
OAuth2 Boot

Copyright ©

OAuth2 Boot

please define title in your docbook file! ii

Table of Contents

... iii
1. Authorization Server ... 1

1.1. Do I Need to Stand Up My Own Authorization Server? .. 1
1.2. Dependencies ... 1
1.3. Minimal OAuth2 Boot Configuration .. 1

Enabling the Authorization Server ... 1
Specifying a Client and Secret .. 1
Retrieving a Token ... 2

1.4. How to Switch Off OAuth2 Boot’s Auto Configuration ... 2
1.5. How to Make Authorization Code Grant Flow Work ... 3

Adding End Users .. 4
Adding an End-User Login Flow ... 4
Registering a Redirect URI With the Client .. 4
Testing Authorization Code Flow ... 5

1.6. How to Make Password Grant Flow Work ... 5
1.7. How and When to Give Authorization Server an AuthenticationManager 6

Exposing a UserDetailsService .. 6
Exposing an AuthenticationManager .. 7
Depending on AuthenticationConfiguration .. 7
Manually Wiring An AuthenticationManager .. 8

1.8. Is Authorization Server Compatible with Spring Security 5.1 Resource Server and
Client? ... 8

Configuring Authorization Server to Use JWKs .. 9
Add a JWK Set URI Endpoint ... 9
Testing Against Spring Security 5.1 Resource Server ... 10

2. Resource Server .. 11
2.1. Dependencies ... 11
2.2. Minimal OAuth2 Boot Configuration .. 11

Enabling the Resource Server .. 11
Specifying a Token Verification Strategy .. 11

JWT ... 11
Opaque .. 12

Accessing a Resource .. 12
2.3. How to Use JWT with a Single Key .. 12
2.4. How to Configure the Token Info Endpoint .. 13
2.5. How to Configure the User Info Endpoint .. 13

Customizing the User Info Request ... 13
2.6. Customizing Authorization Rules .. 14
2.7. Less Common Features ... 14

Changing the Token Type .. 14
Changing the Filter Order ... 15
Permitting the /error Endpoint .. 16

3. Client ... 17
4. Single Sign On ... 19
A. Common Application Properties .. 21

OAuth2 Boot

please define title in your docbook file! iii

If you have spring-security-oauth2 on your classpath, you can take advantage of some auto-
configuration to simplify setting up Authorization and Resource Servers. For full details, see the Spring
Security OAuth 2 Developers Guide.

Note

The following projects are in maintenance mode:

• spring-security-oauth2

• spring-security-oauth2-autoconfigure

You are, of course, welcome to use them, and we will help you out!

However, before selecting spring-security-oauth2 and spring-security-oauth2-
autoconfigure, you should check out Spring Security’s feature matrix to see if the new
first-class support meets your needs.

Note

This project is a port of the Spring Security OAuth support that came with Spring Boot 1.x. Support
was removed in Spring Boot 2.x in favor of Spring Security 5’s first-class OAuth support.

To ease migration, this project exists as a bridge between the old Spring Security OAuth support
and Spring Boot 2.x.

https://projects.spring.io/spring-security-oauth/docs/oauth2.html
https://projects.spring.io/spring-security-oauth/docs/oauth2.html
https://github.com/spring-projects/spring-security/wiki/OAuth-2.0-Features-Matrix
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#oauth2client
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#oauth2client

OAuth2 Boot

please define title in your docbook file! 1

1. Authorization Server

Spring Security OAuth2 Boot simplifies standing up an OAuth 2.0 Authorization Server.

1.1 Do I Need to Stand Up My Own Authorization Server?

You need to stand up your own authorization server if:

• You want to delegate the operations of sign-in, sign-out, and password recovery to a separate service
(also called identity federation) that you want to manage yourself and

• You want to use the OAuth 2.0 protocol for this separate service to coordinate with other services

1.2 Dependencies

To use the auto-configuration features in this library, you need spring-security-oauth2, which
has the OAuth 2.0 primitives and spring-security-oauth2-autoconfigure. Note that you need
to specify the version for spring-security-oauth2-autoconfigure, since it is not managed by
Spring Boot any longer, though it should match Boot’s version anyway.

For JWT support, you also need spring-security-jwt.

1.3 Minimal OAuth2 Boot Configuration

Creating a minimal Spring Boot authorization server consists of three basic steps:

1. Including the dependencies.

2. Including the @EnableAuthorizationServer annotation.

3. Specifying at least one client ID and secret pair.

Enabling the Authorization Server

Similar to other Spring Boot @Enable annotations, you can add the @EnableAuthorizationServer
annotation to the class that contains your main method, as the following example shows:

@EnableAuthorizationServer

@SpringBootApplication

public class SimpleAuthorizationServerApplication {

 public static void main(String[] args) {

 SpringApplication.run(SimpleAuthorizationServerApplication, args);

 }

}

Adding this annotation imports other Spring configuration files that add a number of reasonable defaults,
such as how tokens ought to be signed, their duration, and what grants to allow.

Specifying a Client and Secret

By spec, numerous OAuth 2.0 endpoints require client authentication, so you need to specify at least
one client in order for anyone to be able to communicate with your authorization server.

The following example shows how to specify a client:

OAuth2 Boot

please define title in your docbook file! 2

security:

 oauth2:

 client:

 client-id: first-client

 client-secret: noonewilleverguess

Note

While convenient, this makes a number of assumptions that are unlikely to be viable in production.
You likely need to do more than this to ship.

That’s it! But, what do you do with it? We cover that next.

Retrieving a Token

OAuth 2.0 is essentially a framework that specifies strategies for exchanging long-lived tokens for short-
lived ones.

By default, @EnableAuthorizationServer grants a client access to client credentials, which means
you can do something like the following:

curl first-client:noonewilleverguess@localhost:8080/oauth/token -dgrant_type=client_credentials -

dscope=any

The application responds with a token similar to the following:

{

 "access_token" : "f05a1ea7-4c80-4583-a123-dc7a99415588",

 "token_type" : "bearer",

 "expires_in" : 43173,

 "scope" : "any"

}

This token can be presented to any resource server that supports opaque OAuth 2.0 tokens and is
configured to point at this authorization server for verification.

From here, you can jump to:

• Section 1.4, “How to Switch Off OAuth2 Boot’s Auto Configuration”

• Section 1.5, “How to Make Authorization Code Grant Flow Work”

• Section 1.6, “How to Make Password Grant Flow Work”

• Section 1.7, “How and When to Give Authorization Server an AuthenticationManager”

• Section 1.8, “Is Authorization Server Compatible with Spring Security 5.1 Resource Server and
Client?”

• How to Configure for Jwt Tokens

1.4 How to Switch Off OAuth2 Boot’s Auto Configuration

Basically, the OAuth2 Boot project creates an instance of AuthorizationServerConfigurer with
some reasonable defaults:

https://projects.spring.io/spring-security-oauth/docs/oauth2.html#jwt-tokens
https://projects.spring.io/spring-security-oauth/docs/oauth2.html#authorization-server-configuration

OAuth2 Boot

please define title in your docbook file! 3

• It registers a NoOpPasswordEncoder (overriding the Spring Security default)

• It lets the client you provided use any grant type this server supports: authorization_code,
password, client_credentials, implicit, or refresh_token.

Otherwise, it also tries to pick up a handful of beans, if they are defined — namely:

• AuthenticationManager: For looking up end users (not clients)

• TokenStore: For generating and retrieving tokens

• AccessTokenConverter: For converting access tokens into different formats, such as JWT.

Note

While this documentation covers a bit of what each of these beans does, the Spring Security
OAuth documentation is a better place to read up on its primitives

If you expose a bean of type AuthorizationServerConfigurer, none of this is done automatically.

So, for example, if you need to configure more than one client, change their allowed grant types, or use
something better than the no-op password encoder (highly recommended!), then you want to expose
your own AuthorizationServerConfigurer, as the following example shows:

@Configuration

public class AuthorizationServerConfig extends AuthorizationServerConfigurerAdapter {

 @Autowired DataSource dataSource;

 protected void configure(ClientDetailsServiceConfigurer clients) {

 clients

 .jdbc(this.dataSource)

 .passwordEncoder(PasswordEncoderFactories.createDelegatingPasswordEncoder());

 }

}

The preceding configuration causes OAuth2 Boot to no longer retrieve the client from environment
properties and now falls back to the Spring Security password encoder default.

From here, you may want to learn more about:

• Section 1.5, “How to Make Authorization Code Grant Flow Work”

• Section 1.6, “How to Make Password Grant Flow Work”

1.5 How to Make Authorization Code Grant Flow Work

With the default configuration, while the Authorization Code Flow is technically allowed, it is not
completely configured.

This is because, in addition to what comes pre-configured, the Authorization Code Flow requires:

• End users

• An end-user login flow, and

• A redirect URI registered with the client

https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#core-services-password-encoding
https://projects.spring.io/spring-security-oauth/docs/oauth2.html
https://projects.spring.io/spring-security-oauth/docs/oauth2.html

OAuth2 Boot

please define title in your docbook file! 4

Adding End Users

In a typical Spring Boot application secured by Spring Security, users are defined by a
UserDetailsService. In that regard, an authorization server is no different, as the following example
shows:

@EnableWebSecurity

public class WebSecurityConfig extends WebSecurityConfigurerAdapter {

 @Bean

 @Override

 public UserDetailsService userDetailsService() {

 return new InMemoryUserDetailsManager(

 User.withDefaultPasswordEncoder()

 .username("enduser")

 .password("password")

 .roles("USER")

 .build());

 }

}

Note that, as is typical of a Spring Security web application, users are defined in a
WebSecurityConfigurerAdapter instance.

Adding an End-User Login Flow

Incidentally, adding an instance of WebSecurityConfigurerAdapter is all we need for now to add
a form login flow for end users. However, note that this is where any other configuration regarding the
web application itself, not the OAuth 2.0 API, goes.

If you want to customize the login page, offer more than just form login for the user, or add additional
support like password recovery, the WebSecurityConfigurerAdapter picks it up.

Registering a Redirect URI With the Client

OAuth2 Boot does not support configuring a redirect URI as a property — say, alongside client-id
and client-secret.

To add a redirect URI, you need to specify the client by using either
InMemoryClientDetailsService or JdbcClientDetailsService.

Doing either means replacing the OAuth2 Boot-provided AuthorizationServerConfigurer with
your own, as the following example shows:

@Configuration

public class AuthorizationServerConfig extends AuthorizationServerConfigurerAdapter {

 @Bean

 PasswordEncoder passwordEncoder() {

 return PasswordEncoderFactories.createDelegatingPasswordEncoder();

 }

 protected void configure(ClientDetailsServiceConfigurer clients) {

 clients

 .inMemory()

 .withClient("first-client")

 .secret(passwordEncoder().encode("noonewilleverguess"))

 .scopes("resource:read")

 .authorizedGrantTypes("authorization_code")

 .redirectUris("http://localhost:8081/oauth/login/client-app");

 }

}

https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#tech-userdetailsservice
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#tech-userdetailsservice

OAuth2 Boot

please define title in your docbook file! 5

Testing Authorization Code Flow

Testing OAuth can be tricky since it requires more than one server to see the full flow in action. However,
the first steps are straight-forward:

1. Browse to http://localhost:8080/oauth/authorize?
grant_type=authorization_code&response_type=code&client_id=first-client&state=1234

2. The application, if the user is not logged in, redirects to the login page, at http://localhost:8080/login

3. Once the user logs in, the application generates a code and redirects to the registered redirect
URI — in this case, http://localhost:8081/oauth/login/client-app

The flow could continue at this point by standing up any resource server that is configured for opaque
tokens and is pointed at this authorization server instance.

1.6 How to Make Password Grant Flow Work

With the default configuration, while the Password Flow is technically possible, it, like Authorization
Code, is missing users.

That said, because the default configuration creates a user with a username of user and a randomly-
generated password, you can hypothetically check the logs for the password and do the following:

curl first-client:noonewilleverguess@localhost:8080/oauth/token -dgrant_type=password -dscope=any -

dusername=user -dpassword=the-password-from-the-logs

When you run that command, you should get a token back.

More likely, though, you want to specify a set of users.

As was stated in Section 1.5, “How to Make Authorization Code Grant Flow Work”, in Spring Security,
users are typically specified in a UserDetailsService and this application is no different, as the
following example shows:

@EnableWebSecurity

public class WebSecurityConfig extends WebSecurityConfigurerAdapter {

 @Bean

 @Override

 public UserDetailsService userDetailsService() {

 return new InMemoryUserDetailsManager(

 User.withDefaultPasswordEncoder()

 .username("enduser")

 .password("password")

 .roles("USER")

 .build());

 }

}

This is all we need to do. We do not need to override AuthorizationServerConfigurer, because
the client ID and secret are specified as environment properties.

So, the following should now work:

curl first-client:noonewilleverguess@localhost:8080/oauth/token -dgrant_type=password -dscope=any -

dusername=enduser -dpassword=password

http://localhost:8080/oauth/authorize?grant_type=authorization_code&response_type=code&client_id=first-client&state=1234
http://localhost:8080/oauth/authorize?grant_type=authorization_code&response_type=code&client_id=first-client&state=1234
http://localhost:8080/login
http://localhost:8081/oauth/login/client-app

OAuth2 Boot

please define title in your docbook file! 6

1.7 How and When to Give Authorization Server an
AuthenticationManager

This is a very common question and is not terribly intuitive when
AuthorizationServerEndpointsConfigurer needs an AuthenticationManager instance to
be specified. The short answer is: Only when using the Resource Owner Password Flow.

It helps to remember a few fundamentals:

• An AuthenticationManager is an abstraction for authenticating users. It typically needs some
kind of UserDetailsService to be specified in order to be complete.

• End users are specified in a WebSecurityConfigurerAdapter.

• OAuth2 Boot, by default, automatically picks up any exposed AuthenticationManager.

However, not all flows require an AuthenticationManager because not all flows have end users
involved. For example, the Client Credentials flow asks for a token based only on the client’s authority,
not the end user’s. And the Refresh Token flow asks for a token based only on the authority of a refresh
token.

Also, not all flows specifically require the OAuth 2.0 API itself to have an AuthenticationManager,
either. For example, the Authorization Code and Implicit flows verify the user when they login (application
flow), not when the token (OAuth 2.0 API) is requested.

Only the Resource Owner Password flow returns a code based off of the end user’s credentials. This
means that the Authorization Server only needs an AuthenticationManager when clients are using
the Resource Owner Password flow.

The following example shows the Resource Owner Password flow:

.authorizedGrantTypes("password", ...)

In the preceding flow, your Authorization Server needs an instance of AuthenticationManager.

There are a few ways to do this (remember the fundamentals from earlier):

• Leave the OAuth2 Boot defaults (you are not exposing a AuthorizationServerConfigurer) and
expose a UserDetailsService.

• Leave the OAuth2 Boot defaults and expose an AuthenticationManager.

• Override AuthorizationServerConfigurerAdapter (removing OAuth2 Boot’s defaults) and
depend on AuthenticationConfiguration.

• Override AuthorizationServerConfigurerAdapter and manually wire the
AuthenticationManager.

Exposing a UserDetailsService

End users are specified in a WebSecurityConfigurerAdapter through a UserDetailsService.
So, if you use the OAuth2 Boot defaults (meaning you haven’t implemented a

OAuth2 Boot

please define title in your docbook file! 7

AuthorizationServerConfigurer), you can expose a UserDetailsService and be done, as
the following example shows:

@EnableWebSecurity

public class WebSecurityConfig extends WebSecurityConfigurerAdapter {

 @Autowired DataSource dataSource;

 @Bean

 @Override

 public UserDetailsService userDetailsService() {

 return new JdbcUserDetailsManager(this.dataSource);

 }

}

Exposing an AuthenticationManager

In case you need to do more specialized configuration of the AuthenticationManager, you can do
so in the WebSecurityConfigurerAdapter and then expose it, as the following example shows:

@EnableWebSecurity

public class WebSecurityConfig extends WebSecurityConfigurerAdapter {

 @Bean(BeansId.AUTHENTICATION_MANAGER)

 @Override

 public AuthenticationManager authenticationManagerBean() {

 return super.authenticationManagerBean();

 }

 @Override

 protected void configure(AuthenticationManagerBuilder auth) {

 auth.authenticationProvider(customAuthenticationProvider());

 }

}

If you use the OAuth2 Boot defaults, then it picks up the bean automatically.

Depending on AuthenticationConfiguration

Any configured AuthenticationManager is available in AuthenticationConfiguration. This
means that, if you need to have an AuthorizationServerConfigurer (in which case you need
to do your own autowiring), you can have it depend on AuthenticationConfiguration to get the
AuthenticationManager bean, as the following class shows:

@Component

public class CustomAuthorizationServerConfigurer extends

 AuthorizationServerConfigurerAdapter {

 AuthenticationManager authenticationManager;

 public CustomAuthorizationServerConfigurer(AuthenticationConfiguration authenticationConfiguration)

 {

 this.authenticationManager = authenticationConfiguration.getAuthenticationManager();

 }

 @Override

 public void configure(ClientDetailsServiceConfigurer clients) {

 // .. your client configuration that allows the password grant

 }

 @Override

 public void configure(AuthorizationServerEndpointsConfigurer endpoints) {

 endpoints.authenticationManager(authenticationManager);

 }

}

OAuth2 Boot

please define title in your docbook file! 8

@EnableWebSecurity

public class WebSecurityConfig extends WebSecurityConfigurerAdapter {

 @Bean

 @Override

 public UserDetailsService userDetailsService() {

 return new MyCustomUserDetailsService();

 }

}

Manually Wiring An AuthenticationManager

In the most sophisticated case, where the AuthenticationManager needs special configuration and
you have your own AuthenticationServerConfigurer, then you need to both create your own
AuthorizationServerConfigurerAdapter and your own WebSecurityConfigurerAdapter:

@Component

public class CustomAuthorizationServerConfigurer extends

 AuthorizationServerConfigurerAdapter {

 AuthenticationManager authenticationManager;

 public CustomAuthorizationServerConfigurer(AuthenticationManager authenticationManager) {

 this.authenticationManager = authenticationManager;

 }

 @Override

 public void configure(ClientDetailsServiceConfigurer clients) {

 // .. your client configuration that allows the password grant

 }

 @Override

 public void configure(AuthorizationServerEndpointsConfigurer endpoints) {

 endpoints.authenticationManager(authenticationManager);

 }

}

@EnableWebSecurity

public class WebSecurityConfig extends WebSecurityConfigurerAdapter {

 @Bean(BeansId.AUTHENTICATION_MANAGER)

 @Override

 public AuthenticationManager authenticationManagerBean() {

 return super.authenticationManagerBean();

 }

 @Override

 protected void configure(AuthenticationManagerBuilder auth) {

 auth.authenticationProvider(customAuthenticationProvider());

 }

}

1.8 Is Authorization Server Compatible with Spring Security 5.1
Resource Server and Client?

No, not out of the box. Spring Security 5.1 supports only JWT-encoded JWK-signed authorization, and
Authorization Server does not ship with a JWK Set URI.

Basic support is possible, though.

In order to configure Authorization Server to be compatible with Spring Security 5.1 Resource Server,
for example, you need to do the following:

• Configure it to use JWKs

OAuth2 Boot

please define title in your docbook file! 9

• Add a JWK Set URI endpoint

Configuring Authorization Server to Use JWKs

To change the format used for access and refresh tokens, you can change out the
AccessTokenConverter and the TokenStore, as the following example shows:

@EnableAuthorizationServer

@Configuration

public class JwkSetConfiguration extends AuthorizationServerConfigurerAdapter {

 AuthenticationManager authenticationManager;

 KeyPair keyPair;

 public JwkSetConfiguration(AuthenticationConfiguration authenticationConfiguration,

 KeyPair keyPair) throws Exception {

 this.authenticationManager = authenticationConfiguration.getAuthenticationManager();

 this.keyPair = keyPair;

 }

 // ... client configuration, etc.

 @Override

 public void configure(AuthorizationServerEndpointsConfigurer endpoints) {

 // @formatter:off

 endpoints

 .authenticationManager(this.authenticationManager)

 .accessTokenConverter(accessTokenConverter())

 .tokenStore(tokenStore());

 // @formatter:on

 }

 @Bean

 public TokenStore tokenStore() {

 return new JwtTokenStore(accessTokenConverter());

 }

 @Bean

 public JwtAccessTokenConverter accessTokenConverter() {

 JwtAccessTokenConverter converter = new JwtAccessTokenConverter();

 converter.setKeyPair(this.keyPair);

 return converter;

 }

}

Add a JWK Set URI Endpoint

Spring Security OAuth does not support JWKs, nor does @EnableAuthorizationServer support
adding more OAuth 2.0 API endpoints to its initial set. However, we can add this with only a few lines.

First, you need to add another dependency: com.nimbusds:nimbus-jose-jwt. This gives you the
appropriate JWK primitives.

Second, instead of using @EnableAuthorizationServer, you need to directlyu include its two
@Configuration classes:

• AuthorizationServerEndpointsConfiguration: The @Configuration class for
configuring the OAuth 2.0 API endpoints, such as what format to use for the tokens.

• AuthorizationServerSecurityConfiguration: The @Configuration class for the access
rules around those endpoints. This is the one that you need to extend, as shown in the following
example:

OAuth2 Boot

please define title in your docbook file! 10

@FrameworkEndpoint

class JwkSetEndpoint {

 KeyPair keyPair;

 public JwkSetEndpoint(KeyPair keyPair) {

 this.keyPair = keyPair;

 }

 @GetMapping("/.well-known/jwks.json")

 @ResponseBody

 public Map<String, Object> getKey(Principal principal) {

 RSAPublicKey publicKey = (RSAPublicKey) this.keyPair.getPublic();

 RSAKey key = new RSAKey.Builder(publicKey).build();

 return new JWKSet(key).toJSONObject();

 }

}

@Configuration

class JwkSetEndpointConfiguration extends AuthorizationServerSecurityConfiguration {

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 super.configure(http);

 http

 .requestMatchers()

 .mvcMatchers("/.well-known/jwks.json")

 .and()

 .authorizeRequests()

 .mvcMatchers("/.well-known/jwks.json").permitAll();

 }

}

Then, since you do not need to change AuthorizationServerEndpointsConfiguration, you
can @Import it instead of using @EnableAuthorizationServer, as the following example shows:

@Import(AuthorizationServerEndpointsConfiguration.class)

@Configuration

public class JwkSetConfiguration extends AuthorizationServerConfigurerAdapter {

 // ... the rest of the configuration from the previous section

}

Testing Against Spring Security 5.1 Resource Server

Now you can POST to the /oauth/token endpoint (as before) to obtain a token and then present that
to a Spring Security 5.1 Resource Server.

https://github.com/spring-projects/spring-security/tree/master/samples/boot/oauth2resourceserver

OAuth2 Boot

please define title in your docbook file! 11

2. Resource Server

Spring Security OAuth2 Boot simplifies protecting your resources using Bearer Token authentication in
two different token formats: JWT and Opaque.

2.1 Dependencies

To use the auto-configuration features in this library, you need spring-security-oauth2, which
has the OAuth 2.0 primitives and spring-security-oauth2-autoconfigure. Note that you need
to specify the version for spring-security-oauth2-autoconfigure, since it is not managed by
Spring Boot any longer, though it should match Boot’s version anyway.

For JWT support, you also need spring-security-jwt.

2.2 Minimal OAuth2 Boot Configuration

Creating a minimal Spring Boot resource server consists of three basic steps:

1. Including the dependencies.

2. Including the @EnableResourceServer annotation.

3. Specifying a strategy for verifying the bearer token.

Enabling the Resource Server

Similar to other Spring Boot @Enable annotations, you can add the @EnableResourceServer
annotation to the class that contains your main method, as the following example shows:

@EnableResourceServer

@SpringBootApplication

public class SimpleAuthorizationServerApplication {

 public static void main(String[] args) {

 SpringApplication.run(SimpleAuthorizationServerApplication, args);

 }

}

Adding this annotation adds the OAuth2AuthenticationProcessingFilter, though it will need
one more configuration to know how to appropriately process and validate tokens.

Specifying a Token Verification Strategy

Bearer Tokens typically come in one of two forms: JWT-encoded or opaque. You will need to configure
the resource server with one or the other strategy.

JWT

To indicate JWT, simply specify the JWK Set Uri hosted on your Authorization Server:

security:

 oauth2:

 resource:

 jwk:

 key-set-uri: https://idp.example.com/.well-known/jwks.json

Instead of a JWK Set Uri, you can also specify a key.

OAuth2 Boot

please define title in your docbook file! 12

Note that with this configuration, your authorization server needs to be up in order for Resource Server
to start up.

Opaque

To indicate opaque, simply specify the Authorization Server endpoint that knows how to decode the
token:

security:

 oauth2:

 resource:

 token-info-uri: https://idp.example.com/oauth2/introspect

Note

It’s likely this endpoint requires some kind of authorization separate from the token itself, for
example, client authentication.

That’s it! But, what do you do with it? We cover that next.

Accessing a Resource

To confirm that Resource Server is correctly processing tokens, you can add a simple controller endpoint
like so:

@RestController

public class SimpleController

 @GetMapping("/whoami")

 public String whoami(@AuthenticationPrincipal(expression="name") String name) {

 return name;

 }

}

Then, obtain an active access token from your Authorization Server and present it to the Resource
Server:

curl -H "Authorization: $TOKEN" http://localhost:8080/whoami

And you should see the value of the user_name attribute in the token.

From this point, you may want to learn more about three alternative ways to authenticate using bearer
tokens:

• Section 2.3, “How to Use JWT with a Single Key”

• Section 2.4, “How to Configure the Token Info Endpoint”

• Section 2.5, “How to Configure the User Info Endpoint”

2.3 How to Use JWT with a Single Key

Instead of a JWK Set endpoint, you may have a local key you want to configure for verification. While
this is weaker due to the key being static, it may be necessary in your situation.

Configuring the resource server with the appropriate symmetric key or PKCS#8 PEM-encoded public
key is simple, as can be seen below:

OAuth2 Boot

please define title in your docbook file! 13

security:

 oauth2:

 resource:

 jwt:

 key-value: |

 -----BEGIN PUBLIC KEY-----

 MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKC...

 -----END PUBLIC KEY-----

Tip

The pipe in yaml indicates a multi-line property value.

You can also instead supply a key-store, key-store-password, key-alias, and key-password
properties.

Or you can use the key-uri endpoint to get the key remotely from your authorization server, which is
something of a happy medium between static, local configuration and a JWK Set endpoint.

2.4 How to Configure the Token Info Endpoint

The token info endpoint, also sometimes called the introspection endpoint, likely requires some
kind of client authentication, either Basic or Bearer. Generally speaking, the bearer token in the
SecurityContext won’t suffice since that is tied to the user. Instead, you’ll need to specify credentials
that represent this client, like so:

security:

 oauth2:

 client:

 clientId: client-id

 clientSecret: client-secret

 resource:

 tokenInfoUri: https://idp.example.com/oauth2/check_token

By default, this will use Basic authentication, using the configured credentials, to authenticate against
the token info endpoint.

2.5 How to Configure the User Info Endpoint

It’s atypical for a resource server to need to call a user info endpoint. This is because, fundamentally, a
resource server is about authorizing a request, not authenticating it. That said, it is at times necessary.

If you specify a user info endpoint like so:

security:

 oauth2:

 resource:

 userInfoUri: https://idp.example.com/oauth2/userinfo

Then Resource Server will send it the bearer token that is part of the request and enhance the
Authentication object with the result.

Customizing the User Info Request

Internally, Resource Server uses an OAuth2RestTemplate to invoke the /userinfo endpoint. At
times, it may be necessary to add filters or perform other customization for this invocation. To customize
the creation of this bean, you can expose a UserInfoRestTemplateCustomizer, like so:

OAuth2 Boot

please define title in your docbook file! 14

@Bean

public UserInfoRestTemplateCustomizer customHeader() {

 return restTemplate ->

 restTemplate.getInterceptors().add(new MyCustomInterceptor());

}

This bean will be handed to a UserInfoTemplateFactory which will add other configurations helpful
to coordinating with the /userinfo endpoint.

And, of course, you can replace the UserInfoTemplateFactory completely, if you need complete
control over `OAuth2RestTemplate’s configuration.

2.6 Customizing Authorization Rules

Similar to how Spring Security works, you can customize authorization rules by endpoint in Spring
Security OAuth, like so:

public class HasAuthorityConfig

 extends ResourceServerConfigurerAdapter {

 @Override

 public void configure(HttpSecurity http) throws Exception {

 // @formatter:off

 http

 .authorizeRequests()

 .antMatchers("/flights/**").hasAuthority("#oauth2.hasScope('message:read')")

 .anyRequest().authenticated();

 // @formatter:on

 }

Though, note that if a server is configured both as a resource server and as an authorization server,
then there are certain endpoint that require special handling. To avoid configuring over the top of those
endpoints (like /token), it would be better to isolate your resource server endpoints to a targeted
directory like so:

public class ResourceServerEndpointConfig

 extends ResourceServerConfigurerAdapter {

 @Override

 public void configure(HttpSecurity http) throws Exception {

 // @formatter:off

 http

 .antMatchers("/resourceA/**", "/resourceB/**")

 .authorizeRequests()

 .antMatchers("/resourceA/**").hasAuthority("#oauth2.hasScope('resourceA:read')")

 .antMatchers("/resourceB/**").hasAuthority("#oauth2.hasScope('resourceB:read')")

 .anyRequest().authenticated();

 // @formatter:on

 }

As the above configuration will target your resource endpoints and not affect authorization server-
specific endpoints.

2.7 Less Common Features

Changing the Token Type

Google and certain other third-party identity providers are more strict about the token type
name that is sent in the headers to the user info endpoint. The default is Bearer, which

OAuth2 Boot

please define title in your docbook file! 15

suits most providers and matches the spec. However, if you need to change it, you can set
security.oauth2.resource.token-type.

Changing the Filter Order

OAuth2 resources are protected by a filter chain with the order specified by
security.oauth2.resource.filter-order.

By default the filters in AuthorizationServerConfigurerAdapter come first, followed by those in
ResourceServerConfigurerAdapter, followed by those in WebSecurityConfigurerAdapter.

This means that all application endpoints will require bearer token authentication unless one of
two things happens:

1. The filter chain order is changed or

2. The ResourceServerConfigurerAdapter set of authorized requests is narrowed

The first, changing the filter chain order, can be done by moving WebSecurityConfigurerAdapter
in front of ResourceServerConfigurerAdapter like so:

@Order(2)

@EnableWebSecurity

public WebSecurityConfig extends WebSecurityConfigurerAdapter {

 // ...

}

Note

Resource Server’s default @Order value is 3 which is why the example sets Web’s @Order to
2, so that it’s evaluated earlier.

While this may work, it’s a little odd since we may simply trade one problem:

ResourceServerConfigurerAdapter is handling requests it shouldn’t

For another:

WebSecurityConfigurerAdapter is handling requests it shouldn’t

The more robust solution, then, is to indicate to ResourceServerConfigurerAdapter which
endpoints should be secured by bearer token authentication.

For example, the following configures Resource Server to secure the web application endpoints that
begin with /rest:

@EnableResourceServer

public ResourceServerConfig extends ResourceServerConfigurerAdapter {

 @Override

 protected void configure(HttpSecurity http) {

 http

 .requestMatchers()

 .antMatchers("/rest/**")

 .authorizeRequests()

 .anyRequest().authenticated();

 }

}

OAuth2 Boot

please define title in your docbook file! 16

Permitting the /error Endpoint

Resource Server, when also configured as a client, may rely on a request-scoped
OAuth2ClientContext bean during the authentication process. And, in some error situations,
Resource Server forwards to the ERROR servlet dispatcher.

By default, request-scoped beans aren’t available in the ERROR dispatch. And, because of this, you
may see a complaint about the OAuth2ClientContext bean not being available.

The simplest approach may be to permit the /error endpoint, so that Resource Server doesn’t try and
authenticate the request:

public class PermitErrorConfig extends ResourceServerConfigurerAdapter {

 @Override

 public void configure(HttpSecurity http) throws Exception {

 // @formatter:off

 http

 .authorizeRequests()

 .antMatchers("/error").permitAll()

 .anyRequest().authenticated();

 // @formatter:on

 }

}

Other solutions are to configure Spring so that the RequestContextFilter is registered with the
error dispatch or to register a RequestContextListener bean.

OAuth2 Boot

please define title in your docbook file! 17

3. Client

To make your web application into an OAuth2 client, you can add @EnableOAuth2Client and
Spring Boot creates an OAuth2ClientContext and OAuth2ProtectedResourceDetails that are
necessary to create an OAuth2RestOperations. Spring Boot does not automatically create such a
bean, but you can easily create your own, as the following example shows:

@Bean

public OAuth2RestTemplate oauth2RestTemplate(OAuth2ClientContext oauth2ClientContext,

 OAuth2ProtectedResourceDetails details) {

 return new OAuth2RestTemplate(details, oauth2ClientContext);

}

Note

You may want to add a qualifier and review your configuration, as more than one RestTemplate
may be defined in your application.

This configuration uses security.oauth2.client.* as credentials (the same as you might be using
in the Authorization Server). However, in addition, it needs to know the authorization and token URIs in
the Authorization Server, as the following example shows:

application.yml.

security:

 oauth2:

 client:

 clientId: bd1c0a783ccdd1c9b9e4

 clientSecret: 1a9030fbca47a5b2c28e92f19050bb77824b5ad1

 accessTokenUri: https://github.com/login/oauth/access_token

 userAuthorizationUri: https://github.com/login/oauth/authorize

 clientAuthenticationScheme: form

An application with this configuration redirects to Github for authorization when you attempt to use the
OAuth2RestTemplate. If you are already signed into Github. you should not even notice that it has
authenticated. These specific credentials work only if your application is running on port 8080 (you can
register your own client application in Github or other provider for more flexibility).

To limit the scope that the client asks for when it obtains an access token, you can set
security.oauth2.client.scope (comma separated or an array in YAML). By default, the scope
is empty, and it is up to Authorization Server to decide what the defaults should be (usually depending
on the settings in the client registration that it holds).

Note

There is also a setting for security.oauth2.client.client-authentication-scheme,
which defaults to header (but you might need to set it to form if, like Github for instance, your
OAuth2 provider does not like header authentication). In fact, the security.oauth2.client.*
properties are bound to an instance of AuthorizationCodeResourceDetails, so all of its
properties can be specified.

Tip

In a non-web application, you can still create an OAuth2RestOperations, and it is still
wired into the security.oauth2.client.* configuration. In this case, you are asking

OAuth2 Boot

please define title in your docbook file! 18

for is a “client credentials token grant” if you use it (and there is no need to use
@EnableOAuth2Client or @EnableOAuth2Sso). To prevent that infrastructure being defined,
remove the security.oauth2.client.client-id from your configuration (or make it be an
empty string).

OAuth2 Boot

please define title in your docbook file! 19

4. Single Sign On

You can use an OAuth2 Client to fetch user details from the provider (if such features are available) and
then convert them into an Authentication token for Spring Security. The Resource Server (described
earlier) supports this through the user-info-uri property. This is the basis for a Single Sign On (SSO)
protocol based on OAuth2, and Spring Boot makes it easy to participate by providing an annotation
@EnableOAuth2Sso. The Github client shown in the preceding section can protect all its resources and
authenticate by using the Github /user/ endpoint, by adding that annotation and declaring where to
find the endpoint (in addition to the security.oauth2.client.* configuration already listed earlier):

security:

 oauth2:

...

 resource:

 userInfoUri: https://api.github.com/user

 preferTokenInfo: false

Example 4.1 application.yml

Since all paths are secure by default, there is no “home” page that you can show to
unauthenticated users and invite them to login (by visiting the /login path, or the path specified by
security.oauth2.sso.login-path).

To customize the access rules or paths to protect s(o you can add a “home” page for instance,) you can
add @EnableOAuth2Sso to a WebSecurityConfigurerAdapter. The annotation causes it to be
decorated and enhanced with the necessary pieces to get the /login path working. In the following
example, we simply allow unauthenticated access to the home page at / and keep the default for
everything else:

@Configuration

public class WebSecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http

 .authorizeRequests()

 .mvcMatchers("/").permitAll()

 .anyRequest().authenticated();

 }

}

Also, note that, since all endpoints are secure by default, this includes any default error handling
endpoints — for example, the /error endpoint. This means that, if there is some problem during Single
Sign On that requires the application to redirect to the /error page, this can cause an infinite redirect
between the identity provider and the receiving application.

First, think carefully about making an endpoint insecure, as you may find that the behavior is simply
evidence of a different problem. However, this behavior can be addressed by configuring the application
to permit /error, as the following example shows:

OAuth2 Boot

please define title in your docbook file! 20

@Configuration

public class WebSecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http

 .authorizeRequests()

 .antMatchers("/error").permitAll()

 .anyRequest().authenticated();

 }

}

OAuth2 Boot

please define title in your docbook file! 21

Appendix A. Common Application
Properties
You can specify various properties inside your application.properties or application.yml
files or as command line switches. This section provides a list of common Spring Boot properties and
references to the underlying classes that consume them.

Note

Property contributions can come from additional jar files on your classpath, so you should not
consider this an exhaustive list. It is also perfectly legitimate to define your own properties.

Warning

This sample file is meant as a guide only. Do not copy and paste the entire content into your
application. Rather, pick only the properties that you need.

SECURITY OAUTH2 CLIENT (OAuth2ClientProperties)

security.oauth2.client.client-id= # OAuth2 client id.

security.oauth2.client.client-secret= # OAuth2 client secret. A random secret is generated by default

SECURITY OAUTH2 RESOURCES (ResourceServerProperties)

security.oauth2.resource.id= # Identifier of the resource.

security.oauth2.resource.jwt.key-uri= # The URI of the JWT token. Can be set if the value is not

 available and the key is public.

security.oauth2.resource.jwt.key-value= # The verification key of the JWT token. Can either be a

 symmetric secret or PEM-encoded RSA public key.

security.oauth2.resource.jwk.key-set-uri= # The URI for getting the set of keys that can be used to

 validate the token.

security.oauth2.resource.prefer-token-info=true # Use the token info, can be set to false to use the

 user info.

security.oauth2.resource.service-id=resource #

security.oauth2.resource.token-info-uri= # URI of the token decoding endpoint.

security.oauth2.resource.token-type= # The token type to send when using the userInfoUri.

security.oauth2.resource.user-info-uri= # URI of the user endpoint.

SECURITY OAUTH2 SSO (OAuth2SsoProperties)

security.oauth2.sso.login-path=/login # Path to the login page, i.e. the one that triggers the redirect

 to the OAuth2 Authorization Server

../../api/org/springframework/boot/autoconfigure/security/oauth2/OAuth2ClientProperties.html
../../api/org/springframework/boot/autoconfigure/security/oauth2/resource/ResourceServerProperties.html
../../api/org/springframework/boot/autoconfigure/security/oauth2/client/OAuth2SsoProperties.html

	OAuth2 Boot
	Table of Contents
	
	1. Authorization Server
	1.1 Do I Need to Stand Up My Own Authorization Server?
	1.2 Dependencies
	1.3 Minimal OAuth2 Boot Configuration
	Enabling the Authorization Server
	Specifying a Client and Secret
	Retrieving a Token

	1.4 How to Switch Off OAuth2 Boot’s Auto Configuration
	1.5 How to Make Authorization Code Grant Flow Work
	Adding End Users
	Adding an End-User Login Flow
	Registering a Redirect URI With the Client
	Testing Authorization Code Flow

	1.6 How to Make Password Grant Flow Work
	1.7 How and When to Give Authorization Server an AuthenticationManager
	Exposing a UserDetailsService
	Exposing an AuthenticationManager
	Depending on AuthenticationConfiguration
	Manually Wiring An AuthenticationManager

	1.8 Is Authorization Server Compatible with Spring Security 5.1 Resource Server and Client?
	Configuring Authorization Server to Use JWKs
	Add a JWK Set URI Endpoint
	Testing Against Spring Security 5.1 Resource Server

	2. Resource Server
	2.1 Dependencies
	2.2 Minimal OAuth2 Boot Configuration
	Enabling the Resource Server
	Specifying a Token Verification Strategy
	JWT
	Opaque

	Accessing a Resource

	2.3 How to Use JWT with a Single Key
	2.4 How to Configure the Token Info Endpoint
	2.5 How to Configure the User Info Endpoint
	Customizing the User Info Request

	2.6 Customizing Authorization Rules
	2.7 Less Common Features
	Changing the Token Type
	Changing the Filter Order
	Permitting the /error Endpoint

	3. Client
	4. Single Sign On
	Appendix A. Common Application Properties

