
Spring Security

Reference Documentation

Ben Alex
Luke Taylor



Spring Security: Reference Documentation
by Ben Alex and Luke Taylor

3.0.7.RELEASE



Spring Security

3.0.7.RELEASE iii

Table of Contents

Preface ......................................................................................................................................  x

I. Getting Started .......................................................................................................................  1

1. Introduction ...................................................................................................................  2

1.1. What is Spring Security? .....................................................................................  2

1.2. History ................................................................................................................ 4

1.3. Release Numbering .............................................................................................  4

1.4. Getting Spring Security .......................................................................................  5

Project Modules .................................................................................................  5

Core - spring-security-core.jar ..................................................  5

Web - spring-security-web.jar .....................................................  5

Config - spring-security-config.jar ...........................................  5

LDAP - spring-security-ldap.jar ................................................  5

ACL - spring-security-acl.jar ....................................................  6

CAS - spring-security-cas-client.jar .....................................  6

OpenID - spring-security-openid.jar .......................................... 6

Checking out the Source ....................................................................................  6

2. Security Namespace Configuration .................................................................................. 7

2.1. Introduction ......................................................................................................... 7

Design of the Namespace ...................................................................................  8

2.2. Getting Started with Security Namespace Configuration ......................................... 8

web.xml Configuration ....................................................................................  8

A Minimal <http> Configuration .....................................................................  9

What does auto-config Include? .........................................................  10

Form and Basic Login Options .................................................................  11

Using other Authentication Providers ................................................................  12

Adding a Password Encoder .....................................................................  13

2.3. Advanced Web Features ....................................................................................  14

Remember-Me Authentication ........................................................................... 14

Adding HTTP/HTTPS Channel Security ............................................................  14

Session Management ........................................................................................  15

Detecting Timeouts ..................................................................................  15

Concurrent Session Control ....................................................................... 15

Session Fixation Attack Protection ............................................................  16

OpenID Support ...............................................................................................  16

Attribute Exchange ...................................................................................  17

Adding in Your Own Filters .............................................................................  17

Setting a Custom AuthenticationEntryPoint .................................  19

2.4. Method Security ................................................................................................  19

The <global-method-security> Element ...............................................  19

Adding Security Pointcuts using protect-pointcut ............................  20

2.5. The Default AccessDecisionManager ..................................................................  21

Customizing the AccessDecisionManager ..........................................................  21

2.6. The Authentication Manager and the Namespace .................................................  22



Spring Security

3.0.7.RELEASE iv

3. Sample Applications .....................................................................................................  23

3.1. Tutorial Sample .................................................................................................  23

3.2. Contacts ............................................................................................................  23

3.3. LDAP Sample ...................................................................................................  24

3.4. CAS Sample .....................................................................................................  24

3.5. Pre-Authentication Sample .................................................................................  25

4. Spring Security Community ..........................................................................................  26

4.1. Issue Tracking ...................................................................................................  26

4.2. Becoming Involved ............................................................................................ 26

4.3. Further Information ...........................................................................................  26

II. Architecture and Implementation ..........................................................................................  27

5. Technical Overview ...................................................................................................... 28

5.1. Runtime Environment ........................................................................................  28

5.2. Core Components ..............................................................................................  28

SecurityContextHolder, SecurityContext and Authentication Objects  .................  28

Obtaining information about the current user .............................................  29

The UserDetailsService ..................................................................................... 29

GrantedAuthority .............................................................................................. 30

Summary .........................................................................................................  30

5.3. Authentication ...................................................................................................  30

What is authentication in Spring Security? .........................................................  30

Setting the SecurityContextHolder Contents Directly ..........................................  32

5.4. Authentication in a Web Application ..................................................................  33

ExceptionTranslationFilter ................................................................................  33

AuthenticationEntryPoint ..................................................................................  34

Authentication Mechanism ................................................................................ 34

Storing the SecurityContext between requests ...........................................  34

5.5. Access-Control (Authorization) in Spring Security ...............................................  35

Security and AOP Advice ................................................................................. 35

Secure Objects and the AbstractSecurityInterceptor ..........................  36

What are Configuration Attributes? ...........................................................  36

RunAsManager ........................................................................................  36

AfterInvocationManager ...........................................................................  37

Extending the Secure Object Model ..........................................................  37

5.6. Localization ....................................................................................................... 37

6. Core Services ...............................................................................................................  39

6.1. The AuthenticationManager, ProviderManager and

AuthenticationProviders ..............................................................................  39

DaoAuthenticationProvider .................................................................  40

Erasing Credentials on Successful Authentication ............................................... 40

6.2. UserDetailsService Implementations ........................................................  41

In-Memory Authentication ................................................................................  41

JdbcDaoImpl ...............................................................................................  42

Authority Groups .....................................................................................  42

6.3. Password Encoding ............................................................................................ 42



Spring Security

3.0.7.RELEASE v

What is a hash? ...............................................................................................  42

Adding Salt to a Hash ......................................................................................  43

Hashing and Authentication .............................................................................  43

III. Web Application Security ...................................................................................................  44

7. The Security Filter Chain .............................................................................................  45

7.1. DelegatingFilterProxy ...........................................................................  45

7.2. FilterChainProxy ......................................................................................  45

Bypassing the Filter Chain ................................................................................ 47

7.3. Filter Ordering ..................................................................................................  47

7.4. Request Matching and HttpFirewall ............................................................  48

7.5. Use with other Filter-Based Frameworks ............................................................. 49

8. Core Security Filters ....................................................................................................  50

8.1. FilterSecurityInterceptor ..................................................................  50

8.2. ExceptionTranslationFilter ................................................................  51

AuthenticationEntryPoint ...................................................................  52

AccessDeniedHandler ..............................................................................  52

8.3. SecurityContextPersistenceFilter ...................................................  52

SecurityContextRepository .................................................................  53

8.4. UsernamePasswordAuthenticationFilter ..........................................  53

Application Flow on Authentication Success and Failure ....................................  54

9. Basic and Digest Authentication .................................................................................... 56

9.1. BasicAuthenticationFilter ..................................................................  56

Configuration ...................................................................................................  56

9.2. DigestAuthenticationFilter ................................................................  57

Configuration ...................................................................................................  58

10. Remember-Me Authentication .....................................................................................  59

10.1. Overview ......................................................................................................... 59

10.2. Simple Hash-Based Token Approach ................................................................  59

10.3. Persistent Token Approach ...............................................................................  60

10.4. Remember-Me Interfaces and Implementations ..................................................  60

TokenBasedRememberMeServices ....................................................................  61

PersistentTokenBasedRememberMeServices ......................................................  61

11. Session Management ..................................................................................................  62

11.1. SessionManagementFilter .................................................................................  62

11.2. SessionAuthenticationStrategy ........................................................  62

11.3. Concurrency Control ........................................................................................  63

12. Anonymous Authentication .........................................................................................  65

12.1. Overview ......................................................................................................... 65

12.2. Configuration ................................................................................................... 65

12.3. AuthenticationTrustResolver ............................................................  66

IV. Authorization .....................................................................................................................  68

13. Authorization Architecture ..........................................................................................  69

13.1. Authorities ....................................................................................................... 69

13.2. Pre-Invocation Handling ................................................................................... 69

The AccessDecisionManager ............................................................................  69



Spring Security

3.0.7.RELEASE vi

Voting-Based AccessDecisionManager Implementations ..................................... 70

RoleVoter ............................................................................................  71

AuthenticatedVoter ........................................................................  71

Custom Voters .........................................................................................  71

13.3. After Invocation Handling ................................................................................  71

14. Secure Object Implementations ...................................................................................  73

14.1. AOP Alliance (MethodInvocation) Security Interceptor ......................................  73

Explicit MethodSecurityInterceptor Configuration ..............................................  73

14.2. AspectJ (JoinPoint) Security Interceptor ............................................................  73

15. Expression-Based Access Control ................................................................................ 76

15.1. Overview ......................................................................................................... 76

Common Built-In Expressions ..........................................................................  76

15.2. Web Security Expressions ................................................................................  76

15.3. Method Security Expressions ............................................................................ 77

@Pre and @Post Annotations .........................................................................  77

Access Control using @PreAuthorize and @PostAuthorize .............  77

Filtering using @PreFilter and @PostFilter ....................................  78

Built-In Expressions .........................................................................................  78

The PermissionEvaluator interface .................................................  78

V. Additional Topics ................................................................................................................  80

16. Domain Object Security (ACLs) .................................................................................. 81

16.1. Overview ......................................................................................................... 81

16.2. Key Concepts ..................................................................................................  82

16.3. Getting Started ................................................................................................  84

17. Pre-Authentication Scenarios ....................................................................................... 86

17.1. Pre-Authentication Framework Classes .............................................................  86

AbstractPreAuthenticatedProcessingFilter ..........................................................  86

AbstractPreAuthenticatedAuthenticationDetailsSource ........................................  86

J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource ......................  87

PreAuthenticatedAuthenticationProvider ............................................................  87

Http403ForbiddenEntryPoint .............................................................................  87

17.2. Concrete Implementations ................................................................................  88

Request-Header Authentication (Siteminder) ......................................................  88

Siteminder Example Configuration ............................................................  88

J2EE Container Authentication .........................................................................  89

18. LDAP Authentication .................................................................................................  90

18.1. Overview ......................................................................................................... 90

18.2. Using LDAP with Spring Security ....................................................................  90

18.3. Configuring an LDAP Server ...........................................................................  90

Using an Embedded Test Server .......................................................................  91

Using Bind Authentication ................................................................................ 91

Loading Authorities ..........................................................................................  91

18.4. Implementation Classes ....................................................................................  92

LdapAuthenticator Implementations ..................................................................  92

Common Functionality .............................................................................  93



Spring Security

3.0.7.RELEASE vii

BindAuthenticator ....................................................................................  93

PasswordComparisonAuthenticator ............................................................  93

Active Directory Authentication ................................................................  93

Connecting to the LDAP Server ........................................................................  93

LDAP Search Objects ....................................................................................... 93

FilterBasedLdapUserSearch  .......................................................  94

LdapAuthoritiesPopulator .................................................................................. 94

Spring Bean Configuration ...............................................................................  94

LDAP Attributes and Customized UserDetails ...................................................  95

19. JSP Tag Libraries .......................................................................................................  97

19.1. Declaring the Taglib ........................................................................................  97

19.2. The authorize Tag ...................................................................................... 97

19.3. The authenticationTag ............................................................................  98

19.4. The accesscontrollist Tag ....................................................................  98

20. Java Authentication and Authorization Service (JAAS) Provider .................................... 99

20.1. Overview ......................................................................................................... 99

20.2. Configuration ................................................................................................... 99

JAAS CallbackHandler .....................................................................................  99

JAAS AuthorityGranter ................................................................................... 100

21. CAS Authentication ..................................................................................................  101

21.1. Overview .......................................................................................................  101

21.2. How CAS Works ...........................................................................................  101

21.3. Configuration of CAS Client ..........................................................................  101

22. X.509 Authentication ................................................................................................  104

22.1. Overview .......................................................................................................  104

22.2. Adding X.509 Authentication to Your Web Application ...................................  104

22.3. Setting up SSL in Tomcat ..............................................................................  105

23. Run-As Authentication Replacement .......................................................................... 106

23.1. Overview .......................................................................................................  106

23.2. Configuration .................................................................................................  106

A. Security Database Schema .................................................................................................  108

A.1. User Schema ..........................................................................................................  108

Group Authorities ...................................................................................................  108

A.2. Persistent Login (Remember-Me) Schema ................................................................  109

A.3. ACL Schema ..........................................................................................................  109

Hypersonic SQL .....................................................................................................  109

PostgreSQL ....................................................................................................  110

B. The Security Namespace ....................................................................................................  112

B.1. Web Application Security - the <http> Element .....................................................  112

<http> Attributes .................................................................................................  112

servlet-api-provision ........................................................................  112

path-type ..................................................................................................  113

lowercase-comparisons ........................................................................  113

realm ...........................................................................................................  113

entry-point-ref .....................................................................................  113



Spring Security

3.0.7.RELEASE viii

access-decision-manager-ref ...........................................................  113

access-denied-page ..............................................................................  113

once-per-request ...................................................................................  113

create-session .......................................................................................  113

use-expressions .....................................................................................  113

disable-url-rewriting ........................................................................  114

<access-denied-handler> ...........................................................................  114

The <intercept-url> Element .........................................................................  114

pattern ......................................................................................................  114

method ......................................................................................................... 114

access ......................................................................................................... 114

requires-channel ...................................................................................  114

filters ......................................................................................................  115

The <port-mappings> Element .........................................................................  115

The <form-login> Element ...............................................................................  115

login-page ................................................................................................  115

login-processing-url ..........................................................................  115

default-target-url ..............................................................................  115

always-use-default-target ...............................................................  116

authentication-failure-url .............................................................  116

authentication-success-handler-ref ...........................................  116

authentication-failure-handler-ref ...........................................  116

The <http-basic> Element ...............................................................................  116

The <remember-me> Element .............................................................................  116

data-source-ref .....................................................................................  116

token-repository-ref ..........................................................................  116

services-ref ...........................................................................................  117

token-repository-ref ..........................................................................  117

The key Attribute ..........................................................................................  117

token-validity-seconds ...................................................................... 117

user-service-ref ...................................................................................  117

The <session-management> Element ..............................................................  117

session-fixation-protection ...........................................................  117

The <concurrency-control> Element ............................................................  117

The max-sessions attribute .......................................................................  118

The expired-url attribute .......................................................................... 118

The error-if-maximum-exceeded attribute ...........................................  118

The session-registry-alias and session-registry-ref

attributes ........................................................................................................  118

The <anonymous> Element .................................................................................  118

The <x509> Element ............................................................................................  118

The subject-principal-regex attribute ................................................ 118

The user-service-ref attribute ............................................................... 119

The <openid-login> Element ...........................................................................  119

The <logout> Element ........................................................................................  119



Spring Security

3.0.7.RELEASE ix

The logout-url attribute ............................................................................ 119

The logout-success-url attribute ..........................................................  119

The invalidate-session attribute ..........................................................  119

The <custom-filter> Element .........................................................................  119

The request-cache Element .............................................................................  119

The <http-firewall> Element .........................................................................  119

B.2. Authentication Services ...........................................................................................  120

The <authentication-manager> Element .....................................................  120

The <authentication-provider> Element ...........................................  120

Using <authentication-provider> to refer to an

AuthenticationProvider Bean .............................................................  120

B.3. Method Security ...................................................................................................... 121

The <global-method-security> Element .....................................................  121

The secured-annotations and jsr250-annotations Attributes ........  121

Securing Methods using <protect-pointcut> .......................................... 121

The <after-invocation-provider> Element .......................................  121

LDAP Namespace Options .....................................................................................  121

Defining the LDAP Server using the <ldap-server> Element ...................... 121

The <ldap-provider> Element .................................................................  122

The <ldap-user-service> Element ........................................................  123



Spring Security

3.0.7.RELEASE x

Preface
Spring Security provides a comprehensive security solution for J2EE-based enterprise software

applications. As you will discover as you venture through this reference guide, we have tried to provide

you a useful and highly configurable security system.

Security is an ever-moving target, and it's important to pursue a comprehensive, system-wide approach.

In security circles we encourage you to adopt "layers of security", so that each layer tries to be as

secure as possible in its own right, with successive layers providing additional security. The "tighter"

the security of each layer, the more robust and safe your application will be. At the bottom level you'll

need to deal with issues such as transport security and system identification, in order to mitigate man-

in-the-middle attacks. Next you'll generally utilise firewalls, perhaps with VPNs or IP security to ensure

only authorised systems can attempt to connect. In corporate environments you may deploy a DMZ to

separate public-facing servers from backend database and application servers. Your operating system

will also play a critical part, addressing issues such as running processes as non-privileged users and

maximising file system security. An operating system will usually also be configured with its own

firewall. Hopefully somewhere along the way you'll be trying to prevent denial of service and brute force

attacks against the system. An intrusion detection system will also be especially useful for monitoring

and responding to attacks, with such systems able to take protective action such as blocking offending

TCP/IP addresses in real-time. Moving to the higher layers, your Java Virtual Machine will hopefully

be configured to minimize the permissions granted to different Java types, and then your application

will add its own problem domain-specific security configuration. Spring Security makes this latter area

- application security - much easier.

Of course, you will need to properly address all security layers mentioned above, together with

managerial factors that encompass every layer. A non-exhaustive list of such managerial factors would

include security bulletin monitoring, patching, personnel vetting, audits, change control, engineering

management systems, data backup, disaster recovery, performance benchmarking, load monitoring,

centralised logging, incident response procedures etc.

With Spring Security being focused on helping you with the enterprise application security layer,

you will find that there are as many different requirements as there are business problem domains. A

banking application has different needs from an ecommerce application. An ecommerce application

has different needs from a corporate sales force automation tool. These custom requirements make

application security interesting, challenging and rewarding.

Please read Part I, “Getting Started”, in its entirety to begin with. This will introduce you to the

framework and the namespace-based configuration system with which you can get up and running quite

quickly. To get more of an understanding of how Spring Security works, and some of the classes you

might need to use, you should then read Part II, “Architecture and Implementation”. The remaining

parts of this guide are structured in a more traditional reference style, designed to be read on an as-

required basis. We'd also recommend that you read up as much as possible on application security issues

in general. Spring Security is not a panacea which will solve all security issues. It is important that

the application is designed with security in mind from the start. Attempting to retrofit it is not a good

idea. In particular, if you are building a web application, you should be aware of the many potential

vulnerabilities such as cross-site scripting, request-forgery and session-hijacking which you should be



Spring Security

3.0.7.RELEASE xi

taking into account from the start. The OWASP web site (http://www.owasp.org/) maintains a top ten

list of web application vulnerabilities as well as a lot of useful reference information.

We hope that you find this reference guide useful, and we welcome your feedback and suggestions.

Finally, welcome to the Spring Security community.



Part I. Getting Started
The later parts of this guide provide an in-depth discussion of the framework architecture and

implementation classes, which you need to understand if you want to do any serious customization.

In this part, we'll introduce Spring Security 3.0, give a brief overview of the project's history and

take a slightly gentler look at how to get started using the framework. In particular, we'll look at

namespace configuration which provides a much simpler way of securing your application compared

to the traditional Spring bean approach where you have to wire up all the implementation classes

individually.

We'll also take a look at the sample applications that are available. It's worth trying to run these

and experimenting with them a bit even before you read the later sections - you can dip back into

them as your understanding of the framework increases. Please also check out the project website

[http://static.springsource.org/spring-security/site/index.html] as it has useful information on building

the project, plus links to articles, videos and tutorials.

http://static.springsource.org/spring-security/site/index.html
http://static.springsource.org/spring-security/site/index.html


Spring Security

3.0.7.RELEASE 2

1.1 What is Spring Security?

Spring Security provides comprehensive security services for J2EE-based enterprise software

applications. There is a particular emphasis on supporting projects built using The Spring Framework,

which is the leading J2EE solution for enterprise software development. If you're not using Spring for

developing enterprise applications, we warmly encourage you to take a closer look at it. Some familiarity

with Spring - and in particular dependency injection principles - will help you get up to speed with

Spring Security more easily.

People use Spring Security for many reasons, but most are drawn to the project after finding the

security features of J2EE's Servlet Specification or EJB Specification lack the depth required for typical

enterprise application scenarios. Whilst mentioning these standards, it's important to recognise that they

are not portable at a WAR or EAR level. Therefore, if you switch server environments, it is typically a lot

of work to reconfigure your application's security in the new target environment. Using Spring Security

overcomes these problems, and also brings you dozens of other useful, customisable security features.

As you probably know two major areas of application security are “authentication” and “authorization”

(or “access-control”). These are the two main areas that Spring Security targets. “Authentication” is

the process of establishing a principal is who they claim to be (a “principal” generally means a user,

device or some other system which can perform an action in your application). “Authorization” refers

to the process of deciding whether a principal is allowed to perform an action within your application.

To arrive at the point where an authorization decision is needed, the identity of the principal has already

been established by the authentication process. These concepts are common, and not at all specific to

Spring Security.

At an authentication level, Spring Security supports a wide range of authentication models. Most of

these authentication models are either provided by third parties, or are developed by relevant standards

bodies such as the Internet Engineering Task Force. In addition, Spring Security provides its own set of

authentication features. Specifically, Spring Security currently supports authentication integration with

all of these technologies:

• HTTP BASIC authentication headers (an IEFT RFC-based standard)

• HTTP Digest authentication headers (an IEFT RFC-based standard)

• HTTP X.509 client certificate exchange (an IEFT RFC-based standard)

• LDAP (a very common approach to cross-platform authentication needs, especially in large

environments)

• Form-based authentication (for simple user interface needs)

• OpenID authentication

• Authentication based on pre-established request headers (such as Computer Associates Siteminder)

• JA-SIG Central Authentication Service (otherwise known as CAS, which is a popular open source

single sign on system)

• Transparent authentication context propagation for Remote Method Invocation (RMI) and

HttpInvoker (a Spring remoting protocol)

• Automatic "remember-me" authentication (so you can tick a box to avoid re-authentication for a

predetermined period of time)

• Anonymous authentication (allowing every call to automatically assume a particular security identity)



Spring Security

3.0.7.RELEASE 3

• Run-as authentication (which is useful if one call should proceed with a different security identity)

• Java Authentication and Authorization Service (JAAS)

• JEE container autentication (so you can still use Container Managed Authentication if desired)

• Kerberos

• Java Open Source Single Sign On (JOSSO) *

• OpenNMS Network Management Platform *

• AppFuse *

• AndroMDA *

• Mule ESB *

• Direct Web Request (DWR) *

• Grails *

• Tapestry *

• JTrac *

• Jasypt *

• Roller *

• Elastic Path *

• Atlassian Crowd *

• Your own authentication systems (see below)

(* Denotes provided by a third party; check our integration page [http://acegisecurity.org/

powering.html] for links to the latest details)

Many independent software vendors (ISVs) adopt Spring Security because of this significant choice of

flexible authentication models. Doing so allows them to quickly integrate their solutions with whatever

their end clients need, without undertaking a lot of engineering or requiring the client to change their

environment. If none of the above authentication mechanisms suit your needs, Spring Security is an

open platform and it is quite simple to write your own authentication mechanism. Many corporate users

of Spring Security need to integrate with "legacy" systems that don't follow any particular security

standards, and Spring Security is happy to "play nicely" with such systems.

Sometimes the mere process of authentication isn't enough. Sometimes you need to also differentiate

security based on the way a principal is interacting with your application. For example, you might want

to ensure requests only arrive over HTTPS, in order to protect passwords from eavesdropping or end

users from man-in-the-middle attacks. This is especially helpful to protect password recovery processes

from brute force attacks, or simply to make it harder for people to duplicate your application's key

content. To help you achieve these goals, Spring Security fully supports automatic "channel security",

together with JCaptcha integration for human user detection.

Irrespective of how authentication was undertaken, Spring Security provides a deep set of authorization

capabilities. There are three main areas of interest in respect of authorization, these being authorizing

web requests, authorizing whether methods can be invoked, and authorizing access to individual domain

object instances. To help you understand the differences, consider the authorization capabilities found

in the Servlet Specification web pattern security, EJB Container Managed Security and file system

security respectively. Spring Security provides deep capabilities in all of these important areas, which

we'll explore later in this reference guide.

http://acegisecurity.org/powering.html
http://acegisecurity.org/powering.html
http://acegisecurity.org/powering.html


Spring Security

3.0.7.RELEASE 4

1.2 History

Spring Security began in late 2003 as “The Acegi Security System for Spring”. A question was posed on

the Spring Developers' mailing list asking whether there had been any consideration given to a Spring-

based security implementation. At the time the Spring community was relatively small (especially

compared with the size today!), and indeed Spring itself had only existed as a SourceForge project from

early 2003. The response to the question was that it was a worthwhile area, although a lack of time

currently prevented its exploration.

With that in mind, a simple security implementation was built and not released. A few weeks later

another member of the Spring community inquired about security, and at the time this code was offered

to them. Several other requests followed, and by January 2004 around twenty people were using the

code. These pioneering users were joined by others who suggested a SourceForge project was in order,

which was duly established in March 2004.

In those early days, the project didn't have any of its own authentication modules. Container Managed

Security was relied upon for the authentication process, with Acegi Security instead focusing on

authorization. This was suitable at first, but as more and more users requested additional container

support, the fundamental limitation of container-specific authentication realm interfaces became clear.

There was also a related issue of adding new JARs to the container's classpath, which was a common

source of end user confusion and misconfiguration.

Acegi Security-specific authentication services were subsequently introduced. Around a year later,

Acegi Security became an official Spring Framework subproject. The 1.0.0 final release was published

in May 2006 - after more than two and a half years of active use in numerous production software

projects and many hundreds of improvements and community contributions.

Acegi Security became an official Spring Portfolio project towards the end of 2007 and was rebranded

as “Spring Security”.

Today Spring Security enjoys a strong and active open source community. There are thousands of

messages about Spring Security on the support forums. There is an active core of developers who work

on the code itself and an active community which also regularly share patches and support their peers.

1.3 Release Numbering

It is useful to understand how Spring Security release numbers work, as it will help you identify

the effort (or lack thereof) involved in migrating to future releases of the project. Officially, we

use the Apache Portable Runtime Project versioning guidelines, which can be viewed at http://

apr.apache.org/versioning.html. We quote the introduction contained on that page for your

convenience:

“Versions are denoted using a standard triplet of integers: MAJOR.MINOR.PATCH. The basic intent is

that MAJOR versions are incompatible, large-scale upgrades of the API. MINOR versions retain source

and binary compatibility with older minor versions, and changes in the PATCH level are perfectly

compatible, forwards and backwards.”



Spring Security

3.0.7.RELEASE 5

1.4 Getting Spring Security

You can get hold of Spring Security in several ways. You can download a packaged distribution from

the main Spring download page [http://www.springsource.com/download/community?project=Spring

%20Security], download individual jars (and sample WAR files) from the Maven Central repository (or

a SpringSource Maven repository for snapshot and milestone releases) or, alternatively, you can build

the project from source yourself. See the project web site for more details.

Project Modules

In Spring Security 3.0, the codebase has been sub-divided into separate jars which more clearly separate

different functionaltiy areas and third-party dependencies. If you are using Maven to build your project,

then these are the modules you will add to your pom.xml. Even if you're not using Maven, we'd

recommend that you consult the pom.xml files to get an idea of third-party dependencies and versions.

Alternatively, a good idea is to examine the libraries that are included in the sample applications.

Core - spring-security-core.jar

Contains core authentication and access-contol classes and interfaces, remoting support and basic

provisioning APIs. Required by any application which uses Spring Security. Supports standalone

applications, remote clients, method (service layer) security and JDBC user provisioning. Contains the

top-level packages:

• org.springframework.security.core

• org.springframework.security.access

• org.springframework.security.authentication

• org.springframework.security.provisioning

• org.springframework.security.remoting

Web - spring-security-web.jar

Contains filters and related web-security infrastructure code. Anything with a servlet API dependency.

You'll need it if you require Spring Security web authentication services and URL-based access-control.

The main package is org.springframework.security.web.

Config - spring-security-config.jar

Contains the security namespace parsing code (and hence nothing that you are likely yo use directly in

your application). You need it if you are using the Spring Security XML namespace for configuration.

The main package is org.springframework.security.config.

LDAP - spring-security-ldap.jar

LDAP authentication and provisioning code. Required if you need to use LDAP authentication or

manage LDAP user entries. The top-level package is org.springframework.security.ldap.

http://www.springsource.com/download/community?project=Spring%20Security
http://www.springsource.com/download/community?project=Spring%20Security
http://www.springsource.com/download/community?project=Spring%20Security


Spring Security

3.0.7.RELEASE 6

ACL - spring-security-acl.jar

Specialized domain object ACL implementation. Used to apply security to

specific domain object instances within your application. The top-level package is

org.springframework.security.acls.

CAS - spring-security-cas-client.jar

Spring Security's CAS client integration. If you want to use Spring Security web authentication with a

CAS single sign-on server. The top-level package is org.springframework.security.cas.

OpenID - spring-security-openid.jar

OpenID web authentication support. Used to authenticate users against an external OpenID server.

org.springframework.security.openid. Requires OpenID4Java.

Checking out the Source

Since Spring Security is an Open Source project, we'd strongly encourage you to check out the source

code using git. This will give you full access to all the sample applications and you can build the most

up to date version of the project easily. Having the source for a project is also a huge help in debugging.

Exception stack traces are no longer obscure black-box issues but you can get straight to the line that's

causing the problem and work out what's happening. The source is the ultimate documentation for a

project and often the simplest place to find out how something actually works.

To obtain the source for the project trunk, use the following git command:

  git clone git://git.springsource.org/spring-security/spring-security.git

    

You can checkout specific versions from https://src.springframework.org/svn/

spring-security/tags/.



Spring Security

3.0.7.RELEASE 7

2.1 Introduction

Namespace configuration has been available since version 2.0 of the Spring framework.

It allows you to supplement the traditional Spring beans application context syntax

with elements from additional XML schema. You can find more information in the

Spring  Reference Documentation [http://static.springsource.org/spring/docs/3.0.x/spring-framework-

reference/htmlsingle/spring-framework-reference.htm]. A namespace element can be used simply to

allow a more concise way of configuring an individual bean or, more powerfully, to define an alternative

configuration syntax which more closely matches the problem domain and hides the underlying

complexity from the user. A simple element may conceal the fact that multiple beans and processing

steps are being added to the application context. For example, adding the following element from the

security namespace to an application context will start up an embedded LDAP server for testing use

within the application:

  <security:ldap-server />

This is much simpler than wiring up the equivalent Apache Directory Server beans. The most common

alternative configuration requirements are supported by attributes on the ldap-server element and

the user is isolated from worrying about which beans they need to create and what the bean property

names are. 1. Use of a good XML editor while editing the application context file should provide

information on the attributes and elements that are available. We would recommend that you try out

the SpringSource Tool Suite [http://www.springsource.com/products/sts] as it has special features for

working with standard Spring namespaces.

To start using the security namespace in your application context, you first need to make sure that the

spring-security-config jar is on your classpath. Then all you need to do is add the schema

declaration to your application context file:

  

<beans xmlns="http://www.springframework.org/schema/beans"

  xmlns:security="http://www.springframework.org/schema/security"

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

  xsi:schemaLocation="http://www.springframework.org/schema/beans

          http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

          http://www.springframework.org/schema/security

          http://www.springframework.org/schema/security/spring-security-3.0.3.xsd">

    ...

</beans>

  

In many of the examples you will see (and in the sample) applications, we will often use "security"

as the default namespace rather than "beans", which means we can omit the prefix on all the security

namespace elements, making the content easier to read. You may also want to do this if you have your

application context divided up into separate files and have most of your security configuration in one

of them. Your security application context file would then start like this

1You can find out more about the use of the ldap-server element in the chapter on LDAP.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.htm
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.htm
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.htm
http://www.springsource.com/products/sts
http://www.springsource.com/products/sts


Spring Security

3.0.7.RELEASE 8

<beans:beans xmlns="http://www.springframework.org/schema/security"

  xmlns:beans="http://www.springframework.org/schema/beans"

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

  xsi:schemaLocation="http://www.springframework.org/schema/beans

           http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

           http://www.springframework.org/schema/security

           http://www.springframework.org/schema/security/spring-security-3.0.3.xsd">

    ...

</beans:beans>

We'll assume this syntax is being used from now on in this chapter.

Design of the Namespace

The namespace is designed to capture the most common uses of the framework and provide a simplified

and concise syntax for enabling them within an application. The design is based around the large-scale

dependencies within the framework, and can be divided up into the following areas:

• Web/HTTP Security - the most complex part. Sets up the filters and related service beans used to

apply the framework authentication mechanisms, to secure URLs, render login and error pages and

much more.

• Business Object (Method) Security - options for securing the service layer.

• AuthenticationManager - handles authentication requests from other parts of the framework.

• AccessDecisionManager - provides access decisions for web and method security. A default one will

be registered, but you can also choose to use a custom one, declared using normal Spring bean syntax.

• AuthenticationProviders - mechanisms against which the authentication manager authenticates users.

The namespace provides supports for several standard options and also a means of adding custom

beans declared using a traditional syntax.

• UserDetailsService - closely related to authentication providers, but often also required by other

beans.

We'll see how to configure these in the following sections.

2.2 Getting Started with Security Namespace
Configuration

In this section, we'll look at how you can build up a namespace configuration to use some of the main

features of the framework. Let's assume you initially want to get up and running as quickly as possible

and add authentication support and access control to an existing web application, with a few test logins.

Then we'll look at how to change over to authenticating against a database or other security repository.

In later sections we'll introduce more advanced namespace configuration options.

web.xml Configuration

The first thing you need to do is add the following filter declaration to your web.xml file:

<filter>



Spring Security

3.0.7.RELEASE 9

  <filter-name>springSecurityFilterChain</filter-name>

  <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

  <filter-name>springSecurityFilterChain</filter-name>

  <url-pattern>/*</url-pattern>

</filter-mapping>

      

This provides a hook into the Spring Security web infrastructure. DelegatingFilterProxy is a

Spring Framework class which delegates to a filter implementation which is defined as a Spring bean

in your application context. In this case, the bean is named “springSecurityFilterChain”, which is an

internal infrastructure bean created by the namespace to handle web security. Note that you should not

use this bean name yourself. Once you've added this to your web.xml, you're ready to start editing

your application context file. Web security services are configured using the <http> element.

A Minimal <http> Configuration

All you need to enable web security to begin with is

  <http auto-config='true'>

    <intercept-url pattern="/**" access="ROLE_USER" />

  </http>

  

Which says that we want all URLs within our application to be secured, requiring the role ROLE_USER

to access them. The <http> element is the parent for all web-related namespace functionality. The

<intercept-url> element defines a pattern which is matched against the URLs of incoming

requests using an ant path style syntax2. The access attribute defines the access requirements for

requests matching the given pattern. With the default configuration, this is typically a comma-separated

list of roles, one of which a user must have to be allowed to make the request. The prefix “ROLE_” is

a marker which indicates that a simple comparison with the user's authorities should be made. In other

words, a normal role-based check should be used. Access-control in Spring Security is not limited to

the use of simple roles (hence the use of the prefix to differentiate between different types of security

attributes). We'll see later how the interpretation can vary3.

Note

You can use multiple <intercept-url> elements to define different access

requirements for different sets of URLs, but they will be evaluated in the order listed and

the first match will be used. So you must put the most specific matches at the top. You

can also add a method attribute to limit the match to a particular HTTP method (GET,

POST, PUT etc.). If a request matches multiple patterns, the method-specific match will

take precedence regardless of ordering.

To add some users, you can define a set of test data directly in the namespace:

2See the section on Request Matching in the Web Application Infrastructure chapter for more details on how matches are actually

performed.
3The interpretation of the comma-separated values in the access attribute depends on the implementation of the

AccessDecisionManager which is used. In Spring Security 3.0, the attribute can also be populated with an EL expression.



Spring Security

3.0.7.RELEASE 10

  <authentication-manager>

    <authentication-provider>

      <user-service>

        <user name="jimi" password="jimispassword" authorities="ROLE_USER, ROLE_ADMIN" />

        <user name="bob" password="bobspassword" authorities="ROLE_USER" />

      </user-service>

    </authentication-provider>

  </authentication-manager>

  

        

If you are familiar with pre-namespace versions of the framework, you can probably already

guess roughly what's going on here. The <http> element is responsible for creating a

FilterChainProxy and the filter beans which it uses. Common problems like incorrect filter

ordering are no longer an issue as the filter positions are predefined.

The <authentication-provider> element creates a

DaoAuthenticationProvider bean and the <user-service> element creates an

InMemoryDaoImpl. All authentication-provider elements must be children of the

<authentication-manager> element, which creates a ProviderManager and registers

the authentication providers with it. You can find more detailed information on the beans

that are created in the namespace appendix. It's worth cross-checking this if you want to start

understanding what the important classes in the framework are and how they are used, particularly

if you want to customise things later.

The configuration above defines two users, their passwords and their roles within the application (which

will be used for access control). It is also possible to load user information from a standard properties file

using the properties attribute on user-service. See the section on in-memory authentication for

more details on the file format. Using the <authentication-provider> element means that the

user information will be used by the authentication manager to process authentication requests. You can

have multiple <authentication-provider> elements to define different authentication sources

and each will be consulted in turn.

At this point you should be able to start up your application and you will be required to log in to proceed.

Try it out, or try experimenting with the “tutorial” sample application that comes with the project. The

above configuration actually adds quite a few services to the application because we have used the

auto-config attribute. For example, form-based login processing is automatically enabled.

What does auto-config Include?

The auto-config attribute, as we have used it above, is just a shorthand syntax for:

  <http>

    <form-login />

    <http-basic />

    <logout />

  </http>



Spring Security

3.0.7.RELEASE 11

  

These other elements are responsible for setting up form-login, basic authentication and logout handling

services respectively 4 . They each have attributes which can be used to alter their behaviour.

Form and Basic Login Options

You might be wondering where the login form came from when you were prompted to log in, since

we made no mention of any HTML files or JSPs. In fact, since we didn't explicitly set a URL for the

login page, Spring Security generates one automatically, based on the features that are enabled and using

standard values for the URL which processes the submitted login, the default target URL the user will

be sent to after loggin in and so on. However, the namespace offers plenty of support to allow you to

customize these options. For example, if you want to supply your own login page, you could use:

  <http auto-config='true'>

    <intercept-url pattern="/login.jsp*" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

    <intercept-url pattern="/**" access="ROLE_USER" />

    <form-login login-page='/login.jsp'/>

  </http>

  

        

Note that you can still use auto-config. The form-login element just overrides the default

settings. Also note that we've added an extra intercept-url element to say that any requests for the

login page should be available to anonymous users 5. Otherwise the request would be matched by the

pattern /** and it wouldn't be possible to access the login page itself! This is a common configuration

error and will result in an infinite loop in the application. Spring Security will emit a warning in the log

if your login page appears to be secured. It is also possible to have all requests matching a particular

pattern bypass the security filter chain completely:

  <http auto-config='true'>

    <intercept-url pattern="/css/**" filters="none"/>

    <intercept-url pattern="/login.jsp*" filters="none"/>

    <intercept-url pattern="/**" access="ROLE_USER" />

    <form-login login-page='/login.jsp'/>

  </http>

  

          

It's important to realise that these requests will be completely oblivious to any further Spring Security

web-related configuration or additional attributes such as requires-channel, so you will not

be able to access information on the current user or call secured methods during the request. Use

access='IS_AUTHENTICATED_ANONYMOUSLY' as an alternative if you still want the security

filter chain to be applied.

4In versions prior to 3.0, this list also included remember-me functionality. This could cause some confusing errors with some

configurations and was removed in 3.0. In 3.0, the addition of an AnonymousAuthenticationFilter is part of the default

<http> configuration, so the <anonymous /> element is added regardless of whether auto-config is enabled.
5See the chapter on anonymous authentication and also the AuthenticatedVoter class for more details on how the value

IS_AUTHENTICATED_ANONYMOUSLY is processed.



Spring Security

3.0.7.RELEASE 12

Note

Using filters="none" operates by creating an empty filter chain in Spring

Security's FilterChainProxy, whereas the access attributes are used to configure

the FilterSecurityInterceptor in the single filter chain which is created by the

namespace configuration. The two are applied independently, so if you have an access

contraint for a sub-pattern of a pattern which has a filters="none" attribute, the

access constraint will be ignored, even if it is listed first. It isn't possible to apply a

filters="none" attribute to the pattern /** since this is used by the namespace filter

chain. In version 3.1 things are more flexible. You can define multiple filter chains and the

filters attribute is no longer supported.

If you want to use basic authentication instead of form login, then change the configuration to

  <http auto-config='true'>

    <intercept-url pattern="/**" access="ROLE_USER" />

    <http-basic />

  </http>

  

        

Basic authentication will then take precedence and will be used to prompt for a login when a user

attempts to access a protected resource. Form login is still available in this configuration if you wish to

use it, for example through a login form embedded in another web page.

Setting a Default Post-Login Destination

If a form login isn't prompted by an attempt to access a protected resource, the default-target-

url option comes into play. This is the URL the user will be taken to after logging in, and defaults to

"/". You can also configure things so that they user always ends up at this page (regardless of whether

the login was "on-demand" or they explicitly chose to log in) by setting the always-use-default-

target attribute to "true". This is useful if your application always requires that the user starts at a

"home" page, for example:

  <http>

    <intercept-url pattern='/login.htm*' filters='none'/>

    <intercept-url pattern='/**' access='ROLE_USER' />

    <form-login login-page='/login.htm' default-target-url='/home.htm'

            always-use-default-target='true' />

  </http>

  

            

Using other Authentication Providers

In practice you will need a more scalable source of user information than a few names added to

the application context file. Most likely you will want to store your user information in something

like a database or an LDAP server. LDAP namespace configuration is dealt with in the LDAP

chapter, so we won't cover it here. If you have a custom implementation of Spring Security's



Spring Security

3.0.7.RELEASE 13

UserDetailsService, called "myUserDetailsService" in your application context, then you can

authenticate against this using

  <authentication-manager>

    <authentication-provider user-service-ref='myUserDetailsService'/>

  </authentication-manager>

  

        

If you want to use a database, then you can use

  <authentication-manager>

    <authentication-provider>

      <jdbc-user-service data-source-ref="securityDataSource"/>

    </authentication-provider>

  </authentication-manager>

  

        

Where “securityDataSource” is the name of a DataSource bean in the application context, pointing at

a database containing the standard Spring Security user data tables. Alternatively, you could configure

a Spring Security JdbcDaoImpl bean and point at that using the user-service-ref attribute:

  <authentication-manager>

    <authentication-provider user-service-ref='myUserDetailsService'/>

  </authentication-manager>

  <beans:bean id="myUserDetailsService"

      class="org.springframework.security.core.userdetails.jdbc.JdbcDaoImpl">

    <beans:property name="dataSource" ref="dataSource"/>

  </beans:bean>

  

        

You can also use standard AuthenticationProvider beans as follows

  <authentication-manager>

    <authentication-provider ref='myAuthenticationProvider'/>

  </authentication-manager>

  

        

where myAuthenticationProvider is the name of a bean in your application context which

implements AuthenticationProvider. You can use multiple authentication-provider

elements, in which case they will be checked in the order they are declared when attempting to

authenticated a user. See Section 2.6, “The Authentication Manager and the Namespace” for more

on information on how the Spring Security AuthenticationManager is configured using the

namespace.

Adding a Password Encoder

Often your password data will be encoded using a hashing algorithm. This is supported by the

<password-encoder> element. With SHA encoded passwords, the original authentication provider

configuration would look like this:



Spring Security

3.0.7.RELEASE 14

<authentication-manager>

  <authentication-provider>

    <password-encoder hash="sha"/>

    <user-service>

      <user name="jimi" password="d7e6351eaa13189a5a3641bab846c8e8c69ba39f"

            authorities="ROLE_USER, ROLE_ADMIN" />

      <user name="bob" password="4e7421b1b8765d8f9406d87e7cc6aa784c4ab97f"

            authorities="ROLE_USER" />

    </user-service>

  </authentication-provider>

</authentication-manager>

  

          

When using hashed passwords, it's also a good idea to use a salt value to protect against dictionary

attacks and Spring Security supports this too. Ideally you would want to use a randomly generated salt

value for each user, but you can use any property of the UserDetails object which is loaded by your

UserDetailsService. For example, to use the username property, you would use

  <password-encoder hash="sha">

    <salt-source user-property="username"/>

  </password-encoder>

    

You can use a custom password encoder bean by using the ref attribute of password-encoder.

This should contain the name of a bean in the application context which is an instance of Spring

Security's PasswordEncoder interface.

2.3 Advanced Web Features

Remember-Me Authentication

See the separate Remember-Me chapter for information on remember-me namespace configuration.

Adding HTTP/HTTPS Channel Security

If your application supports both HTTP and HTTPS, and you require that particular URLs can only

be accessed over HTTPS, then this is directly supported using the requires-channel attribute on

<intercept-url>:

  <http>

    <intercept-url pattern="/secure/**" access="ROLE_USER" requires-channel="https"/>

    <intercept-url pattern="/**" access="ROLE_USER" requires-channel="any"/>

    ...

  </http>

        

With this configuration in place, if a user attempts to access anything matching the "/secure/**" pattern

using HTTP, they will first be redirected to an HTTPS URL. The available options are "http", "https"

or "any". Using the value "any" means that either HTTP or HTTPS can be used.



Spring Security

3.0.7.RELEASE 15

If your application uses non-standard ports for HTTP and/or HTTPS, you can specify a list of port

mappings as follows:

  <http>

    ...

    <port-mappings>

      <port-mapping http="9080" https="9443"/>

    </port-mappings>

  </http>

        

Session Management

Detecting Timeouts

You can configure Spring Security to detect the submission of an invalid session ID and redirect the

user to an appropriate URL. This is achieved through the session-management element:

  <http>

    ...

    <session-management invalid-session-url="/sessionTimeout.htm" />

  </http>

Concurrent Session Control

If you wish to place constraints on a single user's ability to log in to your application, Spring Security

supports this out of the box with the following simple additions. First you need to add the following

listener to your web.xml file to keep Spring Security updated about session lifecycle events:

  <listener>

    <listener-class>

      org.springframework.security.web.session.HttpSessionEventPublisher

    </listener-class>

  </listener>

Then add the following lines to your application context:

  <http>

    ...

    <session-management>

        <concurrency-control max-sessions="1" />

    </session-management>

  </http>

        

This will prevent a user from logging in multiple times - a second login will cause the first to be

invalidated. Often you would prefer to prevent a second login, in which case you can use

  <http>

    ...

    <session-management>

        <concurrency-control max-sessions="1" error-if-maximum-exceeded="true" />



Spring Security

3.0.7.RELEASE 16

    </session-management>

  </http>

        

The second login will then be rejected. By “rejected”, we mean that the user will be sent to the

authentication-failure-url if form-based login is being used. If the second authentication

takes place through another non-interactive mechanism, such as “remember-me”, an “unauthorized”

(402) error will be sent to the client. If instead you want to use an error page, you can add the attribute

session-authentication-error-url to the session-management element.

If you are using a customized authentication filter for form-based login, then you have to configure

concurrent session control support explicitly. More details can be found in the Session Management

chapter.

Session Fixation Attack Protection

Session fixation [http://en.wikipedia.org/wiki/Session_fixation] attacks are a potential risk where it is

possible for a malicious attacker to create a session by accessing a site, then persuade another user to

log in with the same session (by sending them a link containing the session identifier as a parameter,

for example). Spring Security protects against this automatically by creating a new session when a

user logs in. If you don't require this protection, or it conflicts with some other requirement, you

can control the behaviour using the session-fixation-protection attribute on <session-

management>, which has three options

• migrateSession - creates a new session and copies the existing session attributes to the new

session. This is the default.

• none - Don't do anything. The original session will be retained.

• newSession - Create a new "clean" session, without copying the existing session data.

OpenID Support

The namespace supports OpenID [http://openid.net/] login either instead of, or in addition to normal

form-based login, with a simple change:

  <http>

    <intercept-url pattern="/**" access="ROLE_USER" />

    <openid-login />

  </http>

You should then register yourself with an OpenID provider (such as myopenid.com), and add the user

information to your in-memory <user-service> :

  <user name="http://jimi.hendrix.myopenid.com/" authorities="ROLE_USER" />

You should be able to login using the myopenid.com site to authenticate. It is also possible to

select a specific UserDetailsService bean for use OpenID by setting the user-service-ref

attribute on the openid-login element. See the previous section on authentication providers for

more information. Note that we have omitted the password attribute from the above user configuration,

since this set of user data is only being used to load the authorities for the user. A random password

http://en.wikipedia.org/wiki/Session_fixation
http://en.wikipedia.org/wiki/Session_fixation
http://openid.net/
http://openid.net/


Spring Security

3.0.7.RELEASE 17

will be generate internally, preventing you from accidentally using this user data as an authentication

source elsewhere in your configuration.

Attribute Exchange

Support for OpenID attribute exchange [http://openid.net/specs/openid-attribute-exchange-1_0.html].

As an example, the following configuration would attempt to retrieve the email and full name from the

OpenID provider, for use by the application:

  <openid-login>

    <attribute-exchange>

      <openid-attribute name="email" type="http://axschema.org/contact/email" required="true" />

      <openid-attribute name="name" type="http://axschema.org/namePerson" />

    </attribute-exchange>

  </openid-login>

The “type” of each OpenID attribute is a URI, determined by a particular schema, in this case http://

axschema.org/. If an attribute must be retrieved for successful authentication, the required attribute

can be set. The exact schema and attributes supported will depend on your OpenID provider. The

attribute values are returned as part of the authentication process and can be accessed afterwards using

the following code:

OpenIDAuthenticationToken token = (OpenIDAuthenticationToken)SecurityContextHolder.getContext().getAuthentication();

List<OpenIDAttribute> attributes = token.getAttributes();

The OpenIDAttribute contains the attribute type and the retrieved value (or values in the case of

multi-valued attributes). We'll see more about how the SecurityContextHolder class is used

when we look at core Spring Security components in the technical overview chapter.

Adding in Your Own Filters

If you've used Spring Security before, you'll know that the framework maintains a chain of filters in

order to apply its services. You may want to add your own filters to the stack at particular locations

or use a Spring Security filter for which there isn't currently a namespace configuration option (CAS,

for example). Or you might want to use a customized version of a standard namespace filter, such

as the UsernamePasswordAuthenticationFilter which is created by the <form-login>

element, taking advantage of some of the extra configuration options which are available by using the

bean explicitly. How can you do this with namespace configuration, since the filter chain is not directly

exposed?

The order of the filters is always strictly enforced when using the namespace. When the application

context is being created, the filter beans are sorted by the namespace handling code and the standard

Spring Security filters each have an alias in the namespace and a well-known position.

Note

In previous versions, the sorting took place after the filter instances had been created, during

post-processing of the application context. In version 3.0+ the sorting is now done at the

bean metadata level, before the classes have been instantiated. This has implications for

how you add your own filters to the stack as the entire filter list must be known during the

parsing of the <http> element, so the syntax has changed slightly in 3.0.

http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://axschema.org/
http://axschema.org/


Spring Security

3.0.7.RELEASE 18

The filters, aliases and namespace elements/attributes which create the filters are shown in Table 2.1,

“Standard Filter Aliases and Ordering”. The filters are listed in the order in which they occur in the

filter chain.

Table 2.1. Standard Filter Aliases and Ordering

Alias Filter Class Namespace Element
or Attribute

CHANNEL_FILTER ChannelProcessingFilterhttp/intercept-

url@requires-channel

CONCURRENT_SESSION_FILTERConcurrentSessionFiltersession-management/

concurrency-control

SECURITY_CONTEXT_FILTERSecurityContextPersistenceFilterhttp

LOGOUT_FILTER LogoutFilter http/logout

X509_FILTER X509AuthenticationFilterhttp/x509

PRE_AUTH_FILTER AstractPreAuthenticatedProcessingFilter

Subclasses

N/A

CAS_FILTER CasAuthenticationFilterN/A

FORM_LOGIN_FILTER UsernamePasswordAuthenticationFilterhttp/form-login

BASIC_AUTH_FILTER BasicAuthenticationFilterhttp/http-basic

SERVLET_API_SUPPORT_FILTERSecurityContextHolderAwareFilterhttp/@servlet-api-

provision

REMEMBER_ME_FILTER RememberMeAuthenticationFilterhttp/remember-me

ANONYMOUS_FILTER AnonymousAuthenticationFilterhttp/anonymous

SESSION_MANAGEMENT_FILTERSessionManagementFiltersession-management

EXCEPTION_TRANSLATION_FILTERExceptionTranslationFilterhttp

FILTER_SECURITY_INTERCEPTORFilterSecurityInterceptorhttp

SWITCH_USER_FILTER SwitchUserFilter N/A

You can add your own filter to the stack, using the custom-filter element and one of these names

to specify the position your filter should appear at:

  <http>

     <custom-filter position="FORM_LOGIN_FILTER" ref="myFilter" />

  </http>

  <beans:bean id="myFilter" class="com.mycompany.MySpecialAuthenticationFilter"/>

  

  



Spring Security

3.0.7.RELEASE 19

You can also use the after or before attributes if you want your filter to be inserted before or after

another filter in the stack. The names "FIRST" and "LAST" can be used with the position attribute

to indicate that you want your filter to appear before or after the entire stack, respectively.

Avoiding filter position conflicts

If you are inserting a custom filter which may occupy the same position as one of the

standard filters created by the namespace then it's important that you don't include the

namespace versions by mistake. Avoid using the auto-config attribute and remove any

elements which create filters whose functionality you want to replace.

Note that you can't replace filters which are created by the use of the <http> element itself

- SecurityContextPersistenceFilter, ExceptionTranslationFilter

or FilterSecurityInterceptor.

If you're replacing a namespace filter which requires an authentication entry point (i.e. where the

authentication process is triggered by an attempt by an unauthenticated user to access to a secured

resource), you will need to add a custom entry point bean too.

Setting a Custom AuthenticationEntryPoint

If you aren't using form login, OpenID or basic authentication through the namespace, you may want

to define an authentication filter and entry point using a traditional bean syntax and link them into the

namespace, as we've just seen. The corresponding AuthenticationEntryPoint can be set using

the entry-point-ref attribute on the <http> element.

The CAS sample application is a good example of the use of custom beans with the namespace, including

this syntax. If you aren't familiar with authentication entry points, they are discussed in the technical

overview chapter.

2.4 Method Security

From version 2.0 onwards Spring Security has improved support substantially for adding security to your

service layer methods. It provides support for JSR-250 annotation security as well as the framework's

original @Secured annotation. From 3.0 you can also make use of new expression-based annotations.

You can apply security to a single bean, using the intercept-methods element to decorate the

bean declaration, or you can secure multiple beans across the entire service layer using the AspectJ

style pointcuts.

The <global-method-security> Element

This element is used to enable annotation-based security in your application (by setting the appropriate

attributes on the element), and also to group together security pointcut declarations which will be applied

across your entire application context. You should only declare one <global-method-security>

element. The following declaration would enable support for Spring Security's @Secured:

  <global-method-security secured-annotations="enabled" />

  



Spring Security

3.0.7.RELEASE 20

Adding an annotation to a method (on an class or interface) would then limit the access to that method

accordingly. Spring Security's native annotation support defines a set of attributes for the method. These

will be passed to the AccessDecisionManager for it to make the actual decision:

  public interface BankService {

    @Secured("IS_AUTHENTICATED_ANONYMOUSLY")

    public Account readAccount(Long id);

    @Secured("IS_AUTHENTICATED_ANONYMOUSLY")

    public Account[] findAccounts();

    @Secured("ROLE_TELLER")

    public Account post(Account account, double amount);

  }

Support for JSR-250 annotations can be enabled using

  <global-method-security jsr250-annotations="enabled" />

  

        

These are standards-based and allow simple role-based constraints to be applied but do not have the

power Spring Security's native annotations. To use the new expression-based syntax, you would use

  <global-method-security pre-post-annotations="enabled" />

  

and the equivalent Java code would be

   public interface BankService {

     @PreAuthorize("isAnonymous()")

     public Account readAccount(Long id);

     @PreAuthorize("isAnonymous()")

     public Account[] findAccounts();

     @PreAuthorize("hasAuthority('ROLE_TELLER')")

     public Account post(Account account, double amount);

   }

        

Expression-based annotations are a good choice if you need to define simple rules that go beyond

checking the role names against the user's list of authorities. You can enable more than one type of

annotation in the same application, but you should avoid mixing annotations types in the same interface

or class to avoid confusion.

Adding Security Pointcuts using protect-pointcut

The use of protect-pointcut is particularly powerful, as it allows you to apply security to many

beans with only a simple declaration. Consider the following example:

  <global-method-security>



Spring Security

3.0.7.RELEASE 21

    <protect-pointcut expression="execution(* com.mycompany.*Service.*(..))"

         access="ROLE_USER"/>

  </global-method-security>

          

This will protect all methods on beans declared in the application context whose classes are in the

com.mycompany package and whose class names end in "Service". Only users with the ROLE_USER

role will be able to invoke these methods. As with URL matching, the most specific matches must come

first in the list of pointcuts, as the first matching expression will be used.

2.5 The Default AccessDecisionManager

This section assumes you have some knowledge of the underlying architecture for access-control within

Spring Security. If you don't you can skip it and come back to it later, as this section is only really relevant

for people who need to do some customization in order to use more than simple role-based security.

When you use a namespace configuration, a default instance of AccessDecisionManager is

automatically registered for you and will be used for making access decisions for method invocations and

web URL access, based on the access attributes you specify in your intercept-url and protect-

pointcut declarations (and in annotations if you are using annotation secured methods).

The default strategy is to use an AffirmativeBased AccessDecisionManager with a

RoleVoter and an AuthenticatedVoter. You can find out more about these in the chapter on

authorization.

Customizing the AccessDecisionManager

If you need to use a more complicated access control strategy then it is easy to set an alternative for

both method and web security.

For method security, you do this by setting the access-decision-manager-ref attribute on

global-method-security to the Id of the appropriate AccessDecisionManager bean in

the application context:

  <global-method-security access-decision-manager-ref="myAccessDecisionManagerBean">

    ...

  </global-method-security>

  

The syntax for web security is the same, but on the http element:

  <http access-decision-manager-ref="myAccessDecisionManagerBean">

    ...

  </http>

  

authorization


Spring Security

3.0.7.RELEASE 22

2.6 The Authentication Manager and the Namespace

The main interface which provides authentication services in Spring Security is the

AuthenticationManager. This is usually an instance of Spring Security's ProviderManager

class, which you may already be familiar with if you've used the framework before. If

not, it will be covered later, in the technical overview chapter. The bean instance is

registered using the authentication-manager namespace element. You can't use a custom

AuthenticationManager if you are using either HTTP or method security through the namespace,

but this should not be a problem as you have full control over the AuthenticationProviders

that are used.

You may want to register additional AuthenticationProvider beans with the

ProviderManager and you can do this using the <authentication-provider> element with

the ref attribute, where the value of the attribute is the name of the provider bean you want to add.

For example:

  <authentication-manager>

    <authentication-provider ref="casAuthenticationProvider"/>

  </authentication-manager>

  <bean id="casAuthenticationProvider"

      class="org.springframework.security.cas.authentication.CasAuthenticationProvider">

    ...

  </bean>

  

Another common requirement is that another bean in the context may require a reference to the

AuthenticationManager. You can easily register an alias for the AuthenticationManager

and use this name elsewhere in your application context.

  <security:authentication-manager alias="authenticationManager">

     ...

  </security:authentication-manager>

  <bean id="customizedFormLoginFilter"

        class="com.somecompany.security.web.CustomFormLoginFilter">

     <property name="authenticationManager" ref="authenticationManager"/>

     ...

  </bean>

  



Spring Security

3.0.7.RELEASE 23

There are several sample web applications that are available with the project. To avoid an overly

large download, only the "tutorial" and "contacts" samples are included in the distribution zip file.

You can either build the others yourself, or you can obtain the war files individually from the central

Maven repository. We'd recommend the former. You can get the source as described in the introduction

and it's easy to build the project using Maven. There is more information on the project web site at

http://www.springsource.org/security/  [http://www.springsource.org/security/] if you need it. All paths

referred to in this chapter are relative to the project source directory.

3.1 Tutorial Sample

The tutorial sample is a nice basic example to get you started. It uses simple namespace configuration

throughout. The compiled application is included in the distribution zip file, ready to be deployed into

your web container (spring-security-samples-tutorial-3.0.x.war). The form-based

authentication mechanism is used in combination with the commonly-used remember-me authentication

provider to automatically remember the login using cookies.

We recommend you start with the tutorial sample, as the XML is minimal and easy to follow. Most

importantly, you can easily add this one XML file (and its corresponding web.xml entries) to your

existing application. Only when this basic integration is achieved do we suggest you attempt adding in

method authorization or domain object security.

3.2 Contacts

The Contacts Sample is an advanced example in that it illustrates the more powerful features of domain

object access control lists (ACLs) in addition to basic application security. The application provides an

interface with which the users are able to administer a simple database of contacts (the domain objects).

To deploy, simply copy the WAR file from Spring Security distribution into your container’s webapps

directory. The war should be called spring-security-samples-contacts-3.0.x.war (the

appended version number will vary depending on what release you are using).

After starting your container, check the application can load. Visit http://localhost:8080/

contacts (or whichever URL is appropriate for your web container and the WAR you deployed).

Next, click "Debug". You will be prompted to authenticate, and a series of usernames and passwords

are suggested on that page. Simply authenticate with any of these and view the resulting page. It should

contain a success message similar to the following:

Security Debug Information

Authentication object is of type:

org.springframework.security.authentication.UsernamePasswordAuthenticationToken

Authentication object as a String:

http://www.springsource.org/security/
http://www.springsource.org/security/


Spring Security

3.0.7.RELEASE 24

org.springframework.security.authentication.UsernamePasswordAuthenticationToken@1f127853:

Principal: org.springframework.security.core.userdetails.User@b07ed00: Username: rod; \

Password: [PROTECTED]; Enabled: true; AccountNonExpired: true;

credentialsNonExpired: true; AccountNonLocked: true; \

Granted Authorities: ROLE_SUPERVISOR, ROLE_USER; \

Password: [PROTECTED]; Authenticated: true; \

Details: org.springframework.security.web.authentication.WebAuthenticationDetails@0: \

RemoteIpAddress: 127.0.0.1; SessionId: 8fkp8t83ohar; \

Granted Authorities: ROLE_SUPERVISOR, ROLE_USER

Authentication object holds the following granted authorities:

ROLE_SUPERVISOR (getAuthority(): ROLE_SUPERVISOR)

ROLE_USER (getAuthority(): ROLE_USER)

Success! Your web filters appear to be properly configured!

    

Once you successfully receive the above message, return to the sample application's home page and

click "Manage". You can then try out the application. Notice that only the contacts available to the

currently logged on user are displayed, and only users with ROLE_SUPERVISOR are granted access

to delete their contacts. Behind the scenes, the MethodSecurityInterceptor is securing the

business objects.

The application allows you to modify the access control lists associated with different contacts. Be sure

to give this a try and understand how it works by reviewing the application context XML files.

3.3 LDAP Sample

The LDAP sample application provides a basic configuration and sets up both a namespace

configuration and an equivalent configuration using traditional beans, both in the same application

context file. This means there are actually two identical authentication providers configured in this

application.

3.4 CAS Sample

The CAS sample requires that you run both a CAS server and CAS client. It isn't included in the

distribution so you should check out the project code as described in the introduction. You'll find

the relevant files under the sample/cas directory. There's also a Readme.txt file in there which

explains how to run both the server and the client directly from the source tree, complete with SSL

support. You have to download the CAS Server web application (a war file) from the CAS site and drop

it into the samples/cas/server directory.



Spring Security

3.0.7.RELEASE 25

3.5 Pre-Authentication Sample

This sample application demonstrates how to wire up beans from the pre-authentication framework to

make use of login information from a J2EE container. The user name and roles are those setup by the

container.

The code is in samples/preauth.



Spring Security

3.0.7.RELEASE 26

4.1 Issue Tracking

Spring Security uses JIRA to manage bug reports and enhancement requests. If you find a bug, please

log a report using JIRA. Do not log it on the support forum, mailing list or by emailing the project's

developers. Such approaches are ad-hoc and we prefer to manage bugs using a more formal process.

If possible, in your issue report please provide a JUnit test that demonstrates any incorrect behaviour.

Or, better yet, provide a patch that corrects the issue. Similarly, enhancements are welcome to be logged

in the issue tracker, although we only accept enhancement requests if you include corresponding unit

tests. This is necessary to ensure project test coverage is adequately maintained.

You can access the issue tracker at http://jira.springsource.org/browse/SEC.

4.2 Becoming Involved

We welcome your involvement in the Spring Security project. There are many ways of contributing,

including reading the forum and responding to questions from other people, writing new code,

improving existing code, assisting with documentation, developing samples or tutorials, or simply

making suggestions.

4.3 Further Information

Questions and comments on Spring Security are welcome. You can use the Spring Community Forum

web site at http://forum.springsource.org to discuss Spring Security with other users of

the framework. Remember to use JIRA for bug reports, as explained above.

http://jira.springsource.org/browse/SEC
http://forum.springsource.org


Part II. Architecture
and Implementation

Once you are familiar with setting up and running some namespace-configuration based applications,

you may wish to develop more of an understanding of how the framework actually works behind

the namespace facade. Like most software, Spring Security has certain central interfaces, classes and

conceptual abstractions that are commonly used throughout the framework. In this part of the reference

guide we will look at some of these and see how they work together to support authentication and access-

control within Spring Security.



Spring Security

3.0.7.RELEASE 28

5.1 Runtime Environment

Spring Security 3.0 requires a Java 5.0 Runtime Environment or higher. As Spring Security aims to

operate in a self-contained manner, there is no need to place any special configuration files into your

Java Runtime Environment. In particular, there is no need to configure a special Java Authentication

and Authorization Service (JAAS) policy file or place Spring Security into common classpath locations.

Similarly, if you are using an EJB Container or Servlet Container there is no need to put any special

configuration files anywhere, nor include Spring Security in a server classloader. All the required files

will be contained within your application.

This design offers maximum deployment time flexibility, as you can simply copy your target artifact

(be it a JAR, WAR or EAR) from one system to another and it will immediately work.

5.2 Core Components

In Spring Security 3.0, the contents of the spring-security-core jar were stripped down to the

bare minimum. It no longer contains any code related to web-application security, LDAP or namespace

configuration. We'll take a look here at some of the Java types that you'll find in the core module. They

represent the building blocks of the the framework, so if you ever need to go beyond a simple namespace

configuration then it's important that you understand what they are, even if you don't actually need to

interact with them directly.

SecurityContextHolder, SecurityContext and Authentication Objects

The most fundamental object is SecurityContextHolder. This is where we store details of the

present security context of the application, which includes details of the principal currently using the

application. By default the SecurityContextHolder uses a ThreadLocal to store these details,

which means that the security context is always available to methods in the same thread of execution,

even if the security context is not explicitly passed around as an argument to those methods. Using a

ThreadLocal in this way is quite safe if care is taken to clear the thread after the present principal's

request is processed. Of course, Spring Security takes care of this for you automatically so there is no

need to worry about it.

Some applications aren't entirely suitable for using a ThreadLocal, because of the specific way they

work with threads. For example, a Swing client might want all threads in a Java Virtual Machine to

use the same security context. SecurityContextHolder can be configured with a strategy on

startup to specify how you would like the context to be stored. For a standalone application you would

use the SecurityContextHolder.MODE_GLOBAL strategy. Other applications might want to

have threads spawned by the secure thread also assume the same security identity. This is achieved

by using SecurityContextHolder.MODE_INHERITABLETHREADLOCAL. You can change the

mode from the default SecurityContextHolder.MODE_THREADLOCAL in two ways. The first

is to set a system property, the second is to call a static method on SecurityContextHolder.

Most applications won't need to change from the default, but if you do, take a look at the JavaDocs for

SecurityContextHolder to learn more.



Spring Security

3.0.7.RELEASE 29

Obtaining information about the current user

Inside the SecurityContextHolder we store details of the principal currently interacting with

the application. Spring Security uses an Authentication object to represent this information. You

won't normally need to create an Authentication object yourself, but it is fairly common for users

to query the Authentication object. You can use the following code block - from anywhere in your

application - to obtain the name of the currently authenticated user, for example:

Object principal = SecurityContextHolder.getContext().getAuthentication().getPrincipal();

if (principal instanceof UserDetails) {

  String username = ((UserDetails)principal).getUsername();

} else {

  String username = principal.toString();

}

The object returned by the call to getContext() is an instance of the SecurityContext interface.

This is the object that is kept in thread-local storage. As we'll see below, most authentication mechanisms

withing Spring Security return an instance of UserDetails as the principal.

The UserDetailsService

Another item to note from the above code fragment is that you can obtain a principal from

the Authentication object. The principal is just an Object. Most of the time this can be

cast into a UserDetails object. UserDetails is a central interface in Spring Security. It

represents a principal, but in an extensible and application-specific way. Think of UserDetails

as the adapter between your own user database and what Spring Security needs inside the

SecurityContextHolder. Being a representation of something from your own user database,

quite often you will cast the UserDetails to the original object that your application provided, so

you can call business-specific methods (like getEmail(), getEmployeeNumber() and so on).

By now you're probably wondering, so when do I provide a UserDetails object? How do I do that?

I thought you said this thing was declarative and I didn't need to write any Java code - what gives? The

short answer is that there is a special interface called UserDetailsService. The only method on

this interface accepts a String-based username argument and returns a UserDetails:

  UserDetails loadUserByUsername(String username) throws UsernameNotFoundException;

This is the most common approach to loading information for a user within Spring Security and you

will see it used throughout the framework whenever information on a user is required.

On successful authentication, UserDetails is used to build the Authentication object that is

stored in the SecurityContextHolder (more on this below). The good news is that we provide

a number of UserDetailsService implementations, including one that uses an in-memory map

(InMemoryDaoImpl) and another that uses JDBC (JdbcDaoImpl). Most users tend to write their

own, though, with their implementations often simply sitting on top of an existing Data Access Object

(DAO) that represents their employees, customers, or other users of the application. Remember the

advantage that whatever your UserDetailsService returns can always be obtained from the

SecurityContextHolder using the above code fragment.



Spring Security

3.0.7.RELEASE 30

GrantedAuthority

Besides the principal, another important method provided by Authentication is

getAuthorities(). This method provides an array of GrantedAuthority objects. A

GrantedAuthority is, not surprisingly, an authority that is granted to the principal. Such authorities

are usually “roles”, such as ROLE_ADMINISTRATOR or ROLE_HR_SUPERVISOR. These roles are

later on configured for web authorization, method authorization and domain object authorization. Other

parts of Spring Security are capable of interpreting these authorities, and expect them to be present.

GrantedAuthority objects are usually loaded by the UserDetailsService.

Usually the GrantedAuthority objects are application-wide permissions. They are not specific to a

given domain object. Thus, you wouldn't likely have a GrantedAuthority to represent a permission

to Employee object number 54, because if there are thousands of such authorities you would quickly

run out of memory (or, at the very least, cause the application to take a long time to authenticate a user).

Of course, Spring Security is expressly designed to handle this common requirement, but you'd instead

use the project's domain object security capabilities for this purpose.

Summary

Just to recap, the major building blocks of Spring Security that we've seen so far are:

• SecurityContextHolder, to provide access to the SecurityContext.

• SecurityContext, to hold the Authentication and possibly request-specific security

information.

• Authentication, to represent the principal in a Spring Security-specific manner.

• GrantedAuthority, to reflect the application-wide permissions granted to a principal.

• UserDetails, to provide the necessary information to build an Authentication object from your

application's DAOs or other source source of security data.

• UserDetailsService, to create a UserDetails when passed in a String-based username

(or certificate ID or the like).

Now that you've gained an understanding of these repeatedly-used components, let's take a closer look

at the process of authentication.

5.3 Authentication

Spring Security can participate in many different authentication environments. While we recommend

people use Spring Security for authentication and not integrate with existing Container Managed

Authentication, it is nevertheless supported - as is integrating with your own proprietary authentication

system.

What is authentication in Spring Security?

Let's consider a standard authentication scenario that everyone is familiar with.

1. A user is prompted to log in with a username and password.

2. The system (successfully) verifies that the password is correct for the username.



Spring Security

3.0.7.RELEASE 31

3. The context information for that user is obtained (their list of roles and so on).

4. A security context is established for the user

5. The user proceeds, potentially to perform some operation which is potentially protected by an access

control mechanism which checks the required permissions for the operation against the current

security context information.

The first three items constitute the authentication process so we'll take a look at how these take place

within Spring Security.

1. The username and password are obtained and combined into an instance of

UsernamePasswordAuthenticationToken (an instance of the Authentication

interface, which we saw earlier).

2. The token is passed to an instance of AuthenticationManager for validation.

3. The AuthenticationManager returns a fully populated Authentication instance on

successful authentication.

4. The security context is established by calling

SecurityContextHolder.getContext().setAuthentication(...), passing in

the returned authentication object.

From that point on, the user is considered to be authenticated. Let's look at some code as an example.

import org.springframework.security.authentication.*;

import org.springframework.security.core.*;

import org.springframework.security.core.authority.GrantedAuthorityImpl;

import org.springframework.security.core.context.SecurityContextHolder;

public class AuthenticationExample {

  private static AuthenticationManager am = new SampleAuthenticationManager();

  public static void main(String[] args) throws Exception {

    BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

    while(true) {

      System.out.println("Please enter your username:");

      String name = in.readLine();

      System.out.println("Please enter your password:");

      String password = in.readLine();

      try {

        Authentication request = new UsernamePasswordAuthenticationToken(name, password);

        Authentication result = am.authenticate(request);

        SecurityContextHolder.getContext().setAuthentication(result);

        break;

      } catch(AuthenticationException e) {

        System.out.println("Authentication failed: " + e.getMessage());

      }

    }

    System.out.println("Successfully authenticated. Security context contains: " +

              SecurityContextHolder.getContext().getAuthentication());

  }

}

class SampleAuthenticationManager implements AuthenticationManager {

  static final List<GrantedAuthority> AUTHORITIES = new ArrayList<GrantedAuthority>();



Spring Security

3.0.7.RELEASE 32

  static {

    AUTHORITIES.add(new GrantedAuthorityImpl("ROLE_USER"));

  }

  public Authentication authenticate(Authentication auth) throws AuthenticationException {

    if (auth.getName().equals(auth.getCredentials())) {

      return new UsernamePasswordAuthenticationToken(auth.getName(),

        auth.getCredentials(), AUTHORITIES);

      }

      throw new BadCredentialsException("Bad Credentials");

  }

}

Here we have written a little program that asks the user to enter a username and password and

performs the above sequence. The AuthenticationManager which we've implemented here will

authenticate any user whose username and password are the same. It assigns a single role to every user.

The output from the above will be something like:

Please enter your username:

bob

Please enter your password:

password

Authentication failed: Bad Credentials

Please enter your username:

bob

Please enter your password:

bob

Successfully authenticated. Security context contains: \

 org.springframework.security.authentication.UsernamePasswordAuthenticationToken@441d0230: \

 Principal: bob; Password: [PROTECTED]; \

 Authenticated: true; Details: null; \

 Granted Authorities: ROLE_USER

        

Note that you don't normally need to write any code like this. The process will normally occur internally,

in a web authentication filter for example. We've just included the code here to show that the question

of what actually constitutes authentication in Spring Security has quite a simple answer. A user is

authenticated when the SecurityContextHolder contains a fully populated Authentication

object.

Setting the SecurityContextHolder Contents Directly

In fact, Spring Security doesn't mind how you put the Authentication object

inside the SecurityContextHolder. The only critical requirement is that the

SecurityContextHolder contains an Authentication which represents a principal before

the AbstractSecurityInterceptor (which we'll see more about later) needs to authorize a user

operation.

You can (and many users do) write their own filters or MVC controllers to provide interoperability

with authentication systems that are not based on Spring Security. For example, you might be using

Container-Managed Authentication which makes the current user available from a ThreadLocal or JNDI

location. Or you might work for a company that has a legacy proprietary authentication system, which

is a corporate "standard" over which you have little control. In situations like this it's quite easy to



Spring Security

3.0.7.RELEASE 33

get Spring Security to work, and still provide authorization capabilities. All you need to do is write a

filter (or equivalent) that reads the third-party user information from a location, build a Spring Security-

specific Authentication object, and put it into the SecurityContextHolder.

If you're wondering how the AuthenticationManager manager is implemented in a real world

example, we'll look at that in the core services chapter.

5.4 Authentication in a Web Application

Now let's explore the situation where you are using Spring Security in a web application (without

web.xml security enabled). How is a user authenticated and the security context established?

Consider a typical web application's authentication process:

1. You visit the home page, and click on a link.

2. A request goes to the server, and the server decides that you've asked for a protected resource.

3. As you're not presently authenticated, the server sends back a response indicating that you must

authenticate. The response will either be an HTTP response code, or a redirect to a particular web

page.

4. Depending on the authentication mechanism, your browser will either redirect to the specific web

page so that you can fill out the form, or the browser will somehow retrieve your identity (via a

BASIC authentication dialogue box, a cookie, a X.509 certificate etc.).

5. The browser will send back a response to the server. This will either be an HTTP POST containing

the contents of the form that you filled out, or an HTTP header containing your authentication details.

6. Next the server will decide whether or not the presented credentials are valid. If they're valid, the next

step will happen. If they're invalid, usually your browser will be asked to try again (so you return

to step two above).

7. The original request that you made to cause the authentication process will be retried. Hopefully

you've authenticated with sufficient granted authorities to access the protected resource. If you have

sufficient access, the request will be successful. Otherwise, you'll receive back an HTTP error code

403, which means "forbidden".

Spring Security has distinct classes responsible for most of the steps described above. The main

participants (in the order that they are used) are the ExceptionTranslationFilter, an

AuthenticationEntryPoint and an “authentication mechanism”, which is responsible for

calling the AuthenticationManager which we saw in the previous section.

ExceptionTranslationFilter

ExceptionTranslationFilter is a Spring Security filter that has responsibility for detecting

any Spring Security exceptions that are thrown. Such exceptions will generally be thrown by

an AbstractSecurityInterceptor, which is the main provider of authorization services.



Spring Security

3.0.7.RELEASE 34

We will discuss AbstractSecurityInterceptor in the next section, but for now we just

need to know that it produces Java exceptions and knows nothing about HTTP or how to

go about authenticating a principal. Instead the ExceptionTranslationFilter offers this

service, with specific responsibility for either returning error code 403 (if the principal has been

authenticated and therefore simply lacks sufficient access - as per step seven above), or launching an

AuthenticationEntryPoint (if the principal has not been authenticated and therefore we need

to go commence step three).

AuthenticationEntryPoint

The AuthenticationEntryPoint is responsible for step three in the above list. As you can

imagine, each web application will have a default authentication strategy (well, this can be configured

like nearly everything else in Spring Security, but let's keep it simple for now). Each major authentication

system will have its own AuthenticationEntryPoint implementation, which typically performs

one of the actions described in step 3.

Authentication Mechanism

Once your browser submits your authentication credentials (either as an HTTP form post or HTTP

header) there needs to be something on the server that “collects” these authentication details. By now

we're at step six in the above list. In Spring Security we have a special name for the function of collecting

authentication details from a user agent (usually a web browser), referring to it as the “authentication

mechanism”. Examples are form-base login and Basic authentication. Once the authentication details

have been collected from the user agent, an Authentication “request” object is built and then

presented to the AuthenticationManager.

After the authentication mechanism receives back the fully-populated Authentication object,

it will deem the request valid, put the Authentication into the SecurityContextHolder,

and cause the original request to be retried (step seven above). If, on the other hand, the

AuthenticationManager rejected the request, the authentication mechanism will ask the user

agent to retry (step two above).

Storing the SecurityContext between requests

Depending on the type of application, there may need to be a strategy in place to store

the security context between user operations. In a typical web application, a user logs in

once and is subsequently identified by their session Id. The server caches the principal

information for the duration session. In Spring Security, the responsibility for storing the

SecurityContext between requests falls to the SecurityContextPersistenceFilter,

which by default stores the context as an HttpSession attribute between HTTP requests. It

restores the context to the SecurityContextHolder for each request and, crucially, clears the

SecurityContextHolder when the request completes. You shouldn't interact directly with the

HttpSession for security purposes. There is simply no justification for doing so - always use the

SecurityContextHolder instead.

Many other types of application (for example, a stateless RESTful web service) do not use

HTTP sessions and will re-authenticate on every request. However, it is still important that



Spring Security

3.0.7.RELEASE 35

the SecurityContextPersistenceFilter is included in the chain to make sure that the

SecurityContextHolder is cleared after each request.

Note

In an application which receives concurrent requests in a single session, the

same SecurityContext instance will be shared between threads. Even though

a ThreadLocal is being used, it is the same instance that is retrieved

from the HttpSession for each thread. This has implications if you wish to

temporarily change the context under which a thread is running. If you just use

SecurityContextHolder.getContext().setAuthentication(anAuthentication),

then the Authentication object will change in all concurrent threads

which share the same SecurityContext instance. You can customize the

behaviour of SecurityContextPersistenceFilter to create a completely

new SecurityContext for each request, preventing changes in one thread

from affecting another. Alternatively you can create a new instance just

at the point where you temporarily change the context. The method

SecurityContextHolder.createEmptyContext() always returns a new

context instance.

5.5 Access-Control (Authorization) in Spring Security

The main interface responsible for making access-control decisions in Spring Security is the

AccessDecisionManager. It has a decide method which takes an Authentication object

representing the principal requesting access, a “secure object” (see below) and a list of security metadata

attributes which apply for the object (such as a list of roles which are required for access to be granted).

Security and AOP Advice

If you're familiar with AOP, you'd be aware there are different types of advice available: before, after,

throws and around. An around advice is very useful, because an advisor can elect whether or not to

proceed with a method invocation, whether or not to modify the response, and whether or not to throw

an exception. Spring Security provides an around advice for method invocations as well as web requests.

We achieve an around advice for method invocations using Spring's standard AOP support and we

achieve an around advice for web requests using a standard Filter.

For those not familiar with AOP, the key point to understand is that Spring Security can help you

protect method invocations as well as web requests. Most people are interested in securing method

invocations on their services layer. This is because the services layer is where most business logic resides

in current-generation J2EE applications. If you just need to secure method invocations in the services

layer, Spring's standard AOP will be adequate. If you need to secure domain objects directly, you will

likely find that AspectJ is worth considering.

You can elect to perform method authorization using AspectJ or Spring AOP, or you can elect to perform

web request authorization using filters. You can use zero, one, two or three of these approaches together.

The mainstream usage pattern is to perform some web request authorization, coupled with some Spring

AOP method invocation authorization on the services layer.



Spring Security

3.0.7.RELEASE 36

Secure Objects and the AbstractSecurityInterceptor

So what is a “secure object” anyway? Spring Security uses the term to refer to any object that can

have security (such as an authorization decision) applied to it. The most common examples are method

invocations and web requests.

Each supported secure object type has its own interceptor class, which is

a subclass of AbstractSecurityInterceptor. Importantly, by the time the

AbstractSecurityInterceptor is called, the SecurityContextHolder will contain a

valid Authentication if the principal has been authenticated.

AbstractSecurityInterceptor provides a consistent workflow for handling secure object

requests, typically:

1. Look up the “configuration attributes” associated with the present request

2. Submitting the secure object, current Authentication and configuration attributes to the

AccessDecisionManager for an authorization decision

3. Optionally change the Authentication under which the invocation takes place

4. Allow the secure object invocation to proceed (assuming access was granted)

5. Call the AfterInvocationManager if configured, once the invocation has returned.

What are Configuration Attributes?

A “configuration attribute” can be thought of as a String that has special meaning to the

classes used by AbstractSecurityInterceptor. They are represented by the interface

ConfigAttribute within the framework. They may be simple role names or have more complex

meaning, depending on the how sophisticated the AccessDecisionManager implementation is.

The AbstractSecurityInterceptor is configured with a SecurityMetadataSource

which it uses to look up the attributes for a secure object. Usually this configuration will be hidden

from the user. Configuration attributes will be entered as annotations on secured methods or as

access attributes on secured URLs. For example, when we saw something like <intercept-url

pattern='/secure/**' access='ROLE_A,ROLE_B'/> in the namespace introduction, this

is saying that the configuration attributes ROLE_A and ROLE_B apply to web requests matching

the given pattern. In practice, with the default AccessDecisionManager configuration, this

means that anyone who has a GrantedAuthority matching either of these two attributes will be

allowed access. Strictly speaking though, they are just attributes and the interpretation is dependent

on the AccessDecisionManager implementation. The use of the prefix ROLE_ is a marker to

indicate that these attributes are roles and should be consumed by Spring Security's RoleVoter.

This is only relevant when a voter-based AccessDecisionManager is in use. We'll see how the

AccessDecisionManager is implemented in the authorization chapter.

RunAsManager

Assuming AccessDecisionManager decides to allow the request, the

AbstractSecurityInterceptor will normally just proceed with the request. Having said that,



Spring Security

3.0.7.RELEASE 37

on rare occasions users may want to replace the Authentication inside the SecurityContext

with a different Authentication, which is handled by the AccessDecisionManager calling

a RunAsManager. This might be useful in reasonably unusual situations, such as if a services

layer method needs to call a remote system and present a different identity. Because Spring Security

automatically propagates security identity from one server to another (assuming you're using a properly-

configured RMI or HttpInvoker remoting protocol client), this may be useful.

AfterInvocationManager

Following the secure object proceeding and then returning - which may mean a method invocation

completing or a filter chain proceeding - the AbstractSecurityInterceptor gets one final

chance to handle the invocation. At this stage the AbstractSecurityInterceptor is interested

in possibly modifying the return object. We might want this to happen because an authorization

decision couldn't be made “on the way in” to a secure object invocation. Being highly pluggable,

AbstractSecurityInterceptor will pass control to an AfterInvocationManager to

actually modify the object if needed. This class can even entirely replace the object, or throw an

exception, or not change it in any way as it chooses.

AbstractSecurityInterceptor and its related objects are shown in Figure 5.1, “Security

interceptors and the “secure object” model”.

Figure 5.1. Security interceptors and the “secure object” model

Extending the Secure Object Model

Only developers contemplating an entirely new way of intercepting and authorizing requests would need

to use secure objects directly. For example, it would be possible to build a new secure object to secure

calls to a messaging system. Anything that requires security and also provides a way of intercepting a

call (like the AOP around advice semantics) is capable of being made into a secure object. Having said

that, most Spring applications will simply use the three currently supported secure object types (AOP

Alliance MethodInvocation, AspectJ JoinPoint and web request FilterInvocation) with

complete transparency.

5.6 Localization

Spring Security supports localization of exception messages that end users are likely to see. If your

application is designed for English-speaking users, you don't need to do anything as by default all

Security Security messages are in English. If you need to support other locales, everything you need

to know is contained in this section.

All exception messages can be localized, including messages related to authentication failures and access

being denied (authorization failures). Exceptions and logging that is focused on developers or system

deployers (including incorrect attributes, interface contract violations, using incorrect constructors,

startup time validation, debug-level logging) etc are not localized and instead are hard-coded in English

within Spring Security's code.



Spring Security

3.0.7.RELEASE 38

Shipping in the spring-security-core-xx.jar you will find an

org.springframework.security package that in turn contains a messages.properties

file. This should be referred to by your ApplicationContext, as Spring Security classes implement

Spring's MessageSourceAware interface and expect the message resolver to be dependency injected

at application context startup time. Usually all you need to do is register a bean inside your application

context to refer to the messages. An example is shown below:

<bean id="messageSource"

    class="org.springframework.context.support.ReloadableResourceBundleMessageSource">

  <property name="basename" value="org/springframework/security/messages"/>

</bean>

The messages.properties is named in accordance with standard resource bundles and represents

the default language supported by Spring Security messages. This default file is in English. If you do not

register a message source, Spring Security will still work correctly and fallback to hard-coded English

versions of the messages.

If you wish to customize the messages.properties file, or support other languages, you should

copy the file, rename it accordingly, and register it inside the above bean definition. There are not a large

number of message keys inside this file, so localization should not be considered a major initiative. If you

do perform localization of this file, please consider sharing your work with the community by logging

a JIRA task and attaching your appropriately-named localized version of messages.properties.

Rounding out the discussion on localization is the Spring ThreadLocal known as

org.springframework.context.i18n.LocaleContextHolder. You should set the

LocaleContextHolder to represent the preferred Locale of each user. Spring Security will

attempt to locate a message from the message source using the Locale obtained from this

ThreadLocal. Please refer to the Spring Framework documentation for further details on using

LocaleContextHolder.



Spring Security

3.0.7.RELEASE 39

Now that we have a high-level overview of the Spring Security architecture and its core classes, let's

take a closer look at one or two of the core interfaces and their implementations, in particular the

AuthenticationManager, UserDetailsService and the AccessDecisionManager.

These crop up regularly throughout the remainder of this document so it's important you know how they

are configured and how they operate.

6.1 The AuthenticationManager, ProviderManager
and AuthenticationProviders

The AuthenticationManager is just an interface, so the implementation can be anything we

choose, but how does it work in practice? What if we need to check multiple authentication databases

or a combination of different authentication services such as a database and an LDAP server?

The default implementation in Spring Security is called ProviderManager and rather than handling

the authentication request itself, it delegates to a list of configured AuthenticationProviders,

each of which is queried in turn to see if it can perform the authentication. Each provider will either

throw an exception or return a fully populated Authentication object. Remember our good

friends, UserDetails and UserDetailsService? If not, head back to the previous chapter and

refresh your memory. The most common approach to verifying an authentication request is to load the

corresponding UserDetails and check the loaded password against the one that has been entered

by the user. This is the approach used by the DaoAuthenticationProvider (see below). The

loaded UserDetails object - and particularly the GrantedAuthoritys it contains - will be used

when building the fully populated Authentication object which is returned from a successful

authentication and stored in the SecurityContext.

If you are using the namespace, an instance of ProviderManager is created and maintained

internally, and you add providers to it by using the namespace authentication provider elements (see

the namespace chapter). In this case, you should not declare a ProviderManager bean in your

application context. However, if you are not using the namespace then you would declare it like so:

<bean id="authenticationManager"

     class="org.springframework.security.authentication.ProviderManager">

  <property name="providers">

    <list>

      <ref local="daoAuthenticationProvider"/>

      <ref local="anonymousAuthenticationProvider"/>

      <ref local="ldapAuthenticationProvider"/>

    </list>

  </property>

</bean>

In the above example we have three providers. They are tried in the order shown (which is implied

by the use of a List), with each provider able to attempt authentication, or skip authentication by

simply returning null. If all implementations return null, the ProviderManager will throw a

ProviderNotFoundException. If you're interested in learning more about chaining providers,

please refer to the ProviderManager JavaDocs.



Spring Security

3.0.7.RELEASE 40

Authentication mechanisms such as a web form-login processing filter are injected with a reference

to the ProviderManager and will call it to handle their authentication requests. The providers you

require will sometimes be interchangeable with the authentication mechanisms, while at other times they

will depend on a specific authentication mechanism. For example, DaoAuthenticationProvider

and LdapAuthenticationProvider are compatible with any mechanism which submits a

simple username/password authentication request and so will work with form-based logins or HTTP

Basic authentication. On the other hand, some authentication mechanisms create an authentication

request object which can only be interpreted by a single type of AuthenticationProvider.

An example of this would be JA-SIG CAS, which uses the notion of a service ticket and so

can therefore only be authenticated by a CasAuthenticationProvider. You needn't be too

concerned about this, because if you forget to register a suitable provider, you'll simply receive a

ProviderNotFoundException when an attempt to authenticate is made.

DaoAuthenticationProvider

The simplest AuthenticationProvider implemented by Spring Security is

DaoAuthenticationProvider, which is also one of the earliest supported by the framework.

It leverages a UserDetailsService (as a DAO) in order to lookup the username, password

and GrantedAuthoritys. It authenticates the user simply by comparing the password

submitted in a UsernamePasswordAuthenticationToken against the one loaded by the

UserDetailsService. Configuring the provider is quite simple:

<bean id="daoAuthenticationProvider"

    class="org.springframework.security.authentication.dao.DaoAuthenticationProvider">

  <property name="userDetailsService" ref="inMemoryDaoImpl"/>

  <property name="saltSource" ref="saltSource"/>

  <property name="passwordEncoder" ref="passwordEncoder"/>

</bean>

The PasswordEncoder and SaltSource are optional. A PasswordEncoder provides

encoding and decoding of passwords presented in the UserDetails object that is returned from the

configured UserDetailsService. A SaltSource enables the passwords to be populated with

a "salt", which enhances the security of the passwords in the authentication repository. These will be

discussed in more detail below.

Erasing Credentials on Successful Authentication

From Spring Security 3.0.3, you can configure the ProviderManager will attempt to clear any

sensitive credentials information from the Authentication object which is returned by a successful

authentication request, to prevent information like passwords being retained longer than necessary.

This feature is controlled by the eraseCredentialsAfterAuthentication property on

ProviderManager. It is off by default. See the Javadoc for more information.

This may cause issues when you are using a cache of user objects, for example, to improve performance

in a stateless application. If the Authentication contains a reference to an object in the cache (such

as a UserDetails instance) and this has its credentials removed, then it will no longer be possible

to authenticate against the cached value. You need to take this into account if you are using a cache.



Spring Security

3.0.7.RELEASE 41

An obvious solution is to make a copy of the object first, either in the cache implementation or in the

AuthenticationProvider which creates the returned Authentication object.

6.2 UserDetailsService Implementations

As mentioned in the earlier in this reference guide, most authentication providers take advantage

of the UserDetails and UserDetailsService interfaces. Recall that the contract for

UserDetailsService is a single method:

  UserDetails loadUserByUsername(String username) throws UsernameNotFoundException;

            

The returned UserDetails is an interface that provides getters that guarantee non-null provision of

authentication information such as the username, password, granted authorities and whether the user

account is enabled or disabled. Most authentication providers will use a UserDetailsService,

even if the username and password are not actually used as part of the authentication decision. They may

use the returned UserDetails object just for its GrantedAuthority information, because some

other system (like LDAP or X.509 or CAS etc) has undertaken the responsibility of actually validating

the credentials.

Given UserDetailsService is so simple to implement, it should be easy for users to retrieve

authentication information using a persistence strategy of their choice. Having said that, Spring Security

does include a couple of useful base implementations, which we'll look at below.

In-Memory Authentication

Is easy to use create a custom UserDetailsService implementation that extracts information from

a persistence engine of choice, but many applications do not require such complexity. This is particularly

true if you're building a prototype application or just starting integrating Spring Security, when you don't

really want to spend time configuring databases or writing UserDetailsService implementations.

For this sort of situation, a simple option is to use the user-service element from the security

namespace:

  <user-service id="userDetailsService">

    <user name="jimi" password="jimispassword" authorities="ROLE_USER, ROLE_ADMIN" />

    <user name="bob" password="bobspassword" authorities="ROLE_USER" />

  </user-service>

  

                    

This also supports the use of an external properties file:

  <user-service id="userDetailsService" properties="users.properties"/>

  

The properties file should contain entries in the form

username=password,grantedAuthority[,grantedAuthority][,enabled|disabled]

For example



Spring Security

3.0.7.RELEASE 42

 jimi=jimispassword,ROLE_USER,ROLE_ADMIN,enabled

 bob=bobspassword,ROLE_USER,enabled

JdbcDaoImpl

Spring Security also includes a UserDetailsService that can obtain authentication information

from a JDBC data source. Internally Spring JDBC is used, so it avoids the complexity of a fully-featured

object relational mapper (ORM) just to store user details. If your application does use an ORM tool, you

might prefer to write a custom UserDetailsService to reuse the mapping files you've probably

already created. Returning to JdbcDaoImpl, an example configuration is shown below:

<bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource">

  <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>

  <property name="url" value="jdbc:hsqldb:hsql://localhost:9001"/>

  <property name="username" value="sa"/>

  <property name="password" value=""/>

</bean>

<bean id="userDetailsService" class="org.springframework.security.core.userdetails.jdbc.JdbcDaoImpl">

  <property name="dataSource" ref="dataSource"/>

</bean>        

You can use different relational database management systems by modifying the

DriverManagerDataSource shown above. You can also use a global data source obtained from

JNDI, as with any other Spring configuration.

Authority Groups

By default, JdbcDaoImpl loads the authorities for a single user with the assumption that the authorities

are mapped directly to users (see the database schema appendix). An alternative approach is to partition

the authorities into groups and assign groups to the user. Some people prefer this approach as a means

of administering user rights. See the JdbcDaoImpl Javadoc for more information on how to enable

the use of group authorities. The group schema is also included in the appendix.

6.3 Password Encoding

Spring Security's PasswordEncoder interface is used to support the use of passwords which are

encoded in some way in persistent storage. This will normally mean that the passwords are “hashed”

using a digest algorithm such as MD5 or SHA.

What is a hash?

Password hashing is not unique to Spring Security but is a common source of confusion for users who

are not familiar with the concept. A hash (or digest) algorithm is a one-way function which produces a

piece of fixed-length output data (the hash) from some input data, such as a password. As an example,

the MD5 hash of the string “password” (in hexadecimal) is



Spring Security

3.0.7.RELEASE 43

    5f4dcc3b5aa765d61d8327deb882cf99

A hash is “one-way” in the sense that it is very difficult (effectively impossible) to obtain the original

input given the hash value, or indeed any possible input which would produce that hash value. This

property makes hash values very useful for authentication purposes. They can be stored in your user

database as an alternative to plaintext passwords and even if the values are compromised they do not

immediately reveal a password which can be used to login. Note that this also means you have no way

of recovering the password once it is encoded.

Adding Salt to a Hash

One potential problem with the use of password hashes that it is relatively easy to get round the one-

way property of the hash if a common word is used for the input. For example, if you search for the hash

value 5f4dcc3b5aa765d61d8327deb882cf99 using google, you will quickly find the original

word “password”. In a similar way, an attacker can build a dictionary of hashes from a standard word

list and use this to lookup the original password. One way to help prevent this is to have a suitably

strong password policy to try to prevent common words from being used. Another is to use a “salt”

when calculating the hashes. This is an additional string of known data for each user which is combined

with the password before calculating the hash. Ideally the data should be as random as possible, but

in practice any salt value is usually preferable to none. Spring Security has a SaltSource interface

which can be used by an authentication provider to generate a salt value for a particular user. Using a

salt means that an attacker has to build a separate dictionary of hashes for each salt value, making the

attack more complicated (but not impossible).

Hashing and Authentication

When an authentication provider (such as Spring Security's DaoAuthenticationProvider needs

to check the password in a submitted authentication request against the known value for a user, and

the stored password is encoded in some way, then the submitted value must be encoded using exactly

the same algorithm. It's up to you to check that these are compatible as Spring Security has no control

over the persistent values. If you add password hashing to your authentication configuration in Spring

Security, and your database contains plaintext passwords, then there is no way authentication can

succeed. Even if you are aware that your database is using MD5 to encode the passwords, for example,

and your application is configured to use Spring Security's Md5PasswordEncoder, there are still

things that can go wrong. The database may have the passwords encoded in Base 64, for example while

the enocoder is using hexadecimal strings (the default)1. Alternatively your database may be using

upper-case while the output from the encoder is lower-case. Make sure you write a test to check the

output from your configured password encoder with a known password and salt combination and check

that it matches the database value before going further and attempting to authenticate through your

application. For more information on the default method for merging salt and password, see the Javadoc

for BasePasswordEncoder. If you want to generate encoded passwords directly in Java for storage

in your user database, then you can use the encodePassword method on the PasswordEncoder.

1You can configure the encoder to use Base 64 instead of hex by setting the encodeHashAsBase64 property to true. Check

the Javadoc for MessageDigestPasswordEncoder and its parent classes for more information.



Part III. Web Application Security
Most Spring Security users will be using the framework in applications which make user of HTTP and

the Servlet API. In this part, we'll take a look at how Spring Security provides authentication and access-

control features for the web layer of an application. We'll look behind the facade of the namespace and

see which classes and interfaces are actually assembled to provide web-layer security. In some situations

it is necessary to use traditional bean configuration to provide full control over the configuration, so

we'll also see how to configure these classes directly without the namespace.



Spring Security

3.0.7.RELEASE 45

Spring Security's web infrastructure is based entirely on standard servlet filters. It doesn't use servlets

or any other servlet-based frameworks (such as Spring MVC) internally, so it has no strong links to any

particular web technology. It deals in HttpServletRequests and HttpServletResponses

and doesn't care whether the requests come from a browser, a web service client, an HttpInvoker

or an AJAX application.

Spring Security maintains a filter chain internally where each of the filters has a particular responsibility

and filters are added or removed from the configuration depending on which services are required. The

ordering of the filters is important as there are dependencies between them. If you have been using

namespace configuration, then the filters are automatically configured for you and you don't have to

define any Spring beans explicitly but here may be times when you want full control over the security

filter chain, either because you are using features which aren't supported in the namespace, or you are

using your own customized versions of classes.

7.1 DelegatingFilterProxy

When using servlet filters, you obviously need to declare them in your web.xml, or they will be

ignored by the servlet container. In Spring Security, the filter classes are also Spring beans defined in

the application context and thus able to take advantage of Spring's rich dependency-injection facilities

and lifecycle interfaces. Spring's DelegatingFilterProxy provides the link between web.xml

and the application context.

When using DelegatingFilterProxy, you will see something like this in the web.xml file:

  <filter>

    <filter-name>myFilter</filter-name>

    <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

  </filter>

  <filter-mapping>

    <filter-name>myFilter</filter-name>

    <url-pattern>/*</url-pattern>

  </filter-mapping>

      

Notice that the filter is actually a DelegatingFilterProxy, and not the class that will actually

implement the logic of the filter. What DelegatingFilterProxy does is delegate the Filter's

methods through to a bean which is obtained from the Spring application context. This enables the

bean to benefit from the Spring web application context lifecycle support and configuration flexibility.

The bean must implement javax.servlet.Filter and it must have the same name as that in the

filter-name element. Read the Javadoc for DelegatingFilterProxy for more information

7.2 FilterChainProxy

Spring Security's web infrastructure should only be used by delegating to an instance of

FilterChainProxy. The security filters should not be used by themselves In theory you could

declare each Spring Security filter bean that you require in your application context file and add a

corresponding DelegatingFilterProxy entry to web.xml for each filter, making sure that they



Spring Security

3.0.7.RELEASE 46

are ordered correctly, but this would be cumbersome and would clutter up the web.xml file quickly

if you have a lot of filters. FilterChainProxy lets us add a single entry to web.xml and deal

entirely with the application context file for managing our web security beans. It is wired using a

DelegatingFilterProxy, just like in the example above, but with the filter-name set to the

bean name “filterChainProxy”. The filter chain is then declared in the application context with the same

bean name. Here's an example:

<bean id="filterChainProxy" class="org.springframework.security.web.FilterChainProxy">

  <sec:filter-chain-map path-type="ant">

     <sec:filter-chain pattern="/webServices/**" filters="

           securityContextPersistenceFilterWithASCFalse,

           basicAuthenticationFilter,

           exceptionTranslationFilter,

           filterSecurityInterceptor" />

     <sec:filter-chain pattern="/**" filters="

           securityContextPersistenceFilterWithASCTrue,

           formLoginFilter,

           exceptionTranslationFilter,

           filterSecurityInterceptor" />

  </sec:filter-chain-map>

</bean>

    

The namespace element filter-chain-map is used to set up the security filter chain(s) which are

required within the application1. It maps a particular URL pattern to a chain of filters built up from the

bean names specified in the filters element. Both regular expressions and Ant Paths are supported,

and the most specific URIs appear first. At runtime the FilterChainProxy will locate the first

URI pattern that matches the current web request and the list of filter beans specified by the filters

attribute will be applied to that request. The filters will be invoked in the order they are defined, so you

have complete control over the filter chain which is applied to a particular URL.

You may have noticed we have declared two SecurityContextPersistenceFilters

in the filter chain (ASC is short for allowSessionCreation, a property of

SecurityContextPersistenceFilter). As web services will never present a jsessionid

on future requests, creating HttpSessions for such user agents would be wasteful. If you had a high-

volume application which required maximum scalability, we recommend you use the approach shown

above. For smaller applications, using a single SecurityContextPersistenceFilter (with

its default allowSessionCreation as true) would likely be sufficient.

In relation to lifecycle issues, the FilterChainProxy will always delegate

init(FilterConfig) and destroy() methods through to the underlaying Filters if such

methods are called against FilterChainProxy itself. In this case, FilterChainProxy

guarantees to only initialize and destroy each Filter bean once, no matter how many times it is

declared in the filter chain(s). You control the overall choice as to whether these methods are called or

not via the targetFilterLifecycle initialization parameter of DelegatingFilterProxy.

By default this property is false and servlet container lifecycle invocations are not delegated through

DelegatingFilterProxy.

1Note that you'll need to include the security namespace in your application context XML file in order to use this syntax.



Spring Security

3.0.7.RELEASE 47

When we looked at how to set up web security using namespace configuration, we used a

DelegatingFilterProxy with the name “springSecurityFilterChain”. You should now be able to

see that this is the name of the FilterChainProxy which is created by the namespace.

Bypassing the Filter Chain

As with the namespace, you can use the attribute filters = "none" as an alternative to

supplying a filter bean list. This will omit the request pattern from the security filter chain entirely.

Note that anything matching this path will then have no authentication or authorization services applied

and will be freely accessible. If you want to make use of the contents of the SecurityContext

contents during a request, then it must have passed through the security filter chain. Otherwise the

SecurityContextHolder will not have been populated and the contents will be null.

7.3 Filter Ordering

The order that filters are defined in the chain is very important. Irrespective of which filters you are

actually using, the order should be as follows:

1. ChannelProcessingFilter, because it might need to redirect to a different protocol

2. ConcurrentSessionFilter, because it doesn't use any SecurityContextHolder

functionality but needs to update the SessionRegistry to reflect ongoing requests from the

principal

3. SecurityContextPersistenceFilter, so a SecurityContext can be set up in the

SecurityContextHolder at the beginning of a web request, and any changes to the

SecurityContext can be copied to the HttpSession when the web request ends (ready for

use with the next web request)

4. Authentication processing mechanisms - UsernamePasswordAuthenticationFilter,

CasAuthenticationFilter, BasicAuthenticationFilter etc - so that the

SecurityContextHolder can be modified to contain a valid Authentication request

token

5. The SecurityContextHolderAwareRequestFilter, if you are using it to install a Spring

Security aware HttpServletRequestWrapper into your servlet container

6. RememberMeAuthenticationFilter, so that if no earlier authentication processing

mechanism updated the SecurityContextHolder, and the request presents a cookie that

enables remember-me services to take place, a suitable remembered Authentication object will

be put there

7. AnonymousAuthenticationFilter, so that if no earlier authentication processing

mechanism updated the SecurityContextHolder, an anonymous Authentication object

will be put there

8. ExceptionTranslationFilter, to catch any Spring Security exceptions so that either an

HTTP error response can be returned or an appropriate AuthenticationEntryPoint can be

launched



Spring Security

3.0.7.RELEASE 48

9. FilterSecurityInterceptor, to protect web URIs and raise exceptions when access is

denied

7.4 Request Matching and HttpFirewall

Spring Security has several areas where patterns you have defined are tested against incoming

requests in order to decide how the request should be handled. This occurs when the

FilterChainProxy decides which filter chain a request should be passed through and also when

the FilterSecurityInterceptor decides which security constraints apply to a request. It's

important to understand what the mechanism is and what URL value is used when testing against the

patterns that you define.

The Servlet Specification defines several properties for the HttpServletRequest which are

accessible via getter methods, and which we might want to match against. These are the contextPath,

servletPath, pathInfo and queryString. Spring Security is only interested in securing paths

within the application, so the contextPath is ignored. Unfortunately, the servlet spec does not

define exactly what the values of servletPath and pathInfo will contain for a particular request

URI. For example, each path segment of a URL may contain parameters, as defined in RFC 2396

[http://www.ietf.org/rfc/rfc2396.txt]2. The Specification does not clearly state whether these should be

included in the servletPath and pathInfo values and the behaviour varies between different

servlet containers. There is a danger that when an application is deployed in a container which does

not strip path parameters from these values, an attacker could add them to the requested URL in

order to cause a pattern match to succeed or fail unexpectedly.3. Other variations in the incoming

URL are also possible. For example, it could contain path-traversal sequences (like /../) or multiple

forward slashes (//) which could also cause pattern-matches to fail. Some containers normalize

these out before performing the servlet mapping, but others don't. To protect against issues like

these, FilterChainProxy uses an HttpFirewall strategy to check and wrap the request. Un-

normalized requests are automatically rejected by default, and path parameters and duplicate slashes

are removed for matching purposes.4. It is therefore essential that a FilterChainProxy is used to

manage the security filter chain. Note that the servletPath and pathInfo values are decoded by

the container, so your application should not have any valid paths which contain semi-colons, as these

parts will be removed for matching purposes.

As mentioned above, the default strategy is to use Ant-style paths for matching and this is likely to be

the best choice for most users. The strategy is implemented in the class AntPathRequestMatcher

which uses Spring's AntPathMatcher to perform a case-insensitive match of the pattern against the

concatenated servletPath and pathInfo, ignoring the queryString.

If for some reason, you need a more powerful matching strategy, you can use regular expressions. The

strategy implementation is then RegexRequestMatcher. See the Javadoc for this class for more

information.

2You have probably seen this when a browser doesn't support cookies and the jsessionid parameter is appended to the URL

after a semi-colon. However the RFC allows the presence of these parameters in any path segment of the URL
3The original values will be returned once the request leaves the FilterChainProxy, so will still be available to the

application.
4So, for example, an original request path /secure;hack=1/somefile.html;hack=2 will be returned as /secure/

somefile.html.

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt


Spring Security

3.0.7.RELEASE 49

In practice we recommend that you use method security at your service layer, to control access to your

application, and do not rely entirely on the use of security constraints defined at the web-application

level. URLs change and it is difficult to take account of all the possible URLs that an application might

support and how requests might be manipulated. You should try and restrict yourself to using a few

simple ant paths which are simple to understand. Always try to use a “deny-by-default” approach where

you have a catch-all wildcard (**) defined last and denying access.

Security defined at the service layer is much more robust and harder to bypass, so you should always

take advantage of Spring Security's method security options.

7.5 Use with other Filter-Based Frameworks

If you're using some other framework that is also filter-based, then you need to make sure that the

Spring Security filters come first. This enables the SecurityContextHolder to be populated in

time for use by the other filters. Examples are the use of SiteMesh to decorate your web pages or a web

framework like Wicket which uses a filter to handle its requests.



Spring Security

3.0.7.RELEASE 50

There are some key filters which will always be used in a web application which uses Spring Security,

so we'll look at these and their supporting classes and interfaces first. We won't cover every feature, so

be sure to look at the Javadoc for them if you want to get the complete picture.

8.1 FilterSecurityInterceptor

We've already seen FilterSecurityInterceptor briefly when discussing access-control in

general, and we've already used it with the namespace where the <intercept-url> elements

are combined to configure it internally. Now we'll see how to explicitly configure it for use with

a FilterChainProxy, along with its companion filter ExceptionTranslationFilter. A

typical configuration example is shown below:

<bean id="filterSecurityInterceptor"

        class="org.springframework.security.web.access.intercept.FilterSecurityInterceptor">

  <property name="authenticationManager" ref="authenticationManager"/>

  <property name="accessDecisionManager" ref="accessDecisionManager"/>

  <property name="securityMetadataSource">

    <security:filter-security-metadata-source>

      <security:intercept-url pattern="/secure/super/**" access="ROLE_WE_DONT_HAVE"/>

      <security:intercept-url pattern="/secure/**" access="ROLE_SUPERVISOR,ROLE_TELLER"/>

    </security:filter-security-metadata-source>

  </property>

</bean>

FilterSecurityInterceptor is responsible for handling the security of HTTP resources. It

requires a reference to an AuthenticationManager and an AccessDecisionManager. It is

also supplied with configuration attributes that apply to different HTTP URL requests. Refer back to

the original discussion on these in the technical introduction.

The FilterSecurityInterceptor can be configured with configuration attributes in two

ways. The first, which is shown above, is using the <filter-security-metadata-

source> namespace element. This is similar to the <filter-chain-map> used to configure

a FilterChainProxy but the <intercept-url> child elements only use the pattern and

access attributes. Commas are used to delimit the different configuration attributes that apply to each

HTTP URL. The second option is to write your own SecurityMetadataSource, but this is beyond

the scope of this document. Irrespective of the approach used, the SecurityMetadataSource is

responsible for returning a List<ConfigAttribute> containing all of the configuration attributes

associated with a single secure HTTP URL.

It should be noted that the

FilterSecurityInterceptor.setSecurityMetadataSource() method actually

expects an instance of FilterSecurityMetadataSource. This is a marker interface which

subclasses SecurityMetadataSource. It simply denotes the SecurityMetadataSource

understands FilterInvocations. In the interests of simplicity we'll continue to refer to the

FilterInvocationSecurityMetadataSource as a SecurityMetadataSource, as the

distinction is of little relevance to most users.



Spring Security

3.0.7.RELEASE 51

The SecurityMetadataSource created by the namespace syntax obtains the configuration

attributes for a particular FilterInvocation by matching the request URL against the configured

pattern attributes. This behaves in the same way as it does for namespace configuration. The default is

to treat all expressions as Apache Ant paths and regular expressions are also supported for more complex

cases. The path-type attribute is used to specify the type of pattern being used. It is not possible to

mix expression syntaxes within the same definition. As an example, the previous configuration using

regular expressions instead of Ant paths would be written as follows:

<bean id="filterInvocationInterceptor"

     class="org.springframework.security.web.access.intercept.FilterSecurityInterceptor">

  <property name="authenticationManager" ref="authenticationManager"/>

  <property name="accessDecisionManager" ref="accessDecisionManager"/>

  <property name="runAsManager" ref="runAsManager"/>

  <property name="securityMetadataSource">

    <security:filter-security-metadata-source path-type="regex">

      <security:intercept-url pattern="\A/secure/super/.*\Z" access="ROLE_WE_DONT_HAVE"/>

      <security:intercept-url pattern="\A/secure/.*\" access="ROLE_SUPERVISOR,ROLE_TELLER"/>

    </security:filter-security-metadata-source>

  </property>

</bean>        

Patterns are always evaluated in the order they are defined. Thus it is important that more specific

patterns are defined higher in the list than less specific patterns. This is reflected in our example above,

where the more specific /secure/super/ pattern appears higher than the less specific /secure/

pattern. If they were reversed, the /secure/ pattern would always match and the /secure/super/

pattern would never be evaluated.

8.2  ExceptionTranslationFilter

The ExceptionTranslationFilter sits above the FilterSecurityInterceptor in the

security filter stack. It doesn't do any actual security enforcement itself, but handles exceptions thrown

by the security interceptors and provides suitable and HTTP responses.

<bean id="exceptionTranslationFilter"

     class="org.springframework.security.web.access.ExceptionTranslationFilter">

  <property name="authenticationEntryPoint" ref="authenticationEntryPoint"/>

  <property name="accessDeniedHandler" ref="accessDeniedHandler"/>

</bean>

<bean id="authenticationEntryPoint"

     class="org.springframework.security.web.authentication.LoginUrlAuthenticationEntryPoint">

  <property name="loginFormUrl" value="/login.jsp"/>

</bean>

<bean id="accessDeniedHandler"

     class="org.springframework.security.web.access.AccessDeniedHandlerImpl">

  <property name="errorPage" value="/accessDenied.htm"/>

</bean>



Spring Security

3.0.7.RELEASE 52

AuthenticationEntryPoint

The AuthenticationEntryPoint will be called if the user requests a secure HTTP

resource but they are not authenticated. An appropriate AuthenticationException or

AccessDeniedException will be thrown by a security interceptor further down the call

stack, triggering the commence method on the entry point. This does the job of presenting

the appropriate response to the user so that authentication can begin. The one we've used here

is LoginUrlAuthenticationEntryPoint, which redirects the request to a different URL

(typically a login page). The actual implementation used will depend on the authentication mechanism

you want to be used in your application.

AccessDeniedHandler

What happens if a user is already authenticated an they try to access a protected resource? In normal

usage, this shouldn't happen because the application workflow should be restricted to operations to

which a user has access. For example, an HTML link to an administration page might be hidden from

users who do not have an admin role. You can't rely on hiding links for security though, as there's

always a possibility that a user will just enter the URL directly in an attempt to bypass the restrictions.

Or they might modify a RESTful URL to change some of the argument values. Your application must

be protected against these scenarios or it will definitely be insecure. You will typically use simple web

layer security to apply constraints to basic URLs and use more specific method-based security on your

service layer interfaces to really nail down what is permissible.

If an AccessDeniedException is thrown and a user has already been authenticated, then this

means that an operation has been attempted for which they don't have enough permissions. In this case,

ExceptionTranslationFilter will invoke a second strategy, the AccessDeniedHandler.

By default, an AccessDeniedHandlerImpl is used, which just sends a 403 (Forbidden) response

to the client. Alternatively you can configure an instance explicitly (as in the above example) and set

an error page URL which it will forwards the request to 1. This can be a simple “access denied” page,

such as a JSP, or it could be a more complex handler such as an MVC controller. And of course, you

can implement the interface yourself and use your own implementation.

It's also possible to supply a custom AccessDeniedHandler when you're using the namespace to

configure your application. See the namespace appendix for more details.

8.3 SecurityContextPersistenceFilter

We covered the purpose of this all-important filter in the Technical Overview chapter so you might want

to re-read that section at this point. Let's first take a look at how you would configure it for use with a

FilterChainProxy. A basic configuration only requires the bean itself

<bean id="securityContextPersistenceFilter"

class="org.springframework.security.web.context.SecurityContextPersistenceFilter"/>

1We use a forward so that the SecurityContextHolder still contains details of the principal, which may be useful for displaying

to the user. In old releases of Spring Security we relied upon the servlet container to handle a 403 error message, which lacked

this useful contextual information.



Spring Security

3.0.7.RELEASE 53

As we saw previously, this filter has two main tasks. It is responsible for storage

of the SecurityContext contents between HTTP requests and for clearing the

SecurityContextHolder when a request is completed. Clearing the ThreadLocal in which the

context is stored is essential, as it might otherwise be possible for a thread to be replaced into the servlet

container's thread pool, with the security context for a particular user still attached. This thread might

then be used at a later stage, performing operations with the wrong credentials.

SecurityContextRepository

From Spring Security 3.0, the job of loading and storing the security context is now delegated to a

separate strategy interface:

public interface SecurityContextRepository {

  SecurityContext loadContext(HttpRequestResponseHolder requestResponseHolder);

  void saveContext(SecurityContext context, HttpServletRequest request,

         HttpServletResponse response);

}

The HttpRequestResponseHolder is simply a container for the incoming request and response

objects, allowing the implementation to replace these with wrapper classes. The returned contents will

be passed to the filter chain.

The default implementation is HttpSessionSecurityContextRepository, which stores the

security context as an HttpSession attribute 2. The most important configuration parameter for this

implementation is the allowSessionCreation property, which defaults to true, thus allowing

the class to create a session if it needs one to store the security context for an authenticated user (it won't

create one unless authentication has taken place and the contents of the security context have changed).

If you don't want a session to be created, then you can set this property to false:

<bean id="securityContextPersistenceFilter"

class="org.springframework.security.web.context.SecurityContextPersistenceFilter">

<property name='securityContextRepository'>

<bean class='org.springframework.security.web.context.HttpSessionSecurityContextRepository'>

  <property name='allowSessionCreation' value='false' />

</bean>

</property>

</bean>

Alternatively you could provide a null implementation of the SecurityContextRepository

interface, which will prevent the security context from being stored, even if a session has already been

created during the request.

8.4 UsernamePasswordAuthenticationFilter

We've now seen the three main filters which are always present in a Spring Security web configuration.

These are also the three which are automatically created by the namespace <http> element and cannot

2In Spring Security 2.0 and earlier, this filter was called HttpSessionContextIntegrationFilter and performed all

the work of storing the context was performed by the filter itself. If you were familiar with this class, then most of the configuration

options which were available can now be found on HttpSessionSecurityContextRepository.



Spring Security

3.0.7.RELEASE 54

be substituted with alternatives. The only thing that's missing now is an actual authentication mechanism,

something that will allow a user to authenticate. This filter is the most commonly used authentication

filter and the one that is most often customized 3. It also provides the implementation used by the

<form-login> element from the namespace. There are three stages required to configure it.

1. Configure a LoginUrlAuthenticationEntryPoint with the URL of the login page, just as

we did above, and set it on the ExceptionTranslationFilter.

2. Implement the login page (using a JSP or MVC controller).

3. Configure an instance of UsernamePasswordAuthenticationFilter in the application

context

4. Add the filter bean to your filter chain proxy (making sure you pay attention to the order).

The login form simply contains j_username and j_password input fields, and posts to the URL

that is monitored by the filter (by default this is /j_spring_security_check). The basic filter

configuration looks something like this:

<bean id="authenticationFilter" class=

"org.springframework.security.web.authentication.UsernamePasswordAuthenticationFilter">

  <property name="authenticationManager" ref="authenticationManager"/>

  <property name="filterProcessesUrl" value="/j_spring_security_check"/>

</bean> 

                

Application Flow on Authentication Success and Failure

The filter calls the configured AuthenticationManager to process each authentication request.

The destination following a successful authentication or an authentication failure is controlled

by the AuthenticationSuccessHandler and AuthenticationFailureHandler

strategy interfaces, respectively. The filter has properties which allow you to

set these so you can customize the behaviour completely 4. Some standard

implementations are supplied such as SimpleUrlAuthenticationSuccessHandler,

SavedRequestAwareAuthenticationSuccessHandler,

SimpleUrlAuthenticationFailureHandler and

ExceptionMappingAuthenticationFailureHandler. Have a look at the Javadoc for these

classes to see how they work.

If authentication is successful, the resulting Authentication object will be placed into the

SecurityContextHolder. The configured AuthenticationSuccessHandler will then

be called to either redirect or forward the user to the appropriate destination. By default a

SavedRequestAwareAuthenticationSuccessHandler is used, which means that the user

will be redirected to the original destination they requested before they were asked to login.

3For historical reasons, prior to Spring Security 3.0, this filter was called AuthenticationProcessingFilter and the

entry point was called AuthenticationProcessingFilterEntryPoint. Since the framework now supports many

different forms of authentication, they have both been given more specific names in 3.0.
4In versions prior to 3.0, the application flow at this point had evolved to a stage was controlled by a mix of properties on this

class and strategy plugins. The decision was made for 3.0 to refactor the code to make these two strategies entirely responsible.



Spring Security

3.0.7.RELEASE 55

Note

The ExceptionTranslationFilter caches the original request a user makes. When

the user authenticates, the request handler makes use of this cached request to obtain the

original URL and redirect to it. The original request is then rebuilt and used as an alternative.

If authentication fails, the configured AuthenticationFailureHandler will be invoked.



Spring Security

3.0.7.RELEASE 56

Basic and digest authentiation are alternative authentication mechanisms which are popular in web

applications. Basic authentication is often used with stateless clients which pass their credentials on each

request. It's quite common to use it in combination with form-based authentication where an application

is used through both a browser-based user interface and as a web-service. However, basic authentication

transmits the password as plain text so it should only really be used over an encrypted transport layer

such as HTTPS.

9.1 BasicAuthenticationFilter

BasicAuthenticationFilter is responsible for processing basic authentication credentials

presented in HTTP headers. This can be used for authenticating calls made by Spring remoting protocols

(such as Hessian and Burlap), as well as normal browser user agents (such as Firefox and Internet

Explorer). The standard governing HTTP Basic Authentication is defined by RFC 1945, Section 11,

and BasicAuthenticationFilter conforms with this RFC. Basic Authentication is an attractive

approach to authentication, because it is very widely deployed in user agents and implementation is

extremely simple (it's just a Base64 encoding of the username:password, specified in an HTTP header).

Configuration

To implement HTTP Basic Authentication, you need to add a BasicAuthenticationFilter to

your filter chain. The application context should contain BasicAuthenticationFilter and its

required collaborator:

<bean id="basicAuthenticationFilter"

  class="org.springframework.security.web.authentication.www.BasicAuthenticationFilter">

  <property name="authenticationManager" ref="authenticationManager"/>

  <property name="authenticationEntryPoint" ref="authenticationEntryPoint"/>

</bean>

<bean id="authenticationEntryPoint"

  class="org.springframework.security.web.authentication.www.BasicAuthenticationEntryPoint">

  <property name="realmName" value="Name Of Your Realm"/>

</bean>

                

The configured AuthenticationManager processes each authentication request. If authentication

fails, the configured AuthenticationEntryPoint will be used to retry the authentication process.

Usually you will use the filter in combination with a BasicAuthenticationEntryPoint,

which returns a 401 response with a suitable header to retry HTTP Basic authentication. If

authentication is successful, the resulting Authentication object will be placed into the

SecurityContextHolder as usual.

If the authentication event was successful, or authentication was not attempted because the HTTP header

did not contain a supported authentication request, the filter chain will continue as normal. The only time

the filter chain will be interrupted is if authentication fails and the AuthenticationEntryPoint

is called.



Spring Security

3.0.7.RELEASE 57

9.2 DigestAuthenticationFilter

DigestAuthenticationFilter is capable of processing digest authentication credentials

presented in HTTP headers. Digest Authentication attempts to solve many of the weaknesses of Basic

authentication, specifically by ensuring credentials are never sent in clear text across the wire. Many

user agents support Digest Authentication, including FireFox and Internet Explorer. The standard

governing HTTP Digest Authentication is defined by RFC 2617, which updates an earlier version

of the Digest Authentication standard prescribed by RFC 2069. Most user agents implement RFC

2617. Spring Security's DigestAuthenticationFilter is compatible with the "auth" quality

of protection (qop) prescribed by RFC 2617, which also provides backward compatibility with RFC

2069. Digest Authentication is a more attractive option if you need to use unencrypted HTTP (i.e. no

TLS/HTTPS) and wish to maximise security of the authentication process. Indeed Digest Authentication

is a mandatory requirement for the WebDAV protocol, as noted by RFC 2518 Section 17.1.

Digest Authentication is definitely the most secure choice between Form Authentication, Basic

Authentication and Digest Authentication, although extra security also means more complex user agent

implementations. Central to Digest Authentication is a "nonce". This is a value the server generates.

Spring Security's nonce adopts the following format:

                base64(expirationTime + ":" + md5Hex(expirationTime + ":" + key))

                expirationTime:   The date and time when the nonce expires, expressed in milliseconds

                key:              A private key to prevent modification of the nonce token

            

The DigestAuthenticatonEntryPoint has a property specifying the key used for generating

the nonce tokens, along with a nonceValiditySeconds property for determining the expiration

time (default 300, which equals five minutes). Whist ever the nonce is valid, the digest is computed by

concatenating various strings including the username, password, nonce, URI being requested, a client-

generated nonce (merely a random value which the user agent generates each request), the realm name

etc, then performing an MD5 hash. Both the server and user agent perform this digest computation,

resulting in different hash codes if they disagree on an included value (eg password). In Spring Security

implementation, if the server-generated nonce has merely expired (but the digest was otherwise valid),

the DigestAuthenticationEntryPoint will send a "stale=true" header. This tells the

user agent there is no need to disturb the user (as the password and username etc is correct), but simply

to try again using a new nonce.

An appropriate value for DigestAuthenticationEntryPoint's nonceValiditySeconds

parameter will depend on your application. Extremely secure applications should note that an intercepted

authentication header can be used to impersonate the principal until the expirationTime contained

in the nonce is reached. This is the key principle when selecting an appropriate setting, but it would be

unusual for immensely secure applications to not be running over TLS/HTTPS in the first instance.

Because of the more complex implementation of Digest Authentication, there are often user agent

issues. For example, Internet Explorer fails to present an "opaque" token on subsequent requests in

the same session. Spring Security filters therefore encapsulate all state information into the "nonce"



Spring Security

3.0.7.RELEASE 58

token instead. In our testing, Spring Security's implementation works reliably with FireFox and Internet

Explorer, correctly handling nonce timeouts etc.

Configuration

Now that we've reviewed the theory, let's see how to use it. To implement HTTP Digest Authentication, it

is necessary to define DigestAuthenticationFilter in the filter chain. The application context

will need to define the DigestAuthenticationFilter and its required collaborators:

<bean id="digestFilter" class=

    "org.springframework.security.web.authentication.www.DigestAuthenticationFilter">

  <property name="userDetailsService" ref="jdbcDaoImpl"/>

  <property name="authenticationEntryPoint" ref="digestEntryPoint"/>

  <property name="userCache" ref="userCache"/>

</bean>

<bean id="digestEntryPoint" class=

    "org.springframework.security.web.authentication.www.DigestAuthenticationEntryPoint">

  <property name="realmName" value="Contacts Realm via Digest Authentication"/>

  <property name="key" value="acegi"/>

  <property name="nonceValiditySeconds" value="10"/>

</bean>

                

The configured UserDetailsService is needed because DigestAuthenticationFilter

must have direct access to the clear text password of a user. Digest Authentication will NOT

work if you are using encoded passwords in your DAO. The DAO collaborator, along with

the UserCache, are typically shared directly with a DaoAuthenticationProvider. The

authenticationEntryPoint property must be DigestAuthenticationEntryPoint, so

that DigestAuthenticationFilter can obtain the correct realmName and key for digest

calculations.

Like BasicAuthenticationFilter, if authentication is successful an Authentication

request token will be placed into the SecurityContextHolder. If the authentication event was

successful, or authentication was not attempted because the HTTP header did not contain a Digest

Authentication request, the filter chain will continue as normal. The only time the filter chain will be

interrupted is if authentication fails and the AuthenticationEntryPoint is called, as discussed

in the previous paragraph.

Digest Authentication's RFC offers a range of additional features to further increase security. For

example, the nonce can be changed on every request. Despite this, Spring Security implementation

was designed to minimise the complexity of the implementation (and the doubtless user agent

incompatibilities that would emerge), and avoid needing to store server-side state. You are invited to

review RFC 2617 if you wish to explore these features in more detail. As far as we are aware, Spring

Security's implementation does comply with the minimum standards of this RFC.



Spring Security

3.0.7.RELEASE 59

10.1 Overview

Remember-me or persistent-login authentication refers to web sites being able to remember the identity

of a principal between sessions. This is typically accomplished by sending a cookie to the browser,

with the cookie being detected during future sessions and causing automated login to take place. Spring

Security provides the necessary hooks for these operations to take place, and has two concrete remember-

me implementations. One uses hashing to preserve the security of cookie-based tokens and the other

uses a database or other persistent storage mechanism to store the generated tokens.

Note that both implemementations require a UserDetailsService. If you are using an

authentication provider which doesn't use a UserDetailsService (for example, the LDAP

provider) then it won't work unless you also have a UserDetailsService bean in your application

context.

10.2 Simple Hash-Based Token Approach

This approach uses hashing to achieve a useful remember-me strategy. In essence a cookie is sent to the

browser upon successful interactive authentication, with the cookie being composed as follows:

    base64(username + ":" + expirationTime + ":" +

             md5Hex(username + ":" + expirationTime + ":" password + ":" + key))

    username:          As identifiable to the UserDetailsService

    password:          That matches the one in the retrieved UserDetails

    expirationTime:    The date and time when the remember-me token expires,

                       expressed in milliseconds

    key:               A private key to prevent modification of the remember-me token

        

As such the remember-me token is valid only for the period specified, and provided that the username,

password and key does not change. Notably, this has a potential security issue in that a captured

remember-me token will be usable from any user agent until such time as the token expires. This is

the same issue as with digest authentication. If a principal is aware a token has been captured, they

can easily change their password and immediately invalidate all remember-me tokens on issue. If more

significant security is needed you should use the approach described in the next section. Alternatively

remember-me services should simply not be used at all.

If you are familiar with the topics discussed in the chapter on namespace configuration, you can enable

remember-me authentication just by adding the <remember-me> element:

  <http>

    ...

    <remember-me key="myAppKey"/>

  </http>

  

                



Spring Security

3.0.7.RELEASE 60

The UserDetailsService will normally be selected automatically. If you have more than one in

your application context, you need to specify which one should be used with the user-service-

ref attribute, where the value is the name of your UserDetailsService bean.

10.3 Persistent Token Approach

This approach is based on the article http://jaspan.com/

improved_persistent_login_cookie_best_practice with some minor modifications 1. To use the this

approach with namespace configuration, you would supply a datasource reference:

  <http>

    ...

    <remember-me data-source-ref="someDataSource"/>

  </http>

  

            

The database should contain a persistent_logins table, created using the following SQL (or

equivalent):

    create table persistent_logins (username varchar(64) not null, series varchar(64) primary key, token varchar(64) not null, last_used timestamp not null)

10.4 Remember-Me Interfaces and Implementations

Remember-me authentication is not used with basic authentication, given it is often not used with

HttpSessions. Remember-me is used with UsernamePasswordAuthenticationFilter,

and is implemented via hooks in the AbstractAuthenticationProcessingFilter

superclass. The hooks will invoke a concrete RememberMeServices at the appropriate times. The

interface looks like this:

  Authentication autoLogin(HttpServletRequest request, HttpServletResponse response);

  void loginFail(HttpServletRequest request, HttpServletResponse response);

  void loginSuccess(HttpServletRequest request, HttpServletResponse response,

      Authentication successfulAuthentication);

    

Please refer to the JavaDocs for a fuller discussion on what the methods do, although

note at this stage that AbstractAuthenticationProcessingFilter only calls the

loginFail() and loginSuccess() methods. The autoLogin() method is called by

RememberMeAuthenticationFilter whenever the SecurityContextHolder does not

contain an Authentication. This interface therefore provides the underlying remember-me

implementation with sufficient notification of authentication-related events, and delegates to the

implementation whenever a candidate web request might contain a cookie and wish to be remembered.

This design allows any number of remember-me implementation strategies. We've seen above that

Spring Security provides two implementations. We'll look at these in turn.

1Essentially, the username is not included in the cookie, to prevent exposing a valid login name unecessarily. There is a discussion

on this in the comments section of this article.

http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice


Spring Security

3.0.7.RELEASE 61

TokenBasedRememberMeServices

This implementation supports the simpler approach described in Section 10.2,

“Simple Hash-Based Token Approach”. TokenBasedRememberMeServices

generates a RememberMeAuthenticationToken, which is processed by

RememberMeAuthenticationProvider. A key is shared between this

authentication provider and the TokenBasedRememberMeServices. In addition,

TokenBasedRememberMeServices requires A UserDetailsService from which it can

retrieve the username and password for signature comparison purposes, and generate the

RememberMeAuthenticationToken to contain the correct GrantedAuthority[]s. Some sort

of logout command should be provided by the application that invalidates the cookie if the user requests

this. TokenBasedRememberMeServices also implements Spring Security's LogoutHandler

interface so can be used with LogoutFilter to have the cookie cleared automatically.

The beans required in an application context to enable remember-me services are as follows:

<bean id="rememberMeFilter" class=

 "org.springframework.security.web.authentication.rememberme.RememberMeAuthenticationFilter">

  <property name="rememberMeServices" ref="rememberMeServices"/>

  <property name="authenticationManager" ref="theAuthenticationManager" />

</bean>

<bean id="rememberMeServices" class=

 "org.springframework.security.web.authentication.rememberme.TokenBasedRememberMeServices">

  <property name="userDetailsService" ref="myUserDetailsService"/>

  <property name="key" value="springRocks"/>

</bean>

<bean id="rememberMeAuthenticationProvider" class=

 "org.springframework.security.authentication.rememberme.RememberMeAuthenticationProvider">

  <property name="key" value="springRocks"/>

</bean>

            

Don't forget to add your RememberMeServices implementation

to your UsernamePasswordAuthenticationFilter.setRememberMeServices()

property, include the RememberMeAuthenticationProvider in your

AuthenticationManager.setProviders() list, and add

RememberMeAuthenticationFilter into your FilterChainProxy (typically immediately

after your UsernamePasswordAuthenticationFilter).

PersistentTokenBasedRememberMeServices

This class can be used in the same way as TokenBasedRememberMeServices, but it additionally

needs to be configured with a PersistentTokenRepository to store the tokens. There are two

standard implementations.

• InMemoryTokenRepositoryImpl which is intended for testing only.

• JdbcTokenRepositoryImpl which stores the tokens in a database.

The database schema is described above in Section 10.3, “Persistent Token Approach”.



Spring Security

3.0.7.RELEASE 62

HTTP session related functonality is handled by a combination of the SessionManagementFilter

and the SessionAuthenticationStrategy interface, which the filter delegates to. Typical

usage includes session-fixation protection attack prevention, detection of session timeouts and

restrictions on how many sessions an authenticated user may have open concurrently.

11.1 SessionManagementFilter

The SessionManagementFilter checks the contents of the SecurityContextRepository

against the current contents of the SecurityContextHolder to determine whether a user has

been authenticated during the current request, typically by a non-interactive authentication mechanism,

such as pre-authentication or remember-me 1. If the repository contains a security context, the filter

does nothing. If it doesn't, and the thread-local SecurityContext contains a (non-anonymous)

Authentication object, the filter assumes they have been authenticated by a previous filter in the

stack. It will then invoke the configured SessionAuthenticationStrategy.

If the user is not currently authenticated, the filter will check whether an invalid session ID

has been requested (because of a timeout, for example) and will redirect to the configured

invalidSessionUrl if set. The easiest way to configure this is through the namespace, as described

earlier.

11.2 SessionAuthenticationStrategy

SessionAuthenticationStrategy is used by both SessionManagementFilter and

AbstractAuthenticationProcessingFilter, so if you are using a customized form-login

class, for example, you will need to inject it into both of these. In this case, a typical configuration,

combining the namespace and custom beans might look like this:

  <http>

    <custom-filter position="FORM_LOGIN_FILTER" ref="myAuthFilter" />

    <session-management session-authentication-strategy-ref="sas"/>

  </http>

  <beans:bean id="myAuthFilter"

      class="org.springframework.security.web.authentication.UsernamePasswordAuthenticationFilter">

    <beans:property name="sessionAuthenticationStrategy" ref="sas" />

    ...

  </beans:bean>

  <beans:bean id="sas"

      class="org.springframework.security.web.authentication.session.SessionFixationProtectionStrategy"/>

      

1Authentication by mechanisms which perform a redirect after authenticating (such as form-login) will not be detected by

SessionManagementFilter, as the filter will not be invoked during the authenticating request. Session-management

functionality has to be handled separately in these cases.



Spring Security

3.0.7.RELEASE 63

11.3 Concurrency Control

Spring Security is able to prevent a principal from concurrently authenticating to the same application

more than a specified number of times. Many ISVs take advantage of this to enforce licensing, whilst

network administrators like this feature because it helps prevent people from sharing login names. You

can, for example, stop user “Batman” from logging onto the web application from two different sessions.

You can either expire their previous login or you can report an error when they try to log in again,

preventing the second login. Note that if you are using the second approach, a user who has not explicitly

logged out (but who has just closed their browser, for example) will not be able to log in again until

their original session expires.

Concurrency control is supported by the namespace, so please check the earlier namespace chapter for

the simplest configuration. Sometimes you need to customize things though.

The implementation uses a specialized version of SessionAuthenticationStrategy, called

ConcurrentSessionControlStrategy.

Note

Previously the concurrent authentication check was made by the ProviderManager,

which could be injected with a ConcurrentSessionController. The latter would

check if the user was attempting to exceed the number of permitted sessions. However, this

approach required that an HTTP session be created in advance, which is undesirable. In

Spring Security 3, the user is first authenticated by the AuthenticationManager and

once they are successfully authenticated, a session is created and the check is made whether

they are allowed to have another session open.

To use concurrent session support, you'll need to add the following to web.xml:

  <listener>

    <listener-class>

      org.springframework.security.web.session.HttpSessionEventPublisher

    </listener-class>

  </listener> 

        

In addition, you will need to add the ConcurrentSessionFilter to your FilterChainProxy.

The ConcurrentSessionFilter requires two properties, sessionRegistry, which generally

points to an instance of SessionRegistryImpl, and expiredUrl, which points to the

page to display when a session has expired. A configuration using the namespace to create the

FilterChainProxy and other default beans might look like this:

  <http>

    <custom-filter position="CONCURRENT_SESSION_FILTER" ref="concurrencyFilter" />

    <custom-filter position="FORM_LOGIN_FILTER" ref="myAuthFilter" />

    <session-management session-authentication-strategy-ref="sas"/>

  </http>



Spring Security

3.0.7.RELEASE 64

  <beans:bean id="concurrencyFilter"

      class="org.springframework.security.web.session.ConcurrentSessionFilter">

    <beans:property name="sessionRegistry" ref="sessionRegistry" />

    <beans:property name="expiredUrl" value="/session-expired.htm" />

  </beans:bean>

  <beans:bean id="myAuthFilter"

      class="org.springframework.security.web.authentication.UsernamePasswordAuthenticationFilter">

    <beans:property name="sessionAuthenticationStrategy" ref="sas" />

    <beans:property name="authenticationManager" ref="authenticationManager" />

  </beans:bean>

  <beans:bean id="sas"

      class="org.springframework.security.web.authentication.session.ConcurrentSessionControlStrategy">

    <beans:constructor-arg name="sessionRegistry" ref="sessionRegistry" />

    <beans:property name="maximumSessions" value="1" />

  </beans:bean>

  <beans:bean id="sessionRegistry" class="org.springframework.security.core.session.SessionRegistryImpl" />

    

Adding the listener to web.xml causes an ApplicationEvent to be published to the Spring

ApplicationContext every time a HttpSession commences or terminates. This is critical, as it

allows the SessionRegistryImpl to be notified when a session ends. Without it, a user will never

be able to log back in again once they have exceeded their session allowance, even if they log out of

another session or it times out.



Spring Security

3.0.7.RELEASE 65

12.1 Overview

It's generally considered good security practice to adopt a “deny-by-default” where you explicitly

specify what is allowed and disallow everything else. Defining what is accessible to unauthenticated

users is a similar situation, particularly for web applications. Many sites require that users must be

authenticated for anything other than a few URLs (for example the home and login pages). In this

case it is easiest to define access configuration attributes for these specific URLs rather than have for

every secured resource. Put differently, sometimes it is nice to say ROLE_SOMETHING is required by

default and only allow certain exceptions to this rule, such as for login, logout and home pages of an

application. You could also omit these pages from the filter chain entirely, thus bypassing the access

control checks, but this may be undesirable for other reasons, particularly if the pages behave differently

for authenticated users.

This is what we mean by anonymous authentication. Note that there is no real conceptual difference

between a user who is “anonymously authenticated” and an unauthenticated user. Spring Security's

anonymous authentication just gives you a more convenient way to configure your access-control

attributes. Calls to servlet API calls such as getCallerPrincipal, for example, will still return null

even though there is actually an anonymous authentication object in the SecurityContextHolder.

There are other situations where anonymous authentication is useful, such as when an auditing

interceptor queries the SecurityContextHolder to identify which principal was responsible for a

given operation. Classes can be authored more robustly if they know the SecurityContextHolder

always contains an Authentication object, and never null.

12.2 Configuration

Anonymous authentication support is provided automatically when using the HTTP configuration

Spring Security 3.0 and can be customized (or disabled) using the <anonymous> element. You don't

need to configure the beans described here unless you are using traditional bean configuration.

Three classes that together provide the anonymous authentication feature.

AnonymousAuthenticationToken is an implementation of Authentication, and

stores the GrantedAuthoritys which apply to the anonymous principal. There is

a corresponding AnonymousAuthenticationProvider, which is chained into the

ProviderManager so that AnonymousAuthenticationTokens are accepted. Finally,

there is an AnonymousAuthenticationFilter, which is chained after the normal

authentication mechanisms and automatically adds an AnonymousAuthenticationToken to the

SecurityContextHolder if there is no existing Authentication held there. The definition of

the filter and authentication provider appears as follows:

<bean id="anonymousAuthFilter"

    class="org.springframework.security.web.authentication.AnonymousAuthenticationFilter">

  <property name="key" value="foobar"/>

  <property name="userAttribute" value="anonymousUser,ROLE_ANONYMOUS"/>

</bean>



Spring Security

3.0.7.RELEASE 66

<bean id="anonymousAuthenticationProvider"

    class="org.springframework.security.authentication.AnonymousAuthenticationProvider">

  <property name="key" value="foobar"/>

</bean>

    

The key is shared between the filter and authentication provider, so that tokens created by

the former are accepted by the latter1. The userAttribute is expressed in the form of

usernameInTheAuthenticationToken,grantedAuthority[,grantedAuthority].

This is the same syntax as used after the equals sign for InMemoryDaoImpl's userMap property.

As explained earlier, the benefit of anonymous authentication is that all URI patterns can have security

applied to them. For example:

<bean id="filterSecurityInterceptor"

    class="org.springframework.security.web.access.intercept.FilterSecurityInterceptor">

  <property name="authenticationManager" ref="authenticationManager"/>

  <property name="accessDecisionManager" ref="httpRequestAccessDecisionManager"/>

  <property name="securityMetadata">

    <security:filter-security-metadata-source>

      <security:intercept-url pattern='/index.jsp' access='ROLE_ANONYMOUS,ROLE_USER'/>

      <security:intercept-url pattern='/hello.htm' access='ROLE_ANONYMOUS,ROLE_USER'/>

      <security:intercept-url pattern='/logoff.jsp' access='ROLE_ANONYMOUS,ROLE_USER'/>

      <security:intercept-url pattern='/login.jsp' access='ROLE_ANONYMOUS,ROLE_USER'/>

      <security:intercept-url pattern='/**' access='ROLE_USER'/>

    </security:filter-security-metadata-source>" +

  </property>

</bean>

    

12.3 AuthenticationTrustResolver

Rounding out the anonymous authentication discussion is the AuthenticationTrustResolver

interface, with its corresponding AuthenticationTrustResolverImpl implementation.

This interface provides an isAnonymous(Authentication) method, which allows

interested classes to take into account this special type of authentication

status. The ExceptionTranslationFilter uses this interface in processing

AccessDeniedExceptions. If an AccessDeniedException is thrown, and the authentication

is of an anonymous type, instead of throwing a 403 (forbidden) response, the filter will instead

commence the AuthenticationEntryPoint so the principal can authenticate properly. This is a

necessary distinction, otherwise principals would always be deemed “authenticated” and never be given

an opportunity to login via form, basic, digest or some other normal authentication mechanism.

1The use of the key property should not be regarded as providing any real security here. It is merely a book-keeping exercise.

If you are sharing a ProviderManager which contains an AnonymousAuthenticationProvider in a scenario where

it is possible for an authenticating client to construct the Authentication object (such as with RMI invocations), then a

malicious client could submit an AnonymousAuthenticationToken which it had created itself (with chosen username and

authority list). If the key is guessable or can be found out, then the token would be accepted by the anonymous provider. This

isn't a problem with normal usage but if you are using RMI you would be best to use a customized ProviderManager which

omits the anonymous provider rather than sharing the one you use for your HTTP authentication mechanisms.



Spring Security

3.0.7.RELEASE 67

You will often see the ROLE_ANONYMOUS attribute in the above interceptor configuration replaced

with IS_AUTHENTICATED_ANONYMOUSLY, which is effectively the same thing when defining

access controls. This is an example of the use of the AuthenticatedVoter which we will

see in the authorization chapter. It uses an AuthenticationTrustResolver to process this

particular configuration attribute and grant access to anonymous users. The AuthenticatedVoter

approach is more powerful, since it allows you to differentiate between anonymous, remember-me

and fully-authenticated users. If you don't need this functionality though, then you can stick with

ROLE_ANONYMOUS, which will be processed by Spring Security's standard RoleVoter.



Part IV. Authorization
The advanced authorization capabilities within Spring Security represent one of the most compelling

reasons for its popularity. Irrespective of how you choose to authenticate - whether using a Spring

Security-provided mechanism and provider, or integrating with a container or other non-Spring Security

authentication authority - you will find the authorization services can be used within your application

in a consistent and simple way.

In this part we'll explore the different AbstractSecurityInterceptor implementations, which

were introduced in Part I. We then move on to explore how to fine-tune authorization through use of

domain access control lists.



Spring Security

3.0.7.RELEASE 69

13.1 Authorities

As we saw in the technical overview, all Authentication implementations store a list of

GrantedAuthority objects. These represent the authorities that have been granted to the

principal. The GrantedAuthority objects are inserted into the Authentication object by the

AuthenticationManager and are later read by AccessDecisionManagers when making

authorization decisions.

GrantedAuthority is an interface with only one method:

  String getAuthority();

    

This method allows AccessDecisionManagers to obtain a precise String representation of

the GrantedAuthority. By returning a representation as a String, a GrantedAuthority

can be easily “read” by most AccessDecisionManagers. If a GrantedAuthority cannot

be precisely represented as a String, the GrantedAuthority is considered “complex” and

getAuthority() must return null.

An example of a “complex” GrantedAuthority would be an implementation that stores a

list of operations and authority thresholds that apply to different customer account numbers.

Representing this complex GrantedAuthority as a String would be quite difficult, and

as a result the getAuthority() method should return null. This will indicate to any

AccessDecisionManager that it will need to specifically support the GrantedAuthority

implementation in order to understand its contents.

Spring Security includes one concrete GrantedAuthority implementation,

GrantedAuthorityImpl. This allows any user-specified String to be converted into a

GrantedAuthority. All AuthenticationProviders included with the security architecture

use GrantedAuthorityImpl to populate the Authentication object.

13.2 Pre-Invocation Handling

As we've also seen in the Technical Overview chapter, Spring Security provides interceptors which

control access to secure objects such as method invocations or web requests. A pre-invocation decision

on whether the invocation is allowed to proceed is made by the AccessDecisionManager.

The AccessDecisionManager

The AccessDecisionManager is called by the AbstractSecurityInterceptor and is

responsible for making final access control decisions. The AccessDecisionManager interface

contains three methods:

 void decide(Authentication authentication, Object secureObject,

     List<ConfigAttribute> config) throws AccessDeniedException;

 boolean supports(ConfigAttribute attribute);

 boolean supports(Class clazz);



Spring Security

3.0.7.RELEASE 70

      

The AccessDecisionManager's decide method is passed all the relevant information it needs

in order to make an authorization decision. In particular, passing the secure Object enables

those arguments contained in the actual secure object invocation to be inspected. For example,

let's assume the secure object was a MethodInvocation. It would be easy to query the

MethodInvocation for any Customer argument, and then implement some sort of security logic

in the AccessDecisionManager to ensure the principal is permitted to operate on that customer.

Implementations are expected to throw an AccessDeniedException if access is denied.

The supports(ConfigAttribute) method is called by the

AbstractSecurityInterceptor at startup time to determine if the

AccessDecisionManager can process the passed ConfigAttribute. The

supports(Class) method is called by a security interceptor implementation to ensure the

configured AccessDecisionManager supports the type of secure object that the security

interceptor will present.

Voting-Based AccessDecisionManager Implementations

Whilst users can implement their own AccessDecisionManager to control all aspects of

authorization, Spring Security includes several AccessDecisionManager implementations that

are based on voting. Figure 13.1, “Voting Decision Manager” illustrates the relevant classes.

Figure 13.1. Voting Decision Manager

Using this approach, a series of AccessDecisionVoter implementations are polled on an

authorization decision. The AccessDecisionManager then decides whether or not to throw an

AccessDeniedException based on its assessment of the votes.

The AccessDecisionVoter interface has three methods:

int vote(Authentication authentication, Object object, List<ConfigAttribute> config);

boolean supports(ConfigAttribute attribute);

boolean supports(Class clazz);

Concrete implementations return an int, with possible values being reflected in

the AccessDecisionVoter static fields ACCESS_ABSTAIN, ACCESS_DENIED and

ACCESS_GRANTED. A voting implementation will return ACCESS_ABSTAIN if it has no opinion

on an authorization decision. If it does have an opinion, it must return either ACCESS_DENIED or

ACCESS_GRANTED.

There are three concrete AccessDecisionManagers provided with Spring Security that tally the

votes. The ConsensusBased implementation will grant or deny access based on the consensus of

non-abstain votes. Properties are provided to control behavior in the event of an equality of votes

or if all votes are abstain. The AffirmativeBased implementation will grant access if one or

more ACCESS_GRANTED votes were received (i.e. a deny vote will be ignored, provided there

was at least one grant vote). Like the ConsensusBased implementation, there is a parameter

that controls the behavior if all voters abstain. The UnanimousBased provider expects unanimous



Spring Security

3.0.7.RELEASE 71

ACCESS_GRANTED votes in order to grant access, ignoring abstains. It will deny access if there is

any ACCESS_DENIED vote. Like the other implementations, there is a parameter that controls the

behaviour if all voters abstain.

It is possible to implement a custom AccessDecisionManager that tallies votes differently. For

example, votes from a particular AccessDecisionVoter might receive additional weighting, whilst

a deny vote from a particular voter may have a veto effect.

RoleVoter

The most commonly used AccessDecisionVoter provided with Spring Security is the simple

RoleVoter, which treats configuration attributes as simple role names and votes to grant access if the

user has been assigned that role.

It will vote if any ConfigAttribute begins with the prefix ROLE_. It will vote to grant access if

there is a GrantedAuthority which returns a String representation (via the getAuthority()

method) exactly equal to one or more ConfigAttributes starting with the prefix ROLE_. If there is

no exact match of any ConfigAttribute starting with ROLE_, the RoleVoter will vote to deny

access. If no ConfigAttribute begins with ROLE_, the voter will abstain.

AuthenticatedVoter

Another voter which we've implicitly seen is the AuthenticatedVoter, which can be used to

differentiate between anonymous, fully-authenticated and remember-me authenticated users. Many sites

allow certain limited access under remember-me authentication, but require a user to confirm their

identity by logging in for full access.

When we've used the attribute IS_AUTHENTICATED_ANONYMOUSLY to grant anonymous access,

this attribute was being processed by the AuthenticatedVoter. See the Javadoc for this class for

more information.

Custom Voters

It is also possible to implement a custom AccessDecisionVoter. Several examples

are provided in Spring Security unit tests, including ContactSecurityVoter and

DenyVoter. The ContactSecurityVoter abstains from voting decisions where a

CONTACT_OWNED_BY_CURRENT_USER ConfigAttribute is not found. If voting, it queries the

MethodInvocation to extract the owner of the Contact object that is subject of the method call. It

votes to grant access if the Contact owner matches the principal presented in the Authentication

object. It could have just as easily compared the Contact owner with some GrantedAuthority

the Authentication object presented. All of this is achieved with relatively few lines of code and

demonstrates the flexibility of the authorization model.

13.3 After Invocation Handling

Whilst the AccessDecisionManager is called by the AbstractSecurityInterceptor

before proceeding with the secure object invocation, some applications need a way of modifying the

object actually returned by the secure object invocation. Whilst you could easily implement your own



Spring Security

3.0.7.RELEASE 72

AOP concern to achieve this, Spring Security provides a convenient hook that has several concrete

implementations that integrate with its ACL capabilities.

Figure 13.2, “After Invocation Implementation” illustrates Spring Security's

AfterInvocationManager and its concrete implementations.

Figure 13.2. After Invocation Implementation

Like many other parts of Spring Security, AfterInvocationManager has a single

concrete implementation, AfterInvocationProviderManager, which polls a list of

AfterInvocationProviders. Each AfterInvocationProvider is allowed to modify the

return object or throw an AccessDeniedException. Indeed multiple providers can modify the

object, as the result of the previous provider is passed to the next in the list.

Please be aware that if you're using AfterInvocationManager, you will still need configuration

attributes that allow the MethodSecurityInterceptor's AccessDecisionManager to allow

an operation. If you're using the typical Spring Security included AccessDecisionManager

implementations, having no configuration attributes defined for a particular secure method

invocation will cause each AccessDecisionVoter to abstain from voting. In turn, if

the AccessDecisionManager property "allowIfAllAbstainDecisions" is false, an

AccessDeniedException will be thrown. You may avoid this potential issue by either (i) setting

"allowIfAllAbstainDecisions" to true (although this is generally not recommended) or (ii)

simply ensure that there is at least one configuration attribute that an AccessDecisionVoter will

vote to grant access for. This latter (recommended) approach is usually achieved through a ROLE_USER

or ROLE_AUTHENTICATED configuration attribute.



Spring Security

3.0.7.RELEASE 73

14.1 AOP Alliance (MethodInvocation) Security
Interceptor

Prior to Spring Security 2.0, securing MethodInvocations needed quite a lot of boiler plate

configuration. Now the recommended approach for method security is to use namespace configuration.

This way the method security infrastructure beans are configured automatically for you so you don't

really need to know about the implementation classes. We'll just provide a quick overview of the classes

that are involved here.

Method security in enforced using a MethodSecurityInterceptor, which secures

MethodInvocations. Depending on the configuration approach, an interceptor may be

specific to a single bean or shared between multiple beans. The interceptor uses a

MethodSecurityMetadataSource instance to obtain the configuration attributes that apply to

a particular method invocation. MapBasedMethodSecurityMetadataSource is used to store

configuration attributes keyed by method names (which can be wildcarded) and will be used internally

when the attributes are defined in the application context using the <intercept-methods>

or <protect-point> elements. Other implementations will be used to handle annotation-based

configuration.

Explicit MethodSecurityInterceptor Configuration

You can of course configure a MethodSecurityIterceptor directly in your application context

for use with one of Spring AOP's proxying mechanisms:

<bean id="bankManagerSecurity"

    class="org.springframework.security.access.intercept.aopalliance.MethodSecurityInterceptor">

  <property name="authenticationManager" ref="authenticationManager"/>

  <property name="accessDecisionManager" ref="accessDecisionManager"/>

  <property name="afterInvocationManager" ref="afterInvocationManager"/>

  <property name="securityMetadataSource">

    <value>

      com.mycompany.BankManager.delete*=ROLE_SUPERVISOR

      com.mycompany.BankManager.getBalance=ROLE_TELLER,ROLE_SUPERVISOR

    </value>

  </property>

</bean> 

14.2 AspectJ (JoinPoint) Security Interceptor

The AspectJ security interceptor is very similar to the AOP Alliance security interceptor discussed in

the previous section. Indeed we will only discuss the differences in this section.

The AspectJ interceptor is named AspectJSecurityInterceptor. Unlike the AOP Alliance

security interceptor, which relies on the Spring application context to weave in the security interceptor

via proxying, the AspectJSecurityInterceptor is weaved in via the AspectJ compiler. It

would not be uncommon to use both types of security interceptors in the same application, with

AspectJSecurityInterceptor being used for domain object instance security and the AOP

Alliance MethodSecurityInterceptor being used for services layer security.



Spring Security

3.0.7.RELEASE 74

Let's first consider how the AspectJSecurityInterceptor is configured in the Spring

application context:

<bean id="bankManagerSecurity"

     class="org.springframework.security.access.intercept.aspectj.AspectJSecurityInterceptor">

  <property name="authenticationManager" ref="authenticationManager"/>

  <property name="accessDecisionManager" ref="accessDecisionManager"/>

  <property name="afterInvocationManager" ref="afterInvocationManager"/>

  <property name="securityMetadataSource">

    <value>

        com.mycompany.BankManager.delete*=ROLE_SUPERVISOR

        com.mycompany.BankManager.getBalance=ROLE_TELLER,ROLE_SUPERVISOR

    </value>

</property>

</bean>        

As you can see, aside from the class name, the AspectJSecurityInterceptor is exactly

the same as the AOP Alliance security interceptor. Indeed the two interceptors can share

the same securityMetadataSource, as the SecurityMetadataSource works with

java.lang.reflect.Methods rather than an AOP library-specific class. Of course, your access

decisions have access to the relevant AOP library-specific invocation (ie MethodInvocation or

JoinPoint) and as such can consider a range of addition criteria when making access decisions (such

as method arguments).

Next you'll need to define an AspectJ aspect. For example:

package org.springframework.security.samples.aspectj;

import org.springframework.security.access.intercept.aspectj.AspectJSecurityInterceptor;

import org.springframework.security.access.intercept.aspectj.AspectJCallback;

import org.springframework.beans.factory.InitializingBean;

public aspect DomainObjectInstanceSecurityAspect implements InitializingBean {

    private AspectJSecurityInterceptor securityInterceptor;

    pointcut domainObjectInstanceExecution(): target(PersistableEntity)

        && execution(public * *(..)) && !within(DomainObjectInstanceSecurityAspect);

    Object around(): domainObjectInstanceExecution() {

        if (this.securityInterceptor == null) {

            return proceed();

        }

        AspectJCallback callback = new AspectJCallback() {

            public Object proceedWithObject() {

                return proceed();

            }

        };

        return this.securityInterceptor.invoke(thisJoinPoint, callback);

    }

    public AspectJSecurityInterceptor getSecurityInterceptor() {

        return securityInterceptor;

    }



Spring Security

3.0.7.RELEASE 75

    public void setSecurityInterceptor(AspectJSecurityInterceptor securityInterceptor) {

        this.securityInterceptor = securityInterceptor;

    }

    public void afterPropertiesSet() throws Exception {

        if (this.securityInterceptor == null)

            throw new IllegalArgumentException("securityInterceptor required");

        }

    }

}

In the above example, the security interceptor will be applied to every instance of

PersistableEntity, which is an abstract class not shown (you can use any other class

or pointcut expression you like). For those curious, AspectJCallback is needed because

the proceed(); statement has special meaning only within an around() body. The

AspectJSecurityInterceptor calls this anonymous AspectJCallback class when it wants

the target object to continue.

You will need to configure Spring to load the aspect and wire it with the

AspectJSecurityInterceptor. A bean declaration which achieves this is shown below:

<bean id="domainObjectInstanceSecurityAspect"

     class="security.samples.aspectj.DomainObjectInstanceSecurityAspect"

     factory-method="aspectOf">

  <property name="securityInterceptor" ref="bankManagerSecurity"/>

</bean>

    

That's it! Now you can create your beans from anywhere within your application, using whatever means

you think fit (eg new Person();) and they will have the security interceptor applied.



Spring Security

3.0.7.RELEASE 76

Spring Security 3.0 introduced the ability to use Spring EL expressions as an authorization mechanism in

addition to the simple use of configuration attributes and access-decision voters which have seen before.

Expression-based access control is built on the same architecture but allows complicated boolean logic

to be encapsulated in a single expression.

15.1 Overview

Spring Security uses Spring EL for expression support and you should look at how that works if you are

interested in understanding the topic in more depth. Expressions are evaluated with a “root object” as

part of the evaluation context. Spring Security uses specific classes for web and method security as the

root object, in order to provide built-in expressions and access to values such as the current principal.

Common Built-In Expressions

The base class for expression root objects is SecurityExpressionRoot. This provides some

common expressions which are available in both web and method security.

Table 15.1. Common built-in expressions

Expression Description

hasRole([role]) Returns true if the current principal has the specified role.

hasAnyRole([role1,role2])Returns true if the current principal has any of the supplied roles

(given as a comma-separated list of strings)

principal Allows direct access to the principal object representing the current

user

authentication Allows direct access to the current Authentication object

obtained from the SecurityContext

permitAll Always evaluates to true

denyAll Always evaluates to false

isAnonymous() Returns true if the current principal is an anonymous user

isRememberMe() Returns true if the current principal is a remember-me user

isAuthenticated() Returns true if the user is not anonymous

isFullyAuthenticated() Returns true if the user is not an anonymous or a remember-me

user

15.2 Web Security Expressions

To use expressions to secure individual URLs, you would first need to set the use-expressions

attribute in the <http> element to true. Spring Security will then expect the access attributes of



Spring Security

3.0.7.RELEASE 77

the <intercept-url> elements to contain Spring EL expressions. The expressions should evaluate

to a boolean, defining whether access should be allowed or not. For example:

  <http use-expressions="true">

    <intercept-url pattern="/admin*"

        access="hasRole('admin') and hasIpAddress('192.168.1.0/24')"/>

    ...

  </http>

Here we have defined that the “admin” area of an application (defined by the URL pattern) should

only be available to users who have the granted authority “admin” and whose IP address matches

a local subnet. We've already seen the built-in hasRole expression in the previous section. The

expression hasIpAddress is an additional built-in expression which is specific to web security.

It is defined by the WebSecurityExpressionRoot class, an instance of which is used as the

expression root object when evaluation web-access expressions. This object also directly exposed the

HttpServletRequest object under the name request so you can invoke the request directly in

an expression.

If expressions are being used, a WebExpressionVoter will be added to the

AccessDecisionManager which is used by the namespace. So if you aren't using the namespace

and want to use expressions, you will have to add one of these to your configuration.

15.3 Method Security Expressions

Method security is a bit more complicated than a simple allow or deny rule. Spring Security 3.0

introduced some new annotations in order to allow comprehensive support for the use of expressions.

@Pre and @Post Annotations

There are four annotations which support expression attributes to allow pre and post-invocation

authorization checks and also to support filtering of submitted collection arguments or return values.

They are @PreAuthorize, @PreFilter, @PostAuthorize and @PostFilter. Their use is

enabled through the global-method-security namespace element:

<global-method-security pre-post-annotations="enabled"/>

Access Control using @PreAuthorize and @PostAuthorize

The most obviously useful annotation is @PreAuthorize which decides whether a method can

actually be invoked or not. For example (from the “Contacts” sample application)

  @PreAuthorize("hasRole('ROLE_USER')")

  public void create(Contact contact);

which means that access will only be allowed for users with the role "ROLE_USER". Obviously the

same thing could easily be achieved using a traditional configuration and a simple configuration attribute

for the required role. But what about:

  @PreAuthorize("hasPermission(#contact, 'admin')")

  public void deletePermission(Contact contact, Sid recipient, Permission permission);



Spring Security

3.0.7.RELEASE 78

Here we're actually using a method argument as part of the expression to decide whether the current

user has the “admin”permission for the given contact. The built-in hasPermission() expression is

linked into the Spring Security ACL module through the application context, as we'll see below. You

can access any of the method arguments by name as expression variables, provided your code has debug

information compiled in. Any Spring-EL functionality is available within the expression, so you can

also access properties on the arguments. For example, if you wanted a particular method to only allow

access to a user whose username matched that of the contact, you could write

  @PreAuthorize("#contact.name == authentication.name")

  public void doSomething(Contact contact);

Here we are accessing another built–in expression, authentication, which is the

Authentication stored in the security context. You can also access its “principal” property directly,

using the expression principal. The value will often be a UserDetails instance, so you might

use an expression like principal.username or principal.enabled.

Less commonly, you may wish to perform an access-control check after the method has been invoked.

This can be achieved using the @PostAuthorize annotation. To access the return value from a

method, use the built–in name returnObject in the expression.

Filtering using @PreFilter and @PostFilter

As you may already be aware, Spring Security supports filtering of collections and arrays and this can

now be achieved using expressions. This is most commonly performed on the return value of a method.

For example:

  @PreAuthorize("hasRole('ROLE_USER')")

  @PostFilter("hasPermission(filterObject, 'read') or hasPermission(filterObject, 'admin')")

  public List<Contact> getAll();

When using the @PostFilter annotation, Spring Security iterates through the returned collection

and removes any elements for which the supplied expression is false. The name filterObject refers

to the current object in the collection. You can also filter before the method call, using @PreFilter,

though this is a less common requirement. The syntax is just the same, but if there is more than one

argument which is a collection type then you have to select one by name using the filterTarget

property of this annotation.

Note that filtering is obviously not a substitute for tuning your data retrieval queries. If you are filtering

large collections and removing many of the entries then this is likely to be inefficient.

Built-In Expressions

There are some built-in expressions which are specific to method security, which we have already seen

in use above. The filterTarget and returnValue values are simple enough, but the use of the

hasPermission() expression warrants a closer look.

The PermissionEvaluator interface

hasPermission() expressions are delegated to an instance of PermissionEvaluator. It is

intended to bridge between the expression system and Spring Security's ACL system, allowing you to



Spring Security

3.0.7.RELEASE 79

specify authorization constraints on domain objects, based on abstract permissions. It has no explicit

dependencies on the ACL module, so you could swap that out for an alternative implementation if

required. The interface has two methods:

  boolean hasPermission(Authentication authentication, Object targetDomainObject, Object permission);

  boolean hasPermission(Authentication authentication, Serializable targetId, String targetType, Object permission);

which map directly to the available versions of the expression, with the exception that the first argument

(the Authentication object) is not supplied. The first is used in situations where the domain object,

to which access is being controlled, is already loaded. Then expression will return true if the current

user has the given permission for that object. The second version is used in cases where the object is not

loaded, but its identifier is known. An abstract “type” specifier for the domain object is also required,

allowing the correct ACL permissions to be loaded. This has traditionally been the Java class of the

object, but does not have to be as long as it is consistent with how the permissions are loaded.

To use hasPermission() expressions, you have to explicitly configure a

PermissionEvaluator in your application context. This would look something like this:

  <security:global-method-security pre-post-annotations="enabled">

    <security:expression-handler ref="expressionHandler"/>

  </security:global-method-security>

  <bean id="expressionHandler"

      class="org.springframework.security.access.expression.method.DefaultMethodSecurityExpressionHandler">

        <property name="permissionEvaluator" ref="myPermissionEvaluator"/>

  </bean>

Where myPermissionEvaluator is the bean which implements PermissionEvaluator.

Usually this will be the implementation from the ACL module which is called

AclPermissionEvaluator. See the “Contacts” sample application configuration for more details.



Part V. Additional Topics
In this part we cover features which require a knowledge of previous chapters as well as some of the

more advanced and less-commonly used features of the framework.



Spring Security

3.0.7.RELEASE 81

16.1 Overview

Complex applications often will find the need to define access permissions not simply at a web request or

method invocation level. Instead, security decisions need to comprise both who (Authentication),

where (MethodInvocation) and what (SomeDomainObject). In other words, authorization

decisions also need to consider the actual domain object instance subject of a method invocation.

Imagine you're designing an application for a pet clinic. There will be two main groups of users of your

Spring-based application: staff of the pet clinic, as well as the pet clinic's customers. The staff will have

access to all of the data, whilst your customers will only be able to see their own customer records. To

make it a little more interesting, your customers can allow other users to see their customer records,

such as their "puppy preschool" mentor or president of their local "Pony Club". Using Spring Security

as the foundation, you have several approaches that can be used:

1. Write your business methods to enforce the security. You could consult a collection within

the Customer domain object instance to determine which users have access. By using the

SecurityContextHolder.getContext().getAuthentication(), you'll be able to

access the Authentication object.

2. Write an AccessDecisionVoter to enforce the security from the GrantedAuthority[]s

stored in the Authentication object. This would mean your AuthenticationManager

would need to populate the Authentication with custom GrantedAuthority[]s

representing each of the Customer domain object instances the principal has access to.

3. Write an AccessDecisionVoter to enforce the security and open the target Customer domain

object directly. This would mean your voter needs access to a DAO that allows it to retrieve the

Customer object. It would then access the Customer object's collection of approved users and

make the appropriate decision.

Each one of these approaches is perfectly legitimate. However, the first couples your authorization

checking to your business code. The main problems with this include the enhanced difficulty of unit

testing and the fact it would be more difficult to reuse the Customer authorization logic elsewhere.

Obtaining the GrantedAuthority[]s from the Authentication object is also fine, but will not

scale to large numbers of Customers. If a user might be able to access 5,000 Customers (unlikely in

this case, but imagine if it were a popular vet for a large Pony Club!) the amount of memory consumed

and time required to construct the Authentication object would be undesirable. The final method,

opening the Customer directly from external code, is probably the best of the three. It achieves

separation of concerns, and doesn't misuse memory or CPU cycles, but it is still inefficient in that

both the AccessDecisionVoter and the eventual business method itself will perform a call to the

DAO responsible for retrieving the Customer object. Two accesses per method invocation is clearly

undesirable. In addition, with every approach listed you'll need to write your own access control list

(ACL) persistence and business logic from scratch.

Fortunately, there is another alternative, which we'll talk about below.



Spring Security

3.0.7.RELEASE 82

16.2 Key Concepts

Spring Security's ACL services are shipped in the spring-security-acl-xxx.jar. You will

need to add this JAR to your classpath to use Spring Security's domain object instance security

capabilities.

Spring Security's domain object instance security capabilities centre on the concept of an access control

list (ACL). Every domain object instance in your system has its own ACL, and the ACL records details

of who can and can't work with that domain object. With this in mind, Spring Security delivers three

main ACL-related capabilities to your application:

• A way of efficiently retrieving ACL entries for all of your domain objects (and modifying those ACLs)

• A way of ensuring a given principal is permitted to work with your objects, before methods are called

• A way of ensuring a given principal is permitted to work with your objects (or something they return),

after methods are called

As indicated by the first bullet point, one of the main capabilities of the Spring Security ACL module

is providing a high-performance way of retrieving ACLs. This ACL repository capability is extremely

important, because every domain object instance in your system might have several access control

entries, and each ACL might inherit from other ACLs in a tree-like structure (this is supported out-of-

the-box by Spring Security, and is very commonly used). Spring Security's ACL capability has been

carefully designed to provide high performance retrieval of ACLs, together with pluggable caching,

deadlock-minimizing database updates, independence from ORM frameworks (we use JDBC directly),

proper encapsulation, and transparent database updating.

Given databases are central to the operation of the ACL module, let's explore the four main tables used

by default in the implementation. The tables are presented below in order of size in a typical Spring

Security ACL deployment, with the table with the most rows listed last:

• ACL_SID allows us to uniquely identify any principal or authority in the system ("SID" stands for

"security identity"). The only columns are the ID, a textual representation of the SID, and a flag to

indicate whether the textual representation refers to a principal name or a GrantedAuthority.

Thus, there is a single row for each unique principal or GrantedAuthority. When used in the

context of receiving a permission, a SID is generally called a "recipient".

• ACL_CLASS allows us to uniquely identify any domain object class in the system. The only columns

are the ID and the Java class name. Thus, there is a single row for each unique Class we wish to store

ACL permissions for.

• ACL_OBJECT_IDENTITY stores information for each unique domain object instance in the system.

Columns include the ID, a foreign key to the ACL_CLASS table, a unique identifier so we know

which ACL_CLASS instance we're providing information for, the parent, a foreign key to the

ACL_SID table to represent the owner of the domain object instance, and whether we allow ACL

entries to inherit from any parent ACL. We have a single row for every domain object instance we're

storing ACL permissions for.



Spring Security

3.0.7.RELEASE 83

• Finally, ACL_ENTRY stores the individual permissions assigned to each recipient. Columns include

a foreign key to the ACL_OBJECT_IDENTITY, the recipient (ie a foreign key to ACL_SID), whether

we'll be auditing or not, and the integer bit mask that represents the actual permission being granted

or denied. We have a single row for every recipient that receives a permission to work with a domain

object.

As mentioned in the last paragraph, the ACL system uses integer bit masking. Don't worry, you need

not be aware of the finer points of bit shifting to use the ACL system, but suffice to say that we have 32

bits we can switch on or off. Each of these bits represents a permission, and by default the permissions

are read (bit 0), write (bit 1), create (bit 2), delete (bit 3) and administer (bit 4). It's easy to implement

your own Permission instance if you wish to use other permissions, and the remainder of the ACL

framework will operate without knowledge of your extensions.

It is important to understand that the number of domain objects in your system has absolutely no

bearing on the fact we've chosen to use integer bit masking. Whilst you have 32 bits available for

permissions, you could have billions of domain object instances (which will mean billions of rows

in ACL_OBJECT_IDENTITY and quite probably ACL_ENTRY). We make this point because we've

found sometimes people mistakenly believe they need a bit for each potential domain object, which is

not the case.

Now that we've provided a basic overview of what the ACL system does, and what it looks like at a

table structure, let's explore the key interfaces. The key interfaces are:

• Acl: Every domain object has one and only one Acl object, which internally holds the

AccessControlEntrys as well as knows the owner of the Acl. An Acl does not refer

directly to the domain object, but instead to an ObjectIdentity. The Acl is stored in the

ACL_OBJECT_IDENTITY table.

• AccessControlEntry: An Acl holds multiple AccessControlEntrys, which are often

abbreviated as ACEs in the framework. Each ACE refers to a specific tuple of Permission, Sid

and Acl. An ACE can also be granting or non-granting and contain audit settings. The ACE is stored

in the ACL_ENTRY table.

• Permission: A permission represents a particular immutable bit mask, and offers convenience

functions for bit masking and outputting information. The basic permissions presented above (bits 0

through 4) are contained in the BasePermission class.

• Sid: The ACL module needs to refer to principals and GrantedAuthority[]s. A level of

indirection is provided by the Sid interface, which is an abbreviation of "security identity". Common

classes include PrincipalSid (to represent the principal inside an Authentication object)

and GrantedAuthoritySid. The security identity information is stored in the ACL_SID table.

• ObjectIdentity: Each domain object is represented internally within the ACL module by an

ObjectIdentity. The default implementation is called ObjectIdentityImpl.

• AclService: Retrieves the Acl applicable for a given ObjectIdentity. In the included

implementation (JdbcAclService), retrieval operations are delegated to a LookupStrategy.

The LookupStrategy provides a highly optimized strategy for retrieving ACL information,

using batched retrievals (BasicLookupStrategy) and supporting custom implementations that

leverage materialized views, hierarchical queries and similar performance-centric, non-ANSI SQL

capabilities.



Spring Security

3.0.7.RELEASE 84

• MutableAclService: Allows a modified Acl to be presented for persistence. It is not essential

to use this interface if you do not wish.

Please note that our out-of-the-box AclService and related database classes all use ANSI SQL. This

should therefore work with all major databases. At the time of writing, the system had been successfully

tested using Hypersonic SQL, PostgreSQL, Microsoft SQL Server and Oracle.

Two samples ship with Spring Security that demonstrate the ACL module. The first is the Contacts

Sample, and the other is the Document Management System (DMS) Sample. We suggest taking a look

over these for examples.

16.3 Getting Started

To get starting using Spring Security's ACL capability, you will need to store your ACL information

somewhere. This necessitates the instantiation of a DataSource using Spring. The DataSource is

then injected into a JdbcMutableAclService and BasicLookupStrategy instance. The latter

provides high-performance ACL retrieval capabilities, and the former provides mutator capabilities.

Refer to one of the samples that ship with Spring Security for an example configuration. You'll also

need to populate the database with the four ACL-specific tables listed in the last section (refer to the

ACL samples for the appropriate SQL statements).

Once you've created the required schema and instantiated JdbcMutableAclService, you'll next

need to ensure your domain model supports interoperability with the Spring Security ACL package.

Hopefully ObjectIdentityImpl will prove sufficient, as it provides a large number of ways in

which it can be used. Most people will have domain objects that contain a public Serializable

getId() method. If the return type is long, or compatible with long (eg an int), you will find you need

not give further consideration to ObjectIdentity issues. Many parts of the ACL module rely on

long identifiers. If you're not using long (or an int, byte etc), there is a very good chance you'll need to

reimplement a number of classes. We do not intend to support non-long identifiers in Spring Security's

ACL module, as longs are already compatible with all database sequences, the most common identifier

data type, and are of sufficient length to accommodate all common usage scenarios.

The following fragment of code shows how to create an Acl, or modify an existing Acl:

// Prepare the information we'd like in our access control entry (ACE)

ObjectIdentity oi = new ObjectIdentityImpl(Foo.class, new Long(44));

Sid sid = new PrincipalSid("Samantha");

Permission p = BasePermission.ADMINISTRATION;

// Create or update the relevant ACL

MutableAcl acl = null;

try {

  acl = (MutableAcl) aclService.readAclById(oi);

} catch (NotFoundException nfe) {

  acl = aclService.createAcl(oi);

}

// Now grant some permissions via an access control entry (ACE)

acl.insertAce(acl.getEntries().length, p, sid, true);

aclService.updateAcl(acl);



Spring Security

3.0.7.RELEASE 85

In the example above, we're retrieving the ACL associated with the "Foo" domain object with identifier

number 44. We're then adding an ACE so that a principal named "Samantha" can "administer" the object.

The code fragment is relatively self-explanatory, except the insertAce method. The first argument to

the insertAce method is determining at what position in the Acl the new entry will be inserted. In the

example above, we're just putting the new ACE at the end of the existing ACEs. The final argument is a

boolean indicating whether the ACE is granting or denying. Most of the time it will be granting (true),

but if it is denying (false), the permissions are effectively being blocked.

Spring Security does not provide any special integration to automatically create, update or delete ACLs

as part of your DAO or repository operations. Instead, you will need to write code like shown above for

your individual domain objects. It's worth considering using AOP on your services layer to automatically

integrate the ACL information with your services layer operations. We've found this quite an effective

approach in the past.

Once you've used the above techniques to store some ACL information in the database, the next step is to

actually use the ACL information as part of authorization decision logic. You have a number of choices

here. You could write your own AccessDecisionVoter or AfterInvocationProvider that

respectively fires before or after a method invocation. Such classes would use AclService to retrieve

the relevant ACL and then call Acl.isGranted(Permission[] permission, Sid[]

sids, boolean administrativeMode) to decide whether permission is granted or denied.

Alternately, you could use our AclEntryVoter, AclEntryAfterInvocationProvider or

AclEntryAfterInvocationCollectionFilteringProvider classes. All of these classes

provide a declarative-based approach to evaluating ACL information at runtime, freeing you from

needing to write any code. Please refer to the sample applications to learn how to use these classes.



Spring Security

3.0.7.RELEASE 86

There are situations where you want to use Spring Security for authorization, but the user has already

been reliably authenticated by some external system prior to accessing the application. We refer to these

situations as “pre-authenticated” scenarios. Examples include X.509, Siteminder and authentication by

the J2EE container in which the application is running. When using pre-authentication, Spring Security

has to

1. Identify the user making the request.

2. Obtain the authorities for the user.

The details will depend on the external authentication mechanism. A user might be identified by their

certificate information in the case of X.509, or by an HTTP request header in the case of Siteminder. If

relying on container authentication, the user will be identified by calling the getUserPrincipal()

method on the incoming HTTP request. In some cases, the external mechanism may supply role/

authority information for the user but in others the authorities must be obtained from a separate source,

such as a UserDetailsService.

17.1 Pre-Authentication Framework Classes

Because most pre-authentication mechanisms follow the same pattern, Spring Security has a set

of classes which provide an internal framework for implementing pre-authenticated authentication

providers. This removes duplication and allows new implementations to be added in a structured fashion,

without having to write everything from scratch. You don't need to know about these classes if you want

to use something like X.509 authentication, as it already has a namespace configuration option which

is simpler to use and get started with. If you need to use explicit bean configuration or are planning on

writing your own implementation then an understanding of how the provided implementations work will

be useful. You will find classes under the org.springframework.security.web.authentication.preauth. We

just provide an outline here so you should consult the Javadoc and source where appropriate.

AbstractPreAuthenticatedProcessingFilter

This class will check the current contents of the security context and, if empty, it will attempt to extract

user information from the HTTP request and submit it to the AuthenticationManager. Subclasses

override the following methods to obtain this information:

  protected abstract Object getPreAuthenticatedPrincipal(HttpServletRequest request);

  protected abstract Object getPreAuthenticatedCredentials(HttpServletRequest request);

After calling these, the filter will create a PreAuthenticatedAuthenticationToken

containing the returned data and submit it for authentication. By “authentication” here, we really

just mean further processing to perhaps load the user's authorities, but the standard Spring Security

authentication architecture is followed.

AbstractPreAuthenticatedAuthenticationDetailsSource

Like other Spring Security authentication filters, the pre-authentication filter has

an authenticationDetailsSource property which by default will create a



Spring Security

3.0.7.RELEASE 87

WebAuthenticationDetails object to store additional information such as the session-

identifier and originating IP address in the details property of the Authentication

object. In cases where user role information can be obtained from the pre-

authentication mechanism, the data is also stored in this property. Subclasses of

AbstractPreAuthenticatedAuthenticationDetailsSource use an extended details

object which implements the GrantedAuthoritiesContainer interface, thus enabling the

authentication provider to read the authorities which were externally allocated to the user. We'll look

at a concrete example next.

J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

If the filter is configured with an authenticationDetailsSource which is an instance of

this class, the authority information is obtained by calling the isUserInRole(String role)

method for each of a pre-determined set of “mappable roles”. The class gets these from a configured

MappableAttributesRetriever. Possible implementations include hard-coding a list in the

application context and reading the role information from the <security-role> information in a

web.xml file. The pre-authentication sample application uses the latter approach.

There is an additional stage where the roles (or attributes) are

mapped to Spring Security GrantedAuthority objects using a configured

Attributes2GrantedAuthoritiesMapper. The default will just add the usual ROLE_ prefix

to the names, but it gives you full control over the behaviour.

PreAuthenticatedAuthenticationProvider

The pre-authenticated provider has little more to do than load the UserDetails object for the user. It

does this by delegating to a AuthenticationUserDetailsService. The latter is similar to the

standard UserDetailsService but takes an Authentication object rather than just user name:

  public interface AuthenticationUserDetailsService {

    UserDetails loadUserDetails(Authentication token) throws UsernameNotFoundException;

  }

This interface may have also other uses but with pre-authentication it allows access to

the authorities which were packaged in the Authentication object, as we saw in the

previous section. The PreAuthenticatedGrantedAuthoritiesUserDetailsService

class does this. Alternatively, it may delegate to a standard UserDetailsService via the

UserDetailsByNameServiceWrapper implementation.

Http403ForbiddenEntryPoint

The AuthenticationEntryPoint was discussed in the technical overview chapter. Normally

it is responsible for kick-starting the authentication process for an unauthenticated user (when they

try to access a protected resource), but in the pre-authenticated case this doesn't apply. You would

only configure the ExceptionTranslationFilter with an instance of this class if you aren't

using pre-authentication in combination with other authentication mechanisms. It will be called if the

user is rejected by the AbstractPreAuthenticatedProcessingFilter resulting in a null

authentication. It always returns a 403-forbidden response code if called.



Spring Security

3.0.7.RELEASE 88

17.2 Concrete Implementations

X.509 authentication is covered in its own chapter. Here we'll look at some classes which provide support

for other pre-authenticated scenarios.

Request-Header Authentication (Siteminder)

An external authentication system may supply information to the application by setting specific

headers on the HTTP request. A well known example of this is Siteminder, which passes

the username in a header called SM_USER. This mechanism is supported by the class

RequestHeaderAuthenticationFilter which simply extracts the username from the header.

It defaults to using the name SM_USER as the header name. See the Javadoc for more details.

Tip

Note that when using a system like this, the framework performs no authentication checks at

all and it is extremely important that the external system is configured properly and protects

all access to the application. If an attacker is able to forge the headers in their original request

without this being detected then they could potentially choose any username they wished.

Siteminder Example Configuration

A typical configuration using this filter would look like this:

  <security:http>

    <!-- Additional http configuration omitted -->

    <security:custom-filter position="PRE_AUTH_FILTER" ref="siteminderFilter" />

  </security:http>

    <bean id="siteminderFilter" class=

"org.springframework.security.web.authentication.preauth.RequestHeaderAuthenticationFilter">

    <property name="principalRequestHeader" value="SM_USER"/>

    <property name="authenticationManager" ref="authenticationManager" />

  </bean>

  <bean id="preauthAuthProvider"

class="org.springframework.security.web.authentication.preauth.PreAuthenticatedAuthenticationProvider">

    <property name="preAuthenticatedUserDetailsService">

      <bean id="userDetailsServiceWrapper"

          class="org.springframework.security.core.userdetails.UserDetailsByNameServiceWrapper">

        <property name="userDetailsService" ref="userDetailsService"/>

      </bean>

    </property>

    </bean>

    <security:authentication-manager alias="authenticationManager">

      <security:authentication-provider ref="preauthAuthProvider" />

    </security-authentication-manager>

We've assumed here that the security namespace is being used for configuration (hence the

user of the custom-filter, authentication-manager and custom-authentication-

provider elements (you can read more about them in the namespace chapter). You would



Spring Security

3.0.7.RELEASE 89

leave these out of a traditional bean configuration. It's also assumed that you have added a

UserDetailsService (called “userDetailsService”) to your configuration to load the user's roles.

J2EE Container Authentication

The class J2eePreAuthenticatedProcessingFilter will extract the username from

the userPrincipal property of the HttpServletRequest. Use of this filter would

usually be combined with the use of J2EE roles as described above in the section called

“J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource”.

There is a sample application in the codebase which uses this approach, so get hold of the code from

subversion and have a look at the application context file if you are interested. The code is in the

samples/preauth directory.



Spring Security

3.0.7.RELEASE 90

18.1 Overview

LDAP is often used by organizations as a central repository for user information and as an authentication

service. It can also be used to store the role information for application users.

There are many different scenarios for how an LDAP server may be configured so Spring Security's

LDAP provider is fully configurable. It uses separate strategy interfaces for authentication and role

retrieval and provides default implementations which can be configured to handle a wide range of

situations.

You should be familiar with LDAP before trying to use it with Spring Security. The following link

provides a good introduction to the concepts involved and a guide to setting up a directory using the free

LDAP server OpenLDAP: http://www.zytrax.com/books/ldap/. Some familiarity with the

JNDI APIs used to access LDAP from Java may also be useful. We don't use any third-party LDAP

libraries (Mozilla, JLDAP etc.) in the LDAP provider, but extensive use is made of Spring LDAP, so

some familiarity with that project may be useful if you plan on adding your own customizations.

18.2 Using LDAP with Spring Security

LDAP authentication in Spring Security can be roughly divided into the following stages.

1. Obtaining the unique LDAP “Distinguished Name”, or DN, from the login name. This will often

mean performing a search in the directory, unless the exact mapping of usernames to DNs is known

in advance.

2. Authenticating the user, either by binding as that user or by performing a remote “compare” operation

of the user's password against the password attribute in the directory entry for the DN.

3. Loading the list of authorities for the user.

The exception is when the LDAP directory is just being used to retrieve user information and

authenticate against it locally. This may not be possible as directories are often set up with limited read

access for attributes such as user passwords.

We will look at some configuration scenarios below. For full information on available configuration

options, please consult the security namespace schema (information from which should be available in

your XML editor).

18.3 Configuring an LDAP Server

The first thing you need to do is configure the server against which authentication should take place.

This is done using the <ldap-server> element from the security namespace. This can be configured

to point at an external LDAP server, using the url attribute:

  <ldap-server url="ldap://springframework.org:389/dc=springframework,dc=org" />

            

http://www.zytrax.com/books/ldap/


Spring Security

3.0.7.RELEASE 91

Using an Embedded Test Server

The <ldap-server> element can also be used to create an embedded server, which can be very

useful for testing and demonstrations. In this case you use it without the url attribute:

  <ldap-server root="dc=springframework,dc=org"/>

 

    

Here we've specified that the root DIT of the directory should be “dc=springframework,dc=org”, which

is the default. Used this way, the namespace parser will create an embedded Apache Directory server

and scan the classpath for any LDIF files, which it will attempt to load into the server. You can customize

this behaviour using the ldif attribute, which defines an LDIF resource to be loaded:

  <ldap-server ldif="classpath:users.ldif" />

        

This makes it a lot easier to get up and running with LDAP, since it can be inconvenient to work all the

time with an external server. It also insulates the user from the complex bean configuration needed to

wire up an Apache Directory server. Using plain Spring Beans the configuration would be much more

cluttered. You must have the necessary Apache Directory dependency jars available for your application

to use. These can be obtained from the LDAP sample application.

Using Bind Authentication

This is the most common LDAP authentication scenario.

  <ldap-authentication-provider user-dn-pattern="uid={0},ou=people"/>

                     

This simple example would obtain the DN for the user by substituting the user login name in the supplied

pattern and attempting to bind as that user with the login password. This is OK if all your users are

stored under a single node in the directory. If instead you wished to configure an LDAP search filter to

locate the user, you could use the following:

  <ldap-authentication-provider user-search-filter="(uid={0})"

          user-search-base="ou=people"/>

                    

If used with the server definition above, this would perform a search under the DN

ou=people,dc=springframework,dc=org using the value of the user-search-filter

attribute as a filter. Again the user login name is substituted for the parameter in the filter name. If

user-search-base isn't supplied, the search will be performed from the root.

Loading Authorities

How authorities are loaded from groups in the LDAP directory is controlled by the following attributes.

• group-search-base. Defines the part of the directory tree under which group searches should

be performed.



Spring Security

3.0.7.RELEASE 92

• group-role-attribute. The attribute which contains the name of the authority defined by the

group entry. Defaults to cn

• group-search-filter. The filter which is used to search for group membership. The default

is uniqueMember={0}, corresponding to the groupOfUniqueMembers LDAP class. In this

case, the substituted parameter is the full distinguished name of the user. The parameter {1} can be

used if you want to filter on the login name.

So if we used the following configuration

  <ldap-authentication-provider user-dn-pattern="uid={0},ou=people"

          group-search-base="ou=groups" />

    

and authenticated successfully as user “ben”, the subsequent loading of authorities would

perform a search under the directory entry ou=groups,dc=springframework,dc=org,

looking for entries which contain the attribute uniqueMember with value

uid=ben,ou=people,dc=springframework,dc=org. By default the authority names will

have the prefix ROLE_ prepended. You can change this using the role-prefix attribute. If you don't

want any prefix, use role-prefix="none". For more information on loading authorities, see the

Javadoc for the DefaultLdapAuthoritiesPopulator class.

18.4 Implementation Classes

The namespace configuration options we've used above are simple to use and much more concise than

using Spring beans explicitly. There are situations when you may need to know how to configure Spring

Security LDAP directly in your application context. You may wish to customize the behaviour of some

of the classes, for example. If you're happy using namespace configuration then you can skip this section

and the next one.

The main LDAP provider class, LdapAuthenticationProvider, doesn't actually do

much itself but delegates the work to two other beans, an LdapAuthenticator and an

LdapAuthoritiesPopulator which are responsible for authenticating the user and retrieving the

user's set of GrantedAuthoritys respectively.

LdapAuthenticator Implementations

The authenticator is also responsible for retrieving any required user attributes. This is because the

permissions on the attributes may depend on the type of authentication being used. For example, if

binding as the user, it may be necessary to read them with the user's own permissions.

There are currently two authentication strategies supplied with Spring Security:

• Authentication directly to the LDAP server ("bind" authentication).

• Password comparison, where the password supplied by the user is compared with the one stored in

the repository. This can either be done by retrieving the value of the password attribute and checking

it locally or by performing an LDAP "compare" operation, where the supplied password is passed to

the server for comparison and the real password value is never retrieved.



Spring Security

3.0.7.RELEASE 93

Common Functionality

Before it is possible to authenticate a user (by either strategy), the distinguished name (DN) has

to be obtained from the login name supplied to the application. This can be done either by simple

pattern-matching (by setting the setUserDnPatterns array property) or by setting the userSearch

property. For the DN pattern-matching approach, a standard Java pattern format is used, and the

login name will be substituted for the parameter {0}. The pattern should be relative to the DN that

the configured SpringSecurityContextSource will bind to (see the section on connecting

to the LDAP server for more information on this). For example, if you are using an LDAP

server with the URL ldap://monkeymachine.co.uk/dc=springframework,dc=org,

and have a pattern uid={0},ou=greatapes, then a login name of "gorilla" will map to a

DN uid=gorilla,ou=greatapes,dc=springframework,dc=org. Each configured DN

pattern will be tried in turn until a match is found. For information on using a search, see the section

on search objects below. A combination of the two approaches can also be used - the patterns will be

checked first and if no matching DN is found, the search will be used.

BindAuthenticator

The class BindAuthenticator in the package

org.springframework.security.ldap.authentication implements the bind

authentication strategy. It simply attempts to bind as the user.

PasswordComparisonAuthenticator

The class PasswordComparisonAuthenticator implements the password comparison

authentication strategy.

Active Directory Authentication

In addition to standard LDAP authentication (binding with a DN), Active Directory has its own non-

standard syntax for user authentication.

Connecting to the LDAP Server

The beans discussed above have to be able to connect to the server. They both have to

be supplied with a SpringSecurityContextSource which is an extension of Spring

LDAP's ContextSource. Unless you have special requirements, you will usually configure a

DefaultSpringSecurityContextSource bean, which can be configured with the URL of your

LDAP server and optionally with the username and password of a "manager" user which will be used

by default when binding to the server (instead of binding anonymously). For more information read the

Javadoc for this class and for Spring LDAP's AbstractContextSource.

LDAP Search Objects

Often a more complicated strategy than simple DN-matching is required to locate a user entry in the

directory. This can be encapsulated in an LdapUserSearch instance which can be supplied to the

authenticator implementations, for example, to allow them to locate a user. The supplied implementation

is FilterBasedLdapUserSearch.



Spring Security

3.0.7.RELEASE 94

FilterBasedLdapUserSearch

This bean uses an LDAP filter to match the user object in the directory.

The process is explained in the Javadoc for the corresponding search method

on the JDK DirContext class [http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/

DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],

%20javax.naming.directory.SearchControls)]. As explained there, the search filter can be supplied with

parameters. For this class, the only valid parameter is {0} which will be replaced with the user's login

name.

LdapAuthoritiesPopulator

After authenticating the user successfully, the LdapAuthenticationProvider will attempt to

load a set of authorities for the user by calling the configured LdapAuthoritiesPopulator

bean. The DefaultLdapAuthoritiesPopulator is an implementation which will load the

authorities by searching the directory for groups of which the user is a member (typically these will be

groupOfNames or groupOfUniqueNames entries in the directory). Consult the Javadoc for this

class for more details on how it works.

If you want to use LDAP only for authentication, but load the authorities from a difference source (such

as a database) then you can provide your own implementation of this interface and inject that instead.

Spring Bean Configuration

A typical configuration, using some of the beans we've discussed here, might look like this:

<bean id="contextSource"

        class="org.springframework.security.ldap.DefaultSpringSecurityContextSource">

  <constructor-arg value="ldap://monkeymachine:389/dc=springframework,dc=org"/>

  <property name="userDn" value="cn=manager,dc=springframework,dc=org"/>

  <property name="password" value="password"/>

</bean>

<bean id="ldapAuthProvider"

    class="org.springframework.security.ldap.authentication.LdapAuthenticationProvider">

 <constructor-arg>

   <bean class="org.springframework.security.ldap.authentication.BindAuthenticator">

     <constructor-arg ref="contextSource"/>

     <property name="userDnPatterns">

       <list><value>uid={0},ou=people</value></list>

     </property>

   </bean>

 </constructor-arg>

 <constructor-arg>

   <bean

     class="org.springframework.security.ldap.userdetails.DefaultLdapAuthoritiesPopulator">

     <constructor-arg ref="contextSource"/>

     <constructor-arg value="ou=groups"/>

     <property name="groupRoleAttribute" value="ou"/>

   </bean>

 </constructor-arg>

</bean>

                

http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)


Spring Security

3.0.7.RELEASE 95

This would set up the provider to access an LDAP server with

URL ldap://monkeymachine:389/dc=springframework,dc=org. Authentication

will be performed by attempting to bind with the DN uid=<user-login-

name>,ou=people,dc=springframework,dc=org. After successful authentication,

roles will be assigned to the user by searching under the DN

ou=groups,dc=springframework,dc=org with the default filter (member=<user's-

DN>). The role name will be taken from the “ou” attribute of each match.

To configure a user search object, which uses the filter (uid=<user-login-name>) for use instead

of the DN-pattern (or in addition to it), you would configure the following bean

<bean id="userSearch"

    class="org.springframework.security.ldap.search.FilterBasedLdapUserSearch">

  <constructor-arg index="0" value=""/>

  <constructor-arg index="1" value="(uid={0})"/>

  <constructor-arg index="2" ref="contextSource" />

</bean> 

                

and use it by setting the BindAuthenticator bean's userSearch property. The authenticator would

then call the search object to obtain the correct user's DN before attempting to bind as this user.

LDAP Attributes and Customized UserDetails

The net result of an authentication using LdapAuthenticationProvider is the same as

a normal Spring Security authentication using the standard UserDetailsService interface.

A UserDetails object is created and stored in the returned Authentication object. As

with using a UserDetailsService, a common requirement is to be able to customize this

implementation and add extra properties. When using LDAP, these will normally be attributes

from the user entry. The creation of the UserDetails object is controlled by the provider's

UserDetailsContextMapper strategy, which is responsible for mapping user objects to and from

LDAP context data:

public interface UserDetailsContextMapper {

  UserDetails mapUserFromContext(DirContextOperations ctx, String username,

          Collection<GrantedAuthority> authorities);

  void mapUserToContext(UserDetails user, DirContextAdapter ctx);

}

                

Only the first method is relevant for authentication. If you provide an implementation of this

interface and inject it into the LdapAuthenticationProvider, you have control over exactly

how the UserDetails object is created. The first parameter is an instance of Spring LDAP's

DirContextOperations which gives you access to the LDAP attributes which were loaded during

authentication. The username parameter is the name used to authenticate and the final parameter is

the collection of authorities loaded for the user by the configured LdapAuthoritiesPopulator.

The way the context data is loaded varies slightly depending on the type of authentication you are using.

With the BindAuthenticator, the context returned from the bind operation will be used to read

the attributes, otherwise the data will be read using the standard context obtained from the configured



Spring Security

3.0.7.RELEASE 96

ContextSource (when a search is configured to locate the user, this will be the data returned by

the search object).



Spring Security

3.0.7.RELEASE 97

Spring Security has its own taglib which provides basic support for accessing security information and

applying security constraints in JSPs.

19.1 Declaring the Taglib

To use any of the tags, you must have the security taglib declared in your JSP:

    <%@ taglib prefix="sec" uri="http://www.springframework.org/security/tags" %>

19.2 The authorize Tag

This tag is used to determine whether its contents should be evaluated or not. In Spring

Security 3.0, it can be used in two ways 1. The first approach uses a web-security expression,

specified in the access attribute of the tag. The expression evaluation will be delegated to the

WebSecurityExpressionHandler defined in the application context (you should have web

expressions enabled in your <http> namespace configuration to make sure this service is available).

So, for example, you might have

<sec:authorize access="hasRole('supervisor')">

This content will only be visible to users who have

the "supervisor" authority in their list of <tt>GrantedAuthority</tt>s.

</sec:authorize>

A common requirement is to only show a particular link, if the user is actually allowed to click it.

How can we determine in advance whether something will be allowed? This tag can also operate in

an alternative mode which allows you to define a particular URL as an attribute. If the user is allowed

to invoke that URL, then the tag body will be evaluated, otherwise it will be skipped. So you might

have something like

<sec:authorize url="/admin">

This content will only be visible to users who are authorized to send requests to the "/admin" URL.

</sec:authorize>

To use this tag there must also be an instance of WebInvocationPrivilegeEvaluator in

your application context. If you are using the namespace, one will automatically be registered. This is

an instance of DefaultWebInvocationPrivilegeEvaluator, which creates a dummy web

request for the supplied URL and invokes the security interceptor to see whether the request would

succeed or fail. This allows you to delegate to the access-control setup you defined using intercept-

url declarations within the <http> namespace configuration and saves having to duplicate the

information (such as the required roles) within your JSPs. This approach can also be combined with a

method attribute, supplying the HTTP method, for a more specific match.

1The legacy options from Spring Security 2.0 are also supported, but discouraged.



Spring Security

3.0.7.RELEASE 98

19.3 The authenticationTag

This tag allows access to the current Authentication object stored in the security context. It

renders a property of the object directly in the JSP. So, for example, if the principal property

of the Authentication is an instance of Spring Security's UserDetails object, then using

<sec:authentication property="principal.username" /> will render the name of

the current user.

Of course, it isn't necessary to use JSP tags for this kind of thing and some people prefer to keep as little

logic as possible in the view. You can access the Authentication object in your MVC controller

(by calling SecurityContextHolder.getContext().getAuthentication()) and add

the data directly to your model for rendering by the view.

19.4 The accesscontrollist Tag

This tag is only valid when used with Spring Security's ACL module. It checks a comma-separated list

of required permissions for a specified domain object. If the current user has any of those permissions,

then the tag body will be evaluated. If they don't, it will be skipped. An example might be

<sec:accesscontrollist hasPermission="1,2" domainObject="someObject">

This will be shown if the user has either of the permissions 

represented by the values "1" or "2" on the given object.

</sec:accesscontrollist>

The permissions are passed to the PermissionFactory defined in the application context,

converting them to ACL Permission instances, so they may be any format which is supported

by the factory - they don't have to be integers, they could be strings like READ or WRITE. If no

PermissionFactory is found, an instance of DefaultPermissionFactory will be used. The

AclServicefrom the application context will be used to load the Acl instance for the supplied object.

The Acl will be invoked with the required permissions to check if any of them are granted.



Spring Security

3.0.7.RELEASE 99

20.1 Overview

Spring Security provides a package able to delegate authentication requests to the Java Authentication

and Authorization Service (JAAS). This package is discussed in detail below.

Central to JAAS operation are login configuration files. To learn more about JAAS login configuration

files, consult the JAAS reference documentation available from Sun Microsystems. We expect you to

have a basic understanding of JAAS and its login configuration file syntax in order to understand this

section.

20.2 Configuration

The JaasAuthenticationProvider attempts to authenticate a user’s principal and credentials

through JAAS.

Let’s assume we have a JAAS login configuration file, /WEB-INF/login.conf, with the following

contents:

JAASTest {

    sample.SampleLoginModule required;

};

Like all Spring Security beans, the JaasAuthenticationProvider is configured via the

application context. The following definitions would correspond to the above JAAS login configuration

file:

<bean id="jaasAuthenticationProvider"

   class="org.springframework.security.authentication.jaas.JaasAuthenticationProvider">

 <property name="loginConfig" value="/WEB-INF/login.conf"/>

 <property name="loginContextName" value="JAASTest"/>

 <property name="callbackHandlers">

  <list>

   <bean

     class="org.springframework.security.authentication.jaas.JaasNameCallbackHandler"/>

   <bean

     class="org.springframework.security.authentication.jaas.JaasPasswordCallbackHandler"/>

  </list>

  </property>

  <property name="authorityGranters">

    <list>

      <bean class="org.springframework.security.authentication.jaas.TestAuthorityGranter"/>

    </list>

  </property>

</bean>

The CallbackHandlers and AuthorityGranters are discussed below.

JAAS CallbackHandler

Most JAAS LoginModules require a callback of some sort. These callbacks are usually used to obtain

the username and password from the user.



Spring Security

3.0.7.RELEASE 100

In a Spring Security deployment, Spring Security is responsible for this user interaction (via the

authentication mechanism). Thus, by the time the authentication request is delegated through to JAAS,

Spring Security's authentication mechanism will already have fully-populated an Authentication

object containing all the information required by the JAAS LoginModule.

Therefore, the JAAS package for Spring Security provides two default callback handlers,

JaasNameCallbackHandler and JaasPasswordCallbackHandler. Each of these callback

handlers implement JaasAuthenticationCallbackHandler. In most cases these callback

handlers can simply be used without understanding the internal mechanics.

For those needing full control over the callback behavior, internally

JaasAuthenticationProvider wraps these JaasAuthenticationCallbackHandlers

with an InternalCallbackHandler. The InternalCallbackHandler is the class

that actually implements JAAS’ normal CallbackHandler interface. Any time that

the JAAS LoginModule is used, it is passed a list of application context

configured InternalCallbackHandlers. If the LoginModule requests a callback

against the InternalCallbackHandlers, the callback is in-turn passed to the

JaasAuthenticationCallbackHandlers being wrapped.

JAAS AuthorityGranter

JAAS works with principals. Even "roles" are represented as principals in JAAS. Spring Security, on

the other hand, works with Authentication objects. Each Authentication object contains a

single principal, and multiple GrantedAuthority[]s. To facilitate mapping between these different

concepts, Spring Security's JAAS package includes an AuthorityGranter interface.

An AuthorityGranter is responsible for inspecting a JAAS principal and returning a

set of Strings, representing the authorities assigned to the principal. For each returned

authority string, the JaasAuthenticationProvider creates a JaasGrantedAuthority

(which implements Spring Security’s GrantedAuthority interface) containing the

authority string and the JAAS principal that the AuthorityGranter was passed. The

JaasAuthenticationProvider obtains the JAAS principals by firstly successfully

authenticating the user’s credentials using the JAAS LoginModule, and then accessing the

LoginContext it returns. A call to LoginContext.getSubject().getPrincipals()

is made, with each resulting principal passed to each AuthorityGranter defined against the

JaasAuthenticationProvider.setAuthorityGranters(List) property.

Spring Security does not include any production AuthorityGranters given that every JAAS

principal has an implementation-specific meaning. However, there is a TestAuthorityGranter

in the unit tests that demonstrates a simple AuthorityGranter implementation.



Spring Security

3.0.7.RELEASE 101

21.1 Overview

JA-SIG produces an enterprise-wide single sign on system known as CAS. Unlike other initiatives,

JA-SIG's Central Authentication Service is open source, widely used, simple to understand, platform

independent, and supports proxy capabilities. Spring Security fully supports CAS, and provides an easy

migration path from single-application deployments of Spring Security through to multiple-application

deployments secured by an enterprise-wide CAS server.

You can learn more about CAS at http://www.ja-sig.org/cas. You will also need to visit this

site to download the CAS Server files.

21.2 How CAS Works

Whilst the CAS web site contains documents that detail the architecture of CAS, we present the general

overview again here within the context of Spring Security. Spring Security 3.0 supports CAS 3. At the

time of writing, the CAS server was at version 3.3.

Somewhere in your enterprise you will need to setup a CAS server. The CAS server is simply a standard

WAR file, so there isn't anything difficult about setting up your server. Inside the WAR file you will

customise the login and other single sign on pages displayed to users.

When deploying a CAS 3.3 server, you will also need to specify an AuthenticationHandler

in the deployerConfigContext.xml included with CAS. The AuthenticationHandler

has a simple method that returns a boolean as to whether a given set of Credentials is valid.

Your AuthenticationHandler implementation will need to link into some type of backend

authentication repository, such as an LDAP server or database. CAS itself includes numerous

AuthenticationHandlers out of the box to assist with this. When you download and deploy

the server war file, it is set up to successfully authenticate users who enter a password matching their

username, which is useful for testing.

Apart from the CAS server itself, the other key players are of course the secure web applications

deployed throughout your enterprise. These web applications are known as "services". There are two

types of services: standard services and proxy services. A proxy service is able to request resources from

other services on behalf of the user. This will be explained more fully later.

21.3 Configuration of CAS Client

The web application side of CAS is made easy due to Spring Security. It is assumed you already know

the basics of using Spring Security, so these are not covered again below. We'll assume a namespace

based configuration is being used and add in the CAS beans as required.

You will need to add a ServiceProperties bean to your application context. This represents your

CAS service:

  <bean id="serviceProperties"



Spring Security

3.0.7.RELEASE 102

        class="org.springframework.security.cas.ServiceProperties">

    <property name="service"

        value="https://localhost:8443/cas-sample/j_spring_cas_security_check"/>

    <property name="sendRenew" value="false"/>

  </bean>

    

The service must equal a URL that will be monitored by the CasAuthenticationFilter. The

sendRenew defaults to false, but should be set to true if your application is particularly sensitive. What

this parameter does is tell the CAS login service that a single sign on login is unacceptable. Instead, the

user will need to re-enter their username and password in order to gain access to the service.

The following beans should be configured to commence the CAS authentication process (assuming

you're using a namespace configuration):

<security:http entry-point-ref="casEntryPoint">

   ...

   <security:custom-filter position="CAS_FILTER" ref="casFilter" />

</security:http>

<bean id="casFilter"

      class="org.springframework.security.cas.web.CasAuthenticationFilter">

  <property name="authenticationManager" ref="authenticationManager"/>

</bean>

<bean id="casEntryPoint"

    class="org.springframework.security.cas.web.CasAuthenticationEntryPoint">

  <property name="loginUrl" value="https://localhost:9443/cas/login"/>

  <property name="serviceProperties" ref="serviceProperties"/>

</bean>

    

The CasAuthenticationEntryPoint should be selected to drive authentication using entry-

point-ref.

The CasAuthenticationFilter has very similar properties to the

UsernamePasswordAuthenticationFilter (used for form-based logins).

For CAS to operate, the ExceptionTranslationFilter must have its

authenticationEntryPoint property set to the CasAuthenticationEntryPoint bean.

The CasAuthenticationEntryPoint must refer to the ServiceProperties bean

(discussed above), which provides the URL to the enterprise's CAS login server. This is where the user's

browser will be redirected.

Next you need to add a CasAuthenticationProvider and its collaborators:

  <security:authentication-manager alias="authenticationManager">

    <security:authentication-provider ref="casAuthenticationProvider" />

  </security:authentication-manager>

  <bean id="casAuthenticationProvider"



Spring Security

3.0.7.RELEASE 103

      class="org.springframework.security.cas.authentication.CasAuthenticationProvider">

    <property name="userDetailsService" ref="userService"/>

    <property name="serviceProperties" ref="serviceProperties" />

    <property name="ticketValidator">

      <bean class="org.jasig.cas.client.validation.Cas20ServiceTicketValidator">

        <constructor-arg index="0" value="https://localhost:9443/cas" />

        </bean>

    </property>

    <property name="key" value="an_id_for_this_auth_provider_only"/>

  </bean>

  <security:user-service id="userService">

    <security:user name="joe" password="joe" authorities="ROLE_USER" />

    ...

  </security:user-service>

      

The CasAuthenticationProvider uses a UserDetailsService instance to load the

authorities for a user, once they have been authentiated by CAS. We've shown a simple in-memory

setup here.

The beans are all reasonable self-explanatory if you refer back to the "How CAS Works" section.



Spring Security

3.0.7.RELEASE 104

22.1 Overview

The most common use of X.509 certificate authentication is in verifying the identity of a server when

using SSL, most commonly when using HTTPS from a browser. The browser will automatically check

that the certificate presented by a server has been issued (ie digitally signed) by one of a list of trusted

certificate authorities which it maintains.

You can also use SSL with “mutual authentication”; the server will then request a valid certificate from

the client as part of the SSL handshake. The server will authenticate the client by checking that its

certificate is signed by an acceptable authority. If a valid certificate has been provided, it can be obtained

through the servlet API in an application. Spring Security X.509 module extracts the certificate using

a filter. It maps the certificate to an application user and loads that user's set of granted authorities for

use with the standard Spring Security infrastructure.

You should be familiar with using certificates and setting up client authentication for your servlet

container before attempting to use it with Spring Security. Most of the work is in creating and

installing suitable certificates and keys. For example, if you're using Tomcat then read the instructions

here http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html. It's important

that you get this working before trying it out with Spring Security

22.2 Adding X.509 Authentication to Your Web
Application

Enabling X.509 client authentication is very straightforward. Just add the <x509/> element to your

http security namespace configuration.

<http>

 ...

    <x509 subject-principal-regex="CN=(.*?)," user-service-ref="userService"/>

 ...

</http>

            

The element has two optional attributes:

• subject-principal-regex. The regular expression used to extract a username from the

certificate's subject name. The default value is shown above. This is the username which will be

passed to the UserDetailsService to load the authorities for the user.

• user-service-ref. This is the bean Id of the UserDetailsService to be used with X.509.

It isn't needed if there is only one defined in your application context.

The subject-principal-regex should contain a single group. For example the default

expression "CN=(.*?)," matches the common name field. So if the subject name in the certificate

is "CN=Jimi Hendrix, OU=...", this will give a user name of "Jimi Hendrix". The matches are case

insensitive. So "emailAddress=(.?)," will match "EMAILADDRESS=jimi@hendrix.org,CN=..." giving

a user name "jimi@hendrix.org". If the client presents a certificate and a valid username is successfully

extracted, then there should be a valid Authentication object in the security context. If no

http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html


Spring Security

3.0.7.RELEASE 105

certificate is found, or no corresponding user could be found then the security context will remain empty.

This means that you can easily use X.509 authentication with other options such as a form-based login.

22.3 Setting up SSL in Tomcat

There are some pre-generated certificates in the samples/certificate directory in the Spring

Security project. You can use these to enable SSL for testing if you don't want to generate your own.

The file server.jks contains the server certificate, private key and the issuing certificate authority

certificate. There are also some client certificate files for the users from the sample applications. You

can install these in your browser to enable SSL client authentication.

To run tomcat with SSL support, drop the server.jks file into the tomcat conf directory and add

the following connector to the server.xml file

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" scheme="https" secure="true"

            clientAuth="true" sslProtocol="TLS"

            keystoreFile="${catalina.home}/conf/server.jks"

            keystoreType="JKS" keystorePass="password"

            truststoreFile="${catalina.home}/conf/server.jks"

            truststoreType="JKS" truststorePass="password"

/>

                

clientAuth can also be set to want if you still want SSL connections to succeed even if the

client doesn't provide a certificate. Clients which don't present a certificate won't be able to access any

objects secured by Spring Security unless you use a non-X.509 authentication mechanism, such as form

authentication.



Spring Security

3.0.7.RELEASE 106

23.1 Overview

The AbstractSecurityInterceptor is able to temporarily replace the Authentication

object in the SecurityContext and SecurityContextHolder during the secure object

callback phase. This only occurs if the original Authentication object was successfully processed

by the AuthenticationManager and AccessDecisionManager. The RunAsManager

will indicate the replacement Authentication object, if any, that should be used during the

SecurityInterceptorCallback.

By temporarily replacing the Authentication object during the secure object callback phase,

the secured invocation will be able to call other objects which require different authentication and

authorization credentials. It will also be able to perform any internal security checks for specific

GrantedAuthority objects. Because Spring Security provides a number of helper classes that

automatically configure remoting protocols based on the contents of the SecurityContextHolder,

these run-as replacements are particularly useful when calling remote web services

23.2 Configuration

A RunAsManager interface is provided by Spring Security:

  Authentication buildRunAs(Authentication authentication, Object object,

      List<ConfigAttribute> config);

  boolean supports(ConfigAttribute attribute);

  boolean supports(Class clazz);

            

The first method returns the Authentication object that should replace the existing

Authentication object for the duration of the method invocation. If the method returns

null, it indicates no replacement should be made. The second method is used by the

AbstractSecurityInterceptor as part of its startup validation of configuration attributes.

The supports(Class) method is called by a security interceptor implementation to ensure the

configured RunAsManager supports the type of secure object that the security interceptor will present.

One concrete implementation of a RunAsManager is provided with Spring Security. The

RunAsManagerImpl class returns a replacement RunAsUserToken if any ConfigAttribute

starts with RUN_AS_. If any such ConfigAttribute is found, the replacement RunAsUserToken

will contain the same principal, credentials and granted authorities as the original Authentication

object, along with a new GrantedAuthorityImpl for each RUN_AS_ ConfigAttribute.

Each new GrantedAuthorityImpl will be prefixed with ROLE_, followed by the RUN_AS

ConfigAttribute. For example, a RUN_AS_SERVER will result in the replacement

RunAsUserToken containing a ROLE_RUN_AS_SERVER granted authority.

The replacement RunAsUserToken is just like any other Authentication object. It needs

to be authenticated by the AuthenticationManager, probably via delegation to a suitable

AuthenticationProvider. The RunAsImplAuthenticationProvider performs such

authentication. It simply accepts as valid any RunAsUserToken presented.



Spring Security

3.0.7.RELEASE 107

To ensure malicious code does not create a RunAsUserToken and present it for guaranteed acceptance

by the RunAsImplAuthenticationProvider, the hash of a key is stored in all generated tokens.

The RunAsManagerImpl and RunAsImplAuthenticationProvider is created in the bean

context with the same key:

<bean id="runAsManager"

    class="org.springframework.security.access.intercept.RunAsManagerImpl">

  <property name="key" value="my_run_as_password"/>

</bean>

<bean id="runAsAuthenticationProvider"

    class="org.springframework.security.access.intercept.RunAsImplAuthenticationProvider">

  <property name="key" value="my_run_as_password"/>

</bean>

By using the same key, each RunAsUserToken can be validated it was created by an approved

RunAsManagerImpl. The RunAsUserToken is immutable after creation for security reasons



Spring Security

3.0.7.RELEASE 108

Appendix A. Security Database
Schema
There are various database schema used by the framework and this appendix provides a single reference

point to them all. You only need to provide the tables for the areas of functonality you require.

DDL statements are given for the HSQLDB database. You can use these as a guideline for defining the

schema for the database you are using.

A.1 User Schema

The standard JDBC implementation of the UserDetailsService (JdbcDaoImpl) requires tables

to load the password, account status (enabled or disabled) and a list of authorities (roles) for the user.

  create table users(

      username varchar_ignorecase(50) not null primary key,

      password varchar_ignorecase(50) not null,

      enabled boolean not null);

  create table authorities (

      username varchar_ignorecase(50) not null,

      authority varchar_ignorecase(50) not null,

      constraint fk_authorities_users foreign key(username) references users(username));

      create unique index ix_auth_username on authorities (username,authority);

Group Authorities

Spring Security 2.0 introduced support for group authorities in JdbcDaoImpl. The table structure if

groups are enabled is as follows:

create table groups (

  id bigint generated by default as identity(start with 0) primary key,

  group_name varchar_ignorecase(50) not null);

create table group_authorities (

  group_id bigint not null,

  authority varchar(50) not null,

  constraint fk_group_authorities_group foreign key(group_id) references groups(id));

create table group_members (

  id bigint generated by default as identity(start with 0) primary key,

  username varchar(50) not null,

  group_id bigint not null,

  constraint fk_group_members_group foreign key(group_id) references groups(id));

        



Spring Security

3.0.7.RELEASE 109

A.2 Persistent Login (Remember-Me) Schema

This table is used to store data used by the more secure persistent token remember-me implementation.

If you are using JdbcTokenRepositoryImpl either directly or through the namespace, then you

will need this table.

create table persistent_logins (

  username varchar(64) not null,

  series varchar(64) primary key,

  token varchar(64) not null,

  last_used timestamp not null);

A.3 ACL Schema

There are four tables used by the Spring Security ACL implementation.

1. acl_sid stores the security identities recognised by the ACL system. These can be unique

principals or authorities which may apply to multiple principals.

2. acl_class defines the domain object types to which ACLs apply. The class column stores the

Java class name of the object.

3. acl_object_identity stores the object identity definitions of specific domai objects.

4. acl_entry stores the ACL permissions which apply to a specific object identity and security

identity.

It is assumed that the database will auto-generate the primary keys for each of the identities. The

JdbcMutableAclService has to be able to retrieve these when it has created a new row in the

acl_sid or acl_class tables. It has two properties which define the SQL needed to retrieve

these values classIdentityQuery and sidIdentityQuery. Both of these default to call

identity()

Hypersonic SQL

The default schema works with the embedded HSQLDB database that is used in unit tests within the

framework.

create table acl_sid (

  id bigint generated by default as identity(start with 100) not null primary key,

  principal boolean not null,

  sid varchar_ignorecase(100) not null,

  constraint unique_uk_1 unique(sid,principal) );

create table acl_class (

  id bigint generated by default as identity(start with 100) not null primary key,

  class varchar_ignorecase(100) not null,

  constraint unique_uk_2 unique(class) );



Spring Security

3.0.7.RELEASE 110

create table acl_object_identity (

  id bigint generated by default as identity(start with 100) not null primary key,

  object_id_class bigint not null,

  object_id_identity bigint not null,

  parent_object bigint,

  owner_sid bigint not null,

  entries_inheriting boolean not null,

  constraint unique_uk_3 unique(object_id_class,object_id_identity),

  constraint foreign_fk_1 foreign key(parent_object)references acl_object_identity(id),

  constraint foreign_fk_2 foreign key(object_id_class)references acl_class(id),

  constraint foreign_fk_3 foreign key(owner_sid)references acl_sid(id) );

create table acl_entry (

  id bigint generated by default as identity(start with 100) not null primary key,

  acl_object_identity bigint not null,ace_order int not null,sid bigint not null,

  mask integer not null,granting boolean not null,audit_success boolean not null,

  audit_failure boolean not null,

  constraint unique_uk_4 unique(acl_object_identity,ace_order),

  constraint foreign_fk_4 foreign key(acl_object_identity)

      references acl_object_identity(id),

  constraint foreign_fk_5 foreign key(sid) references acl_sid(id) );

PostgreSQL

create table acl_sid(

  id bigserial not null primary key,

  principal boolean not null,

  sid varchar(100) not null,

  constraint unique_uk_1 unique(sid,principal));

create table acl_class(

  id bigserial not null primary key,

  class varchar(100) not null,

  constraint unique_uk_2 unique(class));

create table acl_object_identity(

  id bigserial primary key,

  object_id_class bigint not null,

  object_id_identity bigint not null,

  parent_object bigint,

  owner_sid bigint,

  entries_inheriting boolean not null,

  constraint unique_uk_3 unique(object_id_class,object_id_identity),

  constraint foreign_fk_1 foreign key(parent_object) references acl_object_identity(id),

  constraint foreign_fk_2 foreign key(object_id_class) references acl_class(id),

  constraint foreign_fk_3 foreign key(owner_sid) references acl_sid(id));

create table acl_entry(

  id bigserial primary key,

  acl_object_identity bigint not null,

  ace_order int not null,

  sid bigint not null,

  mask integer not null,

  granting boolean not null,

  audit_success boolean not null,

  audit_failure boolean not null,

  constraint unique_uk_4 unique(acl_object_identity,ace_order),

  constraint foreign_fk_4 foreign key(acl_object_identity)

      references acl_object_identity(id),

  constraint foreign_fk_5 foreign key(sid) references acl_sid(id));



Spring Security

3.0.7.RELEASE 111

You will have to set the classIdentityQuery and sidIdentityQuery properties of

JdbcMutableAclService to the following values, respectively:

• select currval(pg_get_serial_sequence('acl_class', 'id'))

• select currval(pg_get_serial_sequence('acl_sid', 'id'))



Spring Security

3.0.7.RELEASE 112

Appendix B. The Security Namespace
This appendix provides a reference to the elements available in the security namespace and information

on the underlying beans they create (a knowledge of the individual classes and how they work

together is assumed - you can find more information in the project Javadoc and elsewhere in this

document). If you haven't used the namespace before, please read the introductory chapter on namespace

configuration, as this is intended as a supplement to the information there. Using a good quality

XML editor while editing a configuration based on the schema is recommended as this will provide

contextual information on which elements and attributes are available as well as comments explaining

their purpose. The namespace is written in RELAX NG [http://www.relaxng.org/] Compact format and

later converted into an XSD schema. If you are familiar with this format, you may wish to examine

the schema file [http://git.springsource.org/spring-security/spring-security/blobs/3.0.x/config/src/main/

resources/org/springframework/security/config/spring-security-3.0.4.rnc] directly.

B.1 Web Application Security - the <http> Element

The <http> element encapsulates the security configuration for the web layer of your application. It

creates a FilterChainProxy bean named "springSecurityFilterChain" which maintains the stack

of security filters which make up the web security configuration 1. Some core filters are always created

and others will be added to the stack depending on the attributes child elements which are present.

The positions of the standard filters are fixed (see the filter order table in the namespace introduction),

removing a common source of errors with previous versions of the framework when users had to

configure the filter chain explicitly in theFilterChainProxy bean. You can, of course, still do this

if you need full control of the configuration.

All filters which require a reference to the AuthenticationManager will be automatically injected

with the internal instance created by the namespace configuration (see the  introductory chapter for more

on the AuthenticationManager).

The <http> namespace block always creates an SecurityContextPersistenceFilter, an

ExceptionTranslationFilter and a FilterSecurityInterceptor. These are fixed and

cannot be replaced with alternatives.

<http> Attributes

The attributes on the <http> element control some of the properties on the core filters.

servlet-api-provision

Provides versions of HttpServletRequest security methods such as

isUserInRole() and getPrincipal() which are implemented by adding a

SecurityContextHolderAwareRequestFilter bean to the stack. Defaults to "true".

1See the  introductory chapter for how to set up the mapping from your web.xml

http://www.relaxng.org/
http://www.relaxng.org/
http://git.springsource.org/spring-security/spring-security/blobs/3.0.x/config/src/main/resources/org/springframework/security/config/spring-security-3.0.4.rnc
http://git.springsource.org/spring-security/spring-security/blobs/3.0.x/config/src/main/resources/org/springframework/security/config/spring-security-3.0.4.rnc
http://git.springsource.org/spring-security/spring-security/blobs/3.0.x/config/src/main/resources/org/springframework/security/config/spring-security-3.0.4.rnc


Spring Security

3.0.7.RELEASE 113

path-type

Controls whether URL patterns are interpreted as ant paths (the default) or regular expressions. In

practice this sets a particular UrlMatcher instance on the FilterChainProxy.

lowercase-comparisons

Whether test URLs should be converted to lower case prior to comparing with defined path patterns.

If unspecified, defaults to "true"

realm

Sets the realm name used for basic authentication (if enabled). Corresponds to the realmName property

on BasicAuthenticationEntryPoint.

entry-point-ref

Normally the AuthenticationEntryPoint used will be set depending on which authentication

mechanisms have been configured. This attribute allows this behaviour to be overridden by defining a

customized AuthenticationEntryPoint bean which will start the authentication process.

access-decision-manager-ref

Optional attribute specifying the ID of the AccessDecisionManager implementation which should

be used for authorizing HTTP requests. By default an AffirmativeBased implementation is used

for with a RoleVoter and an AuthenticatedVoter.

access-denied-page

Deprecated in favour of the access-denied-handler child element.

once-per-request

Corresponds to the observeOncePerRequest property of FilterSecurityInterceptor.

Defaults to "true".

create-session

Controls the eagerness with which an HTTP session is created. If not set, defaults

to "ifRequired". Other options are "always" and "never". The setting of this attribute

affect the allowSessionCreation and forceEagerSessionCreation properties of

SecurityContextPersistenceFilter. allowSessionCreation will always be true

unless this attribute is set to "never". forceEagerSessionCreation is "false" unless it is set

to "always". So the default configuration allows session creation but does not force it. The exception

is if concurrent session control is enabled, when forceEagerSessionCreation will be set to

true, regardless of what the setting is here. Using "never" would then cause an exception during the

initialization of SecurityContextPersistenceFilter.

use-expressions

Enables EL-expressions in the access attribute, as described in the chapter on expression-based

access-control.



Spring Security

3.0.7.RELEASE 114

disable-url-rewriting

Prevents session IDs from being appended to URLs in the application. Clients must use cookies if this

attribute is set to true.

<access-denied-handler>

This element allows you to set the errorPage property for the default AccessDeniedHandler

used by the ExceptionTranslationFilter, (using the error-page attribute, or to supply

your own implementation using the ref attribute. This is discussed in more detail in the section on the

ExceptionTranslationFilter.

The <intercept-url> Element

This element is used to define the set of URL patterns that the application

is interested in and to configure how they should be handled. It is used

to construct the FilterInvocationSecurityMetadataSource used by the

FilterSecurityInterceptor and to exclude particular patterns from the filter chain

entirely (by setting the attribute filters="none"). It is also responsible for configuring a

ChannelAuthenticationFilter if particular URLs need to be accessed by HTTPS, for

example. When matching the specified patterns against an incoming request, the matching is done in

the order in which the elements are declared. So the most specific matches patterns should come first

and the most general should come last.

pattern

The pattern which defines the URL path. The content will depend on the path-type attribute from

the containing http element, so will default to ant path syntax.

method

The HTTP Method which will be used in combination with the pattern to match an incoming request.

If omitted, any method will match. If an identical pattern is specified with and without a method, the

method-specific match will take precedence.

access

Lists the access attributes which will be stored in the

FilterInvocationSecurityMetadataSource for the defined URL pattern/method

combination. This should be a comma-separated list of the security configuration attributes (such as

role names).

requires-channel

Can be “http” or “https” depending on whether a particular URL pattern should be accessed

over HTTP or HTTPS respectively. Alternatively the value “any” can be used when there

is no preference. If this attribute is present on any <intercept-url> element, then a



Spring Security

3.0.7.RELEASE 115

ChannelAuthenticationFilter will be added to the filter stack and its additional dependencies

added to the application context.

If a <port-mappings> configuration is added, this will be used to by the

SecureChannelProcessor and InsecureChannelProcessor beans to determine the ports

used for redirecting to HTTP/HTTPS.

filters

Can only take the value “none”. This will cause any matching request to bypass the Spring Security

filter chain entirely. None of the rest of the <http> configuration will have any effect on the request

and there will be no security context available for its duration. Access to secured methods during the

request will fail.

The <port-mappings> Element

By default, an instance of PortMapperImpl will be added to the configuration for use in redirecting

to secure and insecure URLs. This element can optionally be used to override the default mappings

which that class defines. Each child <port-mapping> element defines a pair of HTTP:HTTPS ports.

The default mappings are 80:443 and 8080:8443. An example of overriding these can be found in the

namespace introduction.

The <form-login> Element

Used to add an UsernamePasswordAuthenticationFilter to the filter stack and an

LoginUrlAuthenticationEntryPoint to the application context to provide authentication on

demand. This will always take precedence over other namespace-created entry points. If no attributes

are supplied, a login page will be generated automatically at the URL "/spring-security-login" 2 The

behaviour can be customized using the following attributes.

login-page

The URL that should be used to render the login page. Maps to the loginFormUrl property of the

LoginUrlAuthenticationEntryPoint. Defaults to "/spring-security-login".

login-processing-url

Maps to the filterProcessesUrl property of

UsernamePasswordAuthenticationFilter. The default value is "/j_spring_security_check".

default-target-url

Maps to the defaultTargetUrl property of UsernamePasswordAuthenticationFilter.

If not set, the default value is "/" (the application root). A user will be taken to this URL after logging

2This feature is really just provided for convenience and is not intended for production (where a view technology will have

been chosen and can be used to render a customized login page). The class DefaultLoginPageGeneratingFilter is

responsible for rendering the login page and will provide login forms for both normal form login and/or OpenID if required.



Spring Security

3.0.7.RELEASE 116

in, provided they were not asked to login while attempting to access a secured resource, when they will

be taken to the originally requested URL.

always-use-default-target

If set to "true", the user will always start at the value given by default-target-url, regardless

of how they arrived at the login page. Maps to the alwaysUseDefaultTargetUrl property of

UsernamePasswordAuthenticationFilter. Default value is "false".

authentication-failure-url

Maps to the authenticationFailureUrl property of

UsernamePasswordAuthenticationFilter. Defines the URL the browser will be redirected

to on login failure. Defaults to "/spring_security_login?login_error", which will be automatically

handled by the automatic login page generator, re-rendering the login page with an error message.

authentication-success-handler-ref

This can be used as an alternative to default-target-url and always-use-default-

target, giving you full control over the navigation flow after a successful authentication. The value

should be he name of an AuthenticationSuccessHandler bean in the application context.

authentication-failure-handler-ref

Can be used as an alternative to authentication-failure-url, giving you full control

over the navigation flow after an authentication failure. The value should be he name of an

AuthenticationFailureHandler bean in the application context.

The <http-basic> Element

Adds a BasicAuthenticationFilter and BasicAuthenticationEntryPoint to the

configuration. The latter will only be used as the configuration entry point if form-based login is not

enabled.

The <remember-me> Element

Adds the RememberMeAuthenticationFilter to the stack. This in turn

will be configured with either a TokenBasedRememberMeServices, a

PersistentTokenBasedRememberMeServices or a user-specified bean implementing

RememberMeServices depending on the attribute settings.

data-source-ref

If this is set, PersistentTokenBasedRememberMeServices will be used and configured with

a JdbcTokenRepositoryImpl instance.

token-repository-ref

Configures a PersistentTokenBasedRememberMeServices but allows the use of a custom

PersistentTokenRepository bean.



Spring Security

3.0.7.RELEASE 117

services-ref

Allows complete control of the RememberMeServices implementation that will be used by the filter.

The value should be the Id of a bean in the application context which implements this interface.

token-repository-ref

Configures a PersistentTokenBasedRememberMeServices but allows the use of a custom

PersistentTokenRepository bean.

The key Attribute

Maps to the "key" property of AbstractRememberMeServices. Should be set to a unique value

to ensure that remember-me cookies are only valid within the one application 3.

token-validity-seconds

Maps to the tokenValiditySeconds property of AbstractRememberMeServices.

Specifies the period in seconds for which the remember-me cookie should be valid. By default it will

be valid for 14 days.

user-service-ref

The remember-me services implementations require access to a UserDetailsService, so there has

to be one defined in the application context. If there is only one, it will be selected and used automatically

by the namespace configuration. If there are multiple instances, you can specify a bean Id explicitly

using this attribute.

The <session-management> Element

Session-management related functionality is implemented by the addition of a

SessionManagementFilter to the filter stack.

session-fixation-protection

Indicates whether an existing session should be invalidated when a user authenticates and a new session

started. If set to "none" no change will be made. "newSession" will create a new empty session.

"migrateSession" will create a new session and copy the session attributes to the new session. Defaults

to "migrateSession".

If session fixation protection is enabled, the SessionManagementFilter is injected with an

appropriately configured DefaultSessionAuthenticationStrategy. See the Javadoc for

this class for more details.

The <concurrency-control> Element

Adds support for concurrent session control, allowing limits to be placed on the

number of active sessions a user can have. A ConcurrentSessionFilter will

3This doesn't affect the use of PersistentTokenBasedRememberMeServices, where the tokens are stored on the server

side.



Spring Security

3.0.7.RELEASE 118

be created, and a ConcurrentSessionControlStrategy will be used with the

SessionManagementFilter. If a form-login element has been declared, the strategy object

will also be injected into the created authentication filter. An instance of SessionRegistry (a

SessionRegistryImpl instance unless the user wishes to use a custom bean) will be created for

use by the strategy.

The max-sessions attribute

Maps to the maximumSessions property of ConcurrentSessionControlStrategy.

The expired-url attribute

The URL a user will be redirected to if they attempt to use a session which has been "expired" by the

concurrent session controller because the user has exceeded the number of allowed sessions and has

logged in again elsewhere. Should be set unless exception-if-maximum-exceeded is set. If no

value is supplied, an expiry message will just be written directly back to the response.

The error-if-maximum-exceeded attribute

If set to "true" a SessionAuthenticationException will be raised when a user attempts to

exceed the maximum allowed number of sessions. The default behaviour is to expire the original session.

The session-registry-alias and session-registry-ref attributes

The user can supply their own SessionRegistry implementation using the session-

registry-ref attribute. The other concurrent session control beans will be wired up to use it.

It can also be useful to have a reference to the internal session registry for use in your own beans or an

admin interface. You can expose the interal bean using the session-registry-alias attribute,

giving it a name that you can use elsewhere in your configuration.

The <anonymous> Element

Adds an AnonymousAuthenticationFilter to the stack and an

AnonymousAuthenticationProvider. Required if you are using the

IS_AUTHENTICATED_ANONYMOUSLY attribute.

The <x509> Element

Adds support for X.509 authentication. An X509AuthenticationFilter will be added to the

stack and an Http403ForbiddenEntryPoint bean will be created. The latter will only be used

if no other authentication mechanisms are in use (it's only functionality is to return an HTTP 403 error

code). A PreAuthenticatedAuthenticationProvider will also be created which delegates

the loading of user authorities to a UserDetailsService.

The subject-principal-regex attribute

Defines a regular expression which will be used to extract the username from the certificate (for use

with the UserDetailsService).



Spring Security

3.0.7.RELEASE 119

The user-service-ref attribute

Allows a specific UserDetailsService to be used with X.509 in the case where multiple instances

are configured. If not set, an attempt will be made to locate a suitable instance automatically and use that.

The <openid-login> Element

Similar to <form-login> and has the same attributes. The default value for login-

processing-url is "/j_spring_openid_security_check". An OpenIDAuthenticationFilter

and OpenIDAuthenticationProvider will be registered. The latter requires a reference to

a UserDetailsService. Again, this can be specified by Id, using the user-service-ref

attribute, or will be located automatically in the application context.

The <logout> Element

Adds a LogoutFilter to the filter stack. This is configured with a

SecurityContextLogoutHandler.

The logout-url attribute

The URL which will cause a logout (i.e. which will be processed by the filter). Defaults to "/

j_spring_security_logout".

The logout-success-url attribute

The destination URL which the user will be taken to after logging out. Defaults to "/".

The invalidate-session attribute

Maps to the invalidateHttpSession of the SecurityContextLogoutHandler. Defaults

to "true", so the session will be invalidated on logout.

The <custom-filter> Element

This element is used to add a filter to the filter chain. It doesn't create any additional beans but is used to

select a bean of type javax.servlet.Filter which is already defined in the appllication context

and add that at a particular position in the filter chain maintained by Spring Security. Full details can

be found in the namespace chapter.

The request-cache Element

Sets the RequestCache instance which will be used by the ExceptionTranslationFilter

to store request information before invoking an AuthenticationEntryPoint.

The <http-firewall> Element

This is a top-level element which can be used to inject a custom implementation of HttpFirewall

into the FilterChainProxy created by the namespace. The default implementation should be

suitable for most applications.



Spring Security

3.0.7.RELEASE 120

B.2 Authentication Services

Before Spring Security 3.0, an AuthenticationManager was automatically registered internally.

Now you must register one explicitly using the <authentication-manager> element. This

creates an instance of Spring Security's ProviderManager class, which needs to be configured with a

list of one or more AuthenticationProvider instances. These can either be created using syntax

elements provided by the namespace, or they can be standard bean definitions, marked for addition to

the list using the authentication-provider element.

The <authentication-manager> Element

Every Spring Security application which uses the namespace must have include this element somewhere.

It is responsible for registering the AuthenticationManager which provides authentication

services to the application. It also allows you to define an alias name for the internal instance for use in

your own configuration. Its use is described in the namespace introduction. All elements which create

AuthenticationProvider instances should be children of this element.

The element also exposes an erase-credentials attribute which maps to the

eraseCredentialsAfterAuthentication property of the ProviderManager. This is

discussed in the Core Services chapter.

The <authentication-provider> Element

Unless used with a ref attribute, this element is shorthand for configuring a

DaoAuthenticationProvider. DaoAuthenticationProvider loads user information

from a UserDetailsService and compares the username/password combination with the values

supplied at login. The UserDetailsService instance can be defined either by using an available

namespace element (jdbc-user-service or by using the user-service-ref attribute to point

to a bean defined elsewhere in the application context). You can find examples of these variations in

the namespace introduction.

The <password-encoder> Element

Authentication providers can optionally be configured to use a password encoder as described

in the namespace introduction. This will result in the bean being injected with the appropriate

PasswordEncoder instance, potentially with an accompanying SaltSource bean to provide salt

values for hashing.

Using <authentication-provider> to refer to an AuthenticationProvider Bean

If you have written your own AuthenticationProvider implementation (or want to configure

one of Spring Security's own implementations as a traditional bean for some reason, then you can use

the following syntax to add it to the internal ProviderManager's list:

  <security:authentication-manager>

    <security:authentication-provider ref="myAuthenticationProvider" />

  </security:authentication-manager>

  <bean id="myAuthenticationProvider" class="com.something.MyAuthenticationProvider"/>



Spring Security

3.0.7.RELEASE 121

  

B.3 Method Security

The <global-method-security> Element

This element is the primary means of adding support for securing methods on Spring Security beans.

Methods can be secured by the use of annotations (defined at the interface or class level) or by defining

a set of pointcuts as child elements, using AspectJ syntax.

Method security uses the same AccessDecisionManager configuration as web security, but this

can be overridden as explained above the section called “access-decision-manager-ref”,

using the same attribute.

The secured-annotations and jsr250-annotations Attributes

Setting these to "true" will enable support for Spring Security's own @Secured annotations and

JSR-250 annotations, respectively. They are both disabled by default. Use of JSR-250 annotations also

adds a Jsr250Voter to the AccessDecisionManager, so you need to make sure you do this if

you are using a custom implementation and want to use these annotations.

Securing Methods using <protect-pointcut>

Rather than defining security attributes on an individual method or class basis using the @Secured

annotation, you can define cross-cutting security constraints across whole sets of methods and interfaces

in your service layer using the <protect-pointcut> element. This has two attributes:

• expression - the pointcut expression

• access - the security attributes which apply

You can find an example in the namespace introduction.

The <after-invocation-provider> Element

This element can be used to decorate an AfterInvocationProvider for use by the security

interceptor maintained by the <global-method-security> namespace. You can define zero or

more of these within the global-method-security element, each with a ref attribute pointing

to an AfterInvocationProvider bean instance within your application context.

LDAP Namespace Options

LDAP is covered in some details in its own chapter. We will expand on that here with some explanation

of how the namespace options map to Spring beans. The LDAP implementation uses Spring LDAP

extensively, so some familiarity with that project's API may be useful.

Defining the LDAP Server using the <ldap-server> Element

This element sets up a Spring LDAP ContextSource for use by the other LDAP beans, defining the

location of the LDAP server and other information (such as a username and password, if it doesn't allow



Spring Security

3.0.7.RELEASE 122

anonymous access) for connecting to it. It can also be used to create an embedded server for testing.

Details of the syntax for both options are covered in the LDAP chapter. The actual ContextSource

implementation is DefaultSpringSecurityContextSource which extends Spring LDAP's

LdapContextSource class. The manager-dn and manager-password attributes map to the

latter's userDn and password properties respectively.

If you only have one server defined in your application context, the other LDAP namespace-defined

beans will use it automatically. Otherwise, you can give the element an "id" attribute and refer to it

from other namespace beans using the server-ref attribute. This is actually the bean id of the

ContextSource instance, if you want to use it in other traditional Spring beans.

The <ldap-provider> Element

This element is shorthand for the creation of an LdapAuthenticationProvider

instance. By default this will be configured with a BindAuthenticator instance and a

DefaultAuthoritiesPopulator. As with all namespace authentication providers, it must be

included as a child of the authentication-provider element.

The user-dn-pattern Attribute

If your users are at a fixed location in the directory (i.e. you can work out the DN directly from the

username without doing a directory search), you can use this attribute to map directly to the DN. It maps

directly to the userDnPatterns property of AbstractLdapAuthenticator.

The user-search-base and user-search-filter Attributes

If you need to perform a search to locate the user in the directory, then you can set

these attributes to control the search. The BindAuthenticator will be configured with a

FilterBasedLdapUserSearch and the attribute values map directly to the first two arguments of

that bean's constructor. If these attributes aren't set and no user-dn-pattern has been supplied as an

alternative, then the default search values of user-search-filter="(uid={0})" and user-

search-base="" will be used.

group-search-filter, group-search-base, group-role-
attribute and role-prefix Attributes

The value of group-search-base is mapped to the groupSearchBase constructor argument

of DefaultAuthoritiesPopulator and defaults to "ou=groups". The default filter value is

"(uniqueMember={0})", which assumes that the entry is of type "groupOfUniqueNames". group-

role-attribute maps to the groupRoleAttribute attribute and defaults to "cn". Similarly

role-prefix maps to rolePrefix and defaults to "ROLE_".

The <password-compare> Element

This is used as child element to <ldap-provider> and switches the authentication strategy from

BindAuthenticator to PasswordComparisonAuthenticator. This can optionally be

supplied with a hash attribute or with a child <password-encoder> element to hash the password

before submitting it to the directory for comparison.



Spring Security

3.0.7.RELEASE 123

The <ldap-user-service> Element

This element configures an LDAP UserDetailsService. The class used is

LdapUserDetailsService which is a combination of a FilterBasedLdapUserSearch and

a DefaultAuthoritiesPopulator. The attributes it supports have the same usage as in <ldap-

provider>.


	Spring Security
	Table of Contents
	Preface
	Part I. Getting Started
	1. Introduction
	1.1 What is Spring Security?
	1.2 History
	1.3 Release Numbering
	1.4 Getting Spring Security
	Project Modules
	Core - spring-security-core.jar
	Web - spring-security-web.jar
	Config - spring-security-config.jar
	LDAP - spring-security-ldap.jar
	ACL - spring-security-acl.jar
	CAS - spring-security-cas-client.jar
	OpenID - spring-security-openid.jar

	Checking out the Source


	2. Security Namespace Configuration
	2.1 Introduction
	Design of the Namespace

	2.2 Getting Started with Security Namespace Configuration
	web.xml Configuration
	A Minimal <http> Configuration
	What does auto-config Include?
	Form and Basic Login Options
	Setting a Default Post-Login Destination


	Using other Authentication Providers
	Adding a Password Encoder


	2.3 Advanced Web Features
	Remember-Me Authentication
	Adding HTTP/HTTPS Channel Security
	Session Management
	Detecting Timeouts
	Concurrent Session Control
	Session Fixation Attack Protection

	OpenID Support
	Attribute Exchange

	Adding in Your Own Filters
	Setting a Custom AuthenticationEntryPoint


	2.4 Method Security
	The <global-method-security> Element
	Adding Security Pointcuts using protect-pointcut


	2.5 The Default AccessDecisionManager
	Customizing the AccessDecisionManager

	2.6 The Authentication Manager and the Namespace

	3. Sample Applications
	3.1 Tutorial Sample
	3.2 Contacts
	3.3 LDAP Sample
	3.4 CAS Sample
	3.5 Pre-Authentication Sample

	4. Spring Security Community
	4.1 Issue Tracking
	4.2 Becoming Involved
	4.3 Further Information


	Part II. Architecture and Implementation
	5. Technical Overview
	5.1 Runtime Environment
	5.2 Core Components
	SecurityContextHolder, SecurityContext and Authentication Objects
	Obtaining information about the current user

	The UserDetailsService
	GrantedAuthority
	Summary

	5.3 Authentication
	What is authentication in Spring Security?
	Setting the SecurityContextHolder Contents Directly

	5.4 Authentication in a Web Application
	ExceptionTranslationFilter
	AuthenticationEntryPoint
	Authentication Mechanism
	Storing the SecurityContext between requests

	5.5 Access-Control (Authorization) in Spring Security
	Security and AOP Advice
	Secure Objects and the AbstractSecurityInterceptor
	What are Configuration Attributes?
	RunAsManager
	AfterInvocationManager
	Extending the Secure Object Model


	5.6 Localization

	6. Core Services
	6.1 The AuthenticationManager, ProviderManager and AuthenticationProviders
	DaoAuthenticationProvider
	Erasing Credentials on Successful Authentication

	6.2 UserDetailsService Implementations
	In-Memory Authentication
	JdbcDaoImpl
	Authority Groups


	6.3 Password Encoding
	What is a hash?
	Adding Salt to a Hash
	Hashing and Authentication



	Part III. Web Application Security
	7. The Security Filter Chain
	7.1 DelegatingFilterProxy
	7.2 FilterChainProxy
	Bypassing the Filter Chain

	7.3 Filter Ordering
	7.4 Request Matching and HttpFirewall
	7.5 Use with other Filter-Based Frameworks

	8. Core Security Filters
	8.1 FilterSecurityInterceptor
	8.2  ExceptionTranslationFilter
	AuthenticationEntryPoint
	AccessDeniedHandler

	8.3 SecurityContextPersistenceFilter
	SecurityContextRepository

	8.4 UsernamePasswordAuthenticationFilter
	Application Flow on Authentication Success and Failure


	9. Basic and Digest Authentication
	9.1 BasicAuthenticationFilter
	Configuration

	9.2 DigestAuthenticationFilter
	Configuration


	10. Remember-Me Authentication
	10.1 Overview
	10.2 Simple Hash-Based Token Approach
	10.3 Persistent Token Approach
	10.4 Remember-Me Interfaces and Implementations
	TokenBasedRememberMeServices
	PersistentTokenBasedRememberMeServices


	11. Session Management
	11.1 SessionManagementFilter
	11.2 SessionAuthenticationStrategy
	11.3 Concurrency Control

	12. Anonymous Authentication
	12.1 Overview
	12.2 Configuration
	12.3 AuthenticationTrustResolver


	Part IV. Authorization
	13. Authorization Architecture
	13.1 Authorities
	13.2 Pre-Invocation Handling
	The AccessDecisionManager
	Voting-Based AccessDecisionManager Implementations
	RoleVoter
	AuthenticatedVoter
	Custom Voters


	13.3 After Invocation Handling

	14. Secure Object Implementations
	14.1 AOP Alliance (MethodInvocation) Security Interceptor
	Explicit MethodSecurityInterceptor Configuration

	14.2 AspectJ (JoinPoint) Security Interceptor

	15. Expression-Based Access Control
	15.1 Overview
	Common Built-In Expressions

	15.2 Web Security Expressions
	15.3 Method Security Expressions
	@Pre and @Post Annotations
	Access Control using @PreAuthorize and @PostAuthorize
	Filtering using @PreFilter and @PostFilter

	Built-In Expressions
	The PermissionEvaluator interface




	Part V. Additional Topics
	16. Domain Object Security (ACLs)
	16.1 Overview
	16.2 Key Concepts
	16.3 Getting Started

	17. Pre-Authentication Scenarios
	17.1 Pre-Authentication Framework Classes
	AbstractPreAuthenticatedProcessingFilter
	AbstractPreAuthenticatedAuthenticationDetailsSource
	J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

	PreAuthenticatedAuthenticationProvider
	Http403ForbiddenEntryPoint

	17.2 Concrete Implementations
	Request-Header Authentication (Siteminder)
	Siteminder Example Configuration

	J2EE Container Authentication


	18. LDAP Authentication
	18.1 Overview
	18.2 Using LDAP with Spring Security
	18.3 Configuring an LDAP Server
	Using an Embedded Test Server
	Using Bind Authentication
	Loading Authorities

	18.4 Implementation Classes
	LdapAuthenticator Implementations
	Common Functionality
	BindAuthenticator
	PasswordComparisonAuthenticator
	Active Directory Authentication

	Connecting to the LDAP Server
	LDAP Search Objects
	FilterBasedLdapUserSearch

	LdapAuthoritiesPopulator
	Spring Bean Configuration
	LDAP Attributes and Customized UserDetails


	19. JSP Tag Libraries
	19.1 Declaring the Taglib
	19.2 The authorize Tag
	19.3 The authenticationTag
	19.4 The accesscontrollist Tag

	20. Java Authentication and Authorization Service (JAAS) Provider
	20.1 Overview
	20.2 Configuration
	JAAS CallbackHandler
	JAAS AuthorityGranter


	21. CAS Authentication
	21.1 Overview
	21.2 How CAS Works
	21.3 Configuration of CAS Client

	22. X.509 Authentication
	22.1 Overview
	22.2 Adding X.509 Authentication to Your Web Application
	22.3 Setting up SSL in Tomcat

	23. Run-As Authentication Replacement
	23.1 Overview
	23.2 Configuration


	Appendix A. Security Database Schema
	A.1 User Schema
	Group Authorities

	A.2 Persistent Login (Remember-Me) Schema
	A.3 ACL Schema
	Hypersonic SQL
	PostgreSQL



	Appendix B. The Security Namespace
	B.1 Web Application Security - the <http> Element
	<http> Attributes
	servlet-api-provision
	path-type
	lowercase-comparisons
	realm
	entry-point-ref
	access-decision-manager-ref
	access-denied-page
	once-per-request
	create-session
	use-expressions
	disable-url-rewriting

	<access-denied-handler>
	The <intercept-url> Element
	pattern
	method
	access
	requires-channel
	filters

	The <port-mappings> Element
	The <form-login> Element
	login-page
	login-processing-url
	default-target-url
	always-use-default-target
	authentication-failure-url
	authentication-success-handler-ref
	authentication-failure-handler-ref

	The <http-basic> Element
	The <remember-me> Element
	data-source-ref
	token-repository-ref
	services-ref
	token-repository-ref
	The key Attribute
	token-validity-seconds
	user-service-ref

	The <session-management> Element
	session-fixation-protection

	The <concurrency-control> Element
	The max-sessions attribute
	The expired-url attribute
	The error-if-maximum-exceeded attribute
	The session-registry-alias and session-registry-ref attributes

	The <anonymous> Element
	The <x509> Element
	The subject-principal-regex attribute
	The user-service-ref attribute

	The <openid-login> Element
	The <logout> Element
	The logout-url attribute
	The logout-success-url attribute
	The invalidate-session attribute

	The <custom-filter> Element
	The request-cache Element
	The <http-firewall> Element

	B.2 Authentication Services
	The <authentication-manager> Element
	The <authentication-provider> Element
	The <password-encoder> Element

	Using <authentication-provider> to refer to an AuthenticationProvider Bean


	B.3 Method Security
	The <global-method-security> Element
	The secured-annotations and jsr250-annotations Attributes
	Securing Methods using <protect-pointcut>
	The <after-invocation-provider> Element

	LDAP Namespace Options
	Defining the LDAP Server using the <ldap-server> Element
	The <ldap-provider> Element
	The user-dn-pattern Attribute
	The user-search-base and user-search-filter Attributes
	group-search-filter, group-search-base, group-role-attribute and role-prefix Attributes
	The <password-compare> Element

	The <ldap-user-service> Element




