
Spring Security SAML Extension

Reference Documentation

1.0.4.RELEASE

Vladimír Schäfer

Copyright © 2009-2014 Vladimír Schäfer

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension iii

Table of Contents

I. Getting Started ... 1
1. Introduction .. 2

1.1. What this manual covers ... 2
1.2. When to use Spring Security SAML Extension .. 2
1.3. Features and supported profiles ... 2
1.4. Requirements .. 3
1.5. Source code .. 3
1.6. Builds ... 3
1.7. License ... 3
1.8. Issue tracking .. 3
1.9. Contributions ... 3
1.10. Commercial support ... 3
1.11. Community support .. 4
1.12. Dependencies ... 4

2. What's new .. 5
2.1. New features, improvements and fixes in 1.0.1.FINAL ... 5
2.2. New features, improvements and fixes in 1.0.0.FINAL ... 5
2.3. Important code changes in 1.0.0.FINAL .. 6

3. Glossary .. 8
4. Quick start guide .. 10

4.1. Pre-requisites .. 10
4.2. Installation steps .. 10

Downloading sample application ... 10
Configuration of IDP metadata .. 10
Generation of SP metadata .. 11
Compilation .. 11
Deployment .. 11
Uploading of SP metadata to the IDP .. 11

4.3. Testing single sign-on and single logout .. 12
II. Configuring SAML Extension .. 13

5. Overview .. 14
6. Integration to applications ... 15

6.1. Maven dependency ... 15
6.2. Bean definitions ... 15
6.3. Java-based configuration ... 15
6.4. Spring Security integration ... 15
6.5. Error handling ... 16
6.6. Logging ... 16

7. Metadata configuration ... 17
7.1. Service provider metadata ... 17

Automatic metadata generation ... 17
Pre-configured metadata ... 19
Downloading metadata ... 20

7.2. Identity provider metadata .. 21
File-based metadata provider .. 21
HTTP-based metadata provider ... 21
HTTP-based metadata provider with SSL .. 21

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension iv

Metadata signature verification .. 22
7.3. Extended metadata .. 22
7.4. Multi-tenancy and entity alias ... 24

8. Security configuration ... 26
8.1. Key management .. 26

Sample JKS keystore ... 26
Generating and importing private keys ... 26
Importing public keys .. 27
Loading SSL/TLS certificates .. 27

8.2. Security profiles ... 27
Metadata interoperability profile (MetaIOP) .. 28
PKIX profile .. 28
Custom profile .. 29

8.3. Hostname verification for HTTPS connections ... 29
9. Single sign-on configuration .. 30

9.1. IDP selection and discovery ... 30
9.2. Single sign-on process ... 31

Service provider initialized SSO .. 31
Identity provider initialized SSO ... 32

9.3. Logout process .. 33
Local logout ... 33
Global logout .. 33

9.4. Authentication object .. 34
9.5. Authentication assertion ... 35
9.6. Authentication log .. 35

10. Advanced configuration ... 37
10.1. Reverse proxies and load balancers ... 37
10.2. Context provider .. 37
10.3. Validity intervals ... 38
10.4. Enhanced client/proxy .. 40
10.5. Endpoint URLs .. 41
10.6. Artifact resolution ... 41

III. Sample application .. 43
11. Sample application ... 44

11.1. SAML login ... 44
11.2. Metadata administration ... 44
11.3. Metadata generation .. 44

IV. Integration guide ... 45
12. Integrating Identity Providers ... 46

12.1. Active Directory Federation Services 2.0 (AD FS) .. 46
Initialize IDP metadata .. 46
Initialize SP metadata ... 46
Test SSO ... 47

12.2. Okta .. 47
Deploy Spring SAML sample application .. 47
Configure Okta ... 47
Import Okta metadata to Spring SAML .. 48
Test SSO ... 49

13. Troubleshooting common problems ... 50

Part I. Getting Started
This chapter provides essential information needed to enable your application to act as a service
provider and interact with identity providers using SAML 2.0 protocol. Later in this guide you can find
information about detailed configuration options and additional use-cases enabled by this component.

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 2

1. Introduction

1.1 What this manual covers

This manual describes Spring Security SAML Extension component, its uses, installation, configuration,
design and integration possibilities.

1.2 When to use Spring Security SAML Extension

The extension enables both new and existing applications to act as a Service Provider in federations
based on Web Single Sign-On and Single Logout profiles of SAML 2.0 protocol. The extension allows
seamless combination of SAML 2.0 and other authentication and federation mechanisms in a single
application. All products supporting SAML 2.0 in Identity Provider mode (e.g. ADFS, Okta, Shibboleth,
OpenAM, Efecte EIM or Ping Federate) can be used with the extension.

The extension can also be used in applications which are not primarily secured using Spring Security.
It can be adapted for both single and multi-tenant environments.

The extension can be either embedded inside your application and work along other authentication or
single sign-on mechanisms, or it can be deployed separately and convey authentication information to
applications using a custom mechanism.

The extension is probably the most complete open-source SAML 2.0 SP implementation with the widest
feature-set and configuration possibilities. Other Java open-source alternatives are e.g. native SAML
service providers integrating with IIS or Apache from Shibboleth (SAML processing is done on the web
server and not on the application level) or OpenAM Fedlet.

1.3 Features and supported profiles

Current implementation should be conformant to SAML SP Lite and SAML eGovernment profile. The
following profiles, bindings and features are supported as part of the product:

• Web single sign-on profile
• Web single sign-on holder-of-key profile
• IDP and SP initialized single sign-on
• Single logout profile
• Enhanced client/proxy profile
• Identity provider discovery profile and IDP selection
• Metadata interoperability and PKIX trust management
• Automatic service provider metadata generation
• Metadata loading from files, URLs, file-backed URLs
• Processing and automatic reloading of metadata with many identity providers
• Support for authentication contexts
• Logging for authentication events
• Customization of both SP and IDP metadata
• Processing of SAML attributes and user data using UserDetails interface
• Support for HTTP-POST, HTTP-Redirect, SOAP, PAOS and Artifact bindings
• Easy integration with applications using Spring Security
• Sample application with an user interface for quick configuration

You can use the following supported standards as a reference:

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 3

SAML 2.0 basic profiles

• http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

• http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf

• http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf

• http://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf

• http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf

• http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf

SAML 2.0 additional profiles

• http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-holder-of-key-browser-sso.pdf

• http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-idp-discovery.pdf

• http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml2-holder-of-key.pdf

• http://docs.oasis-open.org/security/saml/Post2.0/sstc-metadata-iop.pdf

eGovernment profile

• http://kantarainitiative.org/confluence/download/attachments/42139782/kantara-egov-saml2-
profile-2.0.pdf

1.4 Requirements

Spring Security SAML Extension requires as a minimum Java 1.6 and is known to work with most Java
containers and application servers. It can also be used with PaaS providers, such as Google App Engine,
please see https://github.com/vschafer/spring-security-saml-gae for details.

1.5 Source code

Source code for the project is maintained on Github.

1.6 Builds

Snapshot builds of the project are available in the SpringSource repository. We use Bamboo for
continuous integration.

1.7 License

Source code of the module is licensed under the Apache License, Version 2.0. You may obtain copy of
the license at http://www.apache.org/licenses/LICENSE-2.0.

1.8 Issue tracking

Please use Spring Security Extensions Jira for submitting of bugs and feature requests. Patches can
be sent directly to GitHub as pull requests, but preferably open a Jira issue as well.

1.9 Contributions

Please send your pull requests directly to GitHub and preferably also open issue in Jira.

1.10 Commercial support

For commercial support and consulting services please contact sales@v7security.com

https://github.com/vschafer/spring-security-saml-gae
https://github.com/SpringSource/spring-security-saml
http://repo.springsource.org/libs-snapshot/org/springframework/security/extensions/spring-security-saml/
https://build.springsource.org/browse/SES
http://www.apache.org/licenses/LICENSE-2.0
https://jira.springsource.org/browse/SES/component/10711
vladimir@v7security.com

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 4

1.11 Community support

For community support please use Stack Overflow. The Spring Security forums contain some previously
answered questions, but are now in read-only mode.

1.12 Dependencies

Internal processing of SAML messages, marshalling and unmarshalling is handled by OpenSAML.

Spring SAML has a transitive dependency to library not-yet-commons-ssl. Inside Spring SAML this
library is only used for hostname verifications and will be removed in case OpenSAML removes the
dependency.

http://stackoverflow.com/questions/tagged/spring-saml
http://forum.springsource.org/forumdisplay.php?86-SAML
https://wiki.shibboleth.net/confluence/display/OpenSAML/Home
http://juliusdavies.ca/commons-ssl/

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 5

2. What's new

This section contains overview of important changes for released versions of Spring SAML.

2.1 New features, improvements and fixes in 1.0.1.FINAL

Version 1.0.1.FINAL is fully backwards compatible with 1.0.0.FINAL and contains the following changes:

• Added support for Spring Security 4.0
• Added integration guide with Okta
• MaxAuthenticationAge time supports longer expiration times than 21 days
• Deployment without JKS keystore is now supported
• Service provider can now define multiple assertion consumer endpoints with same binding
• Minor fixes and documentation improvements

2.2 New features, improvements and fixes in 1.0.0.FINAL

Final release is not directly compatible with the previous RC versions, please make sure to migrate your
code based on guidelines and changes below:

• Metadata signing now supports custom keyInfoGenerator and signingAlgorithm, signing can be
enable per-entity

• SAMLContextProvider has new customization possibilities for PKIXTrustEvaluator,
PKIXInformationResolver and MetadataResolver

• CertPathPKIXTrustEvaluator supports customization of security provider and explicit validation of
certification path

• MetadataCredentialResolver can be configured to load data from XML metadata and/or
ExtendedMetadata

• PKIXInformationResolver has an extension point for population of CRLs
• Improvements to logging and error handling, profile implementations now throw exceptions which are

logged inside filter objects and fail with ServletExceptions, sample application newly shows handling
of these errors

• Used OpenSAML version was updated to 2.6.1
• SAMLDefaultLogger now logs additional information such as NameID
• Enabled propagation of defaults (e.g. ProxySettings) set in the HttpClient object for ArtifactResolution
• JKSKeyManager now supports keystores without password
• SAMLContextProviderLB now supports empty contextPath and includes pathInfo data for requests
• Entity ID and EntityDescriptor ID can now be set separately in MetadataGenerator
• ECP now takes precedence over discovery in SAMLEntryPoint
• Signing of local metadata is now done before displaying, this enables manual modifications to

metadata in local files
• ArtifactResolutionProfileImpl now support customization of used SocketFactory through extensions
• ID in generated metadata is now automatically created when null, ID is based on entityID cleaned

in order to conform to xsd:ID (and xsd:NCName) type, EntityID is cleaned by replacing all illegal
characters by underscores

• Support for hostname verification in artifact resolution
• Completed documentation
• Possibility to exclude the SAML Credential from the Authentication object
• Disabled deferred node expansion for ParserPool which improves performance in parsing of small

XML documents

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 6

• HttpSessionStorage is now cleared after successful reception of a message in order to save memory
• Possibility to include attributes from only the authenticated Assertion, or from all
• New socket factory for trust verification during loading of metadata from HTTPS
• Possibility to disable support for IDP-initialized SSO
• Usage of metadata alias is now optional
• New look and feel of the sample application
• Cleanup of duplicate values in MetadataGenerator and ExtendedMetadata
• SAMLCredential now contains facility methods for handling of String SAML attributes

2.3 Important code changes in 1.0.0.FINAL

Below is an overview of major code and structure changes since Spring SAML 1.0 RC2 with possible
effect on backwards compatibility.

Module names

• module saml2-core was renamed to core, jar and maven artifact names stay the same
• module saml2-sample was renamed to sample, jar and maven artifact names stay the same
• module src was renamed to docs, jar and maven artifact names stay the same

Descriptor securityContext.xml

• file saml2-sample/src/main/resources/security/securityContext.xml was moved to sample/src/main/
webapp/WEB-INF/securityContext.xml

• administration part of the UI is now secured with username/password
• updated initialization of ParserPool to disable defer node expansion
• HttpClient in ArtifactResolution was made thread safe
• added new failure handler (failureRedirectHandler)
• MetadataGenerator bean now demonstrates usage of ExtendedMetadata
• FilesystemMetadataProvider was replaced with ResourceBackedMetadataProvider
• file sample/src/main/resources/security/idp.xml was moved to sample/src/main/resources/metadata/

idp.xml

ArtifactResolutionProfileBase

• throws SAMLException instead of CredentialExpiredException on check of artifact response issue
instant

HttpSessionStorage

• storage is now cleared on successful message reception

MetadataDisplayFilter

• new mandatory property KeyManager (autowired)

MetadataGenerator

• generated metadata is no longer signed by default (enable in ExtendedMetadata.signMetadata) and
has disabled IDP discovery (enable in ExtendedMetadata.includeDiscovery)

• the following fields were moved from MetadataGenerator to ExtendedMetadata:
• entityAlias -> alias
• signMetadata -> signMetadata
• signingKey -> signingKey
• encryptionKey -> encryptionKey
• tlsKey -> tlsKey
• includeDiscovery -> idpDiscoveryEnabled

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 7

• customDiscoveryURL -> idpDiscoveryURL
• customDiscoveryResponseURL -> idpDiscoveryResponseURL

• removed methods signSAMLObject (moved to SAMLUtil) and getKeyInfoGeneratorName (moved to
ExtendedMetadata)

• by default the first binding is now HTTP-POST instead of HTTP-Artifact, endpoint for Web SSO no
longer includes PAOS binding, set property bindingsSSO with values "artifact", "post", "paos" for
backwards compatibility

• by default endpoints for Web SSO holder of key are no longer included, set property bindingsHoKSSO
with values "artifact" and "post" for backwards compatibility

• by default MetadataGeneratorFilter no longer sets property entityAlias to value defaultAlias, set the
value manually for backwards compatibility

SAMLAuthenticationProvider

• property forcePrincipalAsString is now set to true by default

SAMLCredential

• method getAttributeByName was renamed to getAttribute

SAMLDiscovery

• fails with ServletException instead of SAMLRuntimeException

SAMLLogoutProcessingFilter

• throws ServletException on errors during acceptance of LogoutRequest instead of
SAMLRuntimeException

SAMLUtil

• removed unused getDefaultBinding method

SingleLogoutProfileImpl

• sendLogoutResponse signature changed
• changed error handling, throws SAMLStatusException which is handled by Filter, logged and sends

a SAML Response

WebSSOProfileImpl

• throws SAMLException instead of SAMLRuntimeException on missing data in context

WebSSOProfileConsumerImpl

• new property includeAllAttributes, set to true for original behavior
• throws SAMLException instead of CredentialExpiredException on check of response issue instant

and assertion issue instant

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 8

3. Glossary

Table 3.1. Definitions of terms used within this manual

Term Definition

Assertion A part of SAML message (an XML document) which provides facts
about subject of the assertion (typically about the authenticated user).
Assertions can contain information about authentication, associated
attributes or authorization decisions.

Artifact Identifier which can be used to retrieve a complete SAML message
from identity or service provider using a back-channel binding.

Binding Mechanism used to deliver SAML message. Bindings are divided to
front-channel bindings which use web-browser of the user for message
delivery (e.g. HTTP-POST or HTTP-Redirect) and back-channel
bindings where identity provider and service provider communicate
directly (e.g. using SOAP calls in Artifact binding).

Discovery Mechanism used to determine which identity provider should be used
to authenticate user currently interacting with the service provider.

Metadata Document describing one or multiple identity and service providers.
Metadata typically includes entity identifier, public keys, endpoint
URLs, supported bindings and profiles, and other capabilities or
requirements. Exchange of metadata between identity and service
providers is typically the first step for establishment of federation.

Profile Standardized combination of protocols, assertions, bindings and
processing instructions used to achieve a particular use-case such as
single sign-on, single logout, discovery, artifact resolution.

Protocol Definition of format (schema) for SAML messages used to achieve
particular functionality such as requesting authentication from IDP,
performing single logout or requesting attributes from IDP.

Identity provider (IDP) Entity which knows how to authenticate users and provides information
about their identity to service providers/relaying parties using
federation protocols.

Service provider (SP) Your application which communicates with the identity provider in
order to obtain information about the user it interacts with. User
information such as authentication state and user attributes is provided
in form of security assertions.

Single Sign-On (SSO) Process enabling access to multiple web sites without need to
repeatedly present credentials necessary for authentication. Various
federation protocols such as SAML, WS-Federation, OpenID or OAuth
can be used to achieve SSO use-cases. Information such as means
of authentication, user attributes, authorization decisions or security
tokens are typically provided to the service provider as part of single
sign-on.

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 9

Term Definition

Single Logout (SLO) Process terminating authenticated sessions at all resources which
were accessed using single sign-on. Techniques such as redirecting
user to each of the SSO participants or sending a logout SOAP
messages are typically used.

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 10

4. Quick start guide

This chapter will guide you through steps required to easily integrate Spring Security SAML Extension
with ssocircle.com's IDP service using SAML 2.0 protocol. When done you will have a working example
of Web SSO against a single Identity Provider. The steps will guide you through deployment of the
sample application, configuration of IDP metadata (XML document describing how to connect to the
IDP server using SAML 2.0 protocol) and SP metadata (XML document describing your own service)
and testing of web single sign-on and single logout.

Public demo of the sample application is available at saml-federation.appspot.com

4.1 Pre-requisites

Please make sure the following items are available before starting the installation:

• Java 1.6+ SDK
• Apache Maven

SAML Extension relies on XML processing capabilities of JAXP. Some older versions of JRE might
require updating of the embedded JAXP libraries. In case you encounter XML processing exceptions
please create folder jdk/jre/lib/endorsed in your JDK installation and include files in lib/endorsed from
the latest OpenSAML archive available at http://shibboleth.net/downloads/java-opensaml/. The location
of the endorsed folder may differ based on your application server or container.

Due to US export limitations Java JDK comes with a limited set of cryptography capabilities. Usage of
the SAML Extension might require installation of the Unlimited Strength Jurisdiction Policy Files which
removes these limitations.

4.2 Installation steps

Downloading sample application

Download the Spring SAML Extension either from sources or from one of the releases.

The Spring SAML Sample application is included in sample directory. We will be customizing content
of the sample application in the following steps.

Configuration of IDP metadata

Modify file sample/src/main/webapp/WEB-INF/securityContext.xml of the sample application and
replace metadata bean as follows:

<bean id="metadata" class="org.springframework.security.saml.metadata.CachingMetadataManager">

 <constructor-arg>

 <list>

 <bean class="org.opensaml.saml2.metadata.provider.HTTPMetadataProvider">

 <constructor-arg>

 <value type="java.lang.String">http://idp.ssocircle.com/idp-meta.xml</value>

 </constructor-arg>

 <constructor-arg>

 <value type="int">5000</value>

 </constructor-arg>

 <property name="parserPool" ref="parserPool"/>

 </bean>

 </list>

 </constructor-arg>

</bean>

https://saml-federation.appspot.com
http://shibboleth.net/downloads/java-opensaml/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://github.com/SpringSource/spring-security-saml
http://repo.spring.io/list/release/org/springframework/security/extensions/spring-security-saml/

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 11

The settings tell system to download IDP metadata from the given URL with timeout of 5 seconds. In
production system metadata should be either stored as a local file or be downloaded from a source
using SSL/TLS with configured trust or which provides digitally signed metadata.

Generation of SP metadata

Modify file sample/src/main/webapp/WEB-INF/securityContext.xml of the sample application, replace
metadataGeneratorFilter bean as follows and make sure to replace the entityId value with a string which
is unique within the SSO Circle service (e.g. urn:test:yourname:yourcity):

<bean id="metadataGeneratorFilter"

 class="org.springframework.security.saml.metadata.MetadataGeneratorFilter">

 <constructor-arg>

 <bean class="org.springframework.security.saml.metadata.MetadataGenerator">

 <property name="entityId" value="replaceWithUniqueIdentifier"/>

 <property name="extendedMetadata">

 <bean class="org.springframework.security.saml.metadata.ExtendedMetadata">

 <property name="signMetadata" value="false"/>

 <property name="idpDiscoveryEnabled" value="true"/>

 </bean>

 </property>

 </bean>

 </constructor-arg>

</bean>

Compilation

When building from sources compile whole project and install artifacts into your local Maven repository
using:

gradlew build install

When using the release zip compile the sample application available in the sample directory using:

mvn package

You can find the compiled war archive spring-security-saml2-sample.war in directory sample/build/libs/
(gradle) or sample/target/ (maven).

Project files for your IDE can be created with gradlew eclipse or gradlew idea.

Deployment

You can start the application from the release sample directory using command:

mvn tomcat7:run

Same can be achieved using gradle with:

gradlew tomcatRun

After startup the Spring SAML sample application will be available at http://localhost:8080/spring-
security-saml2-sample

Alternatively you can deploy the war archive to your application server or container.

Uploading of SP metadata to the IDP

Download current SP metadata:

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 12

• Open web browser to the URL of the deployed application.
• Select Metadata information.
• Select first item from category Service providers, e.g. http://localhost:8080/spring-security-saml2-

sample/saml/metadata
• Copy content of the Metadata textarea to your clipboard.

Upload SP metadata to the IDP:

• Register yourself at www.ssocircle.com and login to the service.
• Select Metadata manager and click Add new Service Provider.
• Enter entityId configured in the section called “Generation of SP metadata” in the FQDN field.
• Paste content of clipboard into the metadata information textarea.
• Store metadata by pressing the Submit button.
• Logout from the SSOCircle service.

4.3 Testing single sign-on and single logout

Open the front page of your SP application, select http://idp.ssocircle.com IDP and press login. The
system will generate a new authentication request using SAML 2.0 protocol, digitally sign it and send it
to the IDP. After authentication at IDP with your account you will be redirected back to your application
and automatically signed-in.

Pressing local logout will destroy local session and logout the user. While a session is still active at the
IDP an attempt to reauthenticate will proceed without need to enter credentials.

Pressing global logout will destroy both local session and the session at IDP.

You can test IDP initialized single sign-on with URL https://idp.ssocircle.com:443/sso/saml2/
jsp/idpSSOInit.jsp?metaAlias=/publicidp&spEntityID=replaceWithUniqueIdentifier, after replacing the
service provider identifier with the one configured as entityId in your securityContext.xml. It is possible
to provide relayState data sent to your SP with parameter RelayState.

Part II. Configuring SAML Extension
This chapter provides information about configuration and customization options of the SAML extension.
It will guide you through typical scenarios including problems you might encounter during integration
with identity providers.

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 14

5. Overview

Spring Security SAML 2.0 library comprises three modules:

• core contains implementation of the WebSSO profiles of the SAML 2.0 protocol and is required for
integration to target systems.

• sample contains example of Spring configuration used for integration to target systems. It also
contains user interface for generation and management of metadata.

• docs contains this documentation.

Configuration of the library is done using Spring context XML. An example of configuration can be
found under sample/src/main/webapp/WEB-INF/securityContext.xml. Setting up of the library typically
involves these steps:

• integration to application using Spring XML configuration
• import, generation and customization of SP and IDP metadata
• configuration of signature, encryption and trust keys
• configuration of security profiles
• configuration of reverse proxy or load balancer
• configuration of IDP selection or discovery
• configuration of single sign-on process
• configuration of logout process
• configuration of authentication object
• configuration of authentication log

Additional steps such as customization of SAML 2.0 bindings, configuration of artifact resolution or
configuration of time skews might be needed.

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 15

6. Integration to applications
SAML module can be directly embedded into new or existing Spring applications. In this case application
itself includes the SAML library in WEB-INF/lib directory of the war archive and processes all SAML
interactions. The other option of using the SAML library is deploying it as a stand-alone module which
transfers information about the authenticated user to the target application using a custom mechanism.
This chapter only discusses the first option.

6.1 Maven dependency

In order to include the library and all its dependencies add the following dependency to your pom.xml file:

<dependency>

 <groupId>org.springframework.security.extensions</groupId>

 <artifactId>spring-security-saml2-core</artifactId>

 <version>${version}</version>

</dependency>

The current version of SAML Extension has been tested to work with Spring 3.1.2, Spring Security
3.1.2 and OpenSAML 2.6.1. Later versions of these libraries are likely to be compatible without need
for modifications.

6.2 Bean definitions

Configuration of the SAML library requires beans definitions included in the sample/src/main/webapp/
WEB-INF/securityContext.xml configuration file. Include copy of the file in your own Spring application,
either directly or with an inclusion. Configuration steps in the following chapters will be customizing
beans included in the default context.

Beans of the SAML library are using auto-wiring and annotation-based configuration by default. Make
sure that your Spring configuration contains e.g. the following settings in order to enable support for
these features:

<context:annotation-config/>

<context:component-scan base-package="org.springframework.security.saml"/>

6.3 Java-based configuration

Spring SAML will include configuration classes for Spring Java-based configuration in future versions.

For an example of securityContext.xml translated into Java configuration in a Spring Boot application
see project by Vincenzo De Notaris at https://github.com/vdenotaris/spring-boot-security-saml-sample.

6.4 Spring Security integration

Filters of the SAML module need to be enabled as part of the Spring Security settings. In case
SAML authentication should be the default authentication mechanism of the application set bean
samlEntryPoint as the default entry point. Make sure that filter samlFilter is included as one of the custom
filters. In case SP metadata should be generated automatically during first request to the application
include also filter metadataGeneratorFilter. The configuration directive may for example look as follows:

<security:http entry-point-ref="samlEntryPoint">

 <security:custom-filter before="FIRST" ref="metadataGeneratorFilter"/>

 <security:custom-filter after="BASIC_AUTH_FILTER" ref="samlFilter"/>

</security:http>

https://github.com/vdenotaris/spring-boot-security-saml-sample

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 16

6.5 Error handling

Critical errors raised during processing of SAML messages are generally propagated as
ServletExceptions to the Java container. In order to configure a custom error handling update your
web.xml and provide a general handler for ServletExceptions:

<error-page>

 <exception-type>javax.servlet.ServletException</exception-type>

 <location>/error.jsp</location>

</error-page>

ServletException contains original reason for the failure as a cause. It is recommended that content of
the exceptions is not displayed to end users, both for security and user experience reasons.

Errors produced during processing of the SAML AuthenticationResponse
can be handled by plugging a custom implementation of the
org.springframework.security.web.authentication.AuthenticationFailureHandler interface to the
samlWebSSOProcessingFilter bean.

6.6 Logging

SAML Extension uses SLF4J framework for logging. The same applies to the underlying OpenSAML
library. The sample application by default uses log4j version 1.2 binding for SLF4J, configured with the
following dependency:

<dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-log4j12</artifactId>

 <version>1.6.3</version>

 <scope>compile</scope>

</dependency>

To view the contents of SAML messages and errors from the logs, adjust the settings of the
SAMLDefaultLogger bean.

<bean id="samlLogger" class="org.springframework.security.saml.log.SAMLDefaultLogger">

 <property name="logAllMessages" value="true"/>

 <property name="logErrors" value="true"/>

 <property name="logMessagesOnException" value="true"/>

 </bean>

In case you are using another logging library, make sure to change the dependency accordingly.

You can enable debug logging by modifying file sample/src/main/resources/log4j.properties and adding:

log4j.logger.org.springframework.security.saml=DEBUG

log4j.logger.org.opensaml=DEBUG

log4j.logger.PROTOCOL_MESSAGE=DEBUG

For details about using other logging frameworks please consult the SLF4J manual.

http://www.slf4j.org/
http://www.slf4j.org/manual.html

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 17

7. Metadata configuration
SAML metadata is an XML document which contains information necessary for interaction with SAML-
enabled identity or service providers. The document contains e.g. URLs of endpoints, information about
supported bindings, identifiers and public keys. Typically one metadata document will be generated
for your own service provider and sent to all identity providers you want to enable single sign-on with.
Similarly, each identity provider will make its own metadata available for you to import into your service
provider application.

Each metadata document can contain definition for one or many identity or service providers and
optionally can be digitally signed. Metadata can be customized either by direct modifications to the XML
document, or using extended metadata. Extended metadata is added directly to the Spring configuration
file and can contain additional options which are unavailable in the basic metadata document.

7.1 Service provider metadata

Service provider metadata contains keys, services and URLs defining SAML endpoints of your
application. Metadata can be either generated automatically upon first request to the service, or it can
be pre-created (see Chapter 11, Sample application). Once created metadata needs to be provided to
the identity providers with whom we want to establish trust.

Automatic metadata generation

Automatic metadata generation is enabled by including the following filter in the Spring Security
configuration:

<security:custom-filter before="FIRST" ref="metadataGeneratorFilter"/>

This filter is automatically invoked as part of the first request to a URL processed by Spring Security. In
case there is no service provider metadata already specified (meaning property hostedSPName of the
metadata bean is empty) filter will generate a new one.

By default metadata will be generated with the following values which can be customized by setting
properties of the metadataGenerator bean:

Table 7.1. Metadata generator settings

Property Description Default value

entityBaseURL Base URL to construct SAML
endpoints from, needs to be a
URL with protocol, server, port and
context path.

Values from the request in format:
scheme://server:port/contextPath

entityId Unique identifier of the service
provider.

<entityBaseUrl>/saml/metadata

id XML identifier of the root metadata
element referred in signature.

entityId with removed illegal
characters (NCName)

requestSigned Flag indicating whether this service
signs authentication requests.

true

wantAssertionSigned Flag indicating whether this service
requires signed assertions.

true

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 18

Property Description Default value

bindingsSSO Bindings to be included in the
metadata for WebSSO profile.
Supported values are: POST,
Artifact and PAOS. Order
of bindings in the property
determines order of endpoints in
the generated metadata.

POST, Artifact

bindingsHoKSSO Bindings to be included in the
metadata for WebSSO Holder-
of-Key profile. Supported values
are: POST and Artifact. Order
of bindings in the property
determines order of endpoints in
the generated metadata.

bindingsSLO Bindings to be included in the
metadata for Single Logout profile.
Supported values are: POST and
Redirect. Order of bindings in
the property determines order
of endpoints in the generated
metadata.

POST, Redirect

assertionConsumerIndexIndex of assertion consumer point
to be marked as default.

0

includeDiscoveryExtensionWhen true generated metadata will
contain extension indicating that
it's able to consume response from
an IDP Discovery service.

false

nameID Name identifiers to be included
in the metadata. Supported
values are: EMAIL, TRANSIENT,
PERSISTENT, UNSPECIFIED
and X509_SUBJECT. Order
of NameIDs in the property
determines order of NameIDs in
the generated metadata.

EMAIL, TRANSIENT,
PERSISTENT, UNSPECIFIED,
X509_SUBJECT

extendedMetadata Additional settings such as
security keys, entity alias,
metadata signing, IDP
discovery, ECP settings,
security profiles and signature
requirements can be specified
in the ExtendedMetadata, see
Section 7.3, “Extended metadata”
for details.

no extended metadata

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 19

In case property entityBaseURL is not specified, it will be automatically generated based on values
in the first HTTP request. Generated value can be normalized to exclude standard 80/443 ports for http/
https schemes by setting property normalizeBaseUrl of the MetadataGeneratorFilter to true. It is
recommended to provide the value explicitly in the configuration.

Providing an empty collection or null value to properties bindingsSSO, bindingsHoKSSO and
bindingsSLO will disable and remove the given profile. For example the following setting removes the
holder-of-key profile from the generated metadata, forces artifact binding for single sign-on and redirect
binding for single logout:

<bean class="org.springframework.security.saml.metadata.MetadataGenerator">

 <property name="bindingsSSO"><list><value>artifact</value></list></property>

 <property name="bindingsSLO"><list><value>redirect</value></list></property>

 <property name="bindingsHoKSSO"><list/></property>

</bean>

By default generated metadata will not be digitally signed. Digital signature can be enabled using
property signMetadata of the extendedMetadata bean.

In case application is deployed behind a reverse-proxy or other mechanism which makes the URL at
the application server different from the URL seen by client at least property entityBaseURL should
be set to a value e.g. https://www.server.com:8080 For details about load balancing see Section 10.1,
“Reverse proxies and load balancers”.

Pre-configured metadata

In some situations it is beneficial to provide static version of the metadata document instead of the
automatic generation. Need for manual changes in the metadata or fixing of production settings are
some of those. A custom metadata document describing local SP application can be added by updating
the metadata bean with correct ExtendedMetadata. Please follow these steps in order to do so:

• Generate and download metadata, e.g. using the Metadata Administration -> Generate new service
provider metadata option in the sample application's administration UI or using instructions in
automatic metadata generator.

• Store the metadata file as part of your project classpath, e.g. in WEB-INF/classes/metadata/
localhost_sp.xml.

• Disable the automatic metadata generator by removing the following custom filter from the
securityContext.xml:

<security:custom-filter before="FIRST" ref="metadataGeneratorFilter"/>

• Include the SP metadata in the metadata bean and mark the entity as local in the extended metadata.
Make sure to specify the alias property in case it was used during metadata generation.

It is recommended to use the administration UI which also generates all the Spring declarations ready
for inclusion in your securityContext.xml.

Configuration for pre-configured local metadata can look for example like this:

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 20

<bean class="org.springframework.security.saml.metadata.ExtendedMetadataDelegate">

 <constructor-arg>

 <bean class="org.opensaml.saml2.metadata.provider.ResourceBackedMetadataProvider">

 <constructor-arg>

 <bean class="java.util.Timer"/>

 </constructor-arg>

 <constructor-arg>

 <bean class="org.opensaml.util.resource.ClasspathResource">

 <constructor-arg value="/metadata/localhost_sp.xml"/>

 </bean>

 </constructor-arg>

 <property name="parserPool" ref="parserPool"/>

 </bean>

 </constructor-arg>

 <constructor-arg>

 <bean class="org.springframework.security.saml.metadata.ExtendedMetadata">

 <property name="local" value="true"/>

 <property name="securityProfile" value="metaiop"/>

 <property name="sslSecurityProfile" value="pkix"/>

 <property name="signMetadata" value="true"/>

 <property name="signingKey" value="apollo"/>

 <property name="encryptionKey" value="apollo"/>

 <property name="requireArtifactResolveSigned" value="false"/>

 <property name="requireLogoutRequestSigned" value="false"/>

 <property name="requireLogoutResponseSigned" value="false"/>

 <property name="idpDiscoveryEnabled" value="true"/>

 <property name="idpDiscoveryURL"

 value="https://www.server.com:8080/context/saml/discovery"/>

 <property name="idpDiscoveryResponseURL"

 value="https://www.server.com:8080/context/saml/login?disco=true"/>

 </bean>

 </constructor-arg>

</bean>

Same instance of your application can include multiple statically declared local service providers each
differentiated by its own unique alias and entity ID, see Section 7.4, “Multi-tenancy and entity alias” for
details. In case your application defines multiple local service providers, set property hostedSPName
of the metadata bean to the entity ID of the default one.

The file with pre-configured metadata doesn't need to include digital signature. Metadata will be
automatically signed during runtime when property signMetadata is set to true.

For details about available settings of the ExtendedMetadata see Section 7.3, “Extended metadata”.

Downloading metadata

Metadata describing the default local application can be downloaded from URL:

https://www.server.com:8080/context/saml/metadata

In case the application is configured to contain multiple service providers metadata for each can be
loaded by adding the alias:

https://www.server.com:8080/context/saml/login/alias/defaultAlias

URL for metadata download can be disabled by removing filter metadataDisplayFilter from the
securityContext.xml.

Metadata is also available in the sample application's administration UI under Metadata information -
> selected SP.

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 21

7.2 Identity provider metadata

Metadata for identity providers is imported to the metadataManager in a similar way as pre-configured
SP metadata. Metadata containing one or many identity providers can be added by providing an URL or
a file. Processing of metadata and processing of SAML messages can be customized using properties
of ExtendedMetadataDelegate and ExtendedMetadata.

File-based metadata provider

File-based provider loads metadata from a file available in the filesystem or classpath.

<bean class="org.springframework.security.saml.metadata.ExtendedMetadataDelegate">

 <constructor-arg>

 <bean class="org.opensaml.saml2.metadata.provider.FilesystemMetadataProvider">

 <constructor-arg>

 <value type="java.io.File">classpath:security/idp.xml</value>

 </constructor-arg>

 <property name="parserPool" ref="parserPool"/>

 </bean>

 </constructor-arg>

 <constructor-arg>

 <bean class="org.springframework.security.saml.metadata.ExtendedMetadata"/>

 </constructor-arg>

</bean>

Metadata is automatically refreshed in intervals specified by properties minRefreshDelay and
maxRefreshDelay of the MetadataProvider bean.

HTTP-based metadata provider

HTTP-based provider loads metadata from an URL.

<bean class="org.springframework.security.saml.metadata.ExtendedMetadataDelegate">

 <constructor-arg>

 <bean class="org.opensaml.saml2.metadata.provider.HTTPMetadataProvider">

 <constructor-arg>

 <value type="java.lang.String">http://idp.ssocircle.com/idp-meta.xml</value>

 </constructor-arg>

 <constructor-arg>

 <!-- Timeout for metadata loading in ms -->

 <value type="int">5000</value>

 </constructor-arg>

 <property name="parserPool" ref="parserPool"/>

 </bean>

 </constructor-arg>

 <constructor-arg>

 <bean class="org.springframework.security.saml.metadata.ExtendedMetadata"/>

 </constructor-arg>

</bean>

Metadata is automatically refreshed in intervals specified by properties minRefreshDelay and
maxRefreshDelay of the MetadataProvider bean.

Alternatively class org.opensaml.saml2.metadata.provider.FileBackedHTTPMetadataProvider can be
used to provide a backup in case URL is temporarily unavailable. File to use as backup is specified as
third argument in the MetadataProvider bean constructor.

HTTP-based metadata provider with SSL

By default, loading of metadata using the HTTP-based provider over HTTPS performs trust verification
configured in your JDK. In case you'd like to use certificates in your keyStore, add the following bean
which changes the socketFactory used by the HTTP Client:

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 22

<bean class="org.springframework.security.saml.trust.httpclient.TLSProtocolConfigurer"/>

The TLSProtocolConfigurer instantiates TLSProtocolSocketFactory and registers is as a default socket
factory for https protocol inside the HTTP Client used for metadata loading. The socket factory uses all
public certificates present in the keyStore as trust anchors for PKIX validation. The used keys can be
constrained with property trustedKeys.

The socket factory configured in this fashion is used for all metadata providers. It is possible to
customize metadata loading on a per-provider basis by adding a configured HttpClient instance to the
HTTPMetadataProvider constructor.

Metadata signature verification

Importing of digitally signed metadata requires verification of signature's validity and trust. Metadata is
not required to be signed by default. When present, signature is verified with PKIX algorithm and uses
all public keys present in the configured keyManager as trust anchors. Make sure to include root CA
certificate and intermediary CA certificates of the signature in your keyStore. For details see the section
called “Importing public keys”.

You can limit certificates used to perform the verification by setting property metadataTrustedKeys of
the ExtendedMetadataDelegate bean. The provided collection should contain aliases of keys to be used
as trust anchors.

Signature verification can be disabled by setting property metadataTrustCheck to false in the
ExtendedMetadataDelegate bean. Setting metadataRequireSignature to true will reject metadata unless
it's digitally signed.

7.3 Extended metadata

Extended metadata provides additional settings for customization of SAML exchanges between SP and
IDP which are not supported in the standard SAML 2.0 metadata documents. Examples of such settings
are requirements for message signing, IDP discovery and security profiles.

Extended metadata is defined using org.springframework.security.saml.metadata.ExtendedMetadata
beans embedded inside ExtendedMetadataDelegate for each SP or IDP metadata definition. In case a
single metadata document contains multiple identity providers (in multiple EntityDescriptor elements),
extended metadata can be set separately for each of them using a map with entity IDs as keys, e.g.:

<bean class="org.springframework.security.saml.metadata.ExtendedMetadataDelegate">

 <constructor-arg>

 metadata provider bean

 </constructor-arg>

 <constructor-arg>

 <!-- Default extended metadata for entities not specified in the map -->

 <bean class="org.springframework.security.saml.metadata.ExtendedMetadata"/>

 </constructor-arg>

 <constructor-arg>

 <!-- Extended metadata for specific IDPs -->

 <map>

 <entry key="http://idp.ssocircle.com">

 <bean class="org.springframework.security.saml.metadata.ExtendedMetadata"/>

 </entry>

 </map>

 </constructor-arg>

</bean>

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 23

The following table summarizes settings available in the extended metadata. The same class is used
for both local service providers and remote identity providers; each value contains information about
the entities it's valid for.

Table 7.2. Extended metadata settings

Property Default Entities Description

local false local
and
remote

True for metadata of a local service provider.
False for remote identity providers.

alias local
only

Unique alias used to identify the selected local
service provider based on used URL. See
Section 7.4, “Multi-tenancy and entity alias”.

signMetadata false local
only

When true generated metadata will be signed
using XML Signature using certificate with alias
of signingKey.

idpDiscoveryEnabled false local
only

When true system will initialize IDP discovery
when no IDP is selected during SSO
initialization. See Section 9.1, “IDP selection
and discovery”.

idpDiscoveryURL internal
discovery
URL

local
only

URL of the IDP discovery service. Only used
when discovery is enabled.

idpDiscoveryResponseURL internal
discovery
URL

local
only

URL expecting response from the IDP
discovery service. Only used when discovery is
enabled.

ecpEnabled false local
only

Property enables support for the SAML 2.0
ECP profile. See Section 10.4, “Enhanced
client/proxy”.

securityProfile metaiop local
only

Security profile for verification of message
signatures. See Section 8.2, “Security profiles”.

sslSecurityProfile pkix local
only

Security profile for vericiation of SSL/TLS
endpoint trust. See Section 8.2, “Security
profiles”.

sslHostnameVerification default local
only

Verification of hostnames for HTTPS calls
(e.g. in Artifact resolution). Allowed values
are default, defaultAndLocalhost, strict and
allowAll. Value allowAll effectively disables
hostname verification. All values are case-
insensitive. For more details on the supported
hostname verifications see Commons-SSL
JavaDoc.

signingAlgorithm - local
only

Algorithm used to create digital signature on
the metadata object. Typical values are http://

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 24

Property Default Entities Description

www.w3.org/2000/09/xmldsig#rsa-sha1, http://
www.w3.org/2001/04/xmldsig-more#rsa-sha256
and http://www.w3.org/2001/04/xmldsig-
more#rsa-sha512.

signingKey - local
and
remote

For local entities alias of private key used to
create signatures. The default private key is
used when no value is provided. For remote
identity providers defines an additional public
key used to verify signatures.

encryptionKey - local
and
remote

For local entities alias of private key used to
encrypt data. The default private key is used
when no value is provided. For remote identity
providers defines an additional public key used
to decrypt data.

tlsKey - local
and
remote

For local entities alias of private key used
for SSL/TLS client authentication. No client
authentication is used when value is not
specified. For remote identity providers
defines an additional public key used for trust
resolution.

trustedKeys - remote Keys included as trusted anchors during PKIX
evaluation. All keys in the keyStore are used
as trust anchors with null value. Keys are only
used with PKIX security profile.

requireLogoutRequestSigned true local
and
remote

For local entities enables requirement of signed
logout requests. For remote entities enables
signing of requests sent to the IDP.

requireLogoutResponseSignedfalse local
and
remote

For local entities enables requirement of signed
logout responses. For remote entities enables
signing of responses sent to the IDP.

requireArtifactResolveSigned true remote
only

Enables signing of artifact resolution requests
sent to the remote identity providers.

supportUnsolicitedResponse true remote
only

Enables support for Unsolicited Responses
(IDP-Initialized SSO) sent from this remote
entity.

For additional examples on setting up metadata and extended metadata see Section 7.1, “Service
provider metadata” for local SP, and Section 7.2, “Identity provider metadata” for remote IDPs.

7.4 Multi-tenancy and entity alias

Spring SAML contains limited support for multi-tenancy. It is possible to define configuration for multiple
instances of local service providers, where each can have different URLs and security settings. System

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 25

is differentiating between the service provider instances using entity alias which is a unique identifier
within deployment of Spring SAML.

Entity alias is appended to URLs of SAML endpoints and used by Spring SAML to identify
the correct instance. For example for local service provider with entity alias customer123 the
standard URL scheme://server:port/contextPath/saml/login becomes scheme://server:port/contextPath/
saml/login/alias/customer123.

The entity alias functionality can only be used together with pre-configured metadata (see the section
called “Pre-configured metadata”). The entity alias is specified in the extended metadata of each of the
configured service providers.

Spring SAML doesn't enforce any limitations on which Identity Provider can be deliver messages to
which of the local Service Providers. In case your application requires similar rules (for example only
certain tenants can authenticate using a specific IDP), make sure to implement them for example in
your SAMLUserDetailsService (for single sign-on).

Selection of the correct Service Provider instance based on URL is performed inside
SAMLContextProviderImpl class.

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 26

8. Security configuration
SAML Extension requires configuration of security settings which include cryptographic material used
for digital signatures and encryption, security profiles for configuration of trusted cryptographic material
provided by remote entities and verifications of HTTPS connections.

8.1 Key management

SAML exchanges involve usage of cryptography for signing and encryption of data. All interaction with
cryptographic keys is done through interface org.springframework.security.saml.key.KeyManager. The
default implementation org.springframework.security.saml.key.JKSKeyManager relies on a single JKS
key store which contains all private and public keys. KeyManager should contain at least one private key
which should be marked as default by using the alias of the private key as part of the JKSKeyManager
constructor.

In case your application doesn't need to create digital signatures and/or decrypt incoming messages,
it is possible to use an empty implementation of the keystore which doesn't require any JKS file -
org.springframework.security.saml.key.EmptyKeyManager. This can be the case for example when
using only IDP-Initialized single sign-on. Please note that when using the EmptyKeyManager some of
Spring SAML features will be unavailable. This includes at least SP-initialized Single Sign-on, Single
Logout, usage of additional keys in ExtendedMetadata and verification of metadata signatures. Use the
following bean in order to initialize the EmptyKeyManager:

<bean id="keyManager" class="org.springframework.security.saml.key.EmptyKeyManager"/>

Sample JKS keystore

Sample application contains a default JKS key store with a sample private certificate usable for test
purposes. The key store is defined as:

<bean id="keyManager" class="org.springframework.security.saml.key.JKSKeyManager">

 <constructor-arg value="classpath:security/samlKeystore.jks"/>

 <constructor-arg type="java.lang.String" value="nalle123"/>

 <constructor-arg>

 <map>

 <entry key="apollo" value="nalle123"/>

 </map>

 </constructor-arg>

 <constructor-arg type="java.lang.String" value="apollo"/>

</bean>

The first argument points to the used key store file, second contains password for the keystore, third
then map with passwords for private keys with alias-password value pairs. Alias of the default certificate
is the last parameter.

Generating and importing private keys

Private keys (with either self-signed or CA signed certificates) are used to digitally sign SAML messages,
encrypt their content and in some cases for SSL/TLS Client authentication of your service provider
application. SAML Extension ships with a default private key in the samlKeystore.jks with alias apollo
which can be used for initial testing, but for security reason should be replaced with your own key in
early development stages.

In case your IDP doesn't require keys signed by a specific certification authority you can generate your
own self-signed key using the Java utility keytool, e.g. with:

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 27

keytool -genkeypair -alias some-alias -keypass changeit -keystore samlKeystore.jks

The keystore will now contain additional PrivateKeyEntry with alias mykey which can be imported to the
keyManager in your securityContext.xml.

Keys signed by certification authorities are typically provided in .p12/.pfx format (or can be converted to
such using OpenSSL) and imported to Java keystore with, e.g.:

keytool -importkeystore -srckeystore key.p12 -srcstoretype PKCS12 -srcstorepass password \

 -alias some-alias -destkeystore samlKeystore.jks -destalias some-alias \

 -destkeypass changeit

The following command can be used to determine available alias in the p12 file:

keytool -list -keystore key.p12 -storetype pkcs12

Importing public keys

Cryptographic material used to decrypt incoming data and verify trust of signatures in SAML messages
and metadata is stored either in metadata of remote entities or in the keyManager. In order to import
additional trusted key to the keystore run, e.g.:

keytool -importcert -alias some-alias -file key.cer -keystore samlKeystore.jks

Imported keys can be referenced in ExtendedMetadataDelegate and ExtendedMetadata beans, for
details see the section called “Metadata signature verification” and Section 8.2, “Security profiles”.

Loading SSL/TLS certificates

Direct SSL/TLS connections (used with HTTP-Artifact binding) require verification of the public key
presented by the server. The SSL Extractor utility can be used to extract certificates presented by an
SSL/TLS endpoint, e.g. with:

java -jar sslextractor-0.9.jar www.google.com 443

The certificates are stored as .cer files and can be imported to the keystore as a usual public key. For
details about configuring of trust for SSL/TLS connections see Section 8.2, “Security profiles”.

8.2 Security profiles

Exchanges of messages between identity providers and service providers with SAML protocol
involves usage of digital signatures. Signatures are typically constructed using means of asymmetric
cryptography and public key infrastructure with public and private keys signed by trusted certification
authorities. Signatures are either applied directly to parts of XML representation of SAML messages
using XML Signature or are part of the transport layer used to deliver the message like SSL/TLS.

Verification of signatures is executed in two phases. Signature is first checked for validity by comparing
digital hash included as part of the signature with value calculated from the content. Subsequently it
is verified whether party who created the signature is trusted by the recipient. Spring Security SAML
provides two mechanisms for defining which signatures should be accepted - metadata interoperability
mode and PKIX mode.

Security profiles are defined in Extended Metadata of your local SP. Profile can be defined
separately for XML Signatures using property securityProfile and for SSL/TLS Signatures using

https://github.com/vschafer/ssl-extractor

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 28

propertysslSecurityProfile. Value of both properties can be either metaiop or pkix. For details about
using Extended Metadata see Chapter 7, Metadata configuration, for reference of allowed values see
Section 7.3, “Extended metadata”.

Metadata interoperability profile (MetaIOP)

With MetaIOP mode certificates are not checked for expiration or revocation and certificate paths are
not verified. This means that it does not matter which certification authority issued the certificate, as
the fact whether the certificate is trusted or not is conveyed using other mechanisms (e.g. by secure
metadata exchange or digital signature of metadata itself).

Signature is deemed trusted when the certificate used to create it is included in one of the following
places:

• Key with usage of signing or unspecified in entity metadata of a remote entity

• Signing key specified in property signingKey of extended metadata of a remote entity

MetaIOP is the default profile for verification of XML signatures. For details about this profile see the
specification.

PKIX profile

With PKIX profile trust of signature certificates is verified based on a certificate path between trusted
CA certificates and the certificate in question. Certificate is trusted when it's possible to construct path
from a trusted certificate to the validated one. With this profile certificate expiration and revocation can
be checked.

Trusted keys (anchors) for PKIX verification of signatures are combined from the following places:

• Key with usage of signing or unspecified in entity metadata of a remote entity

• Signing key specified in property signingKey of extended metadata of a remote entity

• All keys specified in trustedKeys set of extended metadata of a remote entity, or all keys available in
the key store when the property is null (default value)

Please note that trust anchors are treated as automatically trusted and are not necessarily subject to
all checks as leaf certificates are (depending on your security provider implementation). You should
preferably use only your CA and intermediary CA certificates as trust anchors. In case you want
to ignore certificates available in your XML metadata and only use settings from your manually set
ExtendedMetadata, set property useXmlMetadata of your metadataResolver to false:

<bean id="contextProvider" class="org.springframework.security.saml.context.SAMLContextProviderImpl">

 <property name="metadataResolver">

 <bean class="org.springframework.security.saml.trust.MetadataCredentialResolver">

 <constructor-arg index="0" ref="metadata"/>

 <constructor-arg index="1" ref="keyManager"/>

 <property name="useXmlMetadata" value="false"/>

 </bean>

 </property>

</bean>

PKIX verification supports checking of CRLs (certificate revocation lists) using the default underlaying
Java Security Provider (e.g. Sun JCE, BouncyCastle JCE).

The PKIX algorithm needs to be advised that the revocation checking is enabled. You can do so
by customizing the pkixTrustEvaluator inside SAMLContextProvider, see an example with properties
forceRevocationEnabled and revocationEnabled bellow.

http://docs.oasis-open.org/security/saml/Post2.0/sstc-metadata-iop.pdf
http://docs.oasis-open.org/security/saml/Post2.0/sstc-metadata-iop.pdf

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 29

By default the validation algorithm only uses the CertPathBuilder. Some Java security implementations
do not support full feature set of revocation checking in this class and only implement them in the
CertPathValidator (e.g. Sun provider only supports OCSP in CertPathBuilder since Java 1.8). You can
instruct system to use both CertPathBuilder and CertPathValidator by setting property validateCertPath
to true on bean CertPathPKIXTrustEvaluator.

The security provider used for loading of PKIX verification factories can be customized using property
securityProvider.

<bean id="contextProvider" class="org.springframework.security.saml.context.SAMLContextProviderImpl">

 <property name="pkixTrustEvaluator">

 <bean class="org.springframework.security.saml.trust.CertPathPKIXTrustEvaluator">

 <property name="PKIXValidationOptions">

 <bean class="org.opensaml.xml.security.x509.CertPathPKIXValidationOptions">

 <property name="forceRevocationEnabled" value="true"/>

 <property name="revocationEnabled" value="true"/>

 </bean>

 </property>

 <property name="validateCertPath" value="true"/>

 <property name="securityProvider" value="SUN"/>

 </bean>

 </property>

</bean>

Spring SAML uses standard CertPath verification API. The default Sun JCE provider supports
automatic revocation checking based on the certificate's CRL Distribution Points Extension (by setting
system property com.sun.security.enableCRLDP to true), CRL point defined using certificate's Authority
Information Access (AIA) Extension (by setting system property com.sun.security.enableAIAcaIssuers
to true) and OCSP (by setting system property ocsp.enable to true). For details see the Java PKI
Programmer's Guide. In case you are using another security provider, please consult its manual for
functionality related to CertPathBuilder and CertPathValidator with the PKIX algorithm.

You can also manually populate CRLs by extending class
org.springframework.security.saml.trust.PKIXInformationResolver and overriding method
populateCRLs with your own CRL population logic. Populated CRLs are automatically added to the
PKIX verification mechanism. The customized class needs to be set to property pkixResolver in the
contextProvider bean.

Custom profile

Engine used to verify trust of signatures for given combination of SP/IDP
is created in methods populateTrustEngine and populateSSLTrustEngine of interface
org.springframework.security.saml.context.SAMLContextProvider and can be overridden with custom
implementation. See Section 10.2, “Context provider” for details on context customization.

8.3 Hostname verification for HTTPS connections

Connections to HTTPS services (e.g. during Artifact resolution) require verification that the connected
hostname corresponds with the hostname defined in the service's public certificate. Hostname
verification is enabled by default.

Verification can be disabled by setting ExtendedMetadata property sslHostnameVerification of the local
SP entity to allowAll. For details on using the ExtendedMetadata see Section 7.3, “Extended metadata”.

All supported values can be found in the ExtendedMetadata reference Section 7.3, “Extended
metadata”.

http://docs.oracle.com/javase/7/docs/technotes/guides/security/certpath/CertPathProgGuide.html#AppB
http://docs.oracle.com/javase/7/docs/technotes/guides/security/certpath/CertPathProgGuide.html#AppB

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 30

9. Single sign-on configuration

9.1 IDP selection and discovery

Discovery helps your Service Provider determine which Identity Provider should be used for
authentication of the current user. It is automatically initialized during calls to single sign-on endpoint
at scheme://server:port/contextPath/saml/login. SAML Extension supports multiple modes of discovery
including the Identity Provider Discovery Service Protocol and Profile.

IDP discovery modes can always be skipped during SSO initialization by specifying HTTP request
parameter idp with the entityId of the required IDP, e.g. scheme://server:port/contextPath/saml/login?
idp=mySelectedIDP.

The URL where local SP expects discovery response can be included in the SP metadata as one of the
extensions. The feature can be enabled by setting property includeDiscoveryExtension to true on bean
MetadataGenerator inside MetadataGeneratorFilter, e.g.:

<bean id="metadataGeneratorFilter"

 class="org.springframework.security.saml.metadata.MetadataGeneratorFilter">

 <constructor-arg>

 <bean class="org.springframework.security.saml.metadata.MetadataGenerator">

 <property name="includeDiscoveryExtension" value="true"/>

 </bean>

 </constructor-arg>

</bean>

Default IDP without discovery

The mode is enabled by default and automatically selects the default IDP without performing discovery.

The default IDP can be configured using property defaultIDP on bean metadata in the Spring Security
configuration. In case the property isn't set, system will automatically use the first available IDP.

Local discovery service

SAML Extension includes a local IDP discovery service which presents user with an IDP selection page.
This mode can be enabled by setting property includeDiscovery in the local SP extended metadata to
true.

The selection page can be customized using property idpSelectionPath on bean samlIDPDiscovery.
System forwards to this page wih a discovery request which includes the following request attributes:

• idpDiscoReturnURL - URL to send the IDP selection result to using GET action

• idpDiscoReturnParam - name of the GET parameter to include the entity ID of the selected IDP

See the default implementation in sample/src/main/webapp/WEB-INF/security/idpSelection.jsp for an
example.

Remote discovery service

In order to enable external IDP discovery service configure property idpDiscoveryURL in your local SP
extended metadata to the external discovery URL. Make sure property idpDiscoveryEnabled is set to

http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-idp-discovery.pdf

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 31

true. The remote discovery service needs to support the Identity Provider Discovery Service Protocol
and Profile.

9.2 Single sign-on process

Spring SAML Extension supports both SP-initialized and IDP-initialized single sign-on.

Service provider initialized SSO

SP initialized SSO process can be started in two ways:

• User accesses a resource protected by Spring Security which initializes SAMLEntryPoint

• User is redirected to the SSO endpoint at e.g. https://www.server.com/context/saml/login

After identification of IDP to use for authentication (for details see Section 9.1, “IDP selection and
discovery”), SAML Extension creates an AuthnRequest SAML message and sends it to the selected
IDP. Both construction of the AuthnRequest and binding used to send it can be customized using
WebSSOProfileOptions object. SAMLEntryPoint determines WebSSOProfileOptions configuration to
use by calling method getProfileOptions. The default implementation returns the value specified in
property defaultOptions. The method can be overridden to provide custom logic for SSO initialization.

Default settings for WebSSOProfileOptions can be specified in bean samlEntryPoint of your
securityContext.xml, e.g.:

<bean id="samlEntryPoint" class="org.springframework.security.saml.SAMLEntryPoint">

 <property name="defaultProfileOptions">

 <bean class="org.springframework.security.saml.websso.WebSSOProfileOptions">

 <property name="binding" value="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"/>

 <property name="includeScoping" value="false"/>

 </bean>

 </property>

</bean>

WebSSOProfileOptions supports the following settings:

Table 9.1. org.springframework.security.saml.websso.WebSSOProfileOptions parameters

Property Description

binding Default: binding of the first declared SingleSignOnService
in IDP metadata. Binding used to send message to IDP.
Supported values depend on the SP configuration, typically
"urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST",
"urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect",
"urn:oasis:names:tc:SAML:2.0:bindings:PAOS" and
"urn:oasis:names:tc:SAML:2.0:profiles:holder-of-key:SSO:browser".

providerName Default: empty. Human readable name of the local SP sent with the
authentication request.

assertionConsumerIndex Default: empty. When set determines where should IDP send
response and which binding to use. Otherwise system uses the default
assertion consumer service marked as default, or first applicable.
Available indexes can be found in metadata of this service provider.

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 32

Property Description

nameID Default: empty. Name ID to request from IDP in the NameIDPolicy.
No NameIDPolicy is sent when not specified. Typical values are
"urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress",
"urn:oasis:names:tc:SAML:2.0:nameid-format:transient",
"urn:oasis:names:tc:SAML:2.0:nameid-format:persistent",
"urn:oasis:names:tc:SAML:2.0:nameid-format:encrypted".

allowCreate Default: empty. Only applicable when nameID is specified, when
true instructs IDP that it is allowed to create new user based on the
authentication request.

passive Default: false. Sets whether the IdP should refrain from interacting with
the user during the authentication process.

forceAuthn Default: false. When true IDP is required to re-authenticate user and
not rely on previous authentication events.

includeScoping Default: true. When true request will include Scoping element.

allowedIDPs Default: empty. Values to be included in the Scoping element on top
of the IDP message is sent to. Only applicable when includeScoping is
set to true.

proxyCount Default: 2. Determines value to be used in the proxyCount attribute
of the scope in the AuthnRequest. Use zero to disable proxying or
value >0 to specify how many hops are allowed. Only applicable when
includeScoping is set to true.

authnContexts Default: empty. Authentication contexts IDP is allowed to use when
authenticating user. See the specification for details.

authnContextComparison Default: AuthnContextComparisonTypeEnumeration.EXACT.
Mechanism used by IDP to determine authentication method to use.
See the specification for details.

relayState Default: empty. Value is sent to IDP and provided back to SP as part of
the authentication response.

The AuthnRequest message is sent unencrypted on message level. If needed, encryption should be
provided by SSL/TLS on transport layer.

Identity provider initialized SSO

Spring SAML supports reception of Unsolicited Response messages (so called IDP-initialized SSO). In
this scenario IDP creates a Response object in the same way as if it was replying to an AuthnRequest
message sent from SP, but it omits the InResponseTo parameter. Message is then sent to the
AssertionConsumerURL of Spring SAML (typically scheme://server:port/contextPath/saml/SSO) using
one of the supported bindings. List of all available endpoints and bindings can be found in the metadata
of the Spring SAML application.

Received Unsolicited Respose message is processed and validated in exactly the same way as with
SP-Initialized SSO.

http://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 33

Support for unsolicited messages can be disabled in the ExtendedMetadata of remote entities using
property supportUnsolicitedResponse.

9.3 Logout process

Spring SAML Extension supports both Local Logout and Single Logout mechanisms.

Local logout

Local logout terminates only the local session and doesn't affect neither session at IDP, nor sessions
at other SPs where user logged in using single sign-on. Local logout can be initialized at scheme://
server:port/contextPath/saml/logout?local=true. Call is intercepted by bean samlLogoutFilter which can
be configured with the following settings:

• Instance of interface org.springframework.security.web.authentication.logout.LogoutSuccessHandler
(constructor index 0) which determines operation to perform after successful logout (e.g. redirect to
a logout landing page). By default user gets redirected to page logout.jsp.

• Instances of interface org.springframework.security.web.authentication.logout.LogoutHandler
(constructor index 1) which are responsible for destruction of user's session. The default handler
org.springframework.security.web.authentication.logout.SecurityContextLogoutHandler logs the user
out by removing the Authentication object, but leaves the HTTP session opened.

It is also possible to configure local logout using standard Spring Security element <security:logout>
inside <security:http> block. For example:

<security:http>

 <security:logout logout-url="/j_logout" logout-success-url="/logout.jsp"/>

</security:http>

Global logout

Global logout implements the SAML 2.0 Single Logout profile which terminates both session at the
current SP, the IDP session and sessions at other SPs connected to the same IDP session. Single
Logout can be initialized from any of the participating SPs or from the IDP.

Single Logout is currently supported with HTTP-Redirect and HTTP-POST bindings. SOAP binding is
not available.

Global logout can be initialized at scheme://server:port/contextPath/saml/logout. System automatically
determines which IDP to send the request to based on the currently authenticated user. Single logout can
be configured using beans samlLogoutFilter and samlLogoutProcessingFilter with the following options:

• Bean samlLogoutFilter can be provided with instances of interface
org.springframework.security.web.authentication.logout.LogoutHandler (constructor index 3). The
handlers are called before sending SAML 2.0 LogoutRequest to the IDP when initializing Single
Logout from the current SP.

• Bean samlLogoutProcessingFilter can be provided with instance of interface
org.springframework.security.web.authentication.logout.LogoutSuccessHandler (constructor index
0). Handler is called after successful finalization of Single Logout process (reception of
LogoutResponse from IDP) and determines operation to perform after logout (e.g. redirect to a logout
landing page). By default user gets redirected to page logout.jsp.

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 34

• Bean samlLogoutProcessingFilter can be provided with instances of interface
org.springframework.security.web.authentication.logout.LogoutHandler (constructor index 1). The
handlers are called after successful reception of SAML 2.0 LogoutRequest or LogoutResponse from
the IDP.

Spring SAML correctly handles SAML 2.0 LogoutRequest messages sent from the IDP and performs
logout in case the message is valid. In case of invalid data (missing signature, invalid issuer, invalid issue
time, invalid destination, invalid session index, invalid name ID, no user logged in) system responds
with SAML 2.0 LogoutResponse with an error Status code.

9.4 Authentication object

Successful authentication using SAML token results in creation of an
Authentication object by the SAMLAuthenticationProvider. By default instance of
org.springframework.security.providers.ExpiringUsernameAuthenticationToken is created. Content
of the resulting object can be customized by setting properties of
the samlAuthenticationProvider bean in the securityContext.xml. An instance of
org.springframework.security.saml.userdetails.SAMLUserDetailsService can be provided to supply
application-specific information about the authenticated user.

The Authentication object will by default include string version of the NameID included in the SAML
Assertion as itsprincipal. Property forcePrincipalAsString can be used to change this to include the raw
NameID element.

The Authentication object is available in pages secured with Spring Security using
SecurityContextHolder.getContext().getAuthentication() and is populated with the following values:

Table 9.2. ExpiringUsernameAuthenticationToken values.

Property Value

Principal When forcePrincipalAsString = true (default) - String value of NameID included in
the SAML Assertion (credential.getNameID().getValue() of type java.lang.String)

Principal When forcePrincipalAsString = false AND userDetail = null (default) - NameID
object included in the SAML Assertion (credential.getNameID() of type
org.opensaml.saml2.core.NameID)

Principal When forcePrincipalAsString = false AND userDetail != null - UserDetail object
returned from the SAMLUserDetailsService

Credentials SAML authentication object including entity ID of local and remote entity, name ID,
assertion and relay state (org.springframework.security.saml.SAMLCredential)

Authorities Result of getAuthorities() call on the UserDetails object returned from
SAMLUserDetailsService, empty list when there's no UserDetail object available.

Expiration Value of SessionNotOnOrAfter in the SAML Assertion when avaialble, null
otherwise. Authentication object will start returning false on the isAuthenticated()
after the expiration time.

Custom implementation of the SAMLUserDetailsService can be provided as property userDetails of
the SAMLAuthenticationProvider. Implementation can perform operation such as parsing of attributes
present in the SAML Assertion, e.g.:

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 35

package fi.schafer.test.saml;

import org.opensaml.saml2.core.Attribute;

import org.opensaml.xml.XMLObject;

import org.springframework.security.core.userdetails.UsernameNotFoundException;

import org.springframework.security.saml.SAMLCredential;

import org.springframework.security.saml.userdetails.SAMLUserDetailsService;

public class TestUserDetails implements SAMLUserDetailsService {

 @Override

 public Object loadUserBySAML(SAMLCredential cred) throws UsernameNotFoundException {

 return cred.getAttributeAsString("accountID");

 }

}

Population of the authentication object can be further customized by overriding of the getUserDetails,
getPrincipal, getEntitlements and getExpirationDate methods in the SAMLAuthenticationProvider.

9.5 Authentication assertion

Assertion used to authenticate user is stored in the SAMLCredential object under property
authenticationAssertion. By default the original content (DOM) of the assertion is discarded and system
only keeps an unmarshalled version which might slightly differ from the original, e.g. in white-spaces.
In order to instruct Spring SAML to keep the assertion in the original form (keep its DOM) set property
releaseDOM to false on bean WebSSOProfileConsumerImpl.

Assertion can be serialized to String using the following call:

XMLHelper.nodeToString(SAMLUtil.marshallMessage(credential.getAuthenticationAssertion()))

9.6 Authentication log

Key events such as single sign-on and single logout initialization, success or failure can be
logged for creation of an audit trail. A custom logger can be created by implementing interface
org.springframework.security.saml.log.SAMLLogger and including its bean in the securityContext.xml,
e.g.:

<bean id="samlLogger" class="org.springframework.security.saml.log.SAMLDefaultLogger"/>

Two basic implementations are provided by default:

• org.springframework.security.saml.log.SAMLEmptyLogger

Doesn't perform any logging, simply ignores all events.

• org.springframework.security.saml.log.SAMLDefaultLogger

Logs events as INFO level messages to the log name
org.springframework.security.saml.log.SAMLDefaultLogger configurable as described in Section 6.6,
“Logging”. Setting property logMessages to true will include content of the SAML messages as part
of the log. Logging of exceptions can be disabled by setting logErrors to false. Fields are semicolon
separated with the following values:

• type of SAML message (AuthNRequest, AuthNResponse, LogoutRequest or LogoutResponse)
• result of processing (SUCCESS or FAILURE)
• IP address of the peer who made the current request to SP
• entity ID of the local SP

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 36

• entity ID of the remote IDP
• identifier of the authenticated user
• SAML message (when logMessages is enabled)
• text of the error (only for failures, when logErrors is enabled)

The logger is only called for messages which can be correctly received and parsed. For errors which
occur before correct parsing see Section 6.5, “Error handling”.

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 37

10. Advanced configuration

10.1 Reverse proxies and load balancers

SAML Extension can be deployed in scenarios where multiple back-end servers process SAML requests
forwarded by a reverse-proxy or a load balancer. SSL termination proxies which communicate using an
unencrypted channel between the proxy and back-end servers are also supported. In order to configure
SAML Extension for deployment behind a load balancer or a reverse-proxy please follow these steps:

• Make sure that your reverse-proxy or load-balancer is configured to use sticky sessions. Information
about e.g. sent requests is stored within a user's HTTP session and sending of response to another
back-end node would make the original request data unavailable and fail the validation. Sticky session
are not necessary in case only IDP-initialized SSO is used or when sessions are replicated to all
nodes.

• Provide information about front-end URL to the back-end servers by changing
the contextProvider bean implementation in your securityContext.xml to class
org.springframework.security.saml.context.SAMLContextProviderLB:

<bean id="contextProvider" class="org.springframework.security.saml.context.SAMLContextProviderLB">

 <property name="scheme" value="https"/>

 <property name="serverName" value="www.myserver.com"/>

 <property name="serverPort" value="443"/>

 <property name="includeServerPortInRequestURL" value="false"/>

 <property name="contextPath" value="/spring-security-saml2-sample"/>

</bean>

This setting enables the extension to correctly form all generated URLs and verify endpoints of the
incoming SAML messages.

• In case you use automatically generated metadata make sure to configure entityBaseURL matching
the front-end URL in your metadataGeneratorFilter bean:

<bean id="metadataGeneratorFilter"

 class="org.springframework.security.saml.metadata.MetadataGeneratorFilter">

 <constructor-arg>

 <bean class="org.springframework.security.saml.metadata.MetadataGenerator">

 <property name="entityBaseURL"

 value="https://www.myserver.com/spring-security-saml2-sample"/>

 </bean>

 </constructor-arg>

</bean>

10.2 Context provider

Context provider populates information about the local service provider (your application) such
as entityId, role, metadata, security keys, SSL credentials and trust engines for verification
of signatures and SSL/TLS connections. Once populated context is made available to
all components participating in processing of the incoming or outgoing SAML messages.
ContextProvider can customized to alter behavior of the SAML Extension. The default implementation
org.springframework.security.saml.context.SAMLContextProviderImpl relies on information available in
the ExtendedMetadata and performs the following steps for creation of the context:

• Locate entityId of the local SP by parsing part of the URL after /alias/ (e.g. myAlias in
https://www.myserver.com/saml_extension/saml/sso/alias/myAlias?idp=myIdp) and matching it with

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 38

property alias specified in the ExtendedMetadata. In case the URL doesn't contain any alias part the
default service provider configured with property hostedSPName on the metadata bean is used.

• Populate credential used to decrypt data sent to this service provider. In case ExtendedMetadata
specifies property encryptionKey it will be used as an alias to lookup a private key from the
keyManager bean. Otherwise defaultKey of the keyManager bean will be used.

• Populate credential used for SSL/TLS client authentication. In case ExtendedMetadata specifies
property tlsKey it will be used as an alias to lookup key from keyManager bean. Otherwise no
credential will be provided for client authentication.

• Populate trust engine for verification of signatures. Depending on securityProfile setting in the
ExtendedMetadata trust engine based on either the section called “Metadata interoperability profile
(MetaIOP)” or the section called “PKIX profile” is created.

• Populate trust engine for verification of SSL/TLS connections. Depending on sslSecurityProfile setting
in the ExtendedMetadata trust engine based on either the section called “Metadata interoperability
profile (MetaIOP)” or the section called “PKIX profile” is created.

During initialization of SSO ContextProvider is also requested to provide metadata of the peer IDP.
System performs these steps to locate peer IDP to use:

• Load parameter idp of the HttpRequest object and try to locate peer IDP by the entityId. When
there's no idp parameter provided system will either start IDP discovery process (when enabled in
the ExtendedMetadata of the local SP) or use the default IDP specified in the metadata bean.

10.3 Validity intervals

For security reasons system limits the time window enabling processing of SAML messages and
assertions. The time window parameters can be customized with the following settings.

Validity of assertions processed during the signle sign-on process is limited to 3000 seconds. Value can
be customized with property maxAssertionTime of the WebSSOProfileConsumerImpl bean.

System allows users to single sign-on for up to 7200 seconds since their initial authentication with the
IDP (based on value AuthInstance of the Authentication statement). Some IDPs allow users to stay
authenticated for longer periods than this and you might need to change the default value by setting
maxAuthenticationAge of the WebSSOProfileConsumerImpl bean.

As clocks between IDP and SP machines may not be perfectly synchronized a tolerance of 60 seconds
is applied for time comparisons. The tolerance value (time skew) can be customized by settings property
responseSkew in beans WebSSOProfileConsumerImpl and SingleLogoutProfileImpl.

The following tables summarize all checks for time validity during processing of incoming SAML
messages. Response skew refers to property responseSkew set on profile beans. Past indicates that
validity window for checking of the value will be extended by responseSkew seconds to the past and
correspondingly with the future value. Nullable values can be missing from the incoming messages.

Table 10.1. Time checks during processing of incoming SAML Response in WebSSO and WebSSO
HoK profiles

response.issueInstant

Applied skew: responseSkew (past + future)

Nullable: No

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 39

Fails with: Throws SAMLException

Description: Time when SAML response message was
created.

response.assertion.issueInstant

Applied skew: responseSkew (past + future) +
maxAssertionTime (future)

Nullable: No

Fails with: Throws SAMLException

Description: Time when SAML assertion was created, allows
validity extension as assertion might be re-used
by the caller.

response.assertion.subject.subjectConfirmation.notOnOrAfter

Applied skew: responseSkew (future)

Nullable: No

Fails with: Throws SAMLException

Description: Time when subject can no longer be confirmed.

response.assertion.authnStatement.authnInstant

Applied skew: responseSkew (past + future) +
maxAuthenticationAge (future)

Nullable: No

Fails with: Throws CredentialsExpiredException

Description: Time when user authenticated to IDP, typically
differs from time or response or assertion
creation time.

response.assertion.authnStatement.sessionNotOnOfAfter

Applied skew: no skew

Nullable: Yes

Fails with: Throws CredentialsExpiredException

Description: Time when user's session expires and requires
re-authentication, sessions are typically valid for
longer period and therefore do not suffer from
time synchronization problems.

response.assertion.condition.notBefore

Applied skew: responseSkew (past)

Nullable: Yes

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 40

Fails with: Throws SAMLException

Description: Time limit on validity of assertion.

response.assertion.condition.notOnOrAfter

Applied skew: responseSkew (future)

Nullable: Yes

Fails with: Throws SAMLException

Description: Time limit on validity of assertion.

Table 10.2. Time checks during processing of incoming SAML LogoutRequest in Single Logout profile

response.issueInstant

Applied skew: responseSkew (past + future)

Nullable: No

Fails with: Sends LogoutResponse with error Status
"urn:oasis:names:tc:SAML:2.0:status:Requester"

Description: Time when SAML LogoutRequest message was
created.

Table 10.3. Time checks during processing of incoming SAML LogoutResponse in Single Logout profile

response.issueInstant

Applied skew: responseSkew (past + future)

Nullable: No

Fails with: Throws SAMLException

Description: Time when SAML LogoutResponse message
was created.

Table 10.4. Time checks during processing of incoming SAML ArtifactResponse in Artifact Resolution
profile

response.issueInstant

Applied skew: responseSkew (past + future)

Nullable: No

Fails with: Throws MessageDecodingException

Description: Time when SAML LogoutResponse message
was created.

10.4 Enhanced client/proxy

Support for enhanced client/proxy can be configured using property ecpEnabled of the service
provider's extended metadata. Once enabled, ECP profile is automatically activated with requests

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 41

containing HTTP headers Accept: application/vnd.paos+xml and PAOS: ver='urn:liberty:paos:2003-08';
'urn:oasis:names:tc:SAML:2.0:profiles:SSO:ecp'. Binding used to server ECP profile is always
automatically set to PAOS.

ECP can be enabled in combination with the automatic metadata generation using the following settings:

<bean class="org.springframework.security.saml.metadata.MetadataGenerator">

 <property name="extendedMetadata">

 <bean class="org.springframework.security.saml.metadata.ExtendedMetadata">

 <property name="ecpEnabled" value="true"/>

 </bean>

 </property>

</bean>

10.5 Endpoint URLs

By default Spring SAML uses the following endpoints, which can optionally also contain information
about entity alias of the local Service Provider:

Table 10.5. Endpoint overview

Profile Binding Endpoint

Web Single Sign-on HTTP-POST, HTTP-Artifact,
PAOS

scheme://server:port/contextPath/
saml/SSO

Web Single Sign-on
Holder of Key

HTTP-POST, HTTP-Artifact scheme://server:port/contextPath/
saml/HoKSSO

Single Logout HTTP-POST, HTTP-Redirect scheme://server:port/contextPath/
saml/SingleLogout

The default URLs can be altered with these steps:

• change property filterProcessesUrl on the corresponding processing bean
(samlWebSSOProcessingFilter, samlWebSSOHoKProcessingFilter, samlLogoutProcessingFilter or
samlIDPDiscovery) to the new URL, for example /samlResponse

• update the samlFilter bean and make sure that the modified processing filter is mapped to the correct
pattern, for example /samlResponse/**, the /** part is only needed in case you're using the entity
alias feature

• re-generate metadata for your service provider, in case you are using automatic metadata generator
the endpoints will be automatically generated with the new URLs

• in case you are using pre-configured metadata you can perform changes manually in your existing
metadata file

Endpoints of filters samlEntryPoint, samlLogoutFilter and metadataDisplayFilter can be changed using
the same process and without need to re-generate the metadata.

10.6 Artifact resolution

Usage of HTTP-Artifact binding requires Spring SAML to make a direct SOAP call to the Identity
Provider. Sometimes it's necessary to configure correct HTTP proxy for the call. This can be achieved
by setting property hostConfiguration on HttpClient plugged to the artifactBinding bean. The following
configuration demonstrates creation of the bean for the hostConfiguration:

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 42

<bean id="hostConfiguration" class="org.apache.commons.httpclient.HostConfiguration"/>

<bean class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">

 <property name="targetObject" ref="hostConfiguration"/>

 <property name="targetMethod" value="setProxy"/>

 <property name="arguments">

 <list>

 <value>testHost</value>

 <value>8080</value>

 </list>

 </property>

</bean>

Another common use-case is situation when artifact resolution endpoint at IDP is secured using HTTP-
Basic authentication. Authentication can be configured by setting HTTPClient's property state with the
following bean:

<bean id="state" class="org.apache.commons.httpclient.HttpState"/>

<bean class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">

 <property name="targetObject" ref="state"/>

 <property name="targetMethod" value="setCredentials"/>

 <property name="arguments">

 <list>

 <util:constant static-field="org.apache.commons.httpclient.auth.AuthScope.ANY"/>

 <bean class="org.apache.commons.httpclient.UsernamePasswordCredentials">

 <constructor-arg value="username"/>

 <constructor-arg value="password"/>

 </bean>

 </list>

 </property>

</bean>

Part III. Sample application
Chapter provides reference for the sample application and its administration user interface.

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 44

11. Sample application

Spring SAML includes a sample application which demonstrates key capabilities of this product. For
details on compilation and deployment of the sample application please see Chapter 4, Quick start guide.

Public demo of the sample application is available at saml-federation.appspot.com

11.1 SAML login

Sample application demonstrates usage of IDP discovery which is automatically invoked on access to
the application root. Discovery presents selection of all available Identity Providers and initiates SAML
2.0 single sign-on with the selected IDP after clicking on the "Start single sign-on" button.

After authentication at IDP, sample application displays information about the received and validated
assertion, or displays errors encountered during validation.

Clicking buttons "Global Logout" and "Local Logout" initializes the logout process as described in
Section 9.3, “Logout process”.

11.2 Metadata administration

Sample application contains an administration UI which enables simple monitoring and administrative
use-cases. You can access the UI by clicking on "Metadata Administration" button.

Administration part is secured with role ROLE_ADMIN and uses local authentication with default
username admin and password admin. As Spring Security allows only one authentication to be currently
active, authenticating to administration UI will remove any previous SAML authentication from the
security context.

Metadata administration enables the following operations:

• Displaying of existing identity provider and service provider entities by clicking on their identifier.
Information includes content of the metadata and extended metadata for the entity.

• Displaying of existing metadata providers and possibility to remove them.

• Refreshing of all metadata providers by clicking on button "Refresh metadata".

• Generation of new metadata by clicking on "Generate new service provider metadata".

11.3 Metadata generation

Metadata generator allows dynamic creation of service provider metadata based on values provided
in the UI. Metadata can be immediately applied to the currently running instance by setting "Store for
current session" option to "Yes".

Options available in the interface are discussed in the section called “Automatic metadata generation”
and Section 7.3, “Extended metadata”. The generated values can be used as input for pre-configured
metadata described in the section called “Pre-configured metadata”.

https://saml-federation.appspot.com

Part IV. Integration guide
This chapter includes step-by-step instructions on basic steps required for enabling single sign-on with
common identity providers.

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 46

12. Integrating Identity Providers

Section provides additional information regarding integration of Spring SAML with popular Identity
Providers.

12.1 Active Directory Federation Services 2.0 (AD FS)

AD FS 2.0 supports SAML 2.0 in IDP mode and can be easily integrated with SAML Extension for both
SSO and SLO. Before starting with the configuration make sure that the following pre-requisites are
satisfied:

• Install AD FS 2.0 (http://www.microsoft.com/en-us/download/details.aspx?id=10909)

• Run AD FS 2.0 Federation Server Configuration Wizard in the AD FS 2.0 Management Console

• Make sure that DNS name of your Windows Server is available at your SP and vice versa

• Install a Java container (e.g. Tomcat) for deployment of the SAML 2 Extension

• Configure your container to use HTTPS, this is required by AD FS (http://tomcat.apache.org/
tomcat-6.0-doc/ssl-howto.html)

Initialize IDP metadata

• Download AD FS 2.0 metadata from e.g. https://adfsserver/FederationMetadata/2007-06/
FederationMetadata.xml

• Store the downloaded content to sample/src/main/resources/metadata/FederationMetadata.xml

• Modify bean metadata in sample/src/main/webapp/WEB-INF/securityContext.xml and replace
classpath:security/idp.xml with classpath:security/FederationMetadata.xml and add property
metadataTrustCheck to false to skip signature validation:

<bean class="org.springframework.security.saml.metadata.ExtendedMetadataDelegate">

 <constructor-arg>

 <bean class="org.opensaml.saml2.metadata.provider.ResourceBackedMetadataProvider">

 <constructor-arg>

 <bean class="java.util.Timer"/>

 </constructor-arg>

 <constructor-arg>

 <bean class="org.opensaml.util.resource.ClasspathResource">

 <constructor-arg value="/metadata/FederationMetadata.xml"/>

 </bean>

 </constructor-arg>

 <property name="parserPool" ref="parserPool"/>

 </bean>

 </constructor-arg>

 <constructor-arg>

 <bean class="org.springframework.security.saml.metadata.ExtendedMetadata"/>

 </constructor-arg>

 <property name="metadataTrustCheck" value="false"/>

</bean>

Initialize SP metadata

• Deploy SAML 2 Extension war archive from sample/target/spring-security-saml2-sample.war, or use
embedded Tomcat with command: mvn tomcat7:run

• Open Spring SAML in browser, e.g. at https://localhost:8443/spring-security-saml2-sample, making
sure to use HTTPS protocol

• Click Metadata Administration, login and select item with your server name from the Service providers
list

http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 47

• Store content of the Metadata field to a document metadata.xml and upload it to the AD FS server

• In AD FS 2.0 Management Console select "Add Relying Party Trust"

• Select "Import data about the relying party from a file" and select the metadata.xml file created earlier.
Select Next

• The wizard may complain that some content of metadata is not supported. You can safely ignore
this warning

• Continue with the wizard. On the "Ready to Add Trust" make sure that tab endpoints contains multiple
endpoint values. If not, verify that your metadata was generated with HTTPS protocol URLs

• Leave "Open the Edit Claim Rules dialog" checkbox checked and finish the wizard

• Select "Add Rule", choose "Send LDAP Attributes as Claims" and press Next

• Add NameID as "Claim rule name", choose "Active Directory" as Attribute store, choose "SAM-
Account-Name" as LDAP Attribute and "Name ID" as "Outgoing claim type", finish the wizard and
confirm the claim rules window, in ADFS 3.0 you might need to configure the Name ID as a Pass
Through claim

• Open the provider by double-clicking it, select tab Advanced and change "Secure hash algorithm"
to SHA-1

Test SSO

Open the Spring SAML sample application at e.g. https://localhost:8443/spring-security-saml2-sample,
select your AD FS server and press login. In case Artifact binding is used and SSL/TLS certificate of
your AD FS is not already trusted, import it to your samlKeystore.jks by following instructions in the
error report.

12.2 Okta

Okta supports single sign-on to customer specified SAML 2.0 Service Provider applications, such
as Spring SAML Extension. Before starting with the configuration make sure that the following pre-
requisites are satisfied:

• Have an Okta instance and administration account ready, Okta license must allow you to add custom
applications

• Install a Java container (e.g. Tomcat) for deployment of the SAML 2 Extension

Deploy Spring SAML sample application

• Deploy SAML 2 Extension war archive from sample/target/spring-security-saml2-sample.war, or use
embedded Tomcat with command: mvn tomcat7:run

• Open Spring SAML in browser, e.g. at http://localhost:8080/spring-security-saml2-sample

• Click Metadata Administration, login and select item with your server name from the Service providers

• Note the Entity ID field, and Assertion Consumer Service URL (ACS) from the metadata XML, e.g.
http://localhost:8080/spring-security-saml2-sample/saml/SSO

Information such as entity ID and URLs of your Spring SAML can be customized, see Section 7.1,
“Service provider metadata” for details.

Configure Okta

• Login to Okta as an administrator, select Admin, select Applications and click Create New App

• From the list of supported protocols select SAML 2.0 and press Create

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 48

• Define app name (e.g. Spring SAML), optionally define app image and press Next

• Configure SAML with the following settings:

Table 12.1.

Single Sign on URL Use value noted during Spring SAML initialization, e.g. http://
localhost:8080/spring-security-saml2-sample/saml/SSO

Audience URI (SP Entity ID) Use value noted during Spring SAML initialization, e.g. http://
localhost:8080/spring-security-saml2-sample/saml/metadata

Default RelayState Leave empty, unless you require Okta to provide a value to
Spring SAML

Name ID format Select any of the available options, depending on your
requirements

Application username Select any of the available options, depending on your
requirements

Response (advanced settings) Select "signed"

Assertion (advanced settings) Select "signed"

Authentication context class
(advanced settings)

Select any of the available options

Request compression
(advanced settings)

Select "Uncompressed"

• Optionally define attributes to be sent to Spring SAML after single sign-on, and press Next

• On Feedback page select "This is an internal application that we created" and press Finish

• Make sure to distribute the newly created application to users you want to use for testing

Import Okta metadata to Spring SAML

• In Okta click link "Identity provider metadata" and store the downloaded content to sample/src/main/
resources/metadata/okta.xml

• In Spring SAML modify bean metadata in sample/src/main/webapp/WEB-INF/securityContext.xml
and replace classpath:security/idp.xml with classpath:security/okta.xml:

<bean class="org.springframework.security.saml.metadata.ExtendedMetadataDelegate">

 <constructor-arg>

 <bean class="org.opensaml.saml2.metadata.provider.ResourceBackedMetadataProvider">

 <constructor-arg>

 <bean class="java.util.Timer"/>

 </constructor-arg>

 <constructor-arg>

 <bean class="org.opensaml.util.resource.ClasspathResource">

 <constructor-arg value="/metadata/okta.xml"/>

 </bean>

 </constructor-arg>

 <property name="parserPool" ref="parserPool"/>

 </bean>

 </constructor-arg>

 <constructor-arg>

 <bean class="org.springframework.security.saml.metadata.ExtendedMetadata"/>

 </constructor-arg>

</bean>

• Restart Spring SAML for the changes to get applied

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 49

Test SSO

Open the Spring SAML sample application at e.g. http://localhost:8080/spring-security-saml2-sample,
select your Okta server and press login. Alternatively start IDP-initialized single sign-on using App
Embed Link provided by Okta in application configuration, e.g. https://v7security.okta.com/home/
v7security_springsaml_1/0oa4vkeakAsUtZ8AI0y6/39139.

Spring Security SAML Extension

1.0.4.RELEASE Spring Security SAML Extension 50

13. Troubleshooting common problems

Time synchronization

Processing of SAML messages and assertions is often limited to a specific time window which e.g.
prevents possibilities of replay attacks. Validation of messages can fail when internal clocks of the IDP
and SP machines are not synchronized. Make sure to use a time synchronization service on all systems
in the federation.

Error 'InResponseToField doesn't correspond to sent
message' during SSO

Make sure that application uses the same HttpSession during sending of the request and reception of
the response. Typically, this problem arises when the authentication request is initialized from localhost
address or http scheme, while response is received at a public host name or https scheme. E.g., when
initializing authentication from URL https://host:port/app/saml/login, the response must be received
at https://host;port/app/saml/SSO, not http://host:port/app/saml/SSO or https://localhost:port/app/saml/
SSO.

The checking of the InResponseToField can be disabled by re-configuring the context provider as
follows:

<bean id="contextProvider" class="org.springframework.security.saml.context.SAMLContextProviderImpl">

 <property name="storageFactory">

 <bean class="org.springframework.security.saml.storage.EmptyStorageFactory"/>

 </property>

</bean>

System is redirecting to e.g. localhost address when public
facing URL is different

In case you use automatic metadata generation make sure to set property entityBaseURL on bean
MetadataGenerator to e.g. http://server:port/yourapp or use pre-generated metadata.

System fails during decryption or encryption of fields, e.g. with
'Failed to decrypt EncryptedData'

Make sure the Unlimited Strength Jurisdiction Policy Files are correctly installed in your JDK. See
Section 4.1, “Pre-requisites” for details.

My system fails during validation of certificates with errors
similar to "PKIX path building failed"

This is typically caused by misconfiguration of certificates. Either your metadata or keyStore do not
contain the correct leaf certificates or CA certificates, or your certificates are invalid. You can get
additional information by starting your application with flag -Djavax.net.debug=all.

http://www.freebsd.org/doc/handbook/network-ntp.html

	Spring Security SAML Extension
	Table of Contents
	Part I. Getting Started
	1. Introduction
	1.1 What this manual covers
	1.2 When to use Spring Security SAML Extension
	1.3 Features and supported profiles
	1.4 Requirements
	1.5 Source code
	1.6 Builds
	1.7 License
	1.8 Issue tracking
	1.9 Contributions
	1.10 Commercial support
	1.11 Community support
	1.12 Dependencies

	2. What's new
	2.1 New features, improvements and fixes in 1.0.1.FINAL
	2.2 New features, improvements and fixes in 1.0.0.FINAL
	2.3 Important code changes in 1.0.0.FINAL

	3. Glossary
	4. Quick start guide
	4.1 Pre-requisites
	4.2 Installation steps
	Downloading sample application
	Configuration of IDP metadata
	Generation of SP metadata
	Compilation
	Deployment
	Uploading of SP metadata to the IDP

	4.3 Testing single sign-on and single logout

	Part II. Configuring SAML Extension
	5. Overview
	6. Integration to applications
	6.1 Maven dependency
	6.2 Bean definitions
	6.3 Java-based configuration
	6.4 Spring Security integration
	6.5 Error handling
	6.6 Logging

	7. Metadata configuration
	7.1 Service provider metadata
	Automatic metadata generation
	Pre-configured metadata
	Downloading metadata

	7.2 Identity provider metadata
	File-based metadata provider
	HTTP-based metadata provider
	HTTP-based metadata provider with SSL
	Metadata signature verification

	7.3 Extended metadata
	7.4 Multi-tenancy and entity alias

	8. Security configuration
	8.1 Key management
	Sample JKS keystore
	Generating and importing private keys
	Importing public keys
	Loading SSL/TLS certificates

	8.2 Security profiles
	Metadata interoperability profile (MetaIOP)
	PKIX profile
	Custom profile

	8.3 Hostname verification for HTTPS connections

	9. Single sign-on configuration
	9.1 IDP selection and discovery
	9.2 Single sign-on process
	Service provider initialized SSO
	Identity provider initialized SSO

	9.3 Logout process
	Local logout
	Global logout

	9.4 Authentication object
	9.5 Authentication assertion
	9.6 Authentication log

	10. Advanced configuration
	10.1 Reverse proxies and load balancers
	10.2 Context provider
	10.3 Validity intervals
	10.4 Enhanced client/proxy
	10.5 Endpoint URLs
	10.6 Artifact resolution

	Part III. Sample application
	11. Sample application
	11.1 SAML login
	11.2 Metadata administration
	11.3 Metadata generation

	Part IV. Integration guide
	12. Integrating Identity Providers
	12.1 Active Directory Federation Services 2.0 (AD FS)
	Initialize IDP metadata
	Initialize SP metadata
	Test SSO

	12.2 Okta
	Deploy Spring SAML sample application
	Configure Okta
	Import Okta metadata to Spring SAML
	Test SSO

	13. Troubleshooting common problems

