Spring Security

Reference Documentation

2.0.x

Copyright © 2005-2007

I T= (o TS = = SRRSO PPESRRR 1
O g oo o £ o o SRR 2
1.1 What iS SPring SECUMTY? ...iiiiiiiiie ettt e e e e e e et e e e e e e e s st raaeeaaaeeaaans 2

I o 1 (] T PP PRP U PPP PP 3

1.3. REl@aSE NUMDEIINGeuii s nannnnnnnnnnnnnes 4

1.4, GEING TNE SOUICE ...ttt et e e s as 4

2. Security Namespace ConfigUIaionoooceeeeiiieee e iiiieeee e e s e e e e e s eeneeeee e e e e e e e anneees 5
P22 I [11 T [F o1 o o I PRSP PR 5
2.1.1. Design of the NAMESPACEeeviiiiiiiiie it 5

2.2. Getting Started with Security Namespace Configurationccceccvvveeeeeeeiicccivneeennn. 6
2.2.1. veb. xm CONFIGUIATONeeiiiiiiiieiiiiie e 6

2.2.2. A Minimal <htt p> Configurationcccccceeeeeei i, 7

2.2.3. Using other AuthentiCation ProVidersccoouveieiiiiieeiiiiie e 9

2.3. AdVaNCed WED FEEIUIEScoeiiiiiieie ettt e e e e e e e e e e e e eneneeeeeeens 10
2.3.1. Remember-Me AUthentiCationooiueiieiiiiiiee e 10

2.3.2. Adding HTTP/HTTPS Channel SECUNTYcccvvieiiiiiiieiiiiiee e 10

2.3.3. Concurrent SeSSION CONLIOIcieiiiiiiie it 11

2.3.4. OPENID LOGIN ..ttt e e e 11

2.35. Adding in Your OWN FIIters ..., 11

2.3.6. Session Fixation Attack ProteCtioncccvveeeiiieii i 13

2.4, MENOO SECUNLYeveeieeiiieie e eieee ettt e et e e s e e e e e e et e e e e sntte e e e ennneeeeannnreeeeenees 13
2.4.1. The <gl obal - met hod- security> EI@MENEcoviiiiiiiiiiiii e 14

2.4.2. Thei nt er cept - met hods Bean DECOratorccccceeeeeeeeieeieici e, 14

2.5. The Default AccessDECISIONMANA0ENcccuvveieeeeeeiiiiiiieee e e e e e e e e e e srbreeee s 15
2.5.1. Customizing the AccessDeCiSIONMaNAQESeeveiiuieieeiiiiiee e 15

2.6. The Default Authentication Manager ..., 15

IS 010 Fl A o) o] Yo 1 o] < PSSR 17
3.1 TULO Al SAMPIE . e e 17

I O | = o £ S PP PP PP PP PPPPPPPPPP 17

.3 LDAP SAMPIE .ot 18

B4, CAS SAMPIE ..ttt e e e e e nraeeeeans 18

3.5. Pre-Authentication SAMPIEeveiiiiiiiiee e 18

4, Spring SeCUrity COMIMUNITYooviiiiiiiiieieie e e e e e e e e e e e ee e e e e e e e e e e e e e e e e ee e e e e eeerereeeeeeeeereeerereees 19
I =S U TN I = ot (o USSP 19

4.2. BECOMING INVOIVEooiiiiiiiiiiiii ittt e e 19

4.3. FUItNer INFOMMELTONeiiiiiiiie it e e et e e s e e e e snreeeeeans 19
IO = = A o g 1] (o (= RSO PPRSRP 20
5. TECHNICAl OVEIVIEW ...ttt ettt e e e e e e st e e e e e e e e st beeeeaaaeeeaans 21
5.1. RUNIME ENVITONMENT ...oeiiieiiiiiiii et e e e et e e e e e e s e snnnrnaeeaens 21

5.2. Shared COMPONENESccce e 21
5.2.1. SecurityContextHolder, SecurityContext and Authentication Objects 21

5.2.2. The USerDetailSSEIVICEccoiiiiiieieeiee ettt eeee e e e e e 22

5.2.3. GrantedAULNONTYeeeiiiiieiiiiiiee e e e e 22

5. 2.4, SUMMIBIY ..eeeeiieeeiieiite ettt e e e e ettt e e e e s s bbb e e e e e e e s s et bbb b et e e e e e e s s nnbbrnneeeaeeeaanas 23

5.3, AULNENEICALION ... e e e e et e e e e e s e e e eeeeas 23
5.3.1. EXCeptionTranslationFiIterccueiiiiiiiiee e 24

5.3.2. AuthenticatiONENLIYPOINTuveeiiiiee e e e e e e e e e e e e e e 24

5.3.3. AUthentiCatiONPIOVITENocuviiieiiiiiie ettt 24

5.3.4. Setting the SecurityContextHolder ContentS Directlyccccoevviivieeiiiiieeennne 25

S = o N (=X @ o= £ PP 25
5.4.1. Security and AOP AGVICEoeiiiiiiiiieeiiiiee ettt 25

Spring Security (2.0.x)

Spring Security

5.4.2. ADStractSeCUrity INTErCEPLOLccuvriieiiiiiee et 25

6. SUPPOItING INFIASITUCKUIE ...ceee e s s e e e e e e e st e e e e aaeeeans 28
200 o o= £ o o PRSP 28

L (=PRI 28

6.3. TAQ LIDrariES ..oooieeiee e 31
6.3.1. CONFIQUIELION ...ttt e e e e e e e e et e e e e e e e e e e neneneeeeaaeeeans 31

B.3.2. USAE .o 31

7. ChanNEl SECUNTY ..ottt e e e s e e e e e e e e nnreeeeean 32
7. L OVEIVIBW .ttt ettt e ettt e e e ettt e e e s st e e e e bbbt e e e e abbe e e e e nbt e e e e anne e e e e annbeeeeennes 32

7.2, CONFIGUIBLTON ..eeiiitiie ettt et e et e e et e e e s e e e e e annn e e e e nees 32

G T 0 o 11 Lo o PSP 33

T W 1 7= oo o o PRSP PREPPR 34
8. CommON AUhENtiCaLION SEIVICESeiiiiiieiiiiiieiii e et e e e e et e e e e e e e et eneeeeaeeeean 35
8.1. Mechanisms, Providersand Entry POINEScovviiiiiiiiiiiiiiiiee e 35

8.2. UserDetails and ASSOCIAEEA TYPESvveeiiiiiieeiiiieie e ettt e et 37
8.2.1. In-Memory AUthENtiCaLiONueeiiieiiiiiiiieee e 38

8.2.2. IDBC AULNENTICALTION ..eevveeeiiiiiiiiie e e e sttt e e e e e e e e e ssnenraeeneeaeenans 38

8.3. Concurrent Session Handling ... 39

8.4. Authentication Tag Librariesueviieeiiiiiiiieieee e 40

9. DAO AULhentiCation PrOVIAESuiiiiiieiiiiiiiiee et e e e eee e e e e e e e ans 41
0.1, OVEIVIBW ..ttt ettt ettt e ettt e e ettt e e e e sttt e e e e st e e e e e asb et e e e nbb e e e s ansae e e e e annteeeeennees 41

0.2, CONFIGUIBLION ..ottt ettt e e et e e et e e s e e e e e e e e e e s 41

10. LDAP AUNENTICALIONveieieiiiiiie ettt st e e e e e e et e e s et e e e e ennneeeeennes 43
O R = V= PRSP 43
10.2. Using LDAP With SPring SECUFTYuuuuiinseannnnnsnnnnnnnnnnnnnnnnnnnnes 43

10.3. Configuring @n LDAP SEIVENcoiiieeiiiiiieiee ettt e e e e e e st raneeaeas 43
10.3.1. Using an Embedded TeSt SErVEYcuviiiiiiiieeeiieee e 44

10.3.2. Using Bind AUtRENLICALIONcceviieiiiiiiiiiee e 44

10.3.3. LOAAING AULNOTTIEScooiuiiiieeiiiiiee ettt 44

10.4. IMplementation CIESSESccuuviiiiiei e e e e e e e s s et raeeeaeas 45
10.4.1. LdapAuthenticator Implementationsccceeeiiiieeeiniiiie e 45

10.4.2. Connecting tO the LDAP SEIVEXuuuinaannnnnnnnnnnnnnnnnnnns 46

10.4.3. LDAP Search ODJECESvvviiieiiiiiie ettt 46

10.4.4. LdapAuthoritieSPOPUIBLONeeviiiiiiieeiiiee e 46

10.4.5. Spring Bean Configurationcocciviieiiee e e 47

10.4.6. LDAP Attributes and Customized UserDetailsccccceveeiiiiciiiieniee e, 47

11. Form Authentication MeChaniSM ..o 49
I R = V= SRRSO 49
22 o 1o U (o] o TSP 49

12. BASIC Authentication MEChaNISIMcoiiiiiiiiiiiiie et 50
I T O Y= V= PRSPPI 50
2 ©e) 110 [V - (o] [PPSO 50

13. Digest AUTNENTICALIONeeiiiiiiiieeiiiiie ettt e e s e e e e e e e e e 51
T @ Y= V= RPN 51
13.2. CONFIQUIALTON ...ttt e e e e e e s e e e e e e e e s 52

14. Remember-Me AULNENEICALIONoiiiiiiiie e e e e e e 53
T O Y= V= PP PPP PR 53

14.2. Simple Hash-Based Token APProach ... 53

14.3. Persistent TOKEN APPrOACHueeiiieiiiiiiiiiiiee et e e e e st ree e e s 54

14.4. Remember-Me Interfaces and IMplementationscoooverieiiieeee e 54
14.4.1. TokenBasedRememberMeESEIVICESceviiieeeiiiiiiiieee e 54

14.4.2. PersistentTokenBasedRememberMeSErViCeSccvvvvvveeee i 55

Spring Security (2.0.x)

Spring Security

V. A

15. Java Authentication and Authorization Service (JAAS) Providerccccoveeiiiiieeeiiiiiee e 56
ST T O Y= V= PRSPPI 56
15.2. CONFIQUIALTON ...ttt ettt ettt e e e et e e st e e e e e e e e e 56
15.2.1. JAAS CalbackHandlercoooiiiiiiiiiiie e 56
15.2.2. JAAS AULNOMEYGIaNTEroeeiiiiiiiieeiiie ettt 57
16. Pre-AuthentiCation SCENAMOSeiiieeeiiiiiiieieee e e et et e e e e e e et e e e e e e e e s s eeeeeaaeeeeannnneees 58
16.1. Pre-Authentication Framework ClaSSeSoocvvieiiiiiiieiiiiiee e 58
16.1.1. AbstractPreAuthenticatedProcessingFiIteroccvvveiiiiiiiiiiie e 58
16.1.2. AbstractPreAuthenticatedA uthenticationDetaillSSOUrceccceevvvivveeeeininnenn. 58
16.1.3. PreAuthenticatedAuthenticationProViderccccvvieieieeeiiiiiciiieeeee e 59
16.1.4. PreAuthenticatedProcessingFilterEntryPointcccccociiiiiiiiinnnnninnninnnnnnnnns 59
16.2. Concrete IMPleMENLBLIONScoiiuriieeiiiiie ettt e s e e e e nees 59
16.2.1. Request-Header Authentication (Siteminder)cccvveveeeieiiiiicee e 59
16.2.2. J2EE Container AUNENTICLIONccoiuuiiiiiiiiee it 60
17. ANONYMOUS AULNENTICAIONeiiiiiiiii et 61
I T O Y= V= PR PRRR 61
17.2. CONFIQUIALTON ...ttt e s e e e et e e st e e e e e e e e 61
18. X.509 AULNENLICALIONiieeeiiiiiiieie et e ettt e e e e e e et e e e e e e e e s et eeeaeeeeeannnneees 63
18,1, OVEIVIBW ..eeiieeeiieie e ettt ettt e ettt e e e ekttt e e e e s bt e e e bbb e e e e e st et e e s enbae e e e e nnb e e e e ennnes 63
18.2. Adding X.509 Authentication to Your Web AppliCationcccccveeriivieeeiiiieneennne 63
18.3. Setting UP SSL iN TOMCELovviiiiiieeei e e e e s eeeeas 64
19. CAS AULNENLICALION ...eeiiieeeiiiiieiii et e et e e e e e e st r e e e e e e e s snnraeeeeaeeeeeannnneees 65
ST O Y= V= RPN 65
19.2. HOW CASWOIKS ..oeeiiieeie ittt ettt a e e e s e e e e e e s s st e e e e e e e s s annntnrnneeaens 65
19.3. Configuration of CAS CHENTuuiiiiiiii s nnnnnnnnes 65
20. Run-As Authentication REPIACEMENTcccuviiiiiiie e e e 67
20.1. OVEIVIBIW ...eeieiee et e ettt e et e e ettt e e e et e e e e snte e e e e e st e e e e e ssbeeeeeanseeeeeansaneeeaannneeeeennes 67
20.2. CONFIGQUIBLIONeiiieeee e e et e e e e e e e e e et e e e e e e e s s sanb e e e e eaeeesaanrbrnneeeeas 67
21. Container Adapter AUTNENTICALIONcooiiiiiiieiiiiiie et 69
P2 S R O Y1 V1 PRSP PRR 69
21.2. Adapter Authentication ProVIAEroccceeiiiiiiiiiiiiiiee e 69
P20 TG T 1 R SPRR 70
PN = 10T PP PPPPPPRR 71
B2 T = T PR SPRE 72
206 TOIMCAL ..o 73
81110 14 1 o] o 1SR 75
22. Common AUthorization CONCEPLScoeeeeeieeee e, 76
7 I A U111 (=< PRSP 76
22.2. Pre-Invocation Handlingcc.euviiiiieeiiiieiee e e e e 76
22.2.1. The AcCeSSDECISIONME@NAGESuvveiieeeeiiiiiiieeee e e e e e serree e e e e e e e s st eeaaae e e 76
22.3. After Invocation HaNAIINGooviiiiiiieeiieee e 78
22.3.1. ACL-Aware AfterlnvocationProViderscccceeeviiiieeiiiiiee e 79
22.3.2. ACL-Aware AfterlnvocationProviders (old ACL modul€)ccceevviieeeennee. 80
22.4. Authorization Tag Libraries ... 81
23. Secure Object IMPIEMENLALIONSoivriiieiiiii et sbreeeean 83
23.1. AOP Alliance (Methodinvocation) Security INterCePtOrcoovecvveieieeeeee e 83
23.1.1. Explicit MethodSecuritylterceptor Configurationcccceeeeiiiiiiiiiieneeeeennns 83
23.2. AspectJ (JoinPoint) Security INTErCEPLOrcueveeiiiiieeeiiiee et 83

23.3. Filterlnvocation Security INtErCEPLONccuvvieeeeee et e e e e e 85

24. DOMEIN ODJECE SECUNMTY ..vveeeeiittiie e ettt e e sttt ettt e e et e e e et e e e s s e e e e ebne e e e e nnbeeeeean 87
P I @ Y1 = PSR SPRR 87
24.2. KEY CONCEDES ...ttt e ettt e e e ettt et e e e e e et e e et e e e e e s s annbb e e e e e e e e e aanrbbeeeeeeas 87

Spring Security (2.0.x)

Spring Security

24.3. GELUING SLAMEeeeiiiiieiee et e e e e s e e e e 89

A. SECUrity Database SCNEMAuvviiiieeii it e e e e e e e s s st re e e e e e e e s aseatbreeeeaaeeeaans 91
AL USEN SCREIMIA ...ttt e et e e et et e e e bbb e e e et e e e e e anbe e e e e e nnneeas 91
AL L Group AULNOMTIES ...uuuiiiiiiiiiiiiiiiiiiiiiii e rararerarnrnrnrnsnsnsnnnnnnnnns 91

A.2. Persistent Login (Remember-Me) SChemMa.cooiiiiiiiiiiiiiee i 91
A3 ACL SChEMA et e e e e e e e e e e e e et aas 92
B. The SECUNtY NAIMESPACE ...t e e ettt e e e e e e e e e e e e e s st e et e e e e e s s esataaeeeeeeessannsraneeeeens 93
B.1. Web Application Security - the<ht t p> Elementcccoceeiiiiiiiee e 93
00 I R L o B AN 11] o [0 1 (- TR 93
B.1.2. The<intercept-url > EIBMENEu e 94
B.1.3. The <port-mappi ngs> EIEMENTcoiiiiiieee e, 95
B.1.4. The<form 1 ogi n> EIEMENE ... 95
B.1.5. The<http-basi c> EIEMENtoooviiiiiiiiiee e 96
B.1.6. The<renenber-me> EIEMENT ... 96
B.1.7. The<concurrent-session-control > EI@MENtccccciiiiiiiiiiaes 97
B.1.8. The <anonympus> EIEMENLoovuuiiiiiiiii e 98
B.1.9. The <x509> El@MENTooiiiiiiiiieiieii e 98
B.1.10. The <openi d-10gi n> EIEMENToiiiiieee e 98
B.1.11. The <l ogout > EIEBMENTccooiiiiiiee e e 98

B.2. AULhENtiCAtION SEIVICESciuiiiiiiiiiiie ettt e e e e e e 99
B.2.1. The <authentication-provider> Elementcccocciiiiiiiieie e 99
B.2.2. Using <cust om aut hent i cat i on- provi der > to register an AuthenticationProvider .. 99
B.2.3. The<aut henti cati on- manager> EIE@MENtceviiiiiiiiiiiii e, 99

B.3. MENOA SECUIMTY ...eeeieiiiiiie ettt e e e s e e e s e e 99
B.3.1. The<gl obal - met hod-security> El@MeENtcccoooiiiiiiiiiiiie e, 99
B.3.2. LDAP NamMeSPace OPLiONScciieeiiiiiiiiiieeiee e e s s ettt e e e e e e sesntaaeeeaa e e s e ennnsraeeeaeas 100

Spring Security (2.0.x)

Preface

Spring Security provides a comprehensive security solution for J2EE-based enterprise software applications. As
you will discover as you venture through this reference guide, we have tried to provide you a useful and highly
configurable security system.

Security is an ever-moving target, and it's important to pursue a comprehensive, system-wide approach. In
security circles we encourage you to adopt "layers of security”, so that each layer tries to be as secure as
possible in its own right, with successive layers providing additional security. The "tighter” the security of each
layer, the more robust and safe your application will be. At the bottom level you'll need to deal with issues such
as transport security and system identification, in order to mitigate man-in-the-middle attacks. Next you'll
generally utilise firewalls, perhaps with VPNs or | P security to ensure only authorised systems can attempt to
connect. In corporate environments you may deploy a DMZ to separate public-facing servers from backend
database and application servers. Y our operating system will also play a critical part, addressing issues such as
running processes as non-privileged users and maximising file system security. An operating system will
usually aso be configured with its own firewall. Hopefully somewhere along the way you'll be trying to
prevent denial of service and brute force attacks against the system. An intrusion detection system will also be
especially useful for monitoring and responding to attacks, with such systems able to take protective action
such as blocking offending TCP/IP addresses in real-time. Moving to the higher layers, your Java Virtual
Machine will hopefully be configured to minimize the permissions granted to different Java types, and then
your application will add its own problem domain-specific security configuration. Spring Security makes this
latter area - application security - much easier.

Of course, you will need to properly address all security layers mentioned above, together with managerial
factors that encompass every layer. A non-exhaustive list of such managerial factors would include security
bulletin monitoring, patching, personnel vetting, audits, change control, engineering management systems, data
backup, disaster recovery, performance benchmarking, load monitoring, centralised logging, incident response
procedures etc.

With Spring Security being focused on helping you with the enterprise application security layer, you will find
that there are as many different requirements as there are business problem domains. A banking application has
different needs from an ecommerce application. An ecommerce application has different needs from a
corporate sales force automation tool. These custom requirements make application security interesting,
challenging and rewarding.

Please read Part |, “Getting Started”, in its entirety to begin with. This will introduce you to the framework and
the namespace-based configuration system with which you can get up and running quite quickly. To get more
of an understanding of an in-depth understaning of how Spring Security works, and some of the classes you
might need to use, you should then read Part 11, “Overall Architecture”. The remaining parts of this guide are
structured in a more traditional reference style, designed to be read on an asrequired basis. We'd aso
recommend that you read up as much as possible on application security issues in general. Spring Security is
not a panacea which will solve al security issues. It is important that the application is designed with security
in mind from the start. Attempting to retrofit it is not a good idea. In particular, if you are building a web
application, you should be aware of the many potential vulnerabilities such as cross-site scripting,
request-forgery and session-hijacking which you should be taking into account from the start. The OWASP
web site (http://www.owasp.org/) maintains a top ten list of web application vulnerabilities as well as a lot of
useful reference information.

We hope that you find this reference guide useful, and we welcome your feedback and suggestions.

Finally, welcome to the Spring Security community.

Spring Security (2.0.x) Vi

Part |. Getting Started

The later parts of this guide provide an in-depth discussion of the framework architecture and implementation
classes, an understanding of which is important if you need to do any serious customization. In this part, welll
introduce Spring Security 2.0, give a brief overview of the project's history and take a slightly gentler ook at
how to get started using the framework. In particular, we'll look at namespace configuration which provides a
much ssimpler way of securing your application compared to the traditional Spring bean approach where you
had to wire up all the implementation classes individualy.

Well also take a look at the sample applications that are available. It's worth trying to run these and
experimenting with them a bit even before you read the later sections - you can dip back into them as your
understanding of the framework increases.

Spring Security (2.0.x) 1

Chapter 1. Introduction

1.1. What is Spring Security?

Spring Security provides comprehensive security services for J2EE-based enterprise software applications.
There is a particular emphasis on supporting projects built using The Spring Framework, which is the leading
J2EE solution for enterprise software development. If you're not using Spring for developing enterprise
applications, we warmly encourage you to take a closer look at it. Some familiarity with Spring - and in
particular dependency injection principles - will help you get up to speed with Spring Security more easily.

People use Spring Security for many reasons, but most are drawn to the project after finding the security
features of J2EE's Servlet Specification or EJB Specification lack the depth required for typical enterprise
application scenarios. Whilst mentioning these standards, it's important to recognise that they are not portable at
aWAR or EAR level. Therefore, if you switch server environments, it is typically alot of work to reconfigure
your application's security in the new target environment. Using Spring Security overcomes these problems,
and also brings you dozens of other useful, entirely customisable security features.

As you probably know, security comprises two major operations. The first is known as "authentication”, which
is the process of establishing a principal is who they claim to be. A "principa” generally means a user, device
or some other system which can perform an action in your application. "Authorization" refers to the process of
deciding whether a principal is allowed to perform an action in your application. To arrive at the point where an
authorization decision is needed, the identity of the principal has aready been established by the authentication
process. These concepts are common, and not at all specific to Spring Security.

At an authentication level, Spring Security supports a wide range of authentication models. Most of these
authentication models are either provided by third parties, or are developed by relevant standards bodies such
as the Internet Engineering Task Force. In addition, Spring Security provides its own set of authentication
features. Specifically, Spring Security currently supports authentication integration with al of these
technologies:

» HTTP BASIC authentication headers (an |IEFT RFC-based standard)

e HTTP Digest authentication headers (an IEFT RFC-based standard)

« HTTP X.509 client certificate exchange (an IEFT RFC-based standard)

» LDAP (avery common approach to cross-platform authentication needs, especially in large environments)

» Form-based authentication (for simple user interface needs)

e Openl D authentication

e Computer Associates Siteminder

» JA-SIG Central Authentication Service (otherwise known as CAS, which is a popular open source single
sign on system)

e Transparent authentication context propagation for Remote Method Invocation (RMI) and Httplnvoker (a
Spring remoting protocol)

» Automatic "remember-me" authentication (so you can tick a box to avoid re-authentication for a
predetermined period of time)

« Anonymous authentication (allowing every call to automatically assume a particular security identity)

» Run-as authentication (which is useful if one call should proceed with a different security identity)

» Java Authentication and Authorization Service (JAAS)

e Container integration with JBoss, Jetty, Resin and Tomcat (so you can still use Container Manager
Authentication if desired)

« Java Open Source Single Sign On (JOSSO) *

* OpenNMS Network Management Platform *

* AppFuse*

Spring Security (2.0.x) 2

Introduction

¢ AndroMDA *

* MuleESB *

* Direct Web Reguest (DWR) *
e Grails*

* Tapestry *

e Jlrac*

* Jasypt*

e Roller*

 Elastic Plath *

e Atlassian Crowd *

« Your own authentication systems (see below)

(* Denotes provided by athird party; check our integration page for links to the latest details)

Many independent software vendors (ISVs) adopt Spring Security because of this significant choice of flexible
authentication models. Doing so allows them to quickly integrate their solutions with whatever their end clients
need, without undertaking a lot of engineering or requiring the client to change their environment. If none of
the above authentication mechanisms suit your needs, Spring Security is an open platform and it is quite simple
to write your own authentication mechanism. Many corporate users of Spring Security need to integrate with
"legacy” systems that don't follow any particular security standards, and Spring Security is happy to "play
nicely" with such systems.

Sometimes the mere process of authentication isn't enough. Sometimes you need to also differentiate security
based on the way a principal is interacting with your application. For example, you might want to ensure
requests only arrive over HTTPS, in order to protect passwords from eavesdropping or end users from
man-in-the-middle attacks. Or, you might want to ensure that an actual human being is making the requests and
not some robot or other automated process. This is especially helpful to protect password recovery processes
from brute force attacks, or simply to make it harder for people to duplicate your application's key content. To
help you achieve these goals, Spring Security fully supports automatic "channel security”, together with
JCaptchaintegration for human user detection.

Irrespective of how authentication was undertaken, Spring Security provides a deep set of authorization
capabilities. There are three main areas of interest in respect of authorization, these being authorizing web
reguests, authorizing methods can be invoked, and authorizing access to individual domain object instances. To
help you understand the differences, consider the authorization capabilities found in the Servlet Specification
web pattern security, EJB Container Managed Security and file system security respectively. Spring Security
provides deep capabilitiesin all of these important areas, which we'll explore later in this reference guide.

1.2. History

Spring Security began in late 2003 as "The Acegi Security System for Spring”. A question was posed on the
Spring Developers mailing list asking whether there had been any consideration given to a Spring-based
security implementation. At the time the Spring community was relatively small (especially by today's size!),
and indeed Spring itself had only existed as a SourceForge project from early 2003. The response to the
question was that it was a worthwhile area, although alack of time currently prevented its exploration.

With that in mind, a simple security implementation was built and not released. A few weeks later another
member of the Spring community inquired about security, and at the time this code was offered to them.
Severa other requests followed, and by January 2004 around twenty people were using the code. These
pioneering users were joined by others who suggested a SourceForge project was in order, which was duly
established in March 2004.

In those early days, the project didn't have any of its own authentication modules. Container Managed Security

Spring Security (2.0.x) 3

http://acegisecurity.org/powering.html

Introduction

was relied upon for the authentication process, with Acegi Security instead focusing on authorization. This was
suitable at first, but as more and more users requested additional container support, the fundamental limitation
of container-specific authentication realm interfaces was experienced. There was also a related issue of adding
new JARs to the container's classpath, which was a common source of end user confusion and
misconfiguration.

Acegi Security-specific authentication services were subsequently introduced. Around a year later, Acegi
Security became an official Spring Framework subproject. The 1.0.0 final release was published in May 2006 -
after more than two and a half years of active use in numerous production software projects and many hundreds
of improvements and community contributions.

Acegi Security became an official Spring Portfolio project towards the end of 2007 and was rebranded as
" Spring Security".

Today Spring Security enjoys a strong and active open source community. There are thousands of messages
about Spring Security on the support forums. There is an active core of developers work who work on the code
itself and an active community which also regularly share patches and support their peers.

1.3. Release Numbering

It is useful to understand how Spring Security release numbers work, as it will help you identify the effort (or
lack thereof) involved in migrating to future releases of the project. Officially, we use the Apache Portable
Runtime Project versioning guidelines, which can be viewed at http://apr. apache. org/ versioning. htm .
We quote the introduction contained on that page for your convenience:

“Versions are denoted using a standard triplet of integers: MAJOR.MINOR.PATCH. The basic intent is that
MAJOR versions are incompatible, large-scale upgrades of the API. MINOR versions retain source and binary
compatibility with older minor versions, and changes in the PATCH level are perfectly compatible, forwards
and backwards.”

1.4. Getting the Source

Since Spring Security is an Open Source project, we'd strongly encourage you to check out the source code
using subversion. This will give you full accessto all the sample applications and you can build the most up to
date version of the project easily. Having the source for a project is also a huge help in debugging. Exception
stack traces are no longer obscure black-box issues but you can get straight to the line that's causing the
problem and work out what's happening. The source is the ultimate documentation for a project and often the
simplest place to find out how something actually works.

To obtain the source for the project trunk, use the following subversion command:

svn checkout http://acegisecurity.svn. sourceforge.net/svnroot/acegi security/spring-security/trunk/

You can checkout specific versions from
http://acegi security.svn.sourceforge. net/svnroot/acegi security/spring-security/tags/.

Spring Security (2.0.x) 4

Chapter 2. Security Namespace Configuration

2.1. Introduction

Namespace configuration has been available since version 2.0 of the Spring framework. It allows you to
supplement the traditional Spring beans application context syntax with elements from additiona XML
schema. Y ou can find more information in the Spring Reference Documentation. A namespace element can be
used simply to alow a more concise way of configuring an individual bean or, more powerfully, to define an
aternative configuration syntax which more closely matches the problem domain and hides the underlying
complexity from the user. A simple element may conceal the fact that multiple beans and processing steps are
being added to the application context. For example, adding the following element from the security namespace
to an application context will start up an embedded LDAP server for testing use within the application:

<security:|dap-server />

This is much simpler than wiring up the equivalent Apache Directory Server beans. The most common
alternative configuration requirements are supported by attributes on the | dap- server element and the user is
isolated from worrying about which beans they need to be set on and what the bean property names are. 1 use
of agood XML editor while editing the application context file should provide information on the attributes
and elements that are available. We would recommend that you try out the SpringSource Tool Suite as it has
special features for working with the Spring portfolio namespaces.

To start using the security namespace in your application context, all you need to do is add the schema
declaration to your application context file:

<beans xm ns="http://ww. spri ngframewor k. or g/ schenma/ beans"
xm ns: security="http://ww.springframework. org/schema/security"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="htt p: //ww. spri ngf ranewor k. or g/ schema/ beans http://ww. spri ngframewor k. or g/ schenma/ beans/ sy
htt p: // ww. spri ngfranewor k. or g/ schena/ security http://ww.springfranework. org/ schena/ security/spri

</ beans>

In many of the examples you will see (and in the sample) applications, we will often use "security" as the
default namespace rather than "beans', which means we can omit the prefix on al the security hamespace
elements, making the context easier to read. You may also want to do thisif you have your application context
divided up into separate files and have most of your security configuration in one of them. Your security
application context file would then start like this

<beans: beans xm ns="http://ww. spri ngframework. org/ schena/ security"
xm ns: beans="htt p://ww. spri ngframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p: //ww. spri ngframewor k. or g/ schenma/ beans http://wwmv springfranmewor k. or g/ schenma/ beans/ sy
http://ww. springframework. org/ schema/ security http://ww. springframework. org/ schenma/ security/spri

</ beans: beans>

WEe'll assume this syntax is being used from now on in this chapter.

2.1.1. Design of the Namespace

Ly ou can find out more about the use of the | dap- ser ver element in the chapter on LDAP.

Spring Security (2.0.x) 5

http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html
http://www.springsource.com/products/sts

Security Namespace Configuration

The namespace is designed to capture the most common uses of the framework and provide a simplified and
concise syntax for enabling them within an application. The design is largely based around the large-scale
dependencies within the framework, and can be divided up into the following areas:

o Web/HTTP Security - the most complex part. Sets up the filters and related service beans used to apply the
framework authentication mechanisms, to secure URLS, render login and error pages and much more.

» Business Object (Method) Security - options for securing the service layer.

« AuthenticationManager - handles authentication requests from other parts of the framework. A default
instance will be registered internally by the namespace.

» AccessDecisionManager - provides access decisions for web and method security. A default one will be
registered, but you can also choose to use a custom one, declared using normal Spring bean syntax.

« AuthenticationProviders - mechanisms against which the authentication manager authenticates users. The
namespace provides supports for severa standard options and also a means of adding custom beans declared
using atraditional syntax.

» UserDetailsService - closely related to authentication providers, but often also required by other beans.

Well see how these work together in the following sections.

2.2. Getting Started with Security Namespace Configuration

In this section, we'll ook at how you can build up a namespace configuration to use some of the main features
of the framework. Let's assume you initially want to get up and running as quickly as possible and add
authentication support and access control to an existing web application, with afew test logins. Then we'll ook
at how to change over to authenticating against a database or other security information repository. In later
sections we'll introduce more advanced hamespace configuration options.

2.2.1. web. xmi Configuration

Thefirst thing you need to do is add the following filter declaration to your web. xni file:

<filter>
<filter-name>springSecurityFilterChain</filter-nanme>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>
<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>

</filter-mppi ng>

This provides a hook into the Spring Security web infrastructure. Del egati ngFilterProxy iS a Spring
Framework class which delegates to a filter implementation which is defined as a Spring bean in your
application context. In this case, the bean is named "springSecurityFilterChain”, which is an internal
infrastructure bean created by the namespace to handle web security. Note that you should not use this bean
name yourself. Once you've added this to your web. xm , you're ready to start editing your application context
file. Web security services are configured using the <ht t p> element.

Spring Security (2.0.x) 6

Security Namespace Configuration

2.2.2. A Minimal <nhtt p> Configuration

All you need to enable web security to begin with is

<http auto-config="true' >
<intercept-url pattern="/**" access="ROLE _USER' />
</ http>

Which says that we want all URLs within our application to be secured, requiring the role ROLE_USER to access
them.

Note

You can use multiple <intercept-url> elements to define different access requirements for
different sets of URLS, but they will be evaluated in the order listed and the first match will be
used. So you must put the most specific matches at the top.

To add some users, you can define a set of test data directly in the namespace:

<aut henti cati on- provi der >
<user-servi ce>
<user nanme="jim" password="jim spassword" authorities="ROLE USER, ROLE_ ADM N' />
<user name="bob" password="bobspassword" authorities="ROLE USER' />
</ user-servi ce>
</ aut henti cati on- provi der >

If you are familiar with previous versions of the framework, you can probably aready guess roughly
what's going on here. The <http> element is responsible for creating a Fi | t er Chai nProxy and the filter
beans which it uses. Common issues like incorrect filter ordering are no longer an issue as the filter
positions are predefined.

The <authentication-provider> €lement creates a DaoAut henticationProvi der bean and the
<user - servi ce> element creates an | nMenor yDaol npl . A Provi der Manager bean is always created by the
namespace processing system and the DaoAut hent i cat i onProvi der is automatically registered with it.
Y ou can find more detailed information on the beans that are created in the namespace appendix.

The configuration above defines two users, their passwords and their roles within the application (which will be
used for access contral). It is aso possible to load user information from a standard properties file using the
properties atribute on user-servi ce. See the section on in-memory authentication for more details. Using
the <aut henti cati on- provi der > element means that the user information will be used by the authentication
manager to process authentication requests.

At this point you should be able to start up your application and you will be required to log in to proceed. Try it
out, or try experimenting with the "tutoria" sample application that comes with the project. The above
configuration actually adds quite a few services to the application because we have used the aut o-confi g
attribute. For example, form login processing and "remember-me" services are automatically enabled.

2.2.2.1. What does aut o-confi g Include?

Spring Security (2.0.x) 7

Security Namespace Configuration

The aut o- confi g attribute, as we have used it above, is just a shorthand syntax for:

<htt p>
<intercept-url pattern="/**" access="ROLE _USER' />
<formlogin />
<anonynous />
<http-basic />
<l ogout />
<renenber-ne />
</ http>

These other elements are responsible for setting up form-login, anonymous authentication, basic authentication,
logout handling and remember-me services respectively. They each have attributes which can be used to alter
their behaviour.

aut o- conf i g Requiresa User DetailsService

An error can occur when using auto-config without a User Det ai | sServi ce in your application
context (for example, if you are using LDAP authentication). This is because remember-me is
automatically enabled when aut o-config="true" and it requires an authentication mechanism
which uses a User Det ai | sSer vi ce to function (see the Remember-me chapter for more details). If
you have an error caused by a missing User Det ai | sSer vi ce then try removing the aut o- confi g
setting (and any r emenber - e setting you might have).

2.2.2.2. Form and Basic Login Options

Y ou might be wondering where the login form came from when you were prompted to log in, since we made
no mention of any HTML files or JSPs. In fact, since we didn't explicitly set a URL for the login page, Spring
Security generates one automatically, based on the features that are enabled and using standard values for the
URL which processes the submitted login, the default target URL the user will be sent to and so on. However,
the namespace offers plenty of suppport to allow you to customize these options. For example, if you want to
supply your own login page, you could use:

<http auto-config="true' >
<intercept-url pattern="/login.jsp*" filters="none"/>
<intercept-url pattern="/**" access="ROLE USER' />
<forml ogin | ogi n-page='/login.jsp' />

</ http>

Note that you can still use aut o- confi g. Theform | ogi n element just overrides the default settings. Also note
that we've added an extra i ntercept-url element to say that any requests for the login page should be
excluded from processing by the security filters. Otherwise the request would be matched by the pattern / *+
and it wouldn't be possible to access the login page itself! If you want to use basic authentication instead of
form login, then change the configuration to

<http auto-config="true' >
<intercept-url pattern="/**" access="ROLE_USER' />
<http-basic />

</ http>

Basic authentication will then take precedence and will be used to prompt for a login when a user attempts to
access a protected resource. Form login is still available in this configuration if you wish to useit, for example

Spring Security (2.0.x) 8

Security Namespace Configuration

through alogin form embedded in another web page.

2.2.2.2.1. Setting a Default Post-Login Destination

If aform login isn't prompted by an attempt to access a protected resource, the def aul t -t arget-url option
comes into play. This is the URL the user will be taken to after logging in, and defaults to "/". You can aso
configure things so that they user always ends up at this page (regardless of whether the login was " on-demand"
or they explicitly chose to log in) by setting the al ways- use- def aul t - t ar get attribute to "true”. Thisis useful
if your application always requires that the user starts at a"home" page, for example:

<htt p>

<intercept-url pattern='/login.htnm' filters=" none'/>

<intercept-url pattern='/**' access=' ROLE_USER />

<forml ogin | ogin-page='/login.htm default-target-url="/home. htm always-use-default-target="true' />
</ http>

2.2.3. Using other Authentication Providers

In practice you will need a more scalable source of user information than a few names added to the application
context file. Most likely you will want to store your user information in something like a database or an LDAP
server. LDAP namespace configuration is dealt with in the LDAP chapter, so we won't cover it here. If you
have a custom implementation of Spring Security's User Det ai | sSer vi ce, caled "myUserDetailsService" in
your application context, then you can authenticate against thisusing

<aut henti cati on- provi der user-service-ref="nyUserDetail sService'/>

If you want to use a database, then you can use

<aut henti cati on- provi der >
<j dbc- user-servi ce data-source-ref="securityDataSource"/>
</ aut henti cati on- provi der >

Where "securityDataSource” is the name of a DataSource bean in the application context, pointing at a
database containing the standard Spring Security user data tables. Alternatively, you could configure a Spring
Security JdbcDaol npl bean and point at that using the user - ser vi ce-ref attribute:

<aut henti cation-provi der user-service-ref="nmyUserDetail sService'/>
<beans: bean i d="nyUserDetail sServi ce" class="org.springframework. security.userdetails.jdbc.JdbcDaol npl">

<beans: property name="dat aSource" ref="dataSource"/>
</ beans: bean>

You can aso use standard Aut hent i cat i onProvi der beans by adding the
<cust om aut henti cati on- provi der > element within the bean definition. See Section 2.6, “The Default
Authentication Manager” for more on this.

2.2.3.1. Adding a Password Encoder

Often your password data will be encoded using a hashing agorithm. This is supported by the

Spring Security (2.0.x) 9

Security Namespace Configuration

<passwor d- encoder > element. With SHA encoded passwords, the original authentication provider
configuration would look like this:

<aut henti cati on- provi der >
<passwor d- encoder hash="sha"/>
<user-servi ce>
<user name="jim" password="d7e6351eaal3189a5a3641bab846c8e8c69ba39f" authoriti es="ROLE_USER, ROLE _ADM N' />
<user nanme="bob" password="4e7421b1b8765d8f 9406d87e7ccb6aa784c4ab97f" authoriti es="ROLE_USER' />
</ user-service>
</ aut henti cati on- provi der >

When using hashed passwords, it's also a good idea to use a salt value to protect against dictionary attacks and
Spring Security supports this too. Ideally you would want to use a randomly generated salt value for each user,
but you can use any property of the User Detai | s object which is loaded by your User Det ai | sServi ce. For
example, to use the user nane property, you would use

<passwor d- encoder hash="sha">
<sal t -source user-property="usernane"/>
</ passwor d- encoder >

You can use a custom password encoder bean by using the ref attribute of passwor d- encoder. This should
contain the name of a bean in the application context which is an instance of Spring Security's
Passwor dEncoder interface.

2.3. Advanced Web Features

2.3.1. Remember-Me Authentication

See the separate Remember-Me chapter for information on remember-me namespace configuration.

2.3.2. Adding HTTP/HTTPS Channel Security

If your application supports both HTTP and HTTPS, and you require that particular URLS can only be accessed
over HTTPS, then thisis directly supported using ther equi r es- channel attribute on <i nt er cept - ur | >:

<ht t p>
<intercept-url pattern="/secure/**" access="ROLE_USER' requires-channel ="https"/>
<intercept-url pattern="/**" access="ROLE_USER' requires-channel ="any"/>

</ http>

With this configuration in place, if a user attempts to access anything matching the "/secure/**" pattern using
HTTP, they will first be redirected to an HTTPS URL. The available options are "http", "https" or "any". Using
the value "any" meansthat either HTTP or HTTPS can be used.

If your application uses non-standard ports for HTTP and/or HTTPS, you can specify alist of port mappings as
follows:

<htt p>

<port - mappi ngs>

Spring Security (2.0.x) 10

Security Namespace Configuration

<port-mappi ng http="9080" https="9443"/>
</ port - mappi ngs>
</ http>

Y ou can find a more in-depth discussion of channel security in Chapter 7, Channel Security.

2.3.3. Concurrent Session Control

If you wish to place constraints on a single user's ability to log in to your application, Spring Security supports
this out of the box with the following simple additions. First you need to add the following listener to your
web. xm fileto keep Spring Security updated about session lifecycle events:

<listener>
<l i stener-class>org. springframework. security.ui.session. HtpSessi onEvent Publisher</listener-class>
</listener>

Then add the following line to your application context:

<htt p>

<concurrent - sessi on-control max-sessions="1" />
</ http>

This will prevent a user from logging in multiple times - a second login will cause the first to be invalidated.
Often you would prefer to prevent a second login, in which case you can use

<htt p>

<concurrent - sessi on-control max-sessions="1" exception-if-nmaxi num exceeded="true"/>
</ http>

The second login will then be rejected.

2.3.4. OpenlID Login

The namespace supports OpenlD login either instead of, or in addition to normal form-based login, with a
simple change:

<ht t p>
<intercept-url pattern="/**" access="ROLE USER' />
<openi d-1ogin />

</ http>

You should then register yourself with an OpenlD provider (such as myopenid.com), and add the user
information to your in-memory <user - ser vi ce>:

<user name="http://jim.hendrix. myopenid.conl" password="notused" authorities="ROLE_USER' />

Y ou should be able to login using the myopeni d. comsite to authenticate.

2.3.5. Adding in Your Own Filters

Spring Security (2.0.x) 11

http://openid.net/

Security Namespace Configuration

If you've used Spring Security before, you'll know that the framework maintains a chain of filters in order to
apply its services. You may want to add your own filters to the stack at particular locations or use a Spring
Security filter for which there isn't currently a namespace configuration option (CAS, for example). Or you
might want to use a customized version of a standard namespace filter, such as the
Aut hent i cat i onProcessi ngFi | t er which is created by the <f or m | ogi n> element, taking advantage of some
of the extra configuration options which are available by using defining the bean directly. How can you do this
with namespace configuration, since the filter chain is not directly exposed?

The order of the filters is always strictly enforced when using the namespace. Each Spring Security filter
implements the Spring Ordered interface and the filters created by the namespace are sorted during
initialization. The standard Spring Security filters each have an alias in the namespace. The filters, aliases and
namespace elements/attributes which create the filters are shown in Table 2.1, “Standard Filter Aliases and
Ordering”.

Table2.1. Standard Filter Aliasesand Ordering

Alias Filter Class Namespace Element or Attribute
CHANNEL_FILTER Channel Processi ngFi | ter http/intercept-url
CONCURRENT_SESSION_FILTERconcurrent Sessi onFi | ter ht t p/ concur r ent - sessi on-cont r ol

SESSION_CONTEXT_INTEGRAT INp$dési BRCont ext | nt egr at i onFi ht ép

LOGOUT_FILTER Logout Fi | ter htt p/ | ogout

X509 FILTER X509Pr eAut hent i cat edPr ocessi gFi ht ép/ x509

PRE_AUTH_FILTER Astract PreAut hent i cat edProcessi NfA | t er
Subclasses

CAS PROCESSING FILTER CasProcessi ngFi | ter N/A

AUTHENTICATION_PROCESSIN@uHhkdtERat i onProcessi ngFi | ter http/formlogin

BASIC_PROCESSING_FILTER Basi cProcessingFil ter htt p/ ht t p- basi c
SERVLET_API_SUPPORT_FILTERsecuri t yCont ext Hol der Awar eRequesit Epl @er vl et - api - provi si on
REMEMBER_ME _FILTER Renmenber MePr ocessi ngFi | ter ht t p/ r emenber - me
ANONYMOUS FILTER AnonynousProcessi ngFi | ter ht't p/ anonynous

EXCEPTION_TRANSLATION_FILE&Rpt i onTrans! ationFilter http

NTLM_FILTER Nt | nPr ocessi ngFi | ter N/A
FILTER_SECURITY _INTERCEPT®R t er Securityl ntercept or http
SWITCH _USER FILTER Swi t chUser Processi ngFi | ter N/A

You can add your own filter to the stack, using the custom fi | ter element and one of these names to specify
the position your filter should appear at:

<beans: bean i d="nyFilter" class="com nyconpany. MySpeci al Aut henti cationFilter">
<customfilter position="AUTHENTI CATI ON_PROCESSI| NG FI LTER'/ >
</ beans: bean>

Spring Security (2.0.x) 12

Security Namespace Configuration

You can also use the aft er or bef or e attribtues if you want your filter to be inserted before or after another
filter in the stack. The names "FIRST" and "LAST" can be used with the posi ti on attribute to indicate that you
want your filter to appear before or after the entire stack, respectively.

Avoiding filter position conflicts

If you are inserting a custom filter which may occupy the same position as one of the standard
filters created by the namespace then it's important that you don't include the namespace versions
by mistake. Avoid using the aut o- conf i g attribute and remove any elements which create filters
whose functionality you want to replace.

Note that you can't replace filters which are created by the use of the <http> element itself -
Ht t pSessi onCont ext | ntegrati onFilter, ExceptionTransl ati onFilter or
FilterSecuritylnterceptor.

If you're replacing a namespace filter which requires an authentication entry point (i.e. where the authentication
process is triggered by an attempt by an unauthenticated user to access to a secured resource), you will need to
add a custom entry point bean too.

2.3.5.1. Setting a Custom Aut henti cat i onEnt r yPoi nt

If you aren't using form login, OpenlID or basic authentication through the namespace, you may want to define
an authentication filter and entry point using a traditional bean syntax and link them into the namespace, as
weve just seen. The corresponding Aut henticati onEntryPoint can be set using the entry-point-ref
attribute on the <ht t p> element.

The CAS sample application is a good example of the use of custom beans with the namespace, including this
syntax. If you aren't familiar with authentication entry points, they are discussed in the technical overview
chapter.

2.3.6. Session Fixation Attack Protection

Session fixation attacks are a potential risk where it is possible for a malicious attacker to create a session by
accessing a site, then persuade another user to log in with the same session (by sending them a link containing
the session identifier as a parameter, for example). Spring Security protects against this automatically by
creating a new session when a user logs in. If you don't require this protection, or it conflicts with some other
requirement, you can control the behaviour using the sessi on-fi xati on-protection attribute on <http>,
which has three options

* nigrateSession - Ccreates a new session and copies the existing session attributes to the new session. Thisis
the default.

* none - Don't do anything. The original session will be retained.

* newSessi on - Create anew "clean" session, without copying the existing session data.

2.4. Method Security

Spring Security 2.0 has improved support substantially for adding security to your service layer methods. If you
are using Java 5 or greater, then support for JSR-250 security annotations is provided, as well as the
framework's native @ecured annotation. You can apply security to a single bean, using the

Spring Security (2.0.x) 13

http://en.wikipedia.org/wiki/Session_fixation

Security Namespace Configuration

i nter cept - met hods element to decorate the bean declaration, or you can secure multiple beans across the
entire service layer using the AspectJ style pointcuts.

2.4.1. The <gl obal - net hod- securi t y> Element

This element is used to enable annotation-based security in your application (by setting the appropriate
attributes on the element), and also to group together security pointcut declarations which will be applied across
your entire application context. You should only declare one <gl obal - net hod-security> element. The
following declaration would enable support for both Spring Security's @ecur ed, and JSR-250 annotations:

<gl obal - met hod- security secured-annotati ons="enabl ed" jsr250-annotati ons="enabl ed"/ >

Adding an annotation to a method (on an class or interface) would then limit the access to that method
accordingly. Spring Security's native annotation support defines a set of attributes for the method. These will be
passed to the AccessDeci si onvanager for it to make the actual decision. This example is taken from the
tutorial sample, which isagood starting point if you want to use method security in your application:

public interface BankService {

@ecured("1 S_AUTHENTI CATED_ANONYMOUSLY")
public Account readAccount(Long id);

@ecured("| S_AUTHENTI CATED_ANONYMOUSLY")
public Account[] findAccounts();

@ecur ed(" ROLE_TELLER")
public Account post(Account account, double anmpunt);

2.4.1.1. Adding Security Pointcuts using pr ot ect - poi nt cut

The use of prot ect - poi nt cut is particularly powerful, as it allows you to apply security to many beans with
only asimple declaration. Consider the following example:

<gl obal - met hod- security>
<prot ect - poi nt cut expressi on="execution(* com myconpany. *Service.*(..))" access="ROLE_USER'/ >
</ gl obal - net hod- security>

This will protect all methods on beans declared in the application context whose classes are in the
com nyconpany package and whose class names end in "Service". Only users with the ROLE_USER role will be
able to invoke these methods. As with URL matching, the most specific matches must come first in the list of
pointcuts, as the first matching expression will be used.

2.4.2. Theintercept-net hods Bean Decorator

This aternative syntax allows you to specify security for a specific bean by adding this element within the bean
itself.

<bean: bean id="target" class="com myconpany. nyapp. MyBean">
<i nter cept - net hods>
<protect nethod="set*" access="ROLE_ADM N' />
<protect nethod="get*" access="ROLE_ ADM N, ROLE_USER' />
<prot ect nethod="doSoret hi ng" access="ROLE_USER' />
</intercept-nmethods>
</ bean: bean>

Spring Security (2.0.x) 14

Security Namespace Configuration

This allows you to configure security attributes for individual methods on the bean or simple wildcarded
patterns.

2.5. The Default AccessDecisionManager

This section assumes you have some knowledge of the underlying architecture for access-control within Spring
Security. If you don't you can skip it and come back to it later, as this section is only really relevant for people
who need to do some customization in order to use more than simple role based security.

When you use a namespace configuration, a default instance of AccessDeci si onManager s automatically
registered for you and will be used for making access decisions for method invocations and web URL access,
based on the access attributes you specify in your i nt ercept -url and prot ect - poi nt cut declarations (and in
annotationsif you are using annotation secured methods).

The default strategy is to use an AffirmativeBased AccessDeci si onManager With a Rol eVoter and an

Aut hent i cat edVot er .

2.5.1. Customizing the AccessDecisionManager

If you need to use a more complicated access control strategy then it is easy to set an aternative for both
method and web security.

For method security, you do this by setting the access-decision-manager-ref attribute on
gl obal - met hod- securi t yto the Id of the appropriate AccessDeci si onManager bean in the application context:

<gl obal - met hod- security access-deci si on- manager -ref =" myAccessDeci si onManager Bean" >

</ gl obal - met hod- security>

The syntax for web security is the same, but on the ht t p element:

<http access-deci si on- manager -r ef =" myAccessDeci si onManager Bean" >

</ http>

2.6. The Default Authentication Manager

We've touched on the idea that the namespace configuration automatically registers an authentication manager
bean for you. This is an instance of Spring Security's Provi der Manager class, which you may aready be
familiar with if you've used the framework before. Y ou can't use a custom Aut hent i cat i onProvi der if you are
using either HTTP or method security through the namespace, but this should not be a problem as you have full
control over the Aut hent i cat i onProvi der Sthat are used.

You may want to register additional Aut henti cati onProvi der beans with the Provi der Manager and you can
do this using the <cust om aut henti cat i on- pr ovi der > element within the bean. For example:

<bean id="casAut henti cati onProvi der"
cl ass="org. spri ngframework. security. provi ders. cas. CasAut henti cati onProvi der">

Spring Security (2.0.x) 15

Security Namespace Configuration

<security: custom aut henticati on-provider />

</ bean>

Another common requirement is that another bean in the context may require a reference to the
Aut henti cati onManager. There is a specid element which lets you register an dias for the
Aut hent i cat i onManager and you can then use this name elsewhere in your application context.

<security:authenticati on-manager alias="authenticati onManager"/>

<bean i d="cust om zedFornlLogi nFilter" class="org.springframework.security.ui.webapp. Authenti cati onProcessi ngFi
<security:customfilter position="AUTHENTI CATI ON_PROCESSI NG FI LTER "/ >
<property name="aut henticati onManager" ref="authenti cati onManager"/>

</ bean>

Spring Security (2.0.x) 16

Chapter 3. Sample Applications

There are several sample web applications that are available with the project. To avoid an overly large
download, only the "tutorial" and "contacts' samples are included in the distribution zip file. You can either
build the others yourself, or you can obtain the war files individualy from the central Maven repository. We'd
recommend the former. Y ou can get the source as described in the introduction and it's easy to build the project
using Maven. There is more information on the project web site a
http://www.springframework.ora/spring-security/ if you need it. All paths referred to in this chapter are relative
to the source directory, once you have checked it out from subversion.

3.1. Tutorial Sample

The tutorial sample is a nice basic example to get you started. It uses simple namespace configuration
throughout. The compiled application isincluded in the distribution zip file, ready to be deployed into your web
container (spring-security-sanples-tutorial-2.0.x.war). The form-based authentication mechanism is
used in combination with the commonly-used remember-me authentication provider to automatically remember
the login using cookies.

We recommend you start with the tutorial sample, as the XML is minima and easy to follow. Most
importantly, you can easily add this one XML file (and its corresponding web. xm entries) to your existing
application. Only when this basic integration is achieved do we suggest you attempt adding in method
authorization or domain object security.

3.2. Contacts

The Contacts Sample is quite an advanced example in that it illustrates the more powerful features of domain
object access control listsin addition to basic application security.

To deploy, simply copy the WAR file from Spring Security distribution into your container’s webapps
directory. The war should be called spri ng-security-sanpl es-contacts-2.0.0.war (the appended version
number will vary depending on what release you are using).

After starting your container, check the application can load. Visit http://1 ocal host: 8080/ contacts (Or
whichever URL is appropriate for your web container and the WAR you deployed).

Next, click "Debug". You will be prompted to authenticate, and a series of usernames and passwords are
suggested on that page. Simply authenticate with any of these and view the resulting page. It should contain a
success message similar to the following:

Authentication object is of type: org.springframework.security.providers.UsernamePasswordA uthenticationToken

Authentication object as a String:
org.springframework.security.providers.UsernamePasswordA uthenti cationToken@1f127853:
Principal: org.springframework.security.userdetail s.User @b07ed00:
Username: rod; Password: [PROTECTED]; Enabled: true; AccountNonExpired: true;
credentialsNonExpired: true; AccountNonL ocked: true;
Granted Authorities: ROLE_SUPERVISOR, ROLE_USER; Password: [PROTECTED]; Authenticated: true;
Details: org.springframework.security.ui.WebA uthenticationDetail S@O:
Remotel pAddress: 127.0.0.1; Sessionld: k5qypsawgpwb;

Spring Security (2.0.x) 17

get-source
http://www.springframework.org/spring-security/

Sample Applications

Granted Authorities: ROLE_ SUPERVISOR, ROLE_USER
Authentication object holds the following granted authorities:

ROLE_SUPERVISOR (getAuthority(): ROLE_SUPERVISOR)
ROLE_USER (getAuthority(): ROLE_USER)

SUCCESS! Y our web filters appear to be properly configured!

Once you successfully receive the above message, return to the sample application's home page and click
"Manage". You can then try out the application. Notice that only the contacts available to the currently logged
on user are displayed, and only users with ROLE_SUPERVI SCR are granted access to delete their contacts. Behind
the scenes, the Met hodSecuri tyl nt er cept or S securing the business objects.

The application allows you to modify the access control lists associated with different contacts. Be sure to give
thisatry and understand how it works by reviewing the application context XML files.

3.3. LDAP Sample

The LDAP sample application provides a basic configuration and sets up both a namespace configuration and
an equivalent configuration using traditional beans, both in the same application context file. This means there
are actually two identical authentication providers configured in this application.

3.4. CAS Sample

The CAS sample requires that you run both a CAS server and CAS client. It isn't included in the distribution so
you should check out the project code as described in the introduction. You'll find the relevant files under the
sanpl e/ cas directory. There'salso aReadne. t xt filein there which explains how to run both the server and the
client directly from the source tree, complete with SSL support. Y ou have to download the CAS Server web
application (awar file) from the CAS site and drop it into the sanpl es/ cas/ ser ver directory.

3.5. Pre-Authentication Sample

This sample application demonstrates how to wire up beans from the pre-authentication framework to make use
of login information from a J2EE container. The user name and roles are those setup by the container.

Thecodeisinsanpl es/ preauth .

Spring Security (2.0.x) 18

get-source

Chapter 4. Spring Security Community

4.1. Issue Tracking

Spring Security uses JIRA to manage bug reports and enhancement requests. If you find a bug, please log a
report using JJRA. Do not log it on the support forum, mailing list or by emailing the project's developers. Such
approaches are ad-hoc and we prefer to manage bugs using a more formal process.

If possible, in your issue report please provide a JUnit test that demonstrates any incorrect behaviour. Or, better
yet, provide a patch that corrects the issue. Similarly, enhancements are welcome to be logged in the issue
tracker, although we only accept enhancement requests if you include corresponding unit tests. This is
necessary to ensure project test coverage is adequately maintained.

Y ou can access the issue tracker at http:/jira.springframework.org/browse/SEC.

4.2. Becoming Involved

We welcome your involvement in Spring Security project. There are many ways of contributing, including
reading the forum and responding to questions from other people, writing new code, improving existing code,
assisting with documentation, devel oping samples or tutorials, or simply making suggestions.

4.3. Further Information

Questions and comments on Spring Security are welcome. Y ou can use the Spring Community Forum web site
at http://forum springframework.org to discuss Spring Security with other users of the framework.
Remember to use JRA for bug reports, as explained above. Everyone is also welcome to join the
Acegisecurity-developer mailing list and participate in design discussions. The traffic volume isvery light.

Spring Security (2.0.x) 19

http://jira.springframework.org/browse/SEC
http://forum.springframework.org

Part Il. Overall Architecture

Like most software, Spring Security has certain central interfaces, classes and conceptual abstractions that are
commonly used throughout the framework. In this part of the reference guide we will introduce Spring
Security, before examining these central elements that are necessary to successfully planning and executing a
Spring Security integration.

Spring Security (2.0.x) 20

Chapter 5. Technical Overview

5.1. Runtime Environment

Spring Security iswritten to execute within a standard Java 1.4 Runtime Environment. It also supports Java 5.0,
although the Java types which are specific to this release are packaged in a separate package with the suffix
"tiger" in their JAR filename. As Spring Security aims to operate in a self-contained manner, there is no need to
place any specia configuration files into your Java Runtime Environment. In particular, there is no need to
configure a special Java Authentication and Authorization Service (JAAS) policy file or place Spring Security
into common classpath |ocations.

Similarly, if you are using an EJB Container or Servlet Container there is no need to put any specia
configuration files anywhere, nor include Spring Security in a server classloader.

This design offers maximum deployment time flexibility, as you can simply copy your target artifact (be it a
JAR, WAR or EAR) from one system to another and it will immediately work.

5.2. Shared Components

Let's explore some of the most important shared components in Spring Security. Components are considered
"shared" if they are centra to the framework and the framework cannot operate without them. These Java types
represent the building blocks of the remaining system, so it's important to understand that they're there, even if
you don't need to directly interact with them.

5.2.1. SecurityContextHolder, SecurityContext and Authentication Objects

The most fundamental object is Securi t yCont ext Hol der . Thisis where we store details of the present security
context of the application, which includes details of the principal currently using the application. By default the
Securi t yCont ext Hol der USeS a ThreadLocal to store these details, which means that the security context is
always available to methods in the same thread of execution, even if the security context is not explicitly passed
around as an argument to those methods. Using a Thr eadLocal in thisway is quite safe if care is taken to clear
the thread after the present principal's request is processed. Of course, Spring Security takes care of this for you
automatically so there is no need to worry about it.

Some applications aren't entirely suitable for using a Thr eadLocal , because of the specific way they work with
threads. For example, a Swing client might want al threads in a Java Virtual Machine to use the same security
context. For this situation you would use the Secur i t yCont ext Hol der . MODE_GLOBAL. Other applications might
want to have threads spawned by the secure thread also assume the same security identity. Thisis achieved by
using Secur it yCont ext Hol der . MODE_I NHERI TABLETHREADLOCAL. You can change the mode from the default
Securi t yCont ext Hol der . MODE_THREADLOCAL in two ways. The first is to set a system property. Alternatively,
call a static method on Securi t yCont ext Hol der . Most applications won't need to change from the default, but
if you do, take alook at the JavaDocs for Securi t yCont ext Hol der to learn more.

Inside the Securi t yCont ext Hol der we store details of the principal currently interacting with the application.
Spring Security uses an Aut hent i cat i on object to represent this information. Whilst you won't normally need
to create an Aut hent i cat i on object yoursdlf, it isfairly common for users to query the Aut hent i cat i on object.
You can use the following code block - from anywhere in your application - to obtain the name of the
authenticated user, for example:

Spring Security (2.0.x) 21

Technical Overview

Obj ect obj = SecurityContext Hol der. get Cont ext (). get Aut hentication().getPrincipal();

if (obj instanceof UserDetails) {

String usernanme = ((UserDetail s)obj).getUsernane();
} else {

String usernane = obj.toString();

}

The above code introduces a number of interesting relationships and key objects. First, you will notice that
there is an intermediate object between SecurityContextHolder and Authentication. The
Securi t yCont ext Hol der . get Cont ext () method isactually returning a Securi t yCont ext .

5.2.2. The UserDetailsService

Another item to note from the above code fragment is that you can obtain a principal from the Aut hent i cati on
object. The principal is just an bject. Most of the time this can be cast into a UserDetails object.
UserDetails IS a central interface in Spring Security. It represents a principal, but in an extensible and
application-specific way. Think of UserDetai |l s as the adapter between your own user database and what
Spring Security needs inside the Secur i t yCont ext Hol der . Being a representation of something from your own
user database, quite often you will cast the User Det ai | s to the original object that your application provided, so
you can call business-specific methods (like get Enmai | (), get Enpl oyeeNunber () and so on).

By now you're probably wondering, so when do | provide a User Det ai | s object? How do | do that? | thought
you said this thing was declarative and | didn't need to write any Java code - what gives? The short answer is
that there is a special interface called User Det ai | sService. The only method on this interface accepts a
St ri ng-based username argument and returns a User Det ai | s. Most authentication providers that ship with
Spring Security delegate to a UserDetailsService as part of the authentication process. The
User Det ai | sSer vi ce is used to build the Aut hent i cat i on object that is stored in the Securi t yCont ext Hol der .
The good news is that we provide a number of User Det ai | sSer vi ce implementations, including one that uses
an in-memory map and another that uses JDBC. Most users tend to write their own, though, with such
implementations often simply sitting on top of an existing Data Access Object (DAO) that represents their
employees, customers, or other users of the enterprise application. Remember the advantage that whatever your
UserDetailsService returns can aways be obtained from the Securi t yCont ext Hol der, as per the above code
fragment.

5.2.3. GrantedAuthority

Besides the principal, another important method provided by Aut hentication iS get Authorities(). This
method provides an array of Grant edAut hori ty objects. A Grant edAut hori ty IS, not surprisingly, an authority
that is granted to the principal. Such authorities are usualy "roles', such as ROLE_ADM NI STRATCR Of
ROLE_HR _SUPERVI SCR. These roles are later on configured for web authorization, method authorization and
domain object authorization. Other parts of Spring Security are capable of interpreting these authorities, and
expect them to be present. G ant edAut hori ty objects are usually loaded by the User Det ai | sSer vi ce.

Usually the Grant edAut hority objects are application-wide permissions. They are not specific to a given
domain object. Thus, you wouldn't likely have a Grant edAut hority to represent a permission to Enpl oyee
object number 54, because if there are thousands of such authorities you would quickly run out of memory (or,
at the very least, cause the application to take a long time to authenticate a user). Of course, Spring Security is
expressly designed to handle this common requirement, but you'd instead use the project's domain object
security capabilities for this purpose.

Last but not least, sometimes you will need to store the Securi t yCont ext between HTTP requests. Other times
the principa will re-authenticate on every request, although most of the time it will be stored. The

Spring Security (2.0.x) 22

Technical Overview

Ht t pSessi onCont ext I ntegrati onFilter iS responsible for storing a SecurityContext between HTTP
requests. As suggested by the name of the class, the Ht t pSessi on is used to store this information. Y ou should
never interact directly with the Ht t pSessi on for security purposes. There is smply no justification for doing so
- always use the Securi t yCont ext Hol der instead.

5.2.4. Summary

Just to recap, the major building blocks of Spring Security are:

Securi t yCont ext Hol der , to provide any type access to the Securi t yCont ext .

Securi t yCont ext , to hold the Aut hent i cat i on and possibly request-specific security information.

Ht t pSessi onCont ext | nt egrati onFi | ter, to store the SecurityContext in the H t pSessi on between web
requests.

Aut hent i cat i on, t0o represent the principal in a Spring Security-specific manner.

G ant edAut hor i ty, to reflect the application-wide permissions granted to a principal .

User Det ai | s, to provide the necessary information to build an Authentication object from your application's
DAOs.

User Det ai | sSer vi ce, {0 create a User Det ai | s when passed in a st ri ng-based username (or certificate ID or
alike).

Now that you've gained an understanding of these repeatedly-used components, let's take a closer look at the
process of authentication.

5.3. Authentication

As mentioned in the beginning of this reference guide, Spring Security can participate in many different
authentication environments. Whilst we recommend people use Spring Security for authentication and not
integrate with existing Container Managed Authentication, it is nevertheless supported - as is integrating with
your own proprietary authentication system. Let's first explore authentication from the perspective of Spring
Security managing web security entirely on its own, which is illustrative of the most complex and most
common situation.

Consider atypica web application's authentication process:

Y ou visit the home page, and click on alink.
A request goes to the server, and the server decides that you've asked for a protected resource.

Asyou're not presently authenticated, the server sends back a response indicating that you must authenticate.
The response will either be an HTTP response code, or aredirect to a particular web page.

Depending on the authentication mechanism, your browser will either redirect to the specific web page so
that you can fill out the form, or the browser will somehow retrieve your identity (eg a BASIC
authentication dialogue box, a cookie, a X509 certificate etc).

The browser will send back a response to the server. This will either be an HTTP POST containing the
contents of the form that you filled out, or an HTTP header containing your authentication details.

Next the server will decide whether or not the presented credentials are valid. If they're valid, the next step
will happen. If they're invalid, usually your browser will be asked to try again (so you return to step two
above).

The original request that you made to cause the authentication process will be retried. Hopefully you've

Spring Security (2.0.x) 23

Technical Overview

authenticated with sufficient granted authorities to access the protected resource. If you have sufficient
access, the request will be successful. Otherwise, you'll receive back an HTTP error code 403, which means
"forbidden".

Spring Security has distinct classes responsible for most of the steps described above. The main participants (in
the order that they are used) are the ExceptionTranslationFilter, an AuthenticationEntryPoint, an
authentication mechanism, and an Aut hent i cat i onPr ovi der .

5.3.1. ExceptionTranslationFilter

ExceptionTransl ationFilter iS a Spring Security filter that has responsibility for detecting any Spring
Security exceptions that are thrown. Such exceptions will generdly be thrown by an
Abstract Securitylnterceptor, which is the main provider of authorization services. We will discuss
Abstract Securi tyl nterceptor in the next section, but for now we just need to know that it produces Java
exceptions and knows nothing about HTTP or how to go about authenticating a principal. Instead the
ExceptionTransl ati onFi | ter Offers this service, with specific responsibility for either returning error code
403 (if the principal has been authenticated and therefore simply lacks sufficient access - as per step seven
above), or launching an Aut hent i cati onEnt ryPoi nt (if the principa has not been authenticated and therefore
we need to go commence step three).

5.3.2. AuthenticationEntryPoint

The Aut hent i cati onEnt ryPoi nt iS responsible for step three in the above list. As you can imagine, each web
application will have a default authentication strategy (well, this can be configured like nearly everything else
in Spring Security, but let's keep it simple for now). Each major authentication system will have its own
Aut hent i cat i onEnt ryPoi nt implementation, which takes actions such as described in step three.

After your browser decides to submit your authentication credentials (either as an HTTP form post or HTTP
header) there needs to be something on the server that "collects' these authentication details. By now we're at
step six in the above list. In Spring Security we have a special name for the function of collecting authentication
details from a user agent (usually a web browser), and that name is "authentication mechanism". After the
authentication details are collected from the user agent, an "Aut henti cat i on request” object is built and then
presented to an Aut hent i cat i onPr ovi der .

5.3.3. AuthenticationProvider

The last player in the Spring Security authentication processis an Aut hent i cat i onProvi der . Quite simply, itis
responsible for taking an Aut hent i cati on request object and deciding whether or not it is valid. The provider
will either throw an exception or return a fully populated Aut hent i cat i on object. Remember our good friends,
User Det ai | s and User Det ai | sServi ce? If not, head back to the previous section and refresh your memory.
Most Aut henti cationProviderS Will ask a UserDetailsService to provide a UserDetails object. As
mentioned earlier, most application will provide their own User Det ai | sSer vi ce, athough some will be able to
use the JDBC or in-memory implementation that ships with Spring Security. The resultant User Det ai | s object
- and particularly the Grant edAut hority[]S contained within the UserDetails object - will be used when
building the fully populated Aut hent i cat i on Object.

After the authentication mechanism receives back the fully-populated Aut hent i cati on object, it will deem the
request valid, put the Aut henti cati on into the Securi t yCont ext Hol der, and cause the original request to be
retried (step seven above). If, on the other hand, the Aut henticationProvider rejected the request, the
authentication mechanism will ask the user agent to retry (step two above).

Spring Security (2.0.x) 24

Technical Overview

5.3.4. Setting the SecurityContextHolder Contents Directly

Whilst this describes the typical authentication workflow, the good news is that Spring Security doesn't mind
how you put an Aut hent i cat i on inside the Securi t yCont ext Hol der . The only critical requirement is that the
SecurityCont ext Hol der contains an Authentication that represents a principa before the
Abstract Securi tyl nter cept or needs to authorize arequest.

You can (and many users do) write their own filters or MVC controllers to provide interoperability with
authentication systems that are not based on Spring Security. For example, you might be using
Container-Managed Authentication which makes the current user available from a ThreadLoca or JNDI
location. Or you might work for a company that has a legacy proprietary authentication system, which is a
corporate "standard" over which you have little control. In such situations it's quite easy to get Spring Security
to work, and still provide authorization capabilities. All you need to do is write afilter (or equivalent) that reads
the third-party user information from alocation, build a Spring Security-specific Authentication object, and put
it onto the SecurityContextHolder. It's quite easy to do this, and it is a fully-supported integration approach.

5.4. Secure Objects

Spring Security uses the term "secure object” to refer to any object that can have security (such as an
authorization decision) applied to it. The most common examples are method invocations and web requests.

5.4.1. Security and AOP Advice

If you're familiar with AOP, you'd be aware there are different types of advice available: before, after, throws
and around. An around advice is very useful, because an advisor can elect whether or not to proceed with a
method invocation, whether or not to modify the response, and whether or not to throw an exception. Spring
Security provides an around advice for method invocations as well as web requests. We achieve an around
advice for method invocations using Spring's standard AOP support and we achieve an around advice for web
requests using a standard Filter.

For those not familiar with AOP, the key point to understand is that Spring Security can help you protect
method invocations as well as web requests. Most people are interested in securing method invocations on their
services layer. This is because the services layer is where most business logic resides in current-generation
J2EE applications (for clarification, the author disapproves of this design and instead advocates properly
encapsulated domain objects together with the DTO, assembly, facade and transparent persistence patterns, but
as use of anemic domain objectsis the present mainstream approach, we'll talk about it here). If you just need to
secure method invocations to the services layer, Spring's standard AOP (otherwise known as AOP Alliance)
will be adeguate. If you need to secure domain objects directly, you will likely find that Aspectd is worth
considering.

Y ou can elect to perform method authorization using AspectJ or Spring AOP, or you can elect to perform web
request authorization using filters. You can use zero, one, two or three of these approaches together. The
mainstream usage is to perform some web request authorization, coupled with some Spring AOP method
invocation authorization on the services layer.

5.4.2. AbstractSecurityInterceptor

Each secure object type supported by Spring Security has its own class, which is a subclass of
Abstract Securityl nterceptor. Importantly, by the time the Abstract Securitylnterceptor is caled, the
Securi t yCont ext Hol der will contain avalid Aut hent i cat i on if the principal has been authenticated.

Spring Security (2.0.x) 25

Technical Overview

Abst ract Securi tyl ntercept or providesaconsistent workflow for handling secure object requests, typically:

1. Look up the "configuration attributes" associated with the present request

2. Submitting the secure object, current Authentication and configuration attributes to the
AccessDeci si onManager for an authorization decision

3. Optionally change the Aut hent i cat i on under which the invocation takes place
4. Allow the secure object to proceed (assuming access was granted)

5. Cdll theAfterlnvocati onManager if configured, once the invocation has returned.

5.4.2.1. What are Configuration Attributes?

A "configuration attribute" can be thought of as a String that has special meaning to the classes used by
Abstract Securityl nterceptor. They may be simple role names or have more complex meaning, depending
on the how sophisticated the AccessDeci si onManager implementation is. The Abst ract Securi tyl nt er cept or
is configured with an oj ect Defi ni ti onSour ce Which it uses to look up the attributes for a secure object.
Usually this configuration will be hidden from the user. Configuration attributes will be entered as annotations
on secured methods, or as access attributes on secured URL s (using the namespace <i nt er cept - ur | > syntax).

5.4.2.2. RunAsManager

Assuming AccessDeci si onManager decides to alow the request, the Abstract Securitylnterceptor Will
normally just proceed with the request. Having said that, on rare occasions users may want to replace the
Aut henti cation inside the SecurityContext with a different Authentication, which is handled by the
AccessDeci si onManager calling a RunAsManager . This might be useful in reasonably unusual situations, such
as if a services layer method needs to call a remote system and present a different identity. Because Spring
Security automatically propagates security identity from one server to another (assuming you're using a
properly-configured RMI or Httplnvoker remoting protocol client), this may be useful.

5.4.2.3. AfterlnvocationManager

Following the secure object proceeding and then returning - which may mean a method invocation completing
or a filter chain proceeding - the Abstract Securitylnterceptor gets one final chance to handle the
invocation. At this stage the Abstract Securityl nterceptor is interested in possibly modifying the return
object. We might want this to happen because an authorization decision couldn't be made "on the way in" to a
secure object invocation. Being highly pluggable, Abstract Securitylnterceptor will pass control to an
Afterlnvocati onvanager to actually modify the object if needed. This class can even entirely replace the
object, or throw an exception, or not change it in any way.

Abstract Securitylnterceptor and its related objects are shown in Figure 5.1, “The key "secure object"
model”.

Spring Security (2.0.x) 26

Technical Overview

<<lnterfaces=

Authenticationbanager

<<lnterfaces>=

AfterinvocationManager

<Zlnterfaces=» ==lntefaces=>
ObjecthefinitionSource Runfshlanager
N A 7
R | !
" I :
LS | K
SecuntyirtementionE vend “‘“R szyzels SEUSRFF
AT I £
s | 4
N, &
e : FHUSEEE
- S -
EEATT]
Anstract Secyrtyivtermentar

r+1ethl:udDEfinitinnSnurceﬂdviﬁc

-

I
ﬂ;ip—se}}

F

aspect..ISecurih.rlntercepta|r

iIterSecuritg.rlntercepta|r L
I

|
gquser=
'ilterlnvncatinﬂ

-f;\-:l‘llb!ge:-:-

JoinPoint

I|J1eth-:-dSe-:uritg,rlntercept-:

-f;\-:l‘llb!ge:-:-

+:1&thn:-dln1r-:-catin:-+

-

Figure5.1. Thekey " secure object" model

5.4.2.4. Extending the Secure Object Model

Only developers contemplating an entirely new way of intercepting and authorizing requests would need to use
secure objects directly. For example, it would be possible to build a new secure object to secure calls to a
messaging system. Anything that requires security and also provides a way of intercepting a call (like the AOP
around advice semantics) is capable of being made into a secure object. Having said that, most Spring

applications will

Met hodl nvocat i on, Aspectd Joi nPoi nt and web request Fi | t er I nvocat i on) with complete transparency.

smply use the three currently supported secure object types (AOP Alliance

Spring Security (2.0.x)

27

Chapter 6. Supporting Infrastructure

This chapter introduces some of the supplementary and supporting infrastructure used by Spring Security. If a
capability is not directly related to security, yet included in the Spring Security project, we will discussit in this
chapter.

6.1. Localization

Spring Security supports localization of exception messages that end users are likely to see. If your application
is designed for English users, you don't need to do anything as by default all Security Security messages are in
English. If you need to support other locales, everything you need to know is contained in this section.

All exception messages can be localized, including messages related to authentication failures and access being
denied (authorization failures). Exceptions and logging that is focused on developers or system deployers
(including incorrect attributes, interface contract violations, using incorrect constructors, startup time
validation, debug-level logging) etc are not localized and instead are hard-coded in English within Spring
Security's code.

Shipping in the spring-security-core-xx.jar you will find an org. spri ngf ramework. security package
that in turn contains a messages. properti es file. This should be referred to by your Appl i cati onCont ext, as
Spring Security classes implement Spring's MessageSour ceAwar e interface and expect the message resolver to
be dependency injected at application context startup time. Usually all you need to do is register a bean inside
your application context to refer to the messages. An example is shown below:

<bean i d="nessageSource" cl ass="org. springfranmework. cont ext. support. Rel oadabl eResour ceBundl eMessageSour ce" >
<property nanme="basenane" val ue="org/springframework/security/nessages"/>
</ bean>

The nessages. properties is hamed in accordance with standard resource bundles and represents the default
language supported by Spring Security messages. This default file is in English. If you do not register a
message source, Spring Security will still work correctly and fallback to hard-coded English versions of the

messages.

If you wish to customize the nessages. properti es file, or support other languages, you should copy the file,
rename it accordingly, and register it inside the above bean definition. There are not alarge number of message
keys inside this file, so localization should not be considered a major initiative. If you do perform localization
of thisfile, please consider sharing your work with the community by logging a JIRA task and attaching your
appropriately-named localized version of nessages. properti es.

Rounding out the discusson on locdization is the Spring ThreadLocal known as
org. spri ngf ramewor k. cont ext . i 18n. Local eCont ext Hol der. You should set the Local eCont ext Hol der to
represent the preferred Local e of each user. Spring Security will attempt to locate a message from the message
source using the Local e obtained from this ThreadLocal . Please refer to Spring documentation for further
details on using Local eCont ext Hol der and the helper classes that can automatically set it for you (eg
Accept Header Local eResol ver, Cooki eLocal eResol ver, Fi xedLocal eResol ver, Sessi onLocal eResol ver etc)

6.2. Filters

Spring Security uses many filters, as referred to throughout the remainder of this reference guide. If you are

Spring Security (2.0.x) 28

Supporting Infrastructure

using namespace configuration, then the you don't usually have to declare the filter beans explicitly. There may
be times when you want full control over the security filter chain, either because you are using features which
aren't supported in the namespace, or you are using your own customized versions of classes.

In this case, you have a choice in how these filters are added to your web application, in that you can use either
Spring's Del egat i ngFi | t er Proxy OF Fi | t er Chai nProxy. We'l look at both below.

When using Del egat i ngFi | t er Proxy, You will see something like thisin the web.xml file:

<filter>
<filter-name>nyFilter</filter-nanme>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>
<filter-name>nyFilter</filter-nanme>
<url-pattern>/*</url-pattern>
</filter-mppi ng>

Notice that the filter is actually a Del egat i ngFi | t er Proxy, and not the filter that will actually implement the
logic of the filter. What Del egati ngFi | t er Proxy does is delegate the Fi | t er's methods through to a bean
which is obtained from the Spring application context. This enables the bean to benefit from the Spring web
application context lifecycle support and configuration flexibility. The bean must implement
javax.servlet. Filter and it must have the same name asthat inthefil ter - nane element.

There is alifecycle issue to consider when hosting Fi I t er sin an 10C container instead of a servlet container.
Specifically, which container should be responsible for calling theFi I t er 's "startup” and "shutdown" methods?
It is noted that the order of initialization and destruction of aFi I t er can vary by servlet container, and this can
cause problems if one Fi | ter depends on configuration settings established by an earlier initialized Fi I ter.
The Spring 10C container on the other hand has more comprehensive lifecycle/loC interfaces (such as
InitializingBean, Di sposabl eBean, BeanNanmeAwar e, Appl i cat i onCont ext Awar e and many others) as well as
a well-understood interface contract, predictable method invocation ordering, autowiring support, and even
options to avoid implementing Spring interfaces (eg the dest r oy- net hod attribute in Spring XML). For this
reason we recommend the use of Spring lifecycle services instead of servliet container lifecycle services
wherever possible. Read the Javadoc for Del egat i ngFi | t er Proxy for more information

Rather than using Del egat i ngFi | t er Proxy, we strongly recommend that you use Fi | t er Chai nPr oxy instead.
Whilst Del egat i ngFi | t er Proxy isavery useful class, the problem is that the number of lines of code required
for <filter> and <filter-mappi ng> entries in web. xm explodes when using more than a few filters. To
overcome this issue, Spring Security provides a FilterChainProxy class. It is wired using a
Del egatingFilterProxy (just like in the example above), but the target class s
org. springframework. security. util.FilterChai nProxy. The filter chain is then declared in the application
context, using code such asthis:

<bean i d="filterChai nProxy" class="org.springfranework.security.util.FilterChainProxy">
<sec:filter-chain-map path-type="ant">
<sec:filter-chain pattern="/webServices/**"

filters="httpSessi onContextl|ntegrationFilterWthASCFal se, basi cProcessi ngFilter, excepti onTransl ati onFilt

<sec:filter-chain pattern="/**"

filters="httpSessi onContextl|ntegrationFilterWthASCTrue, aut henti cati onProcessi ngFilter, excepti onTransl e

</sec:filter-chain-mp>
</ bean>

You may notice similarities with the way Fi | ter Securityl nterceptor is declared. Both regular expressions

Spring Security (2.0.x) 29

Supporting Infrastructure

and Ant Paths are supported, and the most specific URIs appear first. At runtime the Fi | t er Chai nPr oxy will
locate the first URI pattern that matches the current web request and the list of filter beans specified by the
filters attribute will be applied to that request. The filters will be invoked in the order they are defined, so
you have complete control over the filter chain which is applied to a particular URL.

Y ou may have noticed we have declared two Ht t pSessi onCont ext I nt egrat i onFi | t er Sin the filter chain (Asc
is short for al | owSessi onCr eat i on, a property of Htt pSessi onCont ext | nt egr ati onFi |l ter). AS web services
will never present a j sessi oni d on future requests, creating Htt pSessi ons for such user agents would be
wasteful. If you had a high-volume application which required maximum scalability, we recommend you use
the approach shown above. For smaller applications, using a single Ht t pSessi onCont ext I nt egrat i onFi | t er
(with its default al | owSessi onCr eat i on ast rue) would likely be sufficient.

In relation to lifecycle issues, the Fi | t er Chai nProxy Will always delegatei nit (Fil ter Config) and destroy()
methods through to the underlaying Fi | t er sif such methods are called against Fi | t er Chai nPr oxy itself. Inthis
case, Fi | t er Chai nProxy guarantees to only initialize and destroy each Fi | t er once, irrespective of how many
timesit is declared by the Fi I ter I nvocati onDef i ni ti onSour ce. You control the overall choice as to whether
these methods are called or not via the targetFilterLifecycle initidlization parameter of the
Del egat i ngFi | ter Proxy that proxies Del egati ngFilt er Proxy. As discussed above, by default any serviet
container lifecycle invocations are not delegated through to Del egat i ngFi | t er Pr oxy.

You can usethe attributefil ters = "none" in the same way that you do when using namespace configuration
to build the Fi | t er Chai nProxy. This will omit the request pattern from the security filter chain entirely. Note
that anything matching this path will then have no authentication or authorization services applied and will be
freely accessible.

The order that filters are defined in web. xm is very important. Irrespective of which filters you are actualy
using, the order of the <fi | t er - mappi ng>s should be as follows:

1. channel Processi ngFi | t er, because it might need to redirect to a different protocol

2. Concurrent Sessi onFi | t er, because it doesn't use any Securi t yCont ext Hol der functionality but needs to
update the Sessi onRegi st ry to reflect ongoing requests from the principal

3. HitpSessi onContextIntegrationFilter, SO a SecurityContext can be setup in the
Securi t yCont ext Hol der at the beginning of aweb request, and any changes to the Securi t yCont ext can be
copied to the Ht t pSessi on when the web request ends (ready for use with the next web request)

4. Authentication processing mechanisms - Aut henti cationProcessingFilter, CasProcessingFilter,
Basi cProcessingFilter, HttpRequestlntegrationFilter, JbosslntegrationFilter €tCc - so that the
Securi t yCont ext Hol der can be modified to contain avalid Aut hent i cat i on request token

5. The Securi t yCont ext Hol der Awar eRequest Fi | ter, if you are using it to install a Spring Security aware
Ht t pSer vl et Request W apper into your servlet container

6. Remenber MeProcessi ngFil ter, SO that if no earlier authentication processing mechanism updated the
Securi t yCont ext Hol der, and the request presents a cookie that enables remember-me services to take
place, a suitable remembered Aut hent i cat i on object will be put there

7. AnonynousProcessi ngFilter, SO that if no earlier authentication processing mechanism updated the
Securi t yCont ext Hol der , @an anonymous Aut hent i cat i on object will be put there

8. ExceptionTransl ationFilter, to catch any Spring Security exceptions so that either an HTTP error
response can be returned or an appropriate Aut hent i cat i onEnt ryPoi nt can be launched

9. FilterSecuritylnterceptor,toprotect web URIs

Spring Security (2.0.x) 30

Supporting Infrastructure

All of the above filters use Del egati ngFi | t er Proxy OF Fil t er Chai nProxy. It is recommended that a single
Del egati ngFil terProxy proxy through to a single FilterChainProxy for each application, with that
Fi I t er Chai nProxy defining all of Spring Security filters.

If you're using SiteMesh, ensure Spring Security filters execute before the SiteMesh filters are called. This
enables the Securi t yCont ext Hol der to be populated in time for use by SiteMesh decorators

6.3. Tag Libraries

Spring Security comes bundled with several JSP tag libraries which provide arange of different services.

6.3.1. Configuration

All taglib classes are included in the core spri ng- securi ty-xx. j ar file, with thesecurity. t1d located in the
JAR's META- I NF directory. This means for JSP 1.2+ web containers you can simply include the JAR in the
WAR's VEB- I NF/ | i b directory and it will be available. If you're using a JSP 1.1 container, you'll need to
declare the JSP taglib in your web. xm file, and include security.tld in the WeB- 1 NF/1i b directory. The
following fragment is added to web. xni :

<tagli b>
<taglib-uri>http://ww.springfranmework. org/security/tags</taglib-uri>
<taglib-1ocation> VEEB- | NF/ security.tld</taglib-Ilocation>

</taglib>

6.3.2. Usage

Now that you've configured the tag libraries, refer to the individual reference guide sections for details on how
to use them. Note that when using the tags, you should include the taglib reference in your JSP:

<vg@taglib prefix="security' uri="http://ww.springframework.org/security/tags' %

Spring Security (2.0.x) 31

Chapter 7. Channel Security

7.1. Overview

In addition to coordinating the authentication and authorization requirements of your application, Spring
Security is aso able to ensure unauthenticated web requests have certain properties. These properties may
include being of a particular transport type, having a particular H: t pSessi on attribute set and so on. The most
common requirement is for your web requests to be received using a particular transport protocol, such as
HTTPS.

An important issue in considering transport security is that of session hijacking. Y our web container manages a
Ht t pSessi on by reference to aj sessi oni d that is sent to user agents either via a cookie or URL rewriting. If
thej sessi oni d is ever sent over HTTP, there is a possibility that session identifier can be intercepted and used
to impersonate the user after they complete the authentication process. This is because most web containers
maintain the same session identifier for a given user, even after they switch from HTTP to HTTPS pages.

If session hijacking is considered too significant arisk for your particular application, the only option is to use
HTTPS for every request. This means the j sessi oni d IS never sent across an insecure channel. Y ou will need
to ensure your web. xm -defined <wel come-fi | e> pointsto an HTTPS location, and the application never directs
the user to an HTTP location. Spring Security provides a solution to assist with the |atter.

7.2. Configuration

Channel security is supported by the security namespace by means of the r equi res- channel attribute on the
<i ntercept - ur | > element and thisis the simplest (and recommended approach)

To confiure channel security explicitly, you would define the following the filter in your application context:

<bean i d="channel ProcessingFilter" class="org.springfranework. security.securechannel.Channel Processi ngFilter">
<property name="channel Deci si onManager" ref="channel Deci si onManager"/>
<property name="filterlnvocationDefinitionSource">
<security:filter-invocation-definition-source path-type="regex">
<security:intercept-url pattern="\A/ secure/.*\Z" access="REQU RES SECURE CHANNEL"/ >
<security:intercept-url pattern="\Alacegilogin.jsp.*\Z" access="REQU RES_SECURE CHANNEL"/ >
<security:intercept-url pattern="\A/j_spring_security_check.*\Z" access="REQU RES_SECURE CHANNEL"/ >
<security:intercept-url pattern="\A/.*\Z" access="ANY_CHANNEL"/>
</security:filter-invocation-definition-source>
</ property>
</ bean>

<bean i d="channel Deci si onManager" cl ass="org. spri ngfranmework. security.securechannel . Channel Deci si onManager | npl ">
<property nanme="channel Processors">
<list>
<ref bean="secur eChannel Processor"/>
<ref bean="insecur eChannel Processor"/>
</list>
</ property>
</ bean>

<bean i d="secur eChannel Processor" class="org. springfranmework. security.securechannel . SecureChannel Processor"/>
<bean i d="insecureChannel Processor" class="org. springfranmework. security.securechannel.|nsecureChannel Processor"/

Like FilterSecuritylnterceptor, Apache Ant syle paths ae adso supported by the
Channel Processi ngFilter.

The channel Processi ngFil ter operates by filtering al web requests and determining the configuration
atributes that apply. It then delegates to the Channel Deci si onManager. The default implementation,

Spring Security (2.0.x) 32

Channel Security

Channel Deci si onManager | mpl , should suffice in most cases. It simply delegates to the list of configured
Channel Processor instances. The attribute ANY_CHANNEL can be used to override this behaviour and skip a
particular URL. Otherwise, a channel Processor Will review the request, and if it is unhappy with the request
(e.g. if it was received across the incorrect transport protocol), it will perform a redirect, throw an exception or
take whatever other action is appropriate.

Included with Spring Security are two concrete Channel Processor implementations. Secur eChannel Processor
ensures requests with a configuration attribute of REQUI RES_SECURE_CHANNEL are received over HTTPS, whilst
I nsecur eChannel Processor ensures requests with a configuration attribute of REQUI RES_| NSECURE CHANNEL
are received over HTTP. Both implementations delegate to a Channel Ent ryPoi nt if the required transport
protocol is not used. The two Channel Ent ryPoi nt implementations included with Spring Security simply
redirect the request to HTTP and HTTPS as appropriate. Appropriate defaults are assigned to the
Channel Processor implementations for the configuration attribute keywords they respond to and the
Channel EntryPoi nt they delegate to, athough you have the ability to override these using the application
context.

Note that the redirections are absolute (eg http://ww. conpany. com 8080/ app/ page), not relative (eg
! app/ page). During testing it was discovered that Internet Explorer 6 Service Pack 1 has a bug whereby it does
not respond correctly to a redirection instruction which also changes the port to use. Accordingly, absolute
URL s are used in conjunction with bug detection logic in the Por t Resol ver | npl that is wired up by default to
many Spring Security beans. Please refer to the JavaDocs for Por t Resol ver | npl for further details.

Y ou should note that using a secure channel is recommended if usernames and passwords are to be kept secure
during the login process. If you do decide to use Channel Processi ngFi | ter with form-based login, please
ensure that your login page is set t0 REQU RES SECURE_CHANNEL, and that the
Aut hent i cat i onProcessi ngFi | t er Ent ryPoi nt . f or ceHt t ps property istr ue.

7.3. Conclusion

Once configured, using the channel security filter is very easy. Simply request pages without regard to the
protocol (ie HTTP or HTTPS) or port (eg 80, 8080, 443, 8443 etc). Obviously you'll still need away of making
the initial request (probably viathe web. xmi <wel corre- fi | e> or a well-known home page URL), but once this
is done the filter will perform redirects as defined by your application context.

You can also add your own Channel Processor implementations to the Channel Deci si onManager | npl . For
example, you might set a Ht t pSessi on attribute when a human user is detected via a "enter the contents of this
graphic" procedure. Your Channel Processor would respond to say REQUI RES_HUMAN USER configuration
attributes and redirect to an appropriate entry point to start the human user validation process if the
Ht t pSessi on attribute is not currently set.

To decide whether a security check belongs in a Channel Processor Or an AccessDeci si onVot er, remember
that the former is designed to handle unauthenticated requests, whilst the latter is designed to handle
authenticated requests. The latter therefore has access to the granted authorities of the authenticated principal.
In addition, problems detected by a channel Processor will generally cause an HTTP/HTTPS redirection so its
requirements can be met, whilst problems detected by an AccessbDeci si onvoter will ultimately result in an
AccessDeni edExcept i on (depending on the governing AccessDeci si onManager).

Spring Security (2.0.x) 33

Part Ill. Authentication

We've aready introduced Spring Security's authentication architecture in the Technical Overview chapter. In
this part of the reference guide we will examine individual authentication mechanisms and their corresponding
Aut henti cat i onProvi der S. We'll also look at how to configure authentication more generally, including if you
have several authentication approaches that need to be chained together.

With some exceptions, we will be discussing the full details of Spring Security bean configuration rather than
the shorthand namespace syntax. Y ou should review the introduction to using namespace configuration and the
options it provides to see if they will meet your needs. As you come to use the framework more, and need to
customize the internal behaviour, you will probably want to understand more about how the individual services
are implemented, which classes to look at extending and so on. This part is more targeted at providing this kind
of information. We'd recommend that you supplement the content by browsing the Javadoc and the source itself
1.

Y inks to both Javadoc APIs and browsable source cross-reference are available from the project web site.

Spring Security (2.0.x) 34

Chapter 8. Common Authentication Services

8.1. Mechanisms, Providers and Entry Points

To use Spring Security's authentication services, you'll usually need to configure a web filter, together with an
Aut hent i cat i onProvi der and Aut hent i cat i onEnt ryPoi nt . In this section we are going to explore an example
application that needs to support both form-based authentication (so a nice HTML page is presented to a user
for them to login) and BASIC authentication (so aweb service or similar can access protected resources).

In the web.xml, this application will need a single Spring Security filter in order to use the FilterChainProxy.
Nearly every Spring Security application will have such an entry, and it looks like this:

<filter>
<filter-name>filterChai nProxy</filter-nanme>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>
<filter-nanme>filterChainProxy</filter-nanme>
<url-pattern>/*</url-pattern>
</filter-mappi ng>

The above declarations will cause every web request to be passed through to the bean called i | t er Chai nPr oxy
which will usually be an instance of Spring Security's Fi | t er Chai nProxy. As explained in the filters section of
this reference guide, the Fi | t er Chai nPr oxy isagenerally-useful class that enables web requests to be passed to
different filters based on URL patterns. Those delegated filters are managed inside the application context, so
they can benefit from dependency injection. Let's have a look at what the FilterChainProxy bean definition
would look like inside your application context:

<bean id="filterChai nProxy"
cl ass="org. spri ngframework. security.util.FilterChainProxy">
<security:filter-chai n-map path-type="ant">
<security:filter-chain pattern="/**" filters="httpSessi onContextlntegrationFilter,|ogoutFilter,authenticatic
</security:filter-chain- map>
</ bean>

Theftilter-chai n-map syntax from the security namespace allows you to define the mapping from URLS to
filter chains, using a sequence of fi I t er - chai n child elements. Each of these defines a set of URLs using the
pat t er n attribute and a chain of filtersusing thefi | t er s attribute. What's important to note at this stage is that
aseries of filterswill be run - in the order specified by the declaration - and each of those filters are actually the
id of another bean in the application context. So, in our case some extra beans will also appear in the
application context, and they'll be named ht t pSessi onCont ext I nt egrati onFi | ter, | ogout Fi | ter and So on.
The order that the filters should appear is discussed in the filters section of the reference guide - although they
are correct in the above example.

In our example we have the Aut henti cati onProcessi ngFil ter and Basi cProcessingFilter being used.
These are the "authentication mechanisms' that respond to form-based authentication and BASIC HTTP
header-based authentication respectively (we discussed the role of authentication mechanisms earlier in this
reference guide). If you weren't using form or BASIC authentication, neither of these beans would be defined.
Youd instead define filters applicable to your desired authentication environment, such as
Di gest Processi ngFi l ter OF CasProcessingFilter. Refer to the individual chapters of this part of the

Spring Security (2.0.x) 35

Common Authentication Services

reference guide to learn how to configure each of these authentication mechanisms.

Recall that Htt pSessi onContext | ntegrationFilter keeps the contents of the SecurityContext between
invocations inside an HTTP session. This means the authentication mechanisms are only used once, being
when the principal initially tries to authenticate. The rest of the time the authentication mechanisms sit there
and silently pass the request through to the next filter in the chain. That is a practical requirement due to the fact
that few authentication approaches present credentials on each and every cal (BASIC authentication being a
notable exception), but what happens if a principal's account gets cancelled or disabled or otherwise changed
(eg anincrease or decrease in Gr ant edAut hor i t y[] S) after the initial authentication step? Let's look at how that
is handled now.

The major authorization provider for secure objects has previously been introduced as
Abstract Securitylnterceptor. This class needs to have access to an Aut henti cati onManager. It aso has
configurable settings to indicate whether an Aut hent i cati on object should be re-authenticated on each secure
object invocation. By default it just accepts any Authentication inside the SecurityCont ext Hol der iS
authenticated if Aut henti cati on. i sAut henti cat ed() returnstrue. Thisis great for performance, but not ideal
if you want to ensure up-to-the-moment authentication validity. For such cases you'll probably want to set the
Abstract Securityl nterceptor.al waysReaut henti cat e property to true.

You might be asking yourself, "what's this Aut hent i cat i onManager ?'. We haven't explored it before, but we
have discussed the concept of an Aut henti cati onProvi der. Quite simply, an Aut henti cati onManager iS
responsible for passing requests through a chain of AuthenticationProviders. It's alittle like the filter chain we
discussed earlier, athough there are some differences. There is only one Authenticati onManager
implementation shipped with Spring Security, so let's ook at how it's configured for the example were using in
this chapter:

<bean i d="aut henti cati onManager"
cl ass="org. springframework. security. provi ders. Provi der Manager " >

<property name="providers">
<list>

<ref |ocal ="daoAut henti cati onProvi der"/>

<ref |ocal ="anonynousAut henti cati onProvi der"/>

<ref |ocal ="renmenber MeAut henti cati onProvi der"/>
</list>
</ property>
</ bean>

It's probably worth mentioning at this point that your authentication mechanisms (which are usualy filters) are
also injected with a reference to the Aut hent i cat i onManager . SO both Abst ract Securi tyl nt ercept or as well
as the authentication mechanisms will use the above ProviderManager to poll a list of
Aut henti cati onProvi derS.

In our example we have three providers. They are tried in the order shown (which isimplied by the use of a
Li st instead of a set), with each provider able to attempt authentication, or skip authentication by simply
returning nul I . If al implementations return null, the Provi der Manager will throw a suitable exception. If
you're interested in learning more about chaining providers, please refer to the Provi der Manager JavaDacs.

The providers to use will sometimes be interchangeable with the authentication mechanisms, whilst at other
times they will depend on a specific authentication mechanism. For example, the DaoAut hent i cat i onPr ovi der
just needs a string-based username and password. Various authentication mechanisms result in the collection of
a string-based username and password, including (but not limited to) BASIC and form authentication. Equally,
some authentication mechanisms create an authentication request object which can only be interpreted by a
single type of Aut henti cationProvi der. An example of this one-to-one mapping would be JA-SIG CAS,
which uses the notion of a service ticket which can therefore only be authenticated by
CasAut hent i cat i onProvi der. A further example of a one-to-one mapping would be the LDAP authentication
mechanism, which can only be processed an the LdapAut henti cati onProvi der. The specifics of such

Spring Security (2.0.x) 36

Common Authentication Services

relationships are detailed in the JavaDocs for each class, plus the authentication approach-specific chapters of
this reference guide. Y ou need not be terribly concerned about this implementation detail, because if you forget
to register a suitable provider, you'll simply receive a Provi der Not FoundExcepti on When an attempt to
authenticate is made.

After configuring the correct authentication mechanisms in the Filter Chai nProxy, and ensuring that a
corresponding Aut hent i cat i onProvi der iSregistered in the Provi der Manager , your last step is to configure an
Aut hent i cati onEnt ryPoi nt . Recall that earlier we discussed the role of Excepti onTransl ati onFi | t er, which
is used when HTTP-based requests should receive back an HTTP header or HTTP redirect in order to start
authentication. Continuing on with our earlier example:

<bean i d="exceptionTransl ationFilter"
cl ass="org. springfranmework. security.ui.ExceptionTranslationFilter">
<property name="aut henticati onEntryPoint" ref="authenticati onProcessingFilterEntryPoint"/>
<property nanme="accessDeni edHandl er ">
<bean cl ass="org. springframework. security. ui.AccessDeni edHandl er | npl ">
<property name="errorPage" val ue="/accessDeni ed.jsp"/>
</ bean>
</ property>
</ bean>

<bean i d="aut henti cati onProcessi ngFilterEntryPoint"
cl ass="org. spri ngframework. security. ui.webapp. Aut henti cati onProcessi ngFi | t er Ent ryPoi nt ">
<property name="l|ogi nFornmJrl" val ue="/1ogin.jsp"/>
<property name="forceHttps">< val ue="fal se"/>
</ bean>

Notice that the ExceptionTranslationFilter requires two collaborators. The first,
AccessDeni edHandl er | npl , USES a Request Di spat cher forward to display the specified access denied error
page. We use aforward so that the Securi t yCont ext Hol der still contains details of the principal, which may be
useful for display to the user (in old releases of Spring Security we relied upon the servlet container to handle a
403 error message, which lacked this useful contextual information). AccessDeni edHandl er | mpl Will also set
the HTTP header to 403, which is the official error code to indicate access denied. In the case of the
Aut hent i onEnt ryPoi nt , here we're setting what action we would like taken when an unauthenticated principal
attempts to perform a protected operation. Because in our example we're going to be using form-based
authentication, we specify Aut hent i cati onProcessi nFi | t er Ent ryPoi nt and the URL of the login page. Y our
application will usually only have one entry point, and most authentication approaches define their own specific
Aut hent i cat i onEnt ryPoi nt . Details of which entry point to use for each authentication approach is discussed
in the authentication approach-specific chapters of this reference guide.

8.2. UserDetails and Associated Types

As mentioned in the first part of the reference guide, most authentication providers take advantage of the
User Detai | s and User Det ai | sServi ce interfaces. The contract for this latter interface consists of a single
method:

UserDetail s | oadUser ByUser nane(String usernane) throws UsernanmeNot FoundExcepti on, DataAccessExcepti on;

The returned UserDetail s is an interface that provides getters that guarantee non-null provision of basic
authentication information such as the username, password, granted authorities and whether the user is enabled
or disabled. Most authentication providers will use a User Det ai | sSer vi ce, even if the username and password
are not actually used as part of the authentication decision. Generally such providers will be using the returned

Spring Security (2.0.x) 37

Common Authentication Services

User Det ai | s object just for its Grant edAut hori ty[] information, because some other system (like LDAP or
X509 or CAS etc) has undertaken the responsibility of actually validating the credentials.

A single concrete implementation of User Details is provided with Spring Security, being the user class.
Spring Security users will need to decide when writing their User Det ai | sSer vi ce what concrete User Det ai | s
class to return. In most cases User will be used directly or subclassed, although special circumstances (such as
object relational mappers) may require users to write their own User Det ai | s implementation from scratch. This
is not such an unusual situation, and users should not hesitate to ssimply return their normal domain object that
represents a user of the system. This is especially common given that User Detai | s is often used to store
additional principal-related properties (such as their telephone number and email address), so that they can be
easily used by web views.

Given User Det ai | sServi ce iS S0 simple to implement, it should be easy for users to retrieve authentication
information using a persistence strategy of their choice. Having said that, Spring Security does include a couple
of useful base implementations, which we'll ook at below.

8.2.1. In-Memory Authentication

Whilst it is easy to use create a custom User Det ai | sSer vi ce implementation that extracts information from a
persistence engine of choice, many applications do not require such complexity. This is particularly true if
you're undertaking a rapid prototype or just starting integrating Spring Security, when you don't really want to
spend time configuring databases or writing User Det ai | sSer vi ce implementations. For this sort of situation, a
simple option isto use the user - ser vi ce element from the security namespace:

<user-service id="userDetail sService">
<user name="jim" password="jim spassword" authorities="ROLE USER, ROLE ADM N' />
<user name="bob" password="bobspassword" authorities="ROLE USER' />

</ user-servi ce>

This also suppots the use of an external propertiesfile:

<user-service id="userDetail sService" properties="users.properties"/>

The properties file should contain entriesin the form

user name=passwor d, gr ant edAut hori ty[, grant edAut hority] [, enabl ed| di sabl ed]

For example

jim=jimspassword, ROLE_USER, ROLE_ADM N, enabl ed
bob=bobspasswor d, ROLE_USER, enabl ed

8.2.2. JDBC Authentication

Spring Security also includes a User Det ai | sSer vi ce that can obtain authentication information from a JDBC
data source. Internally Spring JDBC is used, so it avoids the complexity of a fully-featured object relational
mapper (ORM) just to store user details. If your application does use an ORM tool, you might prefer to write a
custom User Det ai | sService to reuse the mapping files you've probably aready created. Returning to
JdbcDaol npl , an example configuration is shown below:

Spring Security (2.0.x) 38

Common Authentication Services

<bean i d="dat aSour ce" class="org. springfranmework.jdbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="driverd assNane" val ue="org. hsqgl db. j dbcDri ver"/>
<property name="url" val ue="j dbc: hsqgl db: hsqgl : / /| ocal host: 9001"/ >
<property name="usernane" val ue="sa"/>
<property nanme="password" val ue=""/>
</ bean>

<bean id="userDetail sService" class="org.springframework. security.userdetails.jdbc.JdbcDaol npl">
<property nanme="dat aSource" ref="dataSource"/>
</ bean>

You can use different relational database management systems by modifying the Dri ver Manager Dat aSour ce
shown above. Y ou can also use a global data source obtained from JNDI, as per normal Spring options.

8.2.2.1. Default User Database Schema

Irrespective of the database you are using and how a Dat aSour ce is obtained, a standard schema must be in
place. The DDL for an HSQL database instance would be:

CREATE TABLE users (

user name VARCHAR(50) NOT NULL PRI MARY KEY,
password VARCHAR(50) NOT NULL,

enabl ed Bl T NOT NULL

)i

CREATE TABLE authorities (
user name VARCHAR(50) NOT NULL,
aut hority VARCHAR(50) NOT NULL

)

ALTER TABLE authorities ADD CONSTRAINT fk_authorities_users foreign key (usernanme) REFERENCES users(usernane);

If the default schema is unsuitable for your needs, JdbcDaol npl provides properties that allow customisation of
the SQL statements. Please refer to the JavaDocs for details, but note that the class is not intended for complex
custom subclasses. If you have a complex schema or would like a custom User Det ai | s implementation
returned, you'd be better off writing your own User Det ai | sSer vi ce. The base implementation provided with
Spring Security isintended for typical situations, rather than catering for all possible requirements.

8.3. Concurrent Session Handling

Spring Security is able to prevent a principal from concurrently authenticating to the same application more
than a specified number of times. Many ISVs take advantage of this to enforce licensing, whilst network
administrators like this feature because it helps prevent people from sharing login names. You can, for
example, stop user "Batman" from logging onto the web application from two different sessions.

To use concurrent session support, you'll need to add the following to web. xni :

<li stener>
<l i stener-class>org. springfranework. security. ui.session.HttpSessi onEvent Publ i sher</Ii stener-class>
</listener>

In addition, you will need to add the

org. springfranework. security.concurrent. Concurrent SessionFilter {0 your FilterChainProxy. The

Spring Security (2.0.x) 39

Common Authentication Services

Concur rent Sessi onFi | t er requires two properties, sessi onRegi st ry, which generally points to an instance of
Sessi onRegi st ryl npl , and expi redUr |, which points to the page to display when a session has expired.

The web. xm Htt pSessi onEvent Publ i sher causesS an ApplicationEvent to be published to the Spring
Appl i cationCont ext every time a Htt pSessi on commences or terminates. This is critical, as it allows the
Sessi onRegi st ryl npl to be notified when a session ends.

You will also need to wire up the Concurrent SessionControllerinmpl and refer to it from your
Pr ovi der Manager bean:;

<bean i d="aut henti cati onManager"
cl ass="org. springfranmework. security. provi ders. Provi der Manager " >
<property name="providers">
<l-- your providers go here -->
</ property>
<property nanme="sessionController" ref="concurrentSessionController"/>
</ bean>

<bean i d="concurrent Sessi onControl | er"
cl ass="org. springfranmework. security. concurrent. Concurrent Sessi onControllerlnpl">
<property nanme="nmaxi muntessi ons" val ue="1"/>
<property nanme="sessi onRegistry">
<bean cl ass="org. springfranmework. security.concurrent. Sessi onRegi strylnpl"/>
<property>
</ bean>

8.4. Authentication Tag Libraries
Aut hent i cat i onTag iSused to simply output a property of the current Aut hent i cat i on object to the web page.
The following JSP fragment illustrates how to use the Aut hent i cat i onTag:

<security:authentication property="principal.usernanme"/>

This tag would cause the principal's name to be output. Here we are assuming the
Aut henti cati on. get Principal () iS a UserDetails object, which is generaly the case when using one of
Spring Security's stadard Aut hent i cat i onPr ovi der implementations.

Spring Security (2.0.x) 40

Chapter 9. DAO Authentication Provider

9.1. Overview

Spring Security includes a production-quality Aut henticationProvi der implementation called
DaoAut henti cati onProvi der. This authentication provider is compatible with al of the authentication
mechanisms that generate a User namePasswor dAut hent i cat i onToken, and is probably the most commonly
used provider in the framework. Like most of the other authentication providers, the
DaoAuthenticationProvider leverages a UserDetailsService in order to lookup the username, password and
GrantedAuthority[]s. Unlike most of the other authentication providers that leverage UserDetailsService, this
authentication provider actually requires the password to be presented, and the provider will actually evaluate
the validity or otherwise of the password presented in an authentication request object.

9.2. Configuration

Aside from adding DaoA uthenticationProvider to your ProviderManager list (as discussed at the start of this
part of the reference guide), and ensuring a suitable authentication mechanism is configured to present a
UsernamePasswordA uthenticationToken, the configuration of the provider itself israther ssimple;

<bean i d="daoAut henti cati onProvi der"
cl ass="org. spri ngframework. security. provi ders. dao. DaoAut henti cati onProvi der">
<property name="user Detail sService" ref="i nMenoryDaol npl "/ >
<property name="salt Source" ref bean="salt Source"/>
<property nanme="passwor dEncoder" ref="passwordEncoder"/>
</ bean>

The Passwor dEncoder and Sal t Sour ce are optional. A Passwor dEncoder provides encoding and decoding of
passwords presented in the User Det ai | s object that is returned from the configured User Det ai | sServi ce. A
Sal t Sour ce enables the passwords to be populated with a "salt", which enhances the security of the passwords
in the authentication repository. Passwor dEncoder implementations are provided with Spring Security covering
MD5, SHA and cleartext encodings. Two SaltSource implementations are aso provided:
Syst emW deSal t Sour ce Which encodes all passwords with the same salt, and Ref | ecti onSal t Sour ce, which
inspects a given property of the returned User Det ai | s object to obtain the salt. Please refer to the JavaDocs for
further details on these optional features.

In addition to the properties above, the DaoAut henticationProvider supports optional caching of
UserDetails oObjects. The UsercCache interface enables the DaoAut henticationProvider to place a
User Det ai | s Object into the cache, and retrieve it from the cache upon subsequent authentication attempts for
the same username. By default the DaoAut hent i cat i onProvi der uses the Nul | User Cache, which performs no
caching. A usable caching implementation is also provided, EnCacheBasedUser Cache, which is configured as
follows:

<bean i d="daoAut henti cati onProvi der"
cl ass="org. spri ngfranmework. security. provi ders. dao. DaoAut henti cati onProvi der" >
<property name="user Detail sService" ref="userDetail sService"/>
<property nanme="user Cache" ref="userCache"/>
</ bean>

<bean i d="cacheManager" cl ass="org. spri ngframework. cache. ehcache. EnCacheManager Fact or yBean" >

Spring Security (2.0.x) 41

DAO Authentication Provider

<property name="configLocati on" val ue="cl asspat h: / ehcache-fail safe. xm "/ >
</ bean>

<bean i d="user CacheBackend" cl ass="org. spri ngfranework. cache. ehcache. EnCacheFact or yBean" >
<property nanme="cacheManager" ref="cacheManager"/>
<property nanme="cacheNane" val ue="user Cache"/>

</ bean>

<bean i d="user Cache" class="org.springfranmework. security.providers.dao.cache. EhnCacheBasedUser Cache" >
<property name="cache" ref="userCacheBackend"/>
</ bean>

All Spring Security EH-CACHE implementations (including EnCacheBasedUser Cache) require an EH-CACHE
cache object. The cache object can be obtained from wherever you like, athough we recommend you use
Spring's factory classes as shown in the above configuration. If using Spring's factory classes, please refer to
the Spring documentation for further details on how to optimise the cache storage location, memory usage,
eviction policies, timeouts etc.

Note

In the majority of cases, where your application is a stateful web application, you don't need to use
a cache as the user's authentication information will be stored in the Ht t pSessi on.

A design decision was made not to support account locking in the DaoAut hent i cat i onProvi der, as doing so
would have increased the complexity of the User Det ai | sServi ce interface. For instance, a method would be
required to increase the count of unsuccessful authentication attempts. Such functionality could be easily
provided by leveraging the application event publishing features discussed below.

DaoAut hent i cati onProvi der returns an Aut henti cati on object which in turn has its pri nci pal property set.
The principal will be either a string (which is essentially the username) or a User Det ai | s object (which was
looked up from the User Det ai | sSer vi ce). By default the User Det ai | s is returned, as this enables applications
to add extra properties potentially of use in applications, such as the user's full name, email address etc. If using
container adapters, or if your applications were written to operate with St ri ngs (as was the case for releases
prior to Spring Security 0.6), you should set the DaoAut henti cati onProvi der.forcePrincipal AsString
property tot r ue in your application context

Spring Security (2.0.x) 42

Chapter 10. LDAP Authentication

10.1. Overview

LDAP is often used by organizations as a central repository for user information and as an authentication
service. It can also be used to store the role information for application users.

There are many different scenarios for how an LDAP server may be configured so Spring Security's LDAP
provider is fully configurable. It uses separate strategy interfaces for authentication and role retrieval and
provides default implementations which can be configured to handle a wide range of situations.

Y ou should be familiar with LDAP before trying to use it with Spring Security. The following link provides a
good introduction to the concepts involved and a guide to setting up a directory using the free LDAP server
OpenLDAP: http://wwv zyt rax. cond books/ | dap/ . Some familiarity with the JNDI APIs used to access
LDAP from Java may also be useful. We don't use any third-party LDAP libraries (Mozilla, JLDAP etc.) in the
LDAP provider, but extensive use is made of Spring LDAP, so some familiarity with that project may be useful
if you plan on adding your own customizations.

10.2. Using LDAP with Spring Security

LDAP authentication in Spring Security can be roughly divided into the following stages.

1. Obtaining the unique LDAP “Distinguished Name”, or DN, from the login name. This will often mean
performing a search in the directory, unless the exact mapping of usernamesto DNsis known in advance.

2. Authenticating the user, either by binding as that user or by performing a remote “compare”’ operation of the
user's password against the password attribute in the directory entry for the DN.

3. Loading thelist of authorities for the user.

The exception is when the LDAP directory is just being used to retrieve user information and authenticate
againgt it locally. This may not be possible as directories are often set up with limited read access for attributes
such as user passwords.

We will look at some configuration scenarios below. For full information on available configuration options,
please consult the security namespace schema (information from which should be available in your XML
editor).

10.3. Configuring an LDAP Server

The first thing you need to do is configure the server against which authentication should take place. This is
done using the <l dap- server > element from the security namespace. This can be configured to point at an
external LDAP server, using theur | attribute:

<l dap-server url="1dap://springframework. org: 389/ dc=spri ngf ranewor k, dc=org" />

Spring Security (2.0.x) 43

http://www.zytrax.com/books/ldap/

LDAP Authentication

10.3.1. Using an Embedded Test Server

The <I dap- server > element can also be used to create an embedded server, which can be very useful for
testing and demonstrations. In this case you use it without the ur | attribute:

<l dap- server root="dc=spri ngfranmework, dc=org"/>

Here we've specified that the root DIT of the directory should be “dc=springframework,dc=org”, which is the
default. Used this way, the namespace parser will create an embedded Apache Directory server and scan the
classpath for any LDIF files, which it will attempt to load into the server. You can customize this behaviour
using thel di f attribute, which defines an LDIF resource to be loaded:

<| dap-server |dif="classpath:users.Idif" />

This makes it alot easier to get up and running with LDAP, since it can be inconvenient to work al the time
with an external server. It aso insulates the user from the complex bean configuration needed to wire up an
Apache Directory server. Using plain Spring Beans the configuration would be much more cluttered. Y ou must
have the necessary Apache Directory dependency jars available for your application to use. These can be
obtained from the LDAP sample application.

10.3.2. Using Bind Authentication

Thisis the most common LDAP authentication scenario.
<l dap- aut henti cati on- provi der user-dn-pattern="uid={0}, ou=peopl e"/ >

This simple example would obtain the DN for the user by substituting the user login name in the supplied
pattern and attempting to bind as that user with the login password. Thisis OK if al your users are stored under
a single node in the directory. If instead you wished to configure an LDAP search filter to locate the user, you
could use the following:

<l dap- aut henti cati on-provi der user-search-filter="(uid={0})" user-search-base="ou=peopl e"/>

If used with the server definition above, this would perform a search under the DN
ou=peopl e, dc=spri ngf ramewor k, dc=org using the value of the user-search-filter attribute as a filter.
Again the user login name is substituted for the parameter in the filter name. If user-search-base isn't
supplied, the search will be performed from the root.

10.3.3. Loading Authorities

How authorities are loaded from groups in the LDAP directory is controlled by the following attributes.

e group- sear ch- base. Defines the part of the directory tree under which group searches should be performed.

e group-rol e-attribute. The attribute which contains the name of the authority defined by the group entry.
Defaultsto cn

Spring Security (2.0.x) 44

LDAP Authentication

e group-search-filter. The filter which is used to search for group membership. The default is
uni queMenmber ={ 0}, corresponding to the gr oupOr Uni queMenbers LDAP class. In this case, the substituted
parameter is the full distinguished name of the user. The parameter {1} can be used if you want to filter on
the login name.

So if we used the following configuration

<l dap- aut henti cati on-provi der user-dn-pattern="ui d={0}, ou=peopl e" group-sear ch-base="ou=gr oups" />

and authenticated successfully as user “ben”, the subsequent loading of authorities would perform a search
under the directory entry ou=groups, dc=spri ngframewor k, dc=or g, looking for entries which contain the
attribute uni queMenber with value ui d=ben, ou=peopl e, dc=spri ngf r amewor k, dc=or g. By default the authority
names will have the prefix ROLE_ prepended. Y ou can change this using ther ol e- prefi x attribute. If you don't
want any prefix, user ol e- pref i x="none" . For more information on loading authorities, see the Javadoc for the
Def aul t LdapAut hori ti esPopul at or class.

10.4. Implementation Classes

The namespace configuration options we've used above are simple to use and much more concise than using
Spring beans explicitly. There are situations when you may need to know how to configure Spring Security
LDAP directly in your application context. You may wish to customize the behaviour of some of the classes,
for example. If you're happy using namespace configuration then you can skip this section and the next one.

The main LDAP provider class is
org. springfranmework. security. providers. | dap. LdapAut hent i cati onProvi der. This bean doesn't actually
do much itself but delegates the work to two other beans, an LdapAuthenticator and an
LdapAut hori ti esPopul at or Which are responsible for authenticating the user and retrieving the user's set of
G ant edAut hor i t yS respectively.

10.4.1. LdapAuthenticator Implementations

The authenticator is also responsible for retrieving any required user attributes. This is because the permissions
on the attributes may depend on the type of authentication being used. For example, if binding as the user, it
may be necessary to read them with the user's own permissions.

There are currently two authentication strategies supplied with Spring Security:

» Authentication directly to the LDAP server ("bind" authentication).

» Password comparison, where the password supplied by the user is compared with the one stored in the
repository. This can either be done by retrieving the value of the password attribute and checking it locally or
by performing an LDAP "compare" operation, where the supplied password is passed to the server for
comparison and the real password value is never retrieved.

10.4.1.1. Common Functionality

Before it is possible to authenticate a user (by either strategy), the distinguished name (DN) has to be obtained
from the login name supplied to the application. This can be done either by simple pattern-matching (by setting
the setUserDnPatterns array property) or by setting the userSearch property. For the DN pattern-matching
approach, a standard Java pattern format is used, and the login name will be substituted for the parameter { 0} .
The pattern should be relative to the DN that the configured Spri ngSecuri t yCont ext Sour ce Will bind to (see

Spring Security (2.0.x) 45

LDAP Authentication

the section on connecting to the LDAP server for more information on this). For example, if you are using an
LDAP server with the URL | dap: // nonkeynachi ne. co. uk/ dc=spri ngf r amewor k, dc=or g, and have a pattern
ui d={0}, ou=greatapes, then a login name of “gorilla® will map to a DN
ui d=gori | | a, ou=gr eat apes, dc=spri ngf ramewor k, dc=or g. Each configured DN pattern will be tried in turn
until a match is found. For information on using a search, see the section on search objects below. A
combination of the two approaches can also be used - the patterns will be checked first and if no matching DN
isfound, the search will be used.

10.4.1.2. BindAuthenticator

The class org. springframework. security. providers. | dap. aut henti cator. Bi ndAut henti cat or
implements the bind authentication strategy. It simply attempts to bind as the user.

10.4.1.3. PasswordComparisonAuthenticator

The class
org. springframework. security. providers. | dap.aut henti cat or. Passwor dConpari sonAut henti cat or
implements the password comparison authentication strategy.

10.4.1.4. Active Directory Authentication

In addition to standard LDAP authentication (binding with a DN), Active Directory has its own non-standard
syntax for user authentication.

10.4.2. Connecting to the LDAP Server

The beans discussed above have to be able to connect to the server. They both have to be supplied with a
Spri ngSecuri t yCont ext Sour ce Which is an extension of Spring LDAP's Cont ext Sour ce. Unless you have
special requirements, you will usually configure a Def aul t Spri ngSecuri t yCont ext Sour ce bean, which can be
configured with the URL of your LDAP server and optionally with the username and password of a"manager"
user which will be used by default when binding to the server (instead of binding anonymously). For more
information read the Javadoc for this class and for Spring LDAP'S Abst r act Cont ext Sour ce.

10.4.3. LDAP Search Objects

Often more a more complicated strategy than simple DN-matching is required to locate a user entry in the
directory. This can be encapsulated in an LdapUser Sear ch instance which can be supplied to the authenticator
implementations, for example, to allow them to locate a user. The supplied implementation is
Fi | t er BasedLdapUser Sear ch.

10.4.3.1. FilterBasedLdapUser Search

This bean uses an LDAP filter to match the user object in the directory. The process is explained in the Javadoc
for the corresponding search method on the JDK DirContext class. As explained there, the search filter can be
supplied with parameters. For this class, the only valid parameter is {0} which will be replaced with the user's
login name.

10.4.4. LdapAuthoritiesPopulator

After authenticating the user successfully, the LdapAut henti cati onProvider will attempt to load a set of
authorities for the wuser by caling the configured LdapAuthoritiesPopulator bean. The

Spring Security (2.0.x) 46

http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)

LDAP Authentication

Def aul t LdapAut hori ti esPopul ator iS an implementation which will load the authorities by searching the
directory for groups of which the user is a member (typically these will be groupOfNames or
gr oupOF Uni queNanes entries in the directory). Consult the Javadoc for this class for more details on how it
works.

10.4.5. Spring Bean Configuration

A typical configuration, using some of the beans we've discussed here, might look like this:

<bean i d="cont ext Sour ce"
cl ass="org. spri ngfranmework. security.| dap. Def aul t Spri ngSecurityCont ext Sour ce" >
<constructor-arg val ue="I dap: // nmonkeynmachi ne: 389/ dc=spri ngf r amewor k, dc=or g"/ >
<property name="userDn" val ue="cn=manager, dc=spri ngfranmewor k, dc=or g"/>
<property name="password" val ue="password"/>
</ bean>

<bean i d="I| dapAut hPr ovi der"
cl ass="org. spri ngframework. security. providers. | dap. LdapAut henti cati onProvi der" >
<constructor - ar g>
<bean cl ass="org. springframework. security.providers.| dap. authenti cator. Bi ndAut henti cator">
<constructor-arg ref="context Source"/ >
<property name="userDnPatterns">
<l i st ><val ue>ui d={ 0}, ou=peopl e</ val ue></1i st >
</ property>
</ bean>
</ constructor-arg>
<constructor - ar g>
<bean cl ass="org. springfranmework. security.|dap. popul at or. Def aul t LdapAut hori ti esPopul at or">
<constructor-arg ref="context Source"/>
<constructor-arg val ue="ou=groups"/>
<property name="groupRol eAttribute" val ue="ou"/>
</ bean>
</ constructor-arg>
</ bean>

This would st wup the provider to access an LDAP server with URL
| dap: / / monkeymachi ne: 389/ dc=spr i ngf r amewor k, dc=or g. Authentication will be performed by attempting to
bind with the DN ui d=<user-I ogi n- nane>, ou=peopl e, dc=spri ngf ranmewor k, dc=org. After successful
authentication, roles will be assigned to the wuser by searching under the DN
ou=gr oups, dc=spri ngf r amewor k, dc=or g with the default filter (menber =<user' s- DN>) . The role name will be
taken from the “ou” attribute of each match.

To configure a user search object, which uses the filter (ui d=<user-1ogi n-name>) for use instead of the
DN-pattern (or in addition to it), you would configure the following bean

<bean i d="user Search"
cl ass="org. springframework. security.|dap.search. FilterBasedLdapUser Sear ch">
<constructor-arg index="0" val ue=""/>
<constructor-arg index="1" val ue="(uid={0})"/>
<constructor-arg index="2" ref="context Source" />
</ bean>

and use it by setting the Bi ndAut hent i cat or bean's userSearch property. The authenticator would then call the
search object to obtain the correct user's DN before attempting to bind as this user.

10.4.6. LDAP Attributes and Customized UserDetails

The net result of an authentication using LdapAut henti cati onProvi der iS the same as a normal Spring
Security authentication using the standard User Det ai | sSer vi ce interface. A User Det ai | s object is created and
stored in the returned Aut hent i cat i on Object. Aswith using a User Det ai | sSer vi ce, @ COmMmon requirement is

Spring Security (2.0.x) a7

LDAP Authentication

to be able to customize this implementation and add extra properties. When using LDAP, these will normally
be attributes from the user entry. The creation of the UserDetails object is controlled by the provider's
User Det ai | sCont ext Mapper Strategy, which is responsible for mapping user objects to and from LDAP context
data:

public interface UserDetail sCont ext Mapper {
User Det ai | s mapUser Fr onCont ext (Di r Cont ext Operati ons ctx, String usernane, G antedAuthority[] authority);

voi d mapUser ToCont ext (UserDetail s user, DirContextAdapter ctx);

Only the first method is relevant for authentication. If you provide an implementation of this interface, you can
control exactly how the UserDetails object is created. The first parameter is an instance of Spring LDAP's
Di r Cont ext Oper at i ons wWhich gives you access to the LDAP attributes which were loaded. The user nane
parameter is the name used to authenticate and the final parameter isthe list of authorities loaded for the user.

The way the context data is loaded varies slightly depending on the type of authentication you are using. With
the Bi ndAut hent i cati or, the context returned from the bind operation will be used to read the attributes,
otherwise the data will be read using the standard context obtained from the configured Cont ext Sour ce (when
asearch is configured to locate the user, this will be the data returned by the search object).

Spring Security (2.0.x) 48

Chapter 11. Form Authentication Mechanism

11.1. Overview

HTTP Form Authentication involves using the Aut henti cati onProcessi ngFi | ter to process a login form.
This is the most common way for an application to authenticate end users. Form-based authentication is
entirely compatible with the DAO and JAAS authentication providers.

11.2. Configuration

The login form simply containsj _user name and j _passwor d input fields, and posts to a URL that is monitored
by the filter (by default /j _spring_security_check). You should add an Aut henti cati onProcessi ngFi | t er
to your application context:

<bean i d="aut henti cati onProcessingFilter"
cl ass="org. springfranmewor k. security. ui.webapp. Aut henti cati onProcessingFilter">
<property name="aut henti cati onManager" ref="authenti cati onManager"/>
<property nanme="aut henticationFailureUl" value="/login.jsp?l ogin_error=1"/>
<property name="defaul t TargetUrl" val ue="/"/>
<property name="filterProcessesU|" value="/j_spring_security_check"/>
</ bean>

The configured Aut henti cati onManager processes each authentication request. If authentication fails, the
browser will be redirected to the aut henti cati onFai l ureUrl . The Aut henti cati onExcepti on will be placed
into the Ht t pSessi on attribute indicated by
Abst ract Processi ngFi | t er. SPRING_SECURI TY_LAST_EXCEPTI ON_KEY, enabling a reason to be provided to the
user on the error page.

If authentication is successful, the resulting Authentication object will be placed into the
Securit yCont ext Hol der .

Once the Securi t yCont ext Hol der has been updated, the browser will need to be redirected to the target URL
which is usually indicated by the Ht t pSessi on attribute stored under
Abst r act Processi ngFi | t er. SPRI NG_SECURI TY_TARGET_URL_KEY. This attribute is automatically set by the
ExceptionTransl ati onFi | t er When an Aut hent i cati onExcept i on OCCUrs, so that after login is completed the
user can return to what they were originaly trying to access. If for some reason the H: t pSessi on does not
indicate the target URL, the browser will be redirected to the def aul t Tar get Ur | property.

Spring Security (2.0.x) 49

Chapter 12. BASIC Authentication Mechanism

12.1. Overview

Spring Security provides a Basi cProcessingFilter which is capable of processing basic authentication
credentials presented in HTTP headers. This can be used for authenticating calls made by Spring remoting
protocols (such as Hessian and Burlap), as well as normal user agents (such as Internet Explorer and
Navigator). The standard governing HTTP Basic Authentication is defined by RFC 1945, Section 11, and the
Basi cProcessingFil ter conforms with this RFC. Basic Authentication is an attractive approach to
authentication, because it is very widely deployed in user agents and implementation is extremely simple (it's
just a Base64 encoding of the username: password, specified in an HTTP header).

12.2. Configuration

To implement HTTP Basic Authentication, it is necessary to define Basi cPr ocessi ngFi | t er in the filter chain.
The application context will need to define the Basi cProcessi ngFi | t er and its required collaborator:

<bean i d="basi cProcessingFilter" class="org.springframework. security.ui.basicauth.BasicProcessingFilter"
<property name="aut henti cati onManager"><ref bean="aut henticati onManager"/></property>

<property name="aut henticati onEntryPoi nt"><ref bean="authenticati onEntryPoint"/></property>

</ bean>

<bean i d="aut henti cati onEntryPoi nt"

cl ass="org. spri ngframework. security. ui.basicauth. Basi cProcessi ngFil terEntryPoint">
<property name="real mNane" ><val ue>Nanme O Your Real nx/val ue></property>

</ bean>

The configured Aut henti cati onManager processes each authentication request. If authentication fails, the
configured Aut henti cat i onEnt ryPoi nt Will be used to retry the authentication process. Usualy you will use
the Basi cProcessi ngFi | t er Ent ryPoi nt , which returns a 401 response with a suitable header to retry HTTP
Basic authentication. If authentication is successful, the resulting Aut hent i cat i on object will be placed into the
Securi t yCont ext Hol der .

If the authentication event was successful, or authentication was not attempted because the HTTP header did
not contain a supported authentication request, the filter chain will continue as normal. The only time the filter
chain will be interrupted is if authentication fails and the Aut hent i cati onEnt ryPoi nt is called, as discussed in
the previous paragraph

Spring Security (2.0.x) 50

Chapter 13. Digest Authentication

13.1. Overview

Spring Security provides a Di gest Processi ngFil ter which is capable of processing digest authentication
credentials presented in HTTP headers. Digest Authentication attempts to solve many of the weaknesses of
Basic authentication, specifically by ensuring credentials are never sent in clear text across the wire. Many user
agents support Digest Authentication, including FireFox and Internet Explorer. The standard governing HTTP
Digest Authentication is defined by RFC 2617, which updates an earlier version of the Digest Authentication
standard prescribed by RFC 2069. Most user agents implement RFC 2617. Spring Security
Di gest Processi ngFi | ter is compatible with the "aut h" quality of protection (qop) prescribed by RFC 2617,
which also provides backward compatibility with RFC 2069. Digest Authentication is a highly attractive option
if you need to use unencrypted HTTP (ie no TLS/HTTPS) and wish to maximise security of the authentication
process. Indeed Digest Authentication is a mandatory requirement for the WebDAV protocol, as noted by RFC
2518 Section 17.1, so we should expect to see it increasingly deployed and replacing Basic Authentication.

Digest Authentication is definitely the most secure choice between Form Authentication, Basic Authentication
and Digest Authentication, although extra security also means more complex user agent implementations.
Central to Digest Authentication is a "nonce". This is a value the server generates. Spring Security's nonce
adopts the following format:

base64(expirationTime + ":" + ndSHex(expirationTine + ":" + key))
expirationTi me: The date and tine when the nonce expires, expressed in mlliseconds
key: A private key to prevent nodification of the nonce token

The Di gest Processi ngFi | ter EntryPoi nt has a property specifying the key used for generating the nonce
tokens, along with a nonceVval i di t ySeconds property for determining the expiration time (default 300, which
equals five minutes). Whist ever the nonce is valid, the digest is computed by concatenating various strings
including the username, password, nonce, URI being requested, a client-generated nonce (merely a random
value which the user agent generates each request), the realm name etc, then performing an MD5 hash. Both
the server and user agent perform this digest computation, resulting in different hash codes if they disagree on
an included value (eg password). In Spring Security implementation, if the server-generated nonce has merely
expired (but the digest was otherwise valid), the DigestProcessingFilterEntryPoint will send a
"stal e=true" header. This tells the user agent there is no need to disturb the user (as the password and
username etc is correct), but simply to try again using a new nonce.

An appropriate value for Di gest ProcessingFilterEntryPoi nt'S nonceValiditySeconds parameter will
depend on your application. Extremely secure applications should note that an intercepted authentication header
can be used to impersonate the principal until the expirati onTi me contained in the nonce is reached. Thisis
the key principle when selecting an appropriate setting, but it would be unusual for immensely secure
applications to not be running over TLSHTTPS in the first instance.

Because of the more complex implementation of Digest Authentication, there are often user agent issues. For
example, Internet Explorer fails to present an "opaque” token on subsequent requests in the same session.
Spring Security filters therefore encapsulate al state information into the "nonce" token instead. In our testing,
Spring Security implementation works reliably with FireFox and Internet Explorer, correctly handling nonce
timeouts etc.

Spring Security (2.0.x) 51

Digest Authentication

13.2. Configuration

Now that we've reviewed the theory, let's see how to use it. To implement HTTP Digest Authentication, it is
necessary to define Di gest Processi ngFi | t er in the fitler chain. The application context will need to define the
Di gest Processi ngFi | t er and itsrequired collaborators:

<bean i d="di gest ProcessingFilter"
cl ass="org. springfranmework. security. ui.digestauth. Di gestProcessingFilter">
<property name="user Detail sService" ref="jdbcDaol npl"/>
<property nanme="aut henticati onEntryPoi nt" ref="di gestProcessingFilterEntryPoint"/>
<property name="user Cache" ref="user Cache"/>
</ bean>

<bean i d="di gest Processi ngFi | t er Ent ryPoi nt"
cl ass="org. springfranmework. security.ui.digestauth. D gestProcessingFilterEntryPoint">
<property name="real mNane" val ue="Contacts Real mvia D gest Authentication"/>
<property name="key" val ue="acegi"/>
<property nanme="nonceVal i ditySeconds" val ue="10"/>
</ bean>

The configured User Det ai | sSer vi ce is heeded because Di gest Processi ngFi | t er must have direct access to
the clear text password of a user. Digest Authentication will NOT work if you are using encoded passwords in
your DAO. The DAO collaborator, along with the uUserCache, are typically shared directly with a
DaoAut hent i cat i onProvi der . The aut henti cati onEnt r yPoi nt property must be
Di gest Processi ngFi | t er Ent ryPoi nt, SO that Di gest Processi ngFi | t er can obtain the correct r eal mNarme and
key for digest calculations.

Like Basi cAut henti cationFil ter, if authentication is successful an Aut henti cati on request token will be
placed into the Securi t yCont ext Hol der . If the authentication event was successful, or authentication was not
attempted because the HTTP header did not contain a Digest Authentication regquest, the filter chain will
continue as normal. The only time the filter chain will be interrupted is if authentication fails and the
Aut hent i cat i onEnt ryPoi nt is called, as discussed in the previous paragraph.

Digest Authentication's RFC offers a range of additional features to further increase security. For example, the
nonce can be changed on every request. Despite this, Spring Security implementation was designed to minimise
the complexity of the implementation (and the doubtless user agent incompatibilities that would emerge), and
avoid needing to store server-side state. You are invited to review RFC 2617 if you wish to explore these
features in more detail. As far as we are aware, Spring Security's implementation does comply with the
minimum standards of this RFC.

Spring Security (2.0.x) 52

Chapter 14. Remember-Me Authentication

14.1. Overview

Remember-me or persistent-login authentication refers to web sites being able to remember the identity of a
principal between sessions. This is typically accomplished by sending a cookie to the browser, with the cookie
being detected during future sessions and causing automated login to take place. Spring Security provides the
necessary hooks for these operations to take place, and has two concrete remember-me implementations. One
uses hashing to preserve the security of cookie-based tokens and the other uses a database or other persistent
storage mechanism to store the generated tokens.

Note that both implemementations require a User Det ai | sSer vi ce. If you are using an authentication provider
which doesn't use a User Det ai | sSer vi ce (for example, the LDAP provider) then it won't work unless you also
have aUser Det ai | sSer vi ce bean in your application context.

14.2. Simple Hash-Based Token Approach

This approach uses hashing to achieve a useful remember-me strategy. In essence a cookie is sent to the
browser upon successful interactive authentication, with the cookie being composed as follows:

base64(username + ":" + expirationTine + ":" + nmd5Hex(username + ":" + expirationTinme + ":" password + ":"
user name: As identifiable to the UserDetailsService

passwor d: That matches the one in the retrieved UserDetails

expirationTi me: The date and tine when the remenber-nme token expires, expressed in mlliseconds

key: A private key to prevent nodification of the renenber-ne token

As such the remember-me token is valid only for the period specified, and provided that the username,
password and key does not change. Notably, this has a potential security issue in that a captured remember-me
token will be usable from any user agent until such time as the token expires. This is the same issue as with
digest authentication. If a principal is aware a token has been captured, they can easily change their password
and immediately invalidate al remember-me tokens on issue. If more significant security is needed you should
use the approach described in the next section. Alternatively remember-me services should ssimply not be used
at all.

If you are familiar with the topics discussed in the chapter on namespace configuration, you can enable
remember-me authentication just by adding the <r emenber - me> element:

<ht t p>

<r émsnber -me key="nyAppKey"/>
</ http>

It is automatically enabled for you if you are using the auto-config setting. The User Det ai | sServi ce will
normally be selected automatically. If you have more than one in your application context, you need to specify
which one should be used with the user-service-ref attribute, where the value is the name of your
User Det ai | sServi ce bean.

Spring Security (2.0.x) 53

ns-config
ns-auto-config

Remember-Me Authentication

14.3. Persistent Token Approach

This approach is based on the article http://jaspan.com/improved_persistent_login_cookie best practice with
some minor modifications . To use the this approach with namespace configuration, you would supply a
datasource reference:

<ht t p>

<renenber - me dat a- sour ce-r ef =" soneDat aSour ce"/ >
</ http>

The database should contain aper si st ent _| ogi ns table, created using the following SQL (or equivalent):

create tabl e persistent_|logins (username varchar(64) not null, series varchar(64) primary key, token varchar

14.4. Remember-Me Interfaces and Implementations

Remember-me authentication is not used with basic authentication, given it is often not used with
Ht t pSessi ons. Remember-me is used with Aut hent i cat i onProcessi ngFi | ter, and is implemented via hooks
in the Abst ract Processi ngFi | ter superclass. The hooks will invoke a concrete Renmenber MeSer vi ces at the
appropriate times. The interface looks like this:

Aut henti cati on autolLogi n(Htt pServl et Request request, HttpServl et Response response);
voi d | oginFail (HttpServl et Request request, HttpServl et Response response);
voi d | ogi nSuccess(Ht t pSer vl et Request request, HttpServl et Response response, Authentication successful Authenti c

Please refer to the JavaDocs for a fuller discussion on what the methods do, although note at this stage that
Abstract Processi ngFil ter only cals the I oginFail () and | ogi nSuccess() methods. The aut oLogi n()
method is called by Remenber MePr ocessi ngFi | t er whenever the Securi t yCont ext Hol der does not contain an
Aut hent i cat i on. Thisinterface therefore provides the underlying remember-me implementation with sufficient
notification of authentication-related events, and delegates to the implementation whenever a candidate web
request might contain a cookie and wish to be remembered. This design alows any number of remember-me
implementation strategies. We've seen above that Spring Security provides two implementations. Welll ook at
thesin turn.

14.4.1. TokenBasedRememberMeServices

This implementation supports the simpler approach described in Section 14.2, “Simple Hash-Based Token
Approach”. TokenBasedRenenmber MeServices generates a Renenber MeAut henti cati onToken, which is
processed by Remenber MeAut hent i cati onProvi der. A key is shared between this authentication provider and
the TokenBasedRenenber MeServices. In addition, TokenBasedRenenber MeServices requires A
UserDetailsService from which it can retrieve the username and password for signature comparison purposes,
and generate the Remenber MeAut hent i cat i onToken to contain the correct Gr ant edAut hori t y[]s. Some sort of

1Essentially, the username is not included in the cookie, to prevent exposing a valid login name unecessarily. There is a discussion on this
in the comments section of this article.

Spring Security (2.0.x) 54

http://jaspan.com/improved_persistent_login_cookie_best_practice

Remember-Me Authentication

logout command should be provided by the application that invalidates the cookie if the user requests this.
TokenBasedRenenber MeSer vi ces also implements Spring Security's Logout Handl er interface so can be used
with Logout Fi | t er to have the cookie cleared automatically.

The beans required in an application context to enable remember-me services are as follows:

<bean i d="remenber MeProcessi ngFil ter"
cl ass="org. spri ngframewor k. security.ui.renenberme. Remenber MePr ocessi ngFi |l ter">
<property name="renenber MeServi ces" ref="renenber MeServices"/>
<property name="aut henti cati onManager" ref="theAut henti cati onManager" />
</ bean>

<bean i d="renmenber MeServi ces" cl ass="org. springfranmework. security.ui.renmenberne. TokenBasedRenenber MeSer vi ces" >
<property name="user Detail sService" ref="nmyUserDetail sService"/>
<property nanme="key" val ue="springRocks"/>

</ bean>

<bean i d="remenber MeAut henti cati onProvi der"
cl ass="org. spri ngframework. security. provi ders.renenber ne. Remenber MeAut hent i cati onProvi der " >
<property name="key" val ue="springRocks"/>

</ bean>
Don't forget to add your Rermenber MeSer vi ces implementation to your
Aut hent i cati onProcessi ngFi | t er. set Remember MeSer vi ces() property, include the

Remenber MeAut hent i cati onProvi der in your AuthenticationManager.setProviders() list, and add
Rermenber MeProcessi ngFilter iNt0 your FilterChainProxy (typically immediately after your
Aut hent i cati onProcessi ngFil ter).

14.4.2. PersistentTokenBasedRememberMeServices

This class can be used in the same way as TokenBasedRemenber MeSer vi ces, but it additionally needs to be
configured with aPer si st ent TokenReposi t ory to store the tokens. There are two standard implementations.

e I nMenoryTokenReposi toryl npl which isintended for testing only.

* JdbcTokenReposi t oryl npl which stores the tokens in a database.
The database schema is described above in Section 14.3, “ Persistent Token Approach”.

Spring Security (2.0.x) 55

Chapter 15. Java Authentication and Authorization
Service (JAAS) Provider

15.1. Overview

Spring Security provides a package able to delegate authentication requests to the Java Authentication and
Authorization Service (JAAS). This package is discussed in detail below.

Central to JAAS operation are login configuration files. To learn more about JAAS login configuration files,
consult the JAAS reference documentation available from Sun Microsystems. We expect you to have a basic
understanding of JAAS and its login configuration file syntax in order to understand this section.

15.2. Configuration

The JaasAut hent i cat i onProvi der attempts to authenticate a user’s principal and credentials through JAAS.

Let’s assume we have a JAAS login configuration file, / WEB- | NF/ | ogi n. conf , with the following contents:

JAASTest {
sanpl e. Sanpl eLogi nModul e requi red
s

Like all Spring Security beans, the JaasAut henti cati onProvi der is configured via the application context.
The following definitions would correspond to the above JAAS login configuration file:

<bean i d="j aasAut henti cati onProvi der"
cl ass="org. springframework. security. providers.jaas.JaasAut henti cati onProvi der">
<property nanme="|ogi nConfig" val ue="/WEB-|NF/1| ogi n. conf"/>
<property nanme="I| ogi nCont ext Nane" val ue="JAASTest"/ >
<property nanme="cal | backHandl ers" >
<list>
<bean cl ass="org. spri ngframework. security. providers.jaas.JaasNaneCal | backHandl er"/>
<bean cl ass="org. springfranmework. security.providers.jaas.JaasPasswordCal | backHandl er"/ >
</list>
</ property>
<property name="aut horityG anters">
<list>
<bean cl ass="org. springframework. security. provi ders.jaas. TestAuthorityGanter"/>
</list>
</ property>
</ bean>

The Cal | backHand| er sand Aut hori t yGr ant er S are discussed below.

15.2.1. JAAS CallbackHandler

Most JAAS Logi nMbdul es require a callback of some sort. These callbacks are usually used to obtain the
username and password from the user.

In a Spring Security deployment, Spring Security is responsible for this user interaction (via the authentication
mechanism). Thus, by the time the authentication request is delegated through to JAAS, Spring Security's
authentication mechanism will aready have fully-populated an Aut hentication object containing all the

Spring Security (2.0.x) 56

Java Authentication and Authorization Service (JAAS)

information required by the JAAS Logi nMbdul e.

Therefore, the JAAS package for Spring Security provides two default calback handlers,
JaasNaneCal | backHandl er and JaasPasswor dCal | backHandl er . Each of these callback handlers implement
JaasAut hent i cati onCal | backHandl er. In most cases these callback handlers can simply be used without
understanding the internal mechanics.

For those needing full control over the callback behavior, internally JaasAut heti cat i onProvi der Wraps these
JaasAut henti cati onCal | backHandl er S with an I nt er nal Cal | backHandl er. The I nt er nal Cal | backHandl er
is the class that actually implements JAAS normal cal | backHandl er interface. Any time that the JAAS
Logi nModul e is used, it is passed a list of application context configured | nt er nal Cal | backHandl er S. If the
Logi nModul e requests a callback against the I nt er nal Cal | backHandl er S, the callback is in-turn passed to the
JaasAut hent i cati onCal | backHandl er S being wrapped.

15.2.2. JAAS AuthorityGranter

JAAS works with principals. Even "roles' are represented as principals in JAAS. Spring Security, on the other
hand, works with Authenti cation objects. Each Aut hentication object contains a single principal, and
multiple Gr ant edAut hor i t y[]s. To facilitate mapping between these different concepts, Spring Security's JAAS
package includes an Aut hori t yGrant er interface.

An AuthorityGranter IS responsible for inspecting a JAAS principal and returning a String. The
JaasAut henti cati onProvi der then creates a JaasG ant edAut hority (which implements Spring Security’s
G ant edAut hori ty interface) containing both the Aut hori t yGrant er -returned st ri ng and the JAAS principal
that the Aut horityGranter was passed. The JaasAut henti cati onProvi der obtains the JAAS principals by
firstly successfully authenticating the user’s credentials using the JAAS Logi nMbdul e, and then accessing the
Logi nContext it returns. A cal to Logi nCont ext . get Subj ect (). get Principal s() iS made, with each
resulting principal passed to each Aut hori tyGrant er defined against the
JaasAut henti cati onProvi der. set Aut hori tyGrant er s(Li st) property.

Spring Security does not include any production Aut hori t yGrant er S given that every JAAS principal has an
implementation-specific meaning. However, there is a TestAuthorityGanter in the unit tests that
demonstrates asimple Aut hori t yGrant er implementation.

Spring Security (2.0.x) 57

Chapter 16. Pre-Authentication Scenarios

There are situations where you want to use Spring Security for authorization, but the user has aready been
reliably authenticated by some external system prior to accessing the application. We refer to these situations as
“pre-authenticated” scenarios. Examples include X.509, Siteminder and authentication by the J2EE container in
which the application is running. When using pre-authentication, Spring Security hasto

1. Identify the user making the request.

2. Obtain the authorities for the user.

The details will depend on the external authentication mechanism. A user might be identified by their
certificate information in the case of X.509, or by an HTTP request header in the case of Siteminder. If relying
on container authentication, the user will be identified by calling the get User Pri nci pal () method on the
incoming HTTP request. In some cases, the external mechanism may supply role/authority information for the
user but in others the authorities must be obtained from a separate source, such as aUser Det ai | sSer vi ce.

16.1. Pre-Authentication Framework Classes

Because most pre-authentication mechanisms follow the same pattern, Spring Security has a set of classes
which provide an internal framework for implementing pre-authenticated authentication providers. This
removes duplication and allows new implementations to be added in a structured fashion, without having to
write everything from scratch. Y ou don't need to know about these classes if you want to use something like
X.509 authentication, as it already has a namespace configuration option which is simpler to use and get started
with. If you need to use explicit bean confiuration or are planning on writing your own implementation then an
understanding of how the provided implementations work will be useful. You will find the web related classes
under the org.springframework.security.ui.preauth package and the backend classes under
org.springframework.security.providers.preauth. We just provide an outline here so you should consult the
Javadoc and source where appropriate.

16.1.1. AbstractPreAuthenticatedProcessingFilter

This class will check the current contents of the security context and, if empty, it will attempt to extract user
information from the HTTP request and submit it to the Aut hent i cati onManager . Subclasses override the
following methods to obtain this information:

protected abstract Object getPreAuthenticatedPrincipal (HttpServletRequest request);

protected abstract Object getPreAuthenticatedCredential s(HtpServl et Request request);

After caling these, the filter will create a PreAut henti cat edAut henti cati onToken containing the returned
data and submit it for authentication. By “authentication” here, we really just mean further processing to
perhaps load the user's authorities, but the standard Spring Security authentication architecture is followed.

16.1.2. AbstractPreAuthenticated AuthenticationDetailsSource

Like other Spring Security authentication filters, the pre-authentication filter has an
aut henti cati onDet ai | sSour ce property which by default will create a WebAut hent i cati onDet ai | s object to
store additional information such as the session-identifier and originating IP address in the det ai | s property of
the Aut hent i cati on object. In cases where user role information can be obtained from the pre-authentication

Spring Security (2.0.x) 58

Pre-Authentication Scenarios

mechanism, the data is aso stored in this property. Subclasses of
Abst r act PreAut hent i cat edAut hent i cat i onDet ai | sSour ce Use an extended details object which implements
the G- ant edAut horii ti esCont ai ner interface, thus enabling the authentication provider to read the authorities
which were externally allocated to the user. We'll look at a concrete example next.

16.1.2.1. J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

If the filter is configured with an aut henti cationDet ai | sSource wWhich is an instance of this class, the
authority information is obtained by calling the isUserinRole(String role) method for each of a
pre-determined set of “mappable roles’. The class gets these from a configured
Mappabl eAt t ri but esRet ri ever . Possible implementations include hard-coding a list in the application context
and reading the role information from the <security-role> information in a web.xm file. The
pre-authentication sample application uses the latter approach.

There is an additional stage where the roles (or attributes) are mapped to Spring Security Grant edAut hority
objects using a configured At t ri but es2Gr ant edAut hori ti esMapper . The default will just add the usual ROLE_
prefix to the names, but it gives you full control over the behaviour.

16.1.3. PreAuthenticatedAuthenticationProvider

The pre-authenticated provider has little more to do than load the User Det ai | s object for the user. It does this
by delegating to a AuthenticationUserDetailsService. The latter is similar to the standard
User Det ai | sSer vi ce but takes an Aut hent i cat i on Object rather than just user name:

public interface AuthenticationUserDetail sService {
UserDetai |l s | oadUser Det ai | s(Aut henti cati on token) throws UsernaneNot FoundExcepti on;

}

This interface may have also other uses but with pre-authentication it alows access to the authorities which
were packaged in the Authentication oObject, as we saw in the previous section. The
PreAut hent i cat edGr ant edAut hori ti esUser Det ai | sServi ce class does this. Alternatively, it may delegate to
astandard User Det ai | sServi ce Viathe User Det ai | sByNanmeSer vi ceW apper implementation.

16.1.4. PreAuthenticatedProcessingFilterEntryPoint

The Aut hent i cati onEnt ryPoi nt was discussed in the technical overview chapter. Normally it is responsible
for kick-starting the authentication process for an unauthenticated user (when they try to access a protected
resource), but in the pre-authenticated case this doesnt apply. You would only configure the
ExceptionTransl ationFilter with an instance of this class if you aren't using pre-authentication in
combination with other authentication mechanisms. It will be caled if the user is rejected by the
Abst r act PreAut hent i cat edProcessi ngFi | ter resulting in a null authentication. It aways returns a
403-forbidden response code if caled.

16.2. Concrete Implementations

X.509 authentication is covered in its own chapter. Here welll look at some classes which provide support for
other pre-authenticated scenarios.

16.2.1. Request-Header Authentication (Siteminder)

An external authentication system may supply information to the application by setting specific headers on the

Spring Security (2.0.x) 59

Pre-Authentication Scenarios

HTTP request. A well known example of this is is Siteminder, which passes the username in a header called
SM USER. This mechanism is supported by the class Request Header Pr eAut hent i cat edPr ocessi ngFi | t er
which simply extracts the username from the header. It defaults to using the name sM_USER as the header name.
See the Javadoc for more details.

Tip

Note that when using a system like this, the framework performs no authentication checks at all
and it is extremely important that the external system is configured properly and protects all access
to the application. If an attacker is able to forge the headers in their origina request without this
being detected then they could potentially choose any userame they wished.

16.2.1.1. Siteminder Example Configuration

A typical configuration using this filter would look like this:

<bean id="sitem nderFilter"
cl ass="org. spri ngfranmework. security. ui.preauth. header. Request Header Pr eAut hent i cat edProcessi ngFilter">
<security:customfilter position="PRE_AUTH FILTER" />
<property name="princi pal Request Header" val ue="SM USER"/ >
<property nanme="aut henticati onManager" ref="authenticati onManager" />
</ bean>

<bean i d="preaut hAut hProvi der"
cl ass="org. spri ngframework. security. provi ders. preaut h. PreAut henti cat edAut henti cati onPr ovi der ">
<security: custom aut hentication-provider />
<property nanme="preAut henti cat edUser Det ai | sServi ce">
<bean i d="user Det ai | sServi ceW apper"
cl ass="org. springframework. security. userdetails. UserDetail sByNaneSer vi ceW apper " >
<property nanme="userDetail sServi ce" ref="userDetail sService"/>
</ bean>
</ property>
</ bean>

<security:authentication-nmanager alias="authenticati onManager" />

We've assumed here that the security namespace is being used for configuration (hence the user of the
customfilter, authentication-manager and custom aut henti cati on-provi der elements (you can read
more about them in the namespace chapter). Y ou would leave these out of atraditional bean configuration. It's
also assumed that you have added a User Det ai | sSer vi ce (called “userDetailsService”) to your configuration
to load the user'sroles.

16.2.2. J2EE Container Authentication

The class J2eePreAut henti cat edProcessi ngFi | ter will extract the username from the userPri nci pal
property of the Ht t pSer vI et Request . use of this filter would usually be combined with the use of J2EE roles as
described above in Section 16.1.2.1, “ J2eeBasedPreA uthenti catedWebA uthenti cationDetail sSource” .

Spring Security (2.0.x) 60

ns-config

Chapter 17. Anonymous Authentication

17.1. Overview

Particularly in the case of web request URI security, sometimes it is more convenient to assign configuration
attributes against every possible secure object invocation. Put differently, sometimes it is nice to say
ROLE_SOVETHI NG is required by default and only allow certain exceptions to this rule, such as for login, logout
and home pages of an application. There are also other situations where anonymous authentication would be
desired, such as when an auditing interceptor queries the Securi t yCont ext Hol der to identify which principal
was responsible for a given operation. Such classes can be authored with more robustness if they know the
Securi t yCont ext Hol der always contains an Aut hent i cat i on object, and never nul | .

17.2. Configuration

Spring Security provides three classes that together provide an anonymous authentication feature.
AnonymousAut hent i cationToken IS an implementation of Authentication, and stores the
GrantedAuthority[]s which apply to the anonymous principa. There is a corresponding
AnonynousAut henti cationProvider, Which is chained into the ProviderManager S0 that
AnonynousAut hent i cati onTokens are accepted. Finaly, there is an AnonymousProcessingFilter, which is
chained after the normal authentication mechanisms and automatically add an AnonynousAut hent i cat i onToken
to the Securi t yCont ext Hol der if there is no existing Aut hent i cati on held there. The definition of the filter
and authentication provider appears as follows:

<bean i d="anonynmousProcessi ngFilter"
cl ass="org. spri ngframework. security. provi ders. anonynous. AnonynousPr ocessi ngFilter">
<property nane="key" val ue="f oobar"/>
<property name="userAttri bute" val ue="anonynmusUser, ROLE_ANONYMOUS"/ >
</ bean>

<bean i d="anonynousAut henti cati onProvi der"
cl ass="org. spri ngfranmework. security. provi ders. anonynous. AnonynousAut henti cati onProvi der" >
<property nanme="key" val ue="foobar"/>
</ bean>

The key is shared between the filter and authentication provider, so that tokens created by the former are
accepted by the latter. The userAttribute is expressed in the form of
user nanel nTheAut hent i cat i onToken, gr ant edAut hori ty[, grantedAut hority]. This is the same syntax as
used after the equals sign for | nMenor yDaol npl 'Suser Map property.

As explained earlier, the benefit of anonymous authentication is that all URI patterns can have security applied
to them. For example:

<bean id="filterlnvocationlnterceptor"
cl ass="org. springframework. security.intercept.web. FilterSecuritylnterceptor">
<property name="aut henticati onManager" ref="authenti cati onManager"/>
<property name="accessDeci si onManager" ref="httpRequest AccessDeci si onvanager"/>
<property name="obj ect Defi nitionSource">
<security:filter-invocation-definition-source>
<security:intercept-url pattern='/index.jsp' access='ROLE ANONYMOUS, ROLE USER />
<security:intercept-url pattern='/hello.htm access=' ROLE_ANONYMOUS, ROLE_USER / >

Spring Security (2.0.x) 61

Anonymous Authentication

<security:intercept-url pattern='/l|ogoff.jsp' access=" ROLE_ANONYMOUS, ROLE_USER />
<security:intercept-url pattern='/login.jsp' access=' ROLE_ANONYMOUS, ROLE_USER / >
<security:intercept-url pattern='/**'" access=' ROLE USER />
</security:filter-invocation-definition-source>" +
</ property>
</ bean>

Rounding out the anonymous authentication discussion is the Aut henti cati onTrust Resol ver interface, with
its corresponding Aut henti cati onTrust Resol ver I npl implementation. This interface provides an
i sAnonymous(Aut hent i cati on) method, which allows interested classes to take into account this special type
of authentication status. The ExceptionTranslationFilter uses this interface in processing
AccessDeni edExcept i onS. If an AccessDeni edExcept i on iSthrown, and the authentication is of an anonymous
type, instead of throwing a 403 (forbidden) response, the filter will instead commence the
Aut henti cati onEntryPoi nt SO the principal can authenticate properly. This is a necessary distinction,
otherwise principals would always be deemed "authenticated" and never be given an opportunity to login via
form, basic, digest or some other normal authentication mechanism

Spring Security (2.0.x) 62

Chapter 18. X.509 Authentication

18.1. Overview

The most common use of X.509 certificate authentication is in verifying the identity of a server when using
SSL, most commonly when using HTTPS from a browser. The browser will automatically check that the
certificate presented by a server has been issued (ie digitally signed) by one of a list of trusted certificate
authorities which it maintains.

You can aso use SSL with “mutual authentication”; the server will then request a valid certificate from the
client as part of the SSL handshake. The server will authenticate the client by checking that it's certificate is
signed by an acceptable authority. If avalid certificate has been provided, it can be obtained through the servlet
APl in an application. Spring Security X.509 module extracts the certificate using a filter and passes it to the
configured X.509 authentication provider to alow any additional application-specific checks to be applied. It
also maps the certificate to an application user and loads that user's set of granted authorities for use with the
standard Spring Security infrastructure.

You should be familiar with using certificates and setting up client authentication for your servlet container
before attempting to use it with Spring Security. Most of the work is in creating and installing suitable
certificates and keys. For example, if youre using Tomcat then read the instructions here
http://tontat. apache. or g/ t ontat - 6. 0- doc/ ssl - howt o. ht m . It'simportant that you get this working before
trying it out with Spring Security

18.2. Adding X.509 Authentication to Your Web Application

Enabling X.509 client authentication is very straightforward. Just add the <x509/ > element to your http security
namespace configuration.

<htt p>
<x509 subj ect-principal -regex="CN=(.*?)," user-service-ref="userService"/>

</ ht tp>
The element has two optional attributes:

e subj ect - princi pal - regex. The regular expression used to extract a username from the certificate's subject
name. The default value is shown above. This is the username which will be passed to the
User Det ai | sSer vi ce to load the authorities for the user.

* user-service-ref. Thisisthe bean Id of the User Det ai | sSer vi ce to be used with X.509. It isn't needed if
thereisonly one defined in your application context.
The subj ect - pri nci pal - regex should contain a single group. For example the default expression "CN=(.*?),"
matches the common name field. So if the subject name in the certificate is "CN=Jimi Hendrix, OU=...", this
will give a user name of "Jimi Hendrix". The matches are case insensitive. So "email Address=(.?)," will match
"EMAILADDRESS=jimi @hendrix.org,CN=..." giving a user name "jimi @hendrix.org". If the client presents a
certificate and a valid username is successfully extracted, then there should be a valid Aut hent i cat i on object
in the security context. If no certificate is found, or no corresponding user could be found then the security
context will remain empty. This means that you can easily use X.509 authentication with other options such as

Spring Security (2.0.x) 63

http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

X.509 Authentication

aform-based login.

18.3. Setting up SSL in Tomcat

There are some pre-generated certificates in the sanpl es/ cer ti fi cat e directory in the Spring Security project.
You can use these to enable SSL for testing if you don't want to generate your own. The file server.j ks
contains the server certificate, private key and the issuing certificate authority certificate. There are also some
client certificate files for the users from the sample applications. Y ou can install these in your browser to enable
SSL client authentication.

To run tomcat with SSL support, drop the ser ver . j ks fileinto the tomcat conf directory and add the following
connector to the server. xm file

<Connect or port="8443" protocol ="HTTP/ 1. 1" SSLEnabl ed="true" scheme="https" secure="true"
clientAut h="true" sslProtocol ="TLS"
keyst oreFi | e="${catal i na. home}/ conf/server.jks"
keyst or eType="JKS" keyst or ePass="password"
truststoreFil e="${catalina. home}/conf/server.jks"
trust storeType="JKS" truststorePass="password"
/>

clientAuth can aso be set to want if you still want SSL connections to succeed even if the client doesn't
provide a certificate. Clients which don't present a certificate won't be able to access any objects secured by
Spring Security unless you use a non-X.509 authentication mechanism, such as form authentication.

Spring Security (2.0.x) 64

Chapter 19. CAS Authentication

19.1. Overview

JA-SIG produces an enterprise-wide single sign on system known as CAS. Unlike other initiatives, JA-SIG's
Central Authentication Service is open source, widely used, simple to understand, platform independent, and
supports proxy capabilities. Spring Security fully supports CAS, and provides an easy migration path from
single-application deployments of Spring Security through to multiple-application deployments secured by an
enterprise-wide CAS server.

You can learn more about CAS at http://ww. j a-si g. org/ product s/ cas/. You will also need to visit this
site to download the CAS Server files.

19.2. How CAS Works

Whilst the CAS web site contains documents that detail the architecture of CAS, we present the genera
overview again here within the context of Spring Security. Spring Security 2.0 supports CAS 3. At the time of
writing, the CAS server was at version 3.2.

Somewhere in your enterprise you will need to setup a CAS server. The CAS server issimply a standard WAR
file, so there isn't anything difficult about setting up your server. Inside the WAR file you will customise the
login and other single sign on pages displayed to users.

When deploying a CAS 3.2 server, you will also need to specify an Aut henticationHandl er in the
depl oyer Confi gCont ext . xm included with CAS. The Aut henti cati onHandl er has a simple method that
returns a boolean as to whether a given set of Credentials is valid. Your AuthenticationHandl er
implementation will need to link into some type of backend authentication repository, such as an LDAP server
or database. CAS itself includes numerous Aut hent i cat i onHandl er S out of the box to assist with this. When
you download and deploy the server war file, it is set up to successfully authenticate users who enter a
password matching their username, which is useful for testing.

Apart from the CAS server itself, the other key players are of course the secure web applications deployed
throughout your enterprise. These web applications are known as "services'. There are two types of services:
standard services and proxy services. A proxy service is able to request resources from other services on behalf
of the user. Thiswill be explained more fully later.

19.3. Configuration of CAS Client

The web application side of CAS is made easy due to Spring Security. It is assumed you already know the
basics of using Spring Security, so these are not covered again below. Well assume a namespace based
configuration is being used and add in the CA S beans as required.

You will need to add a Ser vi cePr oper ti es bean to your application context. This represents your service:

<bean i d="servi ceProperties" class="org.springfranework.security.ui.cas. ServiceProperties">
<property name="service" value="https://| ocal host: 8443/ cas-sanpl e/j_spring_cas_security_check"/>
<property name="sendRenew' val ue="fal se"/>

</ bean>

Spring Security (2.0.x) 65

CAS Authentication

The servi ce must equal a URL that will be monitored by the CasPr ocessi ngFi | t er. The sendRenew defaults
to false, but should be set to true if your application is particularly sensitive. What this parameter doesistell the
CAS login service that a single sign on login is unacceptable. Instead, the user will need to re-enter their
username and password in order to gain access to the service.

The following beans should be configured to commence the CA S authentication process:

<security:authenticati on-manager alias="authenticati onManager"/>

<bean id="casProcessingFilter" class="org.springframework. security.ui.cas.CasProcessingFilter">
<security:customfilter after="CAS PROCESSI NG FI LTER'/ >
<property name="aut henti cati onManager" ref="authenti cati onManager"/>
<property name="aut henticati onFailureUrl" val ue="/casfailed.jsp"/>
<property name="defaul t TargetUrl" val ue="/"/>
</ bean>

<bean i d="casProcessingFilterEntryPoint"
cl ass="org. spri ngframework. security.ui.cas. CasProcessi ngFi |l terEntryPoint">
<property name="logi nUrl" val ue="https://| ocal host: 9443/ cas/| ogi n"/ >
<property name="servi ceProperties" ref="serviceProperties"/>
</ bean>

The casProcessi ngFi | t er Ent ryPoi nt should be selected to drive authentication using ent ry- poi nt - ref .

The CasProcessi ngFi |l ter has very similar properties to the Aut henti cati onProcessi ngFi | ter (used for
form-based logins). Each property is self-explanatory. Note that we've also used the namespace syntax for
setting up an alias to the authentication mnager, since the CasPr ocessi ngFi | t er needs areferenceto it.

For CAS to operate, the Except i onTransl ati onFi | t er must have its aut hent i cat i onEnt ryPoi nt property set
to the casProcessi ngFi | t er Ent ryPoi nt bean.

The CasProcessi ngFi | ter EntryPoi nt must refer to the Servi ceProperties bean (discussed above), which
provides the URL to the enterprise's CAS login server. Thisiswhere the user's browser will be redirected.

Next you need to add a CasAut hent i cat i onProvi der and its collaborators:

<bean i d="casAut henti cati onProvi der" class="org. springframework.security.providers. cas. CasAut henti cati onProvi c
<security:custom aut henti cation-provider />
<property name="user Detail sService" ref="user Service"/>
<property name="servi ceProperties" ref="serviceProperties" />
<property name="ticket Validator">
<bean cl ass="org.jasig.cas.client.validation.Cas20ServiceTi cket Val i dat or">
<constructor-arg index="0" value="https://|ocal host: 9443/ cas" />
</ bean>
</ property>
<property name="key" val ue="an_id_for_this_auth_provider_only"/>
</ bean>

<security:user-service id="user Service">
<security:user nane="joe" password="joe" authorities="ROLE USER' />

</ security:user-service>

The casAut hent i cati onProvi der USES a User Det ai | sSer vi ce instance to load the authorities for a user, once
they have been authentiated by CAS. We've shown a simple in-memory setup here.

The beans are all reasonable self-explanatory if you refer back to the "How CAS Works" section.

Spring Security (2.0.x) 66

ns-entry-point-ref

Chapter 20. Run-As Authentication Replacement

20.1. Overview

The AbstractSecuritylnterceptor is able to temporarily replace the Authentication object in the
SecurityCont ext and Securi t yCont ext Hol der during the secure object callback phase. Thisonly occursif the
original Authentication object was successfully processed by the AuthenticationManager and
AccessDeci si onManager . The RunAsvanager Will indicate the replacement Aut hent i cat i on object, if any, that
should be used during the Securi tyl nt er cept or Cal | back.

By temporarily replacing the Aut hentication object during the secure object callback phase, the secured
invocation will be able to call other objects which require different authentication and authorization credentials.
It will also be able to perform any internal security checks for specific Grant edAut hori ty objects. Because
Spring Security provides a number of helper classes that automatically configure remoting protocols based on
the contents of the Securi t yCont ext Hol der, these run-as replacements are particularly useful when calling
remote web services

20.2. Configuration

A RunAsManager interfaceis provided by Spring Security:

Aut henti cati on bui | dRunAs(Aut henti cati on authentication, Cbject object, ConfigAttributeDefinition config);
bool ean supports(ConfigAttribute attribute);
bool ean supports(d ass cl azz);

The first method returns the Aut hent i cat i on object that should replace the existing Aut hent i cat i on object for
the duration of the method invocation. If the method returns nul 1, it indicates no replacement should be made.
The second method is used by the Abstract Securitylnterceptor as part of its startup validation of
configuration attributes. The supports(d ass) method is called by a security interceptor implementation to
ensure the configured RunAsManager supports the type of secure object that the security interceptor will present.

One concrete implementation of a RunAsManager is provided with Spring Security. The RunAsManager I npl
class returns a replacement RunAsUser Token if any ConfigAttribute starts with RUN_AS . If any such
ConfigAttribute is found, the replacement RunAsUser Token Will contain the same principal, credentials and
granted authorities as the original Aut henti cati on object, along with a new G ant edAut hori tyl npl for each
RUN_AS_ ConfigAttribute. Each new G antedAut horityl npl will be prefixed with ROLE_, followed by the
RUN_AS ConfigAttribute. For example, a RUN_AS_SERVER will result in the replacement RunAsUser Token
containing a ROLE_RUN_AS_SERVER granted authority.

The replacement RunAsUser Token isjust like any other Aut hent i cati on object. It needs to be authenticated by
the AuthenticationManager, probably via delegation to a suitable AuthenticationProvider. The
RunAs| npl Aut henti cati onProvi der performs such authentication. It simply accepts as vaid any
RunAsUser Token presented.

To ensure malicious code does not create a RunAsUser Token and present it for guaranteed acceptance by the
RunAsl npl Aut henti cati onProvi der, the hash of a key is stored in al generated tokens. The
RunAsManager | npl and RunAs| npl Aut hent i cat i onProvi der iS created in the bean context with the same key:

Spring Security (2.0.x) 67

Run-As Authentication Replacement

<bean id="runAsManager" cl ass="org. springfranmework. security.runas. RunAsManager | npl ">
<property name="key" val ue="ny_run_as_password"/>
</ bean>

<bean i d="runAsAut henti cati onProvi der"
cl ass="org. springfranmework. security.runas. RunAsl npl Aut henti cati onPr ovi der" >
<property name="key" val ue="ny_run_as_password"/>
</ bean>

By using the same key, each RunAsUserToken can be validated it was created by an approved
RunAsManager | npl . The RunAsUser Token isimmutable after creation for security reasons

Spring Security (2.0.x) 68

Chapter 21. Container Adapter Authentication

21.1. Overview

Very early versions of Spring Security exclusively used Container Adapters for interfacing authentication with
end users. Whilst this worked well, it required considerable time to support multiple container versions and the
configuration itself was relatively time-consuming for developers. For this reason the HTTP Form
Authentication and HTTP Basic Authentication approaches were developed, and are today recommended for
almost all applications.

Container Adapters enable Spring Security to integrate directly with the containers used to host end user
applications. This integration means that applications can continue to leverage the authentication and
authorization capabilities built into containers (such as isUserinRole() and form-based or basic
authentication), whilst benefiting from the enhanced security interception capabilities provided by Spring
Security (it should be noted that Spring Security also offers Cont ext Hol der Awar eRequest W apper to deliver
i sUser I nRol e() and similar Servlet Specification compatibility methods).

The integration between a container and Spring Security is achieved through an adapter. The adapter provides a
contai ner-compatible user authentication provider, and needs to return a container-compatible user object.

The adapter isinstantiated by the container and is defined in a container-specific configuration file. The adapter
then loads a Spring application context which defines the normal authentication manager settings, such as the
authentication providers that can be used to authenticate the request. The application context is usually named
acegi security. xn and is placed in a container-specific location.

Spring Security currently supports Jetty, Catalina (Tomcat), JBoss and Resin. Additional container adapters can
easily be written

21.2. Adapter Authentication Provider

Asis aways the case, the container adapter generated Aut hent i cat i on object still needs to be authenticated by
an Aut henticationvanager When requested to do so by the AbstractSecuritylnterceptor. The
Aut hent i cat i onManager needs to be certain the adapter-provided Aut henti cati on object is valid and was
actually authenticated by atrusted adapter.

Adapters create Aut henti cati on objects which are immutable and implement the Aut hByAdapt er interface.
These objects store the hash of a key that is defined by the adapter. This allows the Aut hent i cati on object to
be validated by the Aut hBy Adapt er Provi der . This authentication provider is defined as follows:

<bean i d="aut hByAdapt er Provi der"

cl ass="org. springfranmewor k. security. adapt ers. Aut hByAdapt er Provi der " >
<property name="key"><val ue>ny_passwor d</ val ue></ property>
</ bean>

The key must match the key that is defined in the container-specific configuration file that starts the adapter.
The Aut hByAdapt er Provi der automatically accepts as valid any Aut hByAdapt er implementation that returns
the expected hash of the key.

To reiterate, this means the adapter will perform the initial authentication using providers such as
DaoAut hent i cat i onProvi der , returning an Aut hByAdapt er instance that contains a hash code of the key. Later,

Spring Security (2.0.x) 69

Container Adapter Authentication

when an application calls a security interceptor managed resource, the Aut hByAdapter instance in the
SecurityCont ext inthe SecurityCont ext Hol der will be tested by the application's Aut hByAdapt er Provi der .
There is no requirement for additional authentication providers such as DaoAut henti cati onProvi der within
the application-specific application context, as the only type of Aut henti cat i on instance that will be presented
by the application is from the container adapter.

Classloader issues are frequent with containers and the use of container adapters illustrates this further. Each
container requires a very specific configuration. The installation instructions are provided below. Once
installed, please take the time to try the sample application to ensure your container adapter is properly
configured.

When wusing container adapters with the DaoAuthenticationProvider, ensure you set its
forcePrinci pal AsStri ng property tot r ue.

21.3. Jetty

The following was tested with Jetty 4.2.18.
$JETTY_HOME refersto the root of your Jetty installation.

Edit your $JETTY_HOVE/ etc/jetty. xn file sothe<Configure cl ass> section has anew addReal mcall:

<Cal | name="addReal ni'>
<Ar g>
<New cl ass="org. spri ngframework. security. adapters.jetty.JettySpringSecurityUserReal ni'>
<Ar g>Spring Powered Real nx/Arg>
<Ar g>ny_passwor d</ Ar g>
<Ar g>et c/ acegi security.xm </ Arg>
</ New>
</ Arg>
</ Cal | >

Copy acegi security. xm int0 $IETTY_HOMVE/ et c.

Copy the following filesinto $JETTY_HOME/ ext :

* aopalliance.jar

* commons- | oggi ng.j ar

® spring.jar

® acegi-security-jetty-XX.jar
* comons- codec. j ar

* burlap.jar

* hessian.jar

None of the above JAR files (or acegi - security-XX. jar) should be in your application's VEB- I NF/ 1 i b. The
realm name indicated in your web.xm does matter with Jetty. The web.xm must express the same
<real m nanme> asyour jetty. xn (inthe example above, "Spring Powered Realm™).

Spring Security (2.0.x) 70

Container Adapter Authentication

21.4. JBosSsS

The following was tested with JBoss 3.2.6.
$JB0SS_HOME refersto the root of your JBoss installation.
There are two different ways of making spring context available to the Jooss integration classes.

The first approach is by editing your $JBOSS_HOVE/ ser ver/ your _confi g/ conf /| ogi n-confi g. xm file so that
it contains a new entry under the <Pol i cy> section:

<application-policy nane = "SpringPower edReal ni' >
<aut henti cati on>
<l ogi n- nodul e code = "org. springfranework. security.adapters.jboss.JbossSpringSecuritylLogi nModul e"
flag = "required">

<nmodul e- opti on nanme
<nmodul e- opti on name
</ | ogi n- nodul e>
</ aut henti cati on>
</ appl i cation-policy>

"appCont ext Locat i on" >acegi security.xm </ modul e- opti on>
"key" >my_passwor d</ nodul e- opti on>

Copy acegi security. xn into $IJBOSS_HOVE/ ser ver / your _confi g/ conf .

In this configuration acegi securi ty. xm contains the spring context definition including all the authentication
manager beans. Y ou have to bear in mind though, that Securi t yCont ext is created and destroyed on each login
request, so the login operation might become costly. Alternatively, the second approach is to use Spring
singleton capabilities through
org. spri ngfranewor k. beans. fact ory. access. Si ngl et onBeanFact oryLocator. The required configuration
for this approach is:

<appl i cation-policy nane = "SpringPower edReal ni' >
<aut henti cati on>
<l ogi n- nodul e code = "org. springfranework. security.adapters.jboss.JbossSpringSecuritylLogi nModul e"
flag = "required">

<nmodul e- opti on name
<nmodul e- opti on nane
<nmodul e- opti on name

</| ogi n- nodul e>

</ aut henti cati on>

</ application-policy>

"si ngl et onl d" >spri ngReal n</ modul e- opt i on>
"key" >my_passwor d</ nodul e- opti on>
"aut henti cati onManager " >aut hent i cat i onManager </ nodul e- opti on>

In the above code fragment, aut hent i cat i onManager iSahelper property that defines the expected name of the
Aut hent i cat i onManager in case you have several defined in the 10C container. The si ngl et onl d property
references a bean defined in a beanRef Fact ory. xm file. This file needs to be available from anywhere on the
JBoss classpath, including $3BOSS_HOVE/ ser ver / your _confi g/ conf. The beanRef Factory. xm contains the
following declaration:

<beans>
<bean id="springReal nf' singleton="true" lazy-init="true" class="org. springfranmework. cont ext.support.C assPat hXm
<const ruct or - ar g>
<list>
<val ue>acegi security. xm </ val ue>

Spring Security (2.0.x) 71

Container Adapter Authentication

</list>
</ constructor-arg>
</ bean>
</ beans>

Finaly, irrespective of the configuration approach you need to copy the following files into
$JBOSS_HOWE/ server/your_config/lib:

* aopalliance.jar

® spring.jar

® acegi-security-jboss-XX. jar
®* commons- codec. j ar

* burlap.jar

* hessian.jar

None of the above JAR files (or acegi - security-XX. jar) should be in your application's VEB- I NF/ 1i b. The
realm name indicated in your web.xm does not matter with JBoss. However, your web application's
VEB- | NF/ j boss- web. xmi must express the same <securi t y- domai n> asyour | ogi n- confi g. xni . For example,
to match the above example, your j boss-web. xm would look like this:

<j boss- web>
<security-domai n>j ava: / j aas/ Spri ngPower edReal nx/ security-domai n>
</ j boss- web>

JBoss is awidely-used container adapter (mostly due to the need to support legacy EJBS), so please et us know
if you have any difficulties.

21.5. Resin

The following was tested with Resin 3.0.6.
$RESI N_HOME refersto the root of your Resin installation.

Resin provides several ways to support the container adapter. In the instructions below we have elected to
maximise consistency with other container adapter configurations. Thiswill allow Resin usersto simply deploy
the sample application and confirm correct configuration. Developers comfortable with Resin are naturally able
to use its capabilities to package the JARs with the web application itself, and/or support single sign-on.

Copy the following filesinto $RESI N_HOVE/ | i b:

* aopal liance.jar
* commons- | oggi ng. j ar

® spring.jar

Spring Security (2.0.x) 72

Container Adapter Authentication

® acegi-security-resin-XX jar
® commons-codec. j ar

* burlap.jar

* hessian.jar

Unlike the container-wide acegi security.xm files used by other container adapters, each Resin web
application will contain its own WEB- | NF/ resi n-acegi security. xm file. Each web application will aso
contain ar esi n-web. xni file which Resin uses to start the container adapter:

<web- app>

<aut henti cat or >

<t ype>or g. spri ngframewor k. security. adapt ers. resin. Resi nAcegi Aut henti cat or</type>

<init>
<app- cont ext - | ocat i on>WEB- | NF/ r esi n- acegi security. xm </ app- cont ext - | ocati on>
<key>ny_passwor d</ key>

</init>

</ aut henti cat or >

</ web- app>

With the basic configuration provided above, none of the JAR files listed (or acegi - security- XX. j ar) should
bein your application's WeB- | NF/ 1 i b. The realm name indicated in your web. xni does not matter with Resin, as
the relevant authentication classis indicated by the <aut hent i cat or > setting

21.6. Tomcat

The following was tested with Jakarta Tomcat 4.1.30 and 5.0.19.
$CATALI NA_HOVE refersto the root of your Catalina (Tomcat) installation.

Edit your $CATALI NA_HOVE/ conf/ server. xm file so the <Engi ne> section contains only one active <Real n»
entry. An example realm entry:

<Real m
cl assName="or g. spri ngf ramewor k. security. adapters. catal i na. Cat al i naSpri ngSecurityUser Real ni
appCont ext Locat i on="conf/ acegi security. xm "
key="ny_password" />

Be sure to remove any other <Real m> entry from your <Engi ne> section.
Copy acegi security. xnl into $CATALI NA_HOVE/ conf .
Copy spring-security-catalina-XX jar into $CATALI NA_HOVE/ server/lib.

Copy the following files into $CATALI NA_HOVE/ common/ | i b:

* aopal liance.jar

® spring.jar

Spring Security (2.0.x) 73

Container Adapter Authentication

* commons- codec. j ar
* burlap.jar
* hessian.jar

None of the above JAR files (or spri ng-security-XX. jar) should be in your application's WeB- I NF/ i b. The
realm name indicated in your web. xm does not matter with Catalina.

We have received reports of problems using this Container Adapter with Mac OS X. A work-around isto use a
script such asfollows:

#!/ bi n/ sh

export CATALI NA HOVE="/Li brary/ Tontat"
export JAVA HOVE="/Li brary/ Java/ Hore"
cd /

$CATALI NA_HOVE/ bi n/ st art up. sh

Finally, restart Tomcat.

Spring Security (2.0.x) 74

Part IV. Authorization

The advanced authorization capabilities within Spring Security represent one of the most compelling reasons
for its popularity. Irrespective of how you choose to authenticate - whether using a Spring Security-provided
mechanism and provider, or integrating with a container or other non-Spring Security authentication authority -
you will find the authorization services can be used within your application in a consistent and simple way.

In this part well explore the different Abst ract Securi tyl nt er cept or implementations, which were introduced
in Part I. We then move on to explore how to fine-tune authorization through use of domain access control lists.

Spring Security (2.0.x) 75

Chapter 22. Common Authorization Concepts

22.1. Authorities

As briefly mentioned in the Authentication section, all Aut hent i cati on implementations are required to store
an array of Grant edAut hori ty objects. These represent the authorities that have been granted to the principal.
The G ant edAut hori ty objects are inserted into the Aut henti cati on object by the Aut henti cati onManager
and are later read by AccessDeci si onManager S When making authorization decisions.

G ant edAut hori ty isan interface with only one method:
String getAuthority();

This method alows AccessDecisionManagerS to obtain a precise String representation of the
Grant edAut hori ty. By returning a representation as a Stri ng, a Grant edAut hori ty can be easily "read" by
most AccessDeci si onManager S. If a GrantedAuthority cannot be precisely represented as a String, the
G ant edAut hori ty isconsidered "complex" and get Aut hori ty() mustreturnnul | .

An example of a"complex" G ant edAut hor i t y would be an implementation that stores alist of operations and
authority thresholds that apply to different customer account numbers. Representing this complex
GrantedAut hority as asString would be quite complex, and as a result the get Aut hori ty() method should
return nul | . This will indicate to any AccessDeci si onManager that it will need to specificaly support the
G ant edAut hori ty implementation in order to understand its contents.

Spring Security includes one concrete Grant edAut hority implementation, G antedAuthoritylnpl. This
allows any user-specified string to be converted into a Grant edAut hori ty. All Aut henti cati onProvi der S
included with the security architecture use Gr ant edAut hori t yl npl to populate the Aut hent i cat i on object.

22.2. Pre-Invocation Handling

As welll see in the Technical Overview chapter, Spring Security provides interceptors which control access to
secure objects such as method invocations or web requests. A pre-invocation decision on whether the
invocation is allowed to proceed is made by the AccessDeci si onManager .

22.2.1. The AccessDecisionManager

The AccessDeci si onManager is called by the Abstract Securitylnterceptor and is responsible for making
final access control decisions. The AccessDeci si onManager interface contains three methods:

voi d deci de(Aut henti cati on authentication, Object secureQbject, ConfigAttributeDefinition config) throws Access
bool ean supports(ConfigAttribute attribute);
bool ean supports(d ass cl azz);

As can be seen from the first method, the AccessDeci si onManager is passed via method parameters all
information that is likely to be of value in assessing an authorization decision. In particular, passing the secure
Obj ect enables those arguments contained in the actual secure object invocation to be inspected. For example,
let's assume the secure object was a Met hodl nvocat i on. It would be easy to query the Met hodl nvocat i on for
any cust omer argument, and then implement some sort of security logic in the AccessDeci si onManager tO

Spring Security (2.0.x) 76

Common Authorization Concepts

ensure the principal is permitted to operate on that customer. Implementations are expected to throw an
AccessDeni edExcept i on if accessisdenied.

The supports(ConfigAttribute) method is caled by the Abstract Securityl nterceptor at startup time to
determine if the AccessDeci si onManager can process the passed ConfigAttribute. The supports(d ass)
method is called by a security interceptor implementation to ensure the configured AccessDeci si onManager
supports the type of secure object that the security interceptor will present.

22.2.1.1. Voting-Based AccessDecisionManager Implementations

Whilst users can implement their own AccessDeci si onvanager to control all aspects of authorization, Spring
Security includes several AccessDeci si onManager implementations that are based on voting. Figure 22.1,
“Voting Decision Manager” illustrates the relevant classes.

22lnteface=> <<lnterface=>=
Canfighttribute AccessDacisiondanager
getattribute : String decidelauthentication: Authentication, object: Object, config: ConfigAttributeDefinition) : wvaid
| supportsiattribute: Configattibute) : boolean
<<rea|iﬂ|e>} supportsiclazz: Class) : boolean
l
SecuritvConfig ;
<drealize==
. <2lnteface=>
5
£ osouzany AccessDecision\foter
PR
| AfstractAccessDecisionManager | supportsattribute: Configattribute) : boolean
suppontsclaz: Class): boolean
wotefauthentication: Authentication,object: Object,config: ConfigattributeDefinition) : int

<<realiger= <<realiger=

|UnanimousElased| |,£\ffirmati\reElased| |ConsensusElased| Faletfoter B azicAc|Entnote

Figure 22.1. Voting Decision Manager

Using this approach, a series of AccessDeci sionVoter implementations are polled on an authorization
decision. The AccessDeci si onManager then decides whether or not to throw an AccessDeni edExcept i on based
on its assessment of the votes.

The AccessDeci si onVot er interface has three methods:

int vote(Authentication authentication, Object object, ConfigAttributeDefinition config);
bool ean supports(Confi gAttribute attribute);
bool ean supports(d ass clazz);

Concrete implementations return an i nt, with possible values being reflected in the AccessDeci si onVot er
static fields ACCESS_ABSTAI N, ACCESS_DENI ED and ACCESS GRANTED. A voting implementation will return
ACCESS_ABSTAI N if it has no opinion on an authorization decision. If it does have an opinion, it must return
either ACCESS DENI ED Or ACCESS_GRANTED.

There are three concrete AccessDeci si onManager S provided with Spring Security that tally the votes. The
ConsensusBased implementation will grant or deny access based on the consensus of non-abstain votes.
Properties are provided to control behavior in the event of an equality of votes or if al votes are abstain. The
AffirmativeBased implementation will grant access if one or more ACCESS_GRANTED votes were received (i.e. a
deny vote will be ignored, provided there was at least one grant vote). Like the ConsensusBased
implementation, there is a parameter that controls the behavior if all voters abstain. The Unani nousBased
provider expects unanimous ACCESS GRANTED Votes in order to grant access, ignoring abstains. It will deny
accessif thereisany ACCESS_DENI ED vote. Like the other implementations, there is a parameter that controls the

Spring Security (2.0.x) 77

Common Authorization Concepts

behaviour if all voters abstain.

It is possible to implement a custom AccessDeci si onManager that tallies votes differently. For example, votes
from a particular AccessDeci si onVoter might receive additional weighting, whilst a deny vote from a
particular voter may have a veto effect.

22.2.1.1.1. Rol eVot er

The most commonly used AccessDeci si onVoter provided with Spring Security is the simple Rol eVot er,
which treats configuration attributes as simple role names and votes to grant access if the user has been
assigned that role.

It will vote if any ConfigAttribute begins with the prefix ROLE_. It will vote to grant access if there is a
Grant edAut hor i ty which returns a St ri ng representation (via the get Aut hori ty() method) exactly equal to
one or more Confi gAt tri but es starting with ROLE . If there is no exact match of any Confi gAttri but e starting
with ROLE_, the Rol evot er will vote to deny access. If no Confi gAttri but e begins with ROLE_, the voter will
abstain. Rol eVot er is case sensitive on comparisons as well asthe ROLE_ prefix.

22.2.1.1.2. Custom Voters

It is also possible to implement a custom AccessDeci si onVot er. Several examples are provided in Spring
Security unit tests, including Cont act SecurityVoter and DenyVot er. The Cont act SecurityVot er abstains
from voting decisions where a CONTACT_OANED_BY_CURRENT_USER Confi gAttri but e is not found. If voting, it
gueries the Met hodl nvocat i on to extract the owner of the Cont act object that is subject of the method call. It
votes to grant access if the Cont act owner matches the principal presented in the Aut henti cati on object. It
could have just as easily compared the Contact owner with some G ant edAut hority the Aut henti cation
object presented. All of thisis achieved with relatively few lines of code and demonstrates the flexibility of the
authorization model.

22.3. After Invocation Handling

Whilst the AccessDeci si onvanager is called by the Abstract Securityl nterceptor before proceeding with
the secure object invocation, some applications need a way of modifying the object actually returned by the
secure object invocation. Whilst you could easily implement your own AOP concern to achieve this, Spring
Security provides a convenient hook that has several concrete implementations that integrate with its ACL
capabilities.

Figure 22.2, “ After Invocation Implementation” illustrates Spring Security's Af t er | nvocat i onManager and its
concrete implementations.

Spring Security (2.0.x) 78

Common Authorization Concepts

=<|nteface=>

Afterlnvocationhbanager

decidelauthentication: Authentication,object: Object,config: ConfigAttributebefinition,returnedObject: Object): Object
supportsattribute: ConfigaAttribute) : boolean

suppontsclazz: Class) : boalean

“=realigex=

1
<2lnterface==
AfterlnvocationProviderblanager |- — i{EE_ET_}
AdfterinvacationProwider
A A1
Zaredlizmp s <<redlizp==
1 1
BasicAclEntnpAfterinrocationCollectionFilteringProvider BasicAclEntnpAfterinvocationProvider
T I
1 |
VE}} wﬁe}}

Z<Intefaceas=>

Acihanager

Figure 22.2. After Invocation | mplementation

Like many other parts of Spring Security, Afterlnvocati onManager has a single concrete implementation,
AfterlnvocationProvi der Manager, Wwhich polls a list of AfterlnvocationProviders. Each
AfterlnvocationProvi der isalowed to modify the return object or throw an AccessDeni edExcept i on. Indeed
multiple providers can modify the object, as the result of the previous provider is passed to the next in the list.
Let's now consider our ACL-aware implementations of Af t er | nvocat i onProvi der .

Please be aware that if you're using Aft er I nvocat i onvanager, you will still need configuration attributes that
allow the Met hodSecuri tyl nt er cept or 'S AccessDeci si onManager to alow an operation. If you're using the
typical Spring Security included AccessDeci si onManager implementations, having no configuration attributes
defined for a particular secure method invocation will cause each AccessDeci si onVot er to abstain from voting.
In turn, if the AccessDecisionManager property "allow fAll Abstai nDecisions”" iS false, an
AccessDeni edException Will be thrown. You may avoid this potentia issue by either (i) setting
"al | owl f Al | Abst ai nDeci si ons" to true (although this is generally not recommended) or (ii) smply ensure
that there is at least one configuration attribute that an AccessDeci si onvot er will vote to grant access for. This
latter (recommended) approach is usually achieved through a ROLE_USER Or ROLE_AUTHENTI CATED configuration
attribute

22.3.1. ACL-Aware AfterlnvocationProviders

PLEASE NOTE: Acegi Security 1.0.3 contains a preview of a new ACL module. The new ACL module is a
significant rewrite of the existing ACL module. The new module can be found under the
org. springframework. security.acls package, with the old ACL module under
org. springframework. security. acl . We encourage users to consider testing with the new ACL module and
build applications with it. The old ACL module should be considered deprecated and may be removed from a
future release. The following information relates to the new ACL package, and is thus recommended.

A common services layer method we've all written at one stage or another looks like this:

public Contact getByld(lnteger id);

Spring Security (2.0.x) 79

Common Authorization Concepts

Quite often, only principals with permission to read the Cont act should be allowed to obtain it. In this situation
the AccessDeci si onManager approach provided by the Abst ract Securi tyl nt er cept or Will not suffice. Thisis
because the identity of the Contact is all that is available before the secure object is invoked. The
Acl Afterl nvocati onProvi der deliversasolution, and is configured as follows:

<bean id="afterAcl Read"
cl ass="org. springframework. security.afterinvocation. Acl EntryAfterlnvocati onProvider">
<constructor-arg ref="acl Servi ce"/>
<const ruct or - ar g>

<list>
<ref |ocal ="org.springframework. security.acls. donai n. BasePer m ssi on. ADM Nl STRATI ON'/ >
<ref |ocal ="org. springfranmework. security.acls. domai n. BasePer m ssi on. READ"/ >
</list>
</ constructor-arg>
</ bean>

In the above example, the cont act will be retrieved and passed to the Acl EntryAfter I nvocat i onProvi der .
The provider will thrown an AccessDeni edExcepti on if one of the listed r equi r ePer mi ssi ons is not held by
the Aut henti cati on. The Acl EntryAfter|nvocati onProvi der queries the Acl Service to determine the ACL
that applies for this domain object to this Aut hent i cat i on.

Similar to the Acl EntryAf ter | nvocati onProvi der is
Acl EntryAfterlnvocationCol | ectionFilteringProvider. It is designed to remove Col | ection Or array
elements for which a principal does not have access. It never thrown an AccessDeni edException - Simply
silently removes the offending elements. The provider is configured as follows:

<bean id="afterAcl Col | ecti onRead"
cl ass="org. springframework. security.afterinvocation.Acl EntryAfterlnvocati onCollectionFilteringProvider">
<constructor-arg ref="acl Service"/>
<const ruct or - ar g>
<list>
<ref |ocal ="org. springframework. security.acls. domai n. BasePer m ssi on. ADM NI STRATI ON'/ >
| =

<ref |ocal ="org. springfranmework. security.acls. domai n. BasePer m ssi on. READ"/ >
</list>
</ constructor-arg>
</ bean>

As you can imagine, the returned bj ect must be a Col | ecti on or array for this provider to operate. It will
remove any element if the Acl Manager indicates the Authentication does not hold one of the listed

requi rePer ni ssi onS.

The Contacts sample application demonstrates these two Af t er | nvocat i onPr ovi der S.

22.3.2. ACL-Aware AfterinvocationProviders (old ACL module)

PLEASE NOTE: Acegi Security 1.0.3 contains a preview of a new ACL module. The new ACL module is a
significant rewrite of the existing ACL module. The new module can be found under the
org. springframework. security.acls package, with the old ACL module under
org. springframewor k. security. acl . We encourage users to consider testing with the new ACL module and
build applications with it. The old ACL module should be considered deprecated and may be removed from a
future release.

A common services layer method we've all written at one stage or another looks like this:

public Contact getByld(lnteger id);

Spring Security (2.0.x) 80

Common Authorization Concepts

Quite often, only principals with permission to read the Cont act should be allowed to obtain it. In this situation
the AccessDeci si onManager approach provided by the Abst ract Securi tyl nt er cept or Will not suffice. Thisis
because the identity of the Contact is all that is available before the secure object is invoked. The
Basi cAcl After | nvocati onProvi der deliversasolution, and is configured as follows:

<bean id="after Acl Read"
cl ass="org. springframework. security. afterinvocati on. Basi cAcl EntryAfterlnvocati onProvi der">
<property name="acl Manager" ref="acl Manager"/>
<property name="requirePerm ssion">
<list>
<ref |ocal ="org.springframework. security.acl.basic.SinpleAcl Entry. ADM NI STRATI ON'/ >
<ref |ocal ="org. springfranmework. security.acl.basic.Sinpl eAcl Entry. READ'/ >
</list>
</ property>
</ bean>

In the above example, the Contact will be retrieved and passed to the
Basi cAcl EntryAfter | nvocati onProvi der. The provider will thrown an AccessDeni edExcept i on if one of the
listed r equi r ePer i ssi onsis not held by the Aut hent i cat i on. The Basi cAcl EntryAfter | nvocati onProvi der
queriesthe Acl Manager to determine the ACL that applies for this domain object to this Aut hent i cat i on.

Similar to the Basi cAcl EntryAfter|nvocati onProvi der is
Basi cAcl EntryAfter|nvocationCol | ectionFilteringProvider. It is designed to remove Coll ection oOr
array elements for which a principal does not have access. It never thrown an AccessDeni edExcept i on - Simply
silently removes the offending elements. The provider is configured as follows:

<bean i d="afterAcl Col | ecti onRead"
cl ass="org. springframework. security.afterinvocation. Basi cAcl EntryAfterlnvocationCollectionFilteringProvider"
<property name="acl Manager" ref="acl Manager"/>
<property nanme="requirePerm ssion">
<list>
<ref | ocal ="org. springframework. security.acl.basic.SinpleAcl Entry. ADM NIl STRATI ON'/ >
<ref |ocal ="org.springframework. security.acl.basic.SinpleAcl Entry. READ"'/ >
</list>
</ property>
</ bean>

As you can imagine, the returned obj ect must be a Col | ecti on or array for this provider to operate. It will
remove any element if the Acl Manager indicates the Authentication does not hold one of the listed

requi rePer ni ssi onS.

The Contacts sample application demonstrates these two Af t er | nvocat i onPr ovi der S.

22.4. Authorization Tag Libraries

Aut hor i zeTag is used to include content if the current principal holds certain G ant edAut hori tys.

The following JSP fragment illustrates how to use the Aut hor i zeTag:

<security:authorize ifAll G anted="ROLE_SUPERVI SOR"'>
<td>
<a href="del . ht nPi d=<c: out val ue="${contact.id}"/>">Del </ a>
</td>
</ security:authorize>

Spring Security (2.0.x) 81

Common Authorization Concepts

Thistag would cause the tag's body to be output if the principal has been granted ROLE_SUPERVISOR.

Thesecuri ty: aut hori ze tag declares the following attributes:

e ifAl Ganted: All the listed roles must be granted for the tag to output its body.
e ifAnyG ant ed: Any of thelisted roles must be granted for the tag to output its body.
« i fNot Grant ed: None of the listed roles must be granted for the tag to output its body.

You'll note that in each attribute you can list multiple roles. Simply separate the roles using a comma. The
aut hori ze tag ignores whitespace in attributes.

The tag library logically ANDs al of it's parameters together. This means that if you combine two or more
atributes, all attributes must be true for the tag to output it's body. Don't add an
i f All G ant ed="ROLE_SUPERVI SOR", followed by an i f Not G- ant ed=" ROLE_SUPERVI SOR", or you'll be surprised
to never see the tag's body.

By requiring all attributes to return true, the authorize tag allows you to create more complex authorization
scenarios. For example, you could declare an ifAlGanted="ROLE SUPERVISOR' and an
i f Not Gr ant ed=" ROLE_NEWBI E_SUPERVI SCR" in the same tag, in order to prevent new supervisors from seeing
the tag body. However it would no doubt be simpler to usei f Al | G ant ed=" ROLE_EXPERI ENCED_SUPERVI SCR"
rather than inserting NOT conditions into your design.

One last item: the tag verifies the authorizations in a specific order: first i f Not G ant ed, then i f Al | Grant ed,
andfinally,if AnyG anted.

AccessCont rol Li st Tag IS used to include content if the current principal has an ACL to the indicated domain
object.

The following JSP fragment illustrates how to use the AccessCont r ol Li st Tag:

<security:accesscontrollist domai nObject="%${contact}" hasPerm ssion="8, 16" >
<td><a href="<c:url val ue="del.htnl><c: param nane="contact|d" val ue="${contact.id}"/></c:url >">Del </ a></td>
</ security:accesscontrollist>

This tag would cause the tag's body to be output if the principal holds either permission 16 or permission 1 for
the "contact" domain object. The numbers are actually integers that are used with BasePer ni ssi on bit masking.
Please refer to the ACL section of this reference guide to understand more about the ACL capabilities of Spring
Security.

Acl Tag is part of the old ACL module and should be considered deprecated. For the sake of historical reference,
works exactly the samae as AccessCont r ol Li st Tag.

Spring Security (2.0.x) 82

Chapter 23. Secure Object Implementations

23.1. AOP Alliance (MethodInvocation) Security Interceptor

Prior to Spring Security 2.0, securing Met hodl nvocat i onS needed quite a lot of boiler plate configuration. Now
the recommended approach for method security is to use namespace configuration. This way the method
security infrastructure beans are configured automatically for you so you don't really need to know about the
implementation classes. We'll just provide a quick overview of the classes that are involved here.

Method security in enforced using a Met hodSecuritylnterceptor, which secures Methodl nvocati ons.
Depending on the configuration approach, an interceptor may be specific to a single bean or shared between
multiple beans. The interceptor uses a Met hodDef i ni ti onSour ce instance to obtain the configuration attributes
that apply to a particular method invocation. MapBasedMet hodDef i ni ti onSour ce iS used to store configuration
attributes keyed by method names (which can be wildcarded) and will be used internally when the attributes are
defined in the application context using the <i nt ercept - met hods> Or <pr ot ect - poi nt > elements. Other
implementations will be used to handle annotation-based configuration.

23.1.1. Explicit MethodSecuritylterceptor Configuration

You can of course configure a Met hodSecuritylterceptor directly in your application context for use with
one of Spring AOP's proxying mechanisms:

<bean i d="bankManager Security"
cl ass="org. spri ngfranmework. security.intercept.nethod. aopal | i ance. Met hodSecurityl nterceptor">
<property name="aut henticati onManager" ref="authenticati onManager"/>
<property nanme="accessDeci si onManager" ref="accessDeci si onManager"/ >
<property nanme="afterlnvocati onManager" ref="afterlnvocati onManager"/>
<property nanme="obj ect Definiti onSource">
<val ue>
org. springframewor k. security. cont ext. BankManager . del et e*=ROLE_SUPERVI SOR
org. springframewor k. security. context.BankManager. get Bal ance=ROLE_TELLER, ROLE_SUPERVI SOR
</ val ue>
</ property>
</ bean>

23.2. AspectJ (JoinPoint) Security Interceptor

The AspectJ security interceptor is very similar to the AOP Alliance security interceptor discussed in the
previous section. Indeed we will only discuss the differences in this section.

The Aspect) interceptor is named AspectJSecuritylnterceptor. Unlike the AOP Alliance security
interceptor, which relies on the Spring application context to weave in the security interceptor via proxying, the
Aspect JSecuri tyl nterceptor isweaved in viathe Aspect] compiler. It would not be uncommon to use both
types of security interceptors in the same application, with Aspect JSecurityl nterceptor being used for
domain object instance security and the AOP Alliance Met hodSecuri tyl nt er cept or being used for services
layer security.

Let'sfirst consider how the Aspect JSecuri tyl nt er cept or is configured in the Spring application context:

<bean i d="bankManager Security"
cl ass="org. spri ngframework. security.intercept. method. aspectj.AspectJSecuritylnterceptor">
<property name="aut henticati onManager" ref="authenti cati onManager"/>
<property name="accessDeci si onManager" ref="accessDeci si onManager"/>

Spring Security (2.0.x) 83

Secure Object Implementations

<property nanme="afterlnvocati onManager" ref="afterlnvocati onManager"/>
<property nanme="obj ect Defi nitionSource">
<val ue>
org. springframewor k. security. context.BankManager . del et e*=ROLE_SUPERVI SOR
org. springframework. security. context.BankManager . get Bal ance=ROLE_TELLER, ROLE_SUPERVI SCR
</ val ue>
</ property>
</ bean>

As you can see, aside from the class name, the Aspect JSecuri tyl nt er cept or is exactly the same as the AOP
Alliance security interceptor. Indeed the two interceptors can share the same obj ect Def i ni ti onSour ce, as the
Qbj ect Defi ni ti onSour ce WOrks with j ava. | ang. ref | ect . Met hods rather than an AOP library-specific class.
Of course, your access decisions have access to the relevant AOP library-specific invocation (ie
Met hodl nvocati on OF Joi nPoi nt) and as such can consider a range of addition criteria when making access
decisions (such as method arguments).

Next you'll need to define an AspectJ aspect . For example:

package org. springframework. security. sanpl es. aspectj ;

i mport org.springframework. security.intercept.nethod. aspectj.AspectJSecuritylnterceptor;
i nport org.springfranework. security.intercept.nethod. aspectj . Aspect JCal | back
i nport org. springfranework. beans. factory. I nitializingBean

publ i c aspect Donmi nQbj ect | nstanceSecurityAspect inplenments InitializingBean {
private AspectJSecuritylnterceptor securitylnterceptor;

poi nt cut domai nCbj ect | nst anceExecution(): target(Persistabl eEntity)
&& execution(public * *(..)) && !within(Domai nObj ectl| nstanceSecurityAspect);

bj ect around(): domai nObj ect | nst anceExecution() {
if (this.securitylnterceptor == null) {
return proceed();

}

Aspect JCal | back cal | back = new AspectJCal | back() {
public Onject proceedWthObject() {
return proceed();
}
b

return this.securitylnterceptor.invoke(thisJoinPoint, callback);

}

public AspectJSecuritylnterceptor getSecuritylnterceptor() {
return securitylnterceptor;
}

public void setSecuritylnterceptor(AspectJSecuritylnterceptor securitylnterceptor) {
this.securitylnterceptor = securitylnterceptor;

}
public void afterPropertiesSet() throws Exception {
if (this.securitylnterceptor == null)
throw new |11 egal Argunent Excepti on("securitylnterceptor required");
}
}

In the above example, the security interceptor will be applied to every instance of persi st abl eEntity, which
is an abstract class not shown (you can use any other class or poi nt cut expression you like). For those curious,
Aspect JCal | back is needed because the proceed(); statement has special meaning only within an ar ound()
body. The Aspect JSecuritylnterceptor cals this anonymous Aspect JCal | back class when it wants the
target object to continue.

You will need to configure Spring to load the aspect and wire it with the Aspect JSecuritylnterceptor. A

Spring Security (2.0.x) 84

Secure Object Implementations

bean declaration which achieves this is shown below:

<bean i d="domai nCbj ect | nst anceSecurit yAspect"
cl ass="org. springframework. security.sanpl es. aspect . Domai nObj ect | nst anceSecurit yAspect"
factory-net hod="aspect O " >
<property name="securitylnterceptor" ref="aspectJSecuritylnterceptor"/>
</ bean>

That's it! Now you can create your beans from anywhere within your application, using whatever means you
think fit (eg new Person() ;) and they will have the security interceptor applied.

23.3. FilterInvocation Security Interceptor

To secure Fi l terl nvocati onS, developers need to add a Fi | ter Securi tyl nterceptor to their filter chain. A
typical configuration exampleis provided below:

In the application context you will need to configure three beans:

<bean i d="exceptionTransl ationFilter"
cl ass="org. springframework. security.ui.ExceptionTranslationFilter">
<property nanme="aut henticati onEntryPoint" ref="authenticati onEntryPoint"/>
</ bean>

<bean i d="aut henti cati onEnt ryPoi nt"
cl ass="org. springframework. security. ui.webapp. Aut henti cati onProcessingFilterEntryPoint">
<property name="l|ogi nFornJr|" val ue="/acegil ogin.jsp"/>
<property name="forceHttps" val ue="fal se"/>
</ bean>

<bean id="filterSecuritylnterceptor"
cl ass="org. springfranmework. security.intercept.web. FilterSecuritylnterceptor">
<property name="aut henticati onManager" ref="authenti cati onManager"/>
<property nanme="accessDeci si onManager" ref="accessDeci si onManager"/ >
<property name="obj ect Defi nitionSource">
<security:filter-invocation-definition-source>
<security:intercept-url pattern="/secure/super/**" access="ROLE WE _DONT_HAVE"/ >
<security:intercept-url pattern="/secure/**" access="ROLE SUPERVI SOR, ROLE TELLER'/ >
</security:filter-invocation-definition-source>
</ property>
</ bean>

The ExceptionTransl ati onFi |l ter provides the bridge between Java exceptions and HTTP responses. It is
solely concerned with maintaining the user interface. This filter does not do any actual security enforcement. If
an Aut henti cati onExcept i on is detected, the filter will call the AuthenticationEntryPoint to commence the
authentication process (e.g. a user login).

The Aut hent i cati onEnt ryPoi nt will be called if the user requests a secure HTTP resource but they are not
authenticated. The class handles presenting the appropriate response to the user so that authentication can
begin. Three concrete implementations are provided with Spring Security:
Aut hent i cati onPr ocessi ngFi | t er Ent r yPoi nt for commencing a form-based authentication,
Basi cProcessingFilterEntryPoint for commencing a HTTP Basic authentication process, and
CasProcessi ngFi | t er Ent ryPoi nt for commencing a JA-SIG Central Authentication Service (CAS) login. The
Aut henti cati onProcessingFilterEntryPoint and CasProcessingFilterEntryPoint have optiona
properties related to forcing the use of HTTPS, so please refer to the JavaDocs if you require this.

FilterSecuritylnterceptor iS responsible for handling the security of HTTP resources. Like any other
security interceptor, it requires a reference to an Aut henti cati onManager and an AccessDeci si onManager ,

Spring Security (2.0.x) 85

Secure Object Implementations

which are both discussed in separate sections below. The Fi | t er Securi tyl nter cept or iSalso configured with
configuration attributes that apply to different HTTP URL requests. A full discussion of configuration attributes
is provided in the High Level Design section of this document.

TheFilterSecuritylnterceptor canbe configured with configuration attributes in two ways. The first, which
is shown above, isusing the <fi | ter-i nvocati on- def i ni ti on- sour ce> namespace element. Thisis similar to
the <fi | t er- chai n- map> used to configure aFi | t er Chai nProxy but the <i nt er cept - ur| > child elements only
use the pat t ern and access attributes. The second is by writing your own Obj ect Def i ni ti onSour ce, athough
this is beyond the scope of this document. Irrespective of the approach used, the tvj ect Def i ni ti onSour ce iS
responsible for returning a Conf i gAt tri but eDefi niti on object that contains al of the configuration attributes
associated with asingle secure HTTP URL.

It should be noted that the FilterSecuritylnterceptor.set ObjectDefinitionSource() method actually
expects an instance of FilterlnvocationDefinitionSource. This is a marker interface which subclasses
Qbj ect Defi ni tionSource. It simply denotes the bj ect Defi ni ti onSour ce understands Fi | t er I nvocat i onS.
In the interests of simplicity well continue to refer to the FilterlnvocationDefinitionSource as an
bj ectDefinitionSource, as the digtinction is of little relevance to most users of the
FilterSecuritylnterceptor.

When using the namespace option to configure the interceptor, commas are used to delimit the different
configuration attributes that apply to each HTTP URL. Each configuration attribute is assigned into its own
SecurityConfig object. The SecurityConfig object is discussed in the High Level Design section. The
Qbj ect DefinitionSource created by the property editor, FilterlnvocationDefinitionSource, matches
configuration attributes against Fi | t er I nvocat i ons based on expression evaluation of the request URL. Two
standard expression syntaxes are supported. The default is to treat all expressions as Apache Ant paths and
regular expressions are also supported for ore complex cases. The pat h-t ype attribute is used to specify the
type of pattern being used. It is not possible to mix expression syntaxes within the same definition. For
example, the previous configuration using regular expressions instead of Ant paths would be written as follows:

<bean id="filterlnvocationlnterceptor"
cl ass="org. springframework. security.intercept.web. FilterSecuritylnterceptor">
<property name="aut henticati onManager" ref="authenti cati onManager"/>
<property nanme="accessDeci si onManager" ref="accessDeci si onManager"/ >
<property name="runAsManager" ref="runAsManager"/>
<property name="obj ect Defi nitionSource">
<security:filter-invocation-definition-source path-type="regex">
<security:intercept-url pattern="\A/ secure/super/.*\Z" access="ROLE_WE_DONT_HAVE"/ >
<security:intercept-url pattern="\A/ secure/.*\" access="ROLE SUPERVI SOR, ROLE_TELLER'/>
</security:filter-invocation-definition-source>
</ property>
</ bean>

Irrespective of the type of expression syntax used, expressions are aways evaluated in the order they are
defined. Thus it is important that more specific expressions are defined higher in the list than less specific
expressions. This is reflected in our example above, where the more specific / secur e/ super/ pattern appears
higher than the less specific / secur e/ pattern. If they were reversed, the/ secure/ pattern would always match
and the/ secur e/ super/ pattern would never be evaluated.

As with other security interceptors, the val i dat eConfi gAttri butes property is observed. When set to true
(the default), at startup time the FilterSecuritylnterceptor Will evauate if the provided configuration
attributes are valid. It does this by checking each configuration attribute can be processed by either the
AccessDeci si onManager Or the RunAsManager . If neither of these can process a given configuration attribute,
an exception is thrown.

Spring Security (2.0.x) 86

Chapter 24. Domain Object Security

24.1. Overview

PLEASE NOTE: Before release 2.0.0, Spring Security was known as Acegi Security. An ACL module was
provided with the old Acegi Security releases under the or g. [acegi securi ty/ springsecurity] . acl package.
This old package is now deprecated and will be removed in a future release of Spring Security. This chapter
covers the new ACL module, which is officially recommended from Spring Security 2.0.0 and above, and can
be found under the or g. spri ngf ranewor k. securi ty. acl s package.

Complex applications often will find the need to define access permissions not simply at a web request or
method invocation level. Instead, security decisions need to comprise both who (Aut henti cati on), where
(Met hodl nvocation) and what (SomeDomai nCbj ect). In other words, authorization decisions also need to
consider the actual domain object instance subject of a method invocation.

Imagine you're designing an application for a pet clinic. There will be two main groups of users of your
Spring-based application: staff of the pet clinic, as well as the pet clinic's customers. The staff will have access
to al of the data, whilst your customers will only be able to see their own customer records. To make it alittle
more interesting, your customers can alow other users to see their customer records, such as their "puppy
preschool” mentor or president of their local "Pony Club”. Using Spring Security as the foundation, you have
several approaches that can be used:

1. Write your business methods to enforce the security. You could consult a collection within the cust oner
domain object instance to determine which users have accesss By using the
Securi t yCont ext Hol der . get Cont ext (). get Authentication(), Yyoull be able to access the
Aut hent i cat i on object.

2. Write an AccessDeci si onVoter to enforce the security from the GrantedAuthority[]s stored in the
Aut henti cati on object. This would mean your Aut henticati onManager would need to populate the
Aut henti cation with custom G ant edAut hority[]s representing each of the customer domain object
instances the principal has access to.

3. Write an AccessDeci si onVot er to enforce the security and open the target cust omer domain object directly.
This would mean your voter needs access to a DAO that allows it to retrieve the cust oner object. It would
then access the cust oner object’s collection of approved users and make the appropriate decision.

Each one of these approaches is perfectly legitimate. However, the first couples your authorization checking to
your business code. The main problems with this include the enhanced difficulty of unit testing and the fact it
would be more difficult to reuse the customer authorization logic elsewhere. Obtaining the
Grant edAut hority[]S from the Aut henti cati on object is also fine, but will not scale to large numbers of
cust orer S. If @ user might be able to access 5,000 cust oner s (unlikely in this case, but imagine if it were a
popular vet for a large Pony Club!) the amount of memory consumed and time required to construct the
Aut hent i cat i on object would be undesirable. The fina method, opening the cust orrer directly from external
code, is probably the best of the three. It achieves separation of concerns, and doesn't misuse memory or CPU
cycles, but it is till inefficient in that both the AccessDeci si onVot er and the eventual business method itself
will perform a call to the DAO responsible for retrieving the cust oner object. Two accesses per method
invocation is clearly undesirable. In addition, with every approach listed you'll need to write your own access
contral list (ACL) persistence and business logic from scratch.

Fortunately, there is another aternative, which well talk about below.

Spring Security (2.0.x) 87

Domain Object Security

24.2. Key Concepts

Spring Security's ACL services are shipped in the spri ng- securi ty-acl -xxx. j ar. You will need to add this
JAR to your classpath to use Spring Security's domain object instance security capabilities.

Spring Security's domain object instance security capabilities centre on the concept of an access control list
(ACL). Every domain object instance in your system has its own ACL, and the ACL records details of who can
and can't work with that domain object. With this in mind, Spring Security delivers three main ACL-related
capabilities to your application:

» A way of efficiently retrieving ACL entriesfor all of your domain objects (and modifying those ACLS)
» A way of ensuring agiven principal is permitted to work with your objects, before methods are called

« A way of ensuring a given principa is permitted to work with your objects (or something they return), after
methods are called

As indicated by the first bullet point, one of the main capabilities of the Spring Security ACL module is
providing a high-performance way of retrieving ACLs. This ACL repository capability is extremely important,
because every domain object instance in your system might have several access control entries, and each ACL
might inherit from other ACLs in atree-like structure (this is supported out-of-the-box by Spring Security, and
is very commonly used). Spring Security's ACL capability has been carefully designed to provide high
performance retrieval of ACLS, together with pluggable caching, deadlock-minimizing database updates,
independence from ORM frameworks (we use JDBC directly), proper encapsulation, and transparent database
updating.

Given databases are central to the operation of the ACL module, let's explore the four main tables used by
default in the implementation. The tables are presented below in order of sizein atypical Spring Security ACL
deployment, with the table with the most rows listed last:

e ACL_SID alows usto uniquely identify any principal or authority in the system ("SID" stands for "security
identity"). The only columns are the ID, a textual representation of the SID, and a flag to indicate whether
the textual representation refers to a prncipal name or a G ant edAut hori ty. Thus, there is a single row for
each unique principal or G ant edAut hori ty. When used in the context of receiving a permission, a SID is
generaly called a"recipient”.

¢ ACL_CLASS dlows usto uniquely identify any domain object classin the system. The only columns are the
ID and the Java class name. Thus, there is a single row for each unique Class we wish to store ACL
permissions for.

e ACL_OBJECT_IDENTITY stores information for each unique domain object instance in the system.
Columns include the ID, a foreign key to the ACL_CLASS table, a unique identifier so we know which
ACL_CLASS instance we're providing information for, the parent, a foreign key to the ACL_SID table to
represent the owner of the domain object instance, and whether we allow ACL entries to inherit from any
parent ACL. We have asingle row for every domain object instance we're storing ACL permissions for.

e Finaly, ACL_ENTRY stores the individual permissions assigned to each recipient. Columns include a
foreign key to the ACL_OBJECT _IDENTITY, the recipient (ie aforeign key to ACL_SID), whether we'll be
auditing or not, and the integer bit mask that represents the actual permission being granted or denied. We
have asingle row for every recipient that receives a permission to work with a domain object.

Spring Security (2.0.x) 88

Domain Object Security

As mentioned in the last paragraph, the ACL system uses integer bit masking. Don't worry, you need not be
aware of the finer points of bit shifting to use the ACL system, but suffice to say that we have 32 bits we can
switch on or off. Each of these bits represents a permission, and by default the permissions are read (bit 0),
write (bit 1), create (bit 2), delete (bit 3) and administer (bit 4). It's easy to implement your own Per ni ssi on
instance if you wish to use other permissions, and the remainder of the ACL framework will operate without
knowledge of your extensions.

It isimportant to understand that the number of domain objectsin your system has absolutely no bearing on the
fact we've chosen to use integer bit masking. Whilst you have 32 bits available for permissions, you could have
billions of domain abject instances (which will mean billions of rows in ACL_OBJECT _IDENTITY and quite
probably ACL_ENTRY). We make this point because we've found sometimes people mistakenly believe they
need a bit for each potential domain object, which is not the case.

Now that we've provided a basic overview of what the ACL system does, and what it looks like at a table
structure, let's explore the key interfaces. The key interfaces are:

» Acl : Every domain object has one and only one Acl object, which internally holds the AccessCont rol Entrys
as well as knows the owner of the Acl . An Acl does not refer directly to the domain object, but instead to an
vj ectldentity. TheAcl isstoredinthe ACL_OBJECT IDENTITY table.

e AccessControl Entry: AnAcl holds multiple AccessCont r ol Ent rys, which are often abbreviated as ACEsin
the framework. Each ACE refers to a specific tuple of Permission, Sid and Acl. An ACE can also be
granting or non-granting and contain audit settings. The ACE is stored in the ACL_ENTRY table.

e Pernission: A permission represents a particular immutable bit mask, and offers convenience functions for
bit masking and outputting information. The basic permissions presented above (bits O through 4) are
contained in the BasePer ni ssi on class.

e sid: The ACL module needs to refer to principals and GrantedAut hority[]S. A level of indirection is
provided by the sid interface, which is an abbreviation of "security identity". Common classes include
Princi pal Si d (to represent the principal inside an Aut hent i cati on object) and G ant edAut hori tySi d. The
security identity information is stored inthe ACL_SID table.

e Objectldentity: Each domain object is represented internally within the ACL module by an
vj ect I dent i ty. The default implementation is called Obj ect | dentityl npl .

* Acl Servi ce: Retrieves the Acl applicable for a given vjectidentity. In the included implementation
(JdbcAcl Servi ce), retrieval operations are delegated to a LookupSt r at egy. The LookupSt r at egy provides a
highly optimized strategy for retrieving ACL information, using batched retrievals (Basi cLookupSt r at egy)
and supporting custom implementations that leverage materialized views, hierarchical queries and similar
performance-centric, non-ANSI SQL capabilities.

e Mt abl eAcl Servi ce: Allows a modified Acl to be presented for persistence. It is not essential to use this
interface if you do not wish.

Please note that our out-of-the-box AclService and related database classes all use ANSI SQL. This should
therefore work with all major databases. At the time of writing, the system had been successfully tested using
Hypersonic SQL, PostgreSQL, Microsoft SQL Server and Oracle.

Two samples ship with Spring Security that demonstrate the ACL module. The first is the Contacts Sample,
and the other is the Document Management System (DMS) Sample. We suggest taking a look over these for
examples.

24.3. Getting Started

To get starting using Spring Security's ACL capability, you will need to store your ACL information
somewhere. This necessitates the instantiation of a bat aSour ce using Spring. The Dat aSour ce is then injected
into a JdbcMut abl eAcl Servi ce and Basi cLookupStrategy instance. The latter provides high-performance

Spring Security (2.0.x) 89

Domain Object Security

ACL retrieval capabilities, and the former provides mutator capabilities. Refer to one of the samples that ship
with Spring Security for an example configuration. You'll aso need to populate the database with the four
ACL-specific tables listed in the last section (refer to the ACL samples for the appropriate SQL statements).

Once you've created the required schema and instantiated JdbcMit abl eAcl Ser vi ce, you'll next need to ensure
your domain model supports interoperability with the Spring Security ACL package. Hopefully
oj ect I denti tyl npl will prove sufficient, as it provides alarge number of ways in which it can be used. Most
people will have domain objects that contain a publ i ¢ Serializable getld() method. If the return typeis
long, or compatible with long (eg an int), you will find you need not give further consideration to
Qbj ect I dent i ty issues. Many parts of the ACL module rely on long identifiers. If you're not using long (or an
int, byte etc), there is a very good chance you'll need to reimplement a number of classes. We do not intend to
support non-long identifiers in Spring Security's ACL module, as longs are aready compatible with all
database sequences, the most common identifier data type, and are of sufficient length to accommodate all
COMMON usage scenarios.

The following fragment of code shows how to create an Acl , or modify an existing Acl :

Il Prepare the information we'd like in our access control entry (ACE)
oj ectldentity oi = new Objectldentityl npl (Foo.class, new Long(44));
Sid sid = new Principal Si d("Samant ha") ;

Perm ssion p = BasePermi ssi on. ADM NI STRATI ON;

/] Create or update the rel evant ACL
Mut abl eAcl acl = null;

try {
acl = (Miutabl eAcl) acl Service. readAcl Byl d(oi);

} catch (Not FoundException nfe) {
acl = acl Service. createAcl (0i);

}

/1 Now grant some perm ssions via an access control entry (ACE)
acl .insertAce(acl.getEntries().length, p, sid, true);
acl Servi ce. updat eAcl (acl) ;

In the example above, we're retrieving the ACL associated with the "Foo" domain object with identifier number
44. We're then adding an ACE so that a principal named "Samantha' can "administer" the object. The code
fragment is relatively self-explanatory, except the insertAce method. The first argument to the insertAce
method is determining at what position in the Acl the new entry will be inserted. In the example above, we're
just putting the new ACE at the end of the existing ACEs. The final argument is a boolean indicating whether
the ACE is granting or denying. Most of the time it will be granting (true), but if it is denying (false), the
permissions are effectively being blocked.

Spring Security does not provide any special integration to automatically create, update or delete ACL s as part
of your DAO or repository operations. Instead, you will need to write code like shown above for your
individual domain abjects. It's worth considering using AOP on your services layer to automatically integrate
the ACL information with your services layer operations. We've found this quite an effective approach in the
past.

Once you've used the above techniques to store some ACL information in the database, the next step is to
actually use the ACL information as part of authorization decision logic. You have a number of choices here.
You could write your own AccessDeci si onVot er Or After | nvocati onProvi der that respectively fires before
or after a method invocation. Such classes would use Acl Servi ce to retrieve the relevant ACL and then call
Acl .isGranted(Permission[] pernmission, Sid[] sids, bool ean adninistrativeMde) to decide whether
permission is granted or denied. Alternately, you could use our AclEntryVoter,
Acl EntryAfterlnvocationProvider OF Acl EntryAfterlnvocationCollectionFilteringProvider classes.
All of these classes provide a declarative-based approach to evaluating ACL information at runtime, freeing
you from needing to write any code. Please refer to the sample applications to learn how to use these classes.

Spring Security (2.0.x) 90

Appendix A. Security Database Schema

There are various database schema used by the framework and this appendix provides a single reference point
tothem all. You only need to provide the tables for the areas of functonality you require.

DDL statements are given for the HSQL DB database. Y ou can use these as a guideline for defining the schema
for the database you are using.

A.1l. User Schema

The standard JDBC implementation of the User Det ai | sSer vi ce requires tables to load the password, account
status (enabled or disabled) and alist of authorities (roles) for the user.

create table users(
user nane var char_i gnorecase(50) not null primary key,
password varchar _i gnorecase(50) not null
enabl ed bool ean not null);

create table authorities (
user nanme var char_i gnorecase(50) not null
aut hority varchar _i gnorecase(50) not null
constraint fk_authorities users foreign key(usernane) references users(usernane));
create unique index ix_auth_username on authorities (usernane, authority);

A.1.1. Group Authorities

Spring Security 2.0 introduced support for group authorities

create table groups (
id bigint generated by default as identity(start with 0) primary key,
group_nane var char _i gnorecase(50) not null);

create table group_authorities (
group_i d bigint not null
authority varchar(50) not null
constraint fk_group_authorities_group foreign key(group_id) references groups(id));

create table group_menbers (
id bigint generated by default as identity(start with 0) primary key,
user name varchar (50) not nul |
group_id bigint not null
constraint fk_group_nenbers_group foreign key(group_id) references groups(id));

A.2. Persistent Login (Remember-Me) Schema

This table is used to store data used by the more secure persistent token remember-me implementation. If you
are using JdbcTokenReposi t oryl npl €either directly or through the namespace, then you will need this table.

create table persistent_logins (
user name varchar (64) not nul |
series varchar(64) primary key,
token varchar(64) not null
| ast _used tinestanp not null);

Spring Security (2.0.x) 91

Security Database Schema

A.3. ACL Schema

The tables used by the Spring Security ACL implementation.

create table acl _sid (
id bigint generated by default as identity(start with 100) not null primary key,
princi pal bool ean not null
sid varchar _i gnorecase(100) not null
constraint uni que_uk_1 unique(sid,principal));

create table acl _class (
id bigint generated by default as identity(start with 100) not null primary key,
cl ass varchar_i gnorecase(100) not null
constraint uni que_uk_2 uni que(class));

create table acl _object_identity (
id bigint generated by default as identity(start with 100) not null primary key,
obj ect _id_class bigint not null
object_id_identity bigint not null
parent _obj ect bigint,
owner _si d bigint,
entries_inheriting bool ean not null
constraint uni que_uk_3 uni que(object_id_cl ass, object_id_identity),
constraint foreign_fk_1 foreign key(parent_object)references acl_object_identity(id),
constraint foreign_fk_2 foreign key(object_id_class)references acl_class(id),
constraint foreign_fk_3 foreign key(owner_sid)references acl_sid(id));

create table acl _entry (
id bigint generated by default as identity(start with 100) not null primry key,
acl _object_identity bigint not null,ace_order int not null,sid bigint not null
mask integer not null, granting bool ean not null, audit_success bool ean not null
audit _failure bool ean not null, constraint uni que_uk_4 unique(acl _object_identity, ace_order),
constraint foreign fk_4 foreign key(acl_object_identity) references acl_object_identity(id),
constraint foreign_fk_5 foreign key(sid) references acl_sid(id));

Spring Security (2.0.x)

domain-acls

Appendix B. The Security Namespace

This appendix provides a reference to the elements available in the security namespace and information on the
underlying beans they create (a knowledge of the individual classes and how they work together is assumed -
you can find more information in the project Javadoc and elsewhere in this document). If you haven't used the
namespace before, please read the introductory chapter on namespace configuration, as this is intended as a
supplement to the information there. Using a good quality XML editor while editing a configuration based on
the schema is recommended as this will provide contextual information on which elements and attributes are
available as well as comments explaining their purpose.

B.1. Web Application Security - the <htt p> Element

The <ht t p> element encapsul ates the security configuration for the web layer of your application. It creates a
Fi | t er Chai nProxy bean named "springSecurityFilterChain" which maintains the stack of security filters which
make up the web security configuration ! Some core filters are aways created and others will be added to the
stack depending on the attributes child elements which are present. The positions of the standard filters are
fixed (see the filter order table in the namespace introduction), removing a common source of errors with
previous versions of the framework when users had to configure the filter chain explicitly in
theri | t er Chai nPr oxy bean. You can, of course, still do thisif you need full control of the configuration.

All filters which require a reference to the Aut henti cati onvanager will be automatically injected with the
internal instance created by the namespace configuration (see the introductory chapter for more on the
Aut hent i cat i onManager).

The <http> namespace block aways creates an HitpSessi onContextlntegrationFilter, an
ExceptionTransl ationFilter and a FilterSecuritylnterceptor. These are fixed and cannot be replaced
with alternatives.

B.1.1. <htt p> Attributes

The attributes on the <ht t p> element control some of the properties on the core filters.

B.1.1.1. servl et - api - provi si on

Provides versions of Htt pServl et Request Security methods such as i sUser I nRol e() and get Pri nci pal ()
which are implemented by adding a Securi t yCont ext Hol der Awar eRequest Fi | t er bean to the stack. Defaults
to "true".

B.1.1.2. pat h-type

Controls whether URL patterns are interpreted as ant paths (the default) or regular expressions. In practice this
setsaparticular Ur | Mat cher instance ontheFi | t er Chai nPr oxy.

B.1.1.3. | ower case- conpari sons

Whether test URLs should be converted to lower case prior to comparing with defined path patterns. If
unspecified, defaults to "true"

1Seethe introductory chapter for how to set up the mapping from your web. xmi

Spring Security (2.0.x) 93

The Security Namespace

B.1.1.4. sessi on-fixation-protection

Indicates whether an existing session should be invalidated when a user authenticates and a new session started.
If set to "none" no change will be made. "newSession” will create a new empty session. "migrateSession” will
create a new session and copy the session attributes to the new session. Defaults to "migrateSession”.

If enabled this will add a Sessi onFi xati onProtectionFil ter to the stack. The session fixation protection
options on namespace-created instances of Abst ract Processi ngFi | t er will also be set appropriately.

B.1.1.5.realm

Sets the realm name used for basic authentication (if enabled). Corresponds to the real mName proerty on
Basi cProcessi ngFi | t er Ent r yPoi nt .

B.1.1.6. entry- poi nt - ref

Normally the Aut henti cati onEnt ryPoi nt used will be set depending on which authentication mechanisms
have been configured. This attribute allows this behaviour to be overridden by defining a customized
Aut hent i cat i onEnt ryPoi nt bean which will start the authentication process.

B.1.1.7. access- deci si on- manager - r ef

Optiona attribute specifying the ID of the AccessDeci si onManager implementation which should be used for
authorizing HTTP requests. By default an Af fi rmat i veBased implementation is used for with aRol evot er and
an Aut hent i cat edVot er .

B.1.1.8. access- deni ed- page

Allows the access denied page to be set (the user will be redirected here if an AccessDeni edException iS
raised). Corresponds to the error Page property set on the AccessDeni edHandl er I npl which is used by the
ExceptionTransl ationFilter.

B.1.1.9. once- per - request

Corresponds to the obser veOncePer Request property of Fi | t er Securi tyl nt er cept or . Defaultsto "true”.

B.1.1.10. creat e- sessi on

Controls the eagerness with which an HTTP session is created. If not set, defaults to "ifRequired”. Other
options are "adways' and "never". The setting of this attribute affect the al | owSessi onCreation and
f or ceEager Sessi onCr eat i on properties of Htt pSessi onCont ext I ntegrati onFil ter. al | owSessi onCreat i on
will always be true unless this attribute is set to "never". f or ceEager Sessi onCreat i on is "false" unlessit is set
to "adways'. So the default configuration allows session creation but does not force it. The exception is if
concurrent session control is enabled, when f or ceEager Sessi onCr eat i on Will be set to true, regardless of what
the setting is here. Using "never" would then cause an exception during the initialization of
Ht t pSessi onCont ext | ntegrati onFilter.

B.1.2. The <i ntercept-url > Element

This element is used to define the set of URL patterns that the application is interested in and to configure how
they should be handled. It is used to construct the FilterlnvocationDefinitionSource used by the
FilterSecuritylnterceptor and to exclude particular patterns from the filter chain entirely (by setting the

Spring Security (2.0.x) 94

The Security Namespace

attribute filters="none"). It is also responsible for configuring a Channel Processi ngFi | ter if particular
URL s need to be accessed by HTTPS, for example.

B.1.2.1. pattern

The pattern which defines the URL path. The content will depend on the pat h-type attribute from the
containing http element, so will default to ant path syntax.

B.1.2.2. et hod

The HTTP Method which will be used in combination with the pattern to match an incoming request. If
omitted, any method will match.

B.1.2.3. access

Lists the access attributes which will be stored in the Fil terlnvocati onDefi nitionSource for the defined
URL pattern/method combination. This should be a comma-separated list of the attributes (such as role names).

B.1.2.4. requi r es- channel

Can be "http" or "https" depending on whether a particular URL pattern should be accessed over HTTP or
HTTPS respectively. Alternatively the value "any" can be used when there is no preference. If this attribute is
present on any <i nt er cept - url > element, then a Channel Processi ngFi | ter will be added to the filter stack
and its additional dependencies added to the application context. See the chapter on channel security for an
example configuration using traditional beans.

If a <port-nmappi ngs> configuration is added, this will be used to by the SecureChannel Processor and
I nsecur eChannel Processor beansto determine the ports used for redirecting to HTTP/HTTPS.

B.1.3. The <port - mappi ngs> Element

By default, an instance of Port Mapper | mpl will be added to the configuration for use in redirecting to secure
and insecure URLSs. This element can optionally be used to override the default mappings which that class
defines. Each child <port - mappi ng> element defines a pair of HTTP:HTTPS ports. The default mappings are
80:443 and 8080:8443. An example of overriding these can be found in the namespace introduction.

B.1.4. The <form | ogi n> Element

Ussed to add an AuthenticationProcessingFilter to the filter sack and an
Aut hent i cat i onProcessi ngFi | t er Ent r yPoi nt to the application context to provide authentication on demand.
This will always take precedence over other namespace-created entry points. If no attributes are supplied, a
login page will be generated automatically at the URL "/spring-security-login” 2 The behaviour can be
customized using the following attributes.

B.1.4.1. 1 ogi n- page

The URL that should be used to render the login page. Maps to the Iogi nFormurl property of the
Aut hent i cat i onProcessi ngFi | t er Ent ryPoi nt . Defaults to "/spring-security-login”.

2Thisfeatureisreal ly just provided for convenience and is not intended for production (where a view technology will have been chosen and
can be used to render a customized login page). The class Def aul t Logi nPageGener at i ngFi | t er iSresponsible for rendering the login page
and will provide login forms for both normal form login and/or Openl D if required.

Spring Security (2.0.x) 95

The Security Namespace

B.1.4.2. 1 ogi n- processi ng-url

Maps to the filterProcessesUrl property of AuthenticationProcessingFilter. The default value is
"/j_spring_security_check".

B.1.4.3. defaul t-target-url

Maps to the def aul t Tar get Ur | property of Aut henti cati onProcessi ngFi | ter. If not set, the default value is
"' (the application root). A user will be taken to this URL after logging in, provided they were not asked to
login while attempting to access a secured resource, when they will be taken to the originally requested URL.

B.1.4.4. al ways- use- def aul t -t ar get

If set to "true”, the user will always start at the value given by def aul t -t arget - url, regardiess of how they
arived a the login page. Maps to the alwaysUseDefaul t Target Url property of
Aut hent i cati onProcessi ngFi | t er . Default valueis"false".

B.1.4.5. authentication-failure-url

Mapsto the aut hent i cati onFai | ureUr| property of Aut henti cati onProcessi ngFi | t er. Defines the URL the
browser will be redirected to on login failure. Defaults to "/spring_security _login?ogin_error”, which will be
automatically handled by the automatic login page generator, re-rendering the login page with an error

message.
B.1.5. The <htt p- basi c> Element

Adds a Basi cProcessi ngFi | t er and Basi cProcessi ngFi | t er Ent ryPoi nt to the configuration. The latter will
only be used as the configuration entry point if form-based login is not enabled.

B.1.6. The <renenber - me> Element

Adds the Renenmber MeProcessingFilter to the stack. This in turn will be configured with either a
TokenBasedRenenber MeSer vi ces, a Persi st ent TokenBasedRenmenber MeServi ces Or a user-specified bean
implementing Rerrenber MeSer vi ces depending on the attribute settings.

B.1.6.1. dat a- sour ce-ref

If this is set, Persistent TokenBasedRenmenmber MeServices Will be used and configured with a
JdbcTokenReposi t oryl npl instance.

B.1.6.2. t oken-reposi tory-ref

Configures a Persi st ent TokenBasedRemenber MeServices but allows the wuse of a custom
Per si st ent TokenReposi t ory bean.

B.1.6.3. services-ref

Allows complete control of the Remenber MeSer vi ces implementation that will be used by the filter. The value
should be the Id of a bean in the application context which implements thisinterface.

B.1.6.4. t oken-repository-ref

Spring Security (2.0.x) 96

The Security Namespace

Configures a Persi stent TokenBasedRenenber MeServi ces but alows the use of a custom
Per si st ent TokenReposi t ory bean.

B.1.6.5. The key Attribute

Maps to the "key" property of Abstract Remenber MeSer vi ces. Should be set to a unique value to ensure that
remember-me cookies are only valid within the one application 3,

B.1.6.6. t oken-val i di t y- seconds

Maps to the tokenvaliditySeconds property of Abstract Renenber MeServices. Specifies the period in
seconds for which the remember-me cookie should be valid. By default it will be valid for 14 days.

B.1.6.7. user-service-ref

The remember-me services implementations require access to a User Det ai | sSer vi ce, SO there has to be one
defined in the application context. If there is only one, it will be selected and used automaticaly by the
namespace configuration. If there are multiple instances, you can specify a bean Id explicitly using this
attribute.

B.1.7. The <concurrent - sessi on-cont rol > Element

Adds support for concurrent session control, allowing limits to be placed on the number of active sessions a
user can have. A Concur r ent Sessi onFi | t er Will be created, along with a Concur r ent Sessi onControl | er | npl
and an instance of Sessi onRegi stry (& Sessi onRegi st ryl npl instance unless the user wishes to use a custom
bean). The controller is registered with the namespace's Aut hent i cat i onManager (Provi der Manager). Other
namespace-created beans which require areference to the Sessi onRegi st ry will automatically have it injected.

Note that the f or ceEager Sessi onCr eati on Of Ht t pSessi onCont ext | ntegrati onFil ter Will be set to true if
concurrent session control isin use.

B.1.7.1. The max- sessi ons attribute

Maps to the maxi nunsessi ons property of Concurrent Sessi onControl | er | npl .

B.1.7.2. The expired-url attribute

The URL a user will be redirected to if they attempt to use a session which has been "expired" by the
concurrent session controller because the user has exceeded the number of alowed sessions and has logged in
again elsewhere. Should be set unless excepti on-i f - maxi rum exceeded is set. If no value is supplied, an
expiry message will just be written directly back to the response.

B.1.7.3. The exception-i f - maxi num exceeded attribute

If set to "true" a Concurrent Logi nExcept i on should be raised when a user attempts to exceed the maximum
allowed number of sessions. The default behaviour isto expire the original session.

B.1.7.4. The session-regi stry-al i as and sessi on-regi stry-ref attributes

The user can supply their own Sessi onRegi st ry implementation using the sessi on-regi stry-ref attribute.

3This doesn't affect the use of Per si st ent TokenBasedRemenber MeSer vi ces , Where the tokens are stored on the server side.

Spring Security (2.0.x) 97

The Security Namespace

The other concurrent session control beans will be wired up to useit.

It can also be useful to have a reference to the internal session registry for use in your own beans or an admin
interface. You can expose the interal bean using the sessi on-regi stry-al i as attribute, giving it a name that
you can use elsewhere in your configuration.

B.1.8. The <anonynous> Element

Adds an AnonynousProcessi ngFi | ter to the stack and an AnonynousAut henti cati onProvi der. Required if
you are using the | S_AUTHENTI CATED_ANONYMOUSLY attribute.

B.1.9. The <x509> Element

Adds support for X.509 authentication. An X509Pr eAut hent i cat edPr ocessi ngFi | ter will be added to the
stack and a Pr eAut hent i cat edPr ocessi ngFi | t er Ent ryPoi nt bean will be created. The latter will only be used
if no other authentication mechanisms are in use (it's only functionality isto return an HTTP 403 error code). A
PreAut hent i cat edAut henti cati onProvi der Will aso be created which delegates the loading of user
authoritiesto aUser Det ai | sSer vi ce.

B.1.9.1. The subj ect - pri nci pal - regex attribute

Defines a regular expression which will be used to extract the username from the certificate (for use with the
User Det ai | sSer vi ce).

B.1.9.2. The user-service-ref attribute

Allows a specific User Detai | sService to be used with X.509 in the case where multiple instances are
configured. If not set, an attempt will be made to locate a suitable instance automatically and use that.

B.1.10. The <openi d- | ogi n> Element

Similar to <formlogi n> and has the same attributes. The default value for | ogin-processing-url is
"/]_spring_openid_security check". An Openl DAut hent i cat i onProcessi ngFi |l ter and
Openl DAut hent i cat i onProvi der Will be registered. The latter requires a reference to a User Det ai | sServi ce.

Again, this can be specified by Id, using the user - ser vi ce-ref attribute, or will be located automatically in the
application context.

B.1.11. The <l ogout > Element

Addsalogout Fi | ter tothefilter stack. Thisis configured with aSecuri t yCont ext Logout Handl er .

B.1.11.1. The I ogout -url attribute

The URL which will cause a logout (i.e. which will be processed by the filter). Defaults to
"/j_spring_security_logout".

B.1.11.2. The | ogout - success-ur| attribute

The destination URL which the user will be taken to after logging out. Defaultsto "/".

B.1.11.3. Theinval i dat e- sessi on attribute

Spring Security (2.0.x) 98

The Security Namespace

Mapsto thei nval i dat eHt t pSessi on Of the Securi t yCont ext Logout Handl er . Defaults to "true", so the session
will be invalidated on logout.

B.2. Authentication Services

If you are using the namespace, an Aut hent i cat i onManager is automatically registered and will be used by all
the namespace-created beans which need to reference it. The bean is an instance of Spring Security's
Provi der Manager class, which needs to be configured with a list of one or moreaut henti cati onProvi der
instances. These can either be created using syntax elements provided by the namespace, or they can be
standard bean definitions, marked for addition to the list using the cust om aut hent i cat i on- pr ovi der element.

B.2.1. The <authentication-provider> Element

This element is basicaly a shorthand syntax for configuring a DaoAuthenticationProvider.
DaoAut henti cati onProvi der loads user information from a UserDetailsService and compares the
username/password combination with the values supplied at login. The User Det ai | sSer vi ce instance can be
defined either by using an available namespace element (j dbc-user-service or by using the
user-servi ce-ref attribute to point to a bean defined elsewhere in the application context). You can find
examples of these variations in the namespace introduction.

B.2.2. Using <cust om aut hent i cati on- provi der > t0 register an
AuthenticationProvider

If you have written your own Aut hent i cati onPr ovi der implementation (or want to configure one of Spring
Security's own implementations as a traditional bean for some reason, then you can use the following syntax to
add it to the internal Provi der Manager 'slist:

<bean id="myAut henticati onProvi der" class="com sonet hi ng. M/Aut henti cati onProvi der">
<security: custom aut hentication-provider />
</ bean>

B.2.3. The <aut henti cati on- nanager > Element

Since the Aut hent i cati onManager Will be automatically registered in the application context, this element is
entirely optional. It allows you to define an aias name for the internal instance for use in your own
configuration and also to supply alink to a Concurrent Sessi onControl | er if you are configuring concurrent
session control yourself rather than through the namespace (a rare requirement). Its use is described in the
namespace introduction.

B.3. Method Security

B.3.1. The <gl obal - met hod- securi ty> Element

This element is the primary means of adding support for securing methods on Spring Security beans. Methods
can be secured by the use of annotations (defined at the interface or class level) or by defining a set of pointcuts
as child elements, using AspectJ syntax.

Spring Security (2.0.x) 99

The Security Namespace

Method security uses the same AccessDeci si onManager configuration as web security, but this can be
overridden as explained above Section B.1.1.7, “access- deci si on- manager - r ef 7, Using the same attribute.

B.3.1.1. The <secur ed- annot at i ons> and <j sr 250- annot at i ons> Attributes

Setting these to "true" will enable support for Spring Security's own @ecured annotations and JSR-250
annotations, respectively. They are both disabled by default. Use of JSR-250 annotations also adds a
Jsr250Vot er t0 the AccessDeci si onManager, SO you need to make sure you do this if you are using a custom
implementation and want to use these annotations.

B.3.1.2. Securing Methods using <pr ot ect - poi nt cut >

Rather than defining security attributes on an individual method or class basis using the @ecur ed annotation,
you can define cross-cutting security constraints across whole sets of methods and interfaces in your service
layer using the <pr ot ect - poi nt cut > element. This has two attributes:

e expressi on - the pointcut expression

* access - the security attributes which apply
Y ou can find an example in the namespace introduction.

B.3.2. LDAP Namespace Options

LDAP iscovered in some details in its own chapter. We will expand on that here with some explanation of how
the namespace options map to Spring beans. The LDAP implementation uses Spring LDAP extensively, so
some familiarity with that project's APl may be useful.

B.3.2.1. Defining the LDAP Server using the <l dap- server> Element

This element sets up a Spring LDAP Cont ext Sour ce for use by the other LDAP beans, defining the location of
the LDAP server and other information (such as a username and password, if it doesn't alow anonymous
access) for connecting to it. It can also be used to create an embedded server for testing. Details of the syntax
for both options are covered in the LDAP chapter. The actual Context Source implementation is
Def aul t Spri ngSecuri t yCont ext Source Which extends Spring LDAP'S LdapContext Source class. The
manager - dn and manager - passwor d attributes map to the latter's user bn and passwor d properties respectively.

If you only have one server defined in your application context, the other LDAP namespace-defined beans will
use it automatically. Otherwise, you can give the element an "id" attribute and refer to it from other namespace
beans using the ser ver - ref attribute. Thisis actually the bean Id of the Cont ext Sour ce instance, if you want to
useit in other traditional Spring beans.

B.3.2.2. The <I dap- provi der > Element

This element is shorthand for the creation of an LdapAut hent i cati onProvi der instance. By default this will be
configured with aBi ndAut hent i cat or instance and a Def aul t Aut hori ti esPopul at or .

B.3.2.2.1. The user-dn- pat t ern Attribute

If your users are at a fixed location in the directory (i.e. you can work out the DN directly from the username
without doing a directory search), you can use this attribute to map directly to the DN. It maps directly to the
user DnPat t er ns property of Abst ract LdapAut hent i cat or.

Spring Security (2.0.x) 100

The Security Namespace

B.3.2.2.2. The user-search-base and user-search-filter Attributes

If you need to perform a search to locate the user in the directory, then you can set these attributes to control the
search. The Bi ndAut henti cat or Will be configured with a Fi |l t er BasedLdapUser Search and the attribute
values map directly to the first two arguments of that bean's constructor. If these attributes aren't set and no
user-dn-pattern has been supplied as an adternative, then the default search vaues of
user-search-filter="(ui d={0})" and user-search-base="" will be used.

B.3.2.2.3. group-search-fil ter, group-sear ch-base, group-rol e-attribute and
rol e-prefix Attributes

The value of group-search-base iS mapped to the groupSearchBase constructor argument of
Def aul t AuthoritiesPopulator and defaults to "ou=groups'. The default filter vaue is
"(unigueMember={0})", which assumes that the entry is of type "groupOfUniqueNames".
group-rol e-attri bute mapsto the gr oupRol eAt tri but e attribute and defaultsto "cn". Similarly r ol e- prefi x
mapstor ol ePrefi x and defaultsto "ROLE_".

B.3.2.2.4. The <passwor d- conpar e> Element

This is used as child element to <l dap-provider> and switches the authentication strategy from
Bi ndAut henti cat or tO Passwor dConpari sonAut henti cator. This can optionally be supplied with a hash
attribute or with a child <passwor d- encoder > element to hash the password before submitting it to the directory
for comparison.

B.3.2.3. The <I dap- user - servi ce> Element

This element configures an LDAP User Det ai | sServi ce. The class used is LdapUser Det ai | sServi ce which is
a combination of a FilterBasedLdapUser Search and a Def aul t Aut hori ti esPopul at or. The attributes it
supports have the same usage asin <l dap- pr ovi der >.

Spring Security (2.0.x) 101

	Spring Security
	Table of Contents
	Preface
	Part I. Getting Started
	Chapter 1. Introduction
	1.1. What is Spring Security?
	1.2. History
	1.3. Release Numbering
	1.4. Getting the Source

	Chapter 2. Security Namespace Configuration
	2.1. Introduction
	2.1.1. Design of the Namespace

	2.2. Getting Started with Security Namespace Configuration
	2.2.1. web.xml Configuration
	2.2.2. A Minimal <http> Configuration
	2.2.2.1. What does auto-config Include?
	2.2.2.2. Form and Basic Login Options
	2.2.2.2.1. Setting a Default Post-Login Destination

	2.2.3. Using other Authentication Providers
	2.2.3.1. Adding a Password Encoder

	2.3. Advanced Web Features
	2.3.1. Remember-Me Authentication
	2.3.2. Adding HTTP/HTTPS Channel Security
	2.3.3. Concurrent Session Control
	2.3.4. OpenID Login
	2.3.5. Adding in Your Own Filters
	2.3.5.1. Setting a Custom AuthenticationEntryPoint

	2.3.6. Session Fixation Attack Protection

	2.4. Method Security
	2.4.1. The <global-method-security> Element
	2.4.1.1. Adding Security Pointcuts using protect-pointcut

	2.4.2. The intercept-methods Bean Decorator

	2.5. The Default AccessDecisionManager
	2.5.1. Customizing the AccessDecisionManager

	2.6. The Default Authentication Manager

	Chapter 3. Sample Applications
	3.1. Tutorial Sample
	3.2. Contacts
	3.3. LDAP Sample
	3.4. CAS Sample
	3.5. Pre-Authentication Sample

	Chapter 4. Spring Security Community
	4.1. Issue Tracking
	4.2. Becoming Involved
	4.3. Further Information

	Part II. Overall Architecture
	Chapter 5. Technical Overview
	5.1. Runtime Environment
	5.2. Shared Components
	5.2.1. SecurityContextHolder, SecurityContext and Authentication Objects
	5.2.2. The UserDetailsService
	5.2.3. GrantedAuthority
	5.2.4. Summary

	5.3. Authentication
	5.3.1. ExceptionTranslationFilter
	5.3.2. AuthenticationEntryPoint
	5.3.3. AuthenticationProvider
	5.3.4. Setting the SecurityContextHolder Contents Directly

	5.4. Secure Objects
	5.4.1. Security and AOP Advice
	5.4.2. AbstractSecurityInterceptor
	5.4.2.1. What are Configuration Attributes?
	5.4.2.2. RunAsManager
	5.4.2.3. AfterInvocationManager
	5.4.2.4. Extending the Secure Object Model

	Chapter 6. Supporting Infrastructure
	6.1. Localization
	6.2. Filters
	6.3. Tag Libraries
	6.3.1. Configuration
	6.3.2. Usage

	Chapter 7. Channel Security
	7.1. Overview
	7.2. Configuration
	7.3. Conclusion

	Part III. Authentication
	Chapter 8. Common Authentication Services
	8.1. Mechanisms, Providers and Entry Points
	8.2. UserDetails and Associated Types
	8.2.1. In-Memory Authentication
	8.2.2. JDBC Authentication
	8.2.2.1. Default User Database Schema

	8.3. Concurrent Session Handling
	8.4. Authentication Tag Libraries

	Chapter 9. DAO Authentication Provider
	9.1. Overview
	9.2. Configuration

	Chapter 10. LDAP Authentication
	10.1. Overview
	10.2. Using LDAP with Spring Security
	10.3. Configuring an LDAP Server
	10.3.1. Using an Embedded Test Server
	10.3.2. Using Bind Authentication
	10.3.3. Loading Authorities

	10.4. Implementation Classes
	10.4.1. LdapAuthenticator Implementations
	10.4.1.1. Common Functionality
	10.4.1.2. BindAuthenticator
	10.4.1.3. PasswordComparisonAuthenticator
	10.4.1.4. Active Directory Authentication

	10.4.2. Connecting to the LDAP Server
	10.4.3. LDAP Search Objects
	10.4.3.1. FilterBasedLdapUserSearch

	10.4.4. LdapAuthoritiesPopulator
	10.4.5. Spring Bean Configuration
	10.4.6. LDAP Attributes and Customized UserDetails

	Chapter 11. Form Authentication Mechanism
	11.1. Overview
	11.2. Configuration

	Chapter 12. BASIC Authentication Mechanism
	12.1. Overview
	12.2. Configuration

	Chapter 13. Digest Authentication
	13.1. Overview
	13.2. Configuration

	Chapter 14. Remember-Me Authentication
	14.1. Overview
	14.2. Simple Hash-Based Token Approach
	14.3. Persistent Token Approach
	14.4. Remember-Me Interfaces and Implementations
	14.4.1. TokenBasedRememberMeServices
	14.4.2. PersistentTokenBasedRememberMeServices

	Chapter 15. Java Authentication and Authorization Service (JAAS) Provider
	15.1. Overview
	15.2. Configuration
	15.2.1. JAAS CallbackHandler
	15.2.2. JAAS AuthorityGranter

	Chapter 16. Pre-Authentication Scenarios
	16.1. Pre-Authentication Framework Classes
	16.1.1. AbstractPreAuthenticatedProcessingFilter
	16.1.2. AbstractPreAuthenticatedAuthenticationDetailsSource
	16.1.2.1. J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

	16.1.3. PreAuthenticatedAuthenticationProvider
	16.1.4. PreAuthenticatedProcessingFilterEntryPoint

	16.2. Concrete Implementations
	16.2.1. Request-Header Authentication (Siteminder)
	16.2.1.1. Siteminder Example Configuration

	16.2.2. J2EE Container Authentication

	Chapter 17. Anonymous Authentication
	17.1. Overview
	17.2. Configuration

	Chapter 18. X.509 Authentication
	18.1. Overview
	18.2. Adding X.509 Authentication to Your Web Application
	18.3. Setting up SSL in Tomcat

	Chapter 19. CAS Authentication
	19.1. Overview
	19.2. How CAS Works
	19.3. Configuration of CAS Client

	Chapter 20. Run-As Authentication Replacement
	20.1. Overview
	20.2. Configuration

	Chapter 21. Container Adapter Authentication
	21.1. Overview
	21.2. Adapter Authentication Provider
	21.3. Jetty
	21.4. JBoss
	21.5. Resin
	21.6. Tomcat

	Part IV. Authorization
	Chapter 22. Common Authorization Concepts
	22.1. Authorities
	22.2. Pre-Invocation Handling
	22.2.1. The AccessDecisionManager
	22.2.1.1. Voting-Based AccessDecisionManager Implementations
	22.2.1.1.1. RoleVoter
	22.2.1.1.2. Custom Voters

	22.3. After Invocation Handling
	22.3.1. ACL-Aware AfterInvocationProviders
	22.3.2. ACL-Aware AfterInvocationProviders (old ACL module)

	22.4. Authorization Tag Libraries

	Chapter 23. Secure Object Implementations
	23.1. AOP Alliance (MethodInvocation) Security Interceptor
	23.1.1. Explicit MethodSecurityIterceptor Configuration

	23.2. AspectJ (JoinPoint) Security Interceptor
	23.3. FilterInvocation Security Interceptor

	Chapter 24. Domain Object Security
	24.1. Overview
	24.2. Key Concepts
	24.3. Getting Started

	Appendix A. Security Database Schema
	A.1. User Schema
	A.1.1. Group Authorities

	A.2. Persistent Login (Remember-Me) Schema
	A.3. ACL Schema

	Appendix B. The Security Namespace
	B.1. Web Application Security - the <http> Element
	B.1.1. <http> Attributes
	B.1.1.1. servlet-api-provision
	B.1.1.2. path-type
	B.1.1.3. lowercase-comparisons
	B.1.1.4. session-fixation-protection
	B.1.1.5. realm
	B.1.1.6. entry-point-ref
	B.1.1.7. access-decision-manager-ref
	B.1.1.8. access-denied-page
	B.1.1.9. once-per-request
	B.1.1.10. create-session

	B.1.2. The <intercept-url> Element
	B.1.2.1. pattern
	B.1.2.2. method
	B.1.2.3. access
	B.1.2.4. requires-channel

	B.1.3. The <port-mappings> Element
	B.1.4. The <form-login> Element
	B.1.4.1. login-page
	B.1.4.2. login-processing-url
	B.1.4.3. default-target-url
	B.1.4.4. always-use-default-target
	B.1.4.5. authentication-failure-url

	B.1.5. The <http-basic> Element
	B.1.6. The <remember-me> Element
	B.1.6.1. data-source-ref
	B.1.6.2. token-repository-ref
	B.1.6.3. services-ref
	B.1.6.4. token-repository-ref
	B.1.6.5. The key Attribute
	B.1.6.6. token-validity-seconds
	B.1.6.7. user-service-ref

	B.1.7. The <concurrent-session-control> Element
	B.1.7.1. The max-sessions attribute
	B.1.7.2. The expired-url attribute
	B.1.7.3. The exception-if-maximum-exceeded attribute
	B.1.7.4. The session-registry-alias and session-registry-ref attributes

	B.1.8. The <anonymous> Element
	B.1.9. The <x509> Element
	B.1.9.1. The subject-principal-regex attribute
	B.1.9.2. The user-service-ref attribute

	B.1.10. The <openid-login> Element
	B.1.11. The <logout> Element
	B.1.11.1. The logout-url attribute
	B.1.11.2. The logout-success-url attribute
	B.1.11.3. The invalidate-session attribute

	B.2. Authentication Services
	B.2.1. The <authentication-provider> Element
	B.2.2. Using <custom-authentication-provider> to register an AuthenticationProvider
	B.2.3. The <authentication-manager> Element

	B.3. Method Security
	B.3.1. The <global-method-security> Element
	B.3.1.1. The <secured-annotations> and <jsr250-annotations> Attributes
	B.3.1.2. Securing Methods using <protect-pointcut>

	B.3.2. LDAP Namespace Options
	B.3.2.1. Defining the LDAP Server using the <ldap-server> Element
	B.3.2.2. The <ldap-provider> Element
	B.3.2.2.1. The user-dn-pattern Attribute
	B.3.2.2.2. The user-search-base and user-search-filter Attributes
	B.3.2.2.3. group-search-filter, group-search-base, group-role-attribute and role-prefix Attributes
	B.3.2.2.4. The <password-compare> Element

	B.3.2.3. The <ldap-user-service> Element

