OAuth2 Boot

Copyright ©

OAuth2 Boot

Table of Contents

... iii
1. AULNOTIZALION SEIVET ...ttt ettt e e et e e e e e 1
1.1. Do | Need to Stand Up My Own Authorization Server?cocoovoiiiiiiiiiiiieeieeeeeeennn 1

1.2, DEPENAENCIES ..ottt ettt e e et e e e b e et e e et e e b 1

1.3. Minimal OAuUth2 Boot ConfiguIationcieiiiiiiiiiii e e e e 1
Enabling the AUthOFZation SEIVETc.. i 1
Specifying a Client and SECIELviiiiiiie e 1
REtNEVING @ TOKEN ..t e e e e e e e e et e e et eeanaees 2

1.4. How to Switch Off OAuth2 Boot's Auto Configurationcccoceeoieiiiiiiiiiii e, 2

1.5. How to Make Authorization Code Grant FIOW WOrKcccooiiiiiiiiiiiiiinici e 3
Yo [o 11T =g o B LT P 4

Adding an End-User LOGIN FIOWooiuiiiiiii e 4
Registering a Redirect URI With the CHentcoviiiiiiiii e 4

Testing Authorization Code FIOWccouuiiiiiii e 5

1.6. How to Make Password Grant FIOW WOrK ..o 5

1.7. How and When to Give Authorization Server an AuthenticationManager 6
EXposing a UserDet @i | SSEI Vi CE .oovuuiiiiii i 6

Exposing an Aut henti cat i ONMANAGETc.uiiiiiiii e 7
Depending on Aut henti cationConfigurati onc.oooviiiiiiiiiinii 7

Manually Wiring An Aut hent i cati ONMBRNAGETcooviiiiiiiiieec e 8

1.8. Is Authorization Server Compatible with Spring Security 5.1 Resource Server and

O 1= o | N 8
Configuring Authorization Server to USe JWKScoiiiiiiiiiiiiiicc e 9

Add a JWK Set URI ENAPOINTcuuiiiiiiiiei ettt e e e e e e 9

Testing Against Spring Security 5.1 RESOUICE SEIVETocvuvieviiieieiiieeieeeiiieeaneeeaneeeens 10

2. RESOUICE SEIVEIiiiiiiiiiiiiiii et e e e et e e e s e s e et e e e a e eae e ees 11
A I B 1T 01T To [=T g ol [T PP 11

2.2. Minimal OAuUth2 Boot CONfigUrationooeieiiiiieiiiiiee e 11
ENnabling the RESOUICE SEIVELccuuiiiiieii e e 11
Specifying a Token Verification Strategycouuiiiiiiiiiiii e 11

T N T e 11

L o - o | 1 1 12

ACCESSING @ RESOUICE ...ttt e et e et e et e e e e e et e e eaaaeanas 12

2.3. How to Use JWT with @ Single KeY ... 12

2.4. How to Configure the Token Info ENAPOINtcooevniiiiiiiiic e 13

2.5. How to Configure the User Info ENAPOINt ..o e 13
Customizing the User INfO REQUESTiiiiiiiiiiiii e e 13

2.6. Customizing AUthorization RUIESciiiiiiiiiii e 14

2.7. LeSS COMMON FRALUIES ... c.uiiiiii ittt et et e e e et e et e et e e e e eenns 14
Changing the TOKEN TYPE ... e et e e e e e 14

Changing the FIlter OFAeriiiiiii e e e aaas 15
Permitting the /error ENAPOING ..o e 16

G T O 1T o | P 17
ST T | L= T T T o PP 19
A. Common ApPlICAtIoON PrOPEITIES ... et e e e e aa s 21

please define title in your docbook file! ii

OAuth2 Boot

If you have spri ng-security-oaut h2 on your classpath, you can take advantage of some auto-
configuration to simplify setting up Authorization and Resource Servers. For full details, see the Spring
Security OAuth 2 Developers Guide.

Note

The following projects are in maintenance mode:

e spring-security-oauth2

e spring-security-oauth2-autoconfigure

You are, of course, welcome to use them, and we will help you out!

However, before selecting spri ng-security-oaut h2 and spri ng-security-oaut h2-
aut oconfi gur e, you should check out Spring Security’s feature matrix to see if the new
first-class support meets your needs.

Note

This projectis a port of the Spring Security OAuth support that came with Spring Boot 1.x. Support
was removed in Spring Boot 2.x in favor of Spring Security 5's first-class OAuth support.

To ease migration, this project exists as a bridge between the old Spring Security OAuth support
and Spring Boot 2.x.

please define title in your docbook file! iii

https://projects.spring.io/spring-security-oauth/docs/oauth2.html
https://projects.spring.io/spring-security-oauth/docs/oauth2.html
https://github.com/spring-projects/spring-security/wiki/OAuth-2.0-Features-Matrix
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#oauth2client
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#oauth2client

OAuth2 Boot

1. Authorization Server
Spring Security OAuth2 Boot simplifies standing up an OAuth 2.0 Authorization Server.

1.1 Do | Need to Stand Up My Own Authorization Server?

You need to stand up your own authorization server if:

» You want to delegate the operations of sign-in, sign-out, and password recovery to a separate service
(also called identity federation) that you want to manage yourself and

* You want to use the OAuth 2.0 protocol for this separate service to coordinate with other services

1.2 Dependencies

To use the auto-configuration features in this library, you need spri ng- security- oaut h2, which
has the OAuth 2.0 primitives and spri ng- securi t y- oaut h2- aut oconf i gur e. Note that you need
to specify the version for spri ng- security-oaut h2- aut oconfi gur e, since it is not managed by
Spring Boot any longer, though it should match Boot’s version anyway.

For JWT support, you also need spri ng-security-jwt.

1.3 Minimal OAuth2 Boot Configuration

Creating a minimal Spring Boot authorization server consists of three basic steps:
1. Including the dependencies.
2. Including the @nabl eAut hori zat i onSer ver annotation.

3. Specifying at least one client ID and secret pair.
Enabling the Authorization Server

Similar to other Spring Boot @nabl e annotations, you can add the @nabl eAut hori zati onSer ver
annotation to the class that contains your mai n method, as the following example shows:

@nabl eAut hori zati onSer ver
@Bpr i ngBoot Appl i cati on
public class SinpleAuthorizationServerApplication {
public static void main(String[] args) {
Spri ngAppl i cation. run(Si npl eAut hori zati onSer ver Appl i cation, args);
}

Adding this annotation imports other Spring configuration files that add a number of reasonable defaults,
such as how tokens ought to be signed, their duration, and what grants to allow.

Specifying a Client and Secret

By spec, numerous OAuth 2.0 endpoints require client authentication, so you need to specify at least
one client in order for anyone to be able to communicate with your authorization server.

The following example shows how to specify a client:

please define title in your docbook file! 1

OAuth2 Boot

security:
oaut h2:
client:
client-id: first-client
client-secret: noonew || everguess

Note

While convenient, this makes a number of assumptions that are unlikely to be viable in production.
You likely need to do more than this to ship.

That's it! But, what do you do with it? We cover that next.

Retrieving a Token

OAuth 2.0 is essentially a framework that specifies strategies for exchanging long-lived tokens for short-
lived ones.

By default, @nabl eAut hori zat i onSer ver grants a client access to client credentials, which means
you can do something like the following:

curl first-client:noonew || everguess@ ocal host: 8080/ oaut h/ t oken -dgrant_type=client_credentials -
dscope=any

The application responds with a token similar to the following:

"access_token" : "f05alea7-4c80-4583-al123-dc7a99415588",
"token_type" : "bearer",

"expires_in" : 43173,

"scope" : "any"

This token can be presented to any resource server that supports opaque OAuth 2.0 tokens and is
configured to point at this authorization server for verification.

From here, you can jump to:

» Section 1.4, “How to Switch Off OAuth2 Boot’s Auto Configuration”

» Section 1.5, “How to Make Authorization Code Grant Flow Work”

» Section 1.6, “How to Make Password Grant Flow Work”

» Section 1.7, “How and When to Give Authorization Server an AuthenticationManager”

» Section 1.8, “Is Authorization Server Compatible with Spring Security 5.1 Resource Server and
Client?”

* How to Configure for Jwt Tokens

1.4 How to Switch Off OAuth2 Boot’s Auto Configuration

Basically, the OAuth2 Boot project creates an instance of Aut hori zat i onSer ver Confi gur er with
some reasonable defaults:

please define title in your docbook file! 2

https://projects.spring.io/spring-security-oauth/docs/oauth2.html#jwt-tokens
https://projects.spring.io/spring-security-oauth/docs/oauth2.html#authorization-server-configuration

OAuth2 Boot

* It registers a NoQpPasswor dEncoder (overriding the Spring Security default)

« It lets the client you provided use any grant type this server supports: aut hori zati on_code,
password, client _credentials,inplicit,orrefresh_token.

Otherwise, it also tries to pick up a handful of beans, if they are defined — namely:
» Aut henti cati onManager : For looking up end users (not clients)
» TokenSt or e: For generating and retrieving tokens

» AccessTokenConvert er: For converting access tokens into different formats, such as JWT.

Note

While this documentation covers a bit of what each of these beans does, the Spring Security
OAuth documentation is a better place to read up on its primitives

If you expose a bean of type Aut hor i zat i onSer ver Conf i gur er, none of this is done automatically.

So, for example, if you need to configure more than one client, change their allowed grant types, or use
something better than the no-op password encoder (highly recommended!), then you want to expose
your own Aut hori zat i onSer ver Conf i gur er, as the following example shows:

@onfiguration
public class AuthorizationServerConfig extends AuthorizationServer Confi gurerAdapter {

@\t ow red DataSource dat aSource;

protected void configure(dientDetail sServiceConfigurer clients) {
clients
.jdbc(this.dataSource)
. passwor dEncoder (Passwor dEncoder Fact ori es. cr eat eDel egat i ngPasswor dEncoder ()) ;

The preceding configuration causes OAuth2 Boot to no longer retrieve the client from environment
properties and now falls back to the Spring Security password encoder default.

From here, you may want to learn more about;
» Section 1.5, “How to Make Authorization Code Grant Flow Work”

» Section 1.6, “How to Make Password Grant Flow Work”

1.5 How to Make Authorization Code Grant Flow Work

With the default configuration, while the Authorization Code Flow is technically allowed, it is not
completely configured.

This is because, in addition to what comes pre-configured, the Authorization Code Flow requires:
* End users
e An end-user login flow, and

» Aredirect URI registered with the client

please define title in your docbook file! 3

https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#core-services-password-encoding
https://projects.spring.io/spring-security-oauth/docs/oauth2.html
https://projects.spring.io/spring-security-oauth/docs/oauth2.html

OAuth2 Boot

Adding End Users

In a typical Spring Boot application secured by Spring Security, users are defined by a
User Det ai | sSer vi ce. In that regard, an authorization server is no different, as the following example
shows:

@nabl eWebSecurity
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {
@Bean
@verride
public UserDetail sService userDetail sService() {
return new | nMenoryUser Det ai | sManager (
User . wi t hDef aul t Passwor dEncoder ()
. user nane("enduser")
. passwor d(" password")
.rol es("USER")
Lbuild());

Note that, as is typical of a Spring Security web application, users are defined in a
WebSecuri t yConfi gur er Adapt er instance.

Adding an End-User Login Flow

Incidentally, adding an instance of WebSecur i t yConf i gur er Adapt er is all we need for now to add
a form login flow for end users. However, note that this is where any other configuration regarding the
web application itself, not the OAuth 2.0 API, goes.

If you want to customize the login page, offer more than just form login for the user, or add additional
support like password recovery, the WebSecur i t yConf i gur er Adapt er picks it up.

Registering a Redirect URI With the Client

OAuth2 Boot does not support configuring a redirect URI as a property — say, alongside client-id
andclient-secret.

To add a redirect URI, you need to specify the client by using either
I nMenoryd i ent Det ai | sServi ce orJdbcd i ent Det ai | sServi ce.

Doing either means replacing the OAuth?2 Boot-provided Aut hori zati onSer ver Conf i gur er with
your own, as the following example shows:

@onfiguration
public class AuthorizationServerConfig extends AuthorizationServerConfi gurerAdapter {

@ean
Passwor dEncoder passwor dEncoder () {
return Passwor dEncoder Fact ori es. cr eat eDel egat i ngPasswor dEncoder () ;

}

protected void configure(dientDetail sServiceConfigurer clients) {
clients
.inMenory()
.withdient("first-client")
. secr et (passwor dEncoder () . encode(" noonewi | | ever guess"))
. scopes("resource: read")
.aut hori zedG ant Types(" aut hori zati on_code")
.redirectUris("http://1ocal host: 8081/ oauth/l ogin/client-app");

please define title in your docbook file! 4

https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#tech-userdetailsservice
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#tech-userdetailsservice

OAuth2 Boot

Testing Authorization Code Flow

Testing OAuth can be tricky since it requires more than one server to see the full flow in action. However,
the first steps are straight-forward:

1. Browse to http://localhost:8080/oauth/authorize?
grant_type=authorization_code&response_type=code&client_id=first-client&state=1234

2. The application, if the user is not logged in, redirects to the login page, at http://localhost:8080/login

3. Once the user logs in, the application generates a code and redirects to the registered redirect
URI —in this case, http://localhost:8081/oauth/login/client-app

The flow could continue at this point by standing up any resource server that is configured for opaque
tokens and is pointed at this authorization server instance.

1.6 How to Make Password Grant Flow Work

With the default configuration, while the Password Flow is technically possible, it, like Authorization
Code, is missing users.

That said, because the default configuration creates a user with a username of user and a randomly-
generated password, you can hypothetically check the logs for the password and do the following:

curl first-client:noonew || everguess@ ocal host: 8080/ oaut h/ t oken -dgrant_type=password -dscope=any -
duser nane=user - dpasswor d=t he- password-fromthe-1|ogs

When you run that command, you should get a token back.
More likely, though, you want to specify a set of users.

As was stated in Section 1.5, “How to Make Authorization Code Grant Flow Work”, in Spring Security,
users are typically specified in a User Det ai | sSer vi ce and this application is no different, as the
following example shows:

@nabl eWebSecurity
public class WbSecurityConfig extends WebSecurityConfi gurerAdapter {
@Bean
@verride
public UserDetail sService userDetail sService() {
return new | nMenoryUser Det ai | sManager (
User . wi t hDef aul t Passwor dEncoder ()
. user nane("enduser")
. passwor d(" password")
.rol es("USER")
Lbuild());

This is all we need to do. We do not need to override Aut hori zat i onSer ver Confi gur er, because
the client ID and secret are specified as environment properties.

So, the following should now work:

curl first-client:noonew || everguess@ ocal host: 8080/ oaut h/ t oken - dgrant_type=password -dscope=any -
duser nane=enduser - dpasswor d=passwor d

please define title in your docbook file! 5

http://localhost:8080/oauth/authorize?grant_type=authorization_code&response_type=code&client_id=first-client&state=1234
http://localhost:8080/oauth/authorize?grant_type=authorization_code&response_type=code&client_id=first-client&state=1234
http://localhost:8080/login
http://localhost:8081/oauth/login/client-app

OAuth2 Boot

1.7 How and When to Give Authorization Server an
AuthenticationManager
This is a very common guestion and is not terribly intuitive when

Aut hor i zat i onSer ver Endpoi nt sConfi gur er needs an Aut hent i cat i onManager instance to
be specified. The short answer is: Only when using the Resource Owner Password Flow.

It helps to remember a few fundamentals:

« An Aut henti cati onManager is an abstraction for authenticating users. It typically needs some
kind of User Det ai | sSer vi ce to be specified in order to be complete.

» End users are specified in a WebSecur i t yConf i gur er Adapt er.
» OAuth2 Boot, by default, automatically picks up any exposed Aut hent i cat i onManager .

However, not all flows require an Aut hent i cati onManager because not all flows have end users
involved. For example, the Client Credentials flow asks for a token based only on the client’s authority,
not the end user’s. And the Refresh Token flow asks for a token based only on the authority of a refresh
token.

Also, not all flows specifically require the OAuth 2.0 API itself to have an Aut hent i cat i onManager,
either. For example, the Authorization Code and Implicit flows verify the user when they login (application
flow), not when the token (OAuth 2.0 API) is requested.

Only the Resource Owner Password flow returns a code based off of the end user’s credentials. This
means that the Authorization Server only needs an Aut hent i cat i onManager when clients are using
the Resource Owner Password flow.

The following example shows the Resource Owner Password flow:

.aut hori zedG ant Types("password", ...)

In the preceding flow, your Authorization Server needs an instance of Aut hent i cat i onManager .

There are a few ways to do this (remember the fundamentals from eatrlier):

» Leave the OAuth2 Boot defaults (you are not exposing a Aut hor i zat i onSer ver Conf i gur er)and
expose a User Det ai | sServi ce.

» Leave the OAuth2 Boot defaults and expose an Aut hent i cati onManager .

» Override Aut hori zati onSer ver Confi gur er Adapt er (removing OAuth2 Boot's defaults) and
depend on Aut hent i cati onConfi gurati on.

» Override Aut hori zat i onSer ver Confi gur er Adapt er and manually wire the
Aut henti cati onManager .

Exposing a User Det ai | sSer vi ce

End users are specified in a WebSecuri t yConf i gur er Adapt er through a User Det ai | sSer vi ce.
So, if you wuse the OAuth2 Boot defaults (meaning you haven't implemented a

please define title in your docbook file! 6

OAuth2 Boot

Aut hori zati onSer ver Confi gurer), you can expose a User Det ai | sSer vi ce and be done, as
the following example shows:

@Enabl eWebSecurity
public class WbSecurityConfig extends WebSecurityConfi gurerAdapter {
@\t owi red DataSource dataSource;

@Bean
@verride
public UserDetail sService userDetail sService() {
return new JdbcUser Det ai | sManager (t hi s. dat aSour ce) ;

}

Exposing an Aut hent i cat i onManager

In case you need to do more specialized configuration of the Aut hent i cati onManager, you can do
so in the WebSecuri t yConf i gur er Adapt er and then expose it, as the following example shows:

@nabl eWebSecurity
public class WbSecurityConfig extends WebSecurityConfi gurerAdapter {
@Bean(Beansl| d. AUTHENTI CATI ON_NVANAGER)
@verride
publ i c Authenticati onManager authenticati onManager Bean() {
return super.authenticati onManager Bean();

}

@verride
protected void configure(Authenticati onManagerBui |l der auth) {
aut h. aut henti cati onProvi der (cust omAut henti cati onProvi der());

}

If you use the OAuth2 Boot defaults, then it picks up the bean automatically.

Depending on Aut henti cati onConfi gurati on

Any configured Aut hent i cat i onManager is available in Aut henti cati onConfi gur ati on. This
means that, if you need to have an Aut hori zati onSer ver Confi gur er (in which case you need
to do your own autowiring), you can have it depend on Aut hent i cati onConfi gurati on to get the
Aut hent i cat i onManager bean, as the following class shows:

@onponent

public class CustomAut hori zati onServer Configurer extends
Aut hori zat i onSer ver Confi gur er Adapter {
Aut hent i cat i onManager aut henti cati onManager ;

publ i ¢ Cust omAut hori zati onSer ver Confi gurer (Aut henti cati onConfi guration authenti cationConfi guration)

this.authenticati onManager = authenticationConfiguration. getAut henti cati onManager ();

}
@verride
public void configure(dientDetail sServiceConfigurer clients) {
/1 .. your client configuration that allows the password grant
}
@verride

public void configure(AuthorizationServer Endpoi nt sConfi gurer endpoints) {
endpoi nts. aut henti cati onManager (aut henti cati onManager) ;

}

please define title in your docbook file! 7

OAuth2 Boot

@Enabl eWebSecurity
public class WbSecurityConfig extends WebSecurityConfi gurerAdapter {
@Bean
@verride
public UserDetail sService userDetail sService() {
return new MyCustonlser Det ai | sService();

}

Manually Wiring An Aut hent i cat i onManager

In the most sophisticated case, where the Aut hent i cat i onManager needs special configuration and
you have your own Aut henti cat i onSer ver Confi gur er, then you need to both create your own
Aut hori zat i onSer ver Confi gur er Adapt er and your own WebSecur i t yConfi gur er Adapt er:

@onponent
public class CustomAut hori zati onServer Confi gurer extends
Aut hori zat i onSer ver Confi gur er Adapter {

Aut hent i cat i onManager aut henti cati onManager ;

publ i ¢ Cust omAut hori zati onSer ver Confi gurer (Aut henti cati onManager aut henti cati onManager) {
t hi s. aut henti cati onManager = aut henti cati onManager;

}
@verride
public void configure(dientDetail sServiceConfigurer clients) {
/1 .. your client configuration that allows the password grant
}
@verride

public void configure(AuthorizationServer Endpoi nt sConfi gurer endpoints) {
endpoi nts. aut henti cati onManager (aut henti cati onManager) ;

}

@nabl eWebSecurity
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {
@ean(Beansl| d. AUTHENTI CATI ON_MANAGER)
@verride
public Authenticati onManager authenti cati onManager Bean() {
return super. aut henti cati onManager Bean() ;

}

@verride
protected void configure(Authenticati onManagerBui |l der auth) {
aut h. aut henti cati onProvi der (cust omAut henti cati onProvi der());

}

1.8 Is Authorization Server Compatible with Spring Security 5.1
Resource Server and Client?

No, not out of the box. Spring Security 5.1 supports only JWT-encoded JWK-signed authorization, and
Authorization Server does not ship with a JWK Set URI.

Basic support is possible, though.

In order to configure Authorization Server to be compatible with Spring Security 5.1 Resource Server,
for example, you need to do the following:

» Configure it to use JWKs

please define title in your docbook file! 8

OAuth2 Boot

e Add a JWK Set URI endpoint
Configuring Authorization Server to Use JWKs

To change the format used for access and refresh tokens, you can change out the
AccessTokenConvert er and the TokenSt or e, as the following example shows:

@nabl eAut hori zat i onSer ver

@onfi guration
public class JwkSet Confi guration extends AuthorizationServerConfi gurerAdapter {

Aut hent i cati onManager aut henti cati onManager ;
KeyPai r keyPair;

publ i ¢ JwkSet Confi guration(AuthenticationConfiguration authenticationConfiguration,
KeyPai r keyPair) throws Exception {

this.authenticati onManager = authenticationConfiguration. getAut henti cati onManager ();
this.keyPair = keyPair;
}

/1 ... client configuration, etc.

@verride
public void configure(AuthorizationServerEndpoi ntsConfigurer endpoints) {
/] @ormatter:off
endpoi nts
.aut hent i cat i onManager (t hi s. aut hent i cat i onManager)
. accessTokenConverter (accessTokenConverter())
.tokenStore(tokenStore());
// @ormatter:on

}

@Bean
public TokenStore tokenStore() {
return new Jwt TokenSt ore(accessTokenConverter());

}

@Bean
public Jwt AccessTokenConverter accessTokenConverter() {
Jwt AccessTokenConverter converter = new Jw AccessTokenConverter();
converter.setKeyPair (this.keyPair);
return converter;
}
}

Add a JWK Set URI Endpoint

Spring Security OAuth does not support JWKs, nor does @nabl eAut hori zati onSer ver support
adding more OAuth 2.0 API endpoints to its initial set. However, we can add this with only a few lines.

First, you need to add another dependency: com ni mbusds: ni nbus-j ose-j wt . This gives you the
appropriate JWK primitives.

Second, instead of using @nabl eAut hori zati onServer, you need to directlyu include its two
@confi gur ati on classes:

e Aut hori zati onServer Endpoi nt sConfi guration: The @onfiguration class for
configuring the OAuth 2.0 API endpoints, such as what format to use for the tokens.

* Aut hori zati onServer SecurityConfi gurati on: The @onfi gur ati on class for the access
rules around those endpoints. This is the one that you need to extend, as shown in the following
example:

please define title in your docbook file! 9

OAuth2 Boot

@ r anewor kEndpoi nt
cl ass JwkSet Endpoi nt {
KeyPai r keyPair;

publ i ¢ JwkSet Endpoi nt (KeyPair keyPair) {
this.keyPair = keyPair;
}

@zet Mappi ng("/ . wel | -known/ j wks. j son")

@ResponseBody

public Map<String, Object> getKey(Principal principal) {
RSAPubl i cKey publicKey = (RSAPublicKey) this.keyPair.getPublic();
RSAKey key = new RSAKey. Bui | der (publ i cKey) . bui |l d();
return new JWKSet (key).toJSONObj ect () ;

}

}

@onfiguration
cl ass JwkSet Endpoi nt Confi guration extends AuthorizationServerSecurityConfiguration {
@verride
protected void configure(HttpSecurity http) throws Exception {
super. configure(http);
http
. request Mat cher s()
.mvcMat chers("/.wel | - known/j wks.json")
.and()
. aut hori zeRequest s()
.mvchat chers("/.wel | -known/jwks.json").permtAll();

Then, since you do not need to change Aut hori zati onSer ver Endpoi nt sConf i gurati on, you
can @ nport itinstead of using @nabl eAut hori zat i onSer ver, as the following example shows:

@ nport (Aut hori zat i onSer ver Endpoi nt sConfi gurati on. cl ass)
@onfi guration
public class JwkSet Configuration extends AuthorizationServer ConfigurerAdapter {

/1 ... the rest of the configuration fromthe previous section

Testing Against Spring Security 5.1 Resource Server

Now you can POST to the / oaut h/ t oken endpoint (as before) to obtain a token and then present that
to a Spring Security 5.1 Resource Server.

please define title in your docbook file! 10

https://github.com/spring-projects/spring-security/tree/master/samples/boot/oauth2resourceserver

OAuth2 Boot

2. Resource Server

Spring Security OAuth2 Boot simplifies protecting your resources using Bearer Token authentication in
two different token formats: JWT and Opaque.

2.1 Dependencies

To use the auto-configuration features in this library, you need spri ng- security- oaut h2, which
has the OAuth 2.0 primitives and spri ng- securi t y- oaut h2- aut oconf i gur e. Note that you need
to specify the version for spri ng- securi t y- oaut h2- aut oconf i gur e, since it is not managed by
Spring Boot any longer, though it should match Boot’s version anyway.

For JWT support, you also need spri ng-security-jwt.

2.2 Minimal OAuth2 Boot Configuration

Creating a minimal Spring Boot resource server consists of three basic steps:
1. Including the dependencies.
2. Including the @nabl eResour ceSer ver annotation.

3. Specifying a strategy for verifying the bearer token.
Enabling the Resource Server

Similar to other Spring Boot @nabl e annotations, you can add the @tnabl eResour ceServer
annotation to the class that contains your mai n method, as the following example shows:

@nabl eResour ceSer ver
@pr i ngBoot Appl i cati on
public class SinpleAuthorizationServerApplication {
public static void main(String[] args) {
Spri ngApplication. run(Si npl eAut hori zati onServer Appl i cation, args);
}

Adding this annotation adds the QAut h2Aut hent i cat i onProcessi ngFi | t er, though it will need
one more configuration to know how to appropriately process and validate tokens.

Specifying a Token Verification Strategy

Bearer Tokens typically come in one of two forms: JWT-encoded or opaque. You will need to configure
the resource server with one or the other strategy.

JWT

To indicate JWT, simply specify the JWK Set Uri hosted on your Authorization Server:

security:
oaut h2:
resource:
j wk:
key-set-uri: https://idp.exanpl e.conl .well-known/jwks.json

Instead of a JWK Set Uri, you can also specify a key.

please define title in your docbook file! 11

OAuth2 Boot

Note that with this configuration, your authorization server needs to be up in order for Resource Server
to start up.

Opaque

To indicate opaque, simply specify the Authorization Server endpoint that knows how to decode the
token:

security:
oaut h2:
resource:
token-info-uri: https://idp.exanple.con oauth2/introspect

Note

It's likely this endpoint requires some kind of authorization separate from the token itself, for
example, client authentication.

That's it! But, what do you do with it? We cover that next.
Accessing a Resource

To confirm that Resource Server is correctly processing tokens, you can add a simple controller endpoint
like so:

@Rest Control | er
public class SinpleController
@t Mappi ng("/ whoam ")
public String whoam (@\uthenticationPrincipal (expression="nane") String nane) {
return name;

}

Then, obtain an active access token from your Authorization Server and present it to the Resource
Server:

curl -H "Authorization: $TOKEN' http://I ocal host: 8080/ whoami

And you should see the value of the user _nane attribute in the token.

From this point, you may want to learn more about three alternative ways to authenticate using bearer
tokens:

» Section 2.3, “How to Use JWT with a Single Key”
» Section 2.4, “How to Configure the Token Info Endpoint”

» Section 2.5, “How to Configure the User Info Endpoint”

2.3 How to Use JWT with a Single Key

Instead of a JWK Set endpoint, you may have a local key you want to configure for verification. While
this is weaker due to the key being static, it may be necessary in your situation.

Configuring the resource server with the appropriate symmetric key or PKCS#8 PEM-encoded public
key is simple, as can be seen below:

please define title in your docbook file! 12

OAuth2 Boot

security:
oaut h2:
resource:
jwt:
key-val ue: |

----- BEG N PUBLI C KEY-----
M | Bl j ANBgkghki GOWOBAQEFAACCAGBAM | BCgKC. . .
————— END PUBLI C KEY- - - - -

Tip
The pipe in yaml indicates a multi-line property value.

You can also instead supply akey- st or e, key- st or e- passwor d, key- al i as,andkey- password
properties.

Or you can use the key- uri endpoint to get the key remotely from your authorization server, which is
something of a happy medium between static, local configuration and a JWK Set endpoint.

2.4 How to Configure the Token Info Endpoint

The token info endpoint, also sometimes called the introspection endpoint, likely requires some
kind of client authentication, either Basic or Bearer. Generally speaking, the bearer token in the
Securi t yCont ext won't suffice since that is tied to the user. Instead, you’ll need to specify credentials
that represent this client, like so:

security:
oaut h2:
client:
clientld: client-id
clientSecret: client-secret
resour ce:
tokenl nfoUri: https://idp.exanple.conm oaut h2/ check_t oken

By default, this will use Basic authentication, using the configured credentials, to authenticate against
the token info endpoint.

2.5 How to Configure the User Info Endpoint

It's atypical for a resource server to need to call a user info endpoint. This is because, fundamentally, a
resource server is about authorizing a request, not authenticating it. That said, it is at times necessary.

If you specify a user info endpoint like so:

security:
oaut h2:
resource:
user|nfoUri: https://idp.exanple.conl oauth2/userinfo

Then Resource Server will send it the bearer token that is part of the request and enhance the
Aut hent i cat i on object with the result.

Customizing the User Info Request

Internally, Resource Server uses an QAut h2Rest Tenpl at e to invoke the / useri nf o endpoint. At
times, it may be necessary to add filters or perform other customization for this invocation. To customize
the creation of this bean, you can expose a User | nf oRest Tenpl at eCust om zer, like so:

please define title in your docbook file! 13

OAuth2 Boot

@Bean
public User| nfoRest Tenpl at eCust omi zer custonHeader () {
return restTenplate ->
rest Tenpl at e. get I nterceptors().add(new MyCust om nterceptor());

This bean will be handed to a User | nf oTenpl at eFact or y which will add other configurations helpful
to coordinating with the / user i nf o endpoint.

And, of course, you can replace the User | nf oTenpl at eFact ory completely, if you need complete
control over "OAuth2RestTemplate’s configuration.

2.6 Customizing Authorization Rules

Similar to how Spring Security works, you can customize authorization rules by endpoint in Spring
Security OAuth, like so:

public class HasAuthorityConfig
ext ends Resour ceServer Confi gurer Adapter {

@verride
public void configure(HtpSecurity http) throws Exception {
/1 @ormatter:of f
http
. aut hori zeRequest s()
.ant Matchers("/flights/**"). hasAuthority("#oaut h2. hasScope(' nessage:read')")
. anyRequest (). aut henti cated();
/1l @ornatter:on

}

Though, note that if a server is configured both as a resource server and as an authorization server,
then there are certain endpoint that require special handling. To avoid configuring over the top of those
endpoints (like /t oken), it would be better to isolate your resource server endpoints to a targeted
directory like so:

public class ResourceServer Endpoi nt Confi g
ext ends Resour ceServer Confi gurer Adapter {

@verride
public void configure(H tpSecurity http) throws Exception {
/|l @ormatter:off
http
.ant Mat chers("/resourceA **", "/[resourceB/ **")
. aut hori zeRequest s()
.ant Mat chers("/resourceAl **") . hasAut hori ty("#oaut h2. hasScope(' resourceA:read')")
.ant Mat chers("/resourceB/ **") . hasAut hori ty("#oaut h2. hasScope(' resourceB:read')")
. anyRequest (). aut henti cated();
/] @ormatter:on

}

As the above configuration will target your resource endpoints and not affect authorization server-
specific endpoints.

2.7 Less Common Features

Changing the Token Type

Google and certain other third-party identity providers are more strict about the token type
name that is sent in the headers to the user info endpoint. The default is Bearer, which

please define title in your docbook file! 14

OAuth2 Boot

suits most providers and matches the spec. However, if you need to change it, you can set
security. oaut h2. resource.t oken-type.

Changing the Filter Order

OAuth2 resources are protected by a filter chain with the order specified by
security.oauth2.resource.filter-order.

By default the filters in Aut hor i zat i onSer ver Conf i gur er Adapt er come first, followed by those in
Resour ceSer ver Confi gur er Adapt er, followed by those in WebSecur i t yConf i gur er Adapt er .

This means that all application endpoints will require bearer token authentication unless one of
two things happens:

1. The filter chain order is changed or
2. The Resour ceSer ver Conf i gur er Adapt er set of authorized requests is narrowed

The first, changing the filter chain order, can be done by moving WebSecur i t yConf i gur er Adapt er
in front of Resour ceSer ver Conf i gur er Adapt er like so:

@ der (2)

@nabl eWebSecurity

public WebSecurityConfig extends WebSecurityConfigurerAdapter {
...

}

Note

Resource Server’'s default @ der value is 3 which is why the example sets Web’'s @ der to
2, so that it's evaluated earlier.

While this may work, it’s a little odd since we may simply trade one problem:
Resour ceSer ver Conf i gur er Adapt er is handling requests it shouldn’t
For another:
WebSecuri t yConfi gur er Adapt er is handling requests it shouldn’t

The more robust solution, then, is to indicate to Resour ceSer ver Confi gur er Adapt er which
endpoints should be secured by bearer token authentication.

For example, the following configures Resource Server to secure the web application endpoints that
begin with / r est :

@nabl eResour ceSer ver
publ i ¢ ResourceServer Config extends ResourceServer Confi gurerAdapter {
@verride
protected void configure(HttpSecurity http) {
http
. request Mat cher s()
.antMatchers("/rest/**")
. aut hori zeRequest s()
. anyRequest (). aut henti cated();

please define title in your docbook file! 15

OAuth2 Boot

Permitting the /error Endpoint

Resource Server, when also configured as a client, may rely on a request-scoped
QAut h2d i ent Cont ext bean during the authentication process. And, in some error situations,
Resource Server forwards to the ERROR servlet dispatcher.

By default, request-scoped beans aren’t available in the ERROR dispatch. And, because of this, you
may see a complaint about the QAut h2Cl i ent Cont ext bean not being available.

The simplest approach may be to permit the / er r or endpoint, so that Resource Server doesn’t try and
authenticate the request:

public class PermtErrorConfig extends ResourceServer ConfigurerAdapter {
@verride
public void configure(HtpSecurity http) throws Exception {
/1l @ormatter:of f
http
. aut hori zeRequest s()
.ant Matchers("/error").perm tAll ()
. anyRequest (). aut henti cated();
/1l @ornatter:on
}
}

Other solutions are to configure Spring so that the Request Cont ext Fi | t er is registered with the
error dispatch or to register a Request Cont ext Li st ener bean.

please define title in your docbook file! 16

OAuth2 Boot

3. Client

To make your web application into an OAuth2 client, you can add @nabl eQAut h2Cl i ent and
Spring Boot creates an QAut h2C i ent Cont ext and QAut h2Pr ot ect edResour ceDet ai | s thatare
necessary to create an QAut h2Rest Oper at i ons. Spring Boot does not automatically create such a
bean, but you can easily create your own, as the following example shows:

@ean
publ i ¢ QAut h2Rest Tenpl at e oaut h2Rest Tenpl at e(QAut h2Cl i ent Cont ext oaut h2d i ent Cont ext,
QAut h2Pr ot ect edResour ceDet ai | s details) {
return new OAut h2Rest Tenpl at e(det ai | s, oaut h2C i ent Cont ext) ;

Note

You may want to add a qualifier and review your configuration, as more than one Rest Tenpl at e
may be defined in your application.

This configuration uses securi ty. oaut h2. cl i ent . * as credentials (the same as you might be using
in the Authorization Server). However, in addition, it needs to know the authorization and token URIs in
the Authorization Server, as the following example shows:

application.yml.

security:
oaut h2:
client:

clientld: bdlcOa783ccddlc9b9es
clientSecret: 1a9030f bca47a5b2c28e92f 19050bb77824b5ad1
accessTokenUri: https://github.conf| ogin/ oauth/ access_t oken
user Aut hori zationUri: https://github.conllogin/oauth/authorize
cli ent Aut henti cati onScheme: form

An application with this configuration redirects to Github for authorization when you attempt to use the
QAut h2Rest Tenpl at e. If you are already signed into Github. you should not even notice that it has
authenticated. These specific credentials work only if your application is running on port 8080 (you can
register your own client application in Github or other provider for more flexibility).

To limit the scope that the client asks for when it obtains an access token, you can set
security.oauth2.client.scope (comma separated or an array in YAML). By default, the scope
is empty, and it is up to Authorization Server to decide what the defaults should be (usually depending
on the settings in the client registration that it holds).

Note

There is also a setting for security. oauth2.client.client-authentication-scheng,
which defaults to header (but you might need to set it to f or mif, like Github for instance, your
OAuth2 provider does not like header authentication). In fact, the securi ty. oaut h2. cli ent . *
properties are bound to an instance of Aut hori zati onCodeResour ceDet ai | s, so all of its
properties can be specified.

Tip

In a non-web application, you can still create an QAut h2Rest Oper ati ons, and it is still
wired into the security. oaut h2.client.* configuration. In this case, you are asking

please define title in your docbook file! 17

OAuth2 Boot

for is a “client credentials token grant” if you use it (and there is no need to use
@nabl eQAut h2C i ent or @nabl eQAut h2Sso). To prevent that infrastructure being defined,

remove the security. oaut h2. client.client-idfromyourconfiguration (or make it be an
empty string).

please define title in your docbook file!

18

OAuth2 Boot

4. Single Sign On

You can use an OAuth2 Client to fetch user details from the provider (if such features are available) and
then convert them into an Aut hent i cat i on token for Spring Security. The Resource Server (described
earlier) supports this through the user - i nf o- uri property. This is the basis for a Single Sign On (SSO)
protocol based on OAuth2, and Spring Boot makes it easy to participate by providing an annotation
@nabl eQAut h2Sso. The Github client shown in the preceding section can protect all its resources and
authenticate by using the Github / user/ endpoint, by adding that annotation and declaring where to
find the endpoint (in addition tothe securi ty. oaut h2. cl i ent . * configuration already listed earlier):

security:
oaut h2:
#oo..
resource:
userInfoUri: https://api.github.conluser
pr ef er Tokenl nfo: fal se

Example 4.1 application.yml

Since all paths are secure by default, there is no “home” page that you can show to
unauthenticated users and invite them to login (by visiting the / | ogi n path, or the path specified by
security. oaut h2. sso. | ogi n- pat h).

To customize the access rules or paths to protect s(o you can add a “home” page for instance,) you can
add @nabl eQAut h2Sso to a WebSecuri t yConf i gur er Adapt er . The annotation causes it to be
decorated and enhanced with the necessary pieces to get the / | ogi n path working. In the following
example, we simply allow unauthenticated access to the home page at / and keep the default for
everything else:

@onfi guration
public class WebSecurityConfiguration extends WbSecurityConfigurerAdapter {

@verride
protected void configure(H tpSecurity http) throws Exception {
http
. aut hori zeRequest s()
.mvchat chers("/").perm tAll ()
. anyRequest (). aut henti cated();

Also, note that, since all endpoints are secure by default, this includes any default error handling
endpoints — for example, the / er r or endpoint. This means that, if there is some problem during Single
Sign On that requires the application to redirect to the / er r or page, this can cause an infinite redirect
between the identity provider and the receiving application.

First, think carefully about making an endpoint insecure, as you may find that the behavior is simply
evidence of a different problem. However, this behavior can be addressed by configuring the application
to permit / err or, as the following example shows:

please define title in your docbook file! 19

OAuth2 Boot

@onfi guration
public class WebSecurityConfigurati on extends WbSecurityConfigurerAdapter {

@verride
protected void configure(H tpSecurity http) throws Exception {
http
. aut hori zeRequest s()
.ant Matchers("/error").perm tAll ()
.anyRequest (). aut henti cated();

please define title in your docbook file!

20

OAuth2 Boot

Appendix A. Common Application
Properties

You can specify various properties inside your appl i cati on. properties or application.ynl
files or as command line switches. This section provides a list of common Spring Boot properties and
references to the underlying classes that consume them.

Note

Property contributions can come from additional jar files on your classpath, so you should not
consider this an exhaustive list. It is also perfectly legitimate to define your own properties.

Warning

This sample file is meant as a guide only. Do not copy and paste the entire content into your
application. Rather, pick only the properties that you need.

SECURI TY QAUTH2 CLI ENT (QAuth2d i ent Properties)
security.oauth2.client.client-id= # OAuth2 client id.
security.oauth2.client.client-secret= # QAuth2 client secret. A random secret is generated by default

SECURI TY QAUTH2 RESOURCES (ResourceServer Properties)

security.oauth2.resource.id= # ldentifier of the resource.

security.oauth2.resource.jw.key-uri= # The URl of the JWI token. Can be set if the value is not
avai |l abl e and the key is public.

security.oauth2.resource.jw.key-value= # The verification key of the JW token. Can either be a
symmetric secret or PEM encoded RSA public key.

security.oauth2.resource.jwk. key-set-uri= # The URI for getting the set of keys that can be used to
val i date the token.

security. oauth2.resource. prefer-token-info=true # Use the token info, can be set to false to use the
user info.

security. oaut h2.resource. servi ce-i d=resource #

security.oauth2.resource.token-info-uri= # UR of the token decodi ng endpoint.

security. oauth2.resource.token-type= # The token type to send when using the userlnfoUri.
security.oauth2.resource.user-info-uri=# UR of the user endpoint.

SECURI TY QAUTH2 SSO (QAut h2SsoProperti es)
security.oauth2. sso.login-path=/login # Path to the |ogin page, i.e. the one that triggers the redirect
to the QAuth2 Authorization Server

please define title in your docbook file! 21

../../api/org/springframework/boot/autoconfigure/security/oauth2/OAuth2ClientProperties.html
../../api/org/springframework/boot/autoconfigure/security/oauth2/resource/ResourceServerProperties.html
../../api/org/springframework/boot/autoconfigure/security/oauth2/client/OAuth2SsoProperties.html

	OAuth2 Boot
	Table of Contents
	
	1. Authorization Server
	1.1 Do I Need to Stand Up My Own Authorization Server?
	1.2 Dependencies
	1.3 Minimal OAuth2 Boot Configuration
	Enabling the Authorization Server
	Specifying a Client and Secret
	Retrieving a Token

	1.4 How to Switch Off OAuth2 Boot’s Auto Configuration
	1.5 How to Make Authorization Code Grant Flow Work
	Adding End Users
	Adding an End-User Login Flow
	Registering a Redirect URI With the Client
	Testing Authorization Code Flow

	1.6 How to Make Password Grant Flow Work
	1.7 How and When to Give Authorization Server an AuthenticationManager
	Exposing a UserDetailsService
	Exposing an AuthenticationManager
	Depending on AuthenticationConfiguration
	Manually Wiring An AuthenticationManager

	1.8 Is Authorization Server Compatible with Spring Security 5.1 Resource Server and Client?
	Configuring Authorization Server to Use JWKs
	Add a JWK Set URI Endpoint
	Testing Against Spring Security 5.1 Resource Server

	2. Resource Server
	2.1 Dependencies
	2.2 Minimal OAuth2 Boot Configuration
	Enabling the Resource Server
	Specifying a Token Verification Strategy
	JWT
	Opaque

	Accessing a Resource

	2.3 How to Use JWT with a Single Key
	2.4 How to Configure the Token Info Endpoint
	2.5 How to Configure the User Info Endpoint
	Customizing the User Info Request

	2.6 Customizing Authorization Rules
	2.7 Less Common Features
	Changing the Token Type
	Changing the Filter Order
	Permitting the /error Endpoint

	3. Client
	4. Single Sign On
	Appendix A. Common Application Properties

