
Spring Security

Reference Documentation

2.0.x

Copyright © 2005-2007

Preface .. vi
I. Getting Started .. 1

1. Introduction .. 2
1.1. What is Spring Security? .. 2
1.2. History .. 3
1.3. Release Numbering .. 4
1.4. Getting the Source .. 4

2. Security Namespace Configuration .. 5
2.1. Introduction ... 5

2.1.1. Design of the Namespace ... 5
2.2. Getting Started with Security Namespace Configuration ... 6

2.2.1. web.xml Configuration ... 6
2.2.2. A Minimal <http> Configuration ... 7
2.2.3. Using other Authentication Providers .. 9

2.3. Advanced Web Features ... 10
2.3.1. Remember-Me Authentication .. 10
2.3.2. Adding HTTP/HTTPS Channel Security ... 10
2.3.3. Concurrent Session Control .. 11
2.3.4. OpenID Login ... 11
2.3.5. Adding in Your Own Filters ... 11
2.3.6. Session Fixation Attack Protection ... 13

2.4. Method Security ... 13
2.4.1. The <global-method-security> Element .. 14
2.4.2. The intercept-methods Bean Decorator .. 14

2.5. The Default AccessDecisionManager .. 15
2.5.1. Customizing the AccessDecisionManager ... 15

2.6. The Default Authentication Manager ... 15
3. Sample Applications ... 17

3.1. Tutorial Sample ... 17
3.2. Contacts .. 17
3.3. LDAP Sample .. 18
3.4. CAS Sample .. 18
3.5. Pre-Authentication Sample ... 18

4. Spring Security Community ... 19
4.1. Issue Tracking ... 19
4.2. Becoming Involved .. 19
4.3. Further Information .. 19

II. Overall Architecture ... 20
5. Technical Overview .. 21

5.1. Runtime Environment .. 21
5.2. Shared Components .. 21

5.2.1. SecurityContextHolder, SecurityContext and Authentication Objects 21
5.2.2. The UserDetailsService ... 22
5.2.3. GrantedAuthority .. 22
5.2.4. Summary .. 23

5.3. Authentication ... 23
5.3.1. ExceptionTranslationFilter ... 24
5.3.2. AuthenticationEntryPoint ... 24
5.3.3. AuthenticationProvider .. 24
5.3.4. Setting the SecurityContextHolder Contents Directly 25

5.4. Secure Objects ... 25
5.4.1. Security and AOP Advice .. 25

Spring Security (2.0.x) ii

5.4.2. AbstractSecurityInterceptor .. 25
6. Supporting Infrastructure ... 28

6.1. Localization ... 28
6.2. Filters .. 28
6.3. Tag Libraries ... 31

6.3.1. Configuration .. 31
6.3.2. Usage ... 31

7. Channel Security ... 32
7.1. Overview ... 32
7.2. Configuration ... 32
7.3. Conclusion .. 33

III. Authentication .. 34
8. Common Authentication Services .. 35

8.1. Mechanisms, Providers and Entry Points ... 35
8.2. UserDetails and Associated Types ... 37

8.2.1. In-Memory Authentication ... 38
8.2.2. JDBC Authentication ... 38

8.3. Concurrent Session Handling .. 39
8.4. Authentication Tag Libraries ... 40

9. DAO Authentication Provider .. 41
9.1. Overview ... 41
9.2. Configuration ... 41

10. LDAP Authentication .. 43
10.1. Overview ... 43
10.2. Using LDAP with Spring Security ... 43
10.3. Configuring an LDAP Server .. 43

10.3.1. Using an Embedded Test Server ... 44
10.3.2. Using Bind Authentication ... 44
10.3.3. Loading Authorities ... 44

10.4. Implementation Classes .. 45
10.4.1. LdapAuthenticator Implementations ... 45
10.4.2. Connecting to the LDAP Server .. 46
10.4.3. LDAP Search Objects .. 46
10.4.4. LdapAuthoritiesPopulator .. 46
10.4.5. Spring Bean Configuration ... 47
10.4.6. LDAP Attributes and Customized UserDetails ... 47

11. Form Authentication Mechanism ... 49
11.1. Overview ... 49
11.2. Configuration ... 49

12. BASIC Authentication Mechanism ... 50
12.1. Overview ... 50
12.2. Configuration ... 50

13. Digest Authentication .. 51
13.1. Overview ... 51
13.2. Configuration ... 52

14. Remember-Me Authentication ... 53
14.1. Overview ... 53
14.2. Simple Hash-Based Token Approach ... 53
14.3. Persistent Token Approach ... 54
14.4. Remember-Me Interfaces and Implementations .. 54

14.4.1. TokenBasedRememberMeServices ... 54
14.4.2. PersistentTokenBasedRememberMeServices ... 55

Spring Security

Spring Security (2.0.x) iii

15. Java Authentication and Authorization Service (JAAS) Provider .. 56
15.1. Overview ... 56
15.2. Configuration ... 56

15.2.1. JAAS CallbackHandler .. 56
15.2.2. JAAS AuthorityGranter ... 57

16. Pre-Authentication Scenarios ... 58
16.1. Pre-Authentication Framework Classes .. 58

16.1.1. AbstractPreAuthenticatedProcessingFilter ... 58
16.1.2. AbstractPreAuthenticatedAuthenticationDetailsSource 58
16.1.3. PreAuthenticatedAuthenticationProvider ... 59
16.1.4. PreAuthenticatedProcessingFilterEntryPoint ... 59

16.2. Concrete Implementations ... 59
16.2.1. Request-Header Authentication (Siteminder) ... 59
16.2.2. J2EE Container Authentication ... 60

17. Anonymous Authentication ... 61
17.1. Overview ... 61
17.2. Configuration ... 61

18. X.509 Authentication .. 63
18.1. Overview ... 63
18.2. Adding X.509 Authentication to Your Web Application ... 63
18.3. Setting up SSL in Tomcat ... 64

19. CAS Authentication .. 65
19.1. Overview ... 65
19.2. How CAS Works ... 65
19.3. Configuration of CAS Client ... 65

20. Run-As Authentication Replacement .. 67
20.1. Overview ... 67
20.2. Configuration ... 67

21. Container Adapter Authentication .. 69
21.1. Overview ... 69
21.2. Adapter Authentication Provider ... 69
21.3. Jetty .. 70
21.4. JBoss ... 71
21.5. Resin ... 72
21.6. Tomcat .. 73

IV. Authorization .. 75
22. Common Authorization Concepts ... 76

22.1. Authorities ... 76
22.2. Pre-Invocation Handling ... 76

22.2.1. The AccessDecisionManager .. 76
22.3. After Invocation Handling .. 78

22.3.1. ACL-Aware AfterInvocationProviders .. 79
22.3.2. ACL-Aware AfterInvocationProviders (old ACL module) 80

22.4. Authorization Tag Libraries .. 81
23. Secure Object Implementations .. 83

23.1. AOP Alliance (MethodInvocation) Security Interceptor .. 83
23.1.1. Explicit MethodSecurityIterceptor Configuration ... 83

23.2. AspectJ (JoinPoint) Security Interceptor .. 83
23.3. FilterInvocation Security Interceptor .. 85

24. Domain Object Security .. 87
24.1. Overview ... 87
24.2. Key Concepts ... 87

Spring Security

Spring Security (2.0.x) iv

24.3. Getting Started ... 89
A. Security Database Schema .. 91

A.1. User Schema ... 91
A.1.1. Group Authorities ... 91

A.2. Persistent Login (Remember-Me) Schema .. 91
A.3. ACL Schema .. 92

B. The Security Namespace ... 93
B.1. Web Application Security - the <http> Element .. 93

B.1.1. <http> Attributes .. 93
B.1.2. The <intercept-url> Element .. 94
B.1.3. The <port-mappings> Element .. 95
B.1.4. The <form-login> Element ... 95
B.1.5. The <http-basic> Element ... 96
B.1.6. The <remember-me> Element ... 96
B.1.7. The <concurrent-session-control> Element ... 97
B.1.8. The <anonymous> Element ... 98
B.1.9. The <x509> Element ... 98
B.1.10. The <openid-login> Element .. 98
B.1.11. The <logout> Element .. 98

B.2. Authentication Services ... 99
B.2.1. The <authentication-provider> Element ... 99
B.2.2. Using <custom-authentication-provider> to register an AuthenticationProvider .. 99
B.2.3. The <authentication-manager> Element .. 99

B.3. Method Security .. 99
B.3.1. The <global-method-security> Element .. 99
B.3.2. LDAP Namespace Options .. 100

Spring Security

Spring Security (2.0.x) v

Preface
Spring Security provides a comprehensive security solution for J2EE-based enterprise software applications. As
you will discover as you venture through this reference guide, we have tried to provide you a useful and highly
configurable security system.

Security is an ever-moving target, and it's important to pursue a comprehensive, system-wide approach. In
security circles we encourage you to adopt "layers of security", so that each layer tries to be as secure as
possible in its own right, with successive layers providing additional security. The "tighter" the security of each
layer, the more robust and safe your application will be. At the bottom level you'll need to deal with issues such
as transport security and system identification, in order to mitigate man-in-the-middle attacks. Next you'll
generally utilise firewalls, perhaps with VPNs or IP security to ensure only authorised systems can attempt to
connect. In corporate environments you may deploy a DMZ to separate public-facing servers from backend
database and application servers. Your operating system will also play a critical part, addressing issues such as
running processes as non-privileged users and maximising file system security. An operating system will
usually also be configured with its own firewall. Hopefully somewhere along the way you'll be trying to
prevent denial of service and brute force attacks against the system. An intrusion detection system will also be
especially useful for monitoring and responding to attacks, with such systems able to take protective action
such as blocking offending TCP/IP addresses in real-time. Moving to the higher layers, your Java Virtual
Machine will hopefully be configured to minimize the permissions granted to different Java types, and then
your application will add its own problem domain-specific security configuration. Spring Security makes this
latter area - application security - much easier.

Of course, you will need to properly address all security layers mentioned above, together with managerial
factors that encompass every layer. A non-exhaustive list of such managerial factors would include security
bulletin monitoring, patching, personnel vetting, audits, change control, engineering management systems, data
backup, disaster recovery, performance benchmarking, load monitoring, centralised logging, incident response
procedures etc.

With Spring Security being focused on helping you with the enterprise application security layer, you will find
that there are as many different requirements as there are business problem domains. A banking application has
different needs from an ecommerce application. An ecommerce application has different needs from a
corporate sales force automation tool. These custom requirements make application security interesting,
challenging and rewarding.

Please read Part I, “Getting Started”, in its entirety to begin with. This will introduce you to the framework and
the namespace-based configuration system with which you can get up and running quite quickly. To get more
of an understanding of an in-depth understaning of how Spring Security works, and some of the classes you
might need to use, you should then read Part II, “Overall Architecture”. The remaining parts of this guide are
structured in a more traditional reference style, designed to be read on an as-required basis. We'd also
recommend that you read up as much as possible on application security issues in general. Spring Security is
not a panacea which will solve all security issues. It is important that the application is designed with security
in mind from the start. Attempting to retrofit it is not a good idea. In particular, if you are building a web
application, you should be aware of the many potential vulnerabilities such as cross-site scripting,
request-forgery and session-hijacking which you should be taking into account from the start. The OWASP
web site (http://www.owasp.org/) maintains a top ten list of web application vulnerabilities as well as a lot of
useful reference information.

We hope that you find this reference guide useful, and we welcome your feedback and suggestions.

Finally, welcome to the Spring Security community.

Spring Security (2.0.x) vi

Part I. Getting Started
The later parts of this guide provide an in-depth discussion of the framework architecture and implementation
classes, an understanding of which is important if you need to do any serious customization. In this part, we'll
introduce Spring Security 2.0, give a brief overview of the project's history and take a slightly gentler look at
how to get started using the framework. In particular, we'll look at namespace configuration which provides a
much simpler way of securing your application compared to the traditional Spring bean approach where you
had to wire up all the implementation classes individually.

We'll also take a look at the sample applications that are available. It's worth trying to run these and
experimenting with them a bit even before you read the later sections - you can dip back into them as your
understanding of the framework increases.

Spring Security (2.0.x) 1

Chapter 1. Introduction

1.1. What is Spring Security?

Spring Security provides comprehensive security services for J2EE-based enterprise software applications.
There is a particular emphasis on supporting projects built using The Spring Framework, which is the leading
J2EE solution for enterprise software development. If you're not using Spring for developing enterprise
applications, we warmly encourage you to take a closer look at it. Some familiarity with Spring - and in
particular dependency injection principles - will help you get up to speed with Spring Security more easily.

People use Spring Security for many reasons, but most are drawn to the project after finding the security
features of J2EE's Servlet Specification or EJB Specification lack the depth required for typical enterprise
application scenarios. Whilst mentioning these standards, it's important to recognise that they are not portable at
a WAR or EAR level. Therefore, if you switch server environments, it is typically a lot of work to reconfigure
your application's security in the new target environment. Using Spring Security overcomes these problems,
and also brings you dozens of other useful, entirely customisable security features.

As you probably know, security comprises two major operations. The first is known as "authentication", which
is the process of establishing a principal is who they claim to be. A "principal" generally means a user, device
or some other system which can perform an action in your application. "Authorization" refers to the process of
deciding whether a principal is allowed to perform an action in your application. To arrive at the point where an
authorization decision is needed, the identity of the principal has already been established by the authentication
process. These concepts are common, and not at all specific to Spring Security.

At an authentication level, Spring Security supports a wide range of authentication models. Most of these
authentication models are either provided by third parties, or are developed by relevant standards bodies such
as the Internet Engineering Task Force. In addition, Spring Security provides its own set of authentication
features. Specifically, Spring Security currently supports authentication integration with all of these
technologies:

• HTTP BASIC authentication headers (an IEFT RFC-based standard)
• HTTP Digest authentication headers (an IEFT RFC-based standard)
• HTTP X.509 client certificate exchange (an IEFT RFC-based standard)
• LDAP (a very common approach to cross-platform authentication needs, especially in large environments)
• Form-based authentication (for simple user interface needs)
• OpenID authentication
• Computer Associates Siteminder
• JA-SIG Central Authentication Service (otherwise known as CAS, which is a popular open source single

sign on system)
• Transparent authentication context propagation for Remote Method Invocation (RMI) and HttpInvoker (a

Spring remoting protocol)
• Automatic "remember-me" authentication (so you can tick a box to avoid re-authentication for a

predetermined period of time)
• Anonymous authentication (allowing every call to automatically assume a particular security identity)
• Run-as authentication (which is useful if one call should proceed with a different security identity)
• Java Authentication and Authorization Service (JAAS)
• Container integration with JBoss, Jetty, Resin and Tomcat (so you can still use Container Manager

Authentication if desired)
• Java Open Source Single Sign On (JOSSO) *
• OpenNMS Network Management Platform *
• AppFuse *

Spring Security (2.0.x) 2

• AndroMDA *
• Mule ESB *
• Direct Web Request (DWR) *
• Grails *
• Tapestry *
• JTrac *
• Jasypt *
• Roller *
• Elastic Plath *
• Atlassian Crowd *
• Your own authentication systems (see below)

(* Denotes provided by a third party; check our integration page for links to the latest details)

Many independent software vendors (ISVs) adopt Spring Security because of this significant choice of flexible
authentication models. Doing so allows them to quickly integrate their solutions with whatever their end clients
need, without undertaking a lot of engineering or requiring the client to change their environment. If none of
the above authentication mechanisms suit your needs, Spring Security is an open platform and it is quite simple
to write your own authentication mechanism. Many corporate users of Spring Security need to integrate with
"legacy" systems that don't follow any particular security standards, and Spring Security is happy to "play
nicely" with such systems.

Sometimes the mere process of authentication isn't enough. Sometimes you need to also differentiate security
based on the way a principal is interacting with your application. For example, you might want to ensure
requests only arrive over HTTPS, in order to protect passwords from eavesdropping or end users from
man-in-the-middle attacks. Or, you might want to ensure that an actual human being is making the requests and
not some robot or other automated process. This is especially helpful to protect password recovery processes
from brute force attacks, or simply to make it harder for people to duplicate your application's key content. To
help you achieve these goals, Spring Security fully supports automatic "channel security", together with
JCaptcha integration for human user detection.

Irrespective of how authentication was undertaken, Spring Security provides a deep set of authorization
capabilities. There are three main areas of interest in respect of authorization, these being authorizing web
requests, authorizing methods can be invoked, and authorizing access to individual domain object instances. To
help you understand the differences, consider the authorization capabilities found in the Servlet Specification
web pattern security, EJB Container Managed Security and file system security respectively. Spring Security
provides deep capabilities in all of these important areas, which we'll explore later in this reference guide.

1.2. History

Spring Security began in late 2003 as "The Acegi Security System for Spring". A question was posed on the
Spring Developers' mailing list asking whether there had been any consideration given to a Spring-based
security implementation. At the time the Spring community was relatively small (especially by today's size!),
and indeed Spring itself had only existed as a SourceForge project from early 2003. The response to the
question was that it was a worthwhile area, although a lack of time currently prevented its exploration.

With that in mind, a simple security implementation was built and not released. A few weeks later another
member of the Spring community inquired about security, and at the time this code was offered to them.
Several other requests followed, and by January 2004 around twenty people were using the code. These
pioneering users were joined by others who suggested a SourceForge project was in order, which was duly
established in March 2004.

In those early days, the project didn't have any of its own authentication modules. Container Managed Security

Introduction

Spring Security (2.0.x) 3

http://acegisecurity.org/powering.html

was relied upon for the authentication process, with Acegi Security instead focusing on authorization. This was
suitable at first, but as more and more users requested additional container support, the fundamental limitation
of container-specific authentication realm interfaces was experienced. There was also a related issue of adding
new JARs to the container's classpath, which was a common source of end user confusion and
misconfiguration.

Acegi Security-specific authentication services were subsequently introduced. Around a year later, Acegi
Security became an official Spring Framework subproject. The 1.0.0 final release was published in May 2006 -
after more than two and a half years of active use in numerous production software projects and many hundreds
of improvements and community contributions.

Acegi Security became an official Spring Portfolio project towards the end of 2007 and was rebranded as
"Spring Security".

Today Spring Security enjoys a strong and active open source community. There are thousands of messages
about Spring Security on the support forums. There is an active core of developers work who work on the code
itself and an active community which also regularly share patches and support their peers.

1.3. Release Numbering

It is useful to understand how Spring Security release numbers work, as it will help you identify the effort (or
lack thereof) involved in migrating to future releases of the project. Officially, we use the Apache Portable
Runtime Project versioning guidelines, which can be viewed at http://apr.apache.org/versioning.html.
We quote the introduction contained on that page for your convenience:

“Versions are denoted using a standard triplet of integers: MAJOR.MINOR.PATCH. The basic intent is that
MAJOR versions are incompatible, large-scale upgrades of the API. MINOR versions retain source and binary
compatibility with older minor versions, and changes in the PATCH level are perfectly compatible, forwards
and backwards.”

1.4. Getting the Source

Since Spring Security is an Open Source project, we'd strongly encourage you to check out the source code
using subversion. This will give you full access to all the sample applications and you can build the most up to
date version of the project easily. Having the source for a project is also a huge help in debugging. Exception
stack traces are no longer obscure black-box issues but you can get straight to the line that's causing the
problem and work out what's happening. The source is the ultimate documentation for a project and often the
simplest place to find out how something actually works.

To obtain the source for the project trunk, use the following subversion command:

svn checkout http://acegisecurity.svn.sourceforge.net/svnroot/acegisecurity/spring-security/trunk/

You can checkout specific versions from
http://acegisecurity.svn.sourceforge.net/svnroot/acegisecurity/spring-security/tags/.

Introduction

Spring Security (2.0.x) 4

1You can find out more about the use of the ldap-server element in the chapter on LDAP.

Chapter 2. Security Namespace Configuration

2.1. Introduction

Namespace configuration has been available since version 2.0 of the Spring framework. It allows you to
supplement the traditional Spring beans application context syntax with elements from additional XML
schema. You can find more information in the Spring Reference Documentation. A namespace element can be
used simply to allow a more concise way of configuring an individual bean or, more powerfully, to define an
alternative configuration syntax which more closely matches the problem domain and hides the underlying
complexity from the user. A simple element may conceal the fact that multiple beans and processing steps are
being added to the application context. For example, adding the following element from the security namespace
to an application context will start up an embedded LDAP server for testing use within the application:

<security:ldap-server />

This is much simpler than wiring up the equivalent Apache Directory Server beans. The most common
alternative configuration requirements are supported by attributes on the ldap-server element and the user is
isolated from worrying about which beans they need to be set on and what the bean property names are. 1. Use
of a good XML editor while editing the application context file should provide information on the attributes
and elements that are available. We would recommend that you try out the SpringSource Tool Suite as it has
special features for working with the Spring portfolio namespaces.

To start using the security namespace in your application context, all you need to do is add the schema
declaration to your application context file:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:security="http://www.springframework.org/schema/security"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

http://www.springframework.org/schema/security http://www.springframework.org/schema/security/spring-security-2.0.4.xsd">
...

</beans>

In many of the examples you will see (and in the sample) applications, we will often use "security" as the
default namespace rather than "beans", which means we can omit the prefix on all the security namespace
elements, making the context easier to read. You may also want to do this if you have your application context
divided up into separate files and have most of your security configuration in one of them. Your security
application context file would then start like this

<beans:beans xmlns="http://www.springframework.org/schema/security"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

http://www.springframework.org/schema/security http://www.springframework.org/schema/security/spring-security-2.0.4.xsd">
...

</beans:beans>

We'll assume this syntax is being used from now on in this chapter.

2.1.1. Design of the Namespace

Spring Security (2.0.x) 5

http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html
http://www.springsource.com/products/sts

The namespace is designed to capture the most common uses of the framework and provide a simplified and
concise syntax for enabling them within an application. The design is largely based around the large-scale
dependencies within the framework, and can be divided up into the following areas:

• Web/HTTP Security - the most complex part. Sets up the filters and related service beans used to apply the
framework authentication mechanisms, to secure URLs, render login and error pages and much more.

• Business Object (Method) Security - options for securing the service layer.

• AuthenticationManager - handles authentication requests from other parts of the framework. A default
instance will be registered internally by the namespace.

• AccessDecisionManager - provides access decisions for web and method security. A default one will be
registered, but you can also choose to use a custom one, declared using normal Spring bean syntax.

• AuthenticationProviders - mechanisms against which the authentication manager authenticates users. The
namespace provides supports for several standard options and also a means of adding custom beans declared
using a traditional syntax.

• UserDetailsService - closely related to authentication providers, but often also required by other beans.

We'll see how these work together in the following sections.

2.2. Getting Started with Security Namespace Configuration

In this section, we'll look at how you can build up a namespace configuration to use some of the main features
of the framework. Let's assume you initially want to get up and running as quickly as possible and add
authentication support and access control to an existing web application, with a few test logins. Then we'll look
at how to change over to authenticating against a database or other security information repository. In later
sections we'll introduce more advanced namespace configuration options.

2.2.1. web.xml Configuration

The first thing you need to do is add the following filter declaration to your web.xml file:

<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>
<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

This provides a hook into the Spring Security web infrastructure. DelegatingFilterProxy is a Spring
Framework class which delegates to a filter implementation which is defined as a Spring bean in your
application context. In this case, the bean is named "springSecurityFilterChain", which is an internal
infrastructure bean created by the namespace to handle web security. Note that you should not use this bean
name yourself. Once you've added this to your web.xml, you're ready to start editing your application context
file. Web security services are configured using the <http> element.

Security Namespace Configuration

Spring Security (2.0.x) 6

2.2.2. A Minimal <http> Configuration

All you need to enable web security to begin with is

<http auto-config='true'>
<intercept-url pattern="/**" access="ROLE_USER" />

</http>

Which says that we want all URLs within our application to be secured, requiring the role ROLE_USER to access
them.

Note

You can use multiple <intercept-url> elements to define different access requirements for
different sets of URLs, but they will be evaluated in the order listed and the first match will be
used. So you must put the most specific matches at the top.

To add some users, you can define a set of test data directly in the namespace:

<authentication-provider>
<user-service>
<user name="jimi" password="jimispassword" authorities="ROLE_USER, ROLE_ADMIN" />
<user name="bob" password="bobspassword" authorities="ROLE_USER" />

</user-service>
</authentication-provider>

If you are familiar with previous versions of the framework, you can probably already guess roughly
what's going on here. The <http> element is responsible for creating a FilterChainProxy and the filter
beans which it uses. Common issues like incorrect filter ordering are no longer an issue as the filter
positions are predefined.

The <authentication-provider> element creates a DaoAuthenticationProvider bean and the
<user-service> element creates an InMemoryDaoImpl. A ProviderManager bean is always created by the
namespace processing system and the DaoAuthenticationProvider is automatically registered with it.
You can find more detailed information on the beans that are created in the namespace appendix.

The configuration above defines two users, their passwords and their roles within the application (which will be
used for access control). It is also possible to load user information from a standard properties file using the
properties attribute on user-service. See the section on in-memory authentication for more details. Using
the <authentication-provider> element means that the user information will be used by the authentication
manager to process authentication requests.

At this point you should be able to start up your application and you will be required to log in to proceed. Try it
out, or try experimenting with the "tutorial" sample application that comes with the project. The above
configuration actually adds quite a few services to the application because we have used the auto-config

attribute. For example, form login processing and "remember-me" services are automatically enabled.

2.2.2.1. What does auto-config Include?

Security Namespace Configuration

Spring Security (2.0.x) 7

The auto-config attribute, as we have used it above, is just a shorthand syntax for:

<http>
<intercept-url pattern="/**" access="ROLE_USER" />
<form-login />
<anonymous />
<http-basic />
<logout />
<remember-me />

</http>

These other elements are responsible for setting up form-login, anonymous authentication, basic authentication,
logout handling and remember-me services respectively. They each have attributes which can be used to alter
their behaviour.

auto-config Requires a UserDetailsService

An error can occur when using auto-config without a UserDetailsService in your application
context (for example, if you are using LDAP authentication). This is because remember-me is
automatically enabled when auto-config="true" and it requires an authentication mechanism
which uses a UserDetailsService to function (see the Remember-me chapter for more details). If
you have an error caused by a missing UserDetailsService then try removing the auto-config

setting (and any remember-me setting you might have).

2.2.2.2. Form and Basic Login Options

You might be wondering where the login form came from when you were prompted to log in, since we made
no mention of any HTML files or JSPs. In fact, since we didn't explicitly set a URL for the login page, Spring
Security generates one automatically, based on the features that are enabled and using standard values for the
URL which processes the submitted login, the default target URL the user will be sent to and so on. However,
the namespace offers plenty of suppport to allow you to customize these options. For example, if you want to
supply your own login page, you could use:

<http auto-config='true'>
<intercept-url pattern="/login.jsp*" filters="none"/>
<intercept-url pattern="/**" access="ROLE_USER" />
<form-login login-page='/login.jsp'/>

</http>

Note that you can still use auto-config. The form-login element just overrides the default settings. Also note
that we've added an extra intercept-url element to say that any requests for the login page should be
excluded from processing by the security filters. Otherwise the request would be matched by the pattern /**

and it wouldn't be possible to access the login page itself! If you want to use basic authentication instead of
form login, then change the configuration to

<http auto-config='true'>
<intercept-url pattern="/**" access="ROLE_USER" />
<http-basic />

</http>

Basic authentication will then take precedence and will be used to prompt for a login when a user attempts to
access a protected resource. Form login is still available in this configuration if you wish to use it, for example

Security Namespace Configuration

Spring Security (2.0.x) 8

through a login form embedded in another web page.

2.2.2.2.1. Setting a Default Post-Login Destination

If a form login isn't prompted by an attempt to access a protected resource, the default-target-url option
comes into play. This is the URL the user will be taken to after logging in, and defaults to "/". You can also
configure things so that they user always ends up at this page (regardless of whether the login was "on-demand"
or they explicitly chose to log in) by setting the always-use-default-target attribute to "true". This is useful
if your application always requires that the user starts at a "home" page, for example:

<http>
<intercept-url pattern='/login.htm*' filters='none'/>
<intercept-url pattern='/**' access='ROLE_USER' />
<form-login login-page='/login.htm' default-target-url='/home.htm' always-use-default-target='true' />

</http>

2.2.3. Using other Authentication Providers

In practice you will need a more scalable source of user information than a few names added to the application
context file. Most likely you will want to store your user information in something like a database or an LDAP
server. LDAP namespace configuration is dealt with in the LDAP chapter, so we won't cover it here. If you
have a custom implementation of Spring Security's UserDetailsService, called "myUserDetailsService" in
your application context, then you can authenticate against this using

<authentication-provider user-service-ref='myUserDetailsService'/>

If you want to use a database, then you can use

<authentication-provider>
<jdbc-user-service data-source-ref="securityDataSource"/>

</authentication-provider>

Where "securityDataSource" is the name of a DataSource bean in the application context, pointing at a
database containing the standard Spring Security user data tables. Alternatively, you could configure a Spring
Security JdbcDaoImpl bean and point at that using the user-service-ref attribute:

<authentication-provider user-service-ref='myUserDetailsService'/>

<beans:bean id="myUserDetailsService" class="org.springframework.security.userdetails.jdbc.JdbcDaoImpl">
<beans:property name="dataSource" ref="dataSource"/>

</beans:bean>

You can also use standard AuthenticationProvider beans by adding the
<custom-authentication-provider> element within the bean definition. See Section 2.6, “The Default
Authentication Manager” for more on this.

2.2.3.1. Adding a Password Encoder

Often your password data will be encoded using a hashing algorithm. This is supported by the

Security Namespace Configuration

Spring Security (2.0.x) 9

<password-encoder> element. With SHA encoded passwords, the original authentication provider
configuration would look like this:

<authentication-provider>
<password-encoder hash="sha"/>
<user-service>
<user name="jimi" password="d7e6351eaa13189a5a3641bab846c8e8c69ba39f" authorities="ROLE_USER, ROLE_ADMIN" />
<user name="bob" password="4e7421b1b8765d8f9406d87e7cc6aa784c4ab97f" authorities="ROLE_USER" />

</user-service>
</authentication-provider>

When using hashed passwords, it's also a good idea to use a salt value to protect against dictionary attacks and
Spring Security supports this too. Ideally you would want to use a randomly generated salt value for each user,
but you can use any property of the UserDetails object which is loaded by your UserDetailsService. For
example, to use the username property, you would use

<password-encoder hash="sha">
<salt-source user-property="username"/>

</password-encoder>

You can use a custom password encoder bean by using the ref attribute of password-encoder. This should
contain the name of a bean in the application context which is an instance of Spring Security's
PasswordEncoder interface.

2.3. Advanced Web Features

2.3.1. Remember-Me Authentication

See the separate Remember-Me chapter for information on remember-me namespace configuration.

2.3.2. Adding HTTP/HTTPS Channel Security

If your application supports both HTTP and HTTPS, and you require that particular URLs can only be accessed
over HTTPS, then this is directly supported using the requires-channel attribute on <intercept-url>:

<http>
<intercept-url pattern="/secure/**" access="ROLE_USER" requires-channel="https"/>
<intercept-url pattern="/**" access="ROLE_USER" requires-channel="any"/>
...

</http>

With this configuration in place, if a user attempts to access anything matching the "/secure/**" pattern using
HTTP, they will first be redirected to an HTTPS URL. The available options are "http", "https" or "any". Using
the value "any" means that either HTTP or HTTPS can be used.

If your application uses non-standard ports for HTTP and/or HTTPS, you can specify a list of port mappings as
follows:

<http>
...
<port-mappings>

Security Namespace Configuration

Spring Security (2.0.x) 10

<port-mapping http="9080" https="9443"/>
</port-mappings>

</http>

You can find a more in-depth discussion of channel security in Chapter 7, Channel Security.

2.3.3. Concurrent Session Control

If you wish to place constraints on a single user's ability to log in to your application, Spring Security supports
this out of the box with the following simple additions. First you need to add the following listener to your
web.xml file to keep Spring Security updated about session lifecycle events:

<listener>
<listener-class>org.springframework.security.ui.session.HttpSessionEventPublisher</listener-class>

</listener>

Then add the following line to your application context:

<http>
...
<concurrent-session-control max-sessions="1" />

</http>

This will prevent a user from logging in multiple times - a second login will cause the first to be invalidated.
Often you would prefer to prevent a second login, in which case you can use

<http>
...
<concurrent-session-control max-sessions="1" exception-if-maximum-exceeded="true"/>

</http>

The second login will then be rejected.

2.3.4. OpenID Login

The namespace supports OpenID login either instead of, or in addition to normal form-based login, with a
simple change:

<http>
<intercept-url pattern="/**" access="ROLE_USER" />
<openid-login />

</http>

You should then register yourself with an OpenID provider (such as myopenid.com), and add the user
information to your in-memory <user-service>:

<user name="http://jimi.hendrix.myopenid.com/" password="notused" authorities="ROLE_USER" />

You should be able to login using the myopenid.com site to authenticate.

2.3.5. Adding in Your Own Filters

Security Namespace Configuration

Spring Security (2.0.x) 11

http://openid.net/

If you've used Spring Security before, you'll know that the framework maintains a chain of filters in order to
apply its services. You may want to add your own filters to the stack at particular locations or use a Spring
Security filter for which there isn't currently a namespace configuration option (CAS, for example). Or you
might want to use a customized version of a standard namespace filter, such as the
AuthenticationProcessingFilter which is created by the <form-login> element, taking advantage of some
of the extra configuration options which are available by using defining the bean directly. How can you do this
with namespace configuration, since the filter chain is not directly exposed?

The order of the filters is always strictly enforced when using the namespace. Each Spring Security filter
implements the Spring Ordered interface and the filters created by the namespace are sorted during
initialization. The standard Spring Security filters each have an alias in the namespace. The filters, aliases and
namespace elements/attributes which create the filters are shown in Table 2.1, “Standard Filter Aliases and
Ordering”.

Table 2.1. Standard Filter Aliases and Ordering

Alias Filter Class Namespace Element or Attribute

CHANNEL_FILTER ChannelProcessingFilter http/intercept-url

CONCURRENT_SESSION_FILTERConcurrentSessionFilter http/concurrent-session-control

SESSION_CONTEXT_INTEGRATION_FILTERHttpSessionContextIntegrationFilterhttp

LOGOUT_FILTER LogoutFilter http/logout

X509_FILTER X509PreAuthenticatedProcessigFilterhttp/x509

PRE_AUTH_FILTER AstractPreAuthenticatedProcessingFilter

Subclasses
N/A

CAS_PROCESSING_FILTER CasProcessingFilter N/A

AUTHENTICATION_PROCESSING_FILTERAuthenticationProcessingFilter http/form-login

BASIC_PROCESSING_FILTER BasicProcessingFilter http/http-basic

SERVLET_API_SUPPORT_FILTERSecurityContextHolderAwareRequestFilterhttp/@servlet-api-provision

REMEMBER_ME_FILTER RememberMeProcessingFilter http/remember-me

ANONYMOUS_FILTER AnonymousProcessingFilter http/anonymous

EXCEPTION_TRANSLATION_FILTERExceptionTranslationFilter http

NTLM_FILTER NtlmProcessingFilter N/A

FILTER_SECURITY_INTERCEPTORFilterSecurityInterceptor http

SWITCH_USER_FILTER SwitchUserProcessingFilter N/A

You can add your own filter to the stack, using the custom-filter element and one of these names to specify
the position your filter should appear at:

<beans:bean id="myFilter" class="com.mycompany.MySpecialAuthenticationFilter">
<custom-filter position="AUTHENTICATION_PROCESSING_FILTER"/>

</beans:bean>

Security Namespace Configuration

Spring Security (2.0.x) 12

You can also use the after or before attribtues if you want your filter to be inserted before or after another
filter in the stack. The names "FIRST" and "LAST" can be used with the position attribute to indicate that you
want your filter to appear before or after the entire stack, respectively.

Avoiding filter position conflicts

If you are inserting a custom filter which may occupy the same position as one of the standard
filters created by the namespace then it's important that you don't include the namespace versions
by mistake. Avoid using the auto-config attribute and remove any elements which create filters
whose functionality you want to replace.

Note that you can't replace filters which are created by the use of the <http> element itself -
HttpSessionContextIntegrationFilter, ExceptionTranslationFilter or
FilterSecurityInterceptor.

If you're replacing a namespace filter which requires an authentication entry point (i.e. where the authentication
process is triggered by an attempt by an unauthenticated user to access to a secured resource), you will need to
add a custom entry point bean too.

2.3.5.1. Setting a Custom AuthenticationEntryPoint

If you aren't using form login, OpenID or basic authentication through the namespace, you may want to define
an authentication filter and entry point using a traditional bean syntax and link them into the namespace, as
we've just seen. The corresponding AuthenticationEntryPoint can be set using the entry-point-ref

attribute on the <http> element.

The CAS sample application is a good example of the use of custom beans with the namespace, including this
syntax. If you aren't familiar with authentication entry points, they are discussed in the technical overview
chapter.

2.3.6. Session Fixation Attack Protection

Session fixation attacks are a potential risk where it is possible for a malicious attacker to create a session by
accessing a site, then persuade another user to log in with the same session (by sending them a link containing
the session identifier as a parameter, for example). Spring Security protects against this automatically by
creating a new session when a user logs in. If you don't require this protection, or it conflicts with some other
requirement, you can control the behaviour using the session-fixation-protection attribute on <http>,
which has three options

• migrateSession - creates a new session and copies the existing session attributes to the new session. This is
the default.

• none - Don't do anything. The original session will be retained.

• newSession - Create a new "clean" session, without copying the existing session data.

2.4. Method Security

Spring Security 2.0 has improved support substantially for adding security to your service layer methods. If you
are using Java 5 or greater, then support for JSR-250 security annotations is provided, as well as the
framework's native @Secured annotation. You can apply security to a single bean, using the

Security Namespace Configuration

Spring Security (2.0.x) 13

http://en.wikipedia.org/wiki/Session_fixation

intercept-methods element to decorate the bean declaration, or you can secure multiple beans across the
entire service layer using the AspectJ style pointcuts.

2.4.1. The <global-method-security> Element

This element is used to enable annotation-based security in your application (by setting the appropriate
attributes on the element), and also to group together security pointcut declarations which will be applied across
your entire application context. You should only declare one <global-method-security> element. The
following declaration would enable support for both Spring Security's @Secured, and JSR-250 annotations:

<global-method-security secured-annotations="enabled" jsr250-annotations="enabled"/>

Adding an annotation to a method (on an class or interface) would then limit the access to that method
accordingly. Spring Security's native annotation support defines a set of attributes for the method. These will be
passed to the AccessDecisionManager for it to make the actual decision. This example is taken from the
tutorial sample, which is a good starting point if you want to use method security in your application:

public interface BankService {

@Secured("IS_AUTHENTICATED_ANONYMOUSLY")
public Account readAccount(Long id);

@Secured("IS_AUTHENTICATED_ANONYMOUSLY")
public Account[] findAccounts();

@Secured("ROLE_TELLER")
public Account post(Account account, double amount);

}

2.4.1.1. Adding Security Pointcuts using protect-pointcut

The use of protect-pointcut is particularly powerful, as it allows you to apply security to many beans with
only a simple declaration. Consider the following example:

<global-method-security>
<protect-pointcut expression="execution(* com.mycompany.*Service.*(..))" access="ROLE_USER"/>

</global-method-security>

This will protect all methods on beans declared in the application context whose classes are in the
com.mycompany package and whose class names end in "Service". Only users with the ROLE_USER role will be
able to invoke these methods. As with URL matching, the most specific matches must come first in the list of
pointcuts, as the first matching expression will be used.

2.4.2. The intercept-methods Bean Decorator

This alternative syntax allows you to specify security for a specific bean by adding this element within the bean
itself.

<bean:bean id="target" class="com.mycompany.myapp.MyBean">
<intercept-methods>

<protect method="set*" access="ROLE_ADMIN" />
<protect method="get*" access="ROLE_ADMIN,ROLE_USER" />
<protect method="doSomething" access="ROLE_USER" />

</intercept-methods>
</bean:bean>

Security Namespace Configuration

Spring Security (2.0.x) 14

This allows you to configure security attributes for individual methods on the bean or simple wildcarded
patterns.

2.5. The Default AccessDecisionManager

This section assumes you have some knowledge of the underlying architecture for access-control within Spring
Security. If you don't you can skip it and come back to it later, as this section is only really relevant for people
who need to do some customization in order to use more than simple role based security.

When you use a namespace configuration, a default instance of AccessDecisionManager is automatically
registered for you and will be used for making access decisions for method invocations and web URL access,
based on the access attributes you specify in your intercept-url and protect-pointcut declarations (and in
annotations if you are using annotation secured methods).

The default strategy is to use an AffirmativeBased AccessDecisionManager with a RoleVoter and an
AuthenticatedVoter.

2.5.1. Customizing the AccessDecisionManager

If you need to use a more complicated access control strategy then it is easy to set an alternative for both
method and web security.

For method security, you do this by setting the access-decision-manager-ref attribute on
global-method-securityto the Id of the appropriate AccessDecisionManager bean in the application context:

<global-method-security access-decision-manager-ref="myAccessDecisionManagerBean">
...

</global-method-security>

The syntax for web security is the same, but on the http element:

<http access-decision-manager-ref="myAccessDecisionManagerBean">
...

</http>

2.6. The Default Authentication Manager

We've touched on the idea that the namespace configuration automatically registers an authentication manager
bean for you. This is an instance of Spring Security's ProviderManager class, which you may already be
familiar with if you've used the framework before. You can't use a custom AuthenticationProvider if you are
using either HTTP or method security through the namespace, but this should not be a problem as you have full
control over the AuthenticationProviders that are used.

You may want to register additional AuthenticationProvider beans with the ProviderManager and you can
do this using the <custom-authentication-provider> element within the bean. For example:

<bean id="casAuthenticationProvider"
class="org.springframework.security.providers.cas.CasAuthenticationProvider">

Security Namespace Configuration

Spring Security (2.0.x) 15

<security:custom-authentication-provider />
...

</bean>

Another common requirement is that another bean in the context may require a reference to the
AuthenticationManager. There is a special element which lets you register an alias for the
AuthenticationManager and you can then use this name elsewhere in your application context.

<security:authentication-manager alias="authenticationManager"/>

<bean id="customizedFormLoginFilter" class="org.springframework.security.ui.webapp.AuthenticationProcessingFilter">
<security:custom-filter position="AUTHENTICATION_PROCESSING_FILTER "/>
<property name="authenticationManager" ref="authenticationManager"/>
...

</bean>

Security Namespace Configuration

Spring Security (2.0.x) 16

Chapter 3. Sample Applications
There are several sample web applications that are available with the project. To avoid an overly large
download, only the "tutorial" and "contacts" samples are included in the distribution zip file. You can either
build the others yourself, or you can obtain the war files individually from the central Maven repository. We'd
recommend the former. You can get the source as described in the introduction and it's easy to build the project
using Maven. There is more information on the project web site at
http://www.springframework.org/spring-security/ if you need it. All paths referred to in this chapter are relative
to the source directory, once you have checked it out from subversion.

3.1. Tutorial Sample

The tutorial sample is a nice basic example to get you started. It uses simple namespace configuration
throughout. The compiled application is included in the distribution zip file, ready to be deployed into your web
container (spring-security-samples-tutorial-2.0.x.war). The form-based authentication mechanism is
used in combination with the commonly-used remember-me authentication provider to automatically remember
the login using cookies.

We recommend you start with the tutorial sample, as the XML is minimal and easy to follow. Most
importantly, you can easily add this one XML file (and its corresponding web.xml entries) to your existing
application. Only when this basic integration is achieved do we suggest you attempt adding in method
authorization or domain object security.

3.2. Contacts

The Contacts Sample is quite an advanced example in that it illustrates the more powerful features of domain
object access control lists in addition to basic application security.

To deploy, simply copy the WAR file from Spring Security distribution into your container’s webapps

directory. The war should be called spring-security-samples-contacts-2.0.0.war (the appended version
number will vary depending on what release you are using).

After starting your container, check the application can load. Visit http://localhost:8080/contacts (or
whichever URL is appropriate for your web container and the WAR you deployed).

Next, click "Debug". You will be prompted to authenticate, and a series of usernames and passwords are
suggested on that page. Simply authenticate with any of these and view the resulting page. It should contain a
success message similar to the following:

Authentication object is of type: org.springframework.security.providers.UsernamePasswordAuthenticationToken

Authentication object as a String:
org.springframework.security.providers.UsernamePasswordAuthenticationToken@1f127853:
Principal: org.springframework.security.userdetails.User@b07ed00:
Username: rod; Password: [PROTECTED]; Enabled: true; AccountNonExpired: true;
credentialsNonExpired: true; AccountNonLocked: true;
Granted Authorities: ROLE_SUPERVISOR, ROLE_USER; Password: [PROTECTED]; Authenticated: true;
Details: org.springframework.security.ui.WebAuthenticationDetails@0:
RemoteIpAddress: 127.0.0.1; SessionId: k5qypsawgpwb;

Spring Security (2.0.x) 17

get-source
http://www.springframework.org/spring-security/

Granted Authorities: ROLE_SUPERVISOR, ROLE_USER

Authentication object holds the following granted authorities:

ROLE_SUPERVISOR (getAuthority(): ROLE_SUPERVISOR)
ROLE_USER (getAuthority(): ROLE_USER)

SUCCESS! Your web filters appear to be properly configured!

Once you successfully receive the above message, return to the sample application's home page and click
"Manage". You can then try out the application. Notice that only the contacts available to the currently logged
on user are displayed, and only users with ROLE_SUPERVISOR are granted access to delete their contacts. Behind
the scenes, the MethodSecurityInterceptor is securing the business objects.

The application allows you to modify the access control lists associated with different contacts. Be sure to give
this a try and understand how it works by reviewing the application context XML files.

3.3. LDAP Sample

The LDAP sample application provides a basic configuration and sets up both a namespace configuration and
an equivalent configuration using traditional beans, both in the same application context file. This means there
are actually two identical authentication providers configured in this application.

3.4. CAS Sample

The CAS sample requires that you run both a CAS server and CAS client. It isn't included in the distribution so
you should check out the project code as described in the introduction. You'll find the relevant files under the
sample/cas directory. There's also a Readme.txt file in there which explains how to run both the server and the
client directly from the source tree, complete with SSL support. You have to download the CAS Server web
application (a war file) from the CAS site and drop it into the samples/cas/server directory.

3.5. Pre-Authentication Sample

This sample application demonstrates how to wire up beans from the pre-authentication framework to make use
of login information from a J2EE container. The user name and roles are those setup by the container.

The code is in samples/preauth .

Sample Applications

Spring Security (2.0.x) 18

get-source

Chapter 4. Spring Security Community

4.1. Issue Tracking

Spring Security uses JIRA to manage bug reports and enhancement requests. If you find a bug, please log a
report using JIRA. Do not log it on the support forum, mailing list or by emailing the project's developers. Such
approaches are ad-hoc and we prefer to manage bugs using a more formal process.

If possible, in your issue report please provide a JUnit test that demonstrates any incorrect behaviour. Or, better
yet, provide a patch that corrects the issue. Similarly, enhancements are welcome to be logged in the issue
tracker, although we only accept enhancement requests if you include corresponding unit tests. This is
necessary to ensure project test coverage is adequately maintained.

You can access the issue tracker at http://jira.springframework.org/browse/SEC.

4.2. Becoming Involved

We welcome your involvement in Spring Security project. There are many ways of contributing, including
reading the forum and responding to questions from other people, writing new code, improving existing code,
assisting with documentation, developing samples or tutorials, or simply making suggestions.

4.3. Further Information

Questions and comments on Spring Security are welcome. You can use the Spring Community Forum web site
at http://forum.springframework.org to discuss Spring Security with other users of the framework.
Remember to use JIRA for bug reports, as explained above. Everyone is also welcome to join the
Acegisecurity-developer mailing list and participate in design discussions. The traffic volume is very light.

Spring Security (2.0.x) 19

http://jira.springframework.org/browse/SEC
http://forum.springframework.org

Part II. Overall Architecture
Like most software, Spring Security has certain central interfaces, classes and conceptual abstractions that are
commonly used throughout the framework. In this part of the reference guide we will introduce Spring
Security, before examining these central elements that are necessary to successfully planning and executing a
Spring Security integration.

Spring Security (2.0.x) 20

Chapter 5. Technical Overview

5.1. Runtime Environment

Spring Security is written to execute within a standard Java 1.4 Runtime Environment. It also supports Java 5.0,
although the Java types which are specific to this release are packaged in a separate package with the suffix
"tiger" in their JAR filename. As Spring Security aims to operate in a self-contained manner, there is no need to
place any special configuration files into your Java Runtime Environment. In particular, there is no need to
configure a special Java Authentication and Authorization Service (JAAS) policy file or place Spring Security
into common classpath locations.

Similarly, if you are using an EJB Container or Servlet Container there is no need to put any special
configuration files anywhere, nor include Spring Security in a server classloader.

This design offers maximum deployment time flexibility, as you can simply copy your target artifact (be it a
JAR, WAR or EAR) from one system to another and it will immediately work.

5.2. Shared Components

Let's explore some of the most important shared components in Spring Security. Components are considered
"shared" if they are central to the framework and the framework cannot operate without them. These Java types
represent the building blocks of the remaining system, so it's important to understand that they're there, even if
you don't need to directly interact with them.

5.2.1. SecurityContextHolder, SecurityContext and Authentication Objects

The most fundamental object is SecurityContextHolder. This is where we store details of the present security
context of the application, which includes details of the principal currently using the application. By default the
SecurityContextHolder uses a ThreadLocal to store these details, which means that the security context is
always available to methods in the same thread of execution, even if the security context is not explicitly passed
around as an argument to those methods. Using a ThreadLocal in this way is quite safe if care is taken to clear
the thread after the present principal's request is processed. Of course, Spring Security takes care of this for you
automatically so there is no need to worry about it.

Some applications aren't entirely suitable for using a ThreadLocal, because of the specific way they work with
threads. For example, a Swing client might want all threads in a Java Virtual Machine to use the same security
context. For this situation you would use the SecurityContextHolder.MODE_GLOBAL. Other applications might
want to have threads spawned by the secure thread also assume the same security identity. This is achieved by
using SecurityContextHolder.MODE_INHERITABLETHREADLOCAL. You can change the mode from the default
SecurityContextHolder.MODE_THREADLOCAL in two ways. The first is to set a system property. Alternatively,
call a static method on SecurityContextHolder. Most applications won't need to change from the default, but
if you do, take a look at the JavaDocs for SecurityContextHolder to learn more.

Inside the SecurityContextHolder we store details of the principal currently interacting with the application.
Spring Security uses an Authentication object to represent this information. Whilst you won't normally need
to create an Authentication object yourself, it is fairly common for users to query the Authentication object.
You can use the following code block - from anywhere in your application - to obtain the name of the
authenticated user, for example:

Spring Security (2.0.x) 21

Object obj = SecurityContextHolder.getContext().getAuthentication().getPrincipal();

if (obj instanceof UserDetails) {
String username = ((UserDetails)obj).getUsername();

} else {
String username = obj.toString();

}

The above code introduces a number of interesting relationships and key objects. First, you will notice that
there is an intermediate object between SecurityContextHolder and Authentication. The
SecurityContextHolder.getContext() method is actually returning a SecurityContext.

5.2.2. The UserDetailsService

Another item to note from the above code fragment is that you can obtain a principal from the Authentication

object. The principal is just an Object. Most of the time this can be cast into a UserDetails object.
UserDetails is a central interface in Spring Security. It represents a principal, but in an extensible and
application-specific way. Think of UserDetails as the adapter between your own user database and what
Spring Security needs inside the SecurityContextHolder. Being a representation of something from your own
user database, quite often you will cast the UserDetails to the original object that your application provided, so
you can call business-specific methods (like getEmail(), getEmployeeNumber() and so on).

By now you're probably wondering, so when do I provide a UserDetails object? How do I do that? I thought
you said this thing was declarative and I didn't need to write any Java code - what gives? The short answer is
that there is a special interface called UserDetailsService. The only method on this interface accepts a
String-based username argument and returns a UserDetails. Most authentication providers that ship with
Spring Security delegate to a UserDetailsService as part of the authentication process. The
UserDetailsService is used to build the Authentication object that is stored in the SecurityContextHolder.
The good news is that we provide a number of UserDetailsService implementations, including one that uses
an in-memory map and another that uses JDBC. Most users tend to write their own, though, with such
implementations often simply sitting on top of an existing Data Access Object (DAO) that represents their
employees, customers, or other users of the enterprise application. Remember the advantage that whatever your
UserDetailsService returns can always be obtained from the SecurityContextHolder, as per the above code
fragment.

5.2.3. GrantedAuthority

Besides the principal, another important method provided by Authentication is getAuthorities(). This
method provides an array of GrantedAuthority objects. A GrantedAuthority is, not surprisingly, an authority
that is granted to the principal. Such authorities are usually "roles", such as ROLE_ADMINISTRATOR or
ROLE_HR_SUPERVISOR. These roles are later on configured for web authorization, method authorization and
domain object authorization. Other parts of Spring Security are capable of interpreting these authorities, and
expect them to be present. GrantedAuthority objects are usually loaded by the UserDetailsService.

Usually the GrantedAuthority objects are application-wide permissions. They are not specific to a given
domain object. Thus, you wouldn't likely have a GrantedAuthority to represent a permission to Employee

object number 54, because if there are thousands of such authorities you would quickly run out of memory (or,
at the very least, cause the application to take a long time to authenticate a user). Of course, Spring Security is
expressly designed to handle this common requirement, but you'd instead use the project's domain object
security capabilities for this purpose.

Last but not least, sometimes you will need to store the SecurityContext between HTTP requests. Other times
the principal will re-authenticate on every request, although most of the time it will be stored. The

Technical Overview

Spring Security (2.0.x) 22

HttpSessionContextIntegrationFilter is responsible for storing a SecurityContext between HTTP
requests. As suggested by the name of the class, the HttpSession is used to store this information. You should
never interact directly with the HttpSession for security purposes. There is simply no justification for doing so
- always use the SecurityContextHolder instead.

5.2.4. Summary

Just to recap, the major building blocks of Spring Security are:

• SecurityContextHolder, to provide any type access to the SecurityContext.
• SecurityContext, to hold the Authentication and possibly request-specific security information.
• HttpSessionContextIntegrationFilter, to store the SecurityContext in the HttpSession between web

requests.
• Authentication, to represent the principal in a Spring Security-specific manner.
• GrantedAuthority, to reflect the application-wide permissions granted to a principal.
• UserDetails, to provide the necessary information to build an Authentication object from your application's

DAOs.
• UserDetailsService, to create a UserDetails when passed in a String-based username (or certificate ID or

alike).

Now that you've gained an understanding of these repeatedly-used components, let's take a closer look at the
process of authentication.

5.3. Authentication

As mentioned in the beginning of this reference guide, Spring Security can participate in many different
authentication environments. Whilst we recommend people use Spring Security for authentication and not
integrate with existing Container Managed Authentication, it is nevertheless supported - as is integrating with
your own proprietary authentication system. Let's first explore authentication from the perspective of Spring
Security managing web security entirely on its own, which is illustrative of the most complex and most
common situation.

Consider a typical web application's authentication process:

1. You visit the home page, and click on a link.

2. A request goes to the server, and the server decides that you've asked for a protected resource.

3. As you're not presently authenticated, the server sends back a response indicating that you must authenticate.
The response will either be an HTTP response code, or a redirect to a particular web page.

4. Depending on the authentication mechanism, your browser will either redirect to the specific web page so
that you can fill out the form, or the browser will somehow retrieve your identity (eg a BASIC
authentication dialogue box, a cookie, a X509 certificate etc).

5. The browser will send back a response to the server. This will either be an HTTP POST containing the
contents of the form that you filled out, or an HTTP header containing your authentication details.

6. Next the server will decide whether or not the presented credentials are valid. If they're valid, the next step
will happen. If they're invalid, usually your browser will be asked to try again (so you return to step two
above).

7. The original request that you made to cause the authentication process will be retried. Hopefully you've

Technical Overview

Spring Security (2.0.x) 23

authenticated with sufficient granted authorities to access the protected resource. If you have sufficient
access, the request will be successful. Otherwise, you'll receive back an HTTP error code 403, which means
"forbidden".

Spring Security has distinct classes responsible for most of the steps described above. The main participants (in
the order that they are used) are the ExceptionTranslationFilter, an AuthenticationEntryPoint, an
authentication mechanism, and an AuthenticationProvider.

5.3.1. ExceptionTranslationFilter

ExceptionTranslationFilter is a Spring Security filter that has responsibility for detecting any Spring
Security exceptions that are thrown. Such exceptions will generally be thrown by an
AbstractSecurityInterceptor, which is the main provider of authorization services. We will discuss
AbstractSecurityInterceptor in the next section, but for now we just need to know that it produces Java
exceptions and knows nothing about HTTP or how to go about authenticating a principal. Instead the
ExceptionTranslationFilter offers this service, with specific responsibility for either returning error code
403 (if the principal has been authenticated and therefore simply lacks sufficient access - as per step seven
above), or launching an AuthenticationEntryPoint (if the principal has not been authenticated and therefore
we need to go commence step three).

5.3.2. AuthenticationEntryPoint

The AuthenticationEntryPoint is responsible for step three in the above list. As you can imagine, each web
application will have a default authentication strategy (well, this can be configured like nearly everything else
in Spring Security, but let's keep it simple for now). Each major authentication system will have its own
AuthenticationEntryPoint implementation, which takes actions such as described in step three.

After your browser decides to submit your authentication credentials (either as an HTTP form post or HTTP
header) there needs to be something on the server that "collects" these authentication details. By now we're at
step six in the above list. In Spring Security we have a special name for the function of collecting authentication
details from a user agent (usually a web browser), and that name is "authentication mechanism". After the
authentication details are collected from the user agent, an "Authentication request" object is built and then
presented to an AuthenticationProvider.

5.3.3. AuthenticationProvider

The last player in the Spring Security authentication process is an AuthenticationProvider. Quite simply, it is
responsible for taking an Authentication request object and deciding whether or not it is valid. The provider
will either throw an exception or return a fully populated Authentication object. Remember our good friends,
UserDetails and UserDetailsService? If not, head back to the previous section and refresh your memory.
Most AuthenticationProviders will ask a UserDetailsService to provide a UserDetails object. As
mentioned earlier, most application will provide their own UserDetailsService, although some will be able to
use the JDBC or in-memory implementation that ships with Spring Security. The resultant UserDetails object
- and particularly the GrantedAuthority[]s contained within the UserDetails object - will be used when
building the fully populated Authentication object.

After the authentication mechanism receives back the fully-populated Authentication object, it will deem the
request valid, put the Authentication into the SecurityContextHolder, and cause the original request to be
retried (step seven above). If, on the other hand, the AuthenticationProvider rejected the request, the
authentication mechanism will ask the user agent to retry (step two above).

Technical Overview

Spring Security (2.0.x) 24

5.3.4. Setting the SecurityContextHolder Contents Directly

Whilst this describes the typical authentication workflow, the good news is that Spring Security doesn't mind
how you put an Authentication inside the SecurityContextHolder. The only critical requirement is that the
SecurityContextHolder contains an Authentication that represents a principal before the
AbstractSecurityInterceptor needs to authorize a request.

You can (and many users do) write their own filters or MVC controllers to provide interoperability with
authentication systems that are not based on Spring Security. For example, you might be using
Container-Managed Authentication which makes the current user available from a ThreadLocal or JNDI
location. Or you might work for a company that has a legacy proprietary authentication system, which is a
corporate "standard" over which you have little control. In such situations it's quite easy to get Spring Security
to work, and still provide authorization capabilities. All you need to do is write a filter (or equivalent) that reads
the third-party user information from a location, build a Spring Security-specific Authentication object, and put
it onto the SecurityContextHolder. It's quite easy to do this, and it is a fully-supported integration approach.

5.4. Secure Objects

Spring Security uses the term "secure object" to refer to any object that can have security (such as an
authorization decision) applied to it. The most common examples are method invocations and web requests.

5.4.1. Security and AOP Advice

If you're familiar with AOP, you'd be aware there are different types of advice available: before, after, throws
and around. An around advice is very useful, because an advisor can elect whether or not to proceed with a
method invocation, whether or not to modify the response, and whether or not to throw an exception. Spring
Security provides an around advice for method invocations as well as web requests. We achieve an around
advice for method invocations using Spring's standard AOP support and we achieve an around advice for web
requests using a standard Filter.

For those not familiar with AOP, the key point to understand is that Spring Security can help you protect
method invocations as well as web requests. Most people are interested in securing method invocations on their
services layer. This is because the services layer is where most business logic resides in current-generation
J2EE applications (for clarification, the author disapproves of this design and instead advocates properly
encapsulated domain objects together with the DTO, assembly, facade and transparent persistence patterns, but
as use of anemic domain objects is the present mainstream approach, we'll talk about it here). If you just need to
secure method invocations to the services layer, Spring's standard AOP (otherwise known as AOP Alliance)
will be adequate. If you need to secure domain objects directly, you will likely find that AspectJ is worth
considering.

You can elect to perform method authorization using AspectJ or Spring AOP, or you can elect to perform web
request authorization using filters. You can use zero, one, two or three of these approaches together. The
mainstream usage is to perform some web request authorization, coupled with some Spring AOP method
invocation authorization on the services layer.

5.4.2. AbstractSecurityInterceptor

Each secure object type supported by Spring Security has its own class, which is a subclass of
AbstractSecurityInterceptor. Importantly, by the time the AbstractSecurityInterceptor is called, the
SecurityContextHolder will contain a valid Authentication if the principal has been authenticated.

Technical Overview

Spring Security (2.0.x) 25

AbstractSecurityInterceptor provides a consistent workflow for handling secure object requests, typically:

1. Look up the "configuration attributes" associated with the present request

2. Submitting the secure object, current Authentication and configuration attributes to the
AccessDecisionManager for an authorization decision

3. Optionally change the Authentication under which the invocation takes place

4. Allow the secure object to proceed (assuming access was granted)

5. Call the AfterInvocationManager if configured, once the invocation has returned.

5.4.2.1. What are Configuration Attributes?

A "configuration attribute" can be thought of as a String that has special meaning to the classes used by
AbstractSecurityInterceptor. They may be simple role names or have more complex meaning, depending
on the how sophisticated the AccessDecisionManager implementation is. The AbstractSecurityInterceptor

is configured with an ObjectDefinitionSource which it uses to look up the attributes for a secure object.
Usually this configuration will be hidden from the user. Configuration attributes will be entered as annotations
on secured methods, or as access attributes on secured URLs (using the namespace <intercept-url> syntax).

5.4.2.2. RunAsManager

Assuming AccessDecisionManager decides to allow the request, the AbstractSecurityInterceptor will
normally just proceed with the request. Having said that, on rare occasions users may want to replace the
Authentication inside the SecurityContext with a different Authentication, which is handled by the
AccessDecisionManager calling a RunAsManager. This might be useful in reasonably unusual situations, such
as if a services layer method needs to call a remote system and present a different identity. Because Spring
Security automatically propagates security identity from one server to another (assuming you're using a
properly-configured RMI or HttpInvoker remoting protocol client), this may be useful.

5.4.2.3. AfterInvocationManager

Following the secure object proceeding and then returning - which may mean a method invocation completing
or a filter chain proceeding - the AbstractSecurityInterceptor gets one final chance to handle the
invocation. At this stage the AbstractSecurityInterceptor is interested in possibly modifying the return
object. We might want this to happen because an authorization decision couldn't be made "on the way in" to a
secure object invocation. Being highly pluggable, AbstractSecurityInterceptor will pass control to an
AfterInvocationManager to actually modify the object if needed. This class can even entirely replace the
object, or throw an exception, or not change it in any way.

AbstractSecurityInterceptor and its related objects are shown in Figure 5.1, “The key "secure object"
model”.

Technical Overview

Spring Security (2.0.x) 26

Figure 5.1. The key "secure object" model

5.4.2.4. Extending the Secure Object Model

Only developers contemplating an entirely new way of intercepting and authorizing requests would need to use
secure objects directly. For example, it would be possible to build a new secure object to secure calls to a
messaging system. Anything that requires security and also provides a way of intercepting a call (like the AOP
around advice semantics) is capable of being made into a secure object. Having said that, most Spring
applications will simply use the three currently supported secure object types (AOP Alliance
MethodInvocation, AspectJ JoinPoint and web request FilterInvocation) with complete transparency.

Technical Overview

Spring Security (2.0.x) 27

Chapter 6. Supporting Infrastructure
This chapter introduces some of the supplementary and supporting infrastructure used by Spring Security. If a
capability is not directly related to security, yet included in the Spring Security project, we will discuss it in this
chapter.

6.1. Localization

Spring Security supports localization of exception messages that end users are likely to see. If your application
is designed for English users, you don't need to do anything as by default all Security Security messages are in
English. If you need to support other locales, everything you need to know is contained in this section.

All exception messages can be localized, including messages related to authentication failures and access being
denied (authorization failures). Exceptions and logging that is focused on developers or system deployers
(including incorrect attributes, interface contract violations, using incorrect constructors, startup time
validation, debug-level logging) etc are not localized and instead are hard-coded in English within Spring
Security's code.

Shipping in the spring-security-core-xx.jar you will find an org.springframework.security package
that in turn contains a messages.properties file. This should be referred to by your ApplicationContext, as
Spring Security classes implement Spring's MessageSourceAware interface and expect the message resolver to
be dependency injected at application context startup time. Usually all you need to do is register a bean inside
your application context to refer to the messages. An example is shown below:

<bean id="messageSource" class="org.springframework.context.support.ReloadableResourceBundleMessageSource">
<property name="basename" value="org/springframework/security/messages"/>

</bean>

The messages.properties is named in accordance with standard resource bundles and represents the default
language supported by Spring Security messages. This default file is in English. If you do not register a
message source, Spring Security will still work correctly and fallback to hard-coded English versions of the
messages.

If you wish to customize the messages.properties file, or support other languages, you should copy the file,
rename it accordingly, and register it inside the above bean definition. There are not a large number of message
keys inside this file, so localization should not be considered a major initiative. If you do perform localization
of this file, please consider sharing your work with the community by logging a JIRA task and attaching your
appropriately-named localized version of messages.properties.

Rounding out the discussion on localization is the Spring ThreadLocal known as
org.springframework.context.i18n.LocaleContextHolder. You should set the LocaleContextHolder to
represent the preferred Locale of each user. Spring Security will attempt to locate a message from the message
source using the Locale obtained from this ThreadLocal. Please refer to Spring documentation for further
details on using LocaleContextHolder and the helper classes that can automatically set it for you (eg
AcceptHeaderLocaleResolver, CookieLocaleResolver, FixedLocaleResolver, SessionLocaleResolver etc)

6.2. Filters

Spring Security uses many filters, as referred to throughout the remainder of this reference guide. If you are

Spring Security (2.0.x) 28

using namespace configuration, then the you don't usually have to declare the filter beans explicitly. There may
be times when you want full control over the security filter chain, either because you are using features which
aren't supported in the namespace, or you are using your own customized versions of classes.

In this case, you have a choice in how these filters are added to your web application, in that you can use either
Spring's DelegatingFilterProxy or FilterChainProxy. We'll look at both below.

When using DelegatingFilterProxy, you will see something like this in the web.xml file:

<filter>
<filter-name>myFilter</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>
<filter-name>myFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Notice that the filter is actually a DelegatingFilterProxy, and not the filter that will actually implement the
logic of the filter. What DelegatingFilterProxy does is delegate the Filter's methods through to a bean
which is obtained from the Spring application context. This enables the bean to benefit from the Spring web
application context lifecycle support and configuration flexibility. The bean must implement
javax.servlet.Filter and it must have the same name as that in the filter-name element.

There is a lifecycle issue to consider when hosting Filters in an IoC container instead of a servlet container.
Specifically, which container should be responsible for calling the Filter's "startup" and "shutdown" methods?
It is noted that the order of initialization and destruction of a Filter can vary by servlet container, and this can
cause problems if one Filter depends on configuration settings established by an earlier initialized Filter.
The Spring IoC container on the other hand has more comprehensive lifecycle/IoC interfaces (such as
InitializingBean, DisposableBean, BeanNameAware, ApplicationContextAware and many others) as well as
a well-understood interface contract, predictable method invocation ordering, autowiring support, and even
options to avoid implementing Spring interfaces (eg the destroy-method attribute in Spring XML). For this
reason we recommend the use of Spring lifecycle services instead of servlet container lifecycle services
wherever possible. Read the Javadoc for DelegatingFilterProxy for more information

Rather than using DelegatingFilterProxy, we strongly recommend that you use FilterChainProxy instead.
Whilst DelegatingFilterProxy is a very useful class, the problem is that the number of lines of code required
for <filter> and <filter-mapping> entries in web.xml explodes when using more than a few filters. To
overcome this issue, Spring Security provides a FilterChainProxy class. It is wired using a
DelegatingFilterProxy (just like in the example above), but the target class is
org.springframework.security.util.FilterChainProxy. The filter chain is then declared in the application
context, using code such as this:

<bean id="filterChainProxy" class="org.springframework.security.util.FilterChainProxy">
<sec:filter-chain-map path-type="ant">

<sec:filter-chain pattern="/webServices/**"
filters="httpSessionContextIntegrationFilterWithASCFalse,basicProcessingFilter,exceptionTranslationFilter,filterSecurityInterceptor"/>

<sec:filter-chain pattern="/**"
filters="httpSessionContextIntegrationFilterWithASCTrue,authenticationProcessingFilter,exceptionTranslationFilter,filterSecurityInterceptor"/>

</sec:filter-chain-map>
</bean>

You may notice similarities with the way FilterSecurityInterceptor is declared. Both regular expressions

Supporting Infrastructure

Spring Security (2.0.x) 29

and Ant Paths are supported, and the most specific URIs appear first. At runtime the FilterChainProxy will
locate the first URI pattern that matches the current web request and the list of filter beans specified by the
filters attribute will be applied to that request. The filters will be invoked in the order they are defined, so
you have complete control over the filter chain which is applied to a particular URL.

You may have noticed we have declared two HttpSessionContextIntegrationFilters in the filter chain (ASC
is short for allowSessionCreation, a property of HttpSessionContextIntegrationFilter). As web services
will never present a jsessionid on future requests, creating HttpSessions for such user agents would be
wasteful. If you had a high-volume application which required maximum scalability, we recommend you use
the approach shown above. For smaller applications, using a single HttpSessionContextIntegrationFilter

(with its default allowSessionCreation as true) would likely be sufficient.

In relation to lifecycle issues, the FilterChainProxy will always delegate init(FilterConfig) and destroy()

methods through to the underlaying Filters if such methods are called against FilterChainProxy itself. In this
case, FilterChainProxy guarantees to only initialize and destroy each Filter once, irrespective of how many
times it is declared by the FilterInvocationDefinitionSource. You control the overall choice as to whether
these methods are called or not via the targetFilterLifecycle initialization parameter of the
DelegatingFilterProxy that proxies DelegatingFilterProxy. As discussed above, by default any servlet
container lifecycle invocations are not delegated through to DelegatingFilterProxy.

You can use the attribute filters = "none" in the same way that you do when using namespace configuration
to build the FilterChainProxy. This will omit the request pattern from the security filter chain entirely. Note
that anything matching this path will then have no authentication or authorization services applied and will be
freely accessible.

The order that filters are defined in web.xml is very important. Irrespective of which filters you are actually
using, the order of the <filter-mapping>s should be as follows:

1. ChannelProcessingFilter, because it might need to redirect to a different protocol

2. ConcurrentSessionFilter, because it doesn't use any SecurityContextHolder functionality but needs to
update the SessionRegistry to reflect ongoing requests from the principal

3. HttpSessionContextIntegrationFilter, so a SecurityContext can be setup in the
SecurityContextHolder at the beginning of a web request, and any changes to the SecurityContext can be
copied to the HttpSession when the web request ends (ready for use with the next web request)

4. Authentication processing mechanisms - AuthenticationProcessingFilter, CasProcessingFilter,
BasicProcessingFilter, HttpRequestIntegrationFilter, JbossIntegrationFilter etc - so that the
SecurityContextHolder can be modified to contain a valid Authentication request token

5. The SecurityContextHolderAwareRequestFilter, if you are using it to install a Spring Security aware
HttpServletRequestWrapper into your servlet container

6. RememberMeProcessingFilter, so that if no earlier authentication processing mechanism updated the
SecurityContextHolder, and the request presents a cookie that enables remember-me services to take
place, a suitable remembered Authentication object will be put there

7. AnonymousProcessingFilter, so that if no earlier authentication processing mechanism updated the
SecurityContextHolder, an anonymous Authentication object will be put there

8. ExceptionTranslationFilter, to catch any Spring Security exceptions so that either an HTTP error
response can be returned or an appropriate AuthenticationEntryPoint can be launched

9. FilterSecurityInterceptor, to protect web URIs

Supporting Infrastructure

Spring Security (2.0.x) 30

All of the above filters use DelegatingFilterProxy or FilterChainProxy. It is recommended that a single
DelegatingFilterProxy proxy through to a single FilterChainProxy for each application, with that
FilterChainProxy defining all of Spring Security filters.

If you're using SiteMesh, ensure Spring Security filters execute before the SiteMesh filters are called. This
enables the SecurityContextHolder to be populated in time for use by SiteMesh decorators

6.3. Tag Libraries

Spring Security comes bundled with several JSP tag libraries which provide a range of different services.

6.3.1. Configuration

All taglib classes are included in the core spring-security-xx.jar file, with the security.tld located in the
JAR's META-INF directory. This means for JSP 1.2+ web containers you can simply include the JAR in the
WAR's WEB-INF/lib directory and it will be available. If you're using a JSP 1.1 container, you'll need to
declare the JSP taglib in your web.xml file, and include security.tld in the WEB-INF/lib directory. The
following fragment is added to web.xml:

<taglib>
<taglib-uri>http://www.springframework.org/security/tags</taglib-uri>
<taglib-location>/WEB-INF/security.tld</taglib-location>

</taglib>

6.3.2. Usage

Now that you've configured the tag libraries, refer to the individual reference guide sections for details on how
to use them. Note that when using the tags, you should include the taglib reference in your JSP:

<%@ taglib prefix='security' uri='http://www.springframework.org/security/tags' %>

Supporting Infrastructure

Spring Security (2.0.x) 31

Chapter 7. Channel Security

7.1. Overview

In addition to coordinating the authentication and authorization requirements of your application, Spring
Security is also able to ensure unauthenticated web requests have certain properties. These properties may
include being of a particular transport type, having a particular HttpSession attribute set and so on. The most
common requirement is for your web requests to be received using a particular transport protocol, such as
HTTPS.

An important issue in considering transport security is that of session hijacking. Your web container manages a
HttpSession by reference to a jsessionid that is sent to user agents either via a cookie or URL rewriting. If
the jsessionid is ever sent over HTTP, there is a possibility that session identifier can be intercepted and used
to impersonate the user after they complete the authentication process. This is because most web containers
maintain the same session identifier for a given user, even after they switch from HTTP to HTTPS pages.

If session hijacking is considered too significant a risk for your particular application, the only option is to use
HTTPS for every request. This means the jsessionid is never sent across an insecure channel. You will need
to ensure your web.xml-defined <welcome-file> points to an HTTPS location, and the application never directs
the user to an HTTP location. Spring Security provides a solution to assist with the latter.

7.2. Configuration

Channel security is supported by the security namespace by means of the requires-channel attribute on the
<intercept-url> element and this is the simplest (and recommended approach)

To confiure channel security explicitly, you would define the following the filter in your application context:

<bean id="channelProcessingFilter" class="org.springframework.security.securechannel.ChannelProcessingFilter">
<property name="channelDecisionManager" ref="channelDecisionManager"/>
<property name="filterInvocationDefinitionSource">
<security:filter-invocation-definition-source path-type="regex">
<security:intercept-url pattern="\A/secure/.*\Z" access="REQUIRES_SECURE_CHANNEL"/>
<security:intercept-url pattern="\A/acegilogin.jsp.*\Z" access="REQUIRES_SECURE_CHANNEL"/>
<security:intercept-url pattern="\A/j_spring_security_check.*\Z" access="REQUIRES_SECURE_CHANNEL"/>
<security:intercept-url pattern="\A/.*\Z" access="ANY_CHANNEL"/>

</security:filter-invocation-definition-source>
</property>

</bean>

<bean id="channelDecisionManager" class="org.springframework.security.securechannel.ChannelDecisionManagerImpl">
<property name="channelProcessors">
<list>
<ref bean="secureChannelProcessor"/>
<ref bean="insecureChannelProcessor"/>
</list>

</property>
</bean>

<bean id="secureChannelProcessor" class="org.springframework.security.securechannel.SecureChannelProcessor"/>
<bean id="insecureChannelProcessor" class="org.springframework.security.securechannel.InsecureChannelProcessor"/>

Like FilterSecurityInterceptor, Apache Ant style paths are also supported by the
ChannelProcessingFilter.

The ChannelProcessingFilter operates by filtering all web requests and determining the configuration
attributes that apply. It then delegates to the ChannelDecisionManager. The default implementation,

Spring Security (2.0.x) 32

ChannelDecisionManagerImpl, should suffice in most cases. It simply delegates to the list of configured
ChannelProcessor instances. The attribute ANY_CHANNEL can be used to override this behaviour and skip a
particular URL. Otherwise, a ChannelProcessor will review the request, and if it is unhappy with the request
(e.g. if it was received across the incorrect transport protocol), it will perform a redirect, throw an exception or
take whatever other action is appropriate.

Included with Spring Security are two concrete ChannelProcessor implementations: SecureChannelProcessor
ensures requests with a configuration attribute of REQUIRES_SECURE_CHANNEL are received over HTTPS, whilst
InsecureChannelProcessor ensures requests with a configuration attribute of REQUIRES_INSECURE_CHANNEL

are received over HTTP. Both implementations delegate to a ChannelEntryPoint if the required transport
protocol is not used. The two ChannelEntryPoint implementations included with Spring Security simply
redirect the request to HTTP and HTTPS as appropriate. Appropriate defaults are assigned to the
ChannelProcessor implementations for the configuration attribute keywords they respond to and the
ChannelEntryPoint they delegate to, although you have the ability to override these using the application
context.

Note that the redirections are absolute (eg http://www.company.com:8080/app/page), not relative (eg
/app/page). During testing it was discovered that Internet Explorer 6 Service Pack 1 has a bug whereby it does
not respond correctly to a redirection instruction which also changes the port to use. Accordingly, absolute
URLs are used in conjunction with bug detection logic in the PortResolverImpl that is wired up by default to
many Spring Security beans. Please refer to the JavaDocs for PortResolverImpl for further details.

You should note that using a secure channel is recommended if usernames and passwords are to be kept secure
during the login process. If you do decide to use ChannelProcessingFilter with form-based login, please
ensure that your login page is set to REQUIRES_SECURE_CHANNEL, and that the
AuthenticationProcessingFilterEntryPoint.forceHttps property is true.

7.3. Conclusion

Once configured, using the channel security filter is very easy. Simply request pages without regard to the
protocol (ie HTTP or HTTPS) or port (eg 80, 8080, 443, 8443 etc). Obviously you'll still need a way of making
the initial request (probably via the web.xml <welcome-file> or a well-known home page URL), but once this
is done the filter will perform redirects as defined by your application context.

You can also add your own ChannelProcessor implementations to the ChannelDecisionManagerImpl. For
example, you might set a HttpSession attribute when a human user is detected via a "enter the contents of this
graphic" procedure. Your ChannelProcessor would respond to say REQUIRES_HUMAN_USER configuration
attributes and redirect to an appropriate entry point to start the human user validation process if the
HttpSession attribute is not currently set.

To decide whether a security check belongs in a ChannelProcessor or an AccessDecisionVoter, remember
that the former is designed to handle unauthenticated requests, whilst the latter is designed to handle
authenticated requests. The latter therefore has access to the granted authorities of the authenticated principal.
In addition, problems detected by a ChannelProcessor will generally cause an HTTP/HTTPS redirection so its
requirements can be met, whilst problems detected by an AccessDecisionVoter will ultimately result in an
AccessDeniedException (depending on the governing AccessDecisionManager).

Channel Security

Spring Security (2.0.x) 33

1Links to both Javadoc APIs and browsable source cross-reference are available from the project web site.

Part III. Authentication
We've already introduced Spring Security's authentication architecture in the Technical Overview chapter. In
this part of the reference guide we will examine individual authentication mechanisms and their corresponding
AuthenticationProviders. We'll also look at how to configure authentication more generally, including if you
have several authentication approaches that need to be chained together.

With some exceptions, we will be discussing the full details of Spring Security bean configuration rather than
the shorthand namespace syntax. You should review the introduction to using namespace configuration and the
options it provides to see if they will meet your needs. As you come to use the framework more, and need to
customize the internal behaviour, you will probably want to understand more about how the individual services
are implemented, which classes to look at extending and so on. This part is more targeted at providing this kind
of information. We'd recommend that you supplement the content by browsing the Javadoc and the source itself
1.

Spring Security (2.0.x) 34

Chapter 8. Common Authentication Services

8.1. Mechanisms, Providers and Entry Points

To use Spring Security's authentication services, you'll usually need to configure a web filter, together with an
AuthenticationProvider and AuthenticationEntryPoint. In this section we are going to explore an example
application that needs to support both form-based authentication (so a nice HTML page is presented to a user
for them to login) and BASIC authentication (so a web service or similar can access protected resources).

In the web.xml, this application will need a single Spring Security filter in order to use the FilterChainProxy.
Nearly every Spring Security application will have such an entry, and it looks like this:

<filter>
<filter-name>filterChainProxy</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>
<filter-name>filterChainProxy</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

The above declarations will cause every web request to be passed through to the bean called filterChainProxy

which will usually be an instance of Spring Security's FilterChainProxy. As explained in the filters section of
this reference guide, the FilterChainProxy is a generally-useful class that enables web requests to be passed to
different filters based on URL patterns. Those delegated filters are managed inside the application context, so
they can benefit from dependency injection. Let's have a look at what the FilterChainProxy bean definition
would look like inside your application context:

<bean id="filterChainProxy"
class="org.springframework.security.util.FilterChainProxy">

<security:filter-chain-map path-type="ant">
<security:filter-chain pattern="/**" filters="httpSessionContextIntegrationFilter,logoutFilter,authenticationProcessingFilter,basicProcessingFilter,securityContextHolderAwareRequestFilter,rememberMeProcessingFilter,anonymousProcessingFilter,exceptionTranslationFilter,filterInvocationInterceptor,switchUserProcessingFilter"/>

</security:filter-chain-map>
</bean>

The filter-chain-map syntax from the security namespace allows you to define the mapping from URLs to
filter chains, using a sequence of filter-chain child elements. Each of these defines a set of URLs using the
pattern attribute and a chain of filters using the filters attribute.What's important to note at this stage is that
a series of filters will be run - in the order specified by the declaration - and each of those filters are actually the
id of another bean in the application context. So, in our case some extra beans will also appear in the
application context, and they'll be named httpSessionContextIntegrationFilter, logoutFilter and so on.
The order that the filters should appear is discussed in the filters section of the reference guide - although they
are correct in the above example.

In our example we have the AuthenticationProcessingFilter and BasicProcessingFilter being used.
These are the "authentication mechanisms" that respond to form-based authentication and BASIC HTTP
header-based authentication respectively (we discussed the role of authentication mechanisms earlier in this
reference guide). If you weren't using form or BASIC authentication, neither of these beans would be defined.
You'd instead define filters applicable to your desired authentication environment, such as
DigestProcessingFilter or CasProcessingFilter. Refer to the individual chapters of this part of the

Spring Security (2.0.x) 35

reference guide to learn how to configure each of these authentication mechanisms.

Recall that HttpSessionContextIntegrationFilter keeps the contents of the SecurityContext between
invocations inside an HTTP session. This means the authentication mechanisms are only used once, being
when the principal initially tries to authenticate. The rest of the time the authentication mechanisms sit there
and silently pass the request through to the next filter in the chain. That is a practical requirement due to the fact
that few authentication approaches present credentials on each and every call (BASIC authentication being a
notable exception), but what happens if a principal's account gets cancelled or disabled or otherwise changed
(eg an increase or decrease in GrantedAuthority[]s) after the initial authentication step? Let's look at how that
is handled now.

The major authorization provider for secure objects has previously been introduced as
AbstractSecurityInterceptor. This class needs to have access to an AuthenticationManager. It also has
configurable settings to indicate whether an Authentication object should be re-authenticated on each secure
object invocation. By default it just accepts any Authentication inside the SecurityContextHolder is
authenticated if Authentication.isAuthenticated() returns true. This is great for performance, but not ideal
if you want to ensure up-to-the-moment authentication validity. For such cases you'll probably want to set the
AbstractSecurityInterceptor.alwaysReauthenticate property to true.

You might be asking yourself, "what's this AuthenticationManager?". We haven't explored it before, but we
have discussed the concept of an AuthenticationProvider. Quite simply, an AuthenticationManager is
responsible for passing requests through a chain of AuthenticationProviders. It's a little like the filter chain we
discussed earlier, although there are some differences. There is only one AuthenticationManager

implementation shipped with Spring Security, so let's look at how it's configured for the example we're using in
this chapter:

<bean id="authenticationManager"
class="org.springframework.security.providers.ProviderManager">

<property name="providers">
<list>
<ref local="daoAuthenticationProvider"/>
<ref local="anonymousAuthenticationProvider"/>
<ref local="rememberMeAuthenticationProvider"/>

</list>
</property>
</bean>

It's probably worth mentioning at this point that your authentication mechanisms (which are usually filters) are
also injected with a reference to the AuthenticationManager. So both AbstractSecurityInterceptor as well
as the authentication mechanisms will use the above ProviderManager to poll a list of
AuthenticationProviders.

In our example we have three providers. They are tried in the order shown (which is implied by the use of a
List instead of a Set), with each provider able to attempt authentication, or skip authentication by simply
returning null. If all implementations return null, the ProviderManager will throw a suitable exception. If
you're interested in learning more about chaining providers, please refer to the ProviderManager JavaDocs.

The providers to use will sometimes be interchangeable with the authentication mechanisms, whilst at other
times they will depend on a specific authentication mechanism. For example, the DaoAuthenticationProvider

just needs a string-based username and password. Various authentication mechanisms result in the collection of
a string-based username and password, including (but not limited to) BASIC and form authentication. Equally,
some authentication mechanisms create an authentication request object which can only be interpreted by a
single type of AuthenticationProvider. An example of this one-to-one mapping would be JA-SIG CAS,
which uses the notion of a service ticket which can therefore only be authenticated by
CasAuthenticationProvider. A further example of a one-to-one mapping would be the LDAP authentication
mechanism, which can only be processed an the LdapAuthenticationProvider. The specifics of such

Common Authentication Services

Spring Security (2.0.x) 36

relationships are detailed in the JavaDocs for each class, plus the authentication approach-specific chapters of
this reference guide. You need not be terribly concerned about this implementation detail, because if you forget
to register a suitable provider, you'll simply receive a ProviderNotFoundException when an attempt to
authenticate is made.

After configuring the correct authentication mechanisms in the FilterChainProxy, and ensuring that a
corresponding AuthenticationProvider is registered in the ProviderManager, your last step is to configure an
AuthenticationEntryPoint. Recall that earlier we discussed the role of ExceptionTranslationFilter, which
is used when HTTP-based requests should receive back an HTTP header or HTTP redirect in order to start
authentication. Continuing on with our earlier example:

<bean id="exceptionTranslationFilter"
class="org.springframework.security.ui.ExceptionTranslationFilter">

<property name="authenticationEntryPoint" ref="authenticationProcessingFilterEntryPoint"/>
<property name="accessDeniedHandler">
<bean class="org.springframework.security.ui.AccessDeniedHandlerImpl">
<property name="errorPage" value="/accessDenied.jsp"/>

</bean>
</property>

</bean>

<bean id="authenticationProcessingFilterEntryPoint"
class="org.springframework.security.ui.webapp.AuthenticationProcessingFilterEntryPoint">

<property name="loginFormUrl" value="/login.jsp"/>
<property name="forceHttps">< value="false"/>

</bean>

Notice that the ExceptionTranslationFilter requires two collaborators. The first,
AccessDeniedHandlerImpl, uses a RequestDispatcher forward to display the specified access denied error
page. We use a forward so that the SecurityContextHolder still contains details of the principal, which may be
useful for display to the user (in old releases of Spring Security we relied upon the servlet container to handle a
403 error message, which lacked this useful contextual information). AccessDeniedHandlerImpl will also set
the HTTP header to 403, which is the official error code to indicate access denied. In the case of the
AuthentionEntryPoint, here we're setting what action we would like taken when an unauthenticated principal
attempts to perform a protected operation. Because in our example we're going to be using form-based
authentication, we specify AuthenticationProcessinFilterEntryPoint and the URL of the login page. Your
application will usually only have one entry point, and most authentication approaches define their own specific
AuthenticationEntryPoint. Details of which entry point to use for each authentication approach is discussed
in the authentication approach-specific chapters of this reference guide.

8.2. UserDetails and Associated Types

As mentioned in the first part of the reference guide, most authentication providers take advantage of the
UserDetails and UserDetailsService interfaces. The contract for this latter interface consists of a single
method:

UserDetails loadUserByUsername(String username) throws UsernameNotFoundException, DataAccessException;

The returned UserDetails is an interface that provides getters that guarantee non-null provision of basic
authentication information such as the username, password, granted authorities and whether the user is enabled
or disabled. Most authentication providers will use a UserDetailsService, even if the username and password
are not actually used as part of the authentication decision. Generally such providers will be using the returned

Common Authentication Services

Spring Security (2.0.x) 37

UserDetails object just for its GrantedAuthority[] information, because some other system (like LDAP or
X509 or CAS etc) has undertaken the responsibility of actually validating the credentials.

A single concrete implementation of UserDetails is provided with Spring Security, being the User class.
Spring Security users will need to decide when writing their UserDetailsService what concrete UserDetails

class to return. In most cases User will be used directly or subclassed, although special circumstances (such as
object relational mappers) may require users to write their own UserDetails implementation from scratch. This
is not such an unusual situation, and users should not hesitate to simply return their normal domain object that
represents a user of the system. This is especially common given that UserDetails is often used to store
additional principal-related properties (such as their telephone number and email address), so that they can be
easily used by web views.

Given UserDetailsService is so simple to implement, it should be easy for users to retrieve authentication
information using a persistence strategy of their choice. Having said that, Spring Security does include a couple
of useful base implementations, which we'll look at below.

8.2.1. In-Memory Authentication

Whilst it is easy to use create a custom UserDetailsService implementation that extracts information from a
persistence engine of choice, many applications do not require such complexity. This is particularly true if
you're undertaking a rapid prototype or just starting integrating Spring Security, when you don't really want to
spend time configuring databases or writing UserDetailsService implementations. For this sort of situation, a
simple option is to use the user-service element from the security namespace:

<user-service id="userDetailsService">
<user name="jimi" password="jimispassword" authorities="ROLE_USER, ROLE_ADMIN" />
<user name="bob" password="bobspassword" authorities="ROLE_USER" />

</user-service>

This also suppots the use of an external properties file:

<user-service id="userDetailsService" properties="users.properties"/>

The properties file should contain entries in the form

username=password,grantedAuthority[,grantedAuthority][,enabled|disabled]

For example

jimi=jimispassword,ROLE_USER,ROLE_ADMIN,enabled
bob=bobspassword,ROLE_USER,enabled

8.2.2. JDBC Authentication

Spring Security also includes a UserDetailsService that can obtain authentication information from a JDBC
data source. Internally Spring JDBC is used, so it avoids the complexity of a fully-featured object relational
mapper (ORM) just to store user details. If your application does use an ORM tool, you might prefer to write a
custom UserDetailsService to reuse the mapping files you've probably already created. Returning to
JdbcDaoImpl, an example configuration is shown below:

Common Authentication Services

Spring Security (2.0.x) 38

<bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource">
<property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
<property name="url" value="jdbc:hsqldb:hsql://localhost:9001"/>
<property name="username" value="sa"/>
<property name="password" value=""/>

</bean>

<bean id="userDetailsService" class="org.springframework.security.userdetails.jdbc.JdbcDaoImpl">
<property name="dataSource" ref="dataSource"/>

</bean>

You can use different relational database management systems by modifying the DriverManagerDataSource

shown above. You can also use a global data source obtained from JNDI, as per normal Spring options.

8.2.2.1. Default User Database Schema

Irrespective of the database you are using and how a DataSource is obtained, a standard schema must be in
place. The DDL for an HSQL database instance would be:

CREATE TABLE users (
username VARCHAR(50) NOT NULL PRIMARY KEY,
password VARCHAR(50) NOT NULL,
enabled BIT NOT NULL
);

CREATE TABLE authorities (
username VARCHAR(50) NOT NULL,
authority VARCHAR(50) NOT NULL
);

ALTER TABLE authorities ADD CONSTRAINT fk_authorities_users foreign key (username) REFERENCES users(username);

If the default schema is unsuitable for your needs, JdbcDaoImpl provides properties that allow customisation of
the SQL statements. Please refer to the JavaDocs for details, but note that the class is not intended for complex
custom subclasses. If you have a complex schema or would like a custom UserDetails implementation
returned, you'd be better off writing your own UserDetailsService. The base implementation provided with
Spring Security is intended for typical situations, rather than catering for all possible requirements.

8.3. Concurrent Session Handling

Spring Security is able to prevent a principal from concurrently authenticating to the same application more
than a specified number of times. Many ISVs take advantage of this to enforce licensing, whilst network
administrators like this feature because it helps prevent people from sharing login names. You can, for
example, stop user "Batman" from logging onto the web application from two different sessions.

To use concurrent session support, you'll need to add the following to web.xml:

<listener>
<listener-class>org.springframework.security.ui.session.HttpSessionEventPublisher</listener-class>

</listener>

In addition, you will need to add the
org.springframework.security.concurrent.ConcurrentSessionFilter to your FilterChainProxy. The

Common Authentication Services

Spring Security (2.0.x) 39

ConcurrentSessionFilter requires two properties, sessionRegistry, which generally points to an instance of
SessionRegistryImpl, and expiredUrl, which points to the page to display when a session has expired.

The web.xml HttpSessionEventPublisher causes an ApplicationEvent to be published to the Spring
ApplicationContext every time a HttpSession commences or terminates. This is critical, as it allows the
SessionRegistryImpl to be notified when a session ends.

You will also need to wire up the ConcurrentSessionControllerImpl and refer to it from your
ProviderManager bean:

<bean id="authenticationManager"
class="org.springframework.security.providers.ProviderManager">

<property name="providers">
<!-- your providers go here -->

</property>
<property name="sessionController" ref="concurrentSessionController"/>

</bean>

<bean id="concurrentSessionController"
class="org.springframework.security.concurrent.ConcurrentSessionControllerImpl">

<property name="maximumSessions" value="1"/>
<property name="sessionRegistry">
<bean class="org.springframework.security.concurrent.SessionRegistryImpl"/>

<property>
</bean>

8.4. Authentication Tag Libraries

AuthenticationTag is used to simply output a property of the current Authentication object to the web page.

The following JSP fragment illustrates how to use the AuthenticationTag:

<security:authentication property="principal.username"/>

This tag would cause the principal's name to be output. Here we are assuming the
Authentication.getPrincipal() is a UserDetails object, which is generally the case when using one of
Spring Security's stadard AuthenticationProvider implementations.

Common Authentication Services

Spring Security (2.0.x) 40

Chapter 9. DAO Authentication Provider

9.1. Overview

Spring Security includes a production-quality AuthenticationProvider implementation called
DaoAuthenticationProvider. This authentication provider is compatible with all of the authentication
mechanisms that generate a UsernamePasswordAuthenticationToken, and is probably the most commonly
used provider in the framework. Like most of the other authentication providers, the
DaoAuthenticationProvider leverages a UserDetailsService in order to lookup the username, password and
GrantedAuthority[]s. Unlike most of the other authentication providers that leverage UserDetailsService, this
authentication provider actually requires the password to be presented, and the provider will actually evaluate
the validity or otherwise of the password presented in an authentication request object.

9.2. Configuration

Aside from adding DaoAuthenticationProvider to your ProviderManager list (as discussed at the start of this
part of the reference guide), and ensuring a suitable authentication mechanism is configured to present a
UsernamePasswordAuthenticationToken, the configuration of the provider itself is rather simple:

<bean id="daoAuthenticationProvider"
class="org.springframework.security.providers.dao.DaoAuthenticationProvider">

<property name="userDetailsService" ref="inMemoryDaoImpl"/>
<property name="saltSource" ref bean="saltSource"/>
<property name="passwordEncoder" ref="passwordEncoder"/>

</bean>

The PasswordEncoder and SaltSource are optional. A PasswordEncoder provides encoding and decoding of
passwords presented in the UserDetails object that is returned from the configured UserDetailsService. A
SaltSource enables the passwords to be populated with a "salt", which enhances the security of the passwords
in the authentication repository. PasswordEncoder implementations are provided with Spring Security covering
MD5, SHA and cleartext encodings. Two SaltSource implementations are also provided:
SystemWideSaltSource which encodes all passwords with the same salt, and ReflectionSaltSource, which
inspects a given property of the returned UserDetails object to obtain the salt. Please refer to the JavaDocs for
further details on these optional features.

In addition to the properties above, the DaoAuthenticationProvider supports optional caching of
UserDetails objects. The UserCache interface enables the DaoAuthenticationProvider to place a
UserDetails object into the cache, and retrieve it from the cache upon subsequent authentication attempts for
the same username. By default the DaoAuthenticationProvider uses the NullUserCache, which performs no
caching. A usable caching implementation is also provided, EhCacheBasedUserCache, which is configured as
follows:

<bean id="daoAuthenticationProvider"
class="org.springframework.security.providers.dao.DaoAuthenticationProvider">

<property name="userDetailsService" ref="userDetailsService"/>
<property name="userCache" ref="userCache"/>

</bean>

<bean id="cacheManager" class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean">

Spring Security (2.0.x) 41

<property name="configLocation" value="classpath:/ehcache-failsafe.xml"/>
</bean>

<bean id="userCacheBackend" class="org.springframework.cache.ehcache.EhCacheFactoryBean">
<property name="cacheManager" ref="cacheManager"/>
<property name="cacheName" value="userCache"/>

</bean>

<bean id="userCache" class="org.springframework.security.providers.dao.cache.EhCacheBasedUserCache">
<property name="cache" ref="userCacheBackend"/>

</bean>

All Spring Security EH-CACHE implementations (including EhCacheBasedUserCache) require an EH-CACHE
Cache object. The Cache object can be obtained from wherever you like, although we recommend you use
Spring's factory classes as shown in the above configuration. If using Spring's factory classes, please refer to
the Spring documentation for further details on how to optimise the cache storage location, memory usage,
eviction policies, timeouts etc.

Note

In the majority of cases, where your application is a stateful web application, you don't need to use
a cache as the user's authentication information will be stored in the HttpSession.

A design decision was made not to support account locking in the DaoAuthenticationProvider, as doing so
would have increased the complexity of the UserDetailsService interface. For instance, a method would be
required to increase the count of unsuccessful authentication attempts. Such functionality could be easily
provided by leveraging the application event publishing features discussed below.

DaoAuthenticationProvider returns an Authentication object which in turn has its principal property set.
The principal will be either a String (which is essentially the username) or a UserDetails object (which was
looked up from the UserDetailsService). By default the UserDetails is returned, as this enables applications
to add extra properties potentially of use in applications, such as the user's full name, email address etc. If using
container adapters, or if your applications were written to operate with Strings (as was the case for releases
prior to Spring Security 0.6), you should set the DaoAuthenticationProvider.forcePrincipalAsString

property to true in your application context

DAO Authentication Provider

Spring Security (2.0.x) 42

Chapter 10. LDAP Authentication

10.1. Overview

LDAP is often used by organizations as a central repository for user information and as an authentication
service. It can also be used to store the role information for application users.

There are many different scenarios for how an LDAP server may be configured so Spring Security's LDAP
provider is fully configurable. It uses separate strategy interfaces for authentication and role retrieval and
provides default implementations which can be configured to handle a wide range of situations.

You should be familiar with LDAP before trying to use it with Spring Security. The following link provides a
good introduction to the concepts involved and a guide to setting up a directory using the free LDAP server
OpenLDAP: http://www.zytrax.com/books/ldap/. Some familiarity with the JNDI APIs used to access
LDAP from Java may also be useful. We don't use any third-party LDAP libraries (Mozilla, JLDAP etc.) in the
LDAP provider, but extensive use is made of Spring LDAP, so some familiarity with that project may be useful
if you plan on adding your own customizations.

10.2. Using LDAP with Spring Security

LDAP authentication in Spring Security can be roughly divided into the following stages.

1. Obtaining the unique LDAP “Distinguished Name”, or DN, from the login name. This will often mean
performing a search in the directory, unless the exact mapping of usernames to DNs is known in advance.

2. Authenticating the user, either by binding as that user or by performing a remote “compare” operation of the
user's password against the password attribute in the directory entry for the DN.

3. Loading the list of authorities for the user.

The exception is when the LDAP directory is just being used to retrieve user information and authenticate
against it locally. This may not be possible as directories are often set up with limited read access for attributes
such as user passwords.

We will look at some configuration scenarios below. For full information on available configuration options,
please consult the security namespace schema (information from which should be available in your XML
editor).

10.3. Configuring an LDAP Server

The first thing you need to do is configure the server against which authentication should take place. This is
done using the <ldap-server> element from the security namespace. This can be configured to point at an
external LDAP server, using the url attribute:

<ldap-server url="ldap://springframework.org:389/dc=springframework,dc=org" />

Spring Security (2.0.x) 43

http://www.zytrax.com/books/ldap/

10.3.1. Using an Embedded Test Server

The <ldap-server> element can also be used to create an embedded server, which can be very useful for
testing and demonstrations. In this case you use it without the url attribute:

<ldap-server root="dc=springframework,dc=org"/>

Here we've specified that the root DIT of the directory should be “dc=springframework,dc=org”, which is the
default. Used this way, the namespace parser will create an embedded Apache Directory server and scan the
classpath for any LDIF files, which it will attempt to load into the server. You can customize this behaviour
using the ldif attribute, which defines an LDIF resource to be loaded:

<ldap-server ldif="classpath:users.ldif" />

This makes it a lot easier to get up and running with LDAP, since it can be inconvenient to work all the time
with an external server. It also insulates the user from the complex bean configuration needed to wire up an
Apache Directory server. Using plain Spring Beans the configuration would be much more cluttered. You must
have the necessary Apache Directory dependency jars available for your application to use. These can be
obtained from the LDAP sample application.

10.3.2. Using Bind Authentication

This is the most common LDAP authentication scenario.

<ldap-authentication-provider user-dn-pattern="uid={0},ou=people"/>

This simple example would obtain the DN for the user by substituting the user login name in the supplied
pattern and attempting to bind as that user with the login password. This is OK if all your users are stored under
a single node in the directory. If instead you wished to configure an LDAP search filter to locate the user, you
could use the following:

<ldap-authentication-provider user-search-filter="(uid={0})" user-search-base="ou=people"/>

If used with the server definition above, this would perform a search under the DN
ou=people,dc=springframework,dc=org using the value of the user-search-filter attribute as a filter.
Again the user login name is substituted for the parameter in the filter name. If user-search-base isn't
supplied, the search will be performed from the root.

10.3.3. Loading Authorities

How authorities are loaded from groups in the LDAP directory is controlled by the following attributes.

• group-search-base. Defines the part of the directory tree under which group searches should be performed.

• group-role-attribute. The attribute which contains the name of the authority defined by the group entry.
Defaults to cn

LDAP Authentication

Spring Security (2.0.x) 44

• group-search-filter. The filter which is used to search for group membership. The default is
uniqueMember={0}, corresponding to the groupOfUniqueMembers LDAP class. In this case, the substituted
parameter is the full distinguished name of the user. The parameter {1} can be used if you want to filter on
the login name.

So if we used the following configuration

<ldap-authentication-provider user-dn-pattern="uid={0},ou=people" group-search-base="ou=groups" />

and authenticated successfully as user “ben”, the subsequent loading of authorities would perform a search
under the directory entry ou=groups,dc=springframework,dc=org, looking for entries which contain the
attribute uniqueMember with value uid=ben,ou=people,dc=springframework,dc=org. By default the authority
names will have the prefix ROLE_ prepended. You can change this using the role-prefix attribute. If you don't
want any prefix, use role-prefix="none". For more information on loading authorities, see the Javadoc for the
DefaultLdapAuthoritiesPopulator class.

10.4. Implementation Classes

The namespace configuration options we've used above are simple to use and much more concise than using
Spring beans explicitly. There are situations when you may need to know how to configure Spring Security
LDAP directly in your application context. You may wish to customize the behaviour of some of the classes,
for example. If you're happy using namespace configuration then you can skip this section and the next one.

The main LDAP provider class is
org.springframework.security.providers.ldap.LdapAuthenticationProvider. This bean doesn't actually
do much itself but delegates the work to two other beans, an LdapAuthenticator and an
LdapAuthoritiesPopulator which are responsible for authenticating the user and retrieving the user's set of
GrantedAuthoritys respectively.

10.4.1. LdapAuthenticator Implementations

The authenticator is also responsible for retrieving any required user attributes. This is because the permissions
on the attributes may depend on the type of authentication being used. For example, if binding as the user, it
may be necessary to read them with the user's own permissions.

There are currently two authentication strategies supplied with Spring Security:

• Authentication directly to the LDAP server ("bind" authentication).

• Password comparison, where the password supplied by the user is compared with the one stored in the
repository. This can either be done by retrieving the value of the password attribute and checking it locally or
by performing an LDAP "compare" operation, where the supplied password is passed to the server for
comparison and the real password value is never retrieved.

10.4.1.1. Common Functionality

Before it is possible to authenticate a user (by either strategy), the distinguished name (DN) has to be obtained
from the login name supplied to the application. This can be done either by simple pattern-matching (by setting
the setUserDnPatterns array property) or by setting the userSearch property. For the DN pattern-matching
approach, a standard Java pattern format is used, and the login name will be substituted for the parameter {0}.
The pattern should be relative to the DN that the configured SpringSecurityContextSource will bind to (see

LDAP Authentication

Spring Security (2.0.x) 45

the section on connecting to the LDAP server for more information on this). For example, if you are using an
LDAP server with the URL ldap://monkeymachine.co.uk/dc=springframework,dc=org, and have a pattern
uid={0},ou=greatapes, then a login name of "gorilla" will map to a DN
uid=gorilla,ou=greatapes,dc=springframework,dc=org. Each configured DN pattern will be tried in turn
until a match is found. For information on using a search, see the section on search objects below. A
combination of the two approaches can also be used - the patterns will be checked first and if no matching DN
is found, the search will be used.

10.4.1.2. BindAuthenticator

The class org.springframework.security.providers.ldap.authenticator.BindAuthenticator

implements the bind authentication strategy. It simply attempts to bind as the user.

10.4.1.3. PasswordComparisonAuthenticator

The class
org.springframework.security.providers.ldap.authenticator.PasswordComparisonAuthenticator

implements the password comparison authentication strategy.

10.4.1.4. Active Directory Authentication

In addition to standard LDAP authentication (binding with a DN), Active Directory has its own non-standard
syntax for user authentication.

10.4.2. Connecting to the LDAP Server

The beans discussed above have to be able to connect to the server. They both have to be supplied with a
SpringSecurityContextSource which is an extension of Spring LDAP's ContextSource. Unless you have
special requirements, you will usually configure a DefaultSpringSecurityContextSource bean, which can be
configured with the URL of your LDAP server and optionally with the username and password of a "manager"
user which will be used by default when binding to the server (instead of binding anonymously). For more
information read the Javadoc for this class and for Spring LDAP's AbstractContextSource.

10.4.3. LDAP Search Objects

Often more a more complicated strategy than simple DN-matching is required to locate a user entry in the
directory. This can be encapsulated in an LdapUserSearch instance which can be supplied to the authenticator
implementations, for example, to allow them to locate a user. The supplied implementation is
FilterBasedLdapUserSearch.

10.4.3.1. FilterBasedLdapUserSearch

This bean uses an LDAP filter to match the user object in the directory. The process is explained in the Javadoc
for the corresponding search method on the JDK DirContext class. As explained there, the search filter can be
supplied with parameters. For this class, the only valid parameter is {0} which will be replaced with the user's
login name.

10.4.4. LdapAuthoritiesPopulator

After authenticating the user successfully, the LdapAuthenticationProvider will attempt to load a set of
authorities for the user by calling the configured LdapAuthoritiesPopulator bean. The

LDAP Authentication

Spring Security (2.0.x) 46

http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)

DefaultLdapAuthoritiesPopulator is an implementation which will load the authorities by searching the
directory for groups of which the user is a member (typically these will be groupOfNames or
groupOfUniqueNames entries in the directory). Consult the Javadoc for this class for more details on how it
works.

10.4.5. Spring Bean Configuration

A typical configuration, using some of the beans we've discussed here, might look like this:

<bean id="contextSource"
class="org.springframework.security.ldap.DefaultSpringSecurityContextSource">

<constructor-arg value="ldap://monkeymachine:389/dc=springframework,dc=org"/>
<property name="userDn" value="cn=manager,dc=springframework,dc=org"/>
<property name="password" value="password"/>

</bean>

<bean id="ldapAuthProvider"
class="org.springframework.security.providers.ldap.LdapAuthenticationProvider">

<constructor-arg>
<bean class="org.springframework.security.providers.ldap.authenticator.BindAuthenticator">
<constructor-arg ref="contextSource"/>
<property name="userDnPatterns">

<list><value>uid={0},ou=people</value></list>
</property>

</bean>
</constructor-arg>
<constructor-arg>
<bean class="org.springframework.security.ldap.populator.DefaultLdapAuthoritiesPopulator">
<constructor-arg ref="contextSource"/>
<constructor-arg value="ou=groups"/>
<property name="groupRoleAttribute" value="ou"/>

</bean>
</constructor-arg>

</bean>

This would set up the provider to access an LDAP server with URL
ldap://monkeymachine:389/dc=springframework,dc=org. Authentication will be performed by attempting to
bind with the DN uid=<user-login-name>,ou=people,dc=springframework,dc=org. After successful
authentication, roles will be assigned to the user by searching under the DN
ou=groups,dc=springframework,dc=org with the default filter (member=<user's-DN>). The role name will be
taken from the “ou” attribute of each match.

To configure a user search object, which uses the filter (uid=<user-login-name>) for use instead of the
DN-pattern (or in addition to it), you would configure the following bean

<bean id="userSearch"
class="org.springframework.security.ldap.search.FilterBasedLdapUserSearch">

<constructor-arg index="0" value=""/>
<constructor-arg index="1" value="(uid={0})"/>
<constructor-arg index="2" ref="contextSource" />

</bean>

and use it by setting the BindAuthenticator bean's userSearch property. The authenticator would then call the
search object to obtain the correct user's DN before attempting to bind as this user.

10.4.6. LDAP Attributes and Customized UserDetails

The net result of an authentication using LdapAuthenticationProvider is the same as a normal Spring
Security authentication using the standard UserDetailsService interface. A UserDetails object is created and
stored in the returned Authentication object. As with using a UserDetailsService, a common requirement is

LDAP Authentication

Spring Security (2.0.x) 47

to be able to customize this implementation and add extra properties. When using LDAP, these will normally
be attributes from the user entry. The creation of the UserDetails object is controlled by the provider's
UserDetailsContextMapper strategy, which is responsible for mapping user objects to and from LDAP context
data:

public interface UserDetailsContextMapper {
UserDetails mapUserFromContext(DirContextOperations ctx, String username, GrantedAuthority[] authority);

void mapUserToContext(UserDetails user, DirContextAdapter ctx);
}

Only the first method is relevant for authentication. If you provide an implementation of this interface, you can
control exactly how the UserDetails object is created. The first parameter is an instance of Spring LDAP's
DirContextOperations which gives you access to the LDAP attributes which were loaded. The username

parameter is the name used to authenticate and the final parameter is the list of authorities loaded for the user.

The way the context data is loaded varies slightly depending on the type of authentication you are using. With
the BindAuthenticatior, the context returned from the bind operation will be used to read the attributes,
otherwise the data will be read using the standard context obtained from the configured ContextSource (when
a search is configured to locate the user, this will be the data returned by the search object).

LDAP Authentication

Spring Security (2.0.x) 48

Chapter 11. Form Authentication Mechanism

11.1. Overview

HTTP Form Authentication involves using the AuthenticationProcessingFilter to process a login form.
This is the most common way for an application to authenticate end users. Form-based authentication is
entirely compatible with the DAO and JAAS authentication providers.

11.2. Configuration

The login form simply contains j_username and j_password input fields, and posts to a URL that is monitored
by the filter (by default /j_spring_security_check). You should add an AuthenticationProcessingFilter

to your application context:

<bean id="authenticationProcessingFilter"
class="org.springframework.security.ui.webapp.AuthenticationProcessingFilter">

<property name="authenticationManager" ref="authenticationManager"/>
<property name="authenticationFailureUrl" value="/login.jsp?login_error=1"/>
<property name="defaultTargetUrl" value="/"/>
<property name="filterProcessesUrl" value="/j_spring_security_check"/>

</bean>

The configured AuthenticationManager processes each authentication request. If authentication fails, the
browser will be redirected to the authenticationFailureUrl. The AuthenticationException will be placed
into the HttpSession attribute indicated by
AbstractProcessingFilter.SPRING_SECURITY_LAST_EXCEPTION_KEY, enabling a reason to be provided to the
user on the error page.

If authentication is successful, the resulting Authentication object will be placed into the
SecurityContextHolder.

Once the SecurityContextHolder has been updated, the browser will need to be redirected to the target URL
which is usually indicated by the HttpSession attribute stored under
AbstractProcessingFilter.SPRING_SECURITY_TARGET_URL_KEY. This attribute is automatically set by the
ExceptionTranslationFilter when an AuthenticationException occurs, so that after login is completed the
user can return to what they were originally trying to access. If for some reason the HttpSession does not
indicate the target URL, the browser will be redirected to the defaultTargetUrl property.

Spring Security (2.0.x) 49

Chapter 12. BASIC Authentication Mechanism

12.1. Overview

Spring Security provides a BasicProcessingFilter which is capable of processing basic authentication
credentials presented in HTTP headers. This can be used for authenticating calls made by Spring remoting
protocols (such as Hessian and Burlap), as well as normal user agents (such as Internet Explorer and
Navigator). The standard governing HTTP Basic Authentication is defined by RFC 1945, Section 11, and the
BasicProcessingFilter conforms with this RFC. Basic Authentication is an attractive approach to
authentication, because it is very widely deployed in user agents and implementation is extremely simple (it's
just a Base64 encoding of the username:password, specified in an HTTP header).

12.2. Configuration

To implement HTTP Basic Authentication, it is necessary to define BasicProcessingFilter in the filter chain.
The application context will need to define the BasicProcessingFilter and its required collaborator:

<bean id="basicProcessingFilter" class="org.springframework.security.ui.basicauth.BasicProcessingFilter">
<property name="authenticationManager"><ref bean="authenticationManager"/></property>
<property name="authenticationEntryPoint"><ref bean="authenticationEntryPoint"/></property>
</bean>

<bean id="authenticationEntryPoint"
class="org.springframework.security.ui.basicauth.BasicProcessingFilterEntryPoint">
<property name="realmName"><value>Name Of Your Realm</value></property>
</bean>

The configured AuthenticationManager processes each authentication request. If authentication fails, the
configured AuthenticationEntryPoint will be used to retry the authentication process. Usually you will use
the BasicProcessingFilterEntryPoint, which returns a 401 response with a suitable header to retry HTTP
Basic authentication. If authentication is successful, the resulting Authentication object will be placed into the
SecurityContextHolder.

If the authentication event was successful, or authentication was not attempted because the HTTP header did
not contain a supported authentication request, the filter chain will continue as normal. The only time the filter
chain will be interrupted is if authentication fails and the AuthenticationEntryPoint is called, as discussed in
the previous paragraph

Spring Security (2.0.x) 50

Chapter 13. Digest Authentication

13.1. Overview

Spring Security provides a DigestProcessingFilter which is capable of processing digest authentication
credentials presented in HTTP headers. Digest Authentication attempts to solve many of the weaknesses of
Basic authentication, specifically by ensuring credentials are never sent in clear text across the wire. Many user
agents support Digest Authentication, including FireFox and Internet Explorer. The standard governing HTTP
Digest Authentication is defined by RFC 2617, which updates an earlier version of the Digest Authentication
standard prescribed by RFC 2069. Most user agents implement RFC 2617. Spring Security
DigestProcessingFilter is compatible with the "auth" quality of protection (qop) prescribed by RFC 2617,
which also provides backward compatibility with RFC 2069. Digest Authentication is a highly attractive option
if you need to use unencrypted HTTP (ie no TLS/HTTPS) and wish to maximise security of the authentication
process. Indeed Digest Authentication is a mandatory requirement for the WebDAV protocol, as noted by RFC
2518 Section 17.1, so we should expect to see it increasingly deployed and replacing Basic Authentication.

Digest Authentication is definitely the most secure choice between Form Authentication, Basic Authentication
and Digest Authentication, although extra security also means more complex user agent implementations.
Central to Digest Authentication is a "nonce". This is a value the server generates. Spring Security's nonce
adopts the following format:

base64(expirationTime + ":" + md5Hex(expirationTime + ":" + key))

expirationTime: The date and time when the nonce expires, expressed in milliseconds
key: A private key to prevent modification of the nonce token

The DigestProcessingFilterEntryPoint has a property specifying the key used for generating the nonce
tokens, along with a nonceValiditySeconds property for determining the expiration time (default 300, which
equals five minutes). Whist ever the nonce is valid, the digest is computed by concatenating various strings
including the username, password, nonce, URI being requested, a client-generated nonce (merely a random
value which the user agent generates each request), the realm name etc, then performing an MD5 hash. Both
the server and user agent perform this digest computation, resulting in different hash codes if they disagree on
an included value (eg password). In Spring Security implementation, if the server-generated nonce has merely
expired (but the digest was otherwise valid), the DigestProcessingFilterEntryPoint will send a
"stale=true" header. This tells the user agent there is no need to disturb the user (as the password and
username etc is correct), but simply to try again using a new nonce.

An appropriate value for DigestProcessingFilterEntryPoint's nonceValiditySeconds parameter will
depend on your application. Extremely secure applications should note that an intercepted authentication header
can be used to impersonate the principal until the expirationTime contained in the nonce is reached. This is
the key principle when selecting an appropriate setting, but it would be unusual for immensely secure
applications to not be running over TLS/HTTPS in the first instance.

Because of the more complex implementation of Digest Authentication, there are often user agent issues. For
example, Internet Explorer fails to present an "opaque" token on subsequent requests in the same session.
Spring Security filters therefore encapsulate all state information into the "nonce" token instead. In our testing,
Spring Security implementation works reliably with FireFox and Internet Explorer, correctly handling nonce
timeouts etc.

Spring Security (2.0.x) 51

13.2. Configuration

Now that we've reviewed the theory, let's see how to use it. To implement HTTP Digest Authentication, it is
necessary to define DigestProcessingFilter in the fitler chain. The application context will need to define the
DigestProcessingFilter and its required collaborators:

<bean id="digestProcessingFilter"
class="org.springframework.security.ui.digestauth.DigestProcessingFilter">

<property name="userDetailsService" ref="jdbcDaoImpl"/>
<property name="authenticationEntryPoint" ref="digestProcessingFilterEntryPoint"/>
<property name="userCache" ref="userCache"/>

</bean>

<bean id="digestProcessingFilterEntryPoint"
class="org.springframework.security.ui.digestauth.DigestProcessingFilterEntryPoint">

<property name="realmName" value="Contacts Realm via Digest Authentication"/>
<property name="key" value="acegi"/>
<property name="nonceValiditySeconds" value="10"/>

</bean>

The configured UserDetailsService is needed because DigestProcessingFilter must have direct access to
the clear text password of a user. Digest Authentication will NOT work if you are using encoded passwords in
your DAO. The DAO collaborator, along with the UserCache, are typically shared directly with a
DaoAuthenticationProvider. The authenticationEntryPoint property must be
DigestProcessingFilterEntryPoint, so that DigestProcessingFilter can obtain the correct realmName and
key for digest calculations.

Like BasicAuthenticationFilter, if authentication is successful an Authentication request token will be
placed into the SecurityContextHolder. If the authentication event was successful, or authentication was not
attempted because the HTTP header did not contain a Digest Authentication request, the filter chain will
continue as normal. The only time the filter chain will be interrupted is if authentication fails and the
AuthenticationEntryPoint is called, as discussed in the previous paragraph.

Digest Authentication's RFC offers a range of additional features to further increase security. For example, the
nonce can be changed on every request. Despite this, Spring Security implementation was designed to minimise
the complexity of the implementation (and the doubtless user agent incompatibilities that would emerge), and
avoid needing to store server-side state. You are invited to review RFC 2617 if you wish to explore these
features in more detail. As far as we are aware, Spring Security's implementation does comply with the
minimum standards of this RFC.

Digest Authentication

Spring Security (2.0.x) 52

Chapter 14. Remember-Me Authentication

14.1. Overview

Remember-me or persistent-login authentication refers to web sites being able to remember the identity of a
principal between sessions. This is typically accomplished by sending a cookie to the browser, with the cookie
being detected during future sessions and causing automated login to take place. Spring Security provides the
necessary hooks for these operations to take place, and has two concrete remember-me implementations. One
uses hashing to preserve the security of cookie-based tokens and the other uses a database or other persistent
storage mechanism to store the generated tokens.

Note that both implemementations require a UserDetailsService. If you are using an authentication provider
which doesn't use a UserDetailsService (for example, the LDAP provider) then it won't work unless you also
have a UserDetailsService bean in your application context.

14.2. Simple Hash-Based Token Approach

This approach uses hashing to achieve a useful remember-me strategy. In essence a cookie is sent to the
browser upon successful interactive authentication, with the cookie being composed as follows:

base64(username + ":" + expirationTime + ":" + md5Hex(username + ":" + expirationTime + ":" password + ":" + key))

username: As identifiable to the UserDetailsService

password: That matches the one in the retrieved UserDetails
expirationTime: The date and time when the remember-me token expires, expressed in milliseconds
key: A private key to prevent modification of the remember-me token

As such the remember-me token is valid only for the period specified, and provided that the username,
password and key does not change. Notably, this has a potential security issue in that a captured remember-me
token will be usable from any user agent until such time as the token expires. This is the same issue as with
digest authentication. If a principal is aware a token has been captured, they can easily change their password
and immediately invalidate all remember-me tokens on issue. If more significant security is needed you should
use the approach described in the next section. Alternatively remember-me services should simply not be used
at all.

If you are familiar with the topics discussed in the chapter on namespace configuration, you can enable
remember-me authentication just by adding the <remember-me> element:

<http>
...
<remember-me key="myAppKey"/>

</http>

It is automatically enabled for you if you are using the auto-config setting. The UserDetailsService will
normally be selected automatically. If you have more than one in your application context, you need to specify
which one should be used with the user-service-ref attribute, where the value is the name of your
UserDetailsService bean.

Spring Security (2.0.x) 53

ns-config
ns-auto-config

1Essentially, the username is not included in the cookie, to prevent exposing a valid login name unecessarily. There is a discussion on this
in the comments section of this article.

14.3. Persistent Token Approach

This approach is based on the article http://jaspan.com/improved_persistent_login_cookie_best_practice with
some minor modifications 1. To use the this approach with namespace configuration, you would supply a
datasource reference:

<http>
...
<remember-me data-source-ref="someDataSource"/>

</http>

The database should contain a persistent_logins table, created using the following SQL (or equivalent):

create table persistent_logins (username varchar(64) not null, series varchar(64) primary key, token varchar(64) not null, last_used timestamp not null)

14.4. Remember-Me Interfaces and Implementations

Remember-me authentication is not used with basic authentication, given it is often not used with
HttpSessions. Remember-me is used with AuthenticationProcessingFilter, and is implemented via hooks
in the AbstractProcessingFilter superclass. The hooks will invoke a concrete RememberMeServices at the
appropriate times. The interface looks like this:

Authentication autoLogin(HttpServletRequest request, HttpServletResponse response);
void loginFail(HttpServletRequest request, HttpServletResponse response);
void loginSuccess(HttpServletRequest request, HttpServletResponse response, Authentication successfulAuthentication);

Please refer to the JavaDocs for a fuller discussion on what the methods do, although note at this stage that
AbstractProcessingFilter only calls the loginFail() and loginSuccess() methods. The autoLogin()

method is called by RememberMeProcessingFilter whenever the SecurityContextHolder does not contain an
Authentication. This interface therefore provides the underlying remember-me implementation with sufficient
notification of authentication-related events, and delegates to the implementation whenever a candidate web
request might contain a cookie and wish to be remembered. This design allows any number of remember-me
implementation strategies. We've seen above that Spring Security provides two implementations. We'll look at
thes in turn.

14.4.1. TokenBasedRememberMeServices

This implementation supports the simpler approach described in Section 14.2, “Simple Hash-Based Token
Approach”. TokenBasedRememberMeServices generates a RememberMeAuthenticationToken, which is
processed by RememberMeAuthenticationProvider. A key is shared between this authentication provider and
the TokenBasedRememberMeServices. In addition, TokenBasedRememberMeServices requires A
UserDetailsService from which it can retrieve the username and password for signature comparison purposes,
and generate the RememberMeAuthenticationToken to contain the correct GrantedAuthority[]s. Some sort of

Remember-Me Authentication

Spring Security (2.0.x) 54

http://jaspan.com/improved_persistent_login_cookie_best_practice

logout command should be provided by the application that invalidates the cookie if the user requests this.
TokenBasedRememberMeServices also implements Spring Security's LogoutHandler interface so can be used
with LogoutFilter to have the cookie cleared automatically.

The beans required in an application context to enable remember-me services are as follows:

<bean id="rememberMeProcessingFilter"
class="org.springframework.security.ui.rememberme.RememberMeProcessingFilter">

<property name="rememberMeServices" ref="rememberMeServices"/>
<property name="authenticationManager" ref="theAuthenticationManager" />

</bean>

<bean id="rememberMeServices" class="org.springframework.security.ui.rememberme.TokenBasedRememberMeServices">
<property name="userDetailsService" ref="myUserDetailsService"/>
<property name="key" value="springRocks"/>

</bean>

<bean id="rememberMeAuthenticationProvider"
class="org.springframework.security.providers.rememberme.RememberMeAuthenticationProvider">

<property name="key" value="springRocks"/>
</bean>

Don't forget to add your RememberMeServices implementation to your
AuthenticationProcessingFilter.setRememberMeServices() property, include the
RememberMeAuthenticationProvider in your AuthenticationManager.setProviders() list, and add
RememberMeProcessingFilter into your FilterChainProxy (typically immediately after your
AuthenticationProcessingFilter).

14.4.2. PersistentTokenBasedRememberMeServices

This class can be used in the same way as TokenBasedRememberMeServices, but it additionally needs to be
configured with a PersistentTokenRepository to store the tokens. There are two standard implementations.

• InMemoryTokenRepositoryImpl which is intended for testing only.

• JdbcTokenRepositoryImpl which stores the tokens in a database.

The database schema is described above in Section 14.3, “Persistent Token Approach”.

Remember-Me Authentication

Spring Security (2.0.x) 55

Chapter 15. Java Authentication and Authorization
Service (JAAS) Provider

15.1. Overview

Spring Security provides a package able to delegate authentication requests to the Java Authentication and
Authorization Service (JAAS). This package is discussed in detail below.

Central to JAAS operation are login configuration files. To learn more about JAAS login configuration files,
consult the JAAS reference documentation available from Sun Microsystems. We expect you to have a basic
understanding of JAAS and its login configuration file syntax in order to understand this section.

15.2. Configuration

The JaasAuthenticationProvider attempts to authenticate a user’s principal and credentials through JAAS.

Let’s assume we have a JAAS login configuration file, /WEB-INF/login.conf, with the following contents:

JAASTest {
sample.SampleLoginModule required;

};

Like all Spring Security beans, the JaasAuthenticationProvider is configured via the application context.
The following definitions would correspond to the above JAAS login configuration file:

<bean id="jaasAuthenticationProvider"
class="org.springframework.security.providers.jaas.JaasAuthenticationProvider">

<property name="loginConfig" value="/WEB-INF/login.conf"/>
<property name="loginContextName" value="JAASTest"/>
<property name="callbackHandlers">
<list>
<bean class="org.springframework.security.providers.jaas.JaasNameCallbackHandler"/>
<bean class="org.springframework.security.providers.jaas.JaasPasswordCallbackHandler"/>

</list>
</property>
<property name="authorityGranters">
<list>
<bean class="org.springframework.security.providers.jaas.TestAuthorityGranter"/>

</list>
</property>

</bean>

The CallbackHandlers and AuthorityGranters are discussed below.

15.2.1. JAAS CallbackHandler

Most JAAS LoginModules require a callback of some sort. These callbacks are usually used to obtain the
username and password from the user.

In a Spring Security deployment, Spring Security is responsible for this user interaction (via the authentication
mechanism). Thus, by the time the authentication request is delegated through to JAAS, Spring Security's
authentication mechanism will already have fully-populated an Authentication object containing all the

Spring Security (2.0.x) 56

information required by the JAAS LoginModule.

Therefore, the JAAS package for Spring Security provides two default callback handlers,
JaasNameCallbackHandler and JaasPasswordCallbackHandler. Each of these callback handlers implement
JaasAuthenticationCallbackHandler. In most cases these callback handlers can simply be used without
understanding the internal mechanics.

For those needing full control over the callback behavior, internally JaasAutheticationProvider wraps these
JaasAuthenticationCallbackHandlers with an InternalCallbackHandler. The InternalCallbackHandler

is the class that actually implements JAAS’ normal CallbackHandler interface. Any time that the JAAS
LoginModule is used, it is passed a list of application context configured InternalCallbackHandlers. If the
LoginModule requests a callback against the InternalCallbackHandlers, the callback is in-turn passed to the
JaasAuthenticationCallbackHandlers being wrapped.

15.2.2. JAAS AuthorityGranter

JAAS works with principals. Even "roles" are represented as principals in JAAS. Spring Security, on the other
hand, works with Authentication objects. Each Authentication object contains a single principal, and
multiple GrantedAuthority[]s. To facilitate mapping between these different concepts, Spring Security's JAAS
package includes an AuthorityGranter interface.

An AuthorityGranter is responsible for inspecting a JAAS principal and returning a String. The
JaasAuthenticationProvider then creates a JaasGrantedAuthority (which implements Spring Security’s
GrantedAuthority interface) containing both the AuthorityGranter-returned String and the JAAS principal
that the AuthorityGranter was passed. The JaasAuthenticationProvider obtains the JAAS principals by
firstly successfully authenticating the user’s credentials using the JAAS LoginModule, and then accessing the
LoginContext it returns. A call to LoginContext.getSubject().getPrincipals() is made, with each
resulting principal passed to each AuthorityGranter defined against the
JaasAuthenticationProvider.setAuthorityGranters(List) property.

Spring Security does not include any production AuthorityGranters given that every JAAS principal has an
implementation-specific meaning. However, there is a TestAuthorityGranter in the unit tests that
demonstrates a simple AuthorityGranter implementation.

Java Authentication and Authorization Service (JAAS)

Spring Security (2.0.x) 57

Chapter 16. Pre-Authentication Scenarios
There are situations where you want to use Spring Security for authorization, but the user has already been
reliably authenticated by some external system prior to accessing the application. We refer to these situations as
“pre-authenticated” scenarios. Examples include X.509, Siteminder and authentication by the J2EE container in
which the application is running. When using pre-authentication, Spring Security has to

1. Identify the user making the request.

2. Obtain the authorities for the user.

The details will depend on the external authentication mechanism. A user might be identified by their
certificate information in the case of X.509, or by an HTTP request header in the case of Siteminder. If relying
on container authentication, the user will be identified by calling the getUserPrincipal() method on the
incoming HTTP request. In some cases, the external mechanism may supply role/authority information for the
user but in others the authorities must be obtained from a separate source, such as a UserDetailsService.

16.1. Pre-Authentication Framework Classes

Because most pre-authentication mechanisms follow the same pattern, Spring Security has a set of classes
which provide an internal framework for implementing pre-authenticated authentication providers. This
removes duplication and allows new implementations to be added in a structured fashion, without having to
write everything from scratch. You don't need to know about these classes if you want to use something like
X.509 authentication, as it already has a namespace configuration option which is simpler to use and get started
with. If you need to use explicit bean confiuration or are planning on writing your own implementation then an
understanding of how the provided implementations work will be useful. You will find the web related classes
under the org.springframework.security.ui.preauth package and the backend classes under
org.springframework.security.providers.preauth. We just provide an outline here so you should consult the
Javadoc and source where appropriate.

16.1.1. AbstractPreAuthenticatedProcessingFilter

This class will check the current contents of the security context and, if empty, it will attempt to extract user
information from the HTTP request and submit it to the AuthenticationManager. Subclasses override the
following methods to obtain this information:

protected abstract Object getPreAuthenticatedPrincipal(HttpServletRequest request);

protected abstract Object getPreAuthenticatedCredentials(HttpServletRequest request);

After calling these, the filter will create a PreAuthenticatedAuthenticationToken containing the returned
data and submit it for authentication. By “authentication” here, we really just mean further processing to
perhaps load the user's authorities, but the standard Spring Security authentication architecture is followed.

16.1.2. AbstractPreAuthenticatedAuthenticationDetailsSource

Like other Spring Security authentication filters, the pre-authentication filter has an
authenticationDetailsSource property which by default will create a WebAuthenticationDetails object to
store additional information such as the session-identifier and originating IP address in the details property of
the Authentication object. In cases where user role information can be obtained from the pre-authentication

Spring Security (2.0.x) 58

mechanism, the data is also stored in this property. Subclasses of
AbstractPreAuthenticatedAuthenticationDetailsSource use an extended details object which implements
the GrantedAuthoritiesContainer interface, thus enabling the authentication provider to read the authorities
which were externally allocated to the user. We'll look at a concrete example next.

16.1.2.1. J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

If the filter is configured with an authenticationDetailsSource which is an instance of this class, the
authority information is obtained by calling the isUserInRole(String role) method for each of a
pre-determined set of “mappable roles”. The class gets these from a configured
MappableAttributesRetriever. Possible implementations include hard-coding a list in the application context
and reading the role information from the <security-role> information in a web.xml file. The
pre-authentication sample application uses the latter approach.

There is an additional stage where the roles (or attributes) are mapped to Spring Security GrantedAuthority

objects using a configured Attributes2GrantedAuthoritiesMapper. The default will just add the usual ROLE_
prefix to the names, but it gives you full control over the behaviour.

16.1.3. PreAuthenticatedAuthenticationProvider

The pre-authenticated provider has little more to do than load the UserDetails object for the user. It does this
by delegating to a AuthenticationUserDetailsService. The latter is similar to the standard
UserDetailsService but takes an Authentication object rather than just user name:

public interface AuthenticationUserDetailsService {
UserDetails loadUserDetails(Authentication token) throws UsernameNotFoundException;

}

This interface may have also other uses but with pre-authentication it allows access to the authorities which
were packaged in the Authentication object, as we saw in the previous section. The
PreAuthenticatedGrantedAuthoritiesUserDetailsService class does this. Alternatively, it may delegate to
a standard UserDetailsService via the UserDetailsByNameServiceWrapper implementation.

16.1.4. PreAuthenticatedProcessingFilterEntryPoint

The AuthenticationEntryPoint was discussed in the technical overview chapter. Normally it is responsible
for kick-starting the authentication process for an unauthenticated user (when they try to access a protected
resource), but in the pre-authenticated case this doesn't apply. You would only configure the
ExceptionTranslationFilter with an instance of this class if you aren't using pre-authentication in
combination with other authentication mechanisms. It will be called if the user is rejected by the
AbstractPreAuthenticatedProcessingFilter resulting in a null authentication. It always returns a
403-forbidden response code if called.

16.2. Concrete Implementations

X.509 authentication is covered in its own chapter. Here we'll look at some classes which provide support for
other pre-authenticated scenarios.

16.2.1. Request-Header Authentication (Siteminder)

An external authentication system may supply information to the application by setting specific headers on the

Pre-Authentication Scenarios

Spring Security (2.0.x) 59

HTTP request. A well known example of this is is Siteminder, which passes the username in a header called
SM_USER. This mechanism is supported by the class RequestHeaderPreAuthenticatedProcessingFilter

which simply extracts the username from the header. It defaults to using the name SM_USER as the header name.
See the Javadoc for more details.

Tip

Note that when using a system like this, the framework performs no authentication checks at all
and it is extremely important that the external system is configured properly and protects all access
to the application. If an attacker is able to forge the headers in their original request without this
being detected then they could potentially choose any userame they wished.

16.2.1.1. Siteminder Example Configuration

A typical configuration using this filter would look like this:

<bean id="siteminderFilter"
class="org.springframework.security.ui.preauth.header.RequestHeaderPreAuthenticatedProcessingFilter">

<security:custom-filter position="PRE_AUTH_FILTER" />
<property name="principalRequestHeader" value="SM_USER"/>
<property name="authenticationManager" ref="authenticationManager" />

</bean>

<bean id="preauthAuthProvider"
class="org.springframework.security.providers.preauth.PreAuthenticatedAuthenticationProvider">

<security:custom-authentication-provider />
<property name="preAuthenticatedUserDetailsService">
<bean id="userDetailsServiceWrapper"

class="org.springframework.security.userdetails.UserDetailsByNameServiceWrapper">
<property name="userDetailsService" ref="userDetailsService"/>

</bean>
</property>

</bean>

<security:authentication-manager alias="authenticationManager" />

We've assumed here that the security namespace is being used for configuration (hence the user of the
custom-filter, authentication-manager and custom-authentication-provider elements (you can read
more about them in the namespace chapter). You would leave these out of a traditional bean configuration. It's
also assumed that you have added a UserDetailsService (called “userDetailsService”) to your configuration
to load the user's roles.

16.2.2. J2EE Container Authentication

The class J2eePreAuthenticatedProcessingFilter will extract the username from the userPrincipal

property of the HttpServletRequest. use of this filter would usually be combined with the use of J2EE roles as
described above in Section 16.1.2.1, “J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource”.

Pre-Authentication Scenarios

Spring Security (2.0.x) 60

ns-config

Chapter 17. Anonymous Authentication

17.1. Overview

Particularly in the case of web request URI security, sometimes it is more convenient to assign configuration
attributes against every possible secure object invocation. Put differently, sometimes it is nice to say
ROLE_SOMETHING is required by default and only allow certain exceptions to this rule, such as for login, logout
and home pages of an application. There are also other situations where anonymous authentication would be
desired, such as when an auditing interceptor queries the SecurityContextHolder to identify which principal
was responsible for a given operation. Such classes can be authored with more robustness if they know the
SecurityContextHolder always contains an Authentication object, and never null.

17.2. Configuration

Spring Security provides three classes that together provide an anonymous authentication feature.
AnonymousAuthenticationToken is an implementation of Authentication, and stores the
GrantedAuthority[]s which apply to the anonymous principal. There is a corresponding
AnonymousAuthenticationProvider, which is chained into the ProviderManager so that
AnonymousAuthenticationTokens are accepted. Finally, there is an AnonymousProcessingFilter, which is
chained after the normal authentication mechanisms and automatically add an AnonymousAuthenticationToken

to the SecurityContextHolder if there is no existing Authentication held there. The definition of the filter
and authentication provider appears as follows:

<bean id="anonymousProcessingFilter"
class="org.springframework.security.providers.anonymous.AnonymousProcessingFilter">

<property name="key" value="foobar"/>
<property name="userAttribute" value="anonymousUser,ROLE_ANONYMOUS"/>

</bean>

<bean id="anonymousAuthenticationProvider"
class="org.springframework.security.providers.anonymous.AnonymousAuthenticationProvider">

<property name="key" value="foobar"/>
</bean>

The key is shared between the filter and authentication provider, so that tokens created by the former are
accepted by the latter. The userAttribute is expressed in the form of
usernameInTheAuthenticationToken,grantedAuthority[,grantedAuthority]. This is the same syntax as
used after the equals sign for InMemoryDaoImpl's userMap property.

As explained earlier, the benefit of anonymous authentication is that all URI patterns can have security applied
to them. For example:

<bean id="filterInvocationInterceptor"
class="org.springframework.security.intercept.web.FilterSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>
<property name="accessDecisionManager" ref="httpRequestAccessDecisionManager"/>
<property name="objectDefinitionSource">
<security:filter-invocation-definition-source>
<security:intercept-url pattern='/index.jsp' access='ROLE_ANONYMOUS,ROLE_USER'/>
<security:intercept-url pattern='/hello.htm' access='ROLE_ANONYMOUS,ROLE_USER'/>

Spring Security (2.0.x) 61

<security:intercept-url pattern='/logoff.jsp' access='ROLE_ANONYMOUS,ROLE_USER'/>
<security:intercept-url pattern='/login.jsp' access='ROLE_ANONYMOUS,ROLE_USER'/>
<security:intercept-url pattern='/**' access='ROLE_USER'/>

</security:filter-invocation-definition-source>" +
</property>

</bean>

Rounding out the anonymous authentication discussion is the AuthenticationTrustResolver interface, with
its corresponding AuthenticationTrustResolverImpl implementation. This interface provides an
isAnonymous(Authentication) method, which allows interested classes to take into account this special type
of authentication status. The ExceptionTranslationFilter uses this interface in processing
AccessDeniedExceptions. If an AccessDeniedException is thrown, and the authentication is of an anonymous
type, instead of throwing a 403 (forbidden) response, the filter will instead commence the
AuthenticationEntryPoint so the principal can authenticate properly. This is a necessary distinction,
otherwise principals would always be deemed "authenticated" and never be given an opportunity to login via
form, basic, digest or some other normal authentication mechanism

Anonymous Authentication

Spring Security (2.0.x) 62

Chapter 18. X.509 Authentication

18.1. Overview

The most common use of X.509 certificate authentication is in verifying the identity of a server when using
SSL, most commonly when using HTTPS from a browser. The browser will automatically check that the
certificate presented by a server has been issued (ie digitally signed) by one of a list of trusted certificate
authorities which it maintains.

You can also use SSL with “mutual authentication”; the server will then request a valid certificate from the
client as part of the SSL handshake. The server will authenticate the client by checking that it's certificate is
signed by an acceptable authority. If a valid certificate has been provided, it can be obtained through the servlet
API in an application. Spring Security X.509 module extracts the certificate using a filter and passes it to the
configured X.509 authentication provider to allow any additional application-specific checks to be applied. It
also maps the certificate to an application user and loads that user's set of granted authorities for use with the
standard Spring Security infrastructure.

You should be familiar with using certificates and setting up client authentication for your servlet container
before attempting to use it with Spring Security. Most of the work is in creating and installing suitable
certificates and keys. For example, if you're using Tomcat then read the instructions here
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html. It's important that you get this working before
trying it out with Spring Security

18.2. Adding X.509 Authentication to Your Web Application

Enabling X.509 client authentication is very straightforward. Just add the <x509/> element to your http security
namespace configuration.

<http>
...

<x509 subject-principal-regex="CN=(.*?)," user-service-ref="userService"/>
...
</http>

The element has two optional attributes:

• subject-principal-regex. The regular expression used to extract a username from the certificate's subject
name. The default value is shown above. This is the username which will be passed to the
UserDetailsService to load the authorities for the user.

• user-service-ref. This is the bean Id of the UserDetailsService to be used with X.509. It isn't needed if
there is only one defined in your application context.

The subject-principal-regex should contain a single group. For example the default expression "CN=(.*?),"
matches the common name field. So if the subject name in the certificate is "CN=Jimi Hendrix, OU=...", this
will give a user name of "Jimi Hendrix". The matches are case insensitive. So "emailAddress=(.?)," will match
"EMAILADDRESS=jimi@hendrix.org,CN=..." giving a user name "jimi@hendrix.org". If the client presents a
certificate and a valid username is successfully extracted, then there should be a valid Authentication object
in the security context. If no certificate is found, or no corresponding user could be found then the security
context will remain empty. This means that you can easily use X.509 authentication with other options such as

Spring Security (2.0.x) 63

http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

a form-based login.

18.3. Setting up SSL in Tomcat

There are some pre-generated certificates in the samples/certificate directory in the Spring Security project.
You can use these to enable SSL for testing if you don't want to generate your own. The file server.jks

contains the server certificate, private key and the issuing certificate authority certificate. There are also some
client certificate files for the users from the sample applications. You can install these in your browser to enable
SSL client authentication.

To run tomcat with SSL support, drop the server.jks file into the tomcat conf directory and add the following
connector to the server.xml file

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" scheme="https" secure="true"
clientAuth="true" sslProtocol="TLS"
keystoreFile="${catalina.home}/conf/server.jks"
keystoreType="JKS" keystorePass="password"
truststoreFile="${catalina.home}/conf/server.jks"
truststoreType="JKS" truststorePass="password"

/>

clientAuth can also be set to want if you still want SSL connections to succeed even if the client doesn't
provide a certificate. Clients which don't present a certificate won't be able to access any objects secured by
Spring Security unless you use a non-X.509 authentication mechanism, such as form authentication.

X.509 Authentication

Spring Security (2.0.x) 64

Chapter 19. CAS Authentication

19.1. Overview

JA-SIG produces an enterprise-wide single sign on system known as CAS. Unlike other initiatives, JA-SIG's
Central Authentication Service is open source, widely used, simple to understand, platform independent, and
supports proxy capabilities. Spring Security fully supports CAS, and provides an easy migration path from
single-application deployments of Spring Security through to multiple-application deployments secured by an
enterprise-wide CAS server.

You can learn more about CAS at http://www.ja-sig.org/products/cas/. You will also need to visit this
site to download the CAS Server files.

19.2. How CAS Works

Whilst the CAS web site contains documents that detail the architecture of CAS, we present the general
overview again here within the context of Spring Security. Spring Security 2.0 supports CAS 3. At the time of
writing, the CAS server was at version 3.2.

Somewhere in your enterprise you will need to setup a CAS server. The CAS server is simply a standard WAR
file, so there isn't anything difficult about setting up your server. Inside the WAR file you will customise the
login and other single sign on pages displayed to users.

When deploying a CAS 3.2 server, you will also need to specify an AuthenticationHandler in the
deployerConfigContext.xml included with CAS. The AuthenticationHandler has a simple method that
returns a boolean as to whether a given set of Credentials is valid. Your AuthenticationHandler

implementation will need to link into some type of backend authentication repository, such as an LDAP server
or database. CAS itself includes numerous AuthenticationHandlers out of the box to assist with this. When
you download and deploy the server war file, it is set up to successfully authenticate users who enter a
password matching their username, which is useful for testing.

Apart from the CAS server itself, the other key players are of course the secure web applications deployed
throughout your enterprise. These web applications are known as "services". There are two types of services:
standard services and proxy services. A proxy service is able to request resources from other services on behalf
of the user. This will be explained more fully later.

19.3. Configuration of CAS Client

The web application side of CAS is made easy due to Spring Security. It is assumed you already know the
basics of using Spring Security, so these are not covered again below. We'll assume a namespace based
configuration is being used and add in the CAS beans as required.

You will need to add a ServiceProperties bean to your application context. This represents your service:

<bean id="serviceProperties" class="org.springframework.security.ui.cas.ServiceProperties">
<property name="service" value="https://localhost:8443/cas-sample/j_spring_cas_security_check"/>
<property name="sendRenew" value="false"/>

</bean>

Spring Security (2.0.x) 65

The service must equal a URL that will be monitored by the CasProcessingFilter. The sendRenew defaults
to false, but should be set to true if your application is particularly sensitive. What this parameter does is tell the
CAS login service that a single sign on login is unacceptable. Instead, the user will need to re-enter their
username and password in order to gain access to the service.

The following beans should be configured to commence the CAS authentication process:

<security:authentication-manager alias="authenticationManager"/>

<bean id="casProcessingFilter" class="org.springframework.security.ui.cas.CasProcessingFilter">
<security:custom-filter after="CAS_PROCESSING_FILTER"/>
<property name="authenticationManager" ref="authenticationManager"/>
<property name="authenticationFailureUrl" value="/casfailed.jsp"/>
<property name="defaultTargetUrl" value="/"/>

</bean>

<bean id="casProcessingFilterEntryPoint"
class="org.springframework.security.ui.cas.CasProcessingFilterEntryPoint">

<property name="loginUrl" value="https://localhost:9443/cas/login"/>
<property name="serviceProperties" ref="serviceProperties"/>

</bean>

The CasProcessingFilterEntryPoint should be selected to drive authentication using entry-point-ref.

The CasProcessingFilter has very similar properties to the AuthenticationProcessingFilter (used for
form-based logins). Each property is self-explanatory. Note that we've also used the namespace syntax for
setting up an alias to the authentication mnager, since the CasProcessingFilter needs a reference to it.

For CAS to operate, the ExceptionTranslationFilter must have its authenticationEntryPoint property set
to the CasProcessingFilterEntryPoint bean.

The CasProcessingFilterEntryPoint must refer to the ServiceProperties bean (discussed above), which
provides the URL to the enterprise's CAS login server. This is where the user's browser will be redirected.

Next you need to add a CasAuthenticationProvider and its collaborators:

<bean id="casAuthenticationProvider" class="org.springframework.security.providers.cas.CasAuthenticationProvider">
<security:custom-authentication-provider />
<property name="userDetailsService" ref="userService"/>
<property name="serviceProperties" ref="serviceProperties" />
<property name="ticketValidator">
<bean class="org.jasig.cas.client.validation.Cas20ServiceTicketValidator">

<constructor-arg index="0" value="https://localhost:9443/cas" />
</bean>

</property>
<property name="key" value="an_id_for_this_auth_provider_only"/>

</bean>

<security:user-service id="userService">
<security:user name="joe" password="joe" authorities="ROLE_USER" />
...

</security:user-service>

The CasAuthenticationProvider uses a UserDetailsService instance to load the authorities for a user, once
they have been authentiated by CAS. We've shown a simple in-memory setup here.

The beans are all reasonable self-explanatory if you refer back to the "How CAS Works" section.

CAS Authentication

Spring Security (2.0.x) 66

ns-entry-point-ref

Chapter 20. Run-As Authentication Replacement

20.1. Overview

The AbstractSecurityInterceptor is able to temporarily replace the Authentication object in the
SecurityContext and SecurityContextHolder during the secure object callback phase. This only occurs if the
original Authentication object was successfully processed by the AuthenticationManager and
AccessDecisionManager. The RunAsManager will indicate the replacement Authentication object, if any, that
should be used during the SecurityInterceptorCallback.

By temporarily replacing the Authentication object during the secure object callback phase, the secured
invocation will be able to call other objects which require different authentication and authorization credentials.
It will also be able to perform any internal security checks for specific GrantedAuthority objects. Because
Spring Security provides a number of helper classes that automatically configure remoting protocols based on
the contents of the SecurityContextHolder, these run-as replacements are particularly useful when calling
remote web services

20.2. Configuration

A RunAsManager interface is provided by Spring Security:

Authentication buildRunAs(Authentication authentication, Object object, ConfigAttributeDefinition config);
boolean supports(ConfigAttribute attribute);
boolean supports(Class clazz);

The first method returns the Authentication object that should replace the existing Authentication object for
the duration of the method invocation. If the method returns null, it indicates no replacement should be made.
The second method is used by the AbstractSecurityInterceptor as part of its startup validation of
configuration attributes. The supports(Class) method is called by a security interceptor implementation to
ensure the configured RunAsManager supports the type of secure object that the security interceptor will present.

One concrete implementation of a RunAsManager is provided with Spring Security. The RunAsManagerImpl

class returns a replacement RunAsUserToken if any ConfigAttribute starts with RUN_AS_. If any such
ConfigAttribute is found, the replacement RunAsUserToken will contain the same principal, credentials and
granted authorities as the original Authentication object, along with a new GrantedAuthorityImpl for each
RUN_AS_ ConfigAttribute. Each new GrantedAuthorityImpl will be prefixed with ROLE_, followed by the
RUN_AS ConfigAttribute. For example, a RUN_AS_SERVER will result in the replacement RunAsUserToken

containing a ROLE_RUN_AS_SERVER granted authority.

The replacement RunAsUserToken is just like any other Authentication object. It needs to be authenticated by
the AuthenticationManager, probably via delegation to a suitable AuthenticationProvider. The
RunAsImplAuthenticationProvider performs such authentication. It simply accepts as valid any
RunAsUserToken presented.

To ensure malicious code does not create a RunAsUserToken and present it for guaranteed acceptance by the
RunAsImplAuthenticationProvider, the hash of a key is stored in all generated tokens. The
RunAsManagerImpl and RunAsImplAuthenticationProvider is created in the bean context with the same key:

Spring Security (2.0.x) 67

<bean id="runAsManager" class="org.springframework.security.runas.RunAsManagerImpl">
<property name="key" value="my_run_as_password"/>

</bean>

<bean id="runAsAuthenticationProvider"
class="org.springframework.security.runas.RunAsImplAuthenticationProvider">

<property name="key" value="my_run_as_password"/>
</bean>

By using the same key, each RunAsUserToken can be validated it was created by an approved
RunAsManagerImpl. The RunAsUserToken is immutable after creation for security reasons

Run-As Authentication Replacement

Spring Security (2.0.x) 68

Chapter 21. Container Adapter Authentication

21.1. Overview

Very early versions of Spring Security exclusively used Container Adapters for interfacing authentication with
end users. Whilst this worked well, it required considerable time to support multiple container versions and the
configuration itself was relatively time-consuming for developers. For this reason the HTTP Form
Authentication and HTTP Basic Authentication approaches were developed, and are today recommended for
almost all applications.

Container Adapters enable Spring Security to integrate directly with the containers used to host end user
applications. This integration means that applications can continue to leverage the authentication and
authorization capabilities built into containers (such as isUserInRole() and form-based or basic
authentication), whilst benefiting from the enhanced security interception capabilities provided by Spring
Security (it should be noted that Spring Security also offers ContextHolderAwareRequestWrapper to deliver
isUserInRole() and similar Servlet Specification compatibility methods).

The integration between a container and Spring Security is achieved through an adapter. The adapter provides a
container-compatible user authentication provider, and needs to return a container-compatible user object.

The adapter is instantiated by the container and is defined in a container-specific configuration file. The adapter
then loads a Spring application context which defines the normal authentication manager settings, such as the
authentication providers that can be used to authenticate the request. The application context is usually named
acegisecurity.xml and is placed in a container-specific location.

Spring Security currently supports Jetty, Catalina (Tomcat), JBoss and Resin. Additional container adapters can
easily be written

21.2. Adapter Authentication Provider

As is always the case, the container adapter generated Authentication object still needs to be authenticated by
an AuthenticationManager when requested to do so by the AbstractSecurityInterceptor. The
AuthenticationManager needs to be certain the adapter-provided Authentication object is valid and was
actually authenticated by a trusted adapter.

Adapters create Authentication objects which are immutable and implement the AuthByAdapter interface.
These objects store the hash of a key that is defined by the adapter. This allows the Authentication object to
be validated by the AuthByAdapterProvider. This authentication provider is defined as follows:

<bean id="authByAdapterProvider"
class="org.springframework.security.adapters.AuthByAdapterProvider">

<property name="key"><value>my_password</value></property>
</bean>

The key must match the key that is defined in the container-specific configuration file that starts the adapter.
The AuthByAdapterProvider automatically accepts as valid any AuthByAdapter implementation that returns
the expected hash of the key.

To reiterate, this means the adapter will perform the initial authentication using providers such as
DaoAuthenticationProvider, returning an AuthByAdapter instance that contains a hash code of the key. Later,

Spring Security (2.0.x) 69

when an application calls a security interceptor managed resource, the AuthByAdapter instance in the
SecurityContext in the SecurityContextHolder will be tested by the application's AuthByAdapterProvider.
There is no requirement for additional authentication providers such as DaoAuthenticationProvider within
the application-specific application context, as the only type of Authentication instance that will be presented
by the application is from the container adapter.

Classloader issues are frequent with containers and the use of container adapters illustrates this further. Each
container requires a very specific configuration. The installation instructions are provided below. Once
installed, please take the time to try the sample application to ensure your container adapter is properly
configured.

When using container adapters with the DaoAuthenticationProvider, ensure you set its
forcePrincipalAsString property to true.

21.3. Jetty

The following was tested with Jetty 4.2.18.

$JETTY_HOME refers to the root of your Jetty installation.

Edit your $JETTY_HOME/etc/jetty.xml file so the <Configure class> section has a new addRealm call:

<Call name="addRealm">
<Arg>
<New class="org.springframework.security.adapters.jetty.JettySpringSecurityUserRealm">
<Arg>Spring Powered Realm</Arg>
<Arg>my_password</Arg>
<Arg>etc/acegisecurity.xml</Arg>

</New>
</Arg>
</Call>

Copy acegisecurity.xml into $JETTY_HOME/etc.

Copy the following files into $JETTY_HOME/ext:

• aopalliance.jar

• commons-logging.jar

• spring.jar

• acegi-security-jetty-XX.jar

• commons-codec.jar

• burlap.jar

• hessian.jar

None of the above JAR files (or acegi-security-XX.jar) should be in your application's WEB-INF/lib. The
realm name indicated in your web.xml does matter with Jetty. The web.xml must express the same
<realm-name> as your jetty.xml (in the example above, "Spring Powered Realm").

Container Adapter Authentication

Spring Security (2.0.x) 70

21.4. JBoss

The following was tested with JBoss 3.2.6.

$JBOSS_HOME refers to the root of your JBoss installation.

There are two different ways of making spring context available to the Jboss integration classes.

The first approach is by editing your $JBOSS_HOME/server/your_config/conf/login-config.xml file so that
it contains a new entry under the <Policy> section:

<application-policy name = "SpringPoweredRealm">
<authentication>
<login-module code = "org.springframework.security.adapters.jboss.JbossSpringSecurityLoginModule"

flag = "required">
<module-option name = "appContextLocation">acegisecurity.xml</module-option>
<module-option name = "key">my_password</module-option>

</login-module>
</authentication>
</application-policy>

Copy acegisecurity.xml into $JBOSS_HOME/server/your_config/conf.

In this configuration acegisecurity.xml contains the spring context definition including all the authentication
manager beans. You have to bear in mind though, that SecurityContext is created and destroyed on each login
request, so the login operation might become costly. Alternatively, the second approach is to use Spring
singleton capabilities through
org.springframework.beans.factory.access.SingletonBeanFactoryLocator. The required configuration
for this approach is:

<application-policy name = "SpringPoweredRealm">
<authentication>
<login-module code = "org.springframework.security.adapters.jboss.JbossSpringSecurityLoginModule"

flag = "required">
<module-option name = "singletonId">springRealm</module-option>
<module-option name = "key">my_password</module-option>
<module-option name = "authenticationManager">authenticationManager</module-option>

</login-module>
</authentication>
</application-policy>

In the above code fragment, authenticationManager is a helper property that defines the expected name of the
AuthenticationManager in case you have several defined in the IoC container. The singletonId property
references a bean defined in a beanRefFactory.xml file. This file needs to be available from anywhere on the
JBoss classpath, including $JBOSS_HOME/server/your_config/conf. The beanRefFactory.xml contains the
following declaration:

<beans>
<bean id="springRealm" singleton="true" lazy-init="true" class="org.springframework.context.support.ClassPathXmlApplicationContext">
<constructor-arg>
<list>
<value>acegisecurity.xml</value>

Container Adapter Authentication

Spring Security (2.0.x) 71

</list>
</constructor-arg>
</bean>
</beans>

Finally, irrespective of the configuration approach you need to copy the following files into
$JBOSS_HOME/server/your_config/lib:

• aopalliance.jar

• spring.jar

• acegi-security-jboss-XX.jar

• commons-codec.jar

• burlap.jar

• hessian.jar

None of the above JAR files (or acegi-security-XX.jar) should be in your application's WEB-INF/lib. The
realm name indicated in your web.xml does not matter with JBoss. However, your web application's
WEB-INF/jboss-web.xml must express the same <security-domain> as your login-config.xml. For example,
to match the above example, your jboss-web.xml would look like this:

<jboss-web>
<security-domain>java:/jaas/SpringPoweredRealm</security-domain>
</jboss-web>

JBoss is a widely-used container adapter (mostly due to the need to support legacy EJBs), so please let us know
if you have any difficulties.

21.5. Resin

The following was tested with Resin 3.0.6.

$RESIN_HOME refers to the root of your Resin installation.

Resin provides several ways to support the container adapter. In the instructions below we have elected to
maximise consistency with other container adapter configurations. This will allow Resin users to simply deploy
the sample application and confirm correct configuration. Developers comfortable with Resin are naturally able
to use its capabilities to package the JARs with the web application itself, and/or support single sign-on.

Copy the following files into $RESIN_HOME/lib:

• aopalliance.jar

• commons-logging.jar

• spring.jar

Container Adapter Authentication

Spring Security (2.0.x) 72

• acegi-security-resin-XX.jar

• commons-codec.jar

• burlap.jar

• hessian.jar

Unlike the container-wide acegisecurity.xml files used by other container adapters, each Resin web
application will contain its own WEB-INF/resin-acegisecurity.xml file. Each web application will also
contain a resin-web.xml file which Resin uses to start the container adapter:

<web-app>
<authenticator>
<type>org.springframework.security.adapters.resin.ResinAcegiAuthenticator</type>
<init>
<app-context-location>WEB-INF/resin-acegisecurity.xml</app-context-location>
<key>my_password</key>

</init>
</authenticator>
</web-app>

With the basic configuration provided above, none of the JAR files listed (or acegi-security-XX.jar) should
be in your application's WEB-INF/lib. The realm name indicated in your web.xml does not matter with Resin, as
the relevant authentication class is indicated by the <authenticator> setting

21.6. Tomcat

The following was tested with Jakarta Tomcat 4.1.30 and 5.0.19.

$CATALINA_HOME refers to the root of your Catalina (Tomcat) installation.

Edit your $CATALINA_HOME/conf/server.xml file so the <Engine> section contains only one active <Realm>

entry. An example realm entry:

<Realm
className="org.springframework.security.adapters.catalina.CatalinaSpringSecurityUserRealm"
appContextLocation="conf/acegisecurity.xml"
key="my_password" />

Be sure to remove any other <Realm> entry from your <Engine> section.

Copy acegisecurity.xml into $CATALINA_HOME/conf.

Copy spring-security-catalina-XX.jar into $CATALINA_HOME/server/lib.

Copy the following files into $CATALINA_HOME/common/lib:

• aopalliance.jar

• spring.jar

Container Adapter Authentication

Spring Security (2.0.x) 73

• commons-codec.jar

• burlap.jar

• hessian.jar

None of the above JAR files (or spring-security-XX.jar) should be in your application's WEB-INF/lib. The
realm name indicated in your web.xml does not matter with Catalina.

We have received reports of problems using this Container Adapter with Mac OS X. A work-around is to use a
script such as follows:

#!/bin/sh
export CATALINA_HOME="/Library/Tomcat"
export JAVA_HOME="/Library/Java/Home"
cd /
$CATALINA_HOME/bin/startup.sh

Finally, restart Tomcat.

Container Adapter Authentication

Spring Security (2.0.x) 74

Part IV. Authorization
The advanced authorization capabilities within Spring Security represent one of the most compelling reasons
for its popularity. Irrespective of how you choose to authenticate - whether using a Spring Security-provided
mechanism and provider, or integrating with a container or other non-Spring Security authentication authority -
you will find the authorization services can be used within your application in a consistent and simple way.

In this part we'll explore the different AbstractSecurityInterceptor implementations, which were introduced
in Part I. We then move on to explore how to fine-tune authorization through use of domain access control lists.

Spring Security (2.0.x) 75

Chapter 22. Common Authorization Concepts

22.1. Authorities

As briefly mentioned in the Authentication section, all Authentication implementations are required to store
an array of GrantedAuthority objects. These represent the authorities that have been granted to the principal.
The GrantedAuthority objects are inserted into the Authentication object by the AuthenticationManager

and are later read by AccessDecisionManagers when making authorization decisions.

GrantedAuthority is an interface with only one method:

String getAuthority();

This method allows AccessDecisionManagers to obtain a precise String representation of the
GrantedAuthority. By returning a representation as a String, a GrantedAuthority can be easily "read" by
most AccessDecisionManagers. If a GrantedAuthority cannot be precisely represented as a String, the
GrantedAuthority is considered "complex" and getAuthority() must return null.

An example of a "complex" GrantedAuthority would be an implementation that stores a list of operations and
authority thresholds that apply to different customer account numbers. Representing this complex
GrantedAuthority as a String would be quite complex, and as a result the getAuthority() method should
return null. This will indicate to any AccessDecisionManager that it will need to specifically support the
GrantedAuthority implementation in order to understand its contents.

Spring Security includes one concrete GrantedAuthority implementation, GrantedAuthorityImpl. This
allows any user-specified String to be converted into a GrantedAuthority. All AuthenticationProviders
included with the security architecture use GrantedAuthorityImpl to populate the Authentication object.

22.2. Pre-Invocation Handling

As we'll see in the Technical Overview chapter, Spring Security provides interceptors which control access to
secure objects such as method invocations or web requests. A pre-invocation decision on whether the
invocation is allowed to proceed is made by the AccessDecisionManager.

22.2.1. The AccessDecisionManager

The AccessDecisionManager is called by the AbstractSecurityInterceptor and is responsible for making
final access control decisions. The AccessDecisionManager interface contains three methods:

void decide(Authentication authentication, Object secureObject, ConfigAttributeDefinition config) throws AccessDeniedException;
boolean supports(ConfigAttribute attribute);
boolean supports(Class clazz);

As can be seen from the first method, the AccessDecisionManager is passed via method parameters all
information that is likely to be of value in assessing an authorization decision. In particular, passing the secure
Object enables those arguments contained in the actual secure object invocation to be inspected. For example,
let's assume the secure object was a MethodInvocation. It would be easy to query the MethodInvocation for
any Customer argument, and then implement some sort of security logic in the AccessDecisionManager to

Spring Security (2.0.x) 76

ensure the principal is permitted to operate on that customer. Implementations are expected to throw an
AccessDeniedException if access is denied.

The supports(ConfigAttribute) method is called by the AbstractSecurityInterceptor at startup time to
determine if the AccessDecisionManager can process the passed ConfigAttribute. The supports(Class)

method is called by a security interceptor implementation to ensure the configured AccessDecisionManager

supports the type of secure object that the security interceptor will present.

22.2.1.1. Voting-Based AccessDecisionManager Implementations

Whilst users can implement their own AccessDecisionManager to control all aspects of authorization, Spring
Security includes several AccessDecisionManager implementations that are based on voting. Figure 22.1,
“Voting Decision Manager” illustrates the relevant classes.

Figure 22.1. Voting Decision Manager

Using this approach, a series of AccessDecisionVoter implementations are polled on an authorization
decision. The AccessDecisionManager then decides whether or not to throw an AccessDeniedException based
on its assessment of the votes.

The AccessDecisionVoter interface has three methods:

int vote(Authentication authentication, Object object, ConfigAttributeDefinition config);
boolean supports(ConfigAttribute attribute);
boolean supports(Class clazz);

Concrete implementations return an int, with possible values being reflected in the AccessDecisionVoter

static fields ACCESS_ABSTAIN, ACCESS_DENIED and ACCESS_GRANTED. A voting implementation will return
ACCESS_ABSTAIN if it has no opinion on an authorization decision. If it does have an opinion, it must return
either ACCESS_DENIED or ACCESS_GRANTED.

There are three concrete AccessDecisionManagers provided with Spring Security that tally the votes. The
ConsensusBased implementation will grant or deny access based on the consensus of non-abstain votes.
Properties are provided to control behavior in the event of an equality of votes or if all votes are abstain. The
AffirmativeBased implementation will grant access if one or more ACCESS_GRANTED votes were received (i.e. a
deny vote will be ignored, provided there was at least one grant vote). Like the ConsensusBased

implementation, there is a parameter that controls the behavior if all voters abstain. The UnanimousBased

provider expects unanimous ACCESS_GRANTED votes in order to grant access, ignoring abstains. It will deny
access if there is any ACCESS_DENIED vote. Like the other implementations, there is a parameter that controls the

Common Authorization Concepts

Spring Security (2.0.x) 77

behaviour if all voters abstain.

It is possible to implement a custom AccessDecisionManager that tallies votes differently. For example, votes
from a particular AccessDecisionVoter might receive additional weighting, whilst a deny vote from a
particular voter may have a veto effect.

22.2.1.1.1. RoleVoter

The most commonly used AccessDecisionVoter provided with Spring Security is the simple RoleVoter,
which treats configuration attributes as simple role names and votes to grant access if the user has been
assigned that role.

It will vote if any ConfigAttribute begins with the prefix ROLE_. It will vote to grant access if there is a
GrantedAuthority which returns a String representation (via the getAuthority() method) exactly equal to
one or more ConfigAttributes starting with ROLE_. If there is no exact match of any ConfigAttribute starting
with ROLE_, the RoleVoter will vote to deny access. If no ConfigAttribute begins with ROLE_, the voter will
abstain. RoleVoter is case sensitive on comparisons as well as the ROLE_ prefix.

22.2.1.1.2. Custom Voters

It is also possible to implement a custom AccessDecisionVoter. Several examples are provided in Spring
Security unit tests, including ContactSecurityVoter and DenyVoter. The ContactSecurityVoter abstains
from voting decisions where a CONTACT_OWNED_BY_CURRENT_USER ConfigAttribute is not found. If voting, it
queries the MethodInvocation to extract the owner of the Contact object that is subject of the method call. It
votes to grant access if the Contact owner matches the principal presented in the Authentication object. It
could have just as easily compared the Contact owner with some GrantedAuthority the Authentication

object presented. All of this is achieved with relatively few lines of code and demonstrates the flexibility of the
authorization model.

22.3. After Invocation Handling

Whilst the AccessDecisionManager is called by the AbstractSecurityInterceptor before proceeding with
the secure object invocation, some applications need a way of modifying the object actually returned by the
secure object invocation. Whilst you could easily implement your own AOP concern to achieve this, Spring
Security provides a convenient hook that has several concrete implementations that integrate with its ACL
capabilities.

Figure 22.2, “After Invocation Implementation” illustrates Spring Security's AfterInvocationManager and its
concrete implementations.

Common Authorization Concepts

Spring Security (2.0.x) 78

Figure 22.2. After Invocation Implementation

Like many other parts of Spring Security, AfterInvocationManager has a single concrete implementation,
AfterInvocationProviderManager, which polls a list of AfterInvocationProviders. Each
AfterInvocationProvider is allowed to modify the return object or throw an AccessDeniedException. Indeed
multiple providers can modify the object, as the result of the previous provider is passed to the next in the list.
Let's now consider our ACL-aware implementations of AfterInvocationProvider.

Please be aware that if you're using AfterInvocationManager, you will still need configuration attributes that
allow the MethodSecurityInterceptor's AccessDecisionManager to allow an operation. If you're using the
typical Spring Security included AccessDecisionManager implementations, having no configuration attributes
defined for a particular secure method invocation will cause each AccessDecisionVoter to abstain from voting.
In turn, if the AccessDecisionManager property "allowIfAllAbstainDecisions" is false, an
AccessDeniedException will be thrown. You may avoid this potential issue by either (i) setting
"allowIfAllAbstainDecisions" to true (although this is generally not recommended) or (ii) simply ensure
that there is at least one configuration attribute that an AccessDecisionVoter will vote to grant access for. This
latter (recommended) approach is usually achieved through a ROLE_USER or ROLE_AUTHENTICATED configuration
attribute

22.3.1. ACL-Aware AfterInvocationProviders

PLEASE NOTE: Acegi Security 1.0.3 contains a preview of a new ACL module. The new ACL module is a
significant rewrite of the existing ACL module. The new module can be found under the
org.springframework.security.acls package, with the old ACL module under
org.springframework.security.acl. We encourage users to consider testing with the new ACL module and
build applications with it. The old ACL module should be considered deprecated and may be removed from a
future release. The following information relates to the new ACL package, and is thus recommended.

A common services layer method we've all written at one stage or another looks like this:

public Contact getById(Integer id);

Common Authorization Concepts

Spring Security (2.0.x) 79

Quite often, only principals with permission to read the Contact should be allowed to obtain it. In this situation
the AccessDecisionManager approach provided by the AbstractSecurityInterceptor will not suffice. This is
because the identity of the Contact is all that is available before the secure object is invoked. The
AclAfterInvocationProvider delivers a solution, and is configured as follows:

<bean id="afterAclRead"
class="org.springframework.security.afterinvocation.AclEntryAfterInvocationProvider">

<constructor-arg ref="aclService"/>
<constructor-arg>
<list>
<ref local="org.springframework.security.acls.domain.BasePermission.ADMINISTRATION"/>
<ref local="org.springframework.security.acls.domain.BasePermission.READ"/>

</list>
</constructor-arg>

</bean>

In the above example, the Contact will be retrieved and passed to the AclEntryAfterInvocationProvider.
The provider will thrown an AccessDeniedException if one of the listed requirePermissions is not held by
the Authentication. The AclEntryAfterInvocationProvider queries the AclService to determine the ACL
that applies for this domain object to this Authentication.

Similar to the AclEntryAfterInvocationProvider is
AclEntryAfterInvocationCollectionFilteringProvider. It is designed to remove Collection or array
elements for which a principal does not have access. It never thrown an AccessDeniedException - simply
silently removes the offending elements. The provider is configured as follows:

<bean id="afterAclCollectionRead"
class="org.springframework.security.afterinvocation.AclEntryAfterInvocationCollectionFilteringProvider">

<constructor-arg ref="aclService"/>
<constructor-arg>
<list>
<ref local="org.springframework.security.acls.domain.BasePermission.ADMINISTRATION"/>
<ref local="org.springframework.security.acls.domain.BasePermission.READ"/>

</list>
</constructor-arg>

</bean>

As you can imagine, the returned Object must be a Collection or array for this provider to operate. It will
remove any element if the AclManager indicates the Authentication does not hold one of the listed
requirePermissions.

The Contacts sample application demonstrates these two AfterInvocationProviders.

22.3.2. ACL-Aware AfterInvocationProviders (old ACL module)

PLEASE NOTE: Acegi Security 1.0.3 contains a preview of a new ACL module. The new ACL module is a
significant rewrite of the existing ACL module. The new module can be found under the
org.springframework.security.acls package, with the old ACL module under
org.springframework.security.acl. We encourage users to consider testing with the new ACL module and
build applications with it. The old ACL module should be considered deprecated and may be removed from a
future release.

A common services layer method we've all written at one stage or another looks like this:

public Contact getById(Integer id);

Common Authorization Concepts

Spring Security (2.0.x) 80

Quite often, only principals with permission to read the Contact should be allowed to obtain it. In this situation
the AccessDecisionManager approach provided by the AbstractSecurityInterceptor will not suffice. This is
because the identity of the Contact is all that is available before the secure object is invoked. The
BasicAclAfterInvocationProvider delivers a solution, and is configured as follows:

<bean id="afterAclRead"
class="org.springframework.security.afterinvocation.BasicAclEntryAfterInvocationProvider">

<property name="aclManager" ref="aclManager"/>
<property name="requirePermission">
<list>
<ref local="org.springframework.security.acl.basic.SimpleAclEntry.ADMINISTRATION"/>
<ref local="org.springframework.security.acl.basic.SimpleAclEntry.READ"/>

</list>
</property>

</bean>

In the above example, the Contact will be retrieved and passed to the
BasicAclEntryAfterInvocationProvider. The provider will thrown an AccessDeniedException if one of the
listed requirePermissions is not held by the Authentication. The BasicAclEntryAfterInvocationProvider

queries the AclManager to determine the ACL that applies for this domain object to this Authentication.

Similar to the BasicAclEntryAfterInvocationProvider is
BasicAclEntryAfterInvocationCollectionFilteringProvider. It is designed to remove Collection or
array elements for which a principal does not have access. It never thrown an AccessDeniedException - simply
silently removes the offending elements. The provider is configured as follows:

<bean id="afterAclCollectionRead"
class="org.springframework.security.afterinvocation.BasicAclEntryAfterInvocationCollectionFilteringProvider">

<property name="aclManager" ref="aclManager"/>
<property name="requirePermission">
<list>
<ref local="org.springframework.security.acl.basic.SimpleAclEntry.ADMINISTRATION"/>
<ref local="org.springframework.security.acl.basic.SimpleAclEntry.READ"/>

</list>
</property>

</bean>

As you can imagine, the returned Object must be a Collection or array for this provider to operate. It will
remove any element if the AclManager indicates the Authentication does not hold one of the listed
requirePermissions.

The Contacts sample application demonstrates these two AfterInvocationProviders.

22.4. Authorization Tag Libraries

AuthorizeTag is used to include content if the current principal holds certain GrantedAuthoritys.

The following JSP fragment illustrates how to use the AuthorizeTag:

<security:authorize ifAllGranted="ROLE_SUPERVISOR">
<td>
<a href="del.htm?id=<c:out value="${contact.id}"/>">Del

</td>
</security:authorize>

Common Authorization Concepts

Spring Security (2.0.x) 81

This tag would cause the tag's body to be output if the principal has been granted ROLE_SUPERVISOR.

The security:authorize tag declares the following attributes:

• ifAllGranted: All the listed roles must be granted for the tag to output its body.
• ifAnyGranted: Any of the listed roles must be granted for the tag to output its body.
• ifNotGranted: None of the listed roles must be granted for the tag to output its body.

You'll note that in each attribute you can list multiple roles. Simply separate the roles using a comma. The
authorize tag ignores whitespace in attributes.

The tag library logically ANDs all of it's parameters together. This means that if you combine two or more
attributes, all attributes must be true for the tag to output it's body. Don't add an
ifAllGranted="ROLE_SUPERVISOR", followed by an ifNotGranted="ROLE_SUPERVISOR", or you'll be surprised
to never see the tag's body.

By requiring all attributes to return true, the authorize tag allows you to create more complex authorization
scenarios. For example, you could declare an ifAllGranted="ROLE_SUPERVISOR" and an
ifNotGranted="ROLE_NEWBIE_SUPERVISOR" in the same tag, in order to prevent new supervisors from seeing
the tag body. However it would no doubt be simpler to use ifAllGranted="ROLE_EXPERIENCED_SUPERVISOR"

rather than inserting NOT conditions into your design.

One last item: the tag verifies the authorizations in a specific order: first ifNotGranted, then ifAllGranted,
and finally, if AnyGranted.

AccessControlListTag is used to include content if the current principal has an ACL to the indicated domain
object.

The following JSP fragment illustrates how to use the AccessControlListTag:

<security:accesscontrollist domainObject="${contact}" hasPermission="8,16">
<td><a href="<c:url value="del.htm"><c:param name="contactId" value="${contact.id}"/></c:url>">Del</td>
</security:accesscontrollist>

This tag would cause the tag's body to be output if the principal holds either permission 16 or permission 1 for
the "contact" domain object. The numbers are actually integers that are used with BasePermission bit masking.
Please refer to the ACL section of this reference guide to understand more about the ACL capabilities of Spring
Security.

AclTag is part of the old ACL module and should be considered deprecated. For the sake of historical reference,
works exactly the samae as AccessControlListTag.

Common Authorization Concepts

Spring Security (2.0.x) 82

Chapter 23. Secure Object Implementations

23.1. AOP Alliance (MethodInvocation) Security Interceptor

Prior to Spring Security 2.0, securing MethodInvocations needed quite a lot of boiler plate configuration. Now
the recommended approach for method security is to use namespace configuration. This way the method
security infrastructure beans are configured automatically for you so you don't really need to know about the
implementation classes. We'll just provide a quick overview of the classes that are involved here.

Method security in enforced using a MethodSecurityInterceptor, which secures MethodInvocations.
Depending on the configuration approach, an interceptor may be specific to a single bean or shared between
multiple beans. The interceptor uses a MethodDefinitionSource instance to obtain the configuration attributes
that apply to a particular method invocation. MapBasedMethodDefinitionSource is used to store configuration
attributes keyed by method names (which can be wildcarded) and will be used internally when the attributes are
defined in the application context using the <intercept-methods> or <protect-point> elements. Other
implementations will be used to handle annotation-based configuration.

23.1.1. Explicit MethodSecurityIterceptor Configuration

You can of course configure a MethodSecurityIterceptor directly in your application context for use with
one of Spring AOP's proxying mechanisms:

<bean id="bankManagerSecurity"
class="org.springframework.security.intercept.method.aopalliance.MethodSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>
<property name="accessDecisionManager" ref="accessDecisionManager"/>
<property name="afterInvocationManager" ref="afterInvocationManager"/>
<property name="objectDefinitionSource">
<value>
org.springframework.security.context.BankManager.delete*=ROLE_SUPERVISOR
org.springframework.security.context.BankManager.getBalance=ROLE_TELLER,ROLE_SUPERVISOR

</value>
</property>

</bean>

23.2. AspectJ (JoinPoint) Security Interceptor

The AspectJ security interceptor is very similar to the AOP Alliance security interceptor discussed in the
previous section. Indeed we will only discuss the differences in this section.

The AspectJ interceptor is named AspectJSecurityInterceptor. Unlike the AOP Alliance security
interceptor, which relies on the Spring application context to weave in the security interceptor via proxying, the
AspectJSecurityInterceptor is weaved in via the AspectJ compiler. It would not be uncommon to use both
types of security interceptors in the same application, with AspectJSecurityInterceptor being used for
domain object instance security and the AOP Alliance MethodSecurityInterceptor being used for services
layer security.

Let's first consider how the AspectJSecurityInterceptor is configured in the Spring application context:

<bean id="bankManagerSecurity"
class="org.springframework.security.intercept.method.aspectj.AspectJSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>
<property name="accessDecisionManager" ref="accessDecisionManager"/>

Spring Security (2.0.x) 83

<property name="afterInvocationManager" ref="afterInvocationManager"/>
<property name="objectDefinitionSource">
<value>

org.springframework.security.context.BankManager.delete*=ROLE_SUPERVISOR
org.springframework.security.context.BankManager.getBalance=ROLE_TELLER,ROLE_SUPERVISOR

</value>
</property>
</bean>

As you can see, aside from the class name, the AspectJSecurityInterceptor is exactly the same as the AOP
Alliance security interceptor. Indeed the two interceptors can share the same objectDefinitionSource, as the
ObjectDefinitionSource works with java.lang.reflect.Methods rather than an AOP library-specific class.
Of course, your access decisions have access to the relevant AOP library-specific invocation (ie
MethodInvocation or JoinPoint) and as such can consider a range of addition criteria when making access
decisions (such as method arguments).

Next you'll need to define an AspectJ aspect. For example:

package org.springframework.security.samples.aspectj;

import org.springframework.security.intercept.method.aspectj.AspectJSecurityInterceptor;
import org.springframework.security.intercept.method.aspectj.AspectJCallback;
import org.springframework.beans.factory.InitializingBean;

public aspect DomainObjectInstanceSecurityAspect implements InitializingBean {

private AspectJSecurityInterceptor securityInterceptor;

pointcut domainObjectInstanceExecution(): target(PersistableEntity)
&& execution(public * *(..)) && !within(DomainObjectInstanceSecurityAspect);

Object around(): domainObjectInstanceExecution() {
if (this.securityInterceptor == null) {
return proceed();

}

AspectJCallback callback = new AspectJCallback() {
public Object proceedWithObject() {

return proceed();
}

};

return this.securityInterceptor.invoke(thisJoinPoint, callback);
}

public AspectJSecurityInterceptor getSecurityInterceptor() {
return securityInterceptor;

}

public void setSecurityInterceptor(AspectJSecurityInterceptor securityInterceptor) {
this.securityInterceptor = securityInterceptor;

}

public void afterPropertiesSet() throws Exception {
if (this.securityInterceptor == null)
throw new IllegalArgumentException("securityInterceptor required");

}
}

In the above example, the security interceptor will be applied to every instance of PersistableEntity, which
is an abstract class not shown (you can use any other class or pointcut expression you like). For those curious,
AspectJCallback is needed because the proceed(); statement has special meaning only within an around()

body. The AspectJSecurityInterceptor calls this anonymous AspectJCallback class when it wants the
target object to continue.

You will need to configure Spring to load the aspect and wire it with the AspectJSecurityInterceptor. A

Secure Object Implementations

Spring Security (2.0.x) 84

bean declaration which achieves this is shown below:

<bean id="domainObjectInstanceSecurityAspect"
class="org.springframework.security.samples.aspectj.DomainObjectInstanceSecurityAspect"
factory-method="aspectOf">

<property name="securityInterceptor" ref="aspectJSecurityInterceptor"/>
</bean>

That's it! Now you can create your beans from anywhere within your application, using whatever means you
think fit (eg new Person();) and they will have the security interceptor applied.

23.3. FilterInvocation Security Interceptor

To secure FilterInvocations, developers need to add a FilterSecurityInterceptor to their filter chain. A
typical configuration example is provided below:

In the application context you will need to configure three beans:

<bean id="exceptionTranslationFilter"
class="org.springframework.security.ui.ExceptionTranslationFilter">

<property name="authenticationEntryPoint" ref="authenticationEntryPoint"/>
</bean>

<bean id="authenticationEntryPoint"
class="org.springframework.security.ui.webapp.AuthenticationProcessingFilterEntryPoint">

<property name="loginFormUrl" value="/acegilogin.jsp"/>
<property name="forceHttps" value="false"/>

</bean>

<bean id="filterSecurityInterceptor"
class="org.springframework.security.intercept.web.FilterSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>
<property name="accessDecisionManager" ref="accessDecisionManager"/>
<property name="objectDefinitionSource">
<security:filter-invocation-definition-source>
<security:intercept-url pattern="/secure/super/**" access="ROLE_WE_DONT_HAVE"/>
<security:intercept-url pattern="/secure/**" access="ROLE_SUPERVISOR,ROLE_TELLER"/>

</security:filter-invocation-definition-source>
</property>

</bean>

The ExceptionTranslationFilter provides the bridge between Java exceptions and HTTP responses. It is
solely concerned with maintaining the user interface. This filter does not do any actual security enforcement. If
an AuthenticationException is detected, the filter will call the AuthenticationEntryPoint to commence the
authentication process (e.g. a user login).

The AuthenticationEntryPoint will be called if the user requests a secure HTTP resource but they are not
authenticated. The class handles presenting the appropriate response to the user so that authentication can
begin. Three concrete implementations are provided with Spring Security:
AuthenticationProcessingFilterEntryPoint for commencing a form-based authentication,
BasicProcessingFilterEntryPoint for commencing a HTTP Basic authentication process, and
CasProcessingFilterEntryPoint for commencing a JA-SIG Central Authentication Service (CAS) login. The
AuthenticationProcessingFilterEntryPoint and CasProcessingFilterEntryPoint have optional
properties related to forcing the use of HTTPS, so please refer to the JavaDocs if you require this.

FilterSecurityInterceptor is responsible for handling the security of HTTP resources. Like any other
security interceptor, it requires a reference to an AuthenticationManager and an AccessDecisionManager,

Secure Object Implementations

Spring Security (2.0.x) 85

which are both discussed in separate sections below. The FilterSecurityInterceptor is also configured with
configuration attributes that apply to different HTTP URL requests. A full discussion of configuration attributes
is provided in the High Level Design section of this document.

The FilterSecurityInterceptor can be configured with configuration attributes in two ways. The first, which
is shown above, is using the <filter-invocation-definition-source> namespace element. This is similar to
the <filter-chain-map> used to configure a FilterChainProxy but the <intercept-url> child elements only
use the pattern and access attributes. The second is by writing your own ObjectDefinitionSource, although
this is beyond the scope of this document. Irrespective of the approach used, the ObjectDefinitionSource is
responsible for returning a ConfigAttributeDefinition object that contains all of the configuration attributes
associated with a single secure HTTP URL.

It should be noted that the FilterSecurityInterceptor.setObjectDefinitionSource() method actually
expects an instance of FilterInvocationDefinitionSource. This is a marker interface which subclasses
ObjectDefinitionSource. It simply denotes the ObjectDefinitionSource understands FilterInvocations.
In the interests of simplicity we'll continue to refer to the FilterInvocationDefinitionSource as an
ObjectDefinitionSource, as the distinction is of little relevance to most users of the
FilterSecurityInterceptor.

When using the namespace option to configure the interceptor, commas are used to delimit the different
configuration attributes that apply to each HTTP URL. Each configuration attribute is assigned into its own
SecurityConfig object. The SecurityConfig object is discussed in the High Level Design section. The
ObjectDefinitionSource created by the property editor, FilterInvocationDefinitionSource, matches
configuration attributes against FilterInvocations based on expression evaluation of the request URL. Two
standard expression syntaxes are supported. The default is to treat all expressions as Apache Ant paths and
regular expressions are also supported for ore complex cases. The path-type attribute is used to specify the
type of pattern being used. It is not possible to mix expression syntaxes within the same definition. For
example, the previous configuration using regular expressions instead of Ant paths would be written as follows:

<bean id="filterInvocationInterceptor"
class="org.springframework.security.intercept.web.FilterSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>
<property name="accessDecisionManager" ref="accessDecisionManager"/>
<property name="runAsManager" ref="runAsManager"/>
<property name="objectDefinitionSource">
<security:filter-invocation-definition-source path-type="regex">
<security:intercept-url pattern="\A/secure/super/.*\Z" access="ROLE_WE_DONT_HAVE"/>
<security:intercept-url pattern="\A/secure/.*\" access="ROLE_SUPERVISOR,ROLE_TELLER"/>

</security:filter-invocation-definition-source>
</property>

</bean>

Irrespective of the type of expression syntax used, expressions are always evaluated in the order they are
defined. Thus it is important that more specific expressions are defined higher in the list than less specific
expressions. This is reflected in our example above, where the more specific /secure/super/ pattern appears
higher than the less specific /secure/ pattern. If they were reversed, the /secure/ pattern would always match
and the /secure/super/ pattern would never be evaluated.

As with other security interceptors, the validateConfigAttributes property is observed. When set to true

(the default), at startup time the FilterSecurityInterceptor will evaluate if the provided configuration
attributes are valid. It does this by checking each configuration attribute can be processed by either the
AccessDecisionManager or the RunAsManager. If neither of these can process a given configuration attribute,
an exception is thrown.

Secure Object Implementations

Spring Security (2.0.x) 86

Chapter 24. Domain Object Security

24.1. Overview

PLEASE NOTE: Before release 2.0.0, Spring Security was known as Acegi Security. An ACL module was
provided with the old Acegi Security releases under the org.[acegisecurity/springsecurity].acl package.
This old package is now deprecated and will be removed in a future release of Spring Security. This chapter
covers the new ACL module, which is officially recommended from Spring Security 2.0.0 and above, and can
be found under the org.springframework.security.acls package.

Complex applications often will find the need to define access permissions not simply at a web request or
method invocation level. Instead, security decisions need to comprise both who (Authentication), where
(MethodInvocation) and what (SomeDomainObject). In other words, authorization decisions also need to
consider the actual domain object instance subject of a method invocation.

Imagine you're designing an application for a pet clinic. There will be two main groups of users of your
Spring-based application: staff of the pet clinic, as well as the pet clinic's customers. The staff will have access
to all of the data, whilst your customers will only be able to see their own customer records. To make it a little
more interesting, your customers can allow other users to see their customer records, such as their "puppy
preschool" mentor or president of their local "Pony Club". Using Spring Security as the foundation, you have
several approaches that can be used:

1. Write your business methods to enforce the security. You could consult a collection within the Customer

domain object instance to determine which users have access. By using the
SecurityContextHolder.getContext().getAuthentication(), you'll be able to access the
Authentication object.

2. Write an AccessDecisionVoter to enforce the security from the GrantedAuthority[]s stored in the
Authentication object. This would mean your AuthenticationManager would need to populate the
Authentication with custom GrantedAuthority[]s representing each of the Customer domain object
instances the principal has access to.

3. Write an AccessDecisionVoter to enforce the security and open the target Customer domain object directly.
This would mean your voter needs access to a DAO that allows it to retrieve the Customer object. It would
then access the Customer object's collection of approved users and make the appropriate decision.

Each one of these approaches is perfectly legitimate. However, the first couples your authorization checking to
your business code. The main problems with this include the enhanced difficulty of unit testing and the fact it
would be more difficult to reuse the Customer authorization logic elsewhere. Obtaining the
GrantedAuthority[]s from the Authentication object is also fine, but will not scale to large numbers of
Customers. If a user might be able to access 5,000 Customers (unlikely in this case, but imagine if it were a
popular vet for a large Pony Club!) the amount of memory consumed and time required to construct the
Authentication object would be undesirable. The final method, opening the Customer directly from external
code, is probably the best of the three. It achieves separation of concerns, and doesn't misuse memory or CPU
cycles, but it is still inefficient in that both the AccessDecisionVoter and the eventual business method itself
will perform a call to the DAO responsible for retrieving the Customer object. Two accesses per method
invocation is clearly undesirable. In addition, with every approach listed you'll need to write your own access
control list (ACL) persistence and business logic from scratch.

Fortunately, there is another alternative, which we'll talk about below.

Spring Security (2.0.x) 87

24.2. Key Concepts

Spring Security's ACL services are shipped in the spring-security-acl-xxx.jar. You will need to add this
JAR to your classpath to use Spring Security's domain object instance security capabilities.

Spring Security's domain object instance security capabilities centre on the concept of an access control list
(ACL). Every domain object instance in your system has its own ACL, and the ACL records details of who can
and can't work with that domain object. With this in mind, Spring Security delivers three main ACL-related
capabilities to your application:

• A way of efficiently retrieving ACL entries for all of your domain objects (and modifying those ACLs)

• A way of ensuring a given principal is permitted to work with your objects, before methods are called

• A way of ensuring a given principal is permitted to work with your objects (or something they return), after
methods are called

As indicated by the first bullet point, one of the main capabilities of the Spring Security ACL module is
providing a high-performance way of retrieving ACLs. This ACL repository capability is extremely important,
because every domain object instance in your system might have several access control entries, and each ACL
might inherit from other ACLs in a tree-like structure (this is supported out-of-the-box by Spring Security, and
is very commonly used). Spring Security's ACL capability has been carefully designed to provide high
performance retrieval of ACLs, together with pluggable caching, deadlock-minimizing database updates,
independence from ORM frameworks (we use JDBC directly), proper encapsulation, and transparent database
updating.

Given databases are central to the operation of the ACL module, let's explore the four main tables used by
default in the implementation. The tables are presented below in order of size in a typical Spring Security ACL
deployment, with the table with the most rows listed last:

• ACL_SID allows us to uniquely identify any principal or authority in the system ("SID" stands for "security
identity"). The only columns are the ID, a textual representation of the SID, and a flag to indicate whether
the textual representation refers to a prncipal name or a GrantedAuthority. Thus, there is a single row for
each unique principal or GrantedAuthority. When used in the context of receiving a permission, a SID is
generally called a "recipient".

• ACL_CLASS allows us to uniquely identify any domain object class in the system. The only columns are the
ID and the Java class name. Thus, there is a single row for each unique Class we wish to store ACL
permissions for.

• ACL_OBJECT_IDENTITY stores information for each unique domain object instance in the system.
Columns include the ID, a foreign key to the ACL_CLASS table, a unique identifier so we know which
ACL_CLASS instance we're providing information for, the parent, a foreign key to the ACL_SID table to
represent the owner of the domain object instance, and whether we allow ACL entries to inherit from any
parent ACL. We have a single row for every domain object instance we're storing ACL permissions for.

• Finally, ACL_ENTRY stores the individual permissions assigned to each recipient. Columns include a
foreign key to the ACL_OBJECT_IDENTITY, the recipient (ie a foreign key to ACL_SID), whether we'll be
auditing or not, and the integer bit mask that represents the actual permission being granted or denied. We
have a single row for every recipient that receives a permission to work with a domain object.

Domain Object Security

Spring Security (2.0.x) 88

As mentioned in the last paragraph, the ACL system uses integer bit masking. Don't worry, you need not be
aware of the finer points of bit shifting to use the ACL system, but suffice to say that we have 32 bits we can
switch on or off. Each of these bits represents a permission, and by default the permissions are read (bit 0),
write (bit 1), create (bit 2), delete (bit 3) and administer (bit 4). It's easy to implement your own Permission

instance if you wish to use other permissions, and the remainder of the ACL framework will operate without
knowledge of your extensions.

It is important to understand that the number of domain objects in your system has absolutely no bearing on the
fact we've chosen to use integer bit masking. Whilst you have 32 bits available for permissions, you could have
billions of domain object instances (which will mean billions of rows in ACL_OBJECT_IDENTITY and quite
probably ACL_ENTRY). We make this point because we've found sometimes people mistakenly believe they
need a bit for each potential domain object, which is not the case.

Now that we've provided a basic overview of what the ACL system does, and what it looks like at a table
structure, let's explore the key interfaces. The key interfaces are:

• Acl: Every domain object has one and only one Acl object, which internally holds the AccessControlEntrys
as well as knows the owner of the Acl. An Acl does not refer directly to the domain object, but instead to an
ObjectIdentity. The Acl is stored in the ACL_OBJECT_IDENTITY table.

• AccessControlEntry: An Acl holds multiple AccessControlEntrys, which are often abbreviated as ACEs in
the framework. Each ACE refers to a specific tuple of Permission, Sid and Acl. An ACE can also be
granting or non-granting and contain audit settings. The ACE is stored in the ACL_ENTRY table.

• Permission: A permission represents a particular immutable bit mask, and offers convenience functions for
bit masking and outputting information. The basic permissions presented above (bits 0 through 4) are
contained in the BasePermission class.

• Sid: The ACL module needs to refer to principals and GrantedAuthority[]s. A level of indirection is
provided by the Sid interface, which is an abbreviation of "security identity". Common classes include
PrincipalSid (to represent the principal inside an Authentication object) and GrantedAuthoritySid. The
security identity information is stored in the ACL_SID table.

• ObjectIdentity: Each domain object is represented internally within the ACL module by an
ObjectIdentity. The default implementation is called ObjectIdentityImpl.

• AclService: Retrieves the Acl applicable for a given ObjectIdentity. In the included implementation
(JdbcAclService), retrieval operations are delegated to a LookupStrategy. The LookupStrategy provides a
highly optimized strategy for retrieving ACL information, using batched retrievals (BasicLookupStrategy)
and supporting custom implementations that leverage materialized views, hierarchical queries and similar
performance-centric, non-ANSI SQL capabilities.

• MutableAclService: Allows a modified Acl to be presented for persistence. It is not essential to use this
interface if you do not wish.

Please note that our out-of-the-box AclService and related database classes all use ANSI SQL. This should
therefore work with all major databases. At the time of writing, the system had been successfully tested using
Hypersonic SQL, PostgreSQL, Microsoft SQL Server and Oracle.

Two samples ship with Spring Security that demonstrate the ACL module. The first is the Contacts Sample,
and the other is the Document Management System (DMS) Sample. We suggest taking a look over these for
examples.

24.3. Getting Started

To get starting using Spring Security's ACL capability, you will need to store your ACL information
somewhere. This necessitates the instantiation of a DataSource using Spring. The DataSource is then injected
into a JdbcMutableAclService and BasicLookupStrategy instance. The latter provides high-performance

Domain Object Security

Spring Security (2.0.x) 89

ACL retrieval capabilities, and the former provides mutator capabilities. Refer to one of the samples that ship
with Spring Security for an example configuration. You'll also need to populate the database with the four
ACL-specific tables listed in the last section (refer to the ACL samples for the appropriate SQL statements).

Once you've created the required schema and instantiated JdbcMutableAclService, you'll next need to ensure
your domain model supports interoperability with the Spring Security ACL package. Hopefully
ObjectIdentityImpl will prove sufficient, as it provides a large number of ways in which it can be used. Most
people will have domain objects that contain a public Serializable getId() method. If the return type is
long, or compatible with long (eg an int), you will find you need not give further consideration to
ObjectIdentity issues. Many parts of the ACL module rely on long identifiers. If you're not using long (or an
int, byte etc), there is a very good chance you'll need to reimplement a number of classes. We do not intend to
support non-long identifiers in Spring Security's ACL module, as longs are already compatible with all
database sequences, the most common identifier data type, and are of sufficient length to accommodate all
common usage scenarios.

The following fragment of code shows how to create an Acl, or modify an existing Acl:

// Prepare the information we'd like in our access control entry (ACE)
ObjectIdentity oi = new ObjectIdentityImpl(Foo.class, new Long(44));
Sid sid = new PrincipalSid("Samantha");
Permission p = BasePermission.ADMINISTRATION;

// Create or update the relevant ACL
MutableAcl acl = null;
try {
acl = (MutableAcl) aclService.readAclById(oi);

} catch (NotFoundException nfe) {
acl = aclService.createAcl(oi);

}

// Now grant some permissions via an access control entry (ACE)
acl.insertAce(acl.getEntries().length, p, sid, true);
aclService.updateAcl(acl);

In the example above, we're retrieving the ACL associated with the "Foo" domain object with identifier number
44. We're then adding an ACE so that a principal named "Samantha" can "administer" the object. The code
fragment is relatively self-explanatory, except the insertAce method. The first argument to the insertAce
method is determining at what position in the Acl the new entry will be inserted. In the example above, we're
just putting the new ACE at the end of the existing ACEs. The final argument is a boolean indicating whether
the ACE is granting or denying. Most of the time it will be granting (true), but if it is denying (false), the
permissions are effectively being blocked.

Spring Security does not provide any special integration to automatically create, update or delete ACLs as part
of your DAO or repository operations. Instead, you will need to write code like shown above for your
individual domain objects. It's worth considering using AOP on your services layer to automatically integrate
the ACL information with your services layer operations. We've found this quite an effective approach in the
past.

Once you've used the above techniques to store some ACL information in the database, the next step is to
actually use the ACL information as part of authorization decision logic. You have a number of choices here.
You could write your own AccessDecisionVoter or AfterInvocationProvider that respectively fires before
or after a method invocation. Such classes would use AclService to retrieve the relevant ACL and then call
Acl.isGranted(Permission[] permission, Sid[] sids, boolean administrativeMode) to decide whether
permission is granted or denied. Alternately, you could use our AclEntryVoter,
AclEntryAfterInvocationProvider or AclEntryAfterInvocationCollectionFilteringProvider classes.
All of these classes provide a declarative-based approach to evaluating ACL information at runtime, freeing
you from needing to write any code. Please refer to the sample applications to learn how to use these classes.

Domain Object Security

Spring Security (2.0.x) 90

Appendix A. Security Database Schema
There are various database schema used by the framework and this appendix provides a single reference point
to them all. You only need to provide the tables for the areas of functonality you require.

DDL statements are given for the HSQLDB database. You can use these as a guideline for defining the schema
for the database you are using.

A.1. User Schema

The standard JDBC implementation of the UserDetailsService requires tables to load the password, account
status (enabled or disabled) and a list of authorities (roles) for the user.

create table users(
username varchar_ignorecase(50) not null primary key,
password varchar_ignorecase(50) not null,
enabled boolean not null);

create table authorities (
username varchar_ignorecase(50) not null,
authority varchar_ignorecase(50) not null,
constraint fk_authorities_users foreign key(username) references users(username));
create unique index ix_auth_username on authorities (username,authority);;

A.1.1. Group Authorities

Spring Security 2.0 introduced support for group authorities

create table groups (
id bigint generated by default as identity(start with 0) primary key,
group_name varchar_ignorecase(50) not null);

create table group_authorities (
group_id bigint not null,
authority varchar(50) not null,
constraint fk_group_authorities_group foreign key(group_id) references groups(id));

create table group_members (
id bigint generated by default as identity(start with 0) primary key,
username varchar(50) not null,
group_id bigint not null,
constraint fk_group_members_group foreign key(group_id) references groups(id));

A.2. Persistent Login (Remember-Me) Schema

This table is used to store data used by the more secure persistent token remember-me implementation. If you
are using JdbcTokenRepositoryImpl either directly or through the namespace, then you will need this table.

create table persistent_logins (
username varchar(64) not null,
series varchar(64) primary key,
token varchar(64) not null,
last_used timestamp not null);

Spring Security (2.0.x) 91

A.3. ACL Schema

The tables used by the Spring Security ACL implementation.

create table acl_sid (
id bigint generated by default as identity(start with 100) not null primary key,
principal boolean not null,
sid varchar_ignorecase(100) not null,
constraint unique_uk_1 unique(sid,principal));

create table acl_class (
id bigint generated by default as identity(start with 100) not null primary key,
class varchar_ignorecase(100) not null,
constraint unique_uk_2 unique(class));

create table acl_object_identity (
id bigint generated by default as identity(start with 100) not null primary key,
object_id_class bigint not null,
object_id_identity bigint not null,
parent_object bigint,
owner_sid bigint,
entries_inheriting boolean not null,
constraint unique_uk_3 unique(object_id_class,object_id_identity),
constraint foreign_fk_1 foreign key(parent_object)references acl_object_identity(id),
constraint foreign_fk_2 foreign key(object_id_class)references acl_class(id),
constraint foreign_fk_3 foreign key(owner_sid)references acl_sid(id));

create table acl_entry (
id bigint generated by default as identity(start with 100) not null primary key,
acl_object_identity bigint not null,ace_order int not null,sid bigint not null,
mask integer not null,granting boolean not null,audit_success boolean not null,
audit_failure boolean not null,constraint unique_uk_4 unique(acl_object_identity,ace_order),
constraint foreign_fk_4 foreign key(acl_object_identity) references acl_object_identity(id),
constraint foreign_fk_5 foreign key(sid) references acl_sid(id));

Security Database Schema

Spring Security (2.0.x) 92

domain-acls

1See the introductory chapter for how to set up the mapping from your web.xml

Appendix B. The Security Namespace
This appendix provides a reference to the elements available in the security namespace and information on the
underlying beans they create (a knowledge of the individual classes and how they work together is assumed -
you can find more information in the project Javadoc and elsewhere in this document). If you haven't used the
namespace before, please read the introductory chapter on namespace configuration, as this is intended as a
supplement to the information there. Using a good quality XML editor while editing a configuration based on
the schema is recommended as this will provide contextual information on which elements and attributes are
available as well as comments explaining their purpose.

B.1. Web Application Security - the <http> Element

The <http> element encapsulates the security configuration for the web layer of your application. It creates a
FilterChainProxy bean named "springSecurityFilterChain" which maintains the stack of security filters which
make up the web security configuration 1. Some core filters are always created and others will be added to the
stack depending on the attributes child elements which are present. The positions of the standard filters are
fixed (see the filter order table in the namespace introduction), removing a common source of errors with
previous versions of the framework when users had to configure the filter chain explicitly in
theFilterChainProxy bean. You can, of course, still do this if you need full control of the configuration.

All filters which require a reference to the AuthenticationManager will be automatically injected with the
internal instance created by the namespace configuration (see the introductory chapter for more on the
AuthenticationManager).

The <http> namespace block always creates an HttpSessionContextIntegrationFilter, an
ExceptionTranslationFilter and a FilterSecurityInterceptor. These are fixed and cannot be replaced
with alternatives.

B.1.1. <http> Attributes

The attributes on the <http> element control some of the properties on the core filters.

B.1.1.1. servlet-api-provision

Provides versions of HttpServletRequest security methods such as isUserInRole() and getPrincipal()

which are implemented by adding a SecurityContextHolderAwareRequestFilter bean to the stack. Defaults
to "true".

B.1.1.2. path-type

Controls whether URL patterns are interpreted as ant paths (the default) or regular expressions. In practice this
sets a particular UrlMatcher instance on the FilterChainProxy.

B.1.1.3. lowercase-comparisons

Whether test URLs should be converted to lower case prior to comparing with defined path patterns. If
unspecified, defaults to "true"

Spring Security (2.0.x) 93

B.1.1.4. session-fixation-protection

Indicates whether an existing session should be invalidated when a user authenticates and a new session started.
If set to "none" no change will be made. "newSession" will create a new empty session. "migrateSession" will
create a new session and copy the session attributes to the new session. Defaults to "migrateSession".

If enabled this will add a SessionFixationProtectionFilter to the stack. The session fixation protection
options on namespace-created instances of AbstractProcessingFilter will also be set appropriately.

B.1.1.5. realm

Sets the realm name used for basic authentication (if enabled). Corresponds to the realmName proerty on
BasicProcessingFilterEntryPoint.

B.1.1.6. entry-point-ref

Normally the AuthenticationEntryPoint used will be set depending on which authentication mechanisms
have been configured. This attribute allows this behaviour to be overridden by defining a customized
AuthenticationEntryPoint bean which will start the authentication process.

B.1.1.7. access-decision-manager-ref

Optional attribute specifying the ID of the AccessDecisionManager implementation which should be used for
authorizing HTTP requests. By default an AffirmativeBased implementation is used for with a RoleVoter and
an AuthenticatedVoter.

B.1.1.8. access-denied-page

Allows the access denied page to be set (the user will be redirected here if an AccessDeniedException is
raised). Corresponds to the errorPage property set on the AccessDeniedHandlerImpl which is used by the
ExceptionTranslationFilter.

B.1.1.9. once-per-request

Corresponds to the observeOncePerRequest property of FilterSecurityInterceptor. Defaults to "true".

B.1.1.10. create-session

Controls the eagerness with which an HTTP session is created. If not set, defaults to "ifRequired". Other
options are "always" and "never". The setting of this attribute affect the allowSessionCreation and
forceEagerSessionCreation properties of HttpSessionContextIntegrationFilter. allowSessionCreation
will always be true unless this attribute is set to "never". forceEagerSessionCreation is "false" unless it is set
to "always". So the default configuration allows session creation but does not force it. The exception is if
concurrent session control is enabled, when forceEagerSessionCreation will be set to true, regardless of what
the setting is here. Using "never" would then cause an exception during the initialization of
HttpSessionContextIntegrationFilter.

B.1.2. The <intercept-url> Element

This element is used to define the set of URL patterns that the application is interested in and to configure how
they should be handled. It is used to construct the FilterInvocationDefinitionSource used by the
FilterSecurityInterceptor and to exclude particular patterns from the filter chain entirely (by setting the

The Security Namespace

Spring Security (2.0.x) 94

2This feature is really just provided for convenience and is not intended for production (where a view technology will have been chosen and
can be used to render a customized login page). The class DefaultLoginPageGeneratingFilter is responsible for rendering the login page
and will provide login forms for both normal form login and/or OpenID if required.

attribute filters="none"). It is also responsible for configuring a ChannelProcessingFilter if particular
URLs need to be accessed by HTTPS, for example.

B.1.2.1. pattern

The pattern which defines the URL path. The content will depend on the path-type attribute from the
containing http element, so will default to ant path syntax.

B.1.2.2. method

The HTTP Method which will be used in combination with the pattern to match an incoming request. If
omitted, any method will match.

B.1.2.3. access

Lists the access attributes which will be stored in the FilterInvocationDefinitionSource for the defined
URL pattern/method combination. This should be a comma-separated list of the attributes (such as role names).

B.1.2.4. requires-channel

Can be "http" or "https" depending on whether a particular URL pattern should be accessed over HTTP or
HTTPS respectively. Alternatively the value "any" can be used when there is no preference. If this attribute is
present on any <intercept-url> element, then a ChannelProcessingFilter will be added to the filter stack
and its additional dependencies added to the application context. See the chapter on channel security for an
example configuration using traditional beans.

If a <port-mappings> configuration is added, this will be used to by the SecureChannelProcessor and
InsecureChannelProcessor beans to determine the ports used for redirecting to HTTP/HTTPS.

B.1.3. The <port-mappings> Element

By default, an instance of PortMapperImpl will be added to the configuration for use in redirecting to secure
and insecure URLs. This element can optionally be used to override the default mappings which that class
defines. Each child <port-mapping> element defines a pair of HTTP:HTTPS ports. The default mappings are
80:443 and 8080:8443. An example of overriding these can be found in the namespace introduction.

B.1.4. The <form-login> Element

Used to add an AuthenticationProcessingFilter to the filter stack and an
AuthenticationProcessingFilterEntryPoint to the application context to provide authentication on demand.
This will always take precedence over other namespace-created entry points. If no attributes are supplied, a
login page will be generated automatically at the URL "/spring-security-login" 2 The behaviour can be
customized using the following attributes.

B.1.4.1. login-page

The URL that should be used to render the login page. Maps to the loginFormUrl property of the
AuthenticationProcessingFilterEntryPoint. Defaults to "/spring-security-login".

The Security Namespace

Spring Security (2.0.x) 95

B.1.4.2. login-processing-url

Maps to the filterProcessesUrl property of AuthenticationProcessingFilter. The default value is
"/j_spring_security_check".

B.1.4.3. default-target-url

Maps to the defaultTargetUrl property of AuthenticationProcessingFilter. If not set, the default value is
"/" (the application root). A user will be taken to this URL after logging in, provided they were not asked to
login while attempting to access a secured resource, when they will be taken to the originally requested URL.

B.1.4.4. always-use-default-target

If set to "true", the user will always start at the value given by default-target-url, regardless of how they
arrived at the login page. Maps to the alwaysUseDefaultTargetUrl property of
AuthenticationProcessingFilter. Default value is "false".

B.1.4.5. authentication-failure-url

Maps to the authenticationFailureUrl property of AuthenticationProcessingFilter. Defines the URL the
browser will be redirected to on login failure. Defaults to "/spring_security_login?login_error", which will be
automatically handled by the automatic login page generator, re-rendering the login page with an error
message.

B.1.5. The <http-basic> Element

Adds a BasicProcessingFilter and BasicProcessingFilterEntryPoint to the configuration. The latter will
only be used as the configuration entry point if form-based login is not enabled.

B.1.6. The <remember-me> Element

Adds the RememberMeProcessingFilter to the stack. This in turn will be configured with either a
TokenBasedRememberMeServices, a PersistentTokenBasedRememberMeServices or a user-specified bean
implementing RememberMeServices depending on the attribute settings.

B.1.6.1. data-source-ref

If this is set, PersistentTokenBasedRememberMeServices will be used and configured with a
JdbcTokenRepositoryImpl instance.

B.1.6.2. token-repository-ref

Configures a PersistentTokenBasedRememberMeServices but allows the use of a custom
PersistentTokenRepository bean.

B.1.6.3. services-ref

Allows complete control of the RememberMeServices implementation that will be used by the filter. The value
should be the Id of a bean in the application context which implements this interface.

B.1.6.4. token-repository-ref

The Security Namespace

Spring Security (2.0.x) 96

3This doesn't affect the use of PersistentTokenBasedRememberMeServices, where the tokens are stored on the server side.

Configures a PersistentTokenBasedRememberMeServices but allows the use of a custom
PersistentTokenRepository bean.

B.1.6.5. The key Attribute

Maps to the "key" property of AbstractRememberMeServices. Should be set to a unique value to ensure that
remember-me cookies are only valid within the one application 3.

B.1.6.6. token-validity-seconds

Maps to the tokenValiditySeconds property of AbstractRememberMeServices. Specifies the period in
seconds for which the remember-me cookie should be valid. By default it will be valid for 14 days.

B.1.6.7. user-service-ref

The remember-me services implementations require access to a UserDetailsService, so there has to be one
defined in the application context. If there is only one, it will be selected and used automatically by the
namespace configuration. If there are multiple instances, you can specify a bean Id explicitly using this
attribute.

B.1.7. The <concurrent-session-control> Element

Adds support for concurrent session control, allowing limits to be placed on the number of active sessions a
user can have. A ConcurrentSessionFilter will be created, along with a ConcurrentSessionControllerImpl

and an instance of SessionRegistry (a SessionRegistryImpl instance unless the user wishes to use a custom
bean). The controller is registered with the namespace's AuthenticationManager (ProviderManager). Other
namespace-created beans which require a reference to the SessionRegistry will automatically have it injected.

Note that the forceEagerSessionCreation of HttpSessionContextIntegrationFilter will be set to true if
concurrent session control is in use.

B.1.7.1. The max-sessions attribute

Maps to the maximumSessions property of ConcurrentSessionControllerImpl.

B.1.7.2. The expired-url attribute

The URL a user will be redirected to if they attempt to use a session which has been "expired" by the
concurrent session controller because the user has exceeded the number of allowed sessions and has logged in
again elsewhere. Should be set unless exception-if-maximum-exceeded is set. If no value is supplied, an
expiry message will just be written directly back to the response.

B.1.7.3. The exception-if-maximum-exceeded attribute

If set to "true" a ConcurrentLoginException should be raised when a user attempts to exceed the maximum
allowed number of sessions. The default behaviour is to expire the original session.

B.1.7.4. The session-registry-alias and session-registry-ref attributes

The user can supply their own SessionRegistry implementation using the session-registry-ref attribute.

The Security Namespace

Spring Security (2.0.x) 97

The other concurrent session control beans will be wired up to use it.

It can also be useful to have a reference to the internal session registry for use in your own beans or an admin
interface. You can expose the interal bean using the session-registry-alias attribute, giving it a name that
you can use elsewhere in your configuration.

B.1.8. The <anonymous> Element

Adds an AnonymousProcessingFilter to the stack and an AnonymousAuthenticationProvider. Required if
you are using the IS_AUTHENTICATED_ANONYMOUSLY attribute.

B.1.9. The <x509> Element

Adds support for X.509 authentication. An X509PreAuthenticatedProcessingFilter will be added to the
stack and a PreAuthenticatedProcessingFilterEntryPoint bean will be created. The latter will only be used
if no other authentication mechanisms are in use (it's only functionality is to return an HTTP 403 error code). A
PreAuthenticatedAuthenticationProvider will also be created which delegates the loading of user
authorities to a UserDetailsService.

B.1.9.1. The subject-principal-regex attribute

Defines a regular expression which will be used to extract the username from the certificate (for use with the
UserDetailsService).

B.1.9.2. The user-service-ref attribute

Allows a specific UserDetailsService to be used with X.509 in the case where multiple instances are
configured. If not set, an attempt will be made to locate a suitable instance automatically and use that.

B.1.10. The <openid-login> Element

Similar to <form-login> and has the same attributes. The default value for login-processing-url is
"/j_spring_openid_security_check". An OpenIDAuthenticationProcessingFilter and
OpenIDAuthenticationProvider will be registered. The latter requires a reference to a UserDetailsService.
Again, this can be specified by Id, using the user-service-ref attribute, or will be located automatically in the
application context.

B.1.11. The <logout> Element

Adds a LogoutFilter to the filter stack. This is configured with a SecurityContextLogoutHandler.

B.1.11.1. The logout-url attribute

The URL which will cause a logout (i.e. which will be processed by the filter). Defaults to
"/j_spring_security_logout".

B.1.11.2. The logout-success-url attribute

The destination URL which the user will be taken to after logging out. Defaults to "/".

B.1.11.3. The invalidate-session attribute

The Security Namespace

Spring Security (2.0.x) 98

Maps to the invalidateHttpSession of the SecurityContextLogoutHandler. Defaults to "true", so the session
will be invalidated on logout.

B.2. Authentication Services

If you are using the namespace, an AuthenticationManager is automatically registered and will be used by all
the namespace-created beans which need to reference it. The bean is an instance of Spring Security's
ProviderManager class, which needs to be configured with a list of one or moreAuthenticationProvider
instances. These can either be created using syntax elements provided by the namespace, or they can be
standard bean definitions, marked for addition to the list using the custom-authentication-provider element.

B.2.1. The <authentication-provider> Element

This element is basically a shorthand syntax for configuring a DaoAuthenticationProvider.
DaoAuthenticationProvider loads user information from a UserDetailsService and compares the
username/password combination with the values supplied at login. The UserDetailsService instance can be
defined either by using an available namespace element (jdbc-user-service or by using the
user-service-ref attribute to point to a bean defined elsewhere in the application context). You can find
examples of these variations in the namespace introduction.

B.2.2. Using <custom-authentication-provider> to register an
AuthenticationProvider

If you have written your own AuthenticationProvider implementation (or want to configure one of Spring
Security's own implementations as a traditional bean for some reason, then you can use the following syntax to
add it to the internal ProviderManager's list:

<bean id="myAuthenticationProvider" class="com.something.MyAuthenticationProvider">
<security:custom-authentication-provider />

</bean>

B.2.3. The <authentication-manager> Element

Since the AuthenticationManager will be automatically registered in the application context, this element is
entirely optional. It allows you to define an alias name for the internal instance for use in your own
configuration and also to supply a link to a ConcurrentSessionController if you are configuring concurrent
session control yourself rather than through the namespace (a rare requirement). Its use is described in the
namespace introduction.

B.3. Method Security

B.3.1. The <global-method-security> Element

This element is the primary means of adding support for securing methods on Spring Security beans. Methods
can be secured by the use of annotations (defined at the interface or class level) or by defining a set of pointcuts
as child elements, using AspectJ syntax.

The Security Namespace

Spring Security (2.0.x) 99

Method security uses the same AccessDecisionManager configuration as web security, but this can be
overridden as explained above Section B.1.1.7, “access-decision-manager-ref”, using the same attribute.

B.3.1.1. The <secured-annotations> and <jsr250-annotations> Attributes

Setting these to "true" will enable support for Spring Security's own @Secured annotations and JSR-250
annotations, respectively. They are both disabled by default. Use of JSR-250 annotations also adds a
Jsr250Voter to the AccessDecisionManager, so you need to make sure you do this if you are using a custom
implementation and want to use these annotations.

B.3.1.2. Securing Methods using <protect-pointcut>

Rather than defining security attributes on an individual method or class basis using the @Secured annotation,
you can define cross-cutting security constraints across whole sets of methods and interfaces in your service
layer using the <protect-pointcut> element. This has two attributes:

• expression - the pointcut expression

• access - the security attributes which apply

You can find an example in the namespace introduction.

B.3.2. LDAP Namespace Options

LDAP is covered in some details in its own chapter. We will expand on that here with some explanation of how
the namespace options map to Spring beans. The LDAP implementation uses Spring LDAP extensively, so
some familiarity with that project's API may be useful.

B.3.2.1. Defining the LDAP Server using the <ldap-server> Element

This element sets up a Spring LDAP ContextSource for use by the other LDAP beans, defining the location of
the LDAP server and other information (such as a username and password, if it doesn't allow anonymous
access) for connecting to it. It can also be used to create an embedded server for testing. Details of the syntax
for both options are covered in the LDAP chapter. The actual ContextSource implementation is
DefaultSpringSecurityContextSource which extends Spring LDAP's LdapContextSource class. The
manager-dn and manager-password attributes map to the latter's userDn and password properties respectively.

If you only have one server defined in your application context, the other LDAP namespace-defined beans will
use it automatically. Otherwise, you can give the element an "id" attribute and refer to it from other namespace
beans using the server-ref attribute. This is actually the bean Id of the ContextSource instance, if you want to
use it in other traditional Spring beans.

B.3.2.2. The <ldap-provider> Element

This element is shorthand for the creation of an LdapAuthenticationProvider instance. By default this will be
configured with a BindAuthenticator instance and a DefaultAuthoritiesPopulator.

B.3.2.2.1. The user-dn-pattern Attribute

If your users are at a fixed location in the directory (i.e. you can work out the DN directly from the username
without doing a directory search), you can use this attribute to map directly to the DN. It maps directly to the
userDnPatterns property of AbstractLdapAuthenticator.

The Security Namespace

Spring Security (2.0.x) 100

B.3.2.2.2. The user-search-base and user-search-filter Attributes

If you need to perform a search to locate the user in the directory, then you can set these attributes to control the
search. The BindAuthenticator will be configured with a FilterBasedLdapUserSearch and the attribute
values map directly to the first two arguments of that bean's constructor. If these attributes aren't set and no
user-dn-pattern has been supplied as an alternative, then the default search values of
user-search-filter="(uid={0})" and user-search-base="" will be used.

B.3.2.2.3. group-search-filter, group-search-base, group-role-attribute and
role-prefix Attributes

The value of group-search-base is mapped to the groupSearchBase constructor argument of
DefaultAuthoritiesPopulator and defaults to "ou=groups". The default filter value is
"(uniqueMember={0})", which assumes that the entry is of type "groupOfUniqueNames".
group-role-attribute maps to the groupRoleAttribute attribute and defaults to "cn". Similarly role-prefix

maps to rolePrefix and defaults to "ROLE_".

B.3.2.2.4. The <password-compare> Element

This is used as child element to <ldap-provider> and switches the authentication strategy from
BindAuthenticator to PasswordComparisonAuthenticator. This can optionally be supplied with a hash

attribute or with a child <password-encoder> element to hash the password before submitting it to the directory
for comparison.

B.3.2.3. The <ldap-user-service> Element

This element configures an LDAP UserDetailsService. The class used is LdapUserDetailsService which is
a combination of a FilterBasedLdapUserSearch and a DefaultAuthoritiesPopulator. The attributes it
supports have the same usage as in <ldap-provider>.

The Security Namespace

Spring Security (2.0.x) 101

	Spring Security
	Table of Contents
	Preface
	Part I. Getting Started
	Chapter 1. Introduction
	1.1. What is Spring Security?
	1.2. History
	1.3. Release Numbering
	1.4. Getting the Source

	Chapter 2. Security Namespace Configuration
	2.1. Introduction
	2.1.1. Design of the Namespace

	2.2. Getting Started with Security Namespace Configuration
	2.2.1. web.xml Configuration
	2.2.2. A Minimal <http> Configuration
	2.2.2.1. What does auto-config Include?
	2.2.2.2. Form and Basic Login Options
	2.2.2.2.1. Setting a Default Post-Login Destination

	2.2.3. Using other Authentication Providers
	2.2.3.1. Adding a Password Encoder

	2.3. Advanced Web Features
	2.3.1. Remember-Me Authentication
	2.3.2. Adding HTTP/HTTPS Channel Security
	2.3.3. Concurrent Session Control
	2.3.4. OpenID Login
	2.3.5. Adding in Your Own Filters
	2.3.5.1. Setting a Custom AuthenticationEntryPoint

	2.3.6. Session Fixation Attack Protection

	2.4. Method Security
	2.4.1. The <global-method-security> Element
	2.4.1.1. Adding Security Pointcuts using protect-pointcut

	2.4.2. The intercept-methods Bean Decorator

	2.5. The Default AccessDecisionManager
	2.5.1. Customizing the AccessDecisionManager

	2.6. The Default Authentication Manager

	Chapter 3. Sample Applications
	3.1. Tutorial Sample
	3.2. Contacts
	3.3. LDAP Sample
	3.4. CAS Sample
	3.5. Pre-Authentication Sample

	Chapter 4. Spring Security Community
	4.1. Issue Tracking
	4.2. Becoming Involved
	4.3. Further Information

	Part II. Overall Architecture
	Chapter 5. Technical Overview
	5.1. Runtime Environment
	5.2. Shared Components
	5.2.1. SecurityContextHolder, SecurityContext and Authentication Objects
	5.2.2. The UserDetailsService
	5.2.3. GrantedAuthority
	5.2.4. Summary

	5.3. Authentication
	5.3.1. ExceptionTranslationFilter
	5.3.2. AuthenticationEntryPoint
	5.3.3. AuthenticationProvider
	5.3.4. Setting the SecurityContextHolder Contents Directly

	5.4. Secure Objects
	5.4.1. Security and AOP Advice
	5.4.2. AbstractSecurityInterceptor
	5.4.2.1. What are Configuration Attributes?
	5.4.2.2. RunAsManager
	5.4.2.3. AfterInvocationManager
	5.4.2.4. Extending the Secure Object Model

	Chapter 6. Supporting Infrastructure
	6.1. Localization
	6.2. Filters
	6.3. Tag Libraries
	6.3.1. Configuration
	6.3.2. Usage

	Chapter 7. Channel Security
	7.1. Overview
	7.2. Configuration
	7.3. Conclusion

	Part III. Authentication
	Chapter 8. Common Authentication Services
	8.1. Mechanisms, Providers and Entry Points
	8.2. UserDetails and Associated Types
	8.2.1. In-Memory Authentication
	8.2.2. JDBC Authentication
	8.2.2.1. Default User Database Schema

	8.3. Concurrent Session Handling
	8.4. Authentication Tag Libraries

	Chapter 9. DAO Authentication Provider
	9.1. Overview
	9.2. Configuration

	Chapter 10. LDAP Authentication
	10.1. Overview
	10.2. Using LDAP with Spring Security
	10.3. Configuring an LDAP Server
	10.3.1. Using an Embedded Test Server
	10.3.2. Using Bind Authentication
	10.3.3. Loading Authorities

	10.4. Implementation Classes
	10.4.1. LdapAuthenticator Implementations
	10.4.1.1. Common Functionality
	10.4.1.2. BindAuthenticator
	10.4.1.3. PasswordComparisonAuthenticator
	10.4.1.4. Active Directory Authentication

	10.4.2. Connecting to the LDAP Server
	10.4.3. LDAP Search Objects
	10.4.3.1. FilterBasedLdapUserSearch

	10.4.4. LdapAuthoritiesPopulator
	10.4.5. Spring Bean Configuration
	10.4.6. LDAP Attributes and Customized UserDetails

	Chapter 11. Form Authentication Mechanism
	11.1. Overview
	11.2. Configuration

	Chapter 12. BASIC Authentication Mechanism
	12.1. Overview
	12.2. Configuration

	Chapter 13. Digest Authentication
	13.1. Overview
	13.2. Configuration

	Chapter 14. Remember-Me Authentication
	14.1. Overview
	14.2. Simple Hash-Based Token Approach
	14.3. Persistent Token Approach
	14.4. Remember-Me Interfaces and Implementations
	14.4.1. TokenBasedRememberMeServices
	14.4.2. PersistentTokenBasedRememberMeServices

	Chapter 15. Java Authentication and Authorization Service (JAAS) Provider
	15.1. Overview
	15.2. Configuration
	15.2.1. JAAS CallbackHandler
	15.2.2. JAAS AuthorityGranter

	Chapter 16. Pre-Authentication Scenarios
	16.1. Pre-Authentication Framework Classes
	16.1.1. AbstractPreAuthenticatedProcessingFilter
	16.1.2. AbstractPreAuthenticatedAuthenticationDetailsSource
	16.1.2.1. J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

	16.1.3. PreAuthenticatedAuthenticationProvider
	16.1.4. PreAuthenticatedProcessingFilterEntryPoint

	16.2. Concrete Implementations
	16.2.1. Request-Header Authentication (Siteminder)
	16.2.1.1. Siteminder Example Configuration

	16.2.2. J2EE Container Authentication

	Chapter 17. Anonymous Authentication
	17.1. Overview
	17.2. Configuration

	Chapter 18. X.509 Authentication
	18.1. Overview
	18.2. Adding X.509 Authentication to Your Web Application
	18.3. Setting up SSL in Tomcat

	Chapter 19. CAS Authentication
	19.1. Overview
	19.2. How CAS Works
	19.3. Configuration of CAS Client

	Chapter 20. Run-As Authentication Replacement
	20.1. Overview
	20.2. Configuration

	Chapter 21. Container Adapter Authentication
	21.1. Overview
	21.2. Adapter Authentication Provider
	21.3. Jetty
	21.4. JBoss
	21.5. Resin
	21.6. Tomcat

	Part IV. Authorization
	Chapter 22. Common Authorization Concepts
	22.1. Authorities
	22.2. Pre-Invocation Handling
	22.2.1. The AccessDecisionManager
	22.2.1.1. Voting-Based AccessDecisionManager Implementations
	22.2.1.1.1. RoleVoter
	22.2.1.1.2. Custom Voters

	22.3. After Invocation Handling
	22.3.1. ACL-Aware AfterInvocationProviders
	22.3.2. ACL-Aware AfterInvocationProviders (old ACL module)

	22.4. Authorization Tag Libraries

	Chapter 23. Secure Object Implementations
	23.1. AOP Alliance (MethodInvocation) Security Interceptor
	23.1.1. Explicit MethodSecurityIterceptor Configuration

	23.2. AspectJ (JoinPoint) Security Interceptor
	23.3. FilterInvocation Security Interceptor

	Chapter 24. Domain Object Security
	24.1. Overview
	24.2. Key Concepts
	24.3. Getting Started

	Appendix A. Security Database Schema
	A.1. User Schema
	A.1.1. Group Authorities

	A.2. Persistent Login (Remember-Me) Schema
	A.3. ACL Schema

	Appendix B. The Security Namespace
	B.1. Web Application Security - the <http> Element
	B.1.1. <http> Attributes
	B.1.1.1. servlet-api-provision
	B.1.1.2. path-type
	B.1.1.3. lowercase-comparisons
	B.1.1.4. session-fixation-protection
	B.1.1.5. realm
	B.1.1.6. entry-point-ref
	B.1.1.7. access-decision-manager-ref
	B.1.1.8. access-denied-page
	B.1.1.9. once-per-request
	B.1.1.10. create-session

	B.1.2. The <intercept-url> Element
	B.1.2.1. pattern
	B.1.2.2. method
	B.1.2.3. access
	B.1.2.4. requires-channel

	B.1.3. The <port-mappings> Element
	B.1.4. The <form-login> Element
	B.1.4.1. login-page
	B.1.4.2. login-processing-url
	B.1.4.3. default-target-url
	B.1.4.4. always-use-default-target
	B.1.4.5. authentication-failure-url

	B.1.5. The <http-basic> Element
	B.1.6. The <remember-me> Element
	B.1.6.1. data-source-ref
	B.1.6.2. token-repository-ref
	B.1.6.3. services-ref
	B.1.6.4. token-repository-ref
	B.1.6.5. The key Attribute
	B.1.6.6. token-validity-seconds
	B.1.6.7. user-service-ref

	B.1.7. The <concurrent-session-control> Element
	B.1.7.1. The max-sessions attribute
	B.1.7.2. The expired-url attribute
	B.1.7.3. The exception-if-maximum-exceeded attribute
	B.1.7.4. The session-registry-alias and session-registry-ref attributes

	B.1.8. The <anonymous> Element
	B.1.9. The <x509> Element
	B.1.9.1. The subject-principal-regex attribute
	B.1.9.2. The user-service-ref attribute

	B.1.10. The <openid-login> Element
	B.1.11. The <logout> Element
	B.1.11.1. The logout-url attribute
	B.1.11.2. The logout-success-url attribute
	B.1.11.3. The invalidate-session attribute

	B.2. Authentication Services
	B.2.1. The <authentication-provider> Element
	B.2.2. Using <custom-authentication-provider> to register an AuthenticationProvider
	B.2.3. The <authentication-manager> Element

	B.3. Method Security
	B.3.1. The <global-method-security> Element
	B.3.1.1. The <secured-annotations> and <jsr250-annotations> Attributes
	B.3.1.2. Securing Methods using <protect-pointcut>

	B.3.2. LDAP Namespace Options
	B.3.2.1. Defining the LDAP Server using the <ldap-server> Element
	B.3.2.2. The <ldap-provider> Element
	B.3.2.2.1. The user-dn-pattern Attribute
	B.3.2.2.2. The user-search-base and user-search-filter Attributes
	B.3.2.2.3. group-search-filter, group-search-base, group-role-attribute and role-prefix Attributes
	B.3.2.2.4. The <password-compare> Element

	B.3.2.3. The <ldap-user-service> Element

