OAuth2 Autoconfig

Copyright ©

OAuth2 Autoconfig

Table of Contents

... iii
I 7o 117/][7= Uo 1 oo S 1
Rt IO Yo 11 | o = PP 1
- Y= o 1

G T] = To | =SSP 2

A U | gL 4= 11 T0] Y= A= 3
T oS T 0T U ot =T T 4
T o1 =T T I o L= T T T Y= o T 5
[I. Customizing the User INfo RESITEMPIALEccouniiiiii e 6
B O {1 o | PRSP SPTSPPRR 7

TS [aTe | LTS o | o T o T 9

A. Common appliCation PrOPEILIESc...iieuiiii et e e et eea e eaa s 10
please define title in your docbook file! ii

OAuth2 Autoconfig

If you have spri ng-security-oauth2 on your classpath you can take advantage of some auto-
configuration to make it easy to set up Authorization or Resource Server. For full details, see the Spring

Security OAuth 2 Developers Guide.

Note

This project is a port of the Spring Security OAuth support that came with Spring Boot 1.x. Support
was removed in favor of Spring Security 5's first class OAuth support. To ease migration, this
project exists as a bridge between the old Spring Security OAuth support and Spring Boot 2.x.

please define title in your docbook file!

https://projects.spring.io/spring-security-oauth/docs/oauth2.html
https://projects.spring.io/spring-security-oauth/docs/oauth2.html

OAuth2 Autoconfig

1. Downloading

Since spri ng- security-oaut h2-aut oconfi gur e is externalized you will need to ensure to add
it to your classpath.

1.1 Source
You can get the source and log issues on GitHub.

1.2 Maven

A minimal Maven set of dependencies typically looks like the following:

pom.xml.

<dependenci es>
<l-- ... other dependency elenents ... -->
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-security</artifactld>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. securi ty. oaut h. boot </ gr oupl d>
<artifactld>spring-security-oauth2-autoconfigure</artifactld>
<versi on>2.0.5. RELEASE</ ver si on>
</ dependency>
</ dependenci es>

All GA releases (i.e. versions ending in .RELEASE) are deployed to Maven Central, so no additional
Maven repositories need to be declared in your pom.

If you are using a SNAPSHOT version, you will need to ensure you have the Spring Snapshot repository
defined as shown below:

pom.xml.

<repositories>
<l-- ... possibly other repository elenments ... -->
<repository>
<i d>spring-snapshot </ i d>
<nanme>Spri ng Snapshot Repository</nanme>
<url >http://repo.spring.iol/snapshot</url >
</repository>
</repositories>

If you are using a milestone or release candidate version, you will need to ensure you have the Spring
Milestone repository defined as shown below:

pom.xml.

<repositories>
<l-- ... possibly other repository elenents ... -->
<reposi tory>
<i d>spring-m | estone</id>
<nanme>Spring M| estone Repository</nane>
<url >http://repo.spring.io/mlestone</url>
</repository>
</repositories>

please define title in your docbook file! 1

https://github.com/spring-projects/spring-security-oauth2-boot

OAuth2 Autoconfig

1.3 Gradle

A minimal Spring Security Gradle set of dependencies typically looks like the following:

build.gradle.

dependenci es {
conpi |l e 'org. springframework. boot: spring-boot-starter-security
conpil e 'org.springframework. security. oauth. boot:spring-security-oauth2-autoconfigure:2.0.5. RELEASE

}

All GA releases (i.e. versions ending in .RELEASE) are deployed to Maven Central, so using the
mavenCentral() repository is sufficient for GA releases.

build.gradle.

repositories {
mavenCentral ()

}

If you are using a SNAPSHOT version, you will need to ensure you have the Spring Snapshot repository
defined as shown below:

build.gradle.

repositories {
maven { url 'https://repo.spring.iol/snapshot' }

}

If you are using a milestone or release candidate version, you will need to ensure you have the Spring
Milestone repository defined as shown below:

build.gradle.

repositories {
maven { url 'https://repo.spring.io/mlestone }

}

please define title in your docbook file! 2

OAuth2 Autoconfig

2. Authorization Server

To create an Authorization Server and grant access tokens you need to use
@nabl eAut hori zati onServer and provide security.oauth2.client.client-id and
security.oauth2.client.client-secret] properties. The client will be registered for you in an
in-memory repository.

Having done that you will be able to use the client credentials to create an access token, for example:

$ curl client:secret@ocal host: 8080/ oaut h/ t oken -d grant _type=password -d user nane=user -d passwor d=pwd

The basic auth credentials for the / t oken endpoint are the client-id and client-secret. The
user credentials are the normal Spring Security user details (which default in Spring Boot to “user” and
a random password).

To switch off the auto-configuration and configure the Authorization Server features yourself just add a
@ean of type Aut hori zati onSer ver Confi gurer.

If you use your own authorization server configuration to configure the list of valid clients through an
instance of Cl i ent Det ai | sSer vi ceConfi gurer as shown below, take note that the passwords
you configure here are subject to the modernized password storage that came with Spring Security 5.
That means you have to prefix your passwords with an Id if you use Spring Boot Securities defaults
for password storage.

@onponent
public class CustomAut horizati onServer Configurer extends
Aut hori zat i onSer ver Conf i gur er Adapt er {

@verride
public void configure(
ClientDetail sServiceConfigurer clients
) throws Exception {
clients.inMenory()
.withCient("client")
.aut hori zedG ant Types(" password")
.secret ("{noop}secret")
.scopes("all");

please define title in your docbook file! 3

https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#core-services-password-encoding

OAuth2 Autoconfig

3. Resource Server

To use the access token you need a Resource Server (which can be the same as the Authorization
Server). Creating a Resource Server is easy, just add @nabl eResour ceSer ver and provide some
configuration to allow the server to decode access tokens. If your application is also an Authorization
Server it already knows how to decode tokens, so there is nothing else to do. If your app is a standalone
service then you need to give it some more configuration, one of the following options:

e security.oauth2.resource.user-info-uri to use the /me resource (e.g. https://
uaa. run. pi vot al . i o/ useri nf o on Pivotal Web Services (PWS))

e security.oauth2.resource.token-info-uri to use the token decoding endpoint (e.g.
https://uaa. run. pivotal .io/ check_t oken on PWS).

If you specify both the user -i nf o-uri and the t oken-i nf o- uri then you can set a flag to say that
one is preferred over the other (pr ef er -t oken- i nf o=t r ue is the default).

Alternatively (instead of user-info-uri or token-info-uri) if the tokens are JWTs you can
configure a security. oaut h2. resource.jwt . key-val ue to decode them locally (where the key
is a verification key). The verification key value is either a symmetric secret or PEM-encoded RSA public
key. If you don’t have the key and it's public you can provide a URI where it can be downloaded (as a
JSON object with a “value” field) with securi ty. oaut h2. resource. jw . key-uri . E.g. on PWS:

$ curl https://uaa.run.pivotal.io/token_key
{"al g":"SHA256wi t hRSA", "val ue":"----- BEG N PUBLI C KEY----- \nMIBI...\n----- END PUBLI C KEY----- \n"}

Additionally, if your authorization server has an endpoint that returns a set of JSON Web Keys(JWKSs),
you can configure securi ty. oaut h2. resour ce. j wk. key-set-uri . E.g. on PWS:

$ curl https://uaa.run. pivotal.io/token_keys

{"keys":[{"kid":"key-1","al g": "RS256", "val ue": "----- BEG N PUBLI C KEY----- \nM IBIl...\n----- END PUBLI C
KEY- - - - - \n"]}

Note

Configuring both JWT and JWK properties will cause an
error. Only one of security.oaut h2. resource.jw.key-uri (or
security.oaut h2. resource.jw.key-val ue) and

security. oaut h2. resource. j wk. key-set - uri should be configured.

Warning

If you use the security.oaut h2. resource.jw.key-uri or
security. oaut h2. resource. j wk. key-set-uri, the authorization server needs to be
running when your application starts up. It will log a warning if it can’t find the key, and tell you
what to do to fix it.

OAuth2 resources are protected by a filter chain with order securi ty. oaut h2. resource.filter-
order and the default is after the filter protecting the actuator endpoints by default (so actuator
endpoints will stay on HTTP Basic unless you change the order).

please define title in your docbook file! 4

Part I. Token Type in User Info

Google, and certain other 3rd party identity providers, are more strict about the token type name that
is sent in the headers to the user info endpoint. The default is “Bearer” which suits most providers and
matches the spec, but if you need to change it you can set securi ty. oaut h2. resour ce. t oken-
t ype.

Part Il. Customizing the
User Info RestTemplate

If you have a user-info-uri, the resource server features use an QAut h2Rest Tenpl at e
internally to fetch user details for authentication. This is provided as a @ean of type
User | nf oRest Tenpl at eFact ory. The default should be fine for most providers, but occasionally
you might need to add additional interceptors, or change the request authenticator (which is
how the token gets attached to outgoing requests). To add a customization just create a bean
of type User | nf oRest Tenpl at eCust omi zer - it has a single method that will be called after
the bean is created but before it is initialized. The rest template that is being customized
here is only used internally to carry out authentication. Alternatively, you could define your own
User | nf oRest Tenpl at eFact ory @ean to take full control.

Tip

To set an RSA key value in YAML use the “pipe” continuation marker to split it over multiple lines
(“I") and remember to indent the key value (it's a standard YAML language feature). Example:

security:
oaut h2:
resource:
jw:
keyVal ue: |

----- BEG N PUBLI C KEY-----
M | Bl j ANBgkghki GOWOBAQEFAACCA@AM | BCGKC. . .
----- END PUBLI C KEY-----

OAuth2 Autoconfig

4. Client

To make your web-app into an OAuth2 client you can simply add @nabl eOQAut h2d i ent and Spring
Boot will create an QAut h2Cl i ent Cont ext and QAut h2Pr ot ect edResour ceDet ai | s that are
necessary to create an QAut h2Rest Oper ati ons. Spring Boot does not automatically create such
bean but you can easily create your own:

@Bean
publ i ¢ OAut h2Rest Tenpl at e oaut h2Rest Tenpl at e(QAut h2d i ent Cont ext oaut h2d i ent Cont ext ,
QAut h2Pr ot ect edResour ceDetai | s details) {
return new QAut h2Rest Tenpl at e(det ai | s, oaut h2C i ent Cont ext);

Note

You may want to add a qualifier and review your configuration as more than one Rest Tenpl at e
may be defined in your application.

This configuration uses securi ty. oaut h2. cl i ent . * as credentials (the same as you might be using
in the Authorization Server), but in addition it will need to know the authorization and token URIs in the
Authorization Server. For example:

application.yml.

security:
oaut h2:
client:

clientld: bdlcOa783ccddlc9b9e4
clientSecret: 1a9030f bca47a5b2c28e92f 19050bb77824b5ad1
accessTokenUri: https://github.con | ogin/oauth/access_t oken
user Aut hori zationUri: https://github. conll ogin/oauth/authorize
clientAuthenticati onSchene: form

An application with this configuration will redirect to Github for authorization when you attempt to use
the QAut h2Rest Tenpl at e. If you are already signed into Github you won't even notice that it has
authenticated. These specific credentials will only work if your application is running on port 8080
(register your own client app in Github or other provider for more flexibility).

To limit the scope that the client asks for when it obtains an access token you can set
security.oaut h2. client.scope (comma separated or an array in YAML). By default the scope
is empty and it is up to Authorization Server to decide what the defaults should be, usually depending
on the settings in the client registration that it holds.

Note

There is also a setting for security. oauth2.client.client-authentication-schene
which defaults to “header” (but you might need to set it to “form” if, like Github for instance, your
OAuth2 provider doesn't like header authentication). In fact, the securi ty. oaut h2. client.*
properties are bound to an instance of Aut hori zati onCodeResour ceDetail s so all its
properties can be specified.

Tip

In a non-web application you can still create an QAut h2Rest Oper ati ons and it is still wired
intothe securi ty. oaut h2. cl i ent. * configuration. In this case it is a “client credentials token

please define title in your docbook file! 7

OAuth2 Autoconfig

grant” you will be asking for if you use it (and there is no need to use @nabl eQAut h2d i ent
or @nabl eQAut h2Sso). To prevent that infrastructure to be defined, just remove the
security.oauth2. client.client-idfromyour configuration (or make it the empty string).

please define title in your docbook file!

OAuth2 Autoconfig

5. Single Sign On

An OAuth2 Client can be used to fetch user details from the provider (if such features are available)
and then convert them into an Aut henti cati on token for Spring Security. The Resource Server
above support this via the user -i nf o-uri property This is the basis for a Single Sign On (SSO)
protocol based on OAuth2, and Spring Boot makes it easy to participate by providing an annotation
@nabl eQAut h2Sso. The Github client above can protect all its resources and authenticate using the
Github / user/ endpoint, by adding that annotation and declaring where to find the endpoint (in addition
to the security. oaut h2. cl i ent. * configuration already listed above):

application.yml.

security:
oaut h2:
...
resource:
user|nfoUri: https://api.github.conluser
pref er Tokenl nfo: false

Since all paths are secure by default, there is no “home” page that you can show to
unauthenticated users and invite them to login (by visiting the / | ogi n path, or the path specified by
security. oaut h2. sso. | ogi n- pat h).

To customize the access rules or paths to protect, so you can add a “home” page for instance,
@nabl eQAut h2Sso can be added to a WebSecur i t yConfi gur er Adapt er and the annotation will
cause it to be decorated and enhanced with the necessary pieces to get the / | ogi n path working. For
example, here we simply allow unauthenticated access to the home page at "/" and keep the default
for everything else:

@onfiguration
public class WbSecurityConfiguration extends WbSecurityConfigurerAdapter {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
. aut hori zeRequest s()
.mvcMatchers("/").perm tAll ()
. anyRequest (). aut henti cated();

please define title in your docbook file! 9

OAuth2 Autoconfig

Appendix A. Common application
properties

Various properties can be specified inside your appl i cati on. properti es/application.ymnl file
or as command line switches. This section provides a list of common Spring Boot properties and
references to the underlying classes that consume them.

Note

Property contributions can come from additional jar files on your classpath so you should not
consider this an exhaustive list. It is also perfectly legit to define your own properties.

Warning

This sample file is meant as a guide only. Do not copy/paste the entire content into your
application; rather pick only the properties that you need.

SECURI TY QAUTH2 CLI ENT (QAuth2d i ent Properties)
security.oauth2.client.client-id= # OAuth2 client id.
security.oauth2.client.client-secret= # QAuth2 client secret. A random secret is generated by default

SECURI TY QAUTH2 RESOURCES (ResourceServer Properties)

security.oauth2.resource.id= # ldentifier of the resource.

security.oauth2.resource.jw.key-uri= # The URl of the JWI token. Can be set if the value is not
avai |l abl e and the key is public.

security.oauth2.resource.jw.key-value= # The verification key of the JW token. Can either be a
symmetric secret or PEM encoded RSA public key.

security.oauth2.resource.jwk. key-set-uri= # The URI for getting the set of keys that can be used to
val i date the token.

security. oauth2.resource. prefer-token-info=true # Use the token info, can be set to false to use the
user info.

security. oaut h2.resource. servi ce-i d=resource #

security.oauth2.resource.token-info-uri= # UR of the token decodi ng endpoint.

security. oauth2.resource.token-type= # The token type to send when using the userlnfoUri.
security.oauth2.resource.user-info-uri=# UR of the user endpoint.

SECURI TY QAUTH2 SSO (QAut h2SsoProperti es)
security.oauth2. sso.login-path=/login # Path to the |ogin page, i.e. the one that triggers the redirect
to the QAuth2 Authorization Server

please define title in your docbook file! 10

../../api/org/springframework/boot/autoconfigure/security/oauth2/OAuth2ClientProperties.html
../../api/org/springframework/boot/autoconfigure/security/oauth2/resource/ResourceServerProperties.html
../../api/org/springframework/boot/autoconfigure/security/oauth2/client/OAuth2SsoProperties.html

	OAuth2 Autoconfig
	Table of Contents
	
	1. Downloading
	1.1 Source
	1.2 Maven
	1.3 Gradle

	2. Authorization Server
	3. Resource Server
	Part I. Token Type in User Info
	Part II. Customizing the User Info RestTemplate
	4. Client
	5. Single Sign On
	Appendix A. Common application properties

