Spring Security SAML Extension
Table of Contents
	I. Getting Started	1. Introduction	What this manual covers
	When to use Spring Security SAML Extension
	Features and supported profiles
	Requirements
	Source code
	Builds
	License
	Issue tracking
	Contributions
	Commercial support
	Community support
	Dependencies

	2. What's new	New features, improvements and fixes in 1.0.1.FINAL
	New features, improvements and fixes in 1.0.0.FINAL
	Important code changes in 1.0.0.FINAL

	3. Glossary
	4. Quick start guide	Pre-requisites
	Installation steps	Downloading sample application
	Configuration of IDP metadata
	Generation of SP metadata
	Compilation
	Deployment
	Uploading of SP metadata to the IDP

	Testing single sign-on and single logout

	II. Configuring SAML Extension	5. Overview
	6. Integration to applications	Maven dependency
	Bean definitions
	Java-based configuration
	Spring Security integration
	Error handling
	Logging

	7. Metadata configuration	Service provider metadata	Automatic metadata generation
	Pre-configured metadata
	Downloading metadata

	Identity provider metadata	File-based metadata provider
	HTTP-based metadata provider
	HTTP-based metadata provider with SSL
	Metadata signature verification

	Extended metadata
	Multi-tenancy and entity alias

	8. Security configuration	Key management	Sample JKS keystore
	Generating and importing private keys
	Importing public keys
	Loading SSL/TLS certificates

	Security profiles	Metadata interoperability profile (MetaIOP)
	PKIX profile
	Custom profile

	Hostname verification for HTTPS connections

	9. Single sign-on configuration	IDP selection and discovery
	Single sign-on process	Service provider initialized SSO
	Identity provider initialized SSO

	Logout process	Local logout
	Global logout

	Authentication object
	Authentication assertion
	Authentication log

	10. Advanced configuration	Reverse proxies and load balancers
	Context provider
	Validity intervals
	Enhanced client/proxy
	Endpoint URLs
	Artifact resolution

	III. Sample application	11. Sample application	SAML login
	Metadata administration
	Metadata generation

	IV. Integration guide	12. Integrating Identity Providers	Active Directory Federation Services 2.0 (AD FS)	Initialize IDP metadata
	Initialize SP metadata
	Test SSO

	Okta	Deploy Spring SAML sample application
	Configure Okta
	Import Okta metadata to Spring SAML
	Test SSO

	13. Troubleshooting common problems

Spring Security SAML Extension

Reference Documentation

			Vladimír Schäfer

		

1.0.4.RELEASE

Copyright © 2009-2014 Vladimír Schäfer

	
	

	

	
		
	 		

	

Part I. Getting Started

		
		

			This chapter provides essential information needed to enable your application to act as
			a service provider and interact with identity providers using SAML 2.0 protocol. Later in this
			guide you can find information about detailed configuration options and additional use-cases
			enabled by this component.

		

		

		

		
	
Chapter 1. Introduction

	

	What this manual covers

		

		This manual describes Spring Security SAML Extension component, its uses, installation, configuration,
			design and integration possibilities.
		

	

	

	

	

	

	

	

	

	

	
	
	

When to use Spring Security SAML Extension

		

		The extension enables both new and existing applications to act as a Service Provider in federations based on Web Single Sign-On
			and Single Logout profiles of SAML 2.0 protocol. The extension allows seamless combination of SAML 2.0 and other authentication and federation
			mechanisms in a single application. All products supporting SAML 2.0 in Identity Provider mode (e.g. ADFS, Okta, Shibboleth, OpenAM, Efecte EIM or Ping
			Federate) can be used with the extension.

		The extension can also be used in applications which are not primarily secured using Spring Security. It can be adapted
			for both single and multi-tenant environments.

		The extension can be either embedded inside your application and work along other authentication
			or single sign-on mechanisms, or it can be deployed separately and convey authentication information to
			applications using a custom mechanism.

		The extension is probably the most complete open-source SAML 2.0 SP implementation with the widest
			feature-set and configuration possibilities. Other Java open-source alternatives are e.g. native SAML service providers
			integrating with IIS or Apache from Shibboleth (SAML processing is done on the web server and not on the application
			level) or OpenAM Fedlet.

	Features and supported profiles

		

		Current implementation should be conformant to SAML SP Lite and SAML eGovernment profile. The
			following profiles, bindings and features are supported as part of the product:
			
	
					Web single sign-on profile

				
	
					Web single sign-on holder-of-key profile

				
	
					IDP and SP initialized single sign-on

				
	
					Single logout profile

				
	
					Enhanced client/proxy profile

				
	
					Identity provider discovery profile and IDP selection

				
	
					Metadata interoperability and PKIX trust management

				
	
					Automatic service provider metadata generation

				
	
					Metadata loading from files, URLs, file-backed URLs

				
	
					Processing and automatic reloading of metadata with many identity providers

				
	
					Support for authentication contexts

				
	
					Logging for authentication events

				
	
					Customization of both SP and IDP metadata

				
	
					Processing of SAML attributes and user data using UserDetails interface

				
	
					Support for HTTP-POST, HTTP-Redirect, SOAP, PAOS and Artifact bindings

				
	
					Easy integration with applications using Spring Security

				
	
					Sample application with an user interface for quick configuration

				

		

		You can use the following supported standards as a reference:

			SAML 2.0 basic profiles
			
	
					http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

				
	
					http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf

				
	
					http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf

				
	
					http://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf

				
	
					http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf

				
	
					http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf

				

			SAML 2.0 additional profiles
			
	
					http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-holder-of-key-browser-sso.pdf
					

				
	
					http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-idp-discovery.pdf

				
	
					http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml2-holder-of-key.pdf

				
	
					http://docs.oasis-open.org/security/saml/Post2.0/sstc-metadata-iop.pdf

				

			eGovernment profile
			
	
					
						http://kantarainitiative.org/confluence/download/attachments/42139782/kantara-egov-saml2-profile-2.0.pdf
					

				

	Requirements

		

		Spring Security SAML Extension requires as a minimum Java 1.6 and is known to work with most Java containers and application servers. It can also be used
 with PaaS providers, such as Google App Engine, please see https://github.com/vschafer/spring-security-saml-gae for details.

	Source code

		

		Source code for the project is maintained on Github.

	Builds

		

 Snapshot builds of the project are available in the
 SpringSource repository.
 We use Bamboo for continuous integration.

	License

		

		Source code of the module is licensed under the Apache License, Version 2.0. You may obtain copy
		of the license at http://www.apache.org/licenses/LICENSE-2.0.

	Issue tracking

		

		Please use Spring Security Extensions Jira for
			submitting of bugs and feature requests. Patches can be sent directly to GitHub as pull requests, but preferably open a Jira issue as well.

	Contributions

		

		Please send your pull requests directly to GitHub and preferably also open issue in Jira.

	Commercial support

		
	
For commercial support and consulting services please contact sales@v7security.com

	Community support

		

		For community support please use Stack Overflow.
		The Spring Security forums contain some previously answered
		questions, but are now in read-only mode.

	Dependencies

 Internal processing of SAML messages, marshalling and unmarshalling is handled by OpenSAML.

 Spring SAML has a transitive dependency to library not-yet-commons-ssl.
 Inside Spring SAML this library is only used for hostname verifications and will be removed in case OpenSAML removes the dependency.

 Chapter 2. What's new

	
	This section contains overview of important changes for released versions of Spring SAML.

 New features, improvements and fixes in 1.0.1.FINAL

 Version 1.0.1.FINAL is fully backwards compatible with 1.0.0.FINAL and contains the following changes:

	Added support for Spring Security 4.0

	Added integration guide with Okta

	MaxAuthenticationAge time supports longer expiration times than 21 days

	Deployment without JKS keystore is now supported

	Service provider can now define multiple assertion consumer endpoints with same binding

	Minor fixes and documentation improvements

	

	

New features, improvements and fixes in 1.0.0.FINAL

		
 Final release is not directly compatible with the previous RC versions, please make sure to migrate your code based on guidelines and changes below:

	Metadata signing now supports custom keyInfoGenerator and signingAlgorithm, signing can be enable per-entity

	SAMLContextProvider has new customization possibilities for PKIXTrustEvaluator, PKIXInformationResolver and MetadataResolver

	CertPathPKIXTrustEvaluator supports customization of security provider and explicit validation of certification path

	MetadataCredentialResolver can be configured to load data from XML metadata and/or ExtendedMetadata

	PKIXInformationResolver has an extension point for population of CRLs

	Improvements to logging and error handling, profile implementations now throw exceptions which are logged inside filter objects and fail with ServletExceptions, sample application newly shows handling of these errors

	Used OpenSAML version was updated to 2.6.1

	SAMLDefaultLogger now logs additional information such as NameID

	Enabled propagation of defaults (e.g. ProxySettings) set in the HttpClient object for ArtifactResolution

	JKSKeyManager now supports keystores without password

	SAMLContextProviderLB now supports empty contextPath and includes pathInfo data for requests

	Entity ID and EntityDescriptor ID can now be set separately in MetadataGenerator

	ECP now takes precedence over discovery in SAMLEntryPoint

	Signing of local metadata is now done before displaying, this enables manual modifications to metadata in local files

	ArtifactResolutionProfileImpl now support customization of used SocketFactory through extensions

	ID in generated metadata is now automatically created when null, ID is based on entityID cleaned in order to conform to xsd:ID (and xsd:NCName) type, EntityID is cleaned by replacing all illegal characters by underscores

	Support for hostname verification in artifact resolution

	Completed documentation

	Possibility to exclude the SAML Credential from the Authentication object

	Disabled deferred node expansion for ParserPool which improves performance in parsing of small XML documents

	HttpSessionStorage is now cleared after successful reception of a message in order to save memory

	Possibility to include attributes from only the authenticated Assertion, or from all

	New socket factory for trust verification during loading of metadata from HTTPS

	Possibility to disable support for IDP-initialized SSO

	Usage of metadata alias is now optional

	New look and feel of the sample application

	Cleanup of duplicate values in MetadataGenerator and ExtendedMetadata

	SAMLCredential now contains facility methods for handling of String SAML attributes

		

	Important code changes in 1.0.0.FINAL

 Below is an overview of major code and structure changes since Spring SAML 1.0 RC2 with possible effect on backwards compatibility.

 Module names

	module saml2-core was renamed to core, jar and maven artifact names stay the same

	module saml2-sample was renamed to sample, jar and maven artifact names stay the same

	module src was renamed to docs, jar and maven artifact names stay the same

 Descriptor securityContext.xml

	file saml2-sample/src/main/resources/security/securityContext.xml was moved to sample/src/main/webapp/WEB-INF/securityContext.xml

	administration part of the UI is now secured with username/password

	updated initialization of ParserPool to disable defer node expansion

	HttpClient in ArtifactResolution was made thread safe

	added new failure handler (failureRedirectHandler)

	MetadataGenerator bean now demonstrates usage of ExtendedMetadata

	FilesystemMetadataProvider was replaced with ResourceBackedMetadataProvider

	file sample/src/main/resources/security/idp.xml was moved to sample/src/main/resources/metadata/idp.xml

 ArtifactResolutionProfileBase

	throws SAMLException instead of CredentialExpiredException on check of artifact response issue instant

 HttpSessionStorage

	storage is now cleared on successful message reception

 MetadataDisplayFilter

	new mandatory property KeyManager (autowired)

 MetadataGenerator

	generated metadata is no longer signed by default (enable in ExtendedMetadata.signMetadata) and has disabled IDP discovery (enable in ExtendedMetadata.includeDiscovery)

	the following fields were moved from MetadataGenerator to ExtendedMetadata:

	entityAlias -> alias

	signMetadata -> signMetadata

	signingKey -> signingKey

	encryptionKey -> encryptionKey

	tlsKey -> tlsKey

	includeDiscovery -> idpDiscoveryEnabled

	customDiscoveryURL -> idpDiscoveryURL

	customDiscoveryResponseURL -> idpDiscoveryResponseURL

	removed methods signSAMLObject (moved to SAMLUtil) and getKeyInfoGeneratorName (moved to ExtendedMetadata)

	by default the first binding is now HTTP-POST instead of HTTP-Artifact, endpoint for Web SSO no longer includes PAOS binding, set property bindingsSSO with values "artifact", "post", "paos" for backwards compatibility

	by default endpoints for Web SSO holder of key are no longer included, set property bindingsHoKSSO with values "artifact" and "post" for backwards compatibility

	by default MetadataGeneratorFilter no longer sets property entityAlias to value defaultAlias, set the value manually for backwards compatibility

 SAMLAuthenticationProvider

	property forcePrincipalAsString is now set to true by default

 SAMLCredential

	method getAttributeByName was renamed to getAttribute

 SAMLDiscovery

	fails with ServletException instead of SAMLRuntimeException

 SAMLLogoutProcessingFilter

	throws ServletException on errors during acceptance of LogoutRequest instead of SAMLRuntimeException

 SAMLUtil

	removed unused getDefaultBinding method

 SingleLogoutProfileImpl

	sendLogoutResponse signature changed

	changed error handling, throws SAMLStatusException which is handled by Filter, logged and sends a SAML Response

 WebSSOProfileImpl

	throws SAMLException instead of SAMLRuntimeException on missing data in context

 WebSSOProfileConsumerImpl

	new property includeAllAttributes, set to true for original behavior

	throws SAMLException instead of CredentialExpiredException on check of response issue instant and assertion issue instant

	Chapter 3. Glossary

	
	
		
Table 3.1. Definitions of terms used within this manual

			
				Term	Definition
	Assertion	A part of SAML message (an XML document) which provides facts about subject of the assertion
							(typically about the authenticated user). Assertions can contain information about authentication,
							associated attributes or authorization decisions.
	Artifact	Identifier which can be used to retrieve a complete SAML message from identity or service provider
							using a back-channel binding.
	Binding	Mechanism used to deliver SAML message. Bindings are divided to front-channel bindings which
							use web-browser of the user for message delivery (e.g. HTTP-POST or HTTP-Redirect) and back-channel bindings
							where identity provider and service provider communicate directly (e.g. using SOAP calls in Artifact binding).
	Discovery	Mechanism used to determine which identity provider should be used to authenticate user currently
							interacting with the service provider.
	Metadata	Document describing one or multiple identity and service providers. Metadata typically includes
							entity identifier, public keys, endpoint URLs, supported bindings and profiles, and other
							capabilities or requirements. Exchange of metadata between identity and service providers is
							typically the first step for establishment of federation.
	Profile	Standardized combination of protocols, assertions, bindings and processing instructions used to
							achieve a particular use-case such as single sign-on, single logout, discovery, artifact resolution.
	Protocol	Definition of format (schema) for SAML messages used to achieve particular functionality such as
							requesting authentication from IDP, performing single logout or requesting attributes from IDP.
	Identity provider (IDP)	Entity which knows how to authenticate users and provides information
						about their identity to service providers/relaying parties using federation protocols.
	Service provider (SP)	Your application which communicates with the identity provider in order to obtain information
							about the user it interacts with. User information such as authentication state and user attributes
							is provided in form of security assertions.
	Single Sign-On (SSO)	Process enabling access to multiple web sites without need to repeatedly present credentials necessary
						for authentication. Various federation protocols such as SAML, WS-Federation, OpenID or OAuth can be used to achieve
						SSO use-cases. Information such as means of authentication, user attributes, authorization decisions or security tokens are
						typically provided to the service provider as part of single sign-on.
	Single Logout (SLO)	Process terminating authenticated sessions at all resources which were accessed using single sign-on. Techniques
						such as redirecting user to each of the SSO participants or sending a logout SOAP messages are typically used.

		

	

Chapter 4. Quick start guide

	
	
		This chapter will guide you through steps required to easily integrate Spring Security SAML Extension with
		ssocircle.com's IDP service using SAML 2.0 protocol.
		When done you will have a working example of Web SSO against a single Identity Provider. The steps will
		guide you through deployment of the sample application,
		configuration of IDP metadata (XML document describing how to connect to the IDP server using SAML 2.0
		protocol) and SP metadata (XML document describing
		your own service) and testing of web single sign-on and single logout.
	

 Public demo of the sample application is available at saml-federation.appspot.com

	Pre-requisites

		

		Please make sure the following items are available before starting the installation:
			
	
					Java 1.6+ SDK

				
	
					Apache Maven

				

		

		SAML Extension relies on XML processing capabilities of JAXP. Some older versions of JRE might require updating of the embedded
		JAXP libraries. In case you encounter XML processing exceptions please create folder jdk/jre/lib/endorsed in your
		JDK installation and include files in lib/endorsed from the latest OpenSAML archive available at
		http://shibboleth.net/downloads/java-opensaml/. The location of the
		endorsed folder may differ based on your application server or container.

		Due to US export limitations Java JDK comes with a limited set of cryptography capabilities. Usage of the SAML Extension might require
		installation of the Unlimited Strength Jurisdiction
		Policy Files which removes these limitations.

	

	

	
Installation steps

		

	Downloading sample application

		
		Download the Spring SAML Extension either from sources or
		from one of the releases.

		The Spring SAML Sample application is included in sample directory. We will be customizing
		content of the sample application in the following steps.

	

		Configuration of IDP metadata

			
			Modify file
				sample/src/main/webapp/WEB-INF/securityContext.xml
				of the sample application and replace metadata bean as follows:
				
<bean id="metadata" class="org.springframework.security.saml.metadata.CachingMetadataManager">
	<constructor-arg>
		<list>
			<bean class="org.opensaml.saml2.metadata.provider.HTTPMetadataProvider">
				<constructor-arg>
					<value type="java.lang.String">http://idp.ssocircle.com/idp-meta.xml</value>
				</constructor-arg>
				<constructor-arg>
					<value type="int">5000</value>
				</constructor-arg>
				<property name="parserPool" ref="parserPool"/>
			</bean>
		</list>
	</constructor-arg>
</bean>

			

			The settings tell system to download IDP metadata from the given URL with timeout of 5
				seconds. In production system metadata should be either stored as a local file or be downloaded
				from a source using SSL/TLS with configured trust or which provides digitally signed metadata.
			

		

		Generation of SP metadata

			
			Modify file
				sample/src/main/webapp/WEB-INF/securityContext.xml
				of the sample application, replace metadataGeneratorFilter bean as follows and make sure to replace
				the entityId value with a string which is unique within the SSO Circle service (e.g. urn:test:yourname:yourcity):
				
<bean id="metadataGeneratorFilter" class="org.springframework.security.saml.metadata.MetadataGeneratorFilter">
	<constructor-arg>
		<bean class="org.springframework.security.saml.metadata.MetadataGenerator">
			<property name="entityId" value="replaceWithUniqueIdentifier"/>
			<property name="extendedMetadata">
				<bean class="org.springframework.security.saml.metadata.ExtendedMetadata">
					<property name="signMetadata" value="false"/>
					<property name="idpDiscoveryEnabled" value="true"/>
				</bean>
			</property>
		</bean>
	</constructor-arg>
</bean>

			

		

		Compilation

			
			
				When building from sources compile whole project and install artifacts into your local Maven repository using:
				
gradlew build install

			

			
				When using the release zip compile the sample application available in the sample directory using:
				
mvn package

			

			
				You can find the compiled war archive spring-security-saml2-sample.war in directory
				sample/build/libs/ (gradle) or sample/target/ (maven).
			

			
				Project files for your IDE can be created with gradlew eclipse or gradlew idea.
			

		

		Deployment

			
			You can start the application from the release sample directory using command:
mvn tomcat7:run

			Same can be achieved using gradle with:
gradlew tomcatRun

			After startup the Spring SAML sample application will be available at http://localhost:8080/spring-security-saml2-sample

			Alternatively you can deploy the war archive to your application server or container.

		

		Uploading of SP metadata to the IDP

			
			Download current SP metadata:
	
					Open web browser to the URL of the deployed application.

				
	
					Select Metadata information.

				
	
					Select first item from category Service providers, e.g.
						
							http://localhost:8080/spring-security-saml2-sample/saml/metadata
						
					

				
	
					Copy content of the Metadata textarea to your clipboard.

				

			Upload SP metadata to the IDP:
	
					Register yourself at www.ssocircle.com and login to the service.

				
	
					Select Metadata manager and click Add new Service Provider.

				
	
					Enter entityId configured in the section called “Generation of SP metadata” in the FQDN field.

				
	
					Paste content of clipboard into the metadata information textarea.

				
	
					Store metadata by pressing the Submit button.

				
	
					Logout from the SSOCircle service.

				

		
	Testing single sign-on and single logout

		
		Open the front page of your SP application, select http://idp.ssocircle.com IDP and press login. The system
		will generate a new authentication request using SAML 2.0 protocol, digitally sign it and send it to the IDP. After authentication at IDP
		with your account you will be redirected back to your application and automatically signed-in.

		Pressing local logout will destroy local session and logout the user. While a session is still active at the IDP an attempt to reauthenticate
		will proceed without need to enter credentials.

		Pressing global logout will destroy both local session and the session at IDP.

		You can test IDP initialized single sign-on with URL https://idp.ssocircle.com:443/sso/saml2/jsp/idpSSOInit.jsp?metaAlias=/publicidp&spEntityID=replaceWithUniqueIdentifier, after replacing
		the service provider identifier with the one configured as entityId in your securityContext.xml. It is possible to provide relayState data sent to your SP with parameter RelayState.

	Part II. Configuring SAML Extension

	

		
		

			This chapter provides information about configuration and customization options of the SAML extension.
			It will guide you through typical scenarios including problems you might encounter during integration with
			identity providers.

		

	

	

	

	

Chapter 5. Overview

		
		Spring Security SAML 2.0 library comprises three modules:
			
	
					
						core
						contains implementation of the WebSSO profiles of the SAML 2.0 protocol and is required for
						integration to target systems.
					

				
	
					
						sample
						contains example of Spring configuration used for integration to target systems. It also
						contains user interface for generation and management of metadata.
					

				
	
					
						docs
						contains this documentation.
					

				

		

		Configuration of the library is done using Spring context XML. An example of configuration can be found
			under sample/src/main/webapp/WEB-INF/securityContext.xml.
			Setting up of the library typically involves these steps:
			
	
					integration to application using Spring XML configuration

				
	
					import, generation and customization of SP and IDP metadata

				
	
					configuration of signature, encryption and trust keys

				
	
					configuration of security profiles

				
	
					configuration of reverse proxy or load balancer

				
	
					configuration of IDP selection or discovery

				
	
					configuration of single sign-on process

				
	
					configuration of logout process

				
	
					configuration of authentication object

				
	
					configuration of authentication log

				

		

		Additional steps such as customization of SAML 2.0 bindings, configuration of artifact resolution
 or configuration of time skews might be needed.
		

	Chapter 6. Integration to applications

		
		SAML module can be directly embedded into new or existing Spring applications. In
			this case application itself includes the SAML library in WEB-INF/lib directory of the war archive and
			processes all SAML interactions. The other option of using the SAML library is deploying it as a
			stand-alone module
			which transfers information about the authenticated user to the target application using a custom
			mechanism. This chapter only discusses the first option.
		

		Maven dependency

			
			
				In order to include the library and all its dependencies add the following dependency to your
				pom.xml file:
				
<dependency>
	<groupId>org.springframework.security.extensions</groupId>
	<artifactId>spring-security-saml2-core</artifactId>
	<version>${version}</version>
</dependency>

			

			The current version of SAML Extension has been tested to work with Spring 3.1.2, Spring Security 3.1.2 and OpenSAML 2.6.1.
			Later versions of these libraries are likely to be compatible without need for modifications.

		
		
			
			

	Bean definitions

			
			Configuration of the SAML library requires beans definitions included in the
				sample/src/main/webapp/WEB-INF/securityContext.xml
				configuration file. Include copy of the file in your own Spring application, either directly or with
				an inclusion. Configuration steps in the following chapters will be customizing beans included in
				the default context.
			

			Beans of the SAML library are using auto-wiring and annotation-based configuration by default.
				Make sure that your Spring configuration
				contains e.g. the following settings in order to enable support for these features:
				
<context:annotation-config/>
<context:component-scan base-package="org.springframework.security.saml"/>

				

			Java-based configuration

			
				Spring SAML will include configuration classes for Spring Java-based configuration in future versions.

				For an example of securityContext.xml translated into Java configuration in a Spring Boot application see project by Vincenzo De Notaris at https://github.com/vdenotaris/spring-boot-security-saml-sample.

			Spring Security integration

				
				Filters of the SAML module need to be enabled as part of the Spring Security settings. In case
					SAML authentication should be the default authentication mechanism of the application set bean
					samlEntryPoint
					as the default entry point. Make sure that filter
					samlFilter
					is included as one of the custom filters. In case SP metadata should be
					generated automatically during first request to the application include also filter
						metadataGeneratorFilter.
					The configuration directive may for example look as follows:
					
<security:http entry-point-ref="samlEntryPoint">
	<security:custom-filter before="FIRST" ref="metadataGeneratorFilter"/>
	<security:custom-filter after="BASIC_AUTH_FILTER" ref="samlFilter"/>
</security:http>

			

		Error handling

 Critical errors raised during processing of SAML messages are generally propagated as ServletExceptions to the Java container. In order to configure a custom error handling update your web.xml
 and provide a general handler for ServletExceptions:
<error-page>
	<exception-type>javax.servlet.ServletException</exception-type>
	<location>/error.jsp</location>
</error-page>

 ServletException contains original reason for the failure as a cause. It is recommended that content of the exceptions is not displayed to end users, both for security and user experience reasons.

 Errors produced during processing of the SAML AuthenticationResponse can be handled by plugging a custom implementation of
 the org.springframework.security.web.authentication.AuthenticationFailureHandler interface to the samlWebSSOProcessingFilter bean.

 Logging

 SAML Extension uses SLF4J framework for logging. The same applies to the underlying OpenSAML
 library. The sample application by default uses log4j version 1.2 binding for SLF4J, configured with the following dependency:
<dependency>
	<groupId>org.slf4j</groupId>
	<artifactId>slf4j-log4j12</artifactId>
	<version>1.6.3</version>
	<scope>compile</scope>
</dependency>

 To view the contents of SAML messages and errors from the logs, adjust the settings of the SAMLDefaultLogger bean.

 <bean id="samlLogger" class="org.springframework.security.saml.log.SAMLDefaultLogger">
 	<property name="logAllMessages" value="true"/>
 	<property name="logErrors" value="true"/>
 	<property name="logMessagesOnException" value="true"/>
	</bean>

 In case you are using another logging library, make sure to change the dependency accordingly.

 You can enable debug logging by modifying file sample/src/main/resources/log4j.properties and adding:

log4j.logger.org.springframework.security.saml=DEBUG
log4j.logger.org.opensaml=DEBUG
log4j.logger.PROTOCOL_MESSAGE=DEBUG

 For details about using other logging frameworks please consult the SLF4J manual.

 Chapter 7. Metadata configuration

		
		
			SAML metadata is an XML document which contains information necessary for interaction with SAML-enabled identity
			or service providers. The document contains e.g. URLs of endpoints, information about supported bindings, identifiers and
			public keys. Typically one metadata document will be generated for your own service provider and sent to all identity providers
			you want to enable single sign-on with. Similarly, each identity provider will make its own metadata available for you to import
			into your service provider application.
		

		
			Each metadata document can contain definition for one or many identity or service providers and optionally can be digitally signed.
			Metadata can be customized either by direct modifications to the XML document, or using extended metadata. Extended metadata is added
			directly to the Spring configuration file and can contain additional options which are unavailable in the basic metadata document.
		

		Service provider metadata

			
			Service provider metadata contains keys, services and URLs defining SAML endpoints of your application. Metadata can be either
			generated automatically upon first request to the service, or it can be pre-created (see Chapter 11, Sample application).
			Once created metadata needs to be provided to the identity providers with whom we want to establish trust.

			Automatic metadata generation

				
				
					Automatic metadata generation is enabled by including the following filter in the Spring Security configuration:
					
<security:custom-filter before="FIRST" ref="metadataGeneratorFilter"/>

				

				
					This filter is automatically invoked as part of the first request to a URL processed by Spring Security. In case there
					is no service provider metadata already specified (meaning property hostedSPName of the
					metadata bean is empty) filter will generate a new one.
				

				
					By default metadata will be generated with the following values which can be customized by setting properties of the metadataGenerator bean:
					
Table 7.1. Metadata generator settings

						
							Property	Description	Default value
	entityBaseURL	Base URL to construct SAML endpoints from, needs to be a URL with protocol, server, port and context path.	Values from the request in format: scheme://server:port/contextPath
	entityId	Unique identifier of the service provider.	<entityBaseUrl>/saml/metadata
	id	XML identifier of the root metadata element referred in signature.	entityId with removed illegal characters (NCName)
	requestSigned	Flag indicating whether this service signs authentication requests.	true
	wantAssertionSigned	Flag indicating whether this service requires signed assertions.	true
	bindingsSSO	Bindings to be included in the metadata for WebSSO profile. Supported values are: POST, Artifact and PAOS. Order of bindings in the property determines order of endpoints in the generated metadata.	POST, Artifact
	bindingsHoKSSO	Bindings to be included in the metadata for WebSSO Holder-of-Key profile. Supported values are: POST and Artifact. Order of bindings in the property determines order of endpoints in the generated metadata.	
	bindingsSLO	Bindings to be included in the metadata for Single Logout profile. Supported values are: POST and Redirect. Order of bindings in the property determines order of endpoints in the generated metadata.	POST, Redirect
	assertionConsumerIndex	Index of assertion consumer point to be marked as default.	0
	includeDiscoveryExtension	When true generated metadata will contain extension indicating that it's able to consume response from an IDP Discovery service.	false
	nameID	Name identifiers to be included in the metadata. Supported values are: EMAIL, TRANSIENT, PERSISTENT, UNSPECIFIED and X509_SUBJECT. Order of NameIDs in the property determines order of NameIDs in the generated metadata.	EMAIL, TRANSIENT, PERSISTENT, UNSPECIFIED, X509_SUBJECT
	extendedMetadata	Additional settings such as security keys, entity alias, metadata signing, IDP discovery, ECP settings, security profiles and signature requirements can be specified in the ExtendedMetadata, see the section called “Extended metadata” for details.	no extended metadata

					

				

				
					In case property entityBaseURL is not specified, it will be automatically generated based on values in the first HTTP request.
					Generated value can be normalized to exclude standard 80/443 ports for http/https schemes by setting property normalizeBaseUrl of the MetadataGeneratorFilter
					to true. It is recommended to provide the value explicitly in the configuration.
				

				
					Providing an empty collection or null value to properties bindingsSSO, bindingsHoKSSO and bindingsSLO
					will disable and remove the given profile. For example the following setting removes the holder-of-key profile from the generated metadata,
					forces artifact binding for single sign-on and redirect binding for single logout:
<bean class="org.springframework.security.saml.metadata.MetadataGenerator">
	<property name="bindingsSSO"><list><value>artifact</value></list></property>
	<property name="bindingsSLO"><list><value>redirect</value></list></property>
	<property name="bindingsHoKSSO"><list/></property>
</bean>

				
					By default generated metadata will not be digitally signed. Digital signature can be enabled using property
					signMetadata of the extendedMetadata bean.
				

				
					In case application is deployed behind a reverse-proxy or other mechanism which makes the URL at the application server different
					from the URL seen by client at least property entityBaseURL should be set to a value e.g. https://www.server.com:8080
					For details about load balancing see the section called “Reverse proxies and load balancers”.
				

			
			Pre-configured metadata

				
				In some situations it is beneficial to provide static version of the metadata document instead of the automatic generation. Need
				for manual changes in the metadata or fixing of production settings are some of those. A custom metadata document describing local SP application
				can be added by updating the metadata bean with correct ExtendedMetadata. Please follow these steps
				in order to do so:
	
					 Generate and download metadata, e.g. using the Metadata Administration -> Generate new service provider metadata option in the sample application's administration UI or using instructions in automatic metadata generator.

				
	
					 Store the metadata file as part of your project classpath, e.g. in WEB-INF/classes/metadata/localhost_sp.xml.

				
	
					 Disable the automatic metadata generator by removing the following custom filter from the securityContext.xml:
<security:custom-filter before="FIRST" ref="metadataGeneratorFilter"/>

				
	
					 Include the SP metadata in the metadata bean and mark the entity as local in the extended metadata. Make sure to specify the alias
					 property in case it was used during metadata generation.

					 It is recommended to use the administration UI which also generates all the Spring declarations ready for inclusion in your securityContext.xml.

					 Configuration for pre-configured local metadata can look for example like this:
<bean class="org.springframework.security.saml.metadata.ExtendedMetadataDelegate">
	<constructor-arg>
		<bean class="org.opensaml.saml2.metadata.provider.ResourceBackedMetadataProvider">
			<constructor-arg>
				<bean class="java.util.Timer"/>
			</constructor-arg>
			<constructor-arg>
				<bean class="org.opensaml.util.resource.ClasspathResource">
					<constructor-arg value="/metadata/localhost_sp.xml"/>
				</bean>
			</constructor-arg>
			<property name="parserPool" ref="parserPool"/>
		</bean>
	</constructor-arg>
	<constructor-arg>
		<bean class="org.springframework.security.saml.metadata.ExtendedMetadata">
			<property name="local" value="true"/>
			<property name="securityProfile" value="metaiop"/>
			<property name="sslSecurityProfile" value="pkix"/>
			<property name="signMetadata" value="true"/>
			<property name="signingKey" value="apollo"/>
			<property name="encryptionKey" value="apollo"/>
			<property name="requireArtifactResolveSigned" value="false"/>
			<property name="requireLogoutRequestSigned" value="false"/>
			<property name="requireLogoutResponseSigned" value="false"/>
			<property name="idpDiscoveryEnabled" value="true"/>
			<property name="idpDiscoveryURL"
				value="https://www.server.com:8080/context/saml/discovery"/>
			<property name="idpDiscoveryResponseURL"
				value="https://www.server.com:8080/context/saml/login?disco=true"/>
		</bean>
	</constructor-arg>
</bean>

				

				Same instance of your application can include multiple statically declared local service providers each differentiated by its own unique
				alias and entity ID, see the section called “Multi-tenancy and entity alias” for details. In case your application defines multiple local service providers,
				set property hostedSPName of the metadata bean to the entity ID of the default one.

				The file with pre-configured metadata doesn't need to include digital signature. Metadata will be automatically signed during runtime when property signMetadata is set to true.

				For details about available settings of the ExtendedMetadata see the section called “Extended metadata”.

			
			Downloading metadata

				
				Metadata describing the default local application can be downloaded from URL:
https://www.server.com:8080/context/saml/metadata

				In case the application is configured to contain multiple service providers metadata for each can be loaded by
				adding the alias:
https://www.server.com:8080/context/saml/login/alias/defaultAlias

				URL for metadata download can be disabled by removing filter metadataDisplayFilter from the securityContext.xml.

				Metadata is also available in the sample application's administration UI under Metadata information -> selected SP.

			
		
		
		

 Identity provider metadata

			
			Metadata for identity providers is imported to the metadataManager in a similar way as pre-configured
			SP metadata. Metadata containing one or many identity providers can be added by providing an URL or a file. Processing of metadata and
			processing of SAML messages can be customized using properties of ExtendedMetadataDelegate and ExtendedMetadata.

			File-based metadata provider

				
				File-based provider loads metadata from a file available in the filesystem or classpath.
<bean class="org.springframework.security.saml.metadata.ExtendedMetadataDelegate">
	<constructor-arg>
		<bean class="org.opensaml.saml2.metadata.provider.FilesystemMetadataProvider">
			<constructor-arg>
				<value type="java.io.File">classpath:security/idp.xml</value>
			</constructor-arg>
			<property name="parserPool" ref="parserPool"/>
		</bean>
	</constructor-arg>
	<constructor-arg>
		<bean class="org.springframework.security.saml.metadata.ExtendedMetadata"/>
	</constructor-arg>
</bean>

			 Metadata is automatically refreshed in intervals specified by properties minRefreshDelay and maxRefreshDelay of the MetadataProvider bean.

			
			HTTP-based metadata provider

				
				HTTP-based provider loads metadata from an URL.
<bean class="org.springframework.security.saml.metadata.ExtendedMetadataDelegate">
	<constructor-arg>
		<bean class="org.opensaml.saml2.metadata.provider.HTTPMetadataProvider">
			<constructor-arg>
				<value type="java.lang.String">http://idp.ssocircle.com/idp-meta.xml</value>
			</constructor-arg>
			<constructor-arg>
				<!-- Timeout for metadata loading in ms -->
				<value type="int">5000</value>
			</constructor-arg>
			<property name="parserPool" ref="parserPool"/>
		</bean>
	</constructor-arg>
	<constructor-arg>
		<bean class="org.springframework.security.saml.metadata.ExtendedMetadata"/>
	</constructor-arg>
</bean>

				Metadata is automatically refreshed in intervals specified by properties minRefreshDelay and maxRefreshDelay of the MetadataProvider bean.

				Alternatively class org.opensaml.saml2.metadata.provider.FileBackedHTTPMetadataProvider can be used to provide a backup in case URL is temporarily unavailable. File
				to use as backup is specified as third argument in the MetadataProvider bean constructor.

			
 HTTP-based metadata provider with SSL

 By default, loading of metadata using the HTTP-based provider over HTTPS performs trust verification configured in your JDK. In case you'd like to use certificates in your keyStore, add the following bean which changes the socketFactory used by the HTTP Client:

<bean class="org.springframework.security.saml.trust.httpclient.TLSProtocolConfigurer"/>

 The TLSProtocolConfigurer instantiates TLSProtocolSocketFactory and registers is as a default socket factory for https protocol inside the HTTP Client used for metadata loading.
 The socket factory uses all public certificates present in the keyStore as trust anchors for PKIX validation. The used keys can be constrained with property trustedKeys.

 The socket factory configured in this fashion is used for all metadata providers. It is possible to customize metadata loading on a per-provider basis by adding a configured HttpClient instance to the HTTPMetadataProvider constructor.

			Metadata signature verification

				
				Importing of digitally signed metadata requires verification of signature's validity and trust. Metadata is not required to be signed by default.
				When present, signature is verified with PKIX algorithm and uses all public keys present in the configured keyManager as trust anchors. Make sure to include root CA
				certificate and intermediary CA certificates of the signature in your keyStore. For details see the section called “Importing public keys”.

				You can limit certificates used to perform the verification by setting property metadataTrustedKeys of the ExtendedMetadataDelegate bean. The provided
				collection should contain aliases of keys to be used as trust anchors.

				Signature verification can be disabled by setting property metadataTrustCheck to false in the ExtendedMetadataDelegate bean.
				Setting metadataRequireSignature to true will reject metadata unless it's digitally signed.

			
		Extended metadata

			
			Extended metadata provides additional settings for customization of SAML exchanges between SP and IDP which are not supported in the standard SAML 2.0 metadata documents.
 Examples of such settings are requirements for message signing, IDP discovery and security profiles.

 Extended metadata is defined using
 org.springframework.security.saml.metadata.ExtendedMetadata beans embedded inside ExtendedMetadataDelegate for each SP or IDP metadata definition.
 In case a single metadata document contains multiple identity providers (in multiple EntityDescriptor elements), extended metadata can be set separately for each of them using a map with
 entity IDs as keys, e.g.:
<bean class="org.springframework.security.saml.metadata.ExtendedMetadataDelegate">
	<constructor-arg>
		metadata provider bean
	</constructor-arg>
	<constructor-arg>
		<!-- Default extended metadata for entities not specified in the map -->
		<bean class="org.springframework.security.saml.metadata.ExtendedMetadata"/>
	</constructor-arg>
	<constructor-arg>
		<!-- Extended metadata for specific IDPs -->
		<map>
			<entry key="http://idp.ssocircle.com">
				<bean class="org.springframework.security.saml.metadata.ExtendedMetadata"/>
			</entry>
		</map>
	</constructor-arg>
</bean>

 The following table summarizes settings available in the extended metadata. The same class is
 used for both local service providers and remote identity providers; each value contains information
 about the entities it's valid for.

Table 7.2. Extended metadata settings

 	Property	Default	Entities	Description
	local	false	local and remote	True for metadata of a local service provider. False for remote identity
 providers.

	alias	 	local only	Unique alias used to identify the selected local service provider based on
 used URL. See the section called “Multi-tenancy and entity alias”.

	signMetadata	false	local only	When true generated metadata will be signed using XML Signature using certificate with alias of signingKey.
	idpDiscoveryEnabled	false	local only	When true system will initialize IDP discovery when no IDP is selected during
 SSO initialization. See the section called “IDP selection and discovery”.

	idpDiscoveryURL	internal discovery URL	local only	URL of the IDP discovery service. Only used when discovery is enabled.

	idpDiscoveryResponseURL	internal discovery URL	local only	URL expecting response from the IDP discovery service. Only used when
 discovery is enabled.

	ecpEnabled	false	local only	Property enables support for the SAML 2.0 ECP profile. See the section called “Enhanced client/proxy”.

	securityProfile	metaiop	local only	Security profile for verification of message signatures. See the section called “Security profiles”.

	sslSecurityProfile	pkix	local only	Security profile for vericiation of SSL/TLS endpoint trust. See the section called “Security profiles”.

	sslHostnameVerification	default	local only	Verification of hostnames for HTTPS calls (e.g. in Artifact resolution).
 Allowed values are default, defaultAndLocalhost,
 strict and allowAll. Value allowAll
 effectively disables hostname verification. All values are case-insensitive. For
 more details on the supported hostname verifications see
 Commons-SSL JavaDoc.

	signingAlgorithm	-	local only	Algorithm used to create digital signature on the metadata object. Typical values are http://www.w3.org/2000/09/xmldsig#rsa-sha1,
 http://www.w3.org/2001/04/xmldsig-more#rsa-sha256 and http://www.w3.org/2001/04/xmldsig-more#rsa-sha512.
	signingKey	-	local and remote	For local entities alias of private key used to create signatures. The
 default private key is used when no value is provided. For remote identity
 providers defines an additional public key used to verify signatures.

	encryptionKey	-	local and remote	For local entities alias of private key used to encrypt data. The default
 private key is used when no value is provided. For remote identity providers
 defines an additional public key used to decrypt data.

	tlsKey	-	local and remote	For local entities alias of private key used for SSL/TLS client
 authentication. No client authentication is used when value is not specified.
 For remote identity providers defines an additional public key used for trust
 resolution.

	trustedKeys	-	remote	Keys included as trusted anchors during PKIX evaluation. All keys in the
 keyStore are used as trust anchors with null value. Keys are only used with PKIX
 security profile.

	requireLogoutRequestSigned	true	local and remote	For local entities enables requirement of signed logout requests. For remote
 entities enables signing of requests sent to the IDP.

	requireLogoutResponseSigned	false	local and remote	For local entities enables requirement of signed logout responses. For remote
 entities enables signing of responses sent to the IDP.

	requireArtifactResolveSigned	true	remote only	Enables signing of artifact resolution requests sent to the remote identity
 providers.

	supportUnsolicitedResponse	true	remote only	Enables support for Unsolicited Responses (IDP-Initialized SSO) sent from
 this remote entity.

 For additional examples on setting up metadata and extended metadata see
 the section called “Service provider metadata” for local SP, and the section called “Identity provider metadata”
 for remote IDPs.

 Multi-tenancy and entity alias

 Spring SAML contains limited support for multi-tenancy. It is possible to define configuration for multiple instances of local service providers, where each
 can have different URLs and security settings. System is differentiating between the service provider instances using entity alias which
 is a unique identifier within deployment of Spring SAML.

 Entity alias is appended to URLs of SAML endpoints and used by Spring SAML to identify the correct instance.
 For example for local service provider with entity alias
 customer123 the standard URL scheme://server:port/contextPath/saml/login becomes
 scheme://server:port/contextPath/saml/login/alias/customer123.

 The entity alias functionality can only be used together with pre-configured metadata (see the section called “Pre-configured metadata”).
 The entity alias is specified in the extended metadata of each of the configured service providers.

 Spring SAML doesn't enforce any limitations on which Identity Provider can be deliver messages to which of the local Service Providers. In case your application
 requires similar rules (for example only certain tenants can authenticate using a specific IDP), make sure to implement them for example in your SAMLUserDetailsService (for single sign-on).

 Selection of the correct Service Provider instance based on URL is performed inside SAMLContextProviderImpl class.

 Chapter 8. Security configuration

 SAML Extension requires configuration of security settings which include cryptographic
 material used for digital signatures and encryption, security profiles for configuration of trusted
 cryptographic material provided by remote entities and verifications of HTTPS connections.

 Key management

 SAML exchanges involve usage of cryptography for signing and encryption of data. All interaction with cryptographic keys is
 done through interface org.springframework.security.saml.key.KeyManager. The default implementation
 org.springframework.security.saml.key.JKSKeyManager relies on a single JKS key store which contains
 all private and public keys. KeyManager should contain at least one private key which should be marked as default by using
 the alias of the private key as part of the JKSKeyManager constructor.

 In case your application doesn't need to create digital signatures and/or decrypt incoming messages, it is possible to use an empty
 implementation of the keystore which doesn't require any JKS file - org.springframework.security.saml.key.EmptyKeyManager.
 This can be the case for example when using only IDP-Initialized single sign-on. Please note that when using the EmptyKeyManager
 some of Spring SAML features will be unavailable. This includes at least SP-initialized Single Sign-on, Single Logout, usage of additional
 keys in ExtendedMetadata and verification of metadata signatures. Use the following bean in order to initialize the EmptyKeyManager:

<bean id="keyManager" class="org.springframework.security.saml.key.EmptyKeyManager"/>

 Sample JKS keystore

 Sample application contains a default JKS key store with a sample private certificate usable for test purposes. The key store
 is defined as:
<bean id="keyManager" class="org.springframework.security.saml.key.JKSKeyManager">
	<constructor-arg value="classpath:security/samlKeystore.jks"/>
	<constructor-arg type="java.lang.String" value="nalle123"/>
	<constructor-arg>
	<map>
		<entry key="apollo" value="nalle123"/>
	</map>
	</constructor-arg>
	<constructor-arg type="java.lang.String" value="apollo"/>
</bean>

 The first argument points to the used key store file, second contains password for the keystore, third then map with
 passwords for private keys with alias-password value pairs. Alias of the default certificate is the last parameter.

 Generating and importing private keys

 Private keys (with either self-signed or CA signed certificates) are used to digitally sign SAML messages,
 encrypt their content and in some cases for SSL/TLS Client authentication of your service provider application.
 SAML Extension ships with a default private key in the samlKeystore.jks with alias apollo
 which can be used for initial testing, but for security reason should be replaced with your own key in early development stages.

 In case your IDP doesn't require keys signed by a specific certification authority you can generate your own self-signed key using the
 Java utility keytool, e.g. with:
keytool -genkeypair -alias some-alias -keypass changeit -keystore samlKeystore.jks

 The keystore will now contain additional PrivateKeyEntry with alias mykey which can be imported to the keyManager in your securityContext.xml.

 Keys signed by certification authorities are typically provided in .p12/.pfx format (or can be converted to such using OpenSSL) and imported to Java keystore with, e.g.:

keytool -importkeystore -srckeystore key.p12 -srcstoretype PKCS12 -srcstorepass password \
	-alias some-alias -destkeystore samlKeystore.jks -destalias some-alias \
	-destkeypass changeit

 The following command can be used to determine available alias in the p12 file:
keytool -list -keystore key.p12 -storetype pkcs12

 Importing public keys

 Cryptographic material used to decrypt incoming data and verify trust of signatures in SAML messages and metadata is stored either
 in metadata of remote entities or in the keyManager. In order to import additional trusted key to the keystore
 run, e.g.:
keytool -importcert -alias some-alias -file key.cer -keystore samlKeystore.jks

 Imported keys can be referenced in ExtendedMetadataDelegate and ExtendedMetadata beans,
 for details see the section called “Metadata signature verification” and the section called “Security profiles”.

 Loading SSL/TLS certificates

 Direct SSL/TLS connections (used with HTTP-Artifact binding) require verification of the public key presented by the server.
 The SSL Extractor utility can be used to extract certificates presented by an SSL/TLS
 endpoint, e.g. with:
java -jar sslextractor-0.9.jar www.google.com 443

 The certificates are stored as .cer files and can be imported to the keystore as a usual public key. For details about
 configuring of trust for SSL/TLS connections see the section called “Security profiles”.

 Security profiles

 Exchanges of messages between identity providers and service providers with SAML protocol
 involves usage of digital signatures. Signatures are typically constructed using means of asymmetric
 cryptography and public key infrastructure with public and private keys signed by trusted certification
 authorities. Signatures are either applied directly to parts of XML representation of SAML messages
 using XML Signature or are part of the transport layer used to deliver the message like SSL/TLS.

 Verification of signatures is executed in two phases. Signature is first checked for validity by
 comparing digital hash included as part of the signature with value calculated from the content.
 Subsequently it is verified whether party who created the signature is trusted by the recipient. Spring Security SAML
 provides two mechanisms for defining which signatures should be accepted - metadata interoperability
 mode and PKIX mode.

 Security profiles are defined in Extended Metadata of your local SP. Profile can be defined separately
 for XML Signatures using property securityProfile and for SSL/TLS Signatures using
 propertysslSecurityProfile. Value of both properties can be either metaiop
 or pkix. For details about using Extended Metadata see Chapter 7, Metadata configuration,
 for reference of allowed values see the section called “Extended metadata”.

 Metadata interoperability profile (MetaIOP)

 With MetaIOP mode certificates are not checked for expiration or revocation and certificate paths
 are not
 verified. This means that it does not matter which certification authority issued the certificate,
 as the fact whether the certificate is trusted or not is conveyed using other mechanisms (e.g. by
 secure metadata exchange or digital signature of metadata itself).

 Signature is deemed trusted when the certificate used to create it is included in one
 of the following places:

	
 Key with usage of signing or unspecified in entity metadata of a remote entity

	
 Signing key specified in property signingKey of extended metadata of a remote entity

 MetaIOP is the default profile for verification of XML signatures. For details about this profile
 see the specification.

 PKIX profile

 With PKIX profile trust of signature certificates is verified based on a certificate path
 between trusted CA certificates and the certificate in question. Certificate is trusted when it's
 possible to construct path from a trusted certificate to the validated one. With this profile
 certificate expiration and revocation can be checked.

 Trusted keys (anchors) for PKIX verification of signatures are combined from the following places:

	
 Key with usage of signing or unspecified in entity metadata of a remote entity

	
 Signing key specified in property signingKey of extended metadata of a remote entity

	
 All keys specified in trustedKeys set of extended metadata of a remote entity,
 or all keys available in the key store when the property is null (default value)

 Please note that trust anchors are treated as automatically trusted and are not necessarily subject to all checks as leaf certificates are (depending
 on your security provider implementation). You should preferably use only your CA and intermediary CA certificates as trust anchors. In case you want to ignore
 certificates available in your XML metadata and only use settings from your manually set ExtendedMetadata, set property useXmlMetadata
 of your metadataResolver to false:

<bean id="contextProvider" class="org.springframework.security.saml.context.SAMLContextProviderImpl">
	<property name="metadataResolver">
		<bean class="org.springframework.security.saml.trust.MetadataCredentialResolver">
			<constructor-arg index="0" ref="metadata"/>
			<constructor-arg index="1" ref="keyManager"/>
			<property name="useXmlMetadata" value="false"/>
		</bean>
	</property>
</bean>

 PKIX verification supports checking of CRLs (certificate revocation lists) using the default underlaying Java Security Provider
 (e.g. Sun JCE, BouncyCastle JCE).

 The PKIX algorithm needs to be advised that the revocation checking is enabled. You can do so by customizing the pkixTrustEvaluator inside SAMLContextProvider, see an example with properties forceRevocationEnabled and revocationEnabled bellow.

 By default the validation algorithm only uses the CertPathBuilder. Some Java security implementations do not support full feature set of revocation checking in this class and only
 implement them in the CertPathValidator (e.g. Sun provider only supports OCSP in CertPathBuilder since Java 1.8). You can instruct system to use both
 CertPathBuilder and CertPathValidator by setting property validateCertPath to true on bean
 CertPathPKIXTrustEvaluator.

 The security provider used for loading of PKIX verification factories can be customized using property securityProvider.

 <bean id="contextProvider" class="org.springframework.security.saml.context.SAMLContextProviderImpl">
	<property name="pkixTrustEvaluator">
		<bean class="org.springframework.security.saml.trust.CertPathPKIXTrustEvaluator">
			<property name="PKIXValidationOptions">
				<bean class="org.opensaml.xml.security.x509.CertPathPKIXValidationOptions">
					<property name="forceRevocationEnabled" value="true"/>
					<property name="revocationEnabled" value="true"/>
				</bean>
			</property>
			<property name="validateCertPath" value="true"/>
			<property name="securityProvider" value="SUN"/>
		</bean>
	</property>
</bean>

 Spring SAML uses standard CertPath verification API. The default Sun JCE provider supports automatic revocation checking based on the certificate's CRL Distribution Points Extension
 (by setting system property com.sun.security.enableCRLDP to true), CRL point defined using certificate's Authority
 Information Access (AIA) Extension (by setting system property com.sun.security.enableAIAcaIssuers to true)
 and OCSP (by setting system property ocsp.enable to true).
 For details see the Java PKI Programmer's Guide.
 In case you are using another security provider, please consult its manual for functionality related to CertPathBuilder and CertPathValidator
 with the PKIX algorithm.

 You can also manually populate CRLs by extending class org.springframework.security.saml.trust.PKIXInformationResolver and overriding method populateCRLs
 with your own CRL population logic. Populated CRLs are automatically added to the PKIX verification mechanism. The customized class needs to be set to property pkixResolver
 in the contextProvider bean.

 Custom profile

 Engine used to verify trust of signatures for given combination of SP/IDP is created in methods
 populateTrustEngine and populateSSLTrustEngine of interface
 org.springframework.security.saml.context.SAMLContextProvider and can be overridden
 with custom implementation. See the section called “Context provider” for details on context customization.

 Hostname verification for HTTPS connections

 Connections to HTTPS services (e.g. during Artifact resolution) require verification that the connected hostname
 corresponds with the hostname defined in the service's public certificate. Hostname verification is enabled
 by default.

 Verification can be disabled by setting ExtendedMetadata property sslHostnameVerification
 of the local SP entity to allowAll. For details on using the ExtendedMetadata see the section called “Extended metadata”.

 All supported values can be found in the ExtendedMetadata reference the section called “Extended metadata”.

 Chapter 9. Single sign-on configuration

 IDP selection and discovery

 Discovery helps your Service Provider determine which Identity Provider should be used for authentication of the current user. It is automatically initialized during calls to
 single sign-on endpoint at scheme://server:port/contextPath/saml/login. SAML Extension supports multiple modes of discovery including
 the Identity Provider Discovery Service Protocol and Profile.

 IDP discovery modes can always be skipped during SSO initialization by specifying HTTP request parameter idp with the
 entityId of the required IDP, e.g. scheme://server:port/contextPath/saml/login?idp=mySelectedIDP.

 The URL where local SP expects discovery response can be included in the SP metadata as one of the extensions. The feature can be enabled by setting property includeDiscoveryExtension
 to true on bean MetadataGenerator inside MetadataGeneratorFilter, e.g.:

<bean id="metadataGeneratorFilter" class="org.springframework.security.saml.metadata.MetadataGeneratorFilter">
	<constructor-arg>
		<bean class="org.springframework.security.saml.metadata.MetadataGenerator">
			<property name="includeDiscoveryExtension" value="true"/>
		</bean>
	</constructor-arg>
</bean>

 Default IDP without discovery

 The mode is enabled by default and automatically selects the default IDP without performing discovery.

 The default IDP can be configured using property defaultIDP on bean metadata in the Spring Security configuration.
 In case the property isn't set, system will automatically use the first available IDP.

 Local discovery service

 SAML Extension includes a local IDP discovery service which presents user with an IDP selection page. This mode can be enabled by setting property includeDiscovery in the
 local SP extended metadata to true.

 The selection page can be customized using property idpSelectionPath on bean samlIDPDiscovery. System forwards to this page wih a discovery request which includes the following request attributes:

	
 idpDiscoReturnURL - URL to send the IDP selection result to using GET action

	
 idpDiscoReturnParam - name of the GET parameter to include the entity ID of the selected IDP

 See the default implementation in sample/src/main/webapp/WEB-INF/security/idpSelection.jsp for an example.

 Remote discovery service

 In order to enable external IDP discovery service configure property idpDiscoveryURL in your local
 SP extended metadata to the external discovery URL. Make sure property idpDiscoveryEnabled is set to true. The remote discovery service needs to support
 the Identity Provider Discovery Service Protocol and Profile.

 Single sign-on process

 Spring SAML Extension supports both SP-initialized and IDP-initialized single sign-on.

 Service provider initialized SSO

 SP initialized SSO process can be started in two ways:

	
 User accesses a resource protected by Spring Security which initializes SAMLEntryPoint

	
 User is redirected to the SSO endpoint at e.g. https://www.server.com/context/saml/login

 After identification of IDP to use for authentication (for details see the section called “IDP selection and discovery”), SAML Extension creates an AuthnRequest SAML message
 and sends it to the selected IDP. Both construction of the AuthnRequest and binding used to send it can be customized using WebSSOProfileOptions
 object. SAMLEntryPoint determines WebSSOProfileOptions configuration to use by calling method getProfileOptions.
 The default implementation returns the value specified in property defaultOptions. The method can be overridden to provide custom logic for SSO initialization.

 Default settings for WebSSOProfileOptions can be specified in bean samlEntryPoint of your securityContext.xml, e.g.:

<bean id="samlEntryPoint" class="org.springframework.security.saml.SAMLEntryPoint">
	<property name="defaultProfileOptions">
		<bean class="org.springframework.security.saml.websso.WebSSOProfileOptions">
			<property name="binding" value="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"/>
			<property name="includeScoping" value="false"/>
		</bean>
	</property>
</bean>

 WebSSOProfileOptions supports the following settings:

Table 9.1. org.springframework.security.saml.websso.WebSSOProfileOptions parameters

 	Property	Description
	binding	Default: binding of the first declared SingleSignOnService in IDP metadata. Binding used to send message to IDP. Supported values depend on the SP configuration, typically "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST", "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect",
 "urn:oasis:names:tc:SAML:2.0:bindings:PAOS" and "urn:oasis:names:tc:SAML:2.0:profiles:holder-of-key:SSO:browser".
	providerName	Default: empty. Human readable name of the local SP sent with the authentication request.
	assertionConsumerIndex	Default: empty. When set determines where should IDP send response and which binding to use. Otherwise system uses the default assertion consumer service marked as default, or first applicable. Available indexes can be found in metadata of this service provider.
	nameID	Default: empty. Name ID to request from IDP in the NameIDPolicy. No NameIDPolicy is sent when not specified. Typical values are "urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress", "urn:oasis:names:tc:SAML:2.0:nameid-format:transient", "urn:oasis:names:tc:SAML:2.0:nameid-format:persistent", "urn:oasis:names:tc:SAML:2.0:nameid-format:encrypted".
	allowCreate	Default: empty. Only applicable when nameID is specified, when true instructs IDP that it is allowed to create new user based on the authentication request.
	passive	Default: false. Sets whether the IdP should refrain from interacting with the user during the authentication process.
	forceAuthn	Default: false. When true IDP is required to re-authenticate user and not rely on previous authentication events.
	includeScoping	Default: true. When true request will include Scoping element.
	allowedIDPs	Default: empty. Values to be included in the Scoping element on top of the IDP message is sent to. Only applicable when includeScoping is set to true.
	proxyCount	Default: 2. Determines value to be used in the proxyCount attribute of the scope in the AuthnRequest. Use zero to disable proxying or value >0 to specify how many hops are allowed. Only applicable when includeScoping is set to true.
	authnContexts	Default: empty. Authentication contexts IDP is allowed to use when authenticating user. See the specification for details.
	authnContextComparison	Default: AuthnContextComparisonTypeEnumeration.EXACT. Mechanism used by IDP to determine authentication method to use. See the specification for details.
	relayState	Default: empty. Value is sent to IDP and provided back to SP as part of the authentication response.

 The AuthnRequest message is sent unencrypted on message level. If needed, encryption should be provided by SSL/TLS on transport layer.

 Identity provider initialized SSO

 Spring SAML supports reception of Unsolicited Response messages (so called IDP-initialized SSO). In this scenario IDP creates a Response object in the same way as if it was replying to
 an AuthnRequest message sent from SP, but it omits the InResponseTo parameter. Message is then sent to the AssertionConsumerURL of Spring SAML (typically
 scheme://server:port/contextPath/saml/SSO) using one of the supported bindings. List of all available endpoints and bindings can be found in the metadata
 of the Spring SAML application.

 Received Unsolicited Respose message is processed and validated in exactly the same way as with SP-Initialized SSO.

 Support for unsolicited messages can be disabled in the ExtendedMetadata of remote entities using property supportUnsolicitedResponse.

 Logout process

 Spring SAML Extension supports both Local Logout and Single Logout mechanisms.

 Local logout

 Local logout terminates only the local session and doesn't affect neither session at IDP, nor sessions at other SPs where user logged in using single sign-on. Local logout
 can be initialized at scheme://server:port/contextPath/saml/logout?local=true. Call is intercepted by bean samlLogoutFilter which can be configured with
 the following settings:

	
 Instance of interface org.springframework.security.web.authentication.logout.LogoutSuccessHandler (constructor index 0) which determines operation to perform after successful logout (e.g. redirect to a logout landing page). By default user gets redirected to page logout.jsp.

	
 Instances of interface org.springframework.security.web.authentication.logout.LogoutHandler (constructor index 1) which are responsible for destruction of user's session. The default handler org.springframework.security.web.authentication.logout.SecurityContextLogoutHandler logs the user out by removing the Authentication object, but leaves the HTTP session opened.

 It is also possible to configure local logout using standard Spring Security element <security:logout> inside <security:http> block. For example:

<security:http>
	<security:logout logout-url="/j_logout" logout-success-url="/logout.jsp"/>
</security:http>

 Global logout

 Global logout implements the SAML 2.0 Single Logout profile which terminates both session at the current SP, the IDP session and sessions at other SPs connected to the same IDP session. Single Logout
 can be initialized from any of the participating SPs or from the IDP.

 Single Logout is currently supported with HTTP-Redirect and HTTP-POST bindings. SOAP binding is not available.

 Global logout can be initialized at scheme://server:port/contextPath/saml/logout. System automatically determines which IDP to send the request to based on the currently authenticated user. Single logout can be configured using beans samlLogoutFilter and samlLogoutProcessingFilter with the following options:

	
 Bean samlLogoutFilter can be provided with instances of interface org.springframework.security.web.authentication.logout.LogoutHandler (constructor index 3). The handlers are called before sending SAML 2.0 LogoutRequest to the IDP when initializing Single Logout from the current SP.

	
 Bean samlLogoutProcessingFilter can be provided with instance of interface org.springframework.security.web.authentication.logout.LogoutSuccessHandler (constructor index 0). Handler is called after successful finalization of Single Logout process (reception of LogoutResponse from IDP) and determines operation to perform after logout (e.g. redirect to a logout landing page). By default user gets redirected to page logout.jsp.

	
 Bean samlLogoutProcessingFilter can be provided with instances of interface org.springframework.security.web.authentication.logout.LogoutHandler (constructor index 1). The handlers are called after successful reception of SAML 2.0 LogoutRequest or LogoutResponse from the IDP.

 Spring SAML correctly handles SAML 2.0 LogoutRequest messages sent from the IDP and performs logout in case the message is valid. In case of invalid data (missing signature, invalid issuer, invalid issue time, invalid destination, invalid session index, invalid name ID, no user logged in) system responds with SAML 2.0 LogoutResponse with an error Status code.

 Authentication object

 Successful authentication using SAML token results in creation of an Authentication object by
 the SAMLAuthenticationProvider. By default instance of org.springframework.security.providers.ExpiringUsernameAuthenticationToken
 is created. Content of the resulting object can be customized by setting properties of the samlAuthenticationProvider bean in the securityContext.xml.
 An instance of org.springframework.security.saml.userdetails.SAMLUserDetailsService can be provided to supply application-specific information about the
 authenticated user.

 The Authentication object will by default include string version of the NameID included in the SAML Assertion as itsprincipal.
 Property forcePrincipalAsString can be used to change this to include the raw NameID element.

 The Authentication object is available in pages secured with Spring Security using SecurityContextHolder.getContext().getAuthentication() and is populated with the following values:

Table 9.2. ExpiringUsernameAuthenticationToken values.

 	Property	Value
	Principal	When forcePrincipalAsString = true (default) - String value of NameID included in the SAML Assertion (credential.getNameID().getValue() of type java.lang.String)
	Principal	When forcePrincipalAsString = false AND userDetail = null (default) - NameID object included in the SAML Assertion (credential.getNameID() of type org.opensaml.saml2.core.NameID)
	Principal	When forcePrincipalAsString = false AND userDetail != null - UserDetail object returned from the SAMLUserDetailsService
	Credentials	SAML authentication object including entity ID of local and remote entity, name ID, assertion and relay state (org.springframework.security.saml.SAMLCredential)
	Authorities	Result of getAuthorities() call on the UserDetails object returned from SAMLUserDetailsService, empty list when there's no UserDetail object available.
	Expiration	Value of SessionNotOnOrAfter in the SAML Assertion when avaialble, null otherwise. Authentication object will start returning false on the isAuthenticated() after the expiration time.

 Custom implementation of the SAMLUserDetailsService can be provided as property userDetails of the SAMLAuthenticationProvider.
 Implementation can perform operation such as parsing of attributes present in the SAML Assertion, e.g.:

package fi.schafer.test.saml;

import org.opensaml.saml2.core.Attribute;
import org.opensaml.xml.XMLObject;
import org.springframework.security.core.userdetails.UsernameNotFoundException;
import org.springframework.security.saml.SAMLCredential;
import org.springframework.security.saml.userdetails.SAMLUserDetailsService;

public class TestUserDetails implements SAMLUserDetailsService {
	@Override
	public Object loadUserBySAML(SAMLCredential cred) throws UsernameNotFoundException {
		return cred.getAttributeAsString("accountID");
	}
}

 Population of the authentication object can be further customized by overriding of the getUserDetails, getPrincipal, getEntitlements and getExpirationDate methods
 in the SAMLAuthenticationProvider.

 Authentication assertion

 Assertion used to authenticate user is stored in the SAMLCredential object under property authenticationAssertion. By default the original content (DOM) of the assertion is discarded and system only keeps an unmarshalled version which might slightly differ from the original, e.g. in white-spaces.
 In order to instruct Spring SAML to keep the assertion in the original form (keep its DOM) set property releaseDOM to false on bean WebSSOProfileConsumerImpl.

 Assertion can be serialized to String using the following call:

XMLHelper.nodeToString(SAMLUtil.marshallMessage(credential.getAuthenticationAssertion()))

 Authentication log

 Key events such as single sign-on and single logout initialization, success or failure can be logged for creation of an audit trail.
 A custom logger can be created by implementing interface org.springframework.security.saml.log.SAMLLogger and including its bean
 in the securityContext.xml, e.g.:
<bean id="samlLogger" class="org.springframework.security.saml.log.SAMLDefaultLogger"/>

 Two basic implementations are provided by default:

	
 org.springframework.security.saml.log.SAMLEmptyLogger

 Doesn't perform any logging, simply ignores all events.

	
 org.springframework.security.saml.log.SAMLDefaultLogger

 Logs events as INFO level messages to the log name org.springframework.security.saml.log.SAMLDefaultLogger configurable as described in the section called “Logging”. Setting
 property logMessages to true will include content of the SAML messages as part of the log. Logging of exceptions
 can be disabled by setting logErrors to false. Fields are semicolon separated with the following values:

 	type of SAML message (AuthNRequest, AuthNResponse, LogoutRequest or LogoutResponse)

	result of processing (SUCCESS or FAILURE)

	IP address of the peer who made the current request to SP

	entity ID of the local SP

	entity ID of the remote IDP

	identifier of the authenticated user

	SAML message (when logMessages is enabled)

	text of the error (only for failures, when logErrors is enabled)

 The logger is only called for messages which can be correctly received and parsed. For errors which occur before correct parsing see the section called “Error handling”.

 Chapter 10. Advanced configuration

 Reverse proxies and load balancers

 SAML Extension can be deployed in scenarios where multiple back-end servers process SAML requests forwarded by a reverse-proxy or a load balancer.
 SSL termination proxies which communicate using an unencrypted channel between the proxy and back-end servers are also supported. In order
 to configure SAML Extension for deployment behind a load balancer or a reverse-proxy please follow these steps:

	
 Make sure that your reverse-proxy or load-balancer is configured to use sticky sessions. Information about e.g. sent requests is stored
 within a user's HTTP session and sending of response to another back-end node would make the original request data unavailable and fail the validation.
 Sticky session are not necessary in case only IDP-initialized SSO is used or when sessions are replicated to all nodes.

	
 Provide information about front-end URL to the back-end servers by changing the contextProvider bean implementation in your securityContext.xml
 to class org.springframework.security.saml.context.SAMLContextProviderLB:
<bean id="contextProvider" class="org.springframework.security.saml.context.SAMLContextProviderLB">
	<property name="scheme" value="https"/>
	<property name="serverName" value="www.myserver.com"/>
	<property name="serverPort" value="443"/>
	<property name="includeServerPortInRequestURL" value="false"/>
	<property name="contextPath" value="/spring-security-saml2-sample"/>
</bean>

 This setting enables the extension to correctly form all generated URLs and verify endpoints of the incoming SAML messages.

	
 In case you use automatically generated metadata make sure to configure entityBaseURL matching the front-end URL in your metadataGeneratorFilter
 bean:
<bean id="metadataGeneratorFilter"
		class="org.springframework.security.saml.metadata.MetadataGeneratorFilter">
	<constructor-arg>
		<bean class="org.springframework.security.saml.metadata.MetadataGenerator">
			<property name="entityBaseURL"
				value="https://www.myserver.com/spring-security-saml2-sample"/>
		</bean>
	</constructor-arg>
</bean>

 Context provider

 Context provider populates information about the local service provider (your application) such as entityId, role, metadata, security keys, SSL credentials
 and trust engines for verification of signatures and SSL/TLS connections. Once populated context is made available to all components participating
 in processing of the incoming or outgoing SAML messages. ContextProvider can customized to alter behavior of the SAML Extension. The default
 implementation org.springframework.security.saml.context.SAMLContextProviderImpl relies on information available in the ExtendedMetadata and
 performs the following steps for creation of the context:

	
 Locate entityId of the local SP by parsing part of the URL after /alias/ (e.g. myAlias in https://www.myserver.com/saml_extension/saml/sso/alias/myAlias?idp=myIdp) and matching
 it with property alias specified in the ExtendedMetadata. In case the URL doesn't contain any alias part the default service provider
 configured with property hostedSPName on the metadata bean is used.

	
 Populate credential used to decrypt data sent to this service provider. In case ExtendedMetadata specifies property encryptionKey
 it will be used as an alias to lookup a private key from the keyManager bean. Otherwise defaultKey of the keyManager bean will be used.

	
 Populate credential used for SSL/TLS client authentication. In case ExtendedMetadata specifies property tlsKey it will be used
 as an alias to lookup key from keyManager bean. Otherwise no credential will be provided for client authentication.

	
 Populate trust engine for verification of signatures. Depending on securityProfile setting in the ExtendedMetadata trust engine
 based on either the section called “Metadata interoperability profile (MetaIOP)” or the section called “PKIX profile” is created.

	
 Populate trust engine for verification of SSL/TLS connections. Depending on sslSecurityProfile setting in the ExtendedMetadata
 trust engine based on either the section called “Metadata interoperability profile (MetaIOP)” or the section called “PKIX profile” is created.

 During initialization of SSO ContextProvider is also requested to provide metadata of the peer IDP. System performs these steps to locate peer IDP to use:

	
 Load parameter idp of the HttpRequest object and try to locate peer IDP by the entityId. When there's no idp
 parameter provided system will either start IDP discovery process (when enabled in the ExtendedMetadata of the local SP) or use the default IDP specified in the
 metadata bean.

 Validity intervals

 For security reasons system limits the time window enabling processing of SAML messages and assertions. The time window parameters can be customized with the following settings.

 Validity of assertions processed during the signle sign-on process is limited to 3000 seconds. Value can be customized with property maxAssertionTime
 of the WebSSOProfileConsumerImpl bean.

 System allows users to single sign-on for up to 7200 seconds since their initial authentication with the IDP (based on value AuthInstance of the Authentication statement).
 Some IDPs allow users to stay authenticated for longer periods than this and you might need to change the default value by setting maxAuthenticationAge
 of the WebSSOProfileConsumerImpl bean.

 As clocks between IDP and SP machines may not be perfectly synchronized a tolerance of 60 seconds is applied for time comparisons. The tolerance value (time skew) can be customized
 by settings property responseSkew in beans WebSSOProfileConsumerImpl and SingleLogoutProfileImpl.

 The following tables summarize all checks for time validity during processing of incoming SAML messages. Response skew refers to property responseSkew
 set on profile beans. Past indicates that validity window for checking of the value will be extended by responseSkew seconds to the past and correspondingly
 with the future value. Nullable values can be missing from the incoming messages.

Table 10.1. Time checks during processing of incoming SAML Response in WebSSO and WebSSO HoK profiles

 	
 response.issueInstant

	Applied skew:	responseSkew (past + future)
	Nullable:	No
	Fails with:	Throws SAMLException
	Description:	Time when SAML response message was created.
	
 response.assertion.issueInstant

	Applied skew:	responseSkew (past + future) + maxAssertionTime (future)
	Nullable:	No
	Fails with:	Throws SAMLException
	Description:	Time when SAML assertion was created, allows validity extension as assertion might be
 re-used by the caller.

	
 response.assertion.subject.subjectConfirmation.notOnOrAfter

	Applied skew:	responseSkew (future)
	Nullable:	No
	Fails with:	Throws SAMLException
	Description:	Time when subject can no longer be confirmed.
	
 response.assertion.authnStatement.authnInstant

	Applied skew:	responseSkew (past + future) + maxAuthenticationAge (future)
	Nullable:	No
	Fails with:	Throws CredentialsExpiredException
	Description:	Time when user authenticated to IDP, typically differs from time or response or
 assertion creation time.

	
 response.assertion.authnStatement.sessionNotOnOfAfter

	Applied skew:	no skew
	Nullable:	Yes
	Fails with:	Throws CredentialsExpiredException
	Description:	Time when user's session expires and requires re-authentication, sessions are
 typically valid for longer period and therefore do not suffer from time synchronization
 problems.

	
 response.assertion.condition.notBefore

	Applied skew:	responseSkew (past)
	Nullable:	Yes
	Fails with:	Throws SAMLException
	Description:	Time limit on validity of assertion.
	
 response.assertion.condition.notOnOrAfter

	Applied skew:	responseSkew (future)
	Nullable:	Yes
	Fails with:	Throws SAMLException
	Description:	Time limit on validity of assertion.

Table 10.2. Time checks during processing of incoming SAML LogoutRequest in Single Logout profile

 	
 response.issueInstant

	Applied skew:	responseSkew (past + future)
	Nullable:	No
	Fails with:	Sends LogoutResponse with error Status
 "urn:oasis:names:tc:SAML:2.0:status:Requester"

	Description:	Time when SAML LogoutRequest message was created.

Table 10.3. Time checks during processing of incoming SAML LogoutResponse in Single Logout profile

 	
 response.issueInstant

	Applied skew:	responseSkew (past + future)
	Nullable:	No
	Fails with:	Throws SAMLException
	Description:	Time when SAML LogoutResponse message was created.

Table 10.4. Time checks during processing of incoming SAML ArtifactResponse in Artifact Resolution profile

 	
 response.issueInstant

	Applied skew:	responseSkew (past + future)
	Nullable:	No
	Fails with:	Throws MessageDecodingException
	Description:	Time when SAML LogoutResponse message was created.

 Enhanced client/proxy

 Support for enhanced client/proxy can be configured using property ecpEnabled of the service provider's extended metadata. Once enabled, ECP profile is automatically activated with requests containing HTTP headers
 Accept: application/vnd.paos+xml and PAOS: ver='urn:liberty:paos:2003-08'; 'urn:oasis:names:tc:SAML:2.0:profiles:SSO:ecp'. Binding used to server ECP profile is always automatically set to PAOS.

 ECP can be enabled in combination with the automatic metadata generation using the following settings:
<bean class="org.springframework.security.saml.metadata.MetadataGenerator">
	<property name="extendedMetadata">
		<bean class="org.springframework.security.saml.metadata.ExtendedMetadata">
			<property name="ecpEnabled" value="true"/>
		</bean>
	</property>
</bean>

 Endpoint URLs

 By default Spring SAML uses the following endpoints, which can optionally also contain information about entity alias of the local Service Provider:

Table 10.5. Endpoint overview

 	Profile	Binding	Endpoint
	Web Single Sign-on	HTTP-POST, HTTP-Artifact, PAOS	scheme://server:port/contextPath/saml/SSO
	Web Single Sign-on Holder of Key	HTTP-POST, HTTP-Artifact	scheme://server:port/contextPath/saml/HoKSSO
	Single Logout	HTTP-POST, HTTP-Redirect	scheme://server:port/contextPath/saml/SingleLogout

 The default URLs can be altered with these steps:

	
 change property filterProcessesUrl on the corresponding processing bean (samlWebSSOProcessingFilter, samlWebSSOHoKProcessingFilter, samlLogoutProcessingFilter or samlIDPDiscovery) to the new URL, for example /samlResponse

	
 update the samlFilter bean and make sure that the modified processing filter is mapped to the correct pattern, for example /samlResponse/**, the /** part is only needed in case you're using the entity alias feature

	
 re-generate metadata for your service provider, in case you are using automatic metadata generator the endpoints will be automatically generated with the new URLs

	
 in case you are using pre-configured metadata you can perform changes manually in your existing metadata file

 Endpoints of filters samlEntryPoint, samlLogoutFilter and metadataDisplayFilter can be changed using the same process and without need to re-generate the metadata.

 Artifact resolution

 Usage of HTTP-Artifact binding requires Spring SAML to make a direct SOAP call to the Identity Provider. Sometimes it's necessary to configure correct HTTP proxy for the call. This can be achieved
 by setting property hostConfiguration on HttpClient plugged to the artifactBinding bean. The following configuration demonstrates creation of the bean
 for the hostConfiguration:
<bean id="hostConfiguration" class="org.apache.commons.httpclient.HostConfiguration"/>
<bean class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
	<property name="targetObject" ref="hostConfiguration"/>
	<property name="targetMethod" value="setProxy"/>
	<property name="arguments">
		<list>
			<value>testHost</value>
			<value>8080</value>
		</list>
	</property>
</bean>

 Another common use-case is situation when artifact resolution endpoint at IDP is secured using HTTP-Basic authentication. Authentication can be configured by setting
 HTTPClient's property state with the following bean:
<bean id="state" class="org.apache.commons.httpclient.HttpState"/>
<bean class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
	<property name="targetObject" ref="state"/>
	<property name="targetMethod" value="setCredentials"/>
	<property name="arguments">
		<list>
			<util:constant static-field="org.apache.commons.httpclient.auth.AuthScope.ANY"/>
			<bean class="org.apache.commons.httpclient.UsernamePasswordCredentials">
				<constructor-arg value="username"/>
				<constructor-arg value="password"/>
			</bean>
		</list>
	</property>
</bean>

 Part III. Sample application

		
		

			Chapter provides reference for the sample application and its administration user interface.

		

		
		
	
Chapter 11. Sample application

		
		Spring SAML includes a sample application which demonstrates key capabilities of this product. For details on compilation and deployment of the sample application
 please see Chapter 4, Quick start guide.

 Public demo of the sample application is available at saml-federation.appspot.com

 SAML login

 Sample application demonstrates usage of IDP discovery which is automatically invoked on access to the application root. Discovery presents selection of all available Identity Providers
 and initiates SAML 2.0 single sign-on with the selected IDP after clicking on the "Start single sign-on" button.

 After authentication at IDP, sample application displays information about the received and validated assertion, or displays errors encountered during validation.

 Clicking buttons "Global Logout" and "Local Logout" initializes the logout process as described in the section called “Logout process”.

Metadata administration

 Sample application contains an administration UI which enables simple monitoring and administrative use-cases. You can access the UI by
 clicking on "Metadata Administration" button.

 Administration part is secured with role ROLE_ADMIN and uses local authentication with default username admin and password admin.
 As Spring Security allows only one authentication to be currently active, authenticating to administration UI will remove any previous SAML authentication from the security context.

 Metadata administration enables the following operations:
			
	
					Displaying of existing identity provider and service provider entities by clicking on their identifier. Information includes content of the metadata and extended metadata for the entity.

				
	
					Displaying of existing metadata providers and possibility to remove them.

				
	
					Refreshing of all metadata providers by clicking on button "Refresh metadata".

				
	
					Generation of new metadata by clicking on "Generate new service provider metadata".

				

 Metadata generation

 Metadata generator allows dynamic creation of service provider metadata based on values provided in the UI. Metadata can be immediately applied to the currently
 running instance by setting "Store for current session" option to "Yes".

 Options available in the interface are discussed in the section called “Automatic metadata generation” and the section called “Extended metadata”.
 The generated values can be used as input for pre-configured metadata described in the section called “Pre-configured metadata”.

 Part IV. Integration guide

		
		

			This chapter includes step-by-step instructions on basic steps required for
 enabling single sign-on with common identity providers.

		

		

	
Chapter 12. Integrating Identity Providers

	
	Section provides additional information regarding integration of Spring SAML with popular Identity Providers.

	Active Directory Federation Services 2.0 (AD FS)

		

			AD FS 2.0 supports SAML 2.0 in IDP mode and can be easily integrated with SAML Extension for both SSO and SLO.
			Before starting with the configuration make sure that the following pre-requisites are satisfied:

				
						Install AD FS 2.0 (http://www.microsoft.com/en-us/download/details.aspx?id=10909)

					
	
						Run AD FS 2.0 Federation Server Configuration Wizard in the AD FS 2.0 Management Console

					
	
						Make sure that DNS name of your Windows Server is available at your SP and vice versa

					
	
						Install a Java container (e.g. Tomcat) for deployment of the SAML 2 Extension

					
	
						Configure your container to use HTTPS, this is required by AD FS (http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html)

					

			Initialize IDP metadata

			
				
						Download AD FS 2.0 metadata from e.g. https://adfsserver/FederationMetadata/2007-06/FederationMetadata.xml

					
	
						Store the downloaded content to sample/src/main/resources/metadata/FederationMetadata.xml

					
	
						Modify bean metadata in sample/src/main/webapp/WEB-INF/securityContext.xml and replace classpath:security/idp.xml with classpath:security/FederationMetadata.xml and add property metadataTrustCheck to false to skip signature validation:

<bean class="org.springframework.security.saml.metadata.ExtendedMetadataDelegate">
	<constructor-arg>
		<bean class="org.opensaml.saml2.metadata.provider.ResourceBackedMetadataProvider">
			<constructor-arg>
				<bean class="java.util.Timer"/>
			</constructor-arg>
			<constructor-arg>
				<bean class="org.opensaml.util.resource.ClasspathResource">
					<constructor-arg value="/metadata/FederationMetadata.xml"/>
				</bean>
			</constructor-arg>
			<property name="parserPool" ref="parserPool"/>
		</bean>
	</constructor-arg>
	<constructor-arg>
		<bean class="org.springframework.security.saml.metadata.ExtendedMetadata"/>
	</constructor-arg>
	<property name="metadataTrustCheck" value="false"/>
</bean>

					

				

		

		Initialize SP metadata

		
			
					Deploy SAML 2 Extension war archive from sample/target/spring-security-saml2-sample.war, or use embedded Tomcat with command: mvn tomcat7:run

				
	
					Open Spring SAML in browser, e.g. at https://localhost:8443/spring-security-saml2-sample, making sure to use HTTPS protocol

				
	
					Click Metadata Administration, login and select item with your server name from the Service providers list

				
	
					Store content of the Metadata field to a document metadata.xml and upload it to the AD FS server

				
	
					In AD FS 2.0 Management Console select "Add Relying Party Trust"

				
	
					Select "Import data about the relying party from a file" and select the metadata.xml file created earlier. Select Next

				
	
					The wizard may complain that some content of metadata is not supported. You can safely ignore this warning

				
	
					Continue with the wizard. On the "Ready to Add Trust" make sure that tab endpoints contains multiple endpoint values. If not, verify that your metadata was generated with HTTPS protocol URLs

				
	
					Leave "Open the Edit Claim Rules dialog" checkbox checked and finish the wizard

				
	
					Select "Add Rule", choose "Send LDAP Attributes as Claims" and press Next

				
	
					Add NameID as "Claim rule name", choose "Active Directory" as Attribute store, choose "SAM-Account-Name" as LDAP Attribute and "Name ID" as "Outgoing claim type", finish the wizard and confirm the claim rules window, in ADFS 3.0 you might need to configure the Name ID as a Pass Through claim

				
	
					Open the provider by double-clicking it, select tab Advanced and change "Secure hash algorithm" to SHA-1

				

		

		Test SSO

		
		Open the Spring SAML sample application at e.g. https://localhost:8443/spring-security-saml2-sample, select your AD FS server and press login. In case Artifact binding
		is used and SSL/TLS certificate of your AD FS is not already trusted, import it to your samlKeystore.jks by following instructions in the
		error report.

		
	

	

Okta

		

		Okta supports single sign-on to customer specified SAML 2.0 Service Provider applications, such as Spring SAML Extension.
			Before starting with the configuration make sure that the following pre-requisites are satisfied:

			
				Have an Okta instance and administration account ready, Okta license must allow you to add custom applications

			
	
				Install a Java container (e.g. Tomcat) for deployment of the SAML 2 Extension

			

		Deploy Spring SAML sample application

			
				
					Deploy SAML 2 Extension war archive from sample/target/spring-security-saml2-sample.war, or use embedded Tomcat with command: mvn tomcat7:run

				
	
					Open Spring SAML in browser, e.g. at http://localhost:8080/spring-security-saml2-sample

				
	
					Click Metadata Administration, login and select item with your server name from the Service providers

				
	
					Note the Entity ID field, and Assertion Consumer Service URL (ACS) from the metadata XML, e.g. http://localhost:8080/spring-security-saml2-sample/saml/SSO

				

			Information such as entity ID and URLs of your Spring SAML can be customized, see the section called “Service provider metadata” for details.

		

		Configure Okta

			
				
					Login to Okta as an administrator, select Admin, select Applications and click Create New App

				
	
					From the list of supported protocols select SAML 2.0 and press Create

				
	
					Define app name (e.g. Spring SAML), optionally define app image and press Next

				
	
					Configure SAML with the following settings:

					
						
Table 12.1.

								Single Sign on URL	Use value noted during Spring SAML initialization, e.g. http://localhost:8080/spring-security-saml2-sample/saml/SSO
	Audience URI (SP Entity ID)	Use value noted during Spring SAML initialization, e.g. http://localhost:8080/spring-security-saml2-sample/saml/metadata
	Default RelayState	Leave empty, unless you require Okta to provide a value to Spring SAML
	Name ID format	Select any of the available options, depending on your requirements
	Application username	Select any of the available options, depending on your requirements
	Response (advanced settings)	Select "signed"
	Assertion (advanced settings)	Select "signed"
	Authentication context class (advanced settings)	Select any of the available options
	Request compression (advanced settings)	Select "Uncompressed"

						

					

				
	
					Optionally define attributes to be sent to Spring SAML after single sign-on, and press Next

				
	
					On Feedback page select "This is an internal application that we created" and press Finish

				
	
					Make sure to distribute the newly created application to users you want to use for testing

				

			

			Import Okta metadata to Spring SAML

				
					
					In Okta click link "Identity provider metadata" and store the downloaded content to sample/src/main/resources/metadata/okta.xml

				
	
					In Spring SAML modify bean metadata in sample/src/main/webapp/WEB-INF/securityContext.xml and replace classpath:security/idp.xml with classpath:security/okta.xml:
						
<bean class="org.springframework.security.saml.metadata.ExtendedMetadataDelegate">
 <constructor-arg>
 <bean class="org.opensaml.saml2.metadata.provider.ResourceBackedMetadataProvider">
 <constructor-arg>
 <bean class="java.util.Timer"/>
 </constructor-arg>
 <constructor-arg>
 <bean class="org.opensaml.util.resource.ClasspathResource">
 <constructor-arg value="/metadata/okta.xml"/>
 </bean>
 </constructor-arg>
 <property name="parserPool" ref="parserPool"/>
 </bean>
 </constructor-arg>
 <constructor-arg>
 <bean class="org.springframework.security.saml.metadata.ExtendedMetadata"/>
 </constructor-arg>
</bean>

					

				
	
					Restart Spring SAML for the changes to get applied

				

		

		Test SSO

			
			Open the Spring SAML sample application at e.g. http://localhost:8080/spring-security-saml2-sample, select your Okta server and press login. Alternatively start IDP-initialized
			single sign-on using App Embed Link provided by Okta in application configuration, e.g. https://v7security.okta.com/home/v7security_springsaml_1/0oa4vkeakAsUtZ8AI0y6/39139.

		
	Chapter 13. Troubleshooting common problems

	
 Time synchronization

 Processing of SAML messages and assertions is often limited to a specific time window which e.g. prevents possibilities of replay attacks.
 Validation of messages can fail when internal clocks of the IDP and SP machines are not synchronized. Make sure to use a
 time synchronization service on all systems in the federation.

 Error 'InResponseToField doesn't correspond to sent message' during SSO

 Make sure that application uses the same HttpSession during sending of the request and reception of the response. Typically, this problem arises when the authentication request is initialized
 from localhost address or http scheme, while response is received at a public host name or https scheme. E.g., when initializing authentication from URL https://host:port/app/saml/login, the response
 must be received at https://host;port/app/saml/SSO, not http://host:port/app/saml/SSO or https://localhost:port/app/saml/SSO.

 The checking of the InResponseToField can be disabled by re-configuring the context provider as follows:

<bean id="contextProvider" class="org.springframework.security.saml.context.SAMLContextProviderImpl">
 <property name="storageFactory">
 <bean class="org.springframework.security.saml.storage.EmptyStorageFactory"/>
 </property>
</bean>

 System is redirecting to e.g. localhost address when public facing URL is different

 In case you use automatic metadata generation make sure to set property entityBaseURL on bean MetadataGenerator to
 e.g. http://server:port/yourapp or use pre-generated metadata.

 System fails during decryption or encryption of fields, e.g. with 'Failed to decrypt EncryptedData'

 Make sure the Unlimited Strength Jurisdiction Policy Files are correctly installed in your JDK. See the section called “Pre-requisites” for details.

 My system fails during validation of certificates with errors similar to "PKIX path building failed"

 This is typically caused by misconfiguration of certificates. Either your metadata or keyStore do not contain the correct leaf certificates or CA certificates, or your certificates are invalid.
 You can get additional information by starting your application with flag -Djavax.net.debug=all.

	

