http://dozer.sourceforge.net/
http://blog.zepag.org/2007/06/spring-one-day3-roo.html
http://blog.zepag.org/2007/06/spring-one-day3-roo.html
http://raibledesigns.com/rd/entry/tse_hop_into_real_object
http://raibledesigns.com/rd/entry/tse_hop_into_real_object
http://projects.spring.io/spring-security/

Project Background

In early December 2008 Ben took a completely rewritten ROO with him to SpringOne Americas
2008 and showed it to a number of SpringSource colleagues and community members. The response
was overwhelming. Not only had the earlier feedback been addressed, but many new ideas had been
incorporated into the Java-only framework. Furthermore, recent improvements to AspectJ and Spring
had made the entire solution far more effective and efficient than the earlier ROO model (such as
annotation-based component scanning, considerable enhancementsto AJDT etc).

Feedback following the December 2008 demonstrations|ed to considerabl e focus on bringing the ROO
technology to the open source community. The name "ROQ" was preserved as atemporary codename,
given that we planned to select a final name closer to official release. The "ROO" project was then
publicly presented on 27 April 2009 during Rod Johnson's SpringOne Europe keynote, "The Future
of Java Innovation”. As part of the keynote the ROO system was used to build a voting application
that would allow the community to select a final name for the new project. The "ROQ" name was
left as an option, although the case was changed to "Roo" to reflect the fact it no longer represented
any acronym. The resulting votes were Spring Roo (467), Spring Boost (180), Spring Spark (179),
Spring HyperDrive (64) and Spring Dart (62). As such "Spring Roo" became the official, community-
selected name for the project.

Roo 1.0.0.A1 wasrel eased during the SpringOne Europe 2009 conference, along with initial tooling for
SpringSource Tool Suite. The Roo talk at the SpringOne Europe 2009 conference was the most highly
attended session and there was enormous enthusiasm for the solution. Roo 1.0.0.A2 was published
a few weeks later, followed by several milestones. By SpringOne/2GX North America in October
2009, Roo 1.0.0 had reached Release Candidate 2 stage, and again the Roo session was the most
highly attended session of the entire conference. SpringSource also started hosting the highly popular
Spring Discovery Days and showing people around the world what they could do with the exciting
new Roo tool. Coupled with Twitter, by this stage many members of the Java community had caught
aglimpse of Roo and it was starting to appear in alarge number of conferences, user group meetings
and development projects - al before it had even reached 1.0.0 General Availability!

C.2. Mission Statement

Spring Roo's mission is to "fundamentally and sustainably improve Java developer productivity
without compromising engineering integrity or flexibility”.

Here's exactly what we mean by this:

« "fundamentally": We believe a fundamental improvement in developer productivity is attainable.
Tools, methodologies and frameworks that offer incidental improvement are nowhere near enough.

» "and sustainably improve": A one-off improvement in productivity isn't enough. The productivity
improvement needs to sustain beyond theinitial jump-start, and continue unabated over amulti-year
period. Productivity must remain high even in the face of radically changing requirements, evolving
project team membership, and new platform versions

« "Java developer productivity": Our focus is unashamedly on developers who work with the most
popular programming language in the world, Java. We don't expect Java developers to learn new
programming languages and frameworks ssmply to enjoy a productivity gain. We want to harness
their existing Java knowledge, skills and experience, rather than expect them to unlearn what
they already know. The conceptual weight must be attainable and reasonable. We always favour
evolution over revolution, and provide a solution that is as fun, flexible and intuitive as possible.

1.2.5.RELEASE 208

http://www.infoq.com/presentations/SpringOne-Keynote-Rod-Johnson
http://www.infoq.com/presentations/SpringOne-Keynote-Rod-Johnson
http://www.springsource.com/products/sts
http://www.springsource.com
http://www.springsource.com/training/dd001

Project Background

« "without compromising”: Other tools, methodol ogies and frameworks claim to create solutions that
provide these benefits. However, they impose a serious cost in critical areas. We refuse to make
this compromise.

« "engineering integrity": We embrace OO and language features the way Java language designers
intended, greatly simplifying understanding, refactoring, testing and debugging. We don't force
projects with significant performance requirements to choose between developer productivity or
deployment cost. We move processing to Generation |V web clients where possible, embrace
database capabilities, and offer an optimal approach to runtime considerations.

e "or flexibility": Projects are similar, but not identical. Developers need the flexibility to use
a different technology, pattern or framework when required. While we don't lock developers
into particular approaches, we certainly provide an optimal experience when following our
recommendations. We ensure that our technology is interface agnostic, gracefully supporting both
mainstream |IDEs plus the command line. Of course, we support any reasonable deployment
scenario, and particularly the emerging class of Generation IV web clients.

Webelievethat Spring Roo today represents a successful embodiment of thismission statement. While
we still have work to do inidentified feature areas such as Generation IV web clients, these are easily-
achieved future directions upon the existing Roo foundation.

1.2.5.RELEASE 209

Appendix D. Roo Resources

As an open source project, Spring Roo offers a large number of resources to assist the community
learn, interact with one another and become more involved in the project. Below you'll find a short
summary of the official project resources.

D.1. Project Home Page

Web: http://projects.spring.io/spring-roo/

The project home page provides a brief summary of Roo's main features and links to most of the other
project resources. Please use this URI if you are referring other people to the Spring Roo project, as
it isthe main landing point for the project.

From the main Roo web site you'll also find links to our "resources index". The resources index
provides convenient, up-to-date links to all of the services shown below, as well as third-party add-
onsyou are ableto install.

D.2. Downloads and Maven Repositories

Web: http://www.springsource.com/downl oad/community ?project=Spring%20Roo

Y ou can always access the latest Spring Roo release ZIP by visiting the above URI. The download
site not only provides the download itself, but also provides accessto al historically released versions
plus SHA1 hash codes of those files.

We publish all Roo modules to a Maven repository at http://spring-roo-repository.springsource.org/
release. This Maven repository is automatically included in user project so that the annotation library
can be downloaded. It is also automatically included in the POM for add-ons created via the add-on
creator.

D.3. Community Forums

Web: http://forum.springsource.org/forumdisplay.php?=67

For fast and free end user support for al official Spring projects, the Spring Community Forumisan
excellent place to visit. Because Roo is an official top-level Spring project, of course you'll find there
is adedicated " Spring Roo forum" for all your questions, comments and experiences.

The Roo project does not have a "mailing list" or "newsgroup” as you might be familiar with from
other open source projects, although commercia support options are available.

Extensive search facilities are provided on the community forums, and the Roo developers routinely
answer user guestions. One excellent way of contributing to the Roo project isto simply keep an eye
on the forum messages and help other people. Even recommendations along thelines of, "I don't know
how to do what you're trying to do, but we usually tackle the problem this way instead...." are very
helpful to other community members.

When you ask aquestion on the forum, it'shighly recommended you include asmall Roo sample script
that can be used to reproduce your problem. If that's infeasible, using Roo's "backup” command is
another alternative and you can attach the resulting ZIP file to your post. Other tips include always

1.2.5.RELEASE 210

http://projects.spring.io/spring-roo/
http://www.springsource.com/download/community?project=Spring%20Roo
http://spring-roo-repository.springsource.org/release
http://spring-roo-repository.springsource.org/release
http://forum.springsource.org/forumdisplay.php?f=67

Roo Resources

specifying the version of Roo that you're running (as can be obtained from the "version” command),
and if you're having trouble with IDE integration, the exact version of the IDE you are using (and,
if an Eclipse-based IDE, the version of Aspectd Development Tools in use). Another good source of
advice on how to ask questions on the forum can be found in Eric Raymond's often-cited essay, "How
to Ask Smart Questions'.

If you believe you have found a bug or are experiencing an issue, it is recommended you first log a
message on the forum. This allows other experienced users to comment on whether it appears there
is a problem with Roo or perhaps just needs to be used a different way. Someone will usually offer a
solution or recommend you log a bug report (usually by saying "please log thisin Jira"). When you
do log a bug report, please ensure you link to the fully-qualified URI to the forum post. That way
the developer who attempts to solve your bug will have background information. Please also post the
issue tracking link back in thread you started on the forum, asit will help other people cross-reference
the two systems.

D.4. Twitter

Roo Hash Code (please include in your tweets, and also follow for low-volume announcements):

@SpringRoo

Follow the core Roo development team for interesting Roo news and progress (higher volume than
just following @SpringRoo, but only afew Tweets per week): @alankstewart.

Many people who use Roo also use Twitter, including the core Roo development team. If you're a
Twitter user, you're welcome to follow the Roo development team (using the Twitter IDs above) to
receive up-to-the-minute Tweets on Roo activities, usage and events.

The Roo team al so monitors Tweets that include @SpringRoo, so if you're Tweeting about Roo, please
remember to include @SpringRoo somewhere in the Tweet. If you like Roo or have found it helpful
on aproject, please Tweet about it and help spread the word!

We do request that you use the Community Forums if you have a question or issue with Roo, as
140 characters doesn't allow us to provide in-depth technical support or provide a growing archive of
historical answers that people can search against.

D.5. Issue Tracking

Web: https://jira.springsource.org/browse/ROO

Spring projects use Atlassian Jira for tracking bugs, improvements, feature requests and tasks. Roo
uses a public Jirainstance you're welcome to use in order to log issues, watch existing issues, vote for
existing issues and review the changes made between particular versions.

Asdiscussed in the Community Forums section, we ask that you refrain from logging bug reports until
you've first discussed them on the forum. This allows others to comment on whether a bug actually
exists. When logging an issue in Jira, there is a field explicitly provided so you can link the forum
discussion to the Jiraissue.

Please note that every commit into the Roo source repository will be prefixed with a particular Jira
issue number. All Jiraissue numbers for the Roo project commence with "ROO-", providing you an
easy way to determine the rationale of any change.

1.2.5.RELEASE 211

http://catb.org/~esr/faqs/smart-questions.html
http://catb.org/~esr/faqs/smart-questions.html
http://search.twitter.com/search?q=@SpringRoo
http://twitter.com/alankstewart
https://jira.springsource.org/browse/ROO

Roo Resources

Because open source projects receive numerous enhancement requests, we generally prioritise
enhancements that have patches included, are quick to complete or those which have received alarge
number of votes. You can vote for a particular issue by logging into Jira (it's fast, easy and free to
create an account) and click the "vote" link against any issue. Similarly you can monitor the progress
on any issue you'reinterested in by clicking "watch".

Enhancement requests are easier to complete (and therefore more probable to be actioned) if they
represent fine-grained units of work that include as much detail as possible. Enhancement requests
should describe a specific use case or user story that is trying to be achieved. It is usually helpful to
provide a Roo sample script that can be used to explain the issue. Y ou should also consider whether
a particular enhancement is likely to appeal to most Roo users, and if not, whether perhaps writing it
as an add-on would be a good aternative.

D.6. Source Repository

Read repository: https://github.com/spring-projects/spring-roo.git

The Git source control system is currently used by Roo for mainline devel opment.

Historical releases of Roo can be accessed by browsing the tags branches within our Git repository.
The mainline development of Roo occurs on the "master” branch.

To detailed information about how to check out and build Roo from Subversion, please refer to the
Development Processes chapter.

D.7. Source Web Browsing

Web: https://github.com/spring-proj ects/spring-roo.git

To assist those who wish to simply review the current Roo code but not check it out fully onto their
own computer, Spring Roo offers a public Atlassian FishEye instance. Y ou can use this to not only
view the current source code, but also access old releases, perform sophisticated searches and even
build graphs and reports.

If you need to link to source code from an issue report or forum post, please use the FishEye service
to provide afully-qualified URI.

D.8. Commercial Products and Services

Web: http://spring.io/

Pivitol Software employs the Roo development team and offers a wide range of products and
professional services around Roo and the technologies which Roo enables. Available professional
services include training, consulting, design reviews and mentoring, with products including service
level agreement (SLA) backed support subscriptions, certified builds, indemnification and integration
with various commercial products. Please visit the above URI to learn more about SpringSource
products and services and how these can add value to your build-run-manage application lifecycle.

D.9. Other

Please let usknow if you believe it would be helpful to list any other resourcesin this documentation.

1.2.5.RELEASE 212

https://github.com/spring-projects/spring-roo.git
https://github.com/spring-projects/spring-roo.git
http://spring.io/
http://gopivotal.com/

