Spring Security

Reference Documentation

Ben Alex
Luke Taylor

Spring Security: Reference Documentation
by Ben Alex and Luke Taylor

311

Spring Security

Table of Contents

(= = o = PSS PSRSRR Xiii
[= 11 S - (<o PP 1
I 1 Lo [FTox 1 o o PR 2
1.1 What 1S SPIiNG SECUMTY? ..vveereeeeeeeeieeeeeeeeeeseeeseensesensesessennsesssnesssnmesnsesmennenrsnsnssnnmmmmmmmmmmmnes 2

02 o 1T (] PSR SUSTPPRRRR 3

1.3. Rel€aSe NUMDEING ... e 4

1.4, GELtiNG SPriNQG SECUITY ...eeeiiiiieiieiiiieie et e e e ettt e e e e e et n e e s abb e e e s anbe e e e e annreeeaane 4
ProjECt MOTUIES ..ottt e e et e e e nnbneeeeans 4
Core - SprinNg-SECUri tY-COr €. | @l .iiieeeiiiiieiee e 5

Remoting - spring-security-rendting. jar ...cococevvieeeeeeeeececciineeeeeeenn, 5

Web - spring-security-Web. | ar .o 5

Config - Spring-security-config.] ar . 5

LDAP -spring-security-ldap.jar . 5

ACL -spring-security-acl.jar . 5
CAS-SPring-SECUrity-Cas. | al .ccccocciiiiiiieee e ciccrier e e et e e 5
OpenID - spring-security-openid.jarcoocooviiieeeeeeeiiiiiiiiieee e, 6

Checking out the SOUICEccooee e 6

2. What's New in SPring SECUNMLY 3.1 ...cuiiiiiiiiiiieee ittt e s 7
2.1. High level updates found Spring SECUNMtY 3.1ccoiuiiiiiiiiiie e 7

2.2. Spring Security 3.1 NAMESPACE UPUALEScceiruriiieeiiiiiee et ee ettt e e 7

3. Security Namespace ConfigUIationcc.uvviiireeei i e e e e e e s et raeeeeeas 9
130 I g 11 oo (11 o o I PP 9
Design Of the NaMESPACEieiiiiiiiiicici s nnnnnnnnn 10

3.2. Getting Started with Security Namespace Configurationcceeevrvrreeenniieeesniieeeenns 10
We . XM CONFIGQUIATONeeiiiiiiiiie ettt e e e e e s e e e 10

A Minimal <ht t P> CONfIQUIALIONeviiiiiiiie e 11

What does aut 0- confi g INClUdE?ccevvmveiieeii e, 12

Form and Basic Login OPLONSuueiiiiieii i ee e et e s enrrre e e e e e e snnvnn e 13

Setting a Default Post-Login DeSHiNatioNueuiueeieiiiiiniiiiiiiiiee. 14

LOGOUL HANAIINGeeeeiiieie et e e 14

Using other Authentication ProVIidErSccooiuiiioiiiiiii e 14

Adding a Password ENCOEYooouiiiiiiiiiiie e 15

3.3, AOVANCE WED FEEIUINESveeiieiiiieie ettt et et e e e e e e nneaeeeen 16
Remember-Me AULNENtICAIONcooiiiiiiiiiiiee e 16

Adding HTTP/HTTPS Channel SECUNLYcvviiiiiiiiiieeiiiiee et 16

SESSION MBNAGEMENT ...eeiiii ettt e e e e e e et e e e e e e e s e st eeeeeeeeesaannenaeeeeaens 17

DELECHING TIMEOULSeeiiiiiiieeiitiee ettt e st e e e e e e e annes 17

Concurrent SeSSION CONEFOuuuiviieeeii i e e e e e e e enneeees 17

Session Fixation AttaCk ProteCHIONevviiiviiieiiiiiiee st 18

(0707 11 IS o oo g PR 19

Attribute EXChangecooooe e 19

Adding in YOUr OWN FILENSooiiiiii e e e 20

Setting a Custom Aut hent i cati onEntryPoi Nt ..o, 22

311 i

Spring Security

3.4, MENOU SECUILYvviiieieeie e e sttt e e e e e e e e e e s e et r e e e e e s e s e nntraaaeeaaeeeas 22

The <gl obal - met hod- security> Elementccccceeeeiiiiiiiiiiieeee e 22

Adding Security Pointcuts using pr ot ect - poi Nt CUt ...ocovvvvvviieiiiiieiiieeeeeeeeee, 24

3.5. The Default AcCesSDECISIONMEBNATESuuuiiiiieeeeiiiiiiiieeeaaeeseeneieeeeaaeeeeaanereeeeeaaaaeaaans 24
Customizing the AcCeSSDECISIONMENATEScccuvrrieiiiiiieeiiiiree et e e 24

3.6. The Authentication Manager and the NameSPaceeevvririieiiiiiee e 25

4, SAMPIE APPIICALIONSeeeiieeiiei et e s e e e e e s e e et ae e e e e e e s saanrbarreeaaeeaaaans 26
T | (o = S 1 0o = TSP PPRPRR 26

4.2, CONLBCLS ...coiiiiiiiiiie et 26

G T I A s oo = PSSR 27

4.4, OPENID SAMPIE ..ottt e ek e e e e s e 27

A5, CAS SAMPIE et e e e e 28

4.6, JAAS SAMPIE ... e e e e r e e e e e s a i ——aaaaeanaaan 28

4.7. Pre-AUthentication SAMPIEciiie oot e e e 28

5. Spring SeCUrity COMMIUNITYeeiiieeiiiiiiiiieiee e e e e e eeitite e e e e e e e s s ettt e e e e e e e s s senbbraeeeeaeeeesaassrnaeeeeaeens 29
LI £ =0 L= T I = o (1 o P 29

5.2. BECOMING INVOIVELcooiiiiiiiiiiiie et 29

5.3, FUrther INfOrMELIONcoiiiiiiiiiii e e e r e e e e s rae e e e e e e e e ennes 29

I1. Architecture and IMPIEMENTALTIONcooiiiiiiiiiie e e e 30
6. TECHNICAl OVEIVIEWeiiiiiiiiiiie ettt et e et e e s ab bt e e s et e e e e e sbe e e e e s s nnn e e e e e nees 31
6.1. RUNEIME ENVIFONIMENTeoiiiiiiiiie ettt e e e et e e e s e e e e snneee e s snneeeeeas 31

A ©o (=3 0] 0] 070] 0= | £ T 31
SecurityContextHolder, SecurityContext and Authentication Objectscccccceevveeneeee. 31

Obtaining information about the CUMENt USEYccooviieieiiiiiie e 32

The USEIDELAISSEIVICE ...uvviiiiee ettt s e e e e e s s s e e e e e e e e e eeannenees 32

(€= 19105 0 /AN 140 1 SRR 33

I 1107 33

6.3, AULNENTICALIONoiiiiiiiiee et e et e e e e e e e e e e e e e e e e e nneneeas 33
What is authentication in SPring SECUMTY?oeeiiiiiieeeiiieee e 34

Setting the SecurityContextHolder Contents DIreCtlycccvvveverieeiiiiciiiieeee e 35

6.4. Authentication in @ Web APPlICAIIONcooiiiiiiieiiiie e 36
EXCeptionTranglationFiItercooiiiiiiie e 37
AUthenticatioNENIIYPOINTceiiiiiii e e e e e s rre e e e e e e e e eans 37
Authentication MEChBNISIM ... e e 37

Storing the Secur i t yCont ext between reqUESESevveiiiiieei i 37

6.5. Access-Control (Authorization) in SPring SECUMTYccuevveiiiirieeiiiiiee e 38
SeCUrity anNd AOP AGVICEuviiiiiiiiie ettt e s s 38

Secure Objects and the Abst ract Securitylnterceptor .coooocceveeiiivciiiieneeeeen, 39

What are Configuration AtHDULES?ccviieeiiiiiie e 39
RUNASMBNAGETcciiieeeeiiiie et e e e e ettt s e e e e e e e e ettt r e e e e e e e e eeetnaaseeeaaeennnes 39
ATErINVOCaLONMEBNEOEScci i e e e e e e e e e eeeeee e e e e e e e e e nnees 40

Extending the Secure Object MOTE!coooiiiieiiiiiiieeeee e 41

S o o= 2 (o] o SR 41

7. COTE SEIVICES ...uttiiee ettt e ekttt et e ettt e e e a bt e oot et e e oo skt e e e e e as b et e e e a b et e e e aabe e e e e annbe e e e e anbaneeeaans 43

311 iv

Spring Security

7.1. The Aut hent i cat i onManager , Pr ovi der Manager and

AUt NeNt i Cat i ONPIr OV BI'S .ot 43
Erasing Credentials on Successful Authenticationccceevveveveiieiveeieeeeeeeeeeeeeeeeeeeeee 44

DaoAut hent i cat i ONProVi der ... 44

7.2. UserDet ai | sServi ce Implementationsccouiiiiiiiiiiieeeniieee e 45
IN-Memory AULNENTICALIONooiiiiiiiiiiiee e 45
JADCDAOI ITPI o e e 46
AULNOTITY GIOUPS ©veveieieeiiiiitiiiee et e e e e et e e e e e e e e e e e e e e e e e et a e ae e e e e e e s s annnrarneeeeens 46

7.3. Password ENCOOINGcoooeiiiii i 46
WHhat 1S @ haSh? ...t e e e e e e e e 46

AddiNg Salt 10 @ HESN ..o 47

Hashing and AULNENEICAEIONoooiiiiiiee it 47

1. WeD APPIICAHON SECUILYuvviiiieeeii it ie e et e e e s e e e e e e e e s s st e e e e e e e s e ssnaeaeeeeaeessannnneees 49
8. The Security Filter Chainoviiiiii e e e e e as 50
8.1. Del egat i NGFi | 1 &5 PrOXY oo 50

8.2, Fi | 1 €5 CRai NPT OXY .uvuiuiuiiiuiiiuruuiiuruununnunnrnereneernrnrnrere——————.. 50
Bypassing the Filter Chain ... 52

R 11 (= @ 0 =] oo PP P PP OPPPRP 52

8.4. Request Matching and HE t pFi rewal | ... 53

8.5. Use with other Filter-Based FramewOorKsc.euvviiiiiiieiiiiiie e 54

8.6. Advanced Namespace CONfigUIaLiONccceeiiiiiiiiiiiiiiee e e e e e e e e e enees 54

Lo O] (oI oW 1 VA = S 55
9L FilterSecurityl NEEr CEPL OF oo 55

9.2. ExceptionTransl ati ONFi | Ter ... 56

Aut henti cati ONENT ryPOI N eeeiii e 56
AccessDeNni edHANAl €5 ..o 57
SavedRequest sand the Request Cache Interface ..., 57

9.3. Securi tyCont ext Persi st enceFi |t er ... 58
SecurityCont eXt REPOST T OFY ..ueiiiiiiiiie et 58

9.4. User namePasswor dAut henti cati OnFi | ter ... 59
Application Flow on Authentication Success and Failurecccoeeeiviieee e, 59

10. Basic and Digest AULNENLICALIONccuiiiiieiiee e e e e s ee e 61
10.1. Basi cAut hent i cati ONFi [T @5 ..o 61
(@01 1100 =1 o) X 61

10.2. Di gest Aut henti cati ONFi [t er ..o 61
CONFIGUIBLION ...eeeeet ettt e et e ke e e e et e e e e snr e e e e annn e e e e e nnes 63

11. Remember-Me AUhentiCalioNueiiiiieiiiiiiiir e e e e e st r e e e e e e e anas 64
O Y= V= PR TPPRPPRPRR 64
11.2. Simple Hash-Based TOKEN APPIrOACHvviiiiie it e e 64
11.3. Persistent TOKEN APPrOACHcoeviiiiiiiiieieeeieeeee e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeereenes 65
11.4. Remember-Me Interfaces and Implementationscccceeeiiiiiiiiiiee e 65
TokenBasedRemMEMBEIMESEIVICESuuiiiiiieiiiiiiieie e a e 65
PersistentTokenBasedReEMEMDEM ESEIVICESuvvviiieeeei i e e e e e 66

12, SESSION MBNAGEMENT ..oiiieiiiiiieeee e e e e e e e e e e e e r e e e e e s s e et e e e e eaeeesssantsaaeeeaeessaannsneneees 67
12.1. SessioNManagemMENtIITEroiiiii i e e e e e 67

311 v

Spring Security

12.2. Sessi onAut hent i cati ONSErat €Y .ovvveeeiiiiiiiiiiee e 67

12.3. CONCUITENCY CONLIOIuiiiiiieei it e e e s e e e e e e e e s e e e e e e e s s eannrbaeeeaaens 68
Querying the Sessi onRegi st ry for currently authenticated users and their sessions

... 69

13. ANONYMOUS AUENENTICEIIONceeiiiiiiiieeiiee ettt e e s e e e e s e e e e anrreeeens 70

G I O V= = 70

G2 @o) 1To U1 (o] o PR PPRRRR 70

13.3. Aut hent i cati ONTrUSt RESOl VEI ..ooiiiiiiiiieee e 71

IV AUENOTIZEIION ...ttt oottt e e e e e e e ettt et e e e e e e eanatbeeeeeeaeeesaannneeneeeaaeesans 73

14. AUthOFiZation ATCHITECTUNEoiiiie e e e e e e e e et e e e e e e e s s ennreeeeeaeens 74

It T AN 11 o 1 (= RSOSSN 74

14.2. Pre-Invocation HanaliNgoeeooiiiiiioieec e 74

The ACCeSSDECISIONMEBNAGEccciiieiiiiieiee e e e e ettt e e e e e e s s st e e e e e e e s seatb e e e e eaeeessnnnenees 74

Voting-Based AccessDecisionManager Implementationscccveeeeeeeeiiiiiiiieeeeee e e, 75

ROI V0L B ettt e e e e e e e e e e nnreee e e 76

Aut hent i cat @dVOL €5 ..o 76

CUSLOM VOLEN'S ... 76

14.3. After INnvocation HanAliNgoeoeiiiiiiiiiiiiie e 77

14.4. HIerarchiCal ROIESoooveiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee ettt e et e e e e e aeaeeeeeeeeeeeaeeeaeeeeees 78

15. Secure Object IMPIEMENTALIONScoiiieeei e e e e e s e et e e e e e e e e e snnreeees 79

15.1. AOP Alliance (Methodinvocation) Security INtErCEPLOruvveveeeeeeiiiiiiiieeee e e e, 79

Explicit MethodSecuritylnterceptor Configurationcceevvevviiieieieieeeeieeieeeeeeeeeeeeeee 79

15.2. Aspectd (JoinPoint) Security INTErCEPLONovviiieiiieeeiiiiee e 79

16. EXpression-Based ACCESS CONIOIcooiiiiiiieiiiiie et 82

O @ Y= = SRR 82

CommOoN BUilt-1N EXPIrESSIONScuueiiieeeiiiiiiiiiiet e e e e s seiitee e e e e e e e s santrae e e e e e e s s annrraaeeeaens 82

16.2. WeED SECUNtY EXPrESSIONSuveiiieeeeiiiiiiieieeeee e e e s citt e e e e e e e s e s siabe e e e e e e e e s seabrreeeeeaeeeeanes 82

16.3. Method Security EXPIrESSIONSccooeeeiiee e 83

@Pr e and @POST ANNOLALIONSu.iiiieiiiieieie e e e e e s e e e s e e e s s e b s e e s e 83

Access Control using @r eAut hori ze and @Post Aut hori zeccceeeveeneeee. 83

Filteringusing @r eFi | ter and @OStFi | ter ..ccccooviiiiiiiii e 84

BUITE-TN EXPIrESSIONS ...cccoiiiiieieee ettt e e e e e e et e e e e e e e s s eae e neeeaaeeeaaans 84

The Per m ssi onEval uat or interfacecceveeiviiieeiiiiie e 84

AV AN (o o =!I 1) o = 86

17. Domain OBJECt SECUNMLY (ACLS) ..vviiiiiiiiieeiiiee ettt 87

L7.0. OVEIVIEBIW oot e ettt e e e e e e ettt e e e e e e e e et eeeaeeeessannstaaneeeeeeesaannssananeeaeensans 87

17.2. KEY CONCEPES ..eeiieeeiiiiiittie ettt ettt e e e e e s bbb e et e e e e e e saanb b e et e e e e e e sannnrereeeeas 87

17.3. GEIING SEAMEA ... e e e e e e s st r e e e e e s e e aeaaaas 20

18. Pre- AUthentiCation SCENAIOSiiuvrieeiiiiiie ettt st et e e st e e s st e e e s snba e e e s snreeeeaas 92

18.1. Pre-Authentication Framework ClaSSEScooiiiiuiiiiiiiiee e 92

AbstractPreA uthenticatedProcessiNgFilteroooo i 92

JeeeBasedPreA uthenti catedWebA uthenticationDetail SSourceoeevvvecevvveeeennn. 93

PreAuthenticatedAuthenticationProVIdereevvvveiiiiiiiicee e 93

Httpd03Forbi ddenENLIYPOINTcoceeiiiiiiiiiei e e e e e e e e e e e e e e e e 93

18.2. Concrete IMpPIEMENLALIONSuvviiiiiee e e e e e e e e e s rraeeeea e 93

311 Vi

Spring Security

Request-Header Authentication (SItEMINAEr)eevveeiii i 94
Siteminder Example Configurationccccveieiiiei i 9

J2EE Container AUtNENtICEEIONevviiiiiie e 94

19. LDAP AUNENTICALIONeeeiieiiiiiee ettt e et et e e e st e e e e st e e e annsae e e e e nnseeeeeennneeeeannnneeens 96
190, OVEIVIBIW oot e e e ettt e e e e e ettt e e e e e e e e et eeeeeeeessannstaaneeeeeeeeannnssenaneeaeensans 96
19.2. Using LDAP With SPring SECUMLYccciiiuiriiiiiiiiie ettt 96
19.3. Configuring an LDAP SEIVENuviiiiee ettt e s e e e e e ee e 96
Using an EMbedded TESE SEIVETvviiiiiei ettt 97
Using Bind AUtNENLICALIONuuuuuiiiiiiii e neaeesnsaennnnnnnnnnnnns 97
[I07="o [oo [N B 11 00 =S PRRRR 97
19.4. IMPlemMENtation ClASSESccoiiuiiieeiiiiie et e e 98
LdapAuthenticator Implementationscooiuiiieriiiiiee e 98
CommON FUNCLIONEIILYvvveiiieeeii e e e e e 99

] ale AN 11 gT= oA or= (o PR 99
PasswordCompariSONAUhENtiCALOrc..vvveiieeei e 99
Connecting to the LDAP SEIVENcooooi i 99
LDAP Sarch ODJECESuviiiiiiiiiie ettt e et e e e s e e e anneee s 99

Fi | ter BasedLdapUser Sear Ch ... 99
LdapAULNOTtIESPOPUIGLOTveeieeiiieiee et 100
Spring Bean Configurationc.uueeeiieei oo e e e e s e 100
LDAP Attributes and Customized UserDetailScoccveveeiiiiiieiiiiiie e 101

19.5. Active Directory AUtNENtICALIONuuuueriiiiiiiiiiiiiiiieererierernrn———.. 101
Acti veDi rectoryLdapAut henti cati onProvi derccccceviiveeniiiinennns 102
Active Directory Error COUBSueiiiiiiiieiiiiiie et 102

20. JSP Tag LIBrariEs ...ttt 103
20.1. Declaring the Taglihuvveeiieee e 103
20.2. TRHE QUL NOT T Z€ TAO uvviiieiie et e e e e e e e e e e e s enaneaes 103
Disabling Tag Authorization fOr TESHINGuuuuiiiiiiiiiiiiiiiiiier————. 104
20.3. The aut Nent i Cat 1 ONTaAO «.oocuveeeeiiiiee et e e 104
20.4. The accesSSCONE T Ol I TSt TaG wiieiiieeieeiiiiie et 104
21. Java Authentication and Authorization Service (JAAS) Providercoovvvveeiiiiieeeiniiiee e 106
P I I @ Y V1= T PRSPPI 106
21.2. AbstractJaasAuthentiCatiONPIOVIAEScoeiiiiiieeiiiiiee e 106
JAAS CallbaCkHANAIESeeieieiee e e e raeee e 106
JAAS AULNOTTYGIaANMTESoeiiiiiiiiie e e e e e 106
21.3. DefaultJaasAuthentiCatioNPrOVIAErovvviiiiiiiiiiiiirie e e e 107
INMEMOIYCONTIQUIBLIONeiiiiiiiiee ittt e e e e 107
DefaultJaasA uthenticationProvider Example Configurationcccccceveeeeeviicciiveeennnn. 107

21.4. JaasAULNENtiCatiONPIOVITESccciiiiiieiiiiiie ettt e e naeeees 108
21.5. RUNNING @S @ SUDJECEevveeeiieeeeieieieeeeeeeeeeereeeseeeeeseeeseeeeeseeessseseeeseessessesseesssessssesssrnenes 109
22. CAS AULNENTICALIONeiiiieeeii ittt e e ettt e e e e s e e e e e e e e e e e e aneaeeeeeeaaeesaannnenees 110
T O Y VT S 110
22.2. HOW CAS WOTKS ...ttt ettt a e e e st aae e e e e e s e nntannaeeaaas 110
Spring Security and CAS Interaction SEQUENCEuevvveeeeiiiiiiiiieeeeee et e e e e 110
22.3. Configuration Of CAS CHENTuuiiiiiieie e e 112

311 Vil

Spring Security

Service Ticket AUTNENTICALIONcooiiiiiiieiiiiee e 113

SINGIE LOGOUL ...ttt e e e e e e e e e e e e s e et e e e e e e e e e e ansareees 114
Authenticating to a Stateless Service With CAS ..., 116
Configuring CAS to Obtain Proxy Granting TiCKEetSccvveeeviiiiiiiieiieeeeneieee 116

Calling a Stateless Service Using a Proxy Ticketc..ooevviiiieiiiiiieeiiece e 117

Proxy Ticket AUtNENtICAIONcoiiiiiiieiiiiie e 117

23. X509 AULNENTICALIONeeeieiiiiiiee ettt e st e e e et e e e s st e e e e s annbeee s 120
23,1 OVEIVIBIW .ttt ettt e e et e e e sttt e e s at e e e e sb e e e e anbee e e e s anen e e e e annbeeeeennnes 120
23.2. Adding X.509 Authentication to Your Web Applicationccccceeeiiiriiiiiiiinnnnnns 120

23.3. Setting UP SSL iN TOMCALceeiiiieieeee et e e e e e e e e e e s e eneneeeeeeeas 121

24. Run-As Authentication REPIACEMENTcuviiiiiiiiiie e 122
D I @ Y V= SRS 122
P g o 11 = 1 o o [PPERRR 122

25. Spring Security Crypto MOGUIEc.euiiiiiei e e e e 124
P2 00 TR 1 (0o [0 1 o PSPPSR 124
25.2. ENCIYPLOIS ... 124
BYLESENCIYPLON ...ttt e e e s e e e e e e e e 124
TEXEENCIYPLON ...ttt et eeeeeees 124

25.3. KEY GENEIGLONS ...ttt iee e ettt ettt e e e e e st e et e e e e s s bbb e et e e e e e e s e annneneeeeas 125
BYLESK BYGENEIALON .. .ciiiieeeiieiie ettt e e e e et e e e e e e e e et e e e e e e e e araeaan 125
SHINGKEYGENEIALON ... iiiiiiieiee e ettt e e e e e e e e e e e e e e s st e e e e e e e e s saabbreeeeeaeeeaanns 125

25.4. PasSWOId ENCOINGuvuuuruuuiururuinnununnrninenennnrnenmnreennnrneern—————————————. 125

A. Security Database SCNEIMAoiiiiiiiieiiiiie e e e e e s e e s nnreees 127
N I U ol 0 - SRS 127
GrOUP AULNOMITIESeeieiiiiieie ettt e ettt e e s et e et e e s nnbe e e e e enreeeeen 127

A.2. Persistent Login (Remember-Me) SChEMAcviiiiiiiiiiiiiice e 128
G T O o = 1 = PSR 128
HYPEISONIC SO .. ———— 128
1S (0 1= S PPSRRSPRPRR 129

B. The SeCUrity NAIMESPACEcceiiiiiieiiitiie ettt e e e et e e e e e e s e bb et e e s anbr e e e e anneeeeeennes 131
B.1. Web APPlICAITION SECUMTY ..oiiieieieiiiiie ettt e st a e e e nees 131
0 = 01U o PSRRI 131

D 180 ¢ PR PUPRPPTPRIN 131

SRE L P> AUHDULES ..o 131

Child Elements Of <NEEP>ooiiiiiiiiiiiee e 134
<access-deni ed- handl €5 > . 134
Parent Elements of <access-deni ed-handl er>cccccoovviii e, 134
<access- deni ed- handl er > ARIDULEScuveiiiiiiiiei e 135

CANONY DUS ™ iiiiiiiiet et eeeeeetti e e e e et e ee ittt e e e e e eeeeeeesa s s eeeeeeeeesssa e eeeeeeenesenaaeeeeeeenassnnnnns 135
Parent Elements of <ANONYIMDUS™uuuiuiuiiiiiiiiiiiiiiiiininernrern———. 135
<ANONYMDUS > AHITDULESeoiiiiiiiiiiiiee et e e e e e e e e e e e e ennes 135

o U= o] 0 £ T T = USRS 135
Parent Elements of <cust omfilter> .. 136
<custom filter> AtDUIESooiiiieii e 136
<EXPressi ON-handl €5 > ... ———————— 136

311 Viii

Spring Security

Parent Elements of <expr essi on-handl er>cccoooviiii i, 136
<expressi on- handl er > AHIDULEScccvviiiiiie i 136
£ o] £ o T o 136
Parent Elements of <f or m 1 0Qi N> ..o 137
<form | 0gi N> ALHDULES ... e 137
S 180 o R o = 1 I o SR TPRR 138
Parent Elements of <ht t p-basi C> ..o 138
<htt p-basi C> AHDULESovveeeiiee e 138
<http-firewal | > Elementcccccorri 138
<http-firewal | > AtHDULES ... 138
SENT I CEPL - UI | > et e e nneeees 139
Parent Elements of <i Nt er CePt - Url > .. 139
<intercept-url > AtHDULEScciiiiiiee e 139
ST =T TP 140
Parent EIemMentS Of <j @8> ... 140
<) B> ALIDULES ... 140
S B0 To o1 U1 T TP PP PPPRPP 140
Parent Elements of <I 0QOUL > ...o..oiiiiiiiiiii e 140
<| OQOUL > ALIITDULES ...t 140
0 o= 10 Kl 1o Yo I o ST 141
Parent Elements of <openi d-10gi N> ... 141
<openi d-1 0gi N> ALHDULES ... 141
Child Elements of <Openid-10gin>cocciiiiiiiiiiii e 142
<At tribut - eXChange> ... 142
Parent Elements of <at tri but e-exchange>ccccooviiiiiiie v 142
<attribut e-exchange> AHINDULEScccvviiiiiie i 142
Child Elements of <at tri but e-exchange>cccooveiiiiiiiiiiiiece e, 143
<OPENT d- At T T DUL ©3 Lo snnnnnnnnns 143
Parent Elements of <openi d-attribute> ... 143
<openi d-attribute> AtDUIESoooiiiiiii e 143
o Lo T g A 17= o o L 0 <> 143
Parent Elements of <port - MBPPIi NS> ... 143
Child Elements of <port - MBPPI NOS> .o 143
0o] B A 15] oY I 1o TPt 143
Parent Elements Of <pOrt - MBPPI NO> ..ooviiiiiiiiieiiiee e 144
<POrt - mapPPi N> AITDULESoeeiiiiiieiee e 144
=Y 01=T 0101 o (SRRSO 144
Parent Elements of <r @mMBMDEr - IMB> ... 144
<remenber - Me> AMIHDULESoouiiii e 144
<request-cache> Elementccccceri 145
Parent Elements of <r equest - CaChe> ... 145
<request - cache> AIDULESoooiiiiiii e 145
<SESSi ON- MBNAGEITENT > L.iiiiiiiii i ciiiee e e e e e e e e s e e e e et e e e e s abaeeeeannneeaeas 145
Parent Elements of <sesSi 0N- MBNAJEIMENT > ... 146
<sessi on- management > AHIDULEScccveieeiie e 146

311

Spring Security

Child elements of <sSeSSi ON- MANAJEIMENT > ..o 146
<CONCUN T ENCY-CONE T Ol > oo a e e e 146
Parent Elements of <concurr ency- Control > ... 146
<concurrency-control > AttribULES ... 147

8 T 01 147
Parent Elements Of <X509>o 147
SXB509> ATIIDULES ..o 147
SFilter-Chal N-MBP> .o e e e s s e e e e e e e 148
<filter-chain-map> AttrbUtES ..., 148
Child Elements of <fi |t er-chai N- MapP> ..o 148

S T =T A o o = T 0 PSSP 148
Parent Elements of <filter-chai N> ..., 148
<filter-chai N> AIDULESoviiiiiiie e 148
<filter-invocation-definition-SOUrCe>cccociiiiiiiiiiiiiiiiiiiee e 149
<filter-invocation-definition-source>Attributes...........cccccceevrrrrrnnnne 149
Child Elementsof <fi | ter-i nvocati on-definition-source>................... 149
<filter-security-metadat a- SOUIM CE>cccoiiiiiiiiiiiieeeiiee e 149
<filter-security-metadata-source> Attributesccccccovvireiiiiineennnn. 149
Child Elementsof <fi | ter-security-nmetadata-source>ccceeveeeennnen 150

B.2. AULNENLICALION SEIVICESciviiiii ittt ettt e e st e e et e e s anaee s 150
<aut henti cati ON-MBNAQGET > ... e e e e eanre s 150
<aut henti cati on- manager > Attributescccccvv 150
Child Elements of <aut henti cati On- MANAger >cccccceeiiiiiiee e 151
<aut henti cati ON- ProVi eI > e 151
Parent Elements of <aut henti cati on-provi der>ccocciiieiiiniiee e 151
<aut henti cati on-provi der > AttribUtESc.oooiiiiiiiiie e, 151
Child Elements of <aut henticati on-provider>cccooviieiiiiiiiiiiieeeeee e, 151

e | o To U LY =T Y =Y RV I ol 152
<j dbc-user-servi ce> AtNDUIESoooiiiiii e 152

S 0T ET ATV o o B =T o ToTo Yo 1= g SRRSO 153
Parent Elements of <passWor d- €eNCOAEIN >uiiiviiiiiiiiiiiiiece e 153
<passwor d- encoder > AMIMDULEScooiiiiiiiiiiice e 153
Child Elements of <passWor d- €NCOAEr >ocooiiiiiiiiiiieeceec e 153
=T L Ao 1 U1 g o = SRR 153
Parent Elements of <sal t - SOUI Ce> i 153
<Sal t-SOUrCe> ALIDULES ...oooiieiiieeeeee e e e e 153

U EY T AT YA o = SR 154
<SUSEr -SerVi CE> ALIDULESeeiiiiiiiiee et 154
Child Elements Of SUSEI - SEI Vi CE> ..ottt 154
QU S B > s 154
Parent Elements Of SUSEI > ..o 154
SUSEI > AIDULES ..eeeiiee e e e e e e e e e e e s neeeeaeeeas 154

B.3. MENOA SECUIMTY ...ttt e e e e e e e e 155
<gl obal - MBt hod- SECUIT LY > .o 155
<gl obal - met hod-security> AttHbULEScc.vveeeeieei e, 155

311

Spring Security

Child Elements of <gl obal - met hod-security>ccccccciiiiiiiiie e, 156
<after-invocati ON-pProvi er> ... 156
Parent Elements of <af t er-i nvocati on- provi der>ccccccvvvvvvivnnnnnnnnnnnnnn. 156
<after-invocation-provider> Atributescccoeiiiriiiiiiii e 156
<pre-post-annotati on-handl i NG> ... 157
Parent Elements of <pr e- post - annot ati on-handling>..........cccocceveeeniinnne, 157

Child Elements of <pr e- post -annot ati on-handling>ccccccceeeeniiiiinnnnn. 157
<invocation-attribute-fact Ory> ., 157
Parent Elements of <i nvocati on-attribute-factory>............................... 157

<i nvocation-attribute-factory> Attributesoooiiii 157

<POSt -1 NVOCAL T ON-AUVI CES .ot 157
Parent Elements of <post -i nvocati on-advi Ce>cccoccvvveiiiiiiciiiiiiee e, 157
<post-invocation-advi ce> AttrbUESc.eveveeieii i 157

<Pre-i NVOCAt i ON-A0VI CE> .o e e e e 157
Parent Elements of <pre-i nvocati on-advi Ce>ccccceiiiiiiiiiiiieeiie e, 158
<pre-invocati on-advi ce> AttribULES ..o 158

Securing Methods using <pr ot €Ct - POi NECUL > ..o 158
Parent Elements of <pr ot €Ct - POI N CUL >ooiiiiiiiiiiiiee e 158

<prot ect-poi Nt cut > ALHDULESooeiiiiiii e 158
<intercept-MBthOAS> ... 158

<i ntercept-methods> AttbULESooeeiiiiiii e, 158

Child Elements of <i ntercept-met hods>cccccci, 158

<met hod- security-metadat 8- SOUI CE> ... 158
<net hod- security-metadat a- sour ce> AttHbUteSccccvveeeiiicciiiiiniee e, 159

Child Elements of <net hod- security- met adat a- source>cccccevcveeeennen 159

0] 0 1 =T o3 TP 159
Parent Elements of <prot @Ct > ..o 159
<protect > AtHDULES ..., 159

B.4. LDAP NamMeSPACE OPLIONScceiiuriieeiiiiiieeiiirie e st e e st e e s e e e s e e s s ssnn e e e s anneeeeaannneeas 159
Defining the LDAP Server using the <I dap- server > Elementcccccocvveeeiiiiciiinennnn. 159

<l dap-Server > AtHDULESccviiiiiiiie e 160

<l dap-authenticati ON-Provi der> ... 160
Parent Elements of <I dap-aut hentication-provider>.........ccccoceeeeeerninnnnn, 160

<l dap-aut henti cati on-provi der > AttribUtESceuvvriiiiiiiiiieiiiiini. 161

Child Elements of <I dap- aut henti cati on-provider>cccccviiiivenniinnnenne 162
<PASSWOI A= COIMPAT B3 ..uiiiiiiiiiiiieeiiieeeeeeteee e e e steeeeassreeeeassteeeeeasaeeeeaassaeeeeansseeeeesnsseeeeans 162
Parent Elements of <pasSWOr d- COMPAr €3cooiiiiiiiiiiiee e 162
<passwor d- conpar €> AMIHDULEScooiiiiiiiii e 162

Child Elements of <pasSWOr d- CONMPAr €3ooiiiiiiiiiiiiieeeee e 162

S o o o U LY =T Y =Y GV I o 162

<l dap-user-servi ce> AttHbULES ..., 163

C. Spring Security DEPENUENCIESoiiiiiiiieeiiiti ettt e et r e e s st e e e e anr e e e e anbeeeeaanes 165
C.L. SPIiNQG-SECUI I T Y= COM @ 1iiiiiiiiieiiiiiee ettt e et e e st e e e e sbr e e s anb e e e s nnbneeeeans 165
C.2.SprinNg-SeCUri tY-TenDli NG .ooooeeciiiiii e e e e e e e e e e eaneeees 166
C.3.SPrinNg-SeCUrityY-WeD e 166

311 Xi

Spring Security

CA. SPrinNg-SECUMN T LY-1 AP wiieiiieeiiiiieie e e e e ree s 166
C5. SpPrinNg-SECUri tY-CONTI § riiiiiiii e 167
C.B.spring-security-acl ., 167
C.7. SPriNQG-SECUIMNT T Y= CAS tiiiiiiiitiiiiieieeeee ettt et e e e e e e sttt e e e e e e e s saneteeereeaeeesaannnnbeeeeeaaeeaaanns 168
C.8.SPriNg-SECUMi TY-0PENI O cooiiiiiiiiiiiie ettt 168
C.O.spring-security-taglibDS . 168
311 Xii

Spring Security

Preface

Spring Security provides a comprehensive security solution for J2EE-based enterprise software applications.
As you will discover as you venture through this reference guide, we have tried to provide you a useful and
highly configurable security system.

Security is an ever-moving target, and it's important to pursue a comprehensive, system-wide approach. In
security circles we encourage you to adopt "layers of security”, so that each layer tries to be as secure as
possible in its own right, with successive layers providing additional security. The "tighter" the security of
each layer, the more robust and safe your application will be. At the bottom level you'll need to deal with
issues such as transport security and system identification, in order to mitigate man-in-the-middle attacks.
Next you'll generally utilise firewalls, perhaps with VPNs or IP security to ensure only authorised systems
can attempt to connect. In corporate environments you may deploy a DMZ to separate public-facing servers
from backend database and application servers. Y our operating system will also play acritical part, addressing
issues such as running processes as non-privileged users and maximising file system security. An operating
system will usually also be configured with its own firewall. Hopefully somewhere along the way you'll be
trying to prevent denial of service and brute force attacks against the system. An intrusion detection system will
also be especially useful for monitoring and responding to attacks, with such systems able to take protective
action such asblocking offending TCP/IP addressesin real -time. Moving to the higher layers, your JavaVirtua
Machine will hopefully be configured to minimize the permissions granted to different Java types, and then
your application will add its own problem domain-specific security configuration. Spring Security makes this
|atter area - application security - much easier.

Of course, you will need to properly address all security layers mentioned above, together with manageria
factors that encompass every layer. A non-exhaustive list of such managerial factors would include security
bulletin monitoring, patching, personnel vetting, audits, change control, engineering management systems, data
backup, disaster recovery, performance benchmarking, load monitoring, centralised logging, incident response
procedures etc.

With Spring Security being focused on helping you with the enterprise application security layer, you will find
that there are as many different requirements as there are business problem domains. A banking application has
different needsfrom an ecommerce application. An ecommerce application hasdifferent needsfrom acorporate
salesforce automation tool. These custom requirements make application security interesting, challenging and
rewarding.

Pleaseread Part I, “ Getting Started”, in its entirety to begin with. Thiswill introduce you to the framework and
the namespace-based configuration system with which you can get up and running quite quickly. To get more
of an understanding of how Spring Security works, and some of the classes you might need to use, you should
thenread Part |1, “ Architecture and Implementation”. The remaining parts of thisguide are structured in amore
traditional reference style, designed to beread on an as-required basis. We'd al so recommend that you read up as
much as possible on application security issuesin general. Spring Security is not a panaceawhich will solve all
security issues. It isimportant that the application is designed with security in mind from the start. Attempting
to retrofit it is not a good idea. In particular, if you are building a web application, you should be aware of
the many potential vulnerabilities such as cross-site scripting, request-forgery and session-hijacking which you
should be taking into account from the start. The OWASP web site (http://www.owasp.org/) maintains a top
ten list of web application vulnerabilities aswell as alot of useful reference information.

311 Xiii

Spring Security

We hope that you find this reference guide useful, and we welcome your feedback and suggestions.

Finally, welcome to the Spring Security community.

311 Xiv

Part |. Getting Started

The later parts of this guide provide an in-depth discussion of the framework architecture and implementation
classes, which you need to understand if you want to do any serious customization. In this part, we'll introduce
Spring Security 3.0, give a brief overview of the project's history and take a slightly gentler look at how to
get started using the framework. In particular, we'll look at hamespace configuration which provides a much
simpler way of securing your application compared to the traditional Spring bean approach where you have to
wire up all the implementation classes individually.

Well aso take a look at the sample applications that are available. It's worth trying to run these and
experimenting with them a bit even before you read the later sections - you can dip back into them
as your understanding of the framework increases. Please also check out the project website [http:/
static.springsource.org/spring-security/site/index.html] asit has useful information on building the project, plus
links to articles, videos and tutorials.

http://static.springsource.org/spring-security/site/index.html
http://static.springsource.org/spring-security/site/index.html
http://static.springsource.org/spring-security/site/index.html

Spring Security

1.1 What is Spring Security?

Spring Security provides comprehensive security services for J2EE-based enterprise software applications.
There is a particular emphasis on supporting projects built using The Spring Framework, which is the leading
J2EE solution for enterprise software development. If you're not using Spring for developing enterprise
applications, we warmly encourage you to take a closer look at it. Some familiarity with Spring - and in
particular dependency injection principles - will help you get up to speed with Spring Security more easily.

Peopl e use Spring Security for many reasons, but most are drawn to the project after finding the security features
of J2EE's Servlet Specification or EJB Specification lack the depth required for typical enterprise application
scenarios. Whilst mentioning these standards, it's important to recognise that they are not portable at a WAR
or EAR level. Therefore, if you switch server environments, it is typically alot of work to reconfigure your
application's security in the new target environment. Using Spring Security overcomes these problems, and
also brings you dozens of other useful, customisable security features.

As you probably know two major areas of application security are “authentication” and “authorization” (or
“access-control”). These are the two main areas that Spring Security targets. “ Authentication” is the process
of establishing a principal iswho they claim to be (a“principa” generally means a user, device or some other
system which can perform an action in your application). “Authorization” refers to the process of deciding
whether a principal is allowed to perform an action within your application. To arrive at the point where an
authorization decision is needed, theidentity of the principal has already been established by the authentication
process. These concepts are common, and not at all specific to Spring Security.

At an authentication level, Spring Security supports a wide range of authentication models. Most of these

authentication modelsare either provided by third parties, or are devel oped by rel evant standards bodies such as

the Internet Engineering Task Force. In addition, Spring Security providesitsown set of authentication features.

Specifically, Spring Security currently supports authentication integration with all of these technologies:

* HTTP BASIC authentication headers (an IETF RFC-based standard)

» HTTP Digest authentication headers (an |IETF RFC-based standard)

e HTTP X.509 client certificate exchange (an |IETF RFC-based standard)

« LDAP (avery common approach to cross-platform authentication needs, especially in large environments)

» Form-based authentication (for simple user interface needs)

e OpenlD authentication

 Authentication based on pre-established request headers (such as Computer Associates Siteminder)

» JA-SIG Central Authentication Service (otherwise known as CAS, which is a popular open source single
sign-on system)

» Transparent authentication context propagation for Remote Method Invocation (RMI) and Httplnvoker (a
Spring remoting protocol)

e Automatic "remember-me" authentication (so you can tick a box to avoid re-authentication for a
predetermined period of time)

« Anonymous authentication (allowing every unauthenticated call to automatically assume a particular
security identity)

» Run-as authentication (which is useful if one call should proceed with a different security identity)

» Java Authentication and Authorization Service (JAAS)

311 2

Spring Security

» JEE container autentication (so you can still use Container Managed Authentication if desired)
» Kerberos

 Java Open Source Single Sign On (JOSSO) *
¢ OpenNMS Network Management Platform *
e AppFuse*

e AndroMDA *

* MuleESB *

* Direct Web Request (DWR) *

» Grails*

» Tapestry *

e Jlrac*

* Jasypt*

* Roller*

 Elastic Path *

* Atlassian Crowd *

 Your own authentication systems (see below)

(* Denotes provided by athird party

Many independent software vendors (1SV's) adopt Spring Security because of this significant choice of flexible
authentication models. Doing so allowsthem to quickly integrate their solutionswith whatever their end clients
need, without undertaking a lot of engineering or requiring the client to change their environment. If none
of the above authentication mechanisms suit your needs, Spring Security is an open platform and it is quite
simpleto write your own authentication mechanism. Many corporate users of Spring Security need to integrate
with "legacy" systemsthat don't follow any particular security standards, and Spring Security is happy to "play
nicely" with such systems.

I rrespective of the authentication mechanism, Spring Security provides adeep set of authorization capabilities.
There are three main areas of interest - authorizing web requests, authorizing whether methods can beinvoked,
and authorizing accessto individual domain object instances. To help you understand the differences, consider
the authorization capabilities found in the Servlet Specification web pattern security, EJB Container Managed
Security and file system security respectively. Spring Security provides deep capabilities in al of these
important areas, which we'll explore later in this reference guide.

1.2 History

Spring Security began in late 2003 as “The Acegi Security System for Spring”. A question was posed on
the Spring Developers mailing list asking whether there had been any consideration given to a Spring-based
security implementation. At the time the Spring community wasrelatively small (especially compared with the
sizetoday!), and indeed Spring itself had only existed as a SourceForge project from early 2003. The response
to the question was that it was a worthwhile area, although alack of time currently prevented its exploration.

With that in mind, a smple security implementation was built and not released. A few weeks later another
member of the Spring community inquired about security, and at thetime this code was offered to them. Several
other requests followed, and by January 2004 around twenty people were using the code. These pioneering

311 3

Spring Security

users were joined by others who suggested a SourceForge project was in order, which was duly established
in March 2004.

In those early days, the project didn't have any of its own authentication modules. Container Managed Security
wasrelied upon for the authentication process, with Acegi Security instead focusing on authorization. Thiswas
suitable at first, but as more and more users requested additional container support, the fundamental limitation
of contai ner-specific authentication realm interfaces became clear. There was also arelated i ssue of adding new
JARSsto the container's classpath, which was a common source of end user confusion and misconfiguration.

Acegi Security-specific authentication services were subsequently introduced. Around a year later, Acegi
Security became an official Spring Framework subproject. The 1.0.0 final release was published in May 2006 -
after morethan two and ahalf years of active usein numerous production software projects and many hundreds
of improvements and community contributions.

Acegi Security became an official Spring Portfolio project towards the end of 2007 and was rebranded as
“Spring Security”.

Today Spring Security enjoys a strong and active open source community. There are thousands of messages
about Spring Security on the support forums. Thereis an active core of developers who work on the code itsel f
and an active community which also regularly share patches and support their peers.

1.3 Release Numbering

It is useful to understand how Spring Security release numbers work, as it will help you identify the effort
(or lack thereof) involved in migrating to future releases of the project. Each release uses a standard triplet of
integers: MAJOR.MINOR.PATCH. Theintent isthat MAJOR versions areincompatible, large-scal e upgrades
of the API. MINOR versions should largely retain source and binary compatibility with older minor versions,
thought there may be some design changes and incompatible udates. PATCH level should be perfectly
compatible, forwards and backwards, with the possible exception of changes which areto fix bugs and defects.

The extent to which you are affected by changes will depend on how tightly integrated your code is. If you
are doing a lot of customization you are more likely to be affected than if you are using a simple namespace
configuration.

Y ou should always test your application thoroughly before rolling out a new version.

1.4 Getting Spring Security

You can get hold of Spring Security in several ways. You can download a packaged distribution
from the main Spring download page [http://www.springsource.com/downl oad/community ?project=Spring
%20Security], download individual jars (and sample WAR files) from the Maven Central repository (or a
SpringSource Maven repository for snapshot and milestone rel eases) or, alternatively, you can build the project
from source yourself. See the project web site for more details.

Project Modules

In Spring Security 3.0, the codebase has been sub-divided into separate jars which more clearly separate
different functionaltiy areas and third-party dependencies. If you are using Maven to build your project, then

311 4

http://www.springsource.com/download/community?project=Spring%20Security
http://www.springsource.com/download/community?project=Spring%20Security
http://www.springsource.com/download/community?project=Spring%20Security

Spring Security

these are the modules you will add to your pom xni . Even if you're not using Maven, we'd recommend that
you consult the pom xml filesto get an idea of third-party dependencies and versions. Alternatively, a good
ideaisto examine the libraries that are included in the sample applications.

Core -spring-security-core.jar

Contains core authentication and access-contol classes and interfaces, remoting support and basic provisioning
APIs. Required by any application which uses Spring Security. Supports standalone applications, remote
clients, method (service layer) security and JDBC user provisioning. Contains the top-level packages:

e org.springframework. security.core

* org.springframework. security. access

e org.springframework. security. aut hentication
e org. springframework. security. provisioning
Remoting - spri ng-security-renoting.jar

Provides intergration with Spring Remoting. Y ou don't need this unless you are writing aremote client which
uses Spring Remoting. The main packageisor g. spri ngf ramewor k. security. renoti ng.

Web - spring-security-web.jar

Contains filters and related web-security infrastructure code. Anything with a servlet API dependency. You'll
need it if you require Spring Security web authentication services and URL-based access-control. The main
packageisor g. spri ngframewor k. security. web.

Config - spring-security-config.jar

Containsthe security namespace parsing code. Y ou need it if you are using the Spring Security XML namespace
for configuration. The main package is or g. spri ngf ranmewor k. security. confi g. None of the
classes are intended for direct use in an application.

LDAP -spring-security-1dap.jar

LDAP authentication and provisioning code. Required if you need to use LDAP authentication or manage
LDAP user entries. Thetop-level packageisor g. spri ngf ramewor k. security. | dap.

ACL -spring-security-acl.jar

Speciaized domain object ACL implementation. Used to apply security to specific domain object instances
within your application. The top-level packageisor g. spri ngf r amewor k. security. acl s.

CAS -spring-security-cas.jar

Spring Security's CAS client integration. If you want to use Spring Security web authentication with a CAS
single sign-on server. Thetop-level packageisor g. spri ngf ranewor k. security. cas.

311 5

Spring Security

OpenlD - spring-security-openid.|jar

OpenlD web authentication support. Used to authenticate users against an external OpenlD server.
org. springframewor k. security. openi d. Requires OpenlD4Java.

Checking out the Source

Since Spring Security is an Open Source project, we'd strongly encourage you to check out the source code
using git. Thiswill give you full access to all the sample applications and you can build the most up to date
version of the project easily. Having the source for aproject is also a huge help in debugging. Exception stack
traces are no longer obscure black-box issues but you can get straight to the line that's causing the problem
and work out what's happening. The source is the ultimate documentation for a project and often the simplest
place to find out how something actually works.

To obtain the source for the project, use the following git command:

git clone git://git.springsource.org/spring-security/spring-security.git

This will give you access to the entire project history (including all releases and branches) on your local
machine.

311 6

Spring Security

This section contains summary of the updates found in Spring Security
3.1 A detailed list of changes can be found in the project's
JRA [https.//jira.springsource.org/secure/l ssueNavigator! executeA dvanced.j spa?j gl Query=project+%3D
+SEC+AND+fixV ersion+in+%2812315%2C+11892%2C+11634%2C+11633%2C+11632%2C
+11174%29+order+by-+priority%2C+type& runQuery=true& clear=true]

2.1 High level updates found Spring Security 3.1

Below you can find a high level summary of updates to Spring Security 3.1.

» Support for multiple http elements

» Support for stateless authentication

» DebugFilter provides additional debugging information

* Improved Active Directory LDAP support (i.e. ActiveDirectoryL dapA uthenticationProvider)
» Added Basic Crypto Module.

» The namespace is fully documented in the reference appendix.

» Added dependencies section to the reference appendix

» Support HttpOnly Flag for Cookiesin Servlet 3.0 environments

* InMemoryUserDetailsManager provides in memory implementation of UserDetailsManager
 Support for hasPermission expression on the authorize JSP tag

 Support for disabling Ul security (for testing purposes)

» Support erasing credentials after successful authentication

» Support clearing cookies on logout

» Spring Security Google App Engine example application

» Support for CAS proxy tickets

 Support for arbitrary implementations of JAAS Configuration

» Support nested switching of users for SwitchUserFilter

2.2 Spring Security 3.1 namespace updates

Below you can find a summary of updates to the Spring Security 3.1 namespace.

» Added support for multiple <http> elements and support for determining which oneto use with http@pattern,
http@request-matcher, and http@security. Further information can be found in Namespace Configuration
section of the reference.

311 7

https://jira.springsource.org/secure/IssueNavigator!executeAdvanced.jspa?jqlQuery=project+%3D+SEC+AND+fixVersion+in+%2812315%2C+11892%2C+11634%2C+11633%2C+11632%2C+11174%29+order+by+priority%2C+type&runQuery=true&clear=true
https://jira.springsource.org/secure/IssueNavigator!executeAdvanced.jspa?jqlQuery=project+%3D+SEC+AND+fixVersion+in+%2812315%2C+11892%2C+11634%2C+11633%2C+11632%2C+11174%29+order+by+priority%2C+type&runQuery=true&clear=true
https://jira.springsource.org/secure/IssueNavigator!executeAdvanced.jspa?jqlQuery=project+%3D+SEC+AND+fixVersion+in+%2812315%2C+11892%2C+11634%2C+11633%2C+11632%2C+11174%29+order+by+priority%2C+type&runQuery=true&clear=true
https://jira.springsource.org/secure/IssueNavigator!executeAdvanced.jspa?jqlQuery=project+%3D+SEC+AND+fixVersion+in+%2812315%2C+11892%2C+11634%2C+11633%2C+11632%2C+11174%29+order+by+priority%2C+type&runQuery=true&clear=true

Spring Security

» Added stateless option for http@create-session

» Added support for http@authenti cation-manager-ref and global -method-security @authenti cation-manager-
ref.

» Added http@name
» Added http@request-matcher-ref and filter-chain@request-matcher-ref
e Added <debug>

e Added Support for setting the AuthenticationDetailsSource using the namespace.
See form-login@authentication-details-source-ref, openid-login@authentication-details-source-ref, http-
basi c@authentication-detail s-source-ref, and x509@authenti cation-detail s-source-ref.

» Added support for http/expression-handler. This allows <expression-handler> to be used for web access
expressions.

» Added authentication-manager @erase-credentials

* Added http-basic@entry-point-ref

» Added logout@del ete-cookies

* Added remember-me@authenti cation-success-handler-ref
» Added <metadata-source-ref>

* Added global-method-security @metadata-source-ref

» Added global-method-security @mode

* Added <attribute-exchange>

» Added remember-me@use-secure-cookie

» Added http@jaas-api-provision

* Added form-login@username-parameter and form-login@password-parameter

311 8

Spring Security

3.1 Introduction

Namespace configuration has been available since version 2.0 of the Spring framework. It allows you to
supplement thetraditional Spring beansapplication context syntax with elementsfrom additional XML schema.
Y ou can find more information in the Spring Reference Documentation [http://static.springsource.org/spring/
docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html]. A namespace element
can beused simply to allow amore conciseway of configuring anindividual bean or, more powerfully, to define
an alternative configuration syntax which more closely matches the problem domain and hides the underlying
complexity from the user. A simple element may conceal the fact that multiple beans and processing steps are
being added to the application context. For example, adding the following element from the security namespace
to an application context will start up an embedded LDAP server for testing use within the application:

<security: | dap-server />

This is much simpler than wiring up the equivalent Apache Directory Server beans. The most common
aternative configuration requirements are supported by attributeson thel dap- ser ver element and the user
isisolated from worrying about which beans they need to create and what the bean property names are. 1 use
of agood XML editor while editing the application context file should provide information on the attributes
and elements that are available. We would recommend that you try out the SpringSource Tool Suite [http:/
www.springsource.com/products/sts] as it has special features for working with standard Spring namespaces.

To start using the security namespace in your application context, you need to havethespri ng- securi ty-
confi g jar on your classpath. Then all you need to do is add the schema declaration to your application
context file:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: security="http://ww.springfranmework. org/ schema/ security"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schema/ security
http://ww. springframework. org/ schema/ security/spring-security-3.1. xsd">

</ beans>

In many of the examplesyou will see (and in the sample) applications, wewill often use"security" asthe default
namespace rather than "beans", which means we can omit the prefix on all the security hamespace elements,
making the content easier to read. Y ou may also want to do thisif you have your application context divided
up into separate files and have most of your security configuration in one of them. Y our security application
context file would then start like this

<beans: beans xm ns="http://ww. spri ngfranmework. org/ schema/ security"
xm ns: beans="http://ww. spri ngfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmalLocati on="http://ww. spri ngf ranmewor k. or g/ schena/ beans

Ly ou can find out more about the use of the | dap- server element in the chapter on LDAP.

311 9

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html
http://www.springsource.com/products/sts
http://www.springsource.com/products/sts
http://www.springsource.com/products/sts

Spring Security

http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://wwv springfranmewor k. org/ schema/ security
http://ww. springfranmework. org/ schema/ security/spring-security-3.1. xsd">

</ beans: beans>

Well assume this syntax is being used from now on in this chapter.

Design of the Namespace

The namespace is designed to capture the most common uses of the framework and provide a simplified and
concise syntax for enabling them within an application. Thedesignisbased around the large-scal e dependencies
within the framework, and can be divided up into the following areas:

» Web/HTTP Security - the most complex part. Sets up the filters and related service beans used to apply the
framework authentication mechanisms, to secure URLS, render login and error pages and much more.

» Business Object (Method) Security - options for securing the service layer.
 AuthenticationManager - handles authentication requests from other parts of the framework.

» AccessDecisionManager - provides access decisions for web and method security. A default one will be
registered, but you can aso choose to use a custom one, declared using normal Spring bean syntax.

« AuthenticationProviders - mechanisms against which the authentication manager authenticates users. The
namespace provides supportsfor several standard options and also a means of adding custom beans declared
using atraditional syntax.

» UserDetailsService - closdly related to authentication providers, but often also required by other beans.

Well see how to configure these in the following sections.

3.2 Getting Started with Security Namespace Configuration

In this section, we'll ook at how you can build up a namespace configuration to use some of the main features
of the framework. Let's assume you initially want to get up and running as quickly as possible and add
authentication support and access control to an existing web application, with afew test logins. Then we'll look
at how to change over to authenticating against a database or other security repository. In later sections we'll
introduce more advanced namespace configuration options.

web. xm Configuration

Thefirst thing you need to do is add the following filter declaration to your web. xmi file:

<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</[filter>

<filter-mappi ng>
<filter-nanme>springSecurityFilterChain</filter-nane>
<url-pattern>/*</url-pattern>

311 10

Spring Security

</filter-mappi ng>

This provides a hook into the Spring Security web infrastructure. Del egati ngFi |l t er Proxy is a
Spring Framework class which delegates to a filter implementation which is defined as a Spring bean in
your application context. In this case, the bean is named “ springSecurityFilterChain”, which is an internal
infrastructure bean created by the namespace to handle web security. Note that you should not use this bean
name yourself. Once you've added thisto your web. xni , you're ready to start editing your application context
file. Web security services are configured using the <ht t p> element.

A Minimal <ht t p> Configuration

All you need to enable web security to begin withis

<http auto-config="true' >
<intercept-url pattern="/**" access="ROLE USER' />
</ http>

Which says that we want all URLs within our application to be secured, requiring the role ROLE_USER
to access them. The <htt p> element is the parent for al web-related namespace functionality. The
<i nt ercept - url > element definesapat t er n which is matched against the URLs of incoming requests
using an ant path style syntaxz. You can aso use regular-expression matching as an aternative (see the
namespace appendix for more details). The access attribute defines the access requirements for requests
matching the given pattern. With the default configuration, this is typically a comma-separated list of roles,
one of which a user must have to be allowed to make the request. The prefix “ROLE " is a marker which
indicates that a simple comparison with the user's authorities should be made. In other words, a normal role-
based check should be used. Access-control in Spring Security is not limited to the use of simple roles (hence
the use of the prefix to differentiate between different types of security attributes). We'll see later how the
interpretation can vary®.

Note

You can use multiple <i nt er cept - ur | > elements to define different access requirements for
different sets of URLS, but they will be evaluated in the order listed and the first match will be used.
So you must put the most specific matches at the top. You can also add a et hod attribute to limit
the match to aparticular HTTP method (GET, POST, PUT etc.). If arequest matches multiple patterns,
the method-specific match will take precedence regardless of ordering.

To add some users, you can define a set of test data directly in the namespace:

<aut henti cat i on- manager >
<aut henti cati on- provi der >
<user - servi ce>
<user name="jim" password="jim spassword" authorities="ROLE USER, ROLE_ADM N' />

2See the section on Request Matching in the Web Application Infrastructure chapter for more details on how matches are actually
performed.

3Thei nterpretation of the commarseparated valuesintheaccess attribute depends on theimplementation of the AccessDecisionM anager
which isused. In Spring Security 3.0, the attribute can also be populated with an EL expression.

311 11

Spring Security

<user name="bob" password="bobspassword" authorities="ROLE USER" />
</ user-servi ce>
</ aut henti cati on- provi der >
</ aut henti cati on- manager >

If you are familiar with pre-namespace versions of the framework, you can probably already guess
roughly what's going on here. The<ht t p> element isresponsiblefor creating aFi | t er Chai nPr oxy
and the filter beans which it uses. Common problems like incorrect filter ordering are no longer an issue
asthefilter positions are predefined.

The<aut henti cat i on- provi der > element creates aDaoAut hent i cati onPr ovi der bean
and the <user - servi ce> element creates an | nMenor yDaol npl . All aut henti cati on-
provi der elementsmust bechildren of the<aut hent i cat i on- manager > element, which creates
aProvi der Manager and registers the authentication providers with it. Y ou can find more detailed
information on the beans that are created in the namespace appendix. It's worth cross-checking this if
you want to start understanding what the important classesin the framework are and how they are used,
particularly if you want to customise things later.

The configuration above defines two users, their passwords and their roles within the application (which
will be used for access contral). It is aso possible to load user information from a standard properties file
using the properti es attribute on user - servi ce. See the section on in-memory authentication for
more details on the file format. Using the <aut hent i cat i on- pr ovi der > element means that the user
information will be used by the authentication manager to process authentication requests. You can have
multiple <aut henti cat i on- provi der > elements to define different authentication sources and each
will be consulted in turn.

At this point you should be able to start up your application and you will be required to log in to proceed.
Try it out, or try experimenting with the “tutorial” sample application that comes with the project. The above
configuration actually adds quite a few services to the application because we have used the aut o- confi g
attribute. For example, form-based login processing is automatically enabled.

What does aut o- confi g Include?

Theaut o- conf i g attribute, as we have used it above, isjust a shorthand syntax for:

<ht t p>
<formlogin />
<http-basic />
<l ogout />

</ http>

These other elements are responsible for setting up form-login, basic authentication and logout handling
services respectively 4 They each have attributes which can be used to ater their behaviour. In anything other

“In versions prior to 3.0, this list aso included remember-me functionality. This could cause some confusing errors with some
configurationsand wasremoved in 3.0. In 3.0, the addition of an AnonynousAut hent i cati onFi | t er ispart of thedefault <ht t p>
configuration, so the <anonynous / > element is added regardless of whether aut o- conf i g isenabled.

311 12

Spring Security

than very basic scenarios, it is probably better to omit the aut o- conf i g attribute and configure what you
require explicitly in the interest of clarity.

Form and Basic Login Options

Y ou might be wondering where the login form came from when you were prompted to log in, since we made
no mention of any HTML filesor JSPs. In fact, since we didn't explicitly set a URL for the login page, Spring
Security generates one automatically, based on the features that are enabled and using standard values for the
URL which processes the submitted login, the default target URL the user will be sent to after loggin in and
so on. However, the namespace offers plenty of support to allow you to customize these options. For example,
if you want to supply your own login page, you could use:

<http auto-config="true' >
<intercept-url pattern="/login.jsp*" access="1S AUTHENTI CATED_ANONYMOUSLY"/ >
<intercept-url pattern="/**" access="ROLE_USER' />
<formlogin | ogin-page='/login.jsp' />

</ http>

Note that you can still use aut o- confi g. Thef orm | ogi n element just overrides the default settings.
Also note that we've added an extrai nt er cept - url element to say that any requests for the login page
should be available to anonymous users 5. Otherwise the reguest would be matched by the pattern / ** and
it wouldn't be possible to access the login page itself! Thisis a common configuration error and will result in
an infinite loop in the application. Spring Security will emit awarning in the log if your login page appears to
be secured. It isaso possible to have all requests matching a particular pattern bypass the security filter chain
completely, by defining a separate ht t p element for the pattern like this:

<http pattern="/css/**" security="none"/>
<http pattern="/login.jsp*" security="none"/>

<http auto-config="true' >
<intercept-url pattern="/**" access="ROLE USER' />
<formlogin | ogin-page='/login.jsp' />

</ http>

From Spring Security 3.1 it is now possible to use multiple ht t p elements to define separate security filter
chain configurationsfor different request patterns. If thepat t er n attributeisomitted froman ht t p element,
it matches all requests. Creating an unsecured pattern is a simple example of this syntax, where the pattern is
mapped to an empty filter chain ®. We'l look at this new syntax in more detail in the chapter on the Security
Filter Chain.

It's important to realise that these unsecured requests will be completely oblivious to any Spring
Security web-related configuration or additiona attributes such as r equi r es- channel , so you will

5See the chapter on anonymous authentication and also the AuthenticatedVoter class for more details on how the value
| S_AUTHENTI CATED_ANONYMOUSLY is processed.

5Theuseof multi ple<ht t p> elementsisanimportant feature, all owing the namespace to simultaneously support both stateful and statel ess
paths within the same application, for example. The previous syntax, using the attribute f i | t er s="none" onani ntercept - url
element isincompatible with this change and is no longer supported in 3.1.

311 13

Spring Security

not be able to access information on the current user or call secured methods during the request. Use
access='1S AUTHENTI CATED ANONYMOUSLY' as an aternative if you still want the security filter
chain to be applied.

If you want to use basic authentication instead of form login, then change the configuration to

<http auto-config="true' >
<intercept-url pattern="/**" access="ROLE USER' />
<http-basic />

</ http>

Basic authentication will then take precedence and will be used to prompt for alogin when a user attemptsto
access a protected resource. Form login is still available in this configuration if you wish to useit, for example
through alogin form embedded in another web page.

Setting a Default Post-Login Destination

If aform login isn't prompted by an attempt to access a protected resource, the def aul t -t ar get - ur |
option comes into play. Thisisthe URL the user will be taken to after successfully logging in, and defaults
to "/". You can also configure things so that the user always ends up at this page (regardless of whether the
login was "on-demand" or they explicitly choseto log in) by setting theal ways- use- def aul t -t ar get
attribute to "true”. Thisis useful if your application always requires that the user starts at a "home" page, for
example:

<http pattern="/login. htnt" security="none"/>
<ht t p>
<intercept-url pattern='/**' access=' ROLE_USER />
<forml ogin | ogi n-page='/login. htm default-target-url="/hone. htni
al ways-use-defaul t-target="true' />
</ http>

For even more control over the destination, you can use the aut henti cati on- success- handl er -

r ef attribute as an aternative to def aul t -t ar get - ur | . The referenced bean should be an instance of
Aut henti cati onSuccessHandl er. You'll find more on thisin the Core Filters chapter and also in the
namespace appendix, as well as information on how to customize the flow when authentication fails.

Logout Handling

Thel ogout element adds support for logging out by navigating to a particular URL. The default logout URL
is/j _spring_security_l ogout,butyoucansetittosomethingelseusingthel ogout - ur | attribute.
More information on other available attributes may be found in the namespace appendix.

Using other Authentication Providers

In practice you will need amore scalable source of user information than afew names added to the application
context file. Most likely you will want to store your user information in something like adatabase or an LDAP
server. LDAP namespace configuration is dealt with in the LDAP chapter, so we won't cover it here. If you

311 14

Spring Security

have acustom implementation of Spring Security'sUser Det ai | sSer vi ce, caled "myUserDetailsService"
in your application context, then you can authenticate against this using

<aut henti cati on- manager >
<aut henti cati on-provi der user-service-ref="nyUserDetail sService'/>
</ aut henti cati on- manager >

If you want to use a database, then you can use

<aut henti cati on- manager >
<aut henti cati on- provi der >
<j dbc- user-servi ce data-source-ref="securityDataSource"/>
</ aut henti cati on- provi der >
</ aut henti cati on- manager >

Where “securityDataSource” is the name of a Dat aSour ce bean in the application context, pointing at a
database containing the standard Spring Security user data tables. Alternatively, you could configure a Spring
Security JdbcDaol npl bean and point at that using theuser - ser vi ce-r ef attribute:

<aut henti cat i on- nanager >
<aut henti cati on- provi der user-service-ref="nyUserDetail sService'/>
</ aut henti cati on- manager >

<beans: bean i d="nyUser Det ai | sSer vi ce"
cl ass="org. springframework. security.core.userdetails.jdbc.JdbcDaol npl ">
<beans: property nane="dat aSource" ref="dataSource"/>
</ beans: bean>

Y ou can also use standard Aut hent i cat i onPr ovi der beansasfollows

<aut henti cati on- nanager >
<aut henti cati on-provi der ref="nyAuthenticationProvider'/>
</ aut henti cati on- manager >

wheremy Aut hent i cat i onPr ovi der isthe name of abeaninyour application context which implements
Aut henti cati onProvi der.Youcanusemultipleaut henti cati on- provi der elements, inwhich
casethe providerswill be queried in the order they are declared. See Section 3.6, “ The Authentication Manager
and the Namespace” for more on information on how the Spring Security Aut hent i cat i onManager is
configured using the namespace.

Adding a Password Encoder

Often your password datawill be encoded using a hashing algorithm. Thisis supported by the <passwor d-
encoder > element. With SHA encoded passwords, the original authentication provider configuration would
look likethis:

311 15

Spring Security

<aut henti cati on- manager >
<aut henti cati on- provi der >
<passwor d- encoder hash="sha"/>
<user-servi ce>
<user name="jim" password="d7e635leaal3189a5a3641bah846c8e8c69ba39f"
aut horiti es="ROLE_USER, ROLE_ADM N' />
<user nane="bob" password="4e7421b1b8765d8f 9406d87e7cc6aa784c4ab97f"
aut horiti es="ROLE_USER" />
</ user - servi ce>
</ aut henti cati on- provi der >
</ aut henti cati on- manager >

When using hashed passwords, it's also agood ideato use asalt value to protect against dictionary attacks and
Spring Security supports thistoo. Ideally you would want to use arandomly generated salt value for each user,
but you can use any property of theUser Det ai | s object whichisloaded by your User Det ai | sSer vi ce.
For example, to use the user name property, you would use

<passwor d- encoder hash="sha">
<sal t -source user-property="usernanme"/>
</ passwor d- encoder >

You can use a custom password encoder bean by using the r ef attribute of passwor d- encoder . This
should contain the name of a bean in the application context which is an instance of Spring Security's
Passwor dEncoder interface.

3.3 Advanced Web Features

Remember-Me Authentication

See the separate Remember-Me chapter for information on remember-me namespace configuration.

Adding HTTP/HTTPS Channel Security

If your application supportsboth HTTP and HTTPS, and you require that particular URLSs can only be accessed
over HTTPS, then this is directly supported using the r equi r es- channel attribute on <i nt er cept -
url >:

<ht t p>
<intercept-url pattern="/secure/**" access="ROLE USER' requires-channel ="https"/>
<intercept-url pattern="/**" access="ROLE_USER' requires-channel ="any"/>

<Ihttps
With this configuration in place, if auser attempts to access anything matching the "/secure/**" pattern using

HTTP, they will first be redirected to an HTTPS URL ! The available options are "http", "https" or "any".
Using the value "any" meansthat either HTTP or HTTPS can be used.

"For more details on how channel-processing is implemented, see the Javadoc for Channel Pr ocessi ngFi | t er and related classes.

311 16

Spring Security

If your application uses non-standard ports for HTTP and/or HTTPS, you can specify alist of port mappings
asfollows:

<ht t p>

<port - mappi ngs>
<port - mappi ng http="9080" https="9443"/>
</ port - mappi ngs>
</ http>

Note that in order to be truly secure, an application should not use HTTP at all or switch between HTTP
and HTTPS. It should start in HTTPS (with the user entering an HTTPS URL) and use a secure connection
throughout to avoid any possibility of man-in-the-middle attacks.

Session Management

Detecting Timeouts

Y ou can configure Spring Security to detect the submission of aninvalid session ID and redirect the user to an
appropriate URL. Thisis achieved through the sessi on- managenent element:

<ht t p>

.<.s;essi on- managenent invalid-session-url="/invalidSession. htm />

</ http>
Note that if you use this mechanism to detect session timeouts, it may falsely report an error if the user logs out
and then logs back in without closing the browser. This is because the session cookie is hot cleared when you
invalidate the session and will be resubmitted even if the user has logged out. Y ou may be able to explicitly
deletethe JISESSIONID cookie onlogging out, for example by using thefollowing syntax in thelogout handler:

<ht t p>
<l ogout del et e- cooki es="JSESSI ONI D" />
</ http>

Unfortunately this can't be guaranteed to work with every servlet container, so you will need to test it in your
environment®.

Concurrent Session Control

If you wish to place constraints on asingle user's ability to log in to your application, Spring Security supports
this out of the box with the following simple additions. First you need to add the following listener to your
web. xm fileto keep Spring Security updated about session lifecycle events:

8¢ you are running your application behind a proxy, you may also be able to remove the session cookie by configuring the proxy server.
For example, using Apache HTTPD's mod_headers, the following directive would delete the JSESSI ONI D cookie by expiring it in the
response to alogout request (assuming the application is deployed under the path/ t ut ori al):

<LocationMatch "/tutorial/j_spring_security_|ogout">
Header al ways set Set- Cookie "JSESSI ONl D=; Pat h=/tutori al ; Expi res=Thu, 01 Jan 1970 00: 00: 00 GMVI"
</ Locat i onMat ch>

311 17

Spring Security

<l i stener>
<li stener-class>
org. springframewor k. security.web. sessi on. Ht pSessi onEvent Publ i sher
</listener-class>
</listener>

Then add the following lines to your application context:

<htt p>

<sessi on- managenent >

</ sessi on- managenent >
</ http>

Thiswill prevent a user from logging in multiple times - a second login will cause the first to be invalidated.
Often you would prefer to prevent a second login, in which case you can use

<ht t p>

<sessi on- managenent >
<concurrency-control max-sessions="1" error-if-maxi mum exceeded="true" />
</ sessi on- managenent >
</ http>

The second login will then be reected. By “rejected”, we mean that the user will be sent to the
aut hentication-failure-url if form-based login is being used. If the second authentication takes
place through another non-interactive mechanism, such as “remember-me”, an “unauthorized” (402) error
will be sent to the client. If instead you want to use an error page, you can add the attribute sessi on-
aut hentication-error-url tothesessi on- ranagenent eement.

If you are using a customized authentication filter for form-based login, then you have to configure concurrent
session control support explicitly. More details can be found in the Session Management chapter.

Session Fixation Attack Protection

Session fixation [http://en.wikipedia.org/wiki/Session_fixation] attacks are a potential risk whereit ispossible
for a malicious attacker to create a session by accessing a site, then persuade another user to log in with the
same session (by sending them a link containing the session identifier as a parameter, for example). Spring
Security protects against this automatically by creating a new session when a user logsin. If you don't require
thisprotection, or it conflictswith some other requirement, you can control the behaviour usingthesessi on-
fixation-protection attribute on <sessi on- managemnent >, which has three options

e m grateSessi on - creates a new session and copies the existing session attributes to the new session.
Thisisthe default.

* none - Don't do anything. The original session will be retained.

* newSessi on - Create anew "clean" session, without copying the existing session data.
See the Session Management chapter for additional information.

311 18

http://en.wikipedia.org/wiki/Session_fixation
http://en.wikipedia.org/wiki/Session_fixation

Spring Security

OpenlID Support

The namespace supports OpenlD [http://openid.net/] login either instead of, or in addition to normal form-
based login, with a simple change:

<htt p>
<intercept-url pattern="/**" access="ROLE _USER' />
<openi d-1 ogin />

</ http>

You should then register yourself with an OpenID provider (such as myopenid.com), and add the user
information to your in-memory <user - servi ce>:

<user name="http://jim.hendrix.nyopenid.com" authorities="ROLE_USER"' />

You should be able to login using the nyopeni d. comsite to authenticate. It is also possible to select a
specific User Det ai | sSer vi ce bean for use OpenID by setting the user - ser vi ce-r ef attribute on
theopeni d- | ogi n element. Seethe previous section on authentication providersfor moreinformation. Note
that we have omitted the password attribute from the above user configuration, since this set of user datais
only being used to load the authorities for the user. A random password will be generate internally, preventing
you from accidentally using this user data as an authentication source el sewhere in your configuration.

Attribute Exchange

Support for OpenlID attribute exchange [http://openid.net/specs/openid-attribute-exchange-1 0.html]. As an
example, the following configuration would attempt to retrieve the email and full name from the OpenlD
provider, for use by the application:

<openi d- | ogi n>

<attri but e- exchange>
<openi d-attri bute name="email" type="http://axschena.org/contact/email" required="true"/>
<openi d-attri bute name="nanme" type="http://axschenma. or g/ nanmePer son"/>

</ attri but e- exchange>

</ openi d- | ogi n>

The “type” of each OpenlD attribute is a URI, determined by a particular schema, in this case http://
axschema.org/. If an attribute must be retrieved for successful authentication, ther equi r ed attribute can be
set. The exact schema and attributes supported will depend on your OpenlD provider. The attribute values are
returned as part of the authentication process and can be accessed afterwards using the following code:

Openl DAut henti cati onToken token =
(Openl DAut hent i cati onToken) Secur it yCont ext Hol der . get Cont ext (). get Aut henti cati on()
Li st<Openl DAttri bute> attributes = token.getAttributes();

The Openl DAt t ri but e contains the attribute type and the retrieved value (or values in the case of multi-
valued attributes). We'll see more about how the Secur i t yCont ext Hol der classisused whenwelook at
core Spring Security componentsin the technical overview chapter. Multipl e attribute exchange configurations
are also be supported, if you wish to use multiple identity providers. Y ou can supply multipleat t ri but e-

exchange elements, usingani denti fi er - nat cher attribute on each. Thiscontainsaregular expression
which will be matched against the Openl D identifier supplied by the user. See the Openl D sample application

311 19

http://openid.net/
http://openid.net/
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://axschema.org/
http://axschema.org/

Spring Security

in the codebase for an example configuration, providing different attribute lists for the Google, Y ahoo and
MyOpenID providers.

Adding in Your Own Filters

If you've used Spring Security before, you'll know that the framework maintains a chain of filters in
order to apply its services. You may want to add your own filters to the stack at particular locations or
use a Spring Security filter for which there isn't currently a namespace configuration option (CAS, for
example). Or you might want to use a customized version of a standard namespace filter, such as the
User namePasswor dAut henti cati onFi | t er which is created by the <f or m | ogi n> element,
taking advantage of some of the extra configuration options which are available by using the bean explicitly.
How can you do this with namespace configuration, since the filter chain is not directly exposed?

The order of the filtersis always strictly enforced when using the namespace. When the application context
is being created, the filter beans are sorted by the namespace handling code and the standard Spring Security
filters each have an alias in the namespace and a well-known position.

Note

In previous versions, the sorting took place after the filter instances had been created, during post-
processing of the application context. In version 3.0+ the sorting is now done at the bean metadata
level, before the classes have been instantiated. This hasimplicationsfor how you add your own filters
to the stack as the entire filter list must be known during the parsing of the <ht t p> element, so the
syntax has changed dightly in 3.0.
Thefilters, aliases and namespace el ementg/attributeswhich create thefiltersare shownin Table 3.1, “ Standard
Filter Aliases and Ordering”. Thefilters are listed in the order in which they occur in the filter chain.

Table 3.1. Sandard Filter Aliases and Ordering

Alias Filter Class Namespace
Element or
Attribute

CHANNEL_FILTER Channel Processi ngFil ter ht t p/
i ntercept -
url @equires-
channel

CONCURRENT_SESSION_FILTER Concurrent Sessi onFil ter sessi on-
managenent /
concurrency-

control
SECURITY_CONTEXT_FILTER Secur it yCont ext Per si st enceFi | hét p
LOGOUT_FILTER Logout Fil ter htt p/ | ogout
X509 FILTER X509Aut henticationFilter htt p/ x509

311 20

Spring Security

Alias Filter Class Namespace
Element or
Attribute
PRE AUTH_FILTER Astract PreAut henti cat edProces®N/AgFi | ter
Subclasses
CAS FILTER CasAut henticationFilter N/A
FORM_LOGIN_FILTER User nanePasswor dAut hent i cat i ot Ipt €ior m
| ogin
BASIC AUTH_FILTER Basi cAut henticationFilter http/ http-
basi c

SERVLET _API_SUPPORT_FILTER Securi t yCont ext Hol der Awar eReqhestoFi | t er
@ervl et -api -
provi si on

JAAS API_SUPPORT_FILTER JaasApi I ntegrationFilter htt p/ @ aas-
api - provi si on

REMEMBER_ME _FILTER Renenber MeAut henti cati onFil tehtt p/
r emenber - e

ANONYMOUS FILTER AnonynousAut henti cati onFilter http/
anonynous

SESSION_ MANAGEMENT _FILTER Sessi onManagenent Fi l ter sessi on-
managenent

EXCEPTION_TRANSLATION_FILTER ExceptionTransl ationFilter http

FILTER_SECURITY_INTERCEPTOR Fil ter Securityl nterceptor http

SWITCH_USER FILTER SwitchUserFilter N/A

You can add your own filter to the stack, using the cust omt fi | t er element and one of these names to
specify the position your filter should appear at:

<htt p>
<customfilter position="FORM LOG N _FILTER"' ref="nyFilter" />
</ http>

<beans: bean id="nyFilter" class="com nyconpany. M/Speci al Aut henticationFilter"/>

You canasousetheaf t er or bef or e attributesif you want your filter to be inserted before or after another
filter in the stack. The names "FIRST" and "LAST" can be used with the posi t i on attribute to indicate that
you want your filter to appear before or after the entire stack, respectively.

311 21

Spring Security

Avoiding filter position conflicts

If you are inserting a custom filter which may occupy the same position as one of the standard
filters created by the namespace then it's important that you don't include the namespace versions
by mistake. Avoid using the aut o- conf i g attribute and remove any elements which create filters
whose functionality you want to replace.

Note that you can't replace filters which are created by the use of the <http> element
itself - SecurityCont ext Persi stenceFilter, ExceptionTransl ationFilter or
FilterSecuritylnterceptor. Some other filters are added by default, but you can disable
them. An AnonynousAut hent i cati onFi | t er isadded by default and unlessyou have session-
fixation protection disabled, aSessi onManagenent Fi | t er will also be added to thefilter chain.

If you're replacing anamespace filter which requires an authentication entry point (i.e. where the authentication
process is triggered by an attempt by an unauthenticated user to access to a secured resource), you will need
to add a custom entry point bean too.

Setting a Custom Aut hent i cati onEnt r yPoi nt

If you aren't using form login, OpenlD or basic authentication through the namespace, you may want to define
an authentication filter and entry point using a traditional bean syntax and link them into the namespace, as
we'vejust seen. The corresponding Aut hent i cat i onEnt r yPoi nt canbeset usingtheent ry- poi nt -
r ef attribute on the <ht t p> element.

The CAS sample application is a good example of the use of custom beans with the namespace, including
this syntax. If you aren't familiar with authentication entry points, they are discussed in the technical overview
chapter.

3.4 Method Security

From version 2.0 onwards Spring Security has improved support substantially for adding security to your
service layer methods. It provides support for JSR-250 annotation security aswell as the framework's origina
@secur ed annotation. From 3.0 you can also make use of new expression-based annotations. Y ou can apply
security to asingle bean, using thei nt er cept - met hods element to decorate the bean declaration, or you
can secure multiple beans across the entire service layer using the AspectJ style pointcuts.

The <gl obal - met hod- securit y> Element

This element is used to enable annotation-based security in your application (by setting the appropriate
attributes on the element), and al so to group together security pointcut declarationswhich will be applied across
your entire application context. Y ou should only declareone<gl obal - net hod- securi t y>element. The
following declaration would enable support for Spring Security's @ecur ed:

<gl obal - met hod- security secured-annotations="enabl ed" />

Adding an annotation to a method (on an class or interface) would then limit the access to that method
accordingly. Spring Security's native annotation support defines a set of attributes for the method. These will
be passed to the AccessDeci si onManager for it to make the actual decision:

311 22

Spring Security

public interface BankService {

@secur ed("1 S_AUTHENTI CATED ANONYMOUSLY")
publ i c Account readAccount(Long id);

@secur ed("1 S_AUTHENTI CATED ANONYMOUSLY")
public Account[] findAccounts();

@ecur ed(" ROLE_TELLER")
publ i c Account post (Account account, double anount);

}

Support for JSR-250 annotations can be enabled using

<gl obal - net hod- security jsr250-annotati ons="enabl ed" />

These are standards-based and allow simple role-based constraints to be applied but do not have the power

Spring Security's native annotations. To use the new expression-based syntax, you would use

<gl obal - met hod- security pre-post-annotations="enabl ed" />

and the equivalent Java code would be

public interface BankService {

@Pr eAut hori ze("i sAnonynous() ")
publ i c Account readAccount (Long id);

@Pr eAut hori ze("i sAnonynous() ")
public Account[] findAccounts();

@r eAut hori ze("hasAut hority(' ROLE_TELLER)")
publ i ¢ Account post (Account account, double anopunt);

Expression-based annotations are a good choice if you need to define simple rules that go beyond checking

the role names against the user'slist of authorities.

Note

The annotated methods will only be secured for instances which are defined as Spring beans (in the
same application context in which method-security is enabled). If you want to secure instances which
are not created by Spring (using the new operator, for example) then you need to use AspectJ.

Note

Y ou can enable more than one type of annotation in the same application, but only one type should be
used for any interface or class as the behaviour will not be well-defined otherwise. If two annotations
are found which apply to a particular method, then only one of them will be applied.

311

23

Spring Security

Adding Security Pointcuts using pr ot ect - poi nt cut

The use of pr ot ect - poi nt cut isparticularly powerful, as it allows you to apply security to many beans
with only asimple declaration. Consider the following example:

<gl obal - met hod- security>
<prot ect - poi ntcut expressi on="execution(* com nyconpany.*Service.*(..))"
access="ROLE_USER'/ >
</ gl obal - met hod- security>

This will protect all methods on beans declared in the application context whose classes are in the
com myconpany package and whose class names end in "Service'. Only users with the ROLE_USER role
will be able to invoke these methods. As with URL matching, the most specific matches must come first in
the list of pointcuts, as the first matching expression will be used. Security annotations take precedence over
pointcuts.

3.5 The Default AccessDecisionManager

This section assumes you have some knowledge of the underlying architecture for access-control within Spring
Security. If you don't you can skip it and come back to it later, asthis section is only really relevant for people
who need to do some customization in order to use more than simple role-based security.

When you use anamespace configuration, adefault instance of AccessDeci si onManager isautomatically
registered for you and will be used for making access decisions for method invocations and web URL access,
based on the access attributes you specify inyour i nt er cept - ur| andpr ot ect - poi nt cut declarations
(and in annotations if you are using annotation secured methods).

The default strategy istousean Af fi rnat i veBased AccessDeci si onManager with aRol eVot er
and an Aut hent i cat edVot er . You can find out more about these in the chapter on authorization.

Customizing the AccessDecisionManager

If you need to use a more complicated access control strategy then it is easy to set an aternative for both
method and web security.

For method security, you do thisby settingtheaccess- deci si on- manager - r ef attributeongl obal -
met hod-security tothei d of the appropriate AccessDeci si onManager bean in the application
context:

<gl obal - met hod- security access-deci si on- manager - r ef =" nmyAccessDeci si onManager Bean" >

</ gl obal - met hod- security>

The syntax for web security is the same, but onthe ht t p element:

<http access-deci si on- manager - r ef =" myAccessDeci si onManager Bean" >

311 24

Spring Security

</ http>

3.6 The Authentication Manager and the Namespace

The man interface which provides authentication services in Spring Security is the
Aut hent i cat i onManager . Thisis usually an instance of Spring Security's Pr ovi der Manager class,
which you may already be familiar with if you've used the framework before. If not, it will be covered later,
in the technical overview chapter. The bean instance is registered using the aut hent i cat i on- manager
namespace element. You can't use a custom Aut hent i cat i onManager if you are using either HTTP or
method security through the namespace, but this should not be a problem as you have full control over the
Aut henti cat i onProvi der sthat are used.

You may want to register additional Aut hent i cati onProvi der beans with the Pr ovi der Manager
and you can do thisusing the <aut hent i cat i on- pr ovi der > element with ther ef attribute, where the
value of the attribute is the name of the provider bean you want to add. For example:

<aut henti cati on- manager >
<aut henti cati on-provi der ref="casAuthenticationProvider"/>
</ aut henti cati on- manager >

<bean i d="casAut henti cati onProvi der"
cl ass="org. springframework. security.cas. aut henti cati on. CasAut henti cati onProvi der">

</ bean>
Another common requirement is that another bean in the context may require a reference to the

Aut hent i cati onManager . You can easily register an alias for the Aut hent i cati onManager and
use this name elsewhere in your application context.

<security:authentication-manager alias="authenticati onManager">
</ security:aut henticati on- manager >
<bean i d="cust om zedFor niLogi nFilter"

cl ass="com sonmeconpany. security. web. Cust onfornLogi nFi |l ter">

<property nane="aut henti cati onManager" ref="aut henti cati onManager"/>

</ bean>

311 25

Spring Security

There are severa sample web applications that are available with the project. To avoid an overly large
download, only the "tutorial" and "contacts' samples are included in the distribution zip file. The others can
be built directly from the source which you can obtain as described in the introduction. It's easy to build the
project yourself and there's more information on the project web site at http://www.springsource.org/security/
[http://www.springsource.org/security/]. All paths referred to in this chapter are relative to the project source
directory.

4.1 Tutorial Sample

The tutorial sample is a nice basic example to get you started. It uses simple namespace configuration
throughout. The compiled applicationisincluded inthe distribution zip file, ready to be deployed into your web
container (spring-security-sanples-tutorial-3.1.x.war). The form-based authentication
mechanism is used in combination with the commonly-used remember-me authentication provider to
automatically remember the login using cookies.

Werecommend you start with the tutorial sample, asthe XML isminimal and easy to follow. Most importantly,
you can easily add this one XML file (and its corresponding web. xmi entries) to your existing application.
Only when this basic integration is achieved do we suggest you attempt adding in method authorization or
domain object security.

4.2 Contacts

The Contacts Sampleis an advanced examplein that it illustrates the more powerful features of domain object
access control lists (ACLSs) in addition to basic application security. The application provides an interface with
which the users are able to administer a simple database of contacts (the domain objects).

To deploy, smply copy the WAR file from Spring Security distribution into your container’s webapps
directory. The war should be called spri ng-security-sanpl es-contacts-3.1.x.war (the
appended version number will vary depending on what release you are using).

After starting your container, check the application can load. Visit http://1 ocal host: 8080/
cont act s (or whichever URL is appropriate for your web container and the WAR you deployed).

Next, click "Debug”. You will be prompted to authenticate, and a series of usernames and passwords are
suggested on that page. Simply authenticate with any of these and view the resulting page. It should contain
a success message similar to the following:

Security Debug Information

Authentication object is of type:
org.springframework.security.authenti cation.UsernamePasswordA uthenti cationToken

Authentication object as a String:

311 26

http://www.springsource.org/security/
http://www.springsource.org/security/

Spring Security

org.springframework.security.authenticati on.UsernamePasswordA uthenti cationT oken@1f127853:
Principal: org.springframework.security.core.userdetails.User@b07ed00: Username: rod; \
Password: [PROTECTED]; Enabled: true; AccountNonExpired: true;

credentialsSNonExpired: true; AccountNonL ocked: true; \

Granted Authorities: ROLE_ SUPERVISOR, ROLE_USER; \

Password: [PROTECTED]; Authenticated: true; \

Details: org.springframework.security.web.authenti cation.WebA uthenti cationDetail s@0: \
RemotelpAddress: 127.0.0.1; Sessionld: 8fkp8t83ohar; \

Granted Authorities: ROLE_SUPERVISOR, ROLE_USER

Authentication object holds the following granted authorities:

ROLE_SUPERVISOR (getAuthority(): ROLE_SUPERVISOR)
ROLE_USER (getAuthority(): ROLE_USER)

Success! Y our web filters appear to be properly configured!

Once you successfully receive the above message, return to the sample application's home page and click
"Manage". Y ou can then try out the application. Notice that only the contacts available to the currently logged
on user are displayed, and only users with ROLE_SUPERVI SOR are granted access to delete their contacts.
Behind the scenes, the Met hodSecuri t yl nt er cept or issecuring the business objects.

The application allows you to modify the access control lists associated with different contacts. Be sureto give
thisatry and understand how it works by reviewing the application context XML files.

4.3 LDAP Sample

The LDAP sample application provides a basic configuration and sets up both a namespace configuration and
an equivalent configuration using traditional beans, both in the same application context file. This meansthere
are actually two identical authentication providers configured in this application.

4.4 OpenlID Sample

The Openl D sample demonstrates how to use the namespace to configure OpenlD and how to set up attribute
exchange [http://openid.net/specs/openid-attribute-exchange-1_0.html] configurations for Google, Y ahoo and
MyOpenlID identity providers (you can experiment with adding others if you wish). It uses the JQuery-based
openid-sel ector [http://code.google.com/p/openid-sel ector/] project to provide auser-friendly login page which
allows the user to easily select a provider, rather than typing in the full OpenID identifier.

The application differs from normal authentication scenarios in that it allows any user to access the site
(provided their Openl D authentication is successful). Thefirst time you login, you will get a*“Welcome [your
name]"” message. If you logout and log back in (with the same OpenlD identity) then this should change to
“Welcome Back”. This is achieved by using a custom User Det ai | sSer vi ce which assigns a standard
role to any user and stores the identitiesinternally in amap. Obviously areal application would use a database
instead. Have a look at the source form more information. This class also takes into account the fact that

311 27

http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://code.google.com/p/openid-selector/
http://code.google.com/p/openid-selector/

Spring Security

different attributes may be returned from different providers and builds the name with which it addresses the
user accordingly.

4.5 CAS Sample

The CAS sample requiresthat you run both aCAS server and CASclient. It isn't included in the distribution so
you should check out the project code as described in the introduction. Y ou'll find the relevant files under the
sanpl e/ cas directory. There'salso aReadn®. t xt filein there which explains how to run both the server
and the client directly from the source tree, complete with SSL support.

4.6 JAAS Sample

The JAAS sample is very simple example of how to use a JAAS LoginModule with Spring Security. The
provided LoginModule will successfully authenticate a user if the username equals the password otherwise a
LoginException is thrown. The AuthorityGranter used in this example always grants the role ROLE_USER.
The sample application also demonstrates how to run as the JAAS Subject returned by the LoginModule by
Setting jaas-api-provision equal to "true".

4.7 Pre-Authentication Sample

This sample application demonstrates how to wire up beans from the pre-authentication framework to make
use of login information from a J2EE container. The user name and roles are those setup by the container.

Thecodeisinsanpl es/ pr eaut h.

311 28

Spring Security

5.1 Issue Tracking

Spring Security uses JJRA to manage bug reports and enhancement requests. If you find a bug, please log a
report using JJRA. Do not log it on the support forum, mailing list or by emailing the project's devel opers. Such
approaches are ad-hoc and we prefer to manage bugs using a more formal process.

If possible, in your issue report please provide a JUnit test that demonstrates any incorrect behaviour. Or,
better yet, provide a patch that corrects the issue. Similarly, enhancements are welcome to be logged in the
issue tracker, although we only accept enhancement requests if you include corresponding unit tests. Thisis
necessary to ensure project test coverage is adegquately maintained.

Y ou can access the issue tracker at http://jira.springsource.org/browse/SEC.

5.2 Becoming Involved

We welcome your involvement in the Spring Security project. There are many ways of contributing, including
reading the forum and responding to questions from other people, writing new code, improving existing code,
assisting with documentation, developing samples or tutorials, or simply making suggestions.

5.3 Further Information

Questions and comments on Spring Security are welcome. Y ou can use the Spring Community Forum web site
ahttp://forum springsource. org to discuss Spring Security with other users of the framework.
Remember to use JIRA for bug reports, as explained above.

311 29

http://jira.springsource.org/browse/SEC
http://forum.springsource.org

Part Il. Architecture and Implementation

Onceyou arefamiliar with setting up and running some namespace-configuration based applications, you may
wish to devel op more of an understanding of how the framework actually works behind the namespace facade.
Like most software, Spring Security has certain central interfaces, classes and conceptual abstractions that are
commonly used throughout the framework. In this part of the reference guide we will look at some of these
and see how they work together to support authentication and access-control within Spring Security.

Spring Security

6.1 Runtime Environment

Spring Security 3.0 requires a Java 5.0 Runtime Environment or higher. As Spring Security aims to operate
in a self-contained manner, there is no need to place any specia configuration files into your Java Runtime
Environment. In particular, there is no need to configure a special Java Authentication and Authorization
Service (JAAS) policy file or place Spring Security into common classpath locations.

Similarly, if you are using an EJB Container or Servlet Container there is no need to put any specia
configuration files anywhere, nor include Spring Security in aserver classoader. All the required files will be
contained within your application.

This design offers maximum deployment time flexibility, as you can simply copy your target artifact (be it a
JAR, WAR or EAR) from one system to another and it will immediately work.

6.2 Core Components

In Spring Security 3.0, the contents of the spri ng-security-core jar were stripped down to the
bare minimum. It no longer contains any code related to web-application security, LDAP or namespace
configuration. We'll takealook here at some of the Javatypesthat you'll find inthe core module. They represent
the building blocks of the the framework, so if you ever need to go beyond a simple namespace configuration
then it's important that you understand what they are, even if you don't actually need to interact with them
directly.

SecurityContextHolder, SecurityContext and Authentication Objects

The most fundamental object is Secur i t yCont ext Hol der . Thisiswhere we store details of the present
security context of the application, which includes details of the principal currently using the application. By
default the Secur i t yCont ext Hol der usesaThr eadLocal to storethese details, which meansthat the
security context is always available to methods in the same thread of execution, even if the security context is
not explicitly passed around as an argument to those methods. UsingaThr eadLocal inthisway isquite safe
if careistaken to clear the thread after the present principal's request is processed. Of course, Spring Security
takes care of thisfor you automatically so there is no need to worry about it.

Some applications aren't entirely suitable for using a Thr eadLocal , because of the specific way they
work with threads. For example, a Swing client might want al threads in a Java Virtua Machine
to use the same security context. Securi t yCont ext Hol der can be configured with a strategy on
startup to specify how you would like the context to be stored. For a standalone application you would
use the Securi t yCont ext Hol der . MODE_GLOBAL strategy. Other applications might want to have
threads spawned by the secure thread also assume the same security identity. This is achieved by using
Securi t yCont ext Hol der . MODE | NHERI TABLETHREADL OCAL. Y ou can change the mode from the
default Securi t yCont ext Hol der . MODE_THREADLOCAL in two ways. The first is to set a system
property, the second isto call astatic method on Secur i t yCont ext Hol der . Most applicationswon't need
to change from the default, but if you do, take alook at the JavaDocs for Secur i t yCont ext Hol der to
learn more.

311 31

Spring Security

Obtaining information about the current user

Inside the Securi t yCont ext Hol der we store details of the principal currently interacting with the
application. Spring Security uses an Aut henti cati on object to represent this information. You won't
normally need to create an Aut hent i cat i on object yourself, but it isfairly common for usersto query the
Aut hent i cati on object. You can use the following code block - from anywhere in your application - to
obtain the name of the currently authenticated user, for example:

bj ect principal = SecurityContextHol der. get Cont ext (). getAuthentication().getPrincipal();

if (principal instanceof UserDetails) {

String username = ((UserDetail s)principal).getUsernane();
} else {

String usernanme = principal.toString();

}

The object returned by the call to get Cont ext () isaninstance of the Securi t yCont ext interface. This
is the object that is kept in thread-local storage. As welll see below, most authentication mechanisms withing
Spring Security return an instance of User Det ai | s asthe principal.

The UserDetailsService

Another item to note from the above code fragment is that you can obtain a principal from the
Aut henti cati on object. The principal is just an Cbj ect. Most of the time this can be cast into a
User Det ai | s object. User Det ai | s is a core interface in Spring Security. It represents a principal,
but in an extensible and application-specific way. Think of User Det ai | s as the adapter between your
own user database and what Spring Security needs inside the Securi t yCont ext Hol der. Being a
representation of something from your own user database, quite often you will cast the User Det ai | s tothe
original object that your application provided, so you can call business-specific methods (like get Ermai | (),
get Enpl oyeeNunber () and so on).

By now you're probably wondering, sowhendo | provideaUser Det ai | s object?How do | do that?| thought
you said this thing was declarative and | didn't need to write any Java code - what gives? The short answer is
that thereis a specia interface called User Det ai | sSer vi ce. The only method on this interface accepts a
St r i ng-based username argument and returnsaUser Det ai | s:

UserDetail s | oadUser ByUser name(Stri ng usernane) throws User nameNot FoundExcepti on;

Thisis the most common approach to loading information for a user within Spring Security and you will see
it used throughout the framework whenever information on a user is required.

On successful authentication, User Det ai | s is used to build the Aut henti cati on object that is
stored in the Securit yCont ext Hol der (more on this below). The good news is that we provide
a number of UserDetail sServi ce implementations, including one that uses an in-memory map
(I nMenor yDaol npl) and another that uses JDBC (JdbcDaol npl). Most users tend to write their own,
though, with their implementations often simply sitting on top of an existing Data Access Object (DAO) that
representstheir employees, customers, or other users of the application. Remember the advantage that whatever
your User Det ai | sSer vi ce returnscan awaysbeobtained fromthe Secur i t yCont ext Hol der using
the above code fragment.

311 32

Spring Security

Note

There is often some confusion about User Det ai | sSer vi ce. Itispurely aDAO for user dataand
performs no other function other than to supply that data to other components within the framework.
In particular, it does not authenticate the user, which isdone by the Aut hent i cat i onManager . In
many cases it makes more sense to implement Aut hent i cat i onPr ovi der directly if you require
a custom authentication process.

GrantedAuthority

Besides the principal, another important method provided by Aut hent i cati onisget Aut horiti es().
This method provides an array of Grant edAut hority objectss A Grant edAut hority is, not
surprisingly, an authority that is granted to the principal. Such authorities are usually “roles’, such as
RCLE_ADM NI STRATOR or ROLE_HR_SUPERVI SOR. These roles are later on configured for web
authorization, method authorizati on and domain object authorization. Other parts of Spring Security are capable
of interpreting these authorities, and expect them to be present. G- ant edAut hori ty objects are usually
loaded by the User Det ai | sSer vi ce.

Usualy the Gr ant edAut hori ty objects are application-wide permissions. They are not specific to a
given domain object. Thus, you wouldn't likely have a G- ant edAut hori ty to represent a permission to
Enpl oyee object number 54, because if there are thousands of such authorities you would quickly run out
of memory (or, at the very least, cause the application to take a long time to authenticate a user). Of course,
Spring Security is expressly designed to handle this common requirement, but you'd instead use the project's
domain object security capabilities for this purpose.

Summary

Just to recap, the major building blocks of Spring Security that we've seen so far are:

» SecurityCont ext Hol der, to provide accessto the Secur i t yCont ext .

e SecurityCont ext,toholdthe Aut hent i cat i on and possibly request-specific security information.

e Aut henti cati on, to represent the principal in a Spring Security-specific manner.

e Grant edAut hori ty, toreflect the application-wide permissions granted to a principal.

* UserDetails, to provide the necessary information to build an Authentication object from your
application's DAOs or other source source of security data.

» UserDet ail sServi ce, to create a User Det ai | s when passed in a St ri ng-based username (or
certificate ID or the like).

Now that you've gained an understanding of these repeatedly-used components, let's take a closer ook at the
process of authentication.

6.3 Authentication

Spring Security can participate in many different authentication environments. While we recommend people
use Spring Security for authentication and not integrate with existing Container Managed Authentication, it is
neverthel ess supported - as is integrating with your own proprietary authentication system.

311 33

Spring Security

What is authentication in Spring Security?

Let's consider a standard authentication scenario that everyone is familiar with.

1. A user isprompted to log in with a username and password.

2. The system (successfully) verifiesthat the password is correct for the username.
3. The context information for that user is obtained (their list of roles and so on).
4. A security context is established for the user

5. Theuser proceeds, potentially to perform some operation which is potentially protected by an access control
mechanism which checks the required permissions for the operation against the current security context
information.

The first three items constitute the authentication process so we'll take alook at how these take place within
Spring Security.

1. The wusername and password are obtaned and combined into an instance of
User nanePasswor dAut henti cat i onToken (an instance of the Aut henti cati on interface,
which we saw earlier).

2. Thetoken is passed to an instance of Aut hent i cati onManager for validation.

3. The Aut hent i cat i onManager returns afully populated Aut hent i cat i on instance on successful
authentication.

4. The security context is established by calling
Securi t yCont ext Hol der. get Cont ext (). set Authentication(...), passnhg in the
returned authentication object.

From that point on, the user is considered to be authenticated. Let's ook at some code as an example.

i mport org.springframework. security.authentication.*;

i mport org.springframework. security.core.*;

i mport org.springframework. security.core.authority.SinpleG antedAuthority;
i mport org.springfranmework. security.core.context.SecurityContextHol der;

public class AuthenticationExanple {
private static Authenticati onManager am = new Sanpl eAut henti cati onManager () ;

public static void main(String[] args) throws Exception {
Buf f eredReader in = new Buf f eredReader (new | nput St r eanReader (Systemin));

whi l e(true) {

Systemout.println("Please enter your usernane:");

String nanme = in.readLine();

System out. println("Pl ease enter your password:");

String password = in.readLine();

try {
Aut henti cati on request = new User nanePasswor dAut henti cati onToken(name, password);
Aut hentication result = am aut henti cate(request);
Securi t yCont ext Hol der . get Cont ext (). set Aut henti cation(result);
br eak;

} catch(Authenticati onException e) {

311 34

Spring Security

Systemout. println("Authentication failed: " + e.getMessage());

}
}

System out. println("Successfully authenticated. Security context contains: " +
Securi t yCont ext Hol der . get Cont ext (). get Aut henti cation());
}
}

cl ass Sanpl eAut henti cati onManager i npl ements Aut henti cati onManager {
static final List<GantedAuthority> AUTHORI TIES = new ArrayLi st <G ant edAut hority>();

static {
AUTHORI Tl ES. add(new Si npl eG ant edAut hority("ROLE USER"));

}

public Authentication authenticate(Authentication auth) throws Authenticati onException {
if (auth.getNane().equal s(auth.getCredentials())) {
return new User nanePasswor dAut henti cati onToken(aut h. get Nane(),
aut h. get Credenti al s(), AUTHORI Tl ES);

}

t hrow new BadCr edenti al sExcepti on("Bad Credential s");

}
}

Here we have written a little program that asks the user to enter a username and password and performs the
above sequence. The Aut hent i cat i onManager whichwe'veimplemented here will authenticate any user
whose username and password are the same. It assigns a single role to every user. The output from the above
will be something like:

Pl ease enter your usernane:

bob

Pl ease enter your password:

passwor d

Aut hentication failed: Bad Credentials

Pl ease enter your usernane:

bob

Pl ease enter your password:

bob

Successful ly authenticated. Security context contains: \
org. springframewor k. security. aut henti cati on. User namePasswor dAut henti cati onToken@41d0230: \
Princi pal : bob; Password: [PROTECTED]; \
Aut henticated: true; Details: null; \
Granted Authorities: ROLE_USER

Note that you don't normally need to write any code like this. The process will normally occur internally, in
aweb authentication filter for example. We've just included the code here to show that the question of what
actually constitutes authentication in Spring Security has quite a simple answer. A user is authenticated when
the Securi t yCont ext Hol der containsafully populated Aut hent i cat i on object.

Setting the SecurityContextHolder Contents Directly

In fact, Spring Security doesn't mind how you put the Authentication object
inside the SecurityContextHolder. The only critica requirement is that the
Securi t yCont ext Hol der contains an Aut henti cati on which represents a principal before the
Abst ract Securi tyl nt er cept or (whichwe'll see more about later) needsto authorize auser operation.

311 35

Spring Security

You can (and many users do) write their own filters or MV C controllers to provide interoperability with
authentication systems that are not based on Spring Security. For example, you might be using Container-
Managed A uthentication which makes the current user available from a ThreadL ocal or INDI location. Or you
might work for acompany that has alegacy proprietary authentication system, which isacorporate "standard"
over which you have little control. In situations like this it's quite easy to get Spring Security to work, and
still provide authorization capabilities. All you need to do iswrite afilter (or equivalent) that reads the third-
party user information from alocation, build a Spring Security-specific Aut hent i cat i on object, and put
itintothe Securi t yCont ext Hol der . Inthis case you also need to think about things which are normally
taken care of automatically by the built-in authentication infrastructure. For example, you might need to pre-
emptively create an HTTP session to cache the context between requests [tech-intro-sec-context-persistence],
before you write the response to the cl ient.

If you're wondering how the Aut hent i cati onManager isimplemented in a real world example, well
look at that in the core services chapter.

6.4 Authentication in a Web Application

Now let's explore the situation where you are using Spring Security in aweb application (without web. xm
security enabled). How is a user authenticated and the security context established?

Consider atypica web application's authentication process:
1. You visit the home page, and click on alink.
2. A request goesto the server, and the server decides that you've asked for a protected resource.

3. Asyou're not presently authenticated, the server sends back aresponseindicating that you must authenticate.
The response will either be an HTTP response code, or aredirect to a particular web page.

4. Depending on the authentication mechanism, your browser will either redirect to the specific web page so
that you canfill out theform, or the browser will somehow retrieve your identity (viaaBASIC authentication
dialogue box, a cookie, a X.509 certificate etc.).

5. The browser will send back a response to the server. This will either be an HTTP POST containing the
contents of the form that you filled out, or an HTTP header containing your authentication details.

6. Next the server will decide whether or not the presented credentials are valid. If they're valid, the next step
will happen. If they're invalid, usually your browser will be asked to try again (so you return to step two
above).

7. The original request that you made to cause the authentication process will be retried. Hopefully you've
authenticated with sufficient granted authorities to access the protected resource. If you have sufficient
access, the request will be successful. Otherwise, you'll receive back an HTTP error code 403, which means
"forbidden".

Spring Security has distinct classes responsible for most of the steps described above. The main
participants (in the order that they are used) are the ExceptionTranslationFilter, an

Ytisnt possible to create a session once the response has been committed.

311 36

tech-intro-sec-context-persistence
tech-intro-sec-context-persistence

Spring Security

Aut henti cati onEnt r yPoi nt and an “authentication mechanism”, which is responsible for calling the
Aut hent i cati onManager which we saw in the previous section.

ExceptionTranslationFilter

ExceptionTransl ati onFilter is a Spring Security filter that has responsibility for detecting
any Spring Security exceptions that are thrown. Such exceptions will generally be thrown by an
Abst ract Securi tyl nt er cept or, whichisthemain provider of authorization services. Wewill discuss
Abst ract Securi tyl nt er cept or inthe next section, but for now we just need to know that it produces
Java exceptions and knows nothing about HTTP or how to go about authenticating a principal. Instead the
ExceptionTransl ati onFi | t er offersthisservice, with specific responsibility for either returning error
code 403 (if the principal has been authenticated and therefore simply lacks sufficient access - as per step seven
above), or launching an Aut hent i cat i onEnt r yPoi nt (if the principal has not been authenticated and
therefore we need to go commence step three).

AuthenticationEntryPoint

TheAut hent i cat i onEnt r yPoi nt isresponsiblefor step threeintheabovelist. Asyou canimagine, each
web application will have a default authentication strategy (well, this can be configured like nearly everything
elsein Spring Security, but let's keep it simple for now). Each major authentication system will have its own
Aut henti cat i onEnt r yPoi nt implementation, which typically performs one of the actions described in
step 3.

Authentication Mechanism

Onceyour browser submitsyour authentication credential s (either asan HTTPform post or HT TP header) there
needs to be something on the server that “ collects’ these authentication details. By now we're at step six in the
abovelist. In Spring Security we have a special name for the function of collecting authentication details from
a user agent (usually aweb browser), referring to it as the “authentication mechanism”. Examples are form-
base login and Basic authentication. Once the authentication details have been collected from the user agent,
an Aut hent i cat i on “request” object is built and then presented to the Aut hent i cat i onManager .

After the authenti cation mechanism receives back the fully-populated Aut hent i cat i on object, it will deem
the request valid, put the Aut hent i cat i on intothe Securi t yCont ext Hol der , and cause the original
request to be retried (step seven above). If, on the other hand, the Aut hent i cat i onManager reected the
request, the authentication mechanism will ask the user agent to retry (step two above).

Storing the Securi t yCont ext between requests

Depending on the type of application, there may need to be a strategy in place to store the security
context between user operations. In a typical web application, a user logs in once and is subsequently
identified by their session Id. The server caches the principal information for the duration session. In
Spring Security, the responsibility for storing the Securi t yCont ext between requests falls to the
Securi t yCont ext Per si st enceFi | t er, which by default stores the context as an Ht t pSessi on
attribute between HT TP requests. It restoresthe context to the Secur i t yCont ext Hol der for each request
and, crucialy, clearsthe Securi t yCont ext Hol der when the request completes. Y ou shouldn't interact
directly withthe Ht t pSessi on for security purposes. Thereis simply no justification for doing so - always
usethe Securi t yCont ext Hol der instead.

311 37

Spring Security

Many other types of application (for example, a stateless RESTful web service) do not use
HTTP sessions and will re-authenticate on every request. However, it is still important that
the SecurityCont ext Persi stenceFilter is included in the chain to make sure that the
Secur it yCont ext Hol der iscleared after each request.

Note

In an application which receives concurrent requests in a single sesson, the same
Securi t yCont ext instance will be shared between threads. Even though a Thr eadLocal
is being used, it is the same instance that is retrieved from the Htt pSessi on for
each thread. This has implications if you wish to temporarily change the context under
which a thread is running. If you just use SecurityCont ext Hol der. get Context (),
and call set Aut henti cati on(anAuthentication) on the returned context object,
then the Authentication object will change in all concurrent threads which
share the same SecurityContext instance. You can customize the behaviour of
SecurityCont ext Persi st enceFi | t er to create a completely new Securi t yCont ext
for each request, preventing changes in one thread from affecting another. Alternatively you can
create a new instance just at the point where you temporarily change the context. The method
Securi t yCont ext Hol der . cr eat eEnpt yCont ext () alwaysreturnsanew context instance.

6.5 Access-Control (Authorization) in Spring Security

The main interface responsible for making access-control decisions in Spring Security is the
AccessDeci si onManager. It has a deci de method which takes an Aut henti cati on object
representing the principal regquesting access, a “secure object” (see below) and a list of security metadata
attributes which apply for the object (such asalist of roles which are required for access to be granted).

Security and AOP Adyvice

If you're familiar with AOP, you'd be aware there are different types of advice available: before, after, throws
and around. An around advice is very useful, because an advisor can elect whether or not to proceed with a
method invocation, whether or not to modify the response, and whether or not to throw an exception. Spring
Security provides an around advice for method invocations as well as web requests. We achieve an around
advice for method invocations using Spring's standard AOP support and we achieve an around advice for web
reguests using a standard Filter.

For those not familiar with AOP, the key point to understand is that Spring Security can help you protect
method invocations aswell asweb requests. Most people are interested in securing method invocations on their
serviceslayer. Thisisbecausethe serviceslayer iswhere most businesslogic residesin current-generation J2EE
applications. If you just need to secure method invocationsin the services layer, Spring's standard AOP will be
adequate. If you need to secure domain objects directly, you will likely find that AspectJ isworth considering.

You can elect to perform method authorization using Aspectd or Spring AOP, or you can elect to perform
web request authorization using filters. You can use zero, one, two or three of these approaches together.
The mainstream usage pattern is to perform some web request authorization, coupled with some Spring AOP
method invocation authorization on the services layer.

311 38

Spring Security

Secure Objects and the Abstract Securityl nterceptor

So what isa*“ secure object” anyway? Spring Security usestheterm to refer to any object that can have security
(such as an authorization decision) applied to it. The most common examples are method invocations and web
requests.

Each supported secure object type has its own interceptor class, which s
a subclass of AbstractSecuritylnterceptor. Importantly, by the time the
Abst ract Securityl nterceptor iscaled, the SecurityCont ext Hol der will contain a valid
Aut hent i cat i on if the principal has been authenticated.

Abst ract Securi tyl nt er cept or provides a consistent workflow for handling secure object requests,
typicaly:

1. Look up the “configuration attributes” associated with the present request

2. Submitting the secure object, current Aut hentication and configuration attributes to the
AccessDeci si onManager for an authorization decision

3. Optionally change the Aut hent i cat i on under which the invocation takes place
4. Allow the secure object invocation to proceed (assuming access was granted)

5. Cdl the Aft er I nvocat i onManager if configured, once the invocation has returned. If the invocation
raised an exception, the Af t er | nvocat i onManager will not be invoked.

What are Configuration Attributes?

A “configuration attribute” can be thought of as a String that has specia meaning to the
classes used by AbstractSecuritylnterceptor. They are represented by the interface
Confi gAttri but e within the framework. They may be simple role names or have more complex
meaning, depending on the how sophisticated the AccessDeci si onManager implementation is. The
Abst ract Securityl nt erceptor isconfigured with aSecuri t yMet adat aSour ce which it uses
to look up the attributes for a secure object. Usually this configuration will be hidden from the user.
Configuration attributes will be entered as annotations on secured methods or as access attributes on
secured URLs. For example, when we saw something like <i nt ercept -ur| pattern='/secure/
**' access=' ROLE_A, ROLE_B' / > in the namespace introduction, thisis saying that the configuration
attributes ROLE_A and ROLE_B apply to web requests matching the given pattern. In practice, with the default
AccessDeci si onManager configuration, this means that anyone who has a G- ant edAut hority
matching either of these two attributes will be allowed access. Strictly speaking though, they are just attributes
and theinterpretationisdependent onthe AccessDeci si onManager implementation. The use of the prefix
RCLE_ is a marker to indicate that these attributes are roles and should be consumed by Spring Security's
Rol eVot er . Thisisonly relevant when avoter-based AccessDeci si onManager isinuse. We'll see how
the AccessDeci si onManager isimplemented in the authorization chapter.

RunAsManager

Assuming AccessDeci si onManager decides to alow the reguest, the
Abst ract Securityl nt er cept or will normally just proceed with the request. Having said that, on rare

311 39

Spring Security

occasions users may want to replacethe Aut hent i cati oninsidetheSecur it yCont ext with adifferent
Aut hent i cati on, which is handled by the AccessDeci si onManager caling a RunAsManager .
This might be useful in reasonably unusual situations, such asif a services layer method needsto call aremote
system and present adifferent identity. Because Spring Security automatically propagates security identity from
one server to another (assuming you're using a properly-configured RMI or Httplnvoker remoting protocol
client), this may be useful.

AfterInvocationManager

Following the secure object invocation proceeding and then returning - which may mean a method invocation
completing or a filter chain proceeding - the Abst r act Securi tyl nt er cept or gets one final chance
to handle the invocation. At this stage the Abst ract Securi tyl nt er cept or isinterested in possibly
modifying the return object. We might want this to happen because an authorization decision couldn't be made
“ontheway in” to asecure object invocation. Being highly pluggable, Abst r act Securi t yl nt er cept or

will pass control toan Af t er | nvocat i onManager to actually modify the object if needed. Thisclass can
even entirely replace the object, or throw an exception, or not change it in any way as it chooses. The after-
invocation checks will only be executed if the invocation is successful. If an exception occurs, the additional
checks will be skipped.

Abstract Securityl ntercept or anditsrelated objects are shown in Figure 6.1, “ Security interceptors
and the “secure object” model”.

AuthenticationManager

AccessDecisionManager SecurityMetadataSource

RunAsManager |, - AbstractSecuritylnterceptor —#/ AfterinvocationManager

T

Aspect)Securitylnterceptor MethodSecurityinterceptor
secyres FilterSecuritylnterceptor Secqres
SEG*I‘E‘S
JoinPaint Methodinvocation

Filterlnvocation

Figure 6.1. Security interceptors and the “ secure object” model

311 40

Spring Security

Extending the Secure Object Model

Only developers contemplating an entirely new way of intercepting and authorizing requests would need
to use secure objects directly. For example, it would be possible to build a new secure object to secure
calls to a messaging system. Anything that requires security and also provides a way of intercepting a call
(like the AOP around advice semantics) is capable of being made into a secure object. Having said that,
most Spring applications will simply use the three currently supported secure object types (AOP Alliance
Met hodl nvocat i on, Aspectd Joi nPoi nt and web request Fi | t erl nvocati on) with complete
transparency.

6.6 Localization

Spring Security supportslocalization of exception messagesthat end usersarelikely to see. If your applicationis
designed for English-speaking users, you don't need to do anything as by default all Security Security messages
arein English. If you need to support other locales, everything you need to know is contained in this section.

All exception messages can belocalized, including messages related to authentication failures and access being
denied (authorization failures). Exceptions and logging messages that are focused on developers or system
deployers (including incorrect attributes, interface contract violations, using incorrect constructors, startup time
validation, debug-level logging) are not localized and instead are hard-coded in English within Spring Security's
code.

Shipping in the spring-security-core-xx.jar you will find an
org.springfranmework. security package that in turn contains a nessages. properties
file, as well as localized versions for some common languages. This should be referred to by your
Appl i cati onCont ext ,asSpring Security classesimplement Spring'sMessageSour ceAwar e interface
and expect the message resolver to be dependency injected at application context startup time. Usually all you
need to do is register a bean inside your application context to refer to the messages. An example is shown
below:

<bean i d="nessageSour ce"
cl ass="org. spri ngframewor k. cont ext . support . Rel oadabl eResour ceBundl eMessageSour ce" >
<property nane="basenane" val ue="cl asspat h: or g/ spri ngf ranewor k/ securi ty/ messages"/>
</ bean>

The messages. properti es isnamed in accordance with standard resource bundles and represents the
default language supported by Spring Security messages. This default fileisin English.

If you wish to customize the messages. properti es file or support other languages, you should copy
the file, rename it accordingly, and register it inside the above bean definition. There are not a large number
of message keys inside thisfile, so localization should not be considered a major initiative. If you do perform
localization of this file, please consider sharing your work with the community by logging a JIRA task and
attaching your appropriately-named localized version of messages. pr operti es.

Spring Security relies on Spring's localization support in order to actually lookup the appropriate
message. In order for this to work, you have to make sure that the locale from the incoming request
is stored in Spring's or g. spri ngf ramewor k. cont ext . i 18n. Local eCont ext Hol der. Spring

311 41

Spring Security

MVC'sDi spat cher Ser vl et doesthisfor your application automatically, but since Spring Security'sfilters
are invoked before this, the Local eCont ext Hol der needs to be set up to contain the correct Local e
before the filters are called. You can either do this in a filter yourself (which must come before the Spring
Security filtersinweb. xm) or you can use Spring'sRequest Cont ext Fi | t er . Pleaserefer to the Spring
Framework documentation for further details on using localization with Spring.

The “contacts’ sample application is set up to use localized messages.

311 42

Spring Security

Now that we have a high-level overview of the Spring Security architecture and its core classes, let's
take a closer look at one or two of the core interfaces and their implementations, in particular the
Aut hent i cati onManager, User Det ai | sServi ce and the AccessDeci si onManager . These
crop up regularly throughout the remainder of thisdocument soit'simportant you know how they are configured
and how they operate.

7.1 The Aut hent i cati onManager, Provi der Manager and
Aut hent i cati onProvi ders

TheAut hent i cat i onManager isjust an interface, so the implementation can be anything we choose, but
how doesit work in practice? What if we need to check multiple authentication databases or a combination of
different authentication services such as a database and an LDAP server?

The default implementation in Spring Security is called Pr ovi der Manager and rather than handling the
authentication request itself, it delegatesto alist of configured Aut hent i cat i onPr ovi der s, each of which
is queried in turn to see if it can perform the authentication. Each provider will either throw an exception
or return a fully populated Aut hent i cat i on object. Remember our good friends, User Det ai | s and
User Det ai | sSer vi ce? If not, head back to the previous chapter and refresh your memory. The most
common approach to verifying an authentication request is to load the corresponding User Det ai | s and
check the loaded password against the one that has been entered by the user. This is the approach used by
the DaoAut hent i cati onProvi der (see below). The loaded User Det ai | s aobject - and particularly
the Gr ant edAut hor i t ysit contains - will be used when building the fully populated Aut hent i cati on
object which is returned from a successful authentication and stored in the Securi t yCont ext .

If you are using the namespace, an instance of Pr ovi der Manager iscreated and maintained internally, and
you add providersto it by using the namespace authentication provider elements (see the namespace chapter).
In this case, you should not declare aPr ovi der Manager bean in your application context. However, if you
are not using the namespace then you would declare it like so:

<bean i d="aut henti cati onManager"
cl ass="org. springframewor k. security.authentication. Provi der Manager ">
<property nanme="providers">
<list>
<ref |ocal ="daoAut henti cati onProvi der"/>
<ref |ocal ="anonynpusAut henti cati onProvi der"/>
<ref |ocal ="|dapAut henti cati onProvider"/>
</[list>
</ property>
</ bean>

In the above example we have three providers. They aretried in the order shown (which isimplied by the use of
alLi st), with each provider ableto attempt authentication, or skip authentication by simply returningnul | . If
all implementations return null, the Pr ovi der Manager will throw aPr ovi der Not FoundExcepti on.
If you're interested in learning more about chaining providers, please refer to the Pr ovi der Manager
JavaDocs.

Authentication mechanisms such as a web form-login processing filter are injected with a reference to the
Provi der Manager and will call it to handle their authentication requests. The providers you require

311 43

Spring Security

will sometimes be interchangeable with the authentication mechanisms, while at other times they will
depend on a specific authentication mechanism. For example, DaoAut henti cati onProvi der and
LdapAut hent i cati onPr ovi der arecompatiblewith any mechanism which submitsasimple username/
password authentication request and so will work with form-based logins or HTTP Basic authentication.
On the other hand, some authentication mechanisms create an authentication request object which can
only be interpreted by a single type of Aut henti cati onProvi der. An example of this would be
JA-SIG CAS, which uses the notion of a service ticket and so can therefore only be authenticated by a
CasAut henti cati onProvi der. You needn't be too concerned about this, because if you forget to
register a suitable provider, you'll ssmply receive a Pr ovi der Not FoundExcept i on when an attempt to
authenticate is made.

Erasing Credentials on Successful Authentication

By default (from Spring Security 3.1 onwards) the Pr ovi der Manager will attempt to clear any sensitive
credentials information from the Aut hent i cat i on object which isreturned by a successful authentication
reguest. This preventsinformation like passwords being retained longer than necessary.

This may cause issues when you are using a cache of user objects, for example, to improve performance
in a stateless application. If the Aut hent i cat i on contains a reference to an object in the cache (such
as a User Det ai | s instance) and this has its credentials removed, then it will no longer be possible
to authenticate against the cached value. You need to take this into account if you are using a cache.
An obvious solution is to make a copy of the object first, either in the cache implementation or in the
Aut henti cati onProvi der which creates the returned Aut hent i cati on object. Alternatively, you
can disable the er aseCr edent i al sAft er Aut henti cati on property on Provi der Manager . See
the Javadoc for more information.

DaoAut henti cati onPr ovi der

The simplest Aut henti cati onProvi der implemented by Spring Security is
DaoAut henti cati onPr ovi der, which is also one of the earliest supported by the framework. It
leverages a User Detai | sService (as a DAO) in order to lookup the username, password and
G ant edAut hori tys. It authenticates the user simply by comparing the password submitted in a
User nanePasswor dAut hent i cat i onToken against the oneloaded by theUser Det ai | sSer vi ce.
Configuring the provider is quite simple:

<bean i d="daoAut henti cati onProvi der"
cl ass="org. springframework. security. authenti cati on. dao. DaoAut henti cati onProvi der">
<property nanme="user Detail sServi ce" ref="i nMenoryDaol npl "/ >
<property nanme="passwordEncoder" ref="passwordEncoder"/>
</ bean>

ThePasswor dEncoder isoptional. A Passwor dEncoder providesencoding and decoding of passwords
presented in the User Det ai | s object that is returned from the configured User Det ai | sSer vi ce. This
will be discussed in more detail below.

311 44

Spring Security

7.2 User Det ai | sSer vi ce Implementations

As mentioned in the earlier in this reference guide, most authentication providers take advantage
of the UserDetails and UserDetail sService interfaces. Recall that the contract for
User Det ai | sSer vi ce isasingle method:

UserDetails | oadUser ByUser name(String usernane) throws UsernameNot FoundExcepti on;

The returned User Det ai | s is an interface that provides getters that guarantee non-null provision of
authentication information such as the username, password, granted authorities and whether the user account
is enabled or disabled. Most authentication providers will use a User Det ai | sServi ce, even if the
username and password are not actually used as part of the authentication decision. They may use the returned
User Det ai | s objectjustforitsG ant edAut hor i t y information, because some other system (likeLDAP
or X.509 or CAS etc) has undertaken the responsibility of actually validating the credentials.

Given User Det ai | sServi ce is so simple to implement, it should be easy for users to retrieve
authentication information using a persistence strategy of their choice. Having said that, Spring Security does
include a couple of useful base implementations, which we'll ook at below.

In-Memory Authentication

Is easy to use create a custom User Det ai | sSer vi ce implementation that extracts information from a
persistence engine of choice, but many applications do not require such complexity. Thisis particularly trueif
you're building a prototype application or just starting integrating Spring Security, when you don't really want
to spend time configuring databases or writing User Det ai | sSer vi ce implementations. For this sort of
situation, asimple option isto usetheuser - ser vi ce element from the security namespace:

<user-service id="userDetail sService">
<user name="jim" password="jim spassword" authorities="ROLE USER, ROLE_ADM N' />
<user name="bob" password="bobspassword" authorities="ROLE USER" />

</ user-servi ce>

This also supports the use of an external propertiesfile:

<user-service id="userDetail sService" properties="users.properties"/>

The properties file should contain entries in the form

user nane=passwor d, gr ant edAut hori ty[, grant edAut hority] [, enabl ed| di sabl ed]

For example

jim=jimspassword, ROLE_USER, ROLE_ADM N, enabl ed
bob=bobspasswor d, ROLE_USER, enabl ed

311 45

Spring Security

JdbcDaol npl

Spring Security also includes a User Det ai | sSer vi ce that can obtain authentication information from
a JDBC data source. Internally Spring JDBC is used, so it avoids the complexity of a fully-featured object
relational mapper (ORM) just to store user details. If your application does use an ORM tool, you might
prefer towriteacustom User Det ai | sSer vi ce to reuse the mapping filesyou've probably already created.
Returning to JdbcDaol npl , an example configuration is shown below:

<bean i d="dat aSour ce" cl ass="org. spri ngfranmework.jdbc. datasource. Dri ver Manager Dat aSour ce" >
<property nane="driverd assNane" val ue="org. hsql db. jdbcDriver"/>
<property name="url" val ue="j dbc: hsql db: hsql : // 1 ocal host: 9001"/ >
<property nanme="usernane" val ue="sa"/>
<property nane="password" val ue=""/>
</ bean>

<bean i d="user Det ai | sServi ce"
cl ass="org. springframework. security.core.userdetails.jdbc.JdbcDaol npl ">
<property nane="dat aSour ce" ref="dataSource"/>
</ bean>

You can use different relational database management systems by modifying the
Dri ver Manager Dat aSour ce shown above. You can also use a global data source obtained from JNDI,
as with any other Spring configuration.

Authority Groups

By default, JdbcDaol npl loads the authorities for a single user with the assumption that the authorities
are mapped directly to users (see the database schema appendix). An alternative approach is to partition
the authorities into groups and assign groups to the user. Some people prefer this approach as a means of
administering user rights. See the JdbcDaol npl Javadoc for more information on how to enable the use of
group authorities. The group schemais also included in the appendix.

7.3 Password Encoding

Spring Security's Passwor dEncoder interface is used to support the use of passwords which
are encoded in some way in persistent storage. This will normally mean that the passwords
are “hashed” using a digest algorithm such as MD5 or SHA. Spring Security 3.1's crypto
package introduces a simpler APl which encourages best-practice for password hashing. We would
encourage you to use these APIs for new development and regard the classes in package
org. springframewor k. security. aut henti cati on. encodi ng aslegacy implementations. The
DaoAut henti cati onProvi der can be injected with either the new or legacy Passwor dEncoder

types.
What is a hash?

Password hashing is not unique to Spring Security but is a common source of confusion for users who are not
familiar with the concept. A hash (or digest) algorithm is a one-way function which produces a piece of fixed-
length output data (the hash) from some input data, such as a password. As an example, the MD5 hash of the
string “ password” (in hexadecimal) is

311 46

Spring Security

5f 4dcc3b5aa765d61d8327debh882cf 99

A hash is “one-way” in the sense that it is very difficult (effectively impossible) to obtain the original input
given the hash value, or indeed any possible input which would produce that hash value. This property makes
hash valuesvery useful for authentication purposes. They can be storedin your user database asan aternativeto
plaintext passwords and even if the values are compromised they do not immediately reveal a password which
can be used to login. Note that this al so means you have no way of recovering the password onceit is encoded.

Adding Salt to a Hash

One potential problem with the use of password hashes that it is relatively easy to get round the one-way
property of the hash if a common word is used for the input. For example, if you search for the hash
value 5f 4dcc3b5aa765d61d8327deb882cf 99 using google, you will quickly find the origina word
“password”. In asimilar way, an attacker can build a dictionary of hashes from a standard word list and use
thisto lookup the original password. One way to help prevent thisisto have a suitably strong password policy
to try to prevent common words from being used. Another isto use a*“salt” when calculating the hashes. This
is an additional string of known data for each user which is combined with the password before calculating
the hash. Ideally the data should be as random as possible, but in practice any salt value is usually preferable
to none. Using a salt means that an attacker has to build a separate dictionary of hashes for each salt value,
making the attack more complicated (but not impossible€).

The St andar dPasswor dEncoder inthecrypt o package uses arandom 8-byte salt, which is stored in
the same field as the password.

Note

The legacy approach to handling sadt was to inject a SaltSource into the
DaoAut hent i cat i onPr ovi der, which would obtain a salt value for a particular user and pass
it to the Passwor dEncoder . Using a random salt and combining it with the password data field
means you don't have to worry about the details of salt handling (such aswhere the the valueis stored),
asitisall doneinternally. So we'd strongly recommend you use this approach unless you already have
a system in place which stores the salt separately.

Hashing and Authentication

When an authentication provider (such as Spring Security's DaoAut hent i cati onPr ovi der) needs to
check the password in a submitted authentication request against the known value for a user, and the stored
password is encoded in some way, then the submitted value must be encoded using exactly the same algorithm.
It's up to you to check that these are compatible as Spring Security has no control over the persistent values. If
you add password hashing to your authentication configuration in Spring Security, and your database contains
plaintext passwords, then there is no way authentication can succeed. Even if you are aware that your database
isusing MD5 to encode the passwords, for example, and your application is configured to use Spring Security's
Mi5Passwor dEncoder , there are still things that can go wrong. The database may have the passwords
encoded in Base 64, for example while the encoder is using hexadecimal strings (the default). Alternatively
your database may be using upper-case while the output from the encoder islower-case. Make sure you write a
test to check the output from your configured password encoder with a known password and salt combination

311 47

Spring Security

and check that it matches the database val ue before going further and attempting to authenticate through your
application.

If you want to generate encoded passwords directly in Javafor storage in your user database, then you can use
the encode method on the Passwor dEncoder .

311 48

Part IlIl. Web Application Security

Most Spring Security users will be using the framework in applications which make user of HTTP and the
Servlet API. In this part, we'll take alook at how Spring Security provides authentication and access-control
features for the web layer of an application. Well look behind the facade of the namespace and see which
classes and interfaces are actually assembled to provide web-layer security. In some situations it is necessary
to use traditional bean configuration to provide full control over the configuration, so we'll also see how to
configure these classes directly without the namespace.

Spring Security

Spring Security's web infrastructure is based entirely on standard servlet filters. It doesn't use servlets or any
other servlet-based frameworks (such as Spring MV C) internally, so it has no strong linksto any particular web
technology. It dealsin Ht t pSer vl et Request sand Ht t pSer vl et Responsesand doesn't care whether
the requests come from a browser, aweb service client, an Ht t pl nvoker or an AJAX application.

Spring Security maintains a filter chain internally where each of the filters has a particular responsibility
and filters are added or removed from the configuration depending on which services are required. The
ordering of thefiltersisimportant as there are dependencies between them. If you have been using namespace
configuration, then the filters are automatically configured for you and you don't have to define any Spring
beans explicitly but here may be times when you want full control over the security filter chain, either because
you are using features which aren't supported in the namespace, or you are using your own customized versions
of classes.

8.1 Del egati ngFi | t er Proxy

When using servlet filters, you obviously need to declare them in your web. xm , or they will be ignored
by the servlet container. In Spring Security, the filter classes are also Spring beans defined in the application
context and thus abl e to take advantage of Spring'srich dependency-injection facilitiesand lifecycle interfaces.
Spring'sDel egat i ngFi | t er Pr oxy providesthe link between web. xm and the application context.

When using Del egat i ngFi | t er Pr oxy, you will see something like thisintheweb. xmi file:

<filter>
<filter-nane>nyFilter</filter-name>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>
<filter-name>nyFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-nmappi ng>

Noticethat thefilter isactually aDel egat i ngFi | t er Pr oxy, and not the classthat will actually implement
the logic of the filter. What Del egat i ngFi | t er Pr oxy doesis delegate the Fi | t er 's methods through
to a bean which is obtained from the Spring application context. This enables the bean to benefit from the
Spring web application context lifecycle support and configuration flexibility. The bean must implement
javax. servl et. Filter andit must have the same name asthat inthefi | t er - name element. Read
the Javadoc for Del egat i ngFi | t er Pr oxy for more information

8.2 Fi | t er Chai nPr oxy

Spring Security's web infrastructure should only be used by delegating to an instance of
Fi | t er Chai nPr oxy. The security filters should not be used by themselves. In theory you could declare
each Spring Security filter bean that you require in your application context file and add a corresponding
Del egati ngFi | t er Proxy entry toweb. xm for each filter, making sure that they are ordered correctly,
but this would be cumbersome and would clutter up the web. xm file quickly if you have alot of filters.
Fi | t er Chai nProxy letsus add asingle entry to web. xm and deal entirely with the application context

311 50

Spring Security

file for managing our web security beans. It iswired using a Del egat i ngFi | t er Pr oxy, just like in the
example above, but withthef i | t er - nanme set to the bean name “filterChainProxy”. Thefilter chain isthen
declared in the application context with the same bean name. Here's an example:

<bean i d="filterChai nProxy" class="org.springframework.security.web. FilterChainProxy">
<const ruct or - ar g>
<list>
<sec:filter-chain pattern="/restful /**" filters="
securityCont ext Persi stenceFi | t er Wt hASCFal se,
basi cAut henti cationFil ter,
exceptionTransl ationFilter,
filterSecuritylnterceptor" />
<sec:filter-chain pattern="/**" filters="
securit yCont ext Per si st enceFi | t er Wt hASCTr ue,
fornLogi nFilter,
exceptionTransl ationFilter,
filterSecuritylnterceptor" />
</[list>
</ constructor-arg>
</ bean>

The namespace element f i | t er - chai n isused for convenience to set up the security filter chain(s) which
are required within the application. 1t maps a particular URL patternto alist of filters built up from the bean
names specified inthef i | t er s element, and combines them in a bean of type Securi t yFi | t er Chai n.
The pat t er n attribute takes an Ant Paths and the most specific URIs should appear first 2, At runtime the
Fi | t er Chai nPr oxy will locate the first URI pattern that matches the current web request and the list of
filter beans specified by thef i | t er s attribute will be applied to that request. Thefilterswill beinvoked inthe
order they are defined, so you have complete control over the filter chain which isapplied to aparticular URL.

You may have noticed we have declared two SecurityContextPersistenceFilters
in the filter chan (ASC is short for allowSessionCreation, a propety of
Secur it yCont ext Per si st enceFi | ter). As web services will never present a j sessi oni d on
future requests, creating Ht t pSessi ons for such user agents would be wasteful. If you had a high-
volume application which required maximum scalability, we recommend you use the approach shown above.
For smaller applications, using a single Securit yCont ext Per si stenceFi | t er (with its default
al | owSessi onCreati on astrue) would likely be sufficient.

Notethat Fi | t er Chai nPr oxy doesnotinvoke standard filter lifecycle methods on thefiltersitisconfigured
with. We recommend you use Spring's application context lifecycle interfaces as an alternative, just as you
would for any other Spring bean.

When we looked at how to set up web security using namespace configuration, we used a
Del egat i ngFi | t er Pr oxy with the name “springSecurityFilterChain”. Y ou should now be able to see
that thisisthe name of the Fi | t er Chai nPr oxy which is created by the namespace.

INote that you'll need to include the security namespace in your application context XML file in order to use this syntax. The older syntax
whichused afi | t er - chai n- map isstill supported, but is deprecated in favour of the constructor argument injection.

2Instead of a path pattern, the r equest - mat cher - r ef attribute can be used to specify a Request Mat cher instance for more
powerful matching

311 51

Spring Security

Bypassing the Filter Chain

You can use the attributefi | t ers = "none" asan aternative to supplying a filter bean list. This will
omit the request pattern from the security filter chain entirely. Note that anything matching this path will then
have no authentication or authorization services applied and will be freely accessible. If you want to make
use of the contents of the Securi t yCont ext contents during a request, then it must have passed through
the security filter chain. Otherwise the Secur i t yCont ext Hol der will not have been populated and the
contents will be null.

8.3 Filter Ordering

The order that filters are defined in the chain is very important. Irrespective of which filters you are actually
using, the order should be as follows:

1. Channel Processi ngFi | t er, becauseit might need to redirect to a different protocol

2. Concurrent Sessi onFi | t er, becauseit doesn't useany Secur i t yCont ext Hol der functionality
but needs to update the Sessi onRegi st ry to reflect ongoing requests from the principal

3. SecurityContextPersistenceFilter, so a SecurityContext can be set up in the
SecurityCont ext Hol der a the beginning of a web request, and any changes to the
Securi t yCont ext canbecopiedtotheHt t pSessi on when the web request ends (ready for use with
the next web request)

4. Authentication processing mechanisms - User nanePasswor dAut henti cati onFilter,
CasAut henticationFilter, BasicAuthenticationFilter ec - so tha the

Securi t yCont ext Hol der can be modified to contain avalid Aut hent i cat i on request token

5. The Securi t yCont ext Hol der Awar eRequest Fi |l t er, if you are using it to install a Spring
Security aware Ht t pSer vl et Request W apper into your servlet container

6. The JaasApilntegrationFilter, if a JaasAuthenticationToken is in the
Securi tyCont ext Hol der this will process the FilterChain as the Subject in the
JaasAut henti cati onToken

7. Renenber MeAut henti cati onFi |l t er, so that if no earlier authentication processing mechanism
updated the Secur i t yCont ext Hol der, and the request presents a cookie that enables remember-me
servicesto take place, a suitable remembered Aut hent i cat i on object will be put there

8. AnonynousAut henti cati onFil ter, so that if no earlier authentication processing mechanism
updated the Secur i t yCont ext Hol der, an anonymous Aut hent i cat i on object will be put there

9. Excepti onTransl ati onFi | t er,tocatchany Spring Security exceptionsso that either anHT TP error
response can be returned or an appropriate Aut hent i cat i onEnt r yPoi nt can be launched

10.Fi | ter Securi tyl nt er cept or, to protect web URIs and raise exceptions when access is denied

311 52

Spring Security

8.4 Request Matching and Ht t pFi r ewal |

Spring Security has several areas where patterns you have defined are tested against incoming requestsin order
to decide how the request should be handled. This occurs when the Fi | t er Chai nPr oxy decides which
filter chain arequest should be passed through and alsowhentheFi | t er Securi t yl nt er cept or decides
which security constraints apply to a request. It's important to understand what the mechanism is and what
URL value is used when testing against the patterns that you define.

The Servlet Specification defines several propertiesfortheHt t pSer vl et Request whichareaccessiblevia
getter methods, and which we might want to match against. These are the cont ext Pat h, ser vl et Pat h,
pat hl nf o and quer ySt ri ng. Spring Security is only interested in securing paths within the application,
so the cont ext Pat h isignored. Unfortunately, the servlet spec does not define exactly what the values of
ser vl et Pat h andpat hl nf o will containfor aparticular request URI. For example, each path segment of a
URL may contain parameters, asdefined in RFC 2396 [http://www.ietf.org/rfc/rf02396.txt]3. The Specification
does not clearly state whether these should be included inthe ser vl et Pat h and pat hl nf o valuesand the
behaviour varies between different servlet containers. Thereisadanger that when an application isdeployedin
acontainer which does not strip path parameters from these val ues, an attacker could add them to the requested
URL in order to cause a pattern match to succeed or fail unexpectedly."'. Other variations in the incoming
URL are also possible. For example, it could contain path-traversal sequences (like/ . . /') or multiple forward
dashes (/ /) which could also cause pattern-matches to fail. Some containers normalize these out before
performing the servliet mapping, but others don't. To protect against issues likethese, Fi | t er Chai nPr oxy
usesan Ht t pFi r ewal | strategy to check and wrap the request. Un-normalized requests are automatically
rejected by default, and path parameters and duplicate slashes are removed for matching purpos&.5. Itis
therefore essential that a Fi | t er Chai nPr oxy is used to manage the security filter chain. Note that the
ser vl et Pat h and pat hl nf o values are decoded by the container, so your application should not have any
valid paths which contain semi-colons, as these parts will be removed for matching purposes.

As mentioned above, the default strategy is to use Ant-style paths for matching and this is likely to be the
best choice for most users. The strategy is implemented in the class Ant Pat hRequest Mat cher which
uses Spring's Ant Pat hiMat cher to perform a case-insensitive match of the pattern against the concatenated
ser vl et Pat h and pat hl nf o, ignoringthequer ySt ri ng.

If for some reason, you need a more powerful matching strategy, you can use regular expressions. The strategy
implementation isthen RegexRequest Mat cher . See the Javadoc for this class for more information.

In practice we recommend that you use method security at your service layer, to control access to your
application, and do not rely entirely on the use of security constraints defined at the web-application level.
URLs change and it is difficult to take account of al the possible URL s that an application might support and
how reguests might be manipulated. Y ou should try and restrict yourself to using afew simple ant paths which
are simpleto understand. Alwaystry to use a“deny-by-default” approach where you have a catch-all wildcard
(/ ** or**) defined last and denying access.

3You have probably seen this when a browser doesn't support cookies and thej sessi oni d parameter is appended to the URL after a
semi-colon. However the RFC allows the presence of these parametersin any path segment of the URL

“The original values will be returned once the request leavesthe Fi | t er Chai nPr oxy, so will still be available to the application.
5so, for example, an origina request path / secure; hack=1/sonefil e. ht M ; hack=2 will be returned as / secure/
sonefile.htnm.

311 53

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt

Spring Security

Security defined at the service layer is much more robust and harder to bypass, so you should always take
advantage of Spring Security's method security options.

8.5 Use with other Filter-Based Frameworks

If you're using some other framework that is aso filter-based, then you need to make sure that the Spring
Security filters comefirst. This enablesthe Securi t yCont ext Hol der to be populated in time for use by
the other filters. Examples are the use of SiteM esh to decorate your web pages or aweb framework like Wicket
which uses afilter to handle its requests.

8.6 Advanced Namespace Configuration

As we saw earlier in the namespace chapter, it's possible to use multiple ht t p elements to define different
security configurations for different URL patterns. Each element creates a filter chain within the internal
Fi | t er Chai nPr oxy and the URL pattern that should be mapped to it. The elements will be added in the
order they are declared, so the most specific patterns must again be declared first. Here's another example, for a
similar situation to that above, where the application supports both a stateless RESTful APl and also anormal
web application which userslog into using aform.

<I-- Statel ess RESTful service using Basic authentication -->

<http pattern="/restful/**" create-sessi on="statel ess">
<intercept-url pattern='/**' access=' ROLE_REMOTE />
<http-basic />

</ http>

<l-- Enpty filter chain for the |ogin page -->
<http pattern="/login. htnm" security="none"/>

<l-- Additional filter chain for normal users, matching all other requests -->
<ht t p>

<intercept-url pattern='/**'" access=' ROLE_USER />

<formlogin | ogi n-page='/login. htm default-target-url="/home. htni/>

<l ogout />
</ http>

311 54

Spring Security

There are some key filterswhich will always be used in aweb application which uses Spring Security, so well
look at these and their supporting classes and interfaces first. We won't cover every feature, so be sure to look
at the Javadoc for them if you want to get the complete picture.

9.1FilterSecuritylnterceptor

We've dready seen Fi | t er Securi tyl nt ercept or briefly when discussing access-control in general,
and we've already used it with the namespace where the <i nt er cept - ur | > elements are combined to
configureitinternaly. Now we'll seehow to explicitly configureit for usewithaFi | t er Chai nPr oxy, aong
with its companion filter Excepti onTransl ati onFil ter. A typica configuration example is shown
below:

<bean id="filterSecuritylnterceptor"
cl ass="org. springframework. security.web.access.intercept.FilterSecuritylnterceptor">
<property nane="aut henti cati onManager" ref="aut henti cati onManager"/>
<property nane="accessDeci si onManager" ref="accessDeci si onManager"/>
<property nanme="securityMetadat aSource">
<security:filter-security-nmetadata-source>
<security:intercept-url pattern="/secure/super/**" access="ROLE WE DONT_HAVE"/ >
<security:intercept-url pattern="/secure/**" access="ROLE_SUPERVI SOR, ROLE_TELLER'/>
</security:filter-security-netadata-source>
</ property>
</ bean>

FilterSecurityl nterceptor isresponsiblefor handling the security of HTTP resources. It requires a
referencetoan Aut hent i cat i onManager andan AccessDeci si onManager . Itisalso supplied with
configuration attributes that apply to different HTTP URL requests. Refer back to the original discussion on
these in the technical introduction.

The Fil terSecurityl nterceptor can be configured with configuration attributes in two ways.
The first, which is shown above, is using the <fi | t er- security- net adat a- sour ce> namespace
element. This is similar to the <htt p> element from the namespace chapter but the <i nt er cept -
ur | > child elements only use the pattern and access attributes. Commas are used to delimit the
different configuration attributes that apply to each HTTP URL. The second option is to write your own
Securit yMet adat aSour ce, but thisis beyond the scope of this document. Irrespective of the approach
used, the Securit yMet adat aSour ce is responsible for returning a Li st <Confi gAttri but e>
containing al of the configuration attributes associated with a single secure HTTP URL.

It should be noted that the Fi |l t er Securityl nterceptor. setSecurityMetadataSource()
method actually expects an instance of Fi | t er Securi t yMet adat aSour ce. Thisis a marker interface
which subclasses Secur it yMet adat aSour ce. It simply denotes the Securi t yMet adat aSour ce
understands Fi |l terl nvocations. In the interests of simplicity well continue to refer to the
FilterlnvocationSecurityMetadataSource as a SecurityMetadataSource, as the
distinction is of little relevance to most users.

TheSecurit yMet adat aSour ce created by the namespace syntax obtains the configuration attributes for
aparticular Fi | t er | nvocat i on by matching the request URL against the configured pat t er n attributes.
This behaves in the same way as it does for namespace configuration. The default is to treat all expressions

311 55

Spring Security

as Apache Ant paths and regular expressions are also supported for more complex cases. The pat h-t ype
attribute is used to specify the type of pattern being used. It is not possible to mix expression syntaxes within
the same definition. As an example, the previous configuration using regular expressions instead of Ant paths
would be written as follows:

<bean id="filterlnvocationlnterceptor"
cl ass="org. springframework. security.web.access.intercept.FilterSecuritylnterceptor">
<property nanme="aut henti cati onManager" ref="authenti cati onManager"/>
<property nane="accessDeci si onManager" ref="accessDeci si onManager"/>
<property nane="runAsManager" ref="runAsManager"/>
<property nanme="securityMetadat aSource">
<security:filter-security-netadata-source path-type="regex">
<security:intercept-url pattern="\A/ secure/super/.*\Z" access="ROLE_WE_DONT_HAVE"/ >
<security:intercept-url pattern="\A/ secure/.*\" access="ROLE SUPERVI SOR, ROLE_TELLER'/ >
</security:filter-security-netadata-source>
</ property>
</ bean>

Patterns are aways evaluated in the order they are defined. Thusit isimportant that more specific patterns are
defined higher in the list than less specific patterns. This is reflected in our example above, where the more
specific / secur e/ super/ pattern appears higher than the less specific / secur e/ pattern. If they were
reversed, the / secur e/ pattern would always match and the / secur e/ super/ pattern would never be
evaluated.

9.2 ExceptionTransl ationFilter

TheExceptionTransl ati onFi | t er sitsabovetheFi | t er Securi tyl nt er cept or inthesecurity
filter stack. It doesn't do any actual security enforcement itself, but handles exceptions thrown by the security
interceptors and provides suitable and HTTP responses.

<bean i d="exceptionTransl ationFilter"
cl ass="org. springframework. security.web. access. Excepti onTransl ati onFilter">
<property nanme="aut henticati onEntryPoint" ref="authenticationEntryPoint"/>
<property nanme="accessDeni edHandl er" ref="accessDeni edHandl er"/>
</ bean>

<bean i d="aut henti cati onEnt ryPoi nt"
cl ass="org. springframework. security.web. aut henti cati on. Logi nUr| Aut henti cati onEntryPoi nt">
<property nanme="|ogi nFornrl" val ue="/1ogin.jsp"/>
</ bean>

<bean i d="accessDeni edHandl er"
cl ass="org. spri ngframework. security.web. access. AccessDeni edHandl er | npl ">
<property nanme="error Page" val ue="/accessDeni ed. ht ni'/ >
</ bean>

Aut henti cati onEnt r yPoi nt

TheAut hent i cati onEnt r yPoi nt will becalled if the user requests asecure HT TP resource but they are
not authenticated. An appropriate Aut hent i cati onExcepti on or AccessDeni edExcepti on will
be thrown by a security interceptor further down the call stack, triggering the commence method on the entry
point. This does the job of presenting the appropriate response to the user so that authentication can begin.

311 56

Spring Security

The one we've used hereis Logi nUr | Aut hent i cati onEnt r yPoi nt, which redirects the request to a
different URL (typically a login page). The actual implementation used will depend on the authentication
mechanism you want to be used in your application.

AccessDeni edHandl er

What happens if a user is aready authenticated and they try to access a protected resource? In normal usage,
this shouldn't happen because the application workflow should be restricted to operations to which a user has
access. For example, an HTML link to an administration page might be hidden from users who do not have an
adminrole. You can't rely on hiding linksfor security though, asthere's always apossibility that auser will just
enter the URL directly in an attempt to bypassthe restrictions. Or they might modify aRESTful URL to change
some of the argument values. Y our application must be protected against these scenarios or it will definitely
beinsecure. Y ou will typically use simple web layer security to apply constraints to basic URL s and use more
specific method-based security on your service layer interfaces to really nail down what is permissible.

If an AccessDeni edException is thrown and a user has aready been authenticated, then this
means that an operation has been attempted for which they don't have enough permissions. In this case,
ExceptionTransl ati onFi |l t er will invoke a second strategy, the AccessDeni edHandl er. By
default,anAccessDeni edHandl er | npl isused, which just sendsa403 (Forbidden) responseto theclient.
Alternatively you can configure an instance explicitly (as in the above example) and set an error page URL
which it will forwards the request to ! Thiscan be asimple “access denied” page, such asa JSP, or it could be
amore complex handler such as an MV C controller. And of course, you can implement the interface yoursel f
and use your own implementation.

It'salso possibleto supply acustom AccessDeni edHandl er when you're using the namespaceto configure
your application. See the namespace appendix for more details.

SavedRequest s and the Request Cache Interface

Another of Excepti onTransl ati onFi |l t er's responsibilities is to save the current request before
invoking the Aut henti cati onEntryPoi nt. This alows the request to be restored after the
use has authenticated (see previous overview of web authentication). A typical example would be
where the user logs in with a form, and is then redirected to the origina URL by the default
SavedRequest Awar eAut hent i cati onSuccessHandl er (seebelow).

The Request Cache encapsulates the functionality required for storing and retrieving
Ht t pSer vl et Request instances. By default the Ht t pSessi onRequest Cache is used, which stores
therequestinthe Ht t pSessi on. The Request CacheFi | t er hasthejob of actually restoring the saved
request from the cache when the user is redirected to the original URL.

Under normal circumstances, you shouldn't need to modify any of this functionality, but the saved-request
handling is a “best-effort” approach and there may be situations which the default configuration isn't able to
handle. The use of these interfaces makesit fully pluggable from Spring Security 3.0 onwards.

YWe use aforward so that the SecurityContextHol der still contains details of the principal, which may be useful for displaying to the user.
In old releases of Spring Security we relied upon the servlet container to handle a 403 error message, which lacked this useful contextual
information.

311 57

Spring Security

9.3 Securi tyCont ext Persi stenceFi | ter

We covered the purpose of this all-important filter in the Technical Overview chapter so you might want
to re-read that section at this point. Let's first take a look at how you would configure it for use with a
Fi | t er Chai nPr oxy. A basic configuration only requires the bean itself

<bean i d="securityCont ext Persi stenceFilter"
cl ass="org. spri ngframewor k. security.web. context. SecurityContextPersistenceFilter"/>

Aswe saw previoudly, thisfilter has two main tasks. It isresponsible for storage of the Secur i t yCont ext
contents between HTTP requests and for clearing the Securit yCont ext Hol der when a request is
completed. Clearing the Thr eadLocal in which the context is stored is essential, as it might otherwise be
possible for a thread to be replaced into the servlet container's thread pool, with the security context for a
particular user still attached. This thread might then be used at a later stage, performing operations with the
wrong credentials.

Securi tyCont ext Repository

From Spring Security 3.0, the job of loading and storing the security context is now delegated to a separate
strategy interface:

public interface SecurityContextRepository {
SecurityCont ext | oadCont ext (Ht t pRequest ResponseHol der request ResponseHol der);
voi d saveCont ext (SecurityCont ext context, HttpServletRequest request,
Ht t pSer vl et Response response) ;

}
TheHt t pRequest ResponseHol der issimply acontainer for the incoming request and response objects,
allowing the implementation to replace these with wrapper classes. The returned contents will be passed to
the filter chain.

ThedefaultimplementationisHt t pSessi onSecuri t yCont ext Reposi t or y, which storesthe security
context asan Ht t pSessi on attribute 2. The most important configuration parameter for thisimplementation
is the al | owSessi onCr eat i on property, which defaults to t r ue, thus allowing the class to create a
session if it needs one to store the security context for an authenticated user (it won't create one unless
authentication has taken place and the contents of the security context have changed). If you don't want a
session to be created, then you can set this property tof al se:

<bean i d="securityCont ext Persi stenceFilter"
cl ass="org. springframework. security.web. context.SecurityContextPersistenceFilter">
<property name='securityCont ext Repository"' >
<bean cl ass='org. spri ngfranmewor k. security.web. context. HttpSessi onSecurityCont ext Repository' >
<property nane='al |l owSessi onCreati on' val ue='fal se' />
</ bean>
</ property>
</ bean>

2In Spring Security 2.0 and earlier, this filter was called Ht t pSessi onCont ext | nt egr at i onFi | t er and performed all the work
of storing the context was performed by the filter itself. If you were familiar with this class, then most of the configuration options which
were available can now be found on Ht t pSessi onSecuri t yCont ext Reposi tory.

311 58

Spring Security

Alternatively you could provide an instance of Nul | Securi t yCont ext Repository, a “null object
[http://en.wikipedia.org/wiki/Null_Object pattern]” implementation, which will prevent the security context
from being stored, even if a session has aready been created during the request.

9.4 User nanePasswor dAut henti cati onFil ter

We've now seen the three main filters which are always present in a Spring Security web configuration. These
are also thethreewhich are automatically created by the namespace <ht t p> element and cannot be substituted
with alternatives. The only thing that's missing now is an actual authentication mechanism, something that will
alow a user to authenticate. This filter is the most commonly used authentication filter and the one that is
most often customized >. It also provides the implementation used by the <f or m | ogi n> element from the
namespace. There are three stages required to configure it.

1. ConfigureaLogi nUr | Aut henti cati onEnt r yPoi nt withthe URL of thelogin page, just aswe did
above, and setitonthe Excepti onTransl ationFil ter.

2. Implement the login page (using a JSP or MV C controller).
3. Configure an instance of User nanePasswor dAut hent i cat i onFi | t er inthe application context

4. Add thefilter bean to your filter chain proxy (making sure you pay attention to the order).

Thelogin form simply containsj _user nane andj _passwor d input fields, and posts to the URL that is
monitored by the filter (by default thisis/j _spring_security_check). Thebasic filter configuration
looks something like this:

<bean id="authenticationFilter" class=

"org. springframework. security.web. aut henti cati on. User namePasswor dAut henti cati onFil ter">
<property nanme="aut henti cati onManager" ref="aut henti cati onManager"/>
<property nanme="filterProcessesU|" value="/j_spring_security_check"/>

</ bean>

Application Flow on Authentication Success and Failure

The filter cals the configured Aut henticati onManager to process each authentication
request. The destination following a successful authentication or an authentication failure is
controlled by the Aut henti cati onSuccessHandl er and Aut henti cati onFai | ur eHandl er
strategy interfaces, respectively. The filter has properties which alow you to
set these so you can customize the behaviour completely 4 Some standard
implementations are supplied such as Sinpl eUr |l Aut henti cati onSuccessHandl er,
SavedRequest Awar eAut hent i cat i onSuccessHandl er,

Si mpl eUr | Aut henti cati onFai | ur eHandl er and
Except i onMappi ngAut henti cati onFai | ur eHandl er . Havealook at the Javadoc for these classes

SFor historical reasons, prior to Spring Security 3.0, this filter was called Aut henti cati onProcessi ngFi | t er and the entry
point was called Aut hent i cati onProcessi ngFi | t er Ent r yPoi nt . Since the framework now supports many different forms of
authentication, they have both been given more specific namesin 3.0.

4In versions prior to 3.0, the application flow at this point had evolved to a stage was controlled by a mix of properties on this class and
strategy plugins. The decision was made for 3.0 to refactor the code to make these two strategies entirely responsible.

311 59

http://en.wikipedia.org/wiki/Null_Object_pattern
http://en.wikipedia.org/wiki/Null_Object_pattern

Spring Security

andalsofor Abst r act Aut hent i cati onProcessi ngFi | t er toget anoverview of how they work and
the supported features.

If authentication is successful, the resulting Aut henti cati on object will be placed into the
SecurityCont ext Hol der. The configured Aut henti cati onSuccessHandl er will then be
caled to either redirect or forward the user to the appropriate destination. By default a
SavedRequest Awar eAut hent i cat i onSuccessHandl er isused, which means that the user will be
redirected to the original destination they requested before they were asked to login.

Note

The Excepti onTransl ati onFi | t er cachesthe original request a user makes. When the user
authenticates, the request handler makes use of this cached request to obtain the original URL and
redirect toit. The original request is then rebuilt and used as an aternative.

If authentication fails, the configured Aut hent i cat i onFai | ur eHandl er will be invoked.

311 60

Spring Security

Basic and digest authentiation are alternative authentication mechanismswhich are popul ar in web applications.
Basic authentication is often used with stateless clients which pass their credentials on each request. It's quite
common to use it in combination with form-based authentication where an application is used through both a
browser-based user interface and as a web-service. However, basic authentication transmits the password as
plain text so it should only really be used over an encrypted transport layer such asHTTPS.

10.1 Basi cAut henticationFilter

Basi cAut henti cati onFi | t er isresponsible for processing basic authentication credentials presented
in HTTP headers. This can be used for authenticating calls made by Spring remoting protocols
(such as Hessian and Burlap), as well as normal browser user agents (such as Firefox and Internet
Explorer). The standard governing HTTP Basic Authentication is defined by RFC 1945, Section 11, and
Basi cAut henti cati onFi | t er conformswith this RFC. Basic Authentication is an attractive approach
to authentication, because it is very widely deployed in user agents and implementation is extremely simple
(it'sjust a Base64 encoding of the username:password, specified in an HTTP header).

Configuration

To implement HTTP Basic Authentication, you need to add a Basi cAut henti cati onFi | t er to your
filter chain. The application context should contain Basi cAut henti cati onFi |l t er and its required
collaborator:

<bean i d="basi cAut henticationFilter"
cl ass="org. springframewor k. security.web. aut henti cati on. ww. Basi cAut henticationFilter">
<property nane="aut henti cati onManager" ref="aut henti cati onManager"/>
<property nanme="aut henti cati onEntryPoint" ref="authenticationEntryPoint"/>

</ bean>

<bean i d="aut henti cati onEnt ryPoi nt"
cl ass="org. springframewor k. security.web. aut henti cati on. ww. Basi cAut henti cati onEntryPoi nt">
<property nane="real mNane" val ue="Nane O Your Real ni'/>

</ bean>

The configured Aut hent i cat i onManager processes each authentication request. If authentication fails,
the configured Aut hent i cati onEnt r yPoi nt will be used to retry the authentication process. Usualy
you will use the filter in combination with aBasi cAut hent i cati onEnt r yPoi nt , which returns a 401
response with asuitable header to retry HTTP Basic authentication. If authentication issuccessful, theresulting
Aut hent i cati on object will be placed into the Secur i t yCont ext Hol der asusual.

If the authentication event was successful, or authentication was not attempted because the HTTP header did
not contain a supported authentication request, the filter chain will continue as normal. The only timethefilter
chain will be interrupted isif authentication fails and the Aut hent i cat i onEnt r yPoi nt iscalled.

10.2 Di gest Aut henti cationFil ter

Di gest Aut henti cati onFi |l ter is capable of processing digest authentication credentials presented
in HTTP headers. Digest Authentication attempts to solve many of the weaknesses of Basic authentication,

311 61

Spring Security

specifically by ensuring credentialsare never sent in clear text acrossthewire. Many user agents support Digest
Authentication, including FireFox and Internet Explorer. The standard governing HT TP Digest Authentication
isdefined by RFC 2617, which updates an earlier version of the Digest Authentication standard prescribed by
RFC 2069. Most user agents implement RFC 2617. Spring Security's Di gest Aut henti cati onFil ter
is compatible with the "aut h" quality of protection (qop) prescribed by RFC 2617, which also provides
backward compatibility with RFC 2069. Digest Authentication is a more attractive option if you need to use
unencrypted HTTP (i.e. no TLS/HTTPS) and wish to maximise security of the authentication process. Indeed
Digest Authentication is a mandatory requirement for the WebDAYV praotocol, as noted by RFC 2518 Section
17.1.

Digest Authentication is definitely the most secure choice between Form Authentication, Basic Authentication
and Digest Authentication, although extra security aso means more complex user agent implementations.
Central to Digest Authentication is a "nonce". This is a value the server generates. Spring Security's nonce
adopts the following format:

base64(expirationTime + ":" + ndSHex(expirationTime + ":" + key))
expirationTi nme: The date and tine when the nonce expires, expressed in nmilliseconds
key: A private key to prevent nodification of the nonce token

The Di gest Aut hent i cat onEnt r yPoi nt has a property specifying the key used for generating the
nonce tokens, alongwithanonceVal i di t ySeconds property for determining the expiration time (default
300, which equal sfive minutes). Whist ever the nonceisvalid, the digest is computed by concatenating various
strings including the username, password, nonce, URI being requested, a client-generated nonce (merely a
random value which the user agent generates each request), the realm name etc, then performing an MD5
hash. Both the server and user agent perform this digest computation, resulting in different hash codes if they
disagree on an included value (eg password). In Spring Security implementation, if the server-generated nonce
has merely expired (but the digest was otherwise valid), the Di gest Aut henti cat i onEnt r yPoi nt will
senda" st al e=t rue" header. Thistellsthe user agent thereis no need to disturb the user (as the password
and username etc is correct), but simply to try again using a new nonce.

An appropriate value for Di gest Aut henti cati onEntryPoi nt's nonceVal i di t ySeconds
parameter will depend on your application. Extremely secure applications should note that an intercepted
authentication header can be used to impersonate the principal until the expi rati onTi e contained in the
nonce is reached. Thisisthe key principle when selecting an appropriate setting, but it would be unusual for
immensely secure applications to not be running over TLSHTTPS in the first instance.

Because of the more complex implementation of Digest Authentication, there are often user agent issues. For
example, Internet Explorer fails to present an "opaque" token on subsequent requests in the same session.
Spring Security filterstherefore encapsulate all stateinformationintothe"nonce" tokeninstead. Inour testing,
Spring Security's implementation works reliably with FireFox and Internet Explorer, correctly handling nonce
timeouts etc.

311 62

Spring Security

Configuration

Now that we've reviewed the theory, let's see how to use it. To implement HTTP Digest Authentication, it
is necessary to define Di gest Aut henti cati onFi | t er inthefilter chain. The application context will
need to definethe Di gest Aut henti cati onFi | t er and itsrequired collaborators:

<bean i d="digestFilter" class=
"org. springframework. security.web. aut henti cati on. ww. Di gest Aut henti cati onFilter">
<property nane="user Det ai |l sServi ce" ref="jdbcDaol npl"/>
<property nanme="aut henti cati onEntryPoint" ref="di gestEntryPoint"/>
<property nanme="user Cache" ref="userCache"/>
</ bean>

<bean i d="di gest EntryPoi nt" cl ass=
"org. springframework. security.web. aut henti cati on. ww. Di gest Aut henti cati onEntryPoi nt">
<property nanme="real mNane" val ue="Contacts Real mvia D gest Authentication"/>
<property nanme="key" val ue="acegi"/>
<property nane="nonceVal i di tySeconds" val ue="10"/>
</ bean>

The configured User Det ai | sSer vi ce is needed because Di gest Aut henti cati onFi |l ter must
have direct access to the clear text password of a user. Digest Authentication will NOT work if you are using
encoded passwords in your DAO. The DAO collaborator, along with the User Cache, are typically shared
directly with a DaoAut hent i cati onPr ovi der. Theaut henti cati onEnt r yPoi nt property must
beDi gest Aut henti cati onEnt r yPoi nt,sothat Di gest Aut henti cati onFi | t er canaobtainthe
correct r eal mName and key for digest calculations.

Like Basi cAut henti cati onFi |l ter, if authentication is successful an Aut henti cati on request
token will be placed into the Secur i t yCont ext Hol der . If the authentication event was successful, or
authentication was not attempted because the HTTP header did not contain a Digest Authentication regquest,
the filter chain will continue as normal. The only time the filter chain will be interrupted is if authentication
failsand the Aut hent i cati onEnt r yPoi nt iscalled, as discussed in the previous paragraph.

Digest Authentication's RFC offers a range of additional features to further increase security. For example,
the nonce can be changed on every request. Despite this, Spring Security implementation was designed to
minimise the complexity of the implementation (and the doubtless user agent incompatibilities that would
emerge), and avoid needing to store server-side state. You are invited to review RFC 2617 if you wish to
explore these features in more detail. Asfar as we are aware, Spring Security's implementation does comply
with the minimum standards of this RFC.

311 63

Spring Security

11.1 Overview

Remember-me or persistent-login authentication refers to web sites being able to remember the identity of a
principal between sessions. Thisistypically accomplished by sending a cookie to the browser, with the cookie
being detected during future sessions and causing automated login to take place. Spring Security provides the
necessary hooks for these operations to take place, and has two concrete remember-me implementations. One
uses hashing to preserve the security of cookie-based tokens and the other uses a database or other persistent
storage mechanism to store the generated tokens.

Note that both implemementations require a User Det ai | sSer vi ce. If you are using an authentication
provider which doesn't useaUser Det ai | sSer vi ce (for example, the LDAP provider) then it won't work
unlessyou also have aUser Det ai | sSer vi ce bean in your application context.

11.2 Simple Hash-Based Token Approach

Thisapproach uses hashing to achieve auseful remember-me strategy. In essence acookieis sent to the browser
upon successful interactive authentication, with the cookie being composed as follows:

base64(usernanme + ":" + expirationTime + ":" +
md5Hex(username + ":" + expirationTinme + ":" password + ":" + key))
user nane: As identifiable to the UserDetail sService
passwor d: That matches the one in the retrieved UserDetail s
expirationTi me: The date and tinme when the renmenber-nme token expires,
expressed in mlliseconds
key: A private key to prevent nodification of the renenber-ne token

Assuchtheremember-metokenisvalid only for the period specified, and provided that the username, password
and key does not change. Notably, this has a potential security issue in that a captured remember-me token
will be usable from any user agent until such time as the token expires. This is the same issue as with digest
authentication. If a principal is aware a token has been captured, they can easily change their password and
immediately invalidate all remember-metokens on issue. If more significant security is needed you should use
the approach described in the next section. Alternatively remember-me services should simply not beused at all.

If you are familiar with the topics discussed in the chapter on namespace configuration, you can enable
remember-me authentication just by adding the <r emenber - me> element:

<ht t p>

<renmenber - me key="nyAppKey"/ >
</ http>

The User Det ai | sSer vi ce will normally be selected automatically. If you have more than one in your
application context, you need to specify which one should be used with theuser - ser vi ce- r ef attribute,
where the value is the name of your User Det ai | sSer vi ce bean.

311 64

Spring Security

11.3 Persistent Token Approach

This approach is based on the article http://jaspan.com/improved_persistent_login_cookie best practice with
some minor modifications . To use the this approach with namespace configuration, you would supply a
datasource reference:

<ht t p>

<remenber - me dat a- sour ce-r ef =" sonmeDat aSour ce"/ >
</ http>

Thedatabase should containaper si st ent _| ogi ns table, created using thefollowing SQL (or equivalent):

create table persistent_|logins (usernane varchar(64) not null,
series varchar(64) primary key,
t oken varchar(64) not null,
| ast _used tinmestanp not null)

11.4 Remember-Me Interfaces and Implementations

Remember-me authentication is not used with basic authentication, given it is often not used with
Ht t pSessi ons. Remember-me is used with User namePasswor dAut henti cati onFilter, andis
implemented viahooksinthe Abst r act Aut henti cati onProcessi ngFi | t er superclass. The hooks
will invoke a concrete Renenber MeSer vi ces at the appropriate times. The interface looks like this:

Aut henti cati on aut oLogi n(Htt pServl et Request request, HttpServl et Response response);
voi d | ogi nFai | (Htt pServl et Request request, H tpServl et Response response);
voi d | ogi nSuccess(HttpServl et Request request, HttpServl et Response response,

Aut henti cati on successful Aut henti cation);

Please refer to the JavaDocs for a fuller discussion on what the methods do, although
note a this stage that Abstract AuthenticationProcessingFilter only cals the
loginFail () and |oginSuccess() methods. The autolLogin() method is caled by
Renmenber MeAut henti cati onFi | t er whenever the Secur i t yCont ext Hol der does not contain
an Aut hent i cat i on. Thisinterface therefore provides the underlying remember-me implementation with
sufficient notification of authentication-related events, and delegates to the implementation whenever a
candidate web request might contain a cookie and wish to be remembered. This design allows any number of
remember-meimplementation strategies. We've seen abovethat Spring Security providestwo implementations.
Well look at thesein turn.

TokenBasedRememberMeServices

This implementation supports the simpler approach described in Section 112,
“Simple Hash-Based Token Approach’. TokenBasedRenenber MeServi ces generates a

lEssentially, the username is not included in the cookie, to prevent exposing a valid login name unecessarily. There is a discussion on
this in the comments section of this article.

311 65

http://jaspan.com/improved_persistent_login_cookie_best_practice

Spring Security

Renenber MeAut henti cati onToken, which is processed by
Renmenber MeAut hent i cati onProvi der . A key isshared between this authentication provider and the
TokenBasedRenenber MeSer vi ces. In addition, TokenBasedRenmenber MeSer vi ces requires A
UserDetail sService from which it can retrieve the username and password for signature comparison purposes,
and generate the Remrenber MeAut hent i cat i onToken to contain the correct G ant edAut hori tys.
Some sort of logout command should be provided by the application that invalidates the cookie if the user
requeststhis. TokenBasedRenenber MeSer vi ces asoimplements Spring Security'sLogout Handl er
interface so can be used with Logout Fi | t er to have the cookie cleared automatically.

The beans required in an application context to enable remember-me services are as follows:

<bean i d="renmenber MeFilter" class=

"org. springframework. security.web. aut henti cati on. remenber me. Renenber MeAut henti cationFilter">
<property nanme="renenber MeServi ces" ref="renmenber MeServi ces"/ >
<property nane="aut henti cati onManager" ref="theAut henti cati onManager" />

</ bean>

<bean i d="renmenber MeServi ces" cl ass=
"org. springfranmework. security.web. aut henti cati on. renmenber me. TokenBasedRenmenber MeSer vi ces" >
<property nanme="userDetail sService" ref="nyUserDetail sService"/>
<property nane="key" val ue="spri ngRocks"/>
</ bean>

<bean i d="renmenber MeAut henti cati onProvi der" cl ass=
"org. springframework. security.authentication. renenberme. Remenber MeAut hent i cat i onProvi der ">
<property nanme="key" val ue="spri ngRocks"/>

</ bean>
Don't forget to add your Renenber MeSer vi ces implementation to your
User nanePasswor dAut henti cationFilter. set Remenber MeSer vi ces() property, include
the Renenber MeAut henti cati onProvi der in your
Aut henti cati onManager . set Provi ders() list, and add

Renenber MeAut henti cati onFi |l t er into your Fi | t er Chai nPr oxy (typicaly immediately after
your User namePasswor dAut hent i cati onFil ter).

PersistentTokenBasedRememberMeServices

This class can be used in the same way as TokenBasedRenenber MeSer vi ces, but it additionally needs
to be configured with a Per si st ent TokenReposi t ory to store the tokens. There are two standard
implementations.

e I nMenoryTokenReposi t oryl npl whichisintended for testing only.

» JdbcTokenReposi t oryl npl which stores the tokens in a database.
The database schemais described abovein Section 11.3, “ Persistent Token Approach”.

311 66

Spring Security

HTTP session related functonality is handled by a combination of the Sessi onManagenent Fi | t er and
the Sessi onAut hent i cat i onSt r at egy interface, which the filter delegatesto. Typical usage includes
session-fixation protection attack prevention, detection of session timeouts and restrictions on how many
sessions an authenticated user may have open concurrently.

12.1 SessionManagementFilter

The Sessi onManagenent Fi | t er checks the contents of the SecurityCont ext Repository
against the current contents of the Securi t yCont ext Hol der to determine whether a user has been
authenticated during the current request, typically by anon-interactive authentication mechanism, such as pre-
authentication or remember-me 1. If the repository contains a security context, the filter does nothing. If it
doesn't, and the thread-local Securi t yCont ext contains a (non-anonymous) Aut hent i cat i on object,
thefilter assumesthey have been authenticated by apreviousfilter inthe stack. It will theninvokethe configured
Sessi onAut henti cati onStr at egy.

If the user is not currently authenticated, the filter will check whether an invalid session ID has been requested
(because of a timeout, for example) and will invoke the configured | nval i dSessi onSt r at egy, if
one is set. The most common behaviour is just to redirect to a fixed URL and this is encapsulated in the
standard implementation Si npl eRedi rect | nval i dSessi onSt r at egy. The latter is aso used when
configuring an invalid session URL through the namespace, as described earlier.

12.2 Sessi onAut henti cati onSt r at egy

Sessi onAut henti cationStrategy is used by both SessionManagenentFilter and
Abst ract Aut henti cati onProcessi ngFi |l t er, soif you are using a customized form-login class,
for example, you will need to inject it into both of these. In this case, atypical configuration, combining the
namespace and custom beans might look like this:

<ht t p>
<customfilter position="FORM LOG N _FILTER"' ref="nmyAuthFilter" />
<sessi on- management sessi on-aut henti cati on-strategy-ref="sas"/>
</ http>

<beans: bean i d="myAuthFilter" class=
"org. springfranmework. security.web. aut henti cati on. User nanePasswor dAut henti cati onFilter">
<beans: property nane="sessi onAut henticati onStrategy" ref="sas" />

</ beans: bean>

<beans: bean i d="sas" cl ass=
"org. springfranmework. security.web. aut henti cati on. sessi on. Sessi onFi xati onProtecti onStrategy" />

Note that the use of the default, Sessi onFi xati onPr ot ecti onStr at egy may cause issues if you
are storing beans in the session which implement Ht t pSessi onBi ndi ngLi st ener, including Spring
session-scoped beans. See the Javadoc for this class for more information.

Iauthentication by mechanisms which perform a redirect after authenticating (such as form-login) will not be detected by
Sessi onManagenent Fi | t er, asthefilter will not be invoked during the authenticating request. Session-management functionality
has to be handled separately in these cases.

311 67

Spring Security

12.3 Concurrency Control

Spring Security is able to prevent a principal from concurrently authenticating to the same application more
than a specified number of times. Many ISV's take advantage of this to enforce licensing, whilst network
administratorslikethisfeature becauseit helps prevent people from sharing login names. Y ou can, for example,
stop user “Batman” from logging onto the web application from two different sessions. Y ou can either expire
their previouslogin or you can report an error when they try to log in again, preventing the second login. Note
that if you are using the second approach, a user who has not explicitly logged out (but who has just closed
their browser, for example) will not be ableto log in again until their original session expires.

Concurrency control is supported by the namespace, so please check the earlier namespace chapter for the
simplest configuration. Sometimes you need to customize things though.

The implementation uses a specialized version of Sessi onAut henti cati onStrategy, called
Concurrent Sessi onControl Strat egy.

Note

Previously the concurrent authentication check was made by the Pr ovi der Manager , which could
be injected with a Concur r ent Sessi onContr ol | er. The latter would check if the user was
attempting to exceed the number of permitted sessions. However, thisapproach required that an HTTP
session be created in advance, which isundesirable. In Spring Security 3, the user isfirst authenticated
by theAut hent i cat i onManager andoncethey are successfully authenticated, asessioniscreated
and the check is made whether they are allowed to have another session open.

To use concurrent session support, you'll need to add the following toweb. xni :

<li stener>
<listener-class>
org. springframewor k. security.web. sessi on. H't pSessi onEvent Publ i sher
</listener-class>
</listener>

In addition, you will need to add the Concur r ent Sessi onFi | t er toyour Fi | t er Chai nPr oxy. The
Concurrent Sessi onFi | t er requires two properties, sessi onRegi st ry, which generally points to
an instance of Sessi onRegi stryl npl, and expi redUr |, which points to the page to display when
a session has expired. A configuration using the namespace to create the Fi | t er Chai nPr oxy and other
default beans might look like this:

<htt p>
<customfilter position="CONCURRENT_SESS|I ON FI LTER' ref="concurrencyFilter" />
<customfilter position="FORM LOG N FILTER" ref="nyAuthFilter" />

<sessi on- managenment sessi on-aut henti cati on-strategy-ref="sas"/>
</ http>

<beans: bean i d="concurrencyFilter"
cl ass="org. springframewor k. security.web. sessi on. Concurrent Sessi onFilter">
<beans: property nane="sessi onRegi stry" ref="sessionRegistry" />

311 68

Spring Security

<beans: property nanme="expi redUrl" val ue="/session-expired. htm' />
</ beans: bean>

<beans: bean i d="myAuthFilter" class=
"org. springframework. security.web. aut henti cati on. User namePasswor dAut henti cati onFil ter">
<beans: property nane="sessi onAut henticati onStrategy" ref="sas" />
<beans: property nane="aut henti cati onManager" ref="aut henticati onManager" />

</ beans: bean>

<beans: bean i d="sas" cl ass=

"org. springframework. security.web. aut henti cati on. sessi on. Concurr ent Sessi onControl Strategy">
<beans: constructor-arg nane="sessi onRegi stry" ref="sessi onRegi stry" />
<beans: property nane="maxi munmSessi ons" val ue="1" />

</ beans: bean>

<beans: bean i d="sessi onRegi stry"
cl ass="org. springframework. security. core. sessi on. Sessi onRegi strylnpl" />

Adding the listener to web. xml causes an Appli cati onEvent to be published to the Spring
Appl i cati onCont ext everytimeaHt t pSessi on commencesor terminates. Thisiscritical, asit allows
the Sessi onRegi st ryl npl to be notified when a session ends. Without it, a user will never be able to
log back in again once they have exceeded their session allowance, even if they log out of another session
or it times out.

Querying the Sessi onRegi st ry for currently authenticated users and
their sessions

Setting up concurrency-control, either through the namespace or using plain beans has the useful side effect of
providing you with areferencetothe Sessi onRegi st r y whichyou can usedirectly within your application,
so even if you don't want to restrict the number of sessions a user may have, it may be worth setting up the
infrastructure anyway. You can set the maxi nunSessi on property to -1 to allow unlimited sessions. If
you're using the namespace, you can set an alias for the internally-created Sessi onRegi stry using the
sessi on-regi stry-ali as attribute, providing areference which you can inject into your own beans.

The get Al I Pri nci pal s() method supplies you with a list of the currently authenticated users.
You can list a user's sessions by calling the get Al | Sessi ons(Chj ect principal, boolean
i ncl udeExpi r edSessi ons) method, whichreturnsalist of Sessi onl nf or mat i on objects. You can
also expireauser'ssession by calling expi r eNow() onaSessi onl nf or mat i on instance. When the user
returns to the application, they will be prevented from proceeding. Y ou may find these methods useful in an
administration application, for example. Have alook at the Javadoc for more information.

311 69

Spring Security

13.1 Overview

It's generally considered good security practice to adopt a “deny-by-default” where you explicitly specify
what is allowed and disallow everything else. Defining what is accessible to unauthenticated usersis asimilar
situation, particularly for web applications. Many sites require that users must be authenticated for anything
other than a few URLs (for example the home and login pages). In this case it is easiest to define access
configuration attributes for these specific URL s rather than have for every secured resource. Put differently,
sometimesitisniceto say ROLE_SOVETHI NGisrequired by default and only allow certain exceptionsto this
rule, such as for login, logout and home pages of an application. You could also omit these pages from the
filter chain entirely, thus bypassing the access control checks, but this may be undesirable for other reasons,
particularly if the pages behave differently for authenticated users.

Thisiswhat we mean by anonymous authentication. Note that there is no real conceptual difference between
a user who is “anonymously authenticated” and an unauthenticated user. Spring Security's anonymous
authentication just gives you amore convenient way to configure your access-control attributes. Callsto servlet
APl callssuch asget Cal | er Pri nci pal , for example, will still return null even though there is actually
an anonymous authentication object in the Secur i t yCont ext Hol der .

There are other situations where anonymous authentication is useful, such as when an auditing interceptor
gueriesthe Secur i t yCont ext Hol der to identify which principal was responsible for a given operation.
Classes can be authored more robustly if they know the Secur i t yCont ext Hol der aways contains an
Aut hent i cat i on abject, and never nul | .

13.2 Configuration

Anonymous authentication support is provided automatically when using the HTTP configuration Spring
Security 3.0 and can be customized (or disabled) using the <anonynous> element. You don't need to
configure the beans described here unless you are using traditional bean configuration.

Three classes that together provide the anonymous authentication feature.
AnonynmousAut henti cati onToken is an implementation of Authentication, and
stores the GrantedAuthoritys which apply to the anonymous principa. There is
a corresponding AnonynousAut henti cati onProvi der, which is chained into the
Provi der Manager so that AnonynousAut henti cati onTokens are accepted. Findly, there is an
AnonynousAut hent i cati onFi | t er, whichischained after the normal authentication mechanisms and
automatically addsan AnonynousAut hent i cati onToken totheSecuri t yCont ext Hol der if there
isno existing Aut hent i cat i on held there. The definition of the filter and authentication provider appears
asfollows:

<bean i d="anonynousAut hFilter"
cl ass="org. springframework. security.web. aut henti cati on. AnonynousAut henti cationFilter">
<property nanme="key" val ue="f oobar"/>
<property nanme="userAttribute" val ue="anonynmobusUser, ROLE_ANONYMOUS"/ >
</ bean>

<bean i d="anonynousAut henti cati onProvi der "

311 70

Spring Security

cl ass="org. springframework. security.authenticati on. AnonynousAut henti cati onProvi der">
<property nanme="key" val ue="foobar"/>
</ bean>

The key is shared between the filter and authentication provider, so that tokens created by
the former are accepted by the latter’. The userAttribute is expressed in the form of
user nanel nTheAut henti cati onToken, gr ant edAut hority[, grant edAut hority]. This
is the same syntax as used after the equals sign for | nMenor yDaol npl 'suser Map property.

Asexplained earlier, the benefit of anonymous authentication isthat all URI patterns can have security applied
to them. For example:

<bean i d="filterSecuritylnterceptor”
cl ass="org. springframework. security.web.access.intercept.FilterSecuritylnterceptor">
<property nanme="aut henti cati onManager" ref="aut henti cati onManager"/>
<property nane="accessDeci si onManager" ref="httpRequest AccessDeci si onManager"/>
<property nane="securityMetadata">
<security:filter-security-metadata-source>
<security:intercept-url pattern='/index.jsp' access=" ROLE_ANONYMOUS, ROLE USER />
<security:intercept-url pattern='/hello.htm access=" ROLE_ANONYMOUS, ROLE USER />
<security:intercept-url pattern='/l|ogoff.jsp'" access=" ROLE_ANONYMOUS, ROLE_USER />
<security:intercept-url pattern='/login.jsp' access=" ROLE_ANONYMOUS, ROLE USER />
<security:intercept-url pattern='/**' access=' ROLE_USER />
</security:filter-security-nmetadata-source>" +
</ property>
</ bean>

13.3 Aut henti cati onTr ust Resol ver

Rounding out the anonymous authentication discussion is the Aut henti cati onTrust Resol ver
interface, withitscorresponding Aut hent i cati onTr ust Resol ver | npl implementation. Thisinterface
provides an i sAnonynous(Aut henti cati on) method, which allows interested classes to take into
account this specia type of authentication status. The Excepti onTransl ati onFi |l t er uses this
interface in processing AccessDeni edExcept i ons. If an AccessDeni edExcept i on isthrown, and
the authentication is of an anonymous type, instead of throwing a 403 (forbidden) response, the filter will
instead commence the Aut hent i cat i onEnt r yPoi nt so the principal can authenticate properly. Thisis
a necessary distinction, otherwise principals would always be deemed “authenticated” and never be given an
opportunity to login viaform, basic, digest or some other normal authentication mechanism.

You will often see the ROLE_ANONYMOUS attribute in the above interceptor configuration replaced with
I S_AUTHENTI CATED_ANONYMOUSLY, which is effectively the same thing when defining access controls.

The use of the key property should not be regarded as providing any real security here. It is merely a book-keeping exercise. If you are
sharing aPr ovi der Manager which containsan AnonynousAut hent i cati onPr ovi der inascenario whereit ispossible for an
authenticating client to construct the Aut hent i cat i on object (such aswith RMI invocations), then amalicious client could submit an
AnonynousAut hent i cat i onToken which it had created itself (with chosen username and authority list). If the key is guessable
or can be found out, then the token would be accepted by the anonymous provider. Thisisn't a problem with normal usage but if you are
using RMI you would be best to use acustomized Pr ovi der Manager which omitsthe anonymous provider rather than sharing the one
you use for your HTTP authentication mechanisms.

311 71

Spring Security

This is an example of the use of the Aut hent i cat edVot er which we will see in the authorization
chapter. It uses an Aut henti cati onTr ust Resol ver to process this particular configuration attribute
and grant access to anonymous users. The Aut hent i cat edVot er approach is more powerful, since it
allowsyou to differentiate between anonymous, remember-me and fully-authenticated users. If you don't need
this functionality though, then you can stick with ROLE_ANONYMOUS, which will be processed by Spring
Security's standard Rol eVot er .

311 72

Part IV. Authorization

The advanced authorization capabilities within Spring Security represent one of the most compelling reasons
for its popularity. Irrespective of how you choose to authenticate - whether using a Spring Security-provided
mechanism and provider, or integrating with a container or other non-Spring Security authentication authority
- you will find the authorization services can be used within your application in a consistent and ssmple way.

In this part well explore the different Abst r act Secur i t yl nt er cept or implementations, which were
introduced in Part |. We then move on to explore how to fine-tune authorization through use of domain access
control lists.

Spring Security

14.1 Authorities

As we saw in the technical overview, al Authentication implementations store a list of
G ant edAut hority objects. These represent the authorities that have been granted to the
principal. The Grant edAut hority objects are inserted into the Aut henti cati on object by
the Aut henti cati onManager and are later read by AccessDeci si onManager s when making
authorization decisions.

G ant edAut hori ty isaninterface with only one method:

String getAuthority();

This method allows AccessDeci si onManager s to obtain a precise St ri ng representation of the
G ant edAut hori t y. By returning arepresentation asa St r i ng, aG ant edAut hori ty can be easily
“read” by most AccessDeci si onManager s. If aG ant edAut hor i t y cannot be precisely represented
asasString, the Gant edAut hority is considered “complex” and get Aut hori ty() must return
nul | .

Anexampleof a“complex” Gr ant edAut hor i t y would be animplementation that storesalist of operations
and authority thresholds that apply to different customer account numbers. Representing this complex
G ant edAut hori ty asaSt ri ng would bequitedifficult, and asaresult theget Aut hori t y() method
should return nul | . Thiswill indicate to any AccessDeci si onManager that it will need to specifically
support the Gr ant edAut hor i t y implementation in order to understand its contents.

Spring Security includesone concrete G- ant edAut hor i t y implementation, G- ant edAut hori tyl npl .
This alows any user-specified String to be converted into a G antedAuthority. All
Aut henti cat i onPr ovi der sincluded with the security architecture use G ant edAut hori tyl npl to
populate the Aut hent i cat i on object.

14.2 Pre-Invocation Handling

As we've also seen in the Technical Overview chapter, Spring Security provides interceptors which control
access to secure objects such as method invocations or web requests. A pre-invocation decision on whether the
invocation is allowed to proceed is made by the AccessDeci si onManager .

The AccessDecisionManager

TheAccessDeci si onManager iscaledbytheAbst ract Securi tyl nt er cept or andisresponsible
for making final access control decisions. The AccessDeci si onManager interface contains three
methods:

voi d deci de(Aut henti cation authentication, Cbject secureObject,

Col | ecti on<Confi gAttribute> attrs) throws AccessDeni edExcepti on;
bool ean supports(ConfigAttribute attribute);
bool ean supports(C ass clazz);

311 74

Spring Security

The AccessDeci si onManager's deci de method is passed al the relevant information it needs in
order to make an authorization decision. In particular, passing the secure Obj ect enables those arguments
contained in the actual secure object invocation to be inspected. For example, let's assume the secure
object was a Met hodl nvocati on. It would be easy to query the Met hodl nvocati on for any
Cust oner argument, and then implement some sort of security logic in the AccessDeci si onManager
to ensure the principal is permitted to operate on that customer. Implementations are expected to throw an
AccessDeni edExcepti on if accessis denied.

Thesupports(Confi gAttri bute) methodiscaled by the Abst ract Securityl nterceptor a
startup timeto determine if the AccessDeci si onianager can processthe passed Confi gAttri bute.
Thesupport s(C ass) method iscalled by asecurity interceptor implementation to ensure the configured
AccessDeci si onManager supports the type of secure object that the security interceptor will present.

Voting-Based AccessDecisionManager Implementations

Whilst users can implement their own AccessDeci si onManager to control all aspects of authorization,
Spring Security includes several AccessDeci si onManager implementations that are based on voting.
Figure 14.1, “Voting Decision Manager” illustrates the relevant classes.

AccessDecisionManager

ConfigAttribute @ AccessDecisionVoter

"*’ :
| ' Y
: AbstractAccessDecisionManager PN
|

SecurityConfig

RoleVater '

AuthenticatedVoter

AffirmativeBased

UnanimousBased

ConsensusBased

Figure 14.1. Voting Decision Manager

Using this approach, a series of AccessDeci si onVot er implementations are polled on an
authorization decision. The AccessDeci si onManager then decides whether or not to throw an
AccessDeni edExcept i on based on its assessment of the votes.

The AccessDeci si onVot er interface has three methods:

int vote(Authentication authentication, Object object, Collection<ConfigAttribute> attrs);

311 75

Spring Security

bool ean supports(ConfigAttribute attribute);
bool ean supports(C ass clazz);

Concrete implementations return an int, with possible values being reflected in the
AccessDeci si onVot er static fields ACCESS_ABSTAI N, ACCESS_DENI ED and ACCESS _GRANTED.
A voting implementation will return ACCESS_ABSTAI Nif it has no opinion on an authorization decision. If
it does have an opinion, it must return either ACCESS DENI ED or ACCESS GRANTED.

There are three concrete AccessDeci si onManager s provided with Spring Security that tally the votes.
The ConsensusBased implementation will grant or deny access based on the consensus of non-abstain
votes. Properties are provided to control behavior in the event of an equality of votes or if al votes are
abstain. The Af fi rmat i veBased implementation will grant access if one or more ACCESS GRANTED
votes were received (i.e. a deny vote will be ignored, provided there was at least one grant vote). Like the
ConsensusBased implementation, there is a parameter that controls the behavior if al voters abstain. The
Unani nousBased provider expects unanimous ACCESS_GRANTED votesin order to grant access, ignoring
abstains. It will deny accessif there is any ACCESS DENI ED vote. Like the other implementations, there is
aparameter that controls the behaviour if all voters abstain.

Itispossibleto implement acustom AccessDeci si onManager that talliesvotes differently. For example,
votes from a particular AccessDeci si onVot er might receive additional weighting, whilst a deny vote
from a particular voter may have a veto effect.

Rol eVot er

The most commonly used AccessDeci si onVot er provided with Spring Security is the simple
Rol eVot er, which treats configuration attributes as simple role names and votes to grant access if the user
has been assigned that role.

It will vote if any Confi gAttri but e begins with the prefix ROLE . It will vote to grant access if there
isa G ant edAut hori ty which returns a St ri ng representation (via the get Aut hori ty() method)
exactly equal to one or more Conf i gAttri but es starting with the prefix ROLE . If there is no exact
match of any Confi gAt tri but e starting with ROLE_, the Rol eVot er will vote to deny access. If no
Confi gAttri but e beginswith ROLE_, the voter will abstain.

Aut hent i cat edVot er

Another voter whichwe'veimplicitly seenisthe Aut hent i cat edVot er , which can be used to differentiate
between anonymous, fully-authenticated and remember-me authenticated users. Many sites allow certain
limited access under remember-me authentication, but require a user to confirm their identity by logging in
for full access.

When we've used the attribute | S_AUTHENTI CATED_ANONYMOUSLY to grant anonymous access, this
attribute was being processed by the Aut hent i cat edVot er . See the Javadoc for this class for more
information.

Custom Voters

Obviously, you can aso implement a custom AccessDeci si onVoter and you can put just
about any access-control logic you want in it. It might be specific to your application (business-

311 76

Spring Security

logic related) or it might implement some security administration logic. For example, you'll find
a blog article [http://blog.springsource.com/2009/01/02/spring-security-customization-part-2-adjusting-
secured-session-in-real-timef] on the SpringSource web site which describes how to use avoter to deny access
in real-time to users whose accounts have been suspended.

14.3 After Invocation Handling

Whilst the AccessDeci si onManager is caled by the Abstract Securi tyl nt er cept or before
proceeding with the secure object invocation, some applications need a way of modifying the object actually
returned by the secure object invocation. Whilst you could easily implement your own AOP concern to achieve
this, Spring Security provides a convenient hook that has several concrete implementations that integrate with
its ACL capabilities.

Figure 14.2, “ After Invocation Implementation” illustrates Spring Security's Af t er | nvocat i onManager
and its concrete implementations.

AfterinvocationManager AfterinvocationProvider
X i n a e

PostlinvocationAdvice

AfterinvocationProviderManager AbstractAclProvider Brovider

AclEntryAfterinvocationProvider

Figure 14.2. After Invocation I mplementation

Like many other parts of Spring Security, Afterlnvocati onManager has a single
concrete implementation, Afterlnvocati onProvi der Manager, which polls a list of
Afterlnvocati onProviders. Each Afterl nvocati onProvi der isalowed to modify the return
object or throw an AccessDeni edExcept i on. Indeed multiple providers can modify the object, as the
result of the previous provider is passed to the next in the list.

Pleasebeawarethatif you'reusing Af t er | nvocat i onManager , youwill still need configuration attributes
that allow the Met hodSecuri tyl nt er cept or's AccessDeci si onManager to alow an operation.
If you're using the typical Spring Security included AccessDeci si onManager implementations,
having no configuration attributes defined for a particular secure method invocation will cause each
AccessDeci si onVot er to abstain from voting. In turn, if the AccessDeci si onVanager property
"al | ow f Al | Abst ai nDeci si ons" isfal se, an AccessDeni edExcept i on will be thrown. You
may avoid this potential issue by either (i) setting"al | owm f Al | Abst ai nDeci si ons" tot r ue (although
thisis generally not recommended) or (ii) simply ensure that there is at least one configuration attribute that
an AccessDeci si onVot er will vote to grant access for. This latter (recommended) approach is usually
achieved through a ROLE_USER or ROLE_ AUTHENTI CATED configuration attribute.

311 77

http://blog.springsource.com/2009/01/02/spring-security-customization-part-2-adjusting-secured-session-in-real-time/
http://blog.springsource.com/2009/01/02/spring-security-customization-part-2-adjusting-secured-session-in-real-time/
http://blog.springsource.com/2009/01/02/spring-security-customization-part-2-adjusting-secured-session-in-real-time/

Spring Security

14.4 Hierarchical Roles

It isa common requirement that a particular role in an application should automatically “include” other roles.
For example, in an application which has the concept of an “admin” and a“user” role, you may want an admin
to be able to do everything a normal user can. To achieve this, you can either make sure that all admin users
are also assigned the “user” role. Alternatively, you can modify every access constraint which requires the
“user” roleto also include the “admin” role. This can get quite complicated if you have alot of different roles
in your application.

The use of a role-hierarchy allows you to configure which roles (or authorities) should include others.
An extended version of Spring Security's Rol eVot er, Rol eHi er ar chyVot er, is configured with a
Rol eHi er ar chy, fromwhich it obtains all the “reachable authorities” which the user is assigned. A typical
configuration might look like this:

<bean i d="rol eVoter" class="org. springfranmework. security.access. vote. Rol eHi erarchyVoter">
<constructor-arg ref="rol eH erarchy" />
</cl ass>
<bean i d="rol eH erarchy"
cl ass="org. springframework. security.access. hi erarchi cal rol es. Rol eHi erarchyl npl ">
<property nanme="hierarchy">
ROLE_ADM N > ROLE_STAFF
ROLE_STAFF > ROLE_USER
ROLE_USER > ROLE_GUEST
</ property>
</ bean>

Here we have four roles in a hierarchy ROLE ADM N => ROLE STAFF => ROLE USER =>
RCOLE_GUEST. A user who is authenticated with ROLE_ADM N, will behave as if they have all four roles
when security contraints are evaluated against an AccessDeci si onManager cconfigured with the above
Rol eHi er ar chyVot er . The > symbol can be thought of as meaning “includes”.

Role hierarchies offer a convenient means of simplifying the access-control configuration data for your
application and/or reducing the number of authorities which you need to assign to a user. For more complex
reguirements you may wish to define a logical mapping between the specific access-rights your application
requires and therolesthat are assigned to users, transl ating between the two when |oading the user information.

311 78

Spring Security

15.1 AOP Alliance (MethodInvocation) Security Interceptor

Prior to Spring Security 2.0, securing Met hodl nvocat i onsneeded quite alot of boiler plate configuration.
Now the recommended approach for method security isto use namespace configuration. Thisway the method
security infrastructure beans are configured automatically for you so you don't really need to know about the
implementation classes. Wel'll just provide a quick overview of the classes that are involved here.

Method security in enforced using a MethodSecuritylnterceptor, which secures
Met hodl nvocat i ons. Depending on the configuration approach, an interceptor may be specific to asingle
bean or shared between multiple beans. The interceptor uses a Met hodSecuri t yMet adat aSour ce
instance to obtain the configuration attributes that apply to a particular method invocation.
MapBasedMet hodSecuri t yMet adat aSour ce is used to store configuration attributes keyed by
method names (which can be wildcarded) and will be used internally when the attributes are defined
in the application context using the <i nt er cept - met hods> or <pr ot ect - poi nt > elements. Other
implementations will be used to handle annotation-based configuration.

Explicit MethodSecuritylnterceptor Configuration

Y ou can of course configureaMet hodSecuri tylt er cept or directly inyour application context for use
with one of Spring AOP's proxying mechanisms:

<bean i d="bankManager Security" class=
"org. springframework. security.access.intercept.aopalliance. MethodSecuritylnterceptor”>
<property nane="aut henti cati onManager" ref="aut henti cati onManager"/>
<property nanme="accessDeci si onManager" ref="accessDeci si onManager"/>
<property nane="afterlnvocati onManager" ref="afterlnvocati onManager"/>
<property nane="securityMetadat aSource">
<val ue>
com nyconpany. BankManager . del et e*=ROLE_SUPERVI SOR
com nyconpany. BankManager . get Bal ance=ROLE_TELLER, ROLE_SUPERVI SOR
</ val ue>
</ property>
</ bean>

15.2 Aspectd (JoinPoint) Security Interceptor

The AspectJ security interceptor is very similar to the AOP Alliance security interceptor discussed in the
previous section. Indeed we will only discuss the differencesin this section.

The AspectJ interceptor is named Aspect JSecuri t yl nt er cept or . Unlike the AOP Alliance security
interceptor, which relies on the Spring application context to weave in the security interceptor via proxying,
the Aspect JSecuri tyl nt er cept or isweaved in viathe Aspectd compiler. It would not be uncommon
to use both types of security interceptors in the same application, with Aspect JSecuri t yl nt er cept or
being used for domain aobject instance security and the AOP Alliance Met hodSecuri tyl nt er cept or
being used for services layer security.

Let's first consider how the Aspect JSecurityl nt er cept or is configured in the Spring application
context:

311 79

Spring Security

<bean i d="bankManager Security" class=
"org.springfranmework. security.access.intercept.aspectj.AspectJSecuritylnterceptor">
<property nanme="aut henti cati onManager" ref="aut henti cati onManager"/>
<property nane="accessDeci si onManager" ref="accessDeci si onManager"/>
<property nane="afterlnvocati onManager" ref="afterlnvocati onManager"/>
<property nanme="securityMetadat aSource">
<val ue>
com nyconpany. BankManager . del et e*=ROLE_SUPERVI SOR
com nmyconpany. BankManager . get Bal ance=ROLE_TELLER, ROLE_SUPERVI SOR
</ val ue>
</ property>
</ bean>

As you can see, asde from the class name, the AspectJSecuritylnterceptor is
exactly the same as the AOP Alliance security interceptor. Indeed the two interceptors can
share the same securityMet adat aSource, as the SecurityMet adat aSour ce works with
java.l ang. refl ect. Met hods rather than an AOP library-specific class. Of course, your access
decisions have access to the relevant AOP library-specific invocation (ie Met hodl nvocati on or
Joi nPoi nt) and as such can consider a range of addition criteria when making access decisions (such as
method arguments).

Next you'll need to define an AspectJaspect . For example:

package org. springfranmework. security. sanpl es. aspectj ;

i mport org.springframework. security.access.intercept.aspectj.AspectJSecuritylnterceptor;
i mport org.springframework. security.access.intercept.aspectj.AspectJCal | back;
i mport org.springfranmework. beans. factory.|nitializingBean;

publ i c aspect Dommi nObj ect | nst anceSecurityAspect inplenents InitializingBean {
private AspectJSecuritylnterceptor securitylnterceptor;

poi nt cut donai nbj ect | nst anceExecution(): target(Persistabl eEntity)
&& execution(public * *(..)) && !'within(Domai nCbj ect| nstanceSecurityAspect);

bj ect around(): dommi nObj ect | nst anceExecution() {
if (this.securitylnterceptor == null) {
return proceed();

}

Aspect JCal | back cal | back = new AspectJCal | back() {
public Object proceedWthObject() {
return proceed();
}
1%

return this.securitylnterceptor.invoke(thisJoinPoint, callback);

}

publ i c AspectJSecuritylnterceptor getSecuritylnterceptor() {
return securitylnterceptor;

}

public void setSecuritylnterceptor(AspectJSecuritylnterceptor securitylnterceptor) {
this.securitylnterceptor = securitylnterceptor;

}

311 80

Spring Security

public void afterPropertiesSet() throws Exception {
if (this.securitylnterceptor == null)
throw new ||| egal Argunent Excepti on("securitylnterceptor required");

}

In the above example, the security interceptor will be applied to every instance of Per si st abl eEntity,
whichisan abstract class not shown (you can use any other classor poi nt cut expressionyou like). For those
curious, Aspect JCal | back isneeded becausethepr oceed() ; statement hasspecia meaning only within
anaround() body. TheAspect JSecurityl nt er cept or calsthisanonymousAspect JCal | back
class when it wants the target object to continue.

Y ouwill need to configure Spring to load the aspect and wireit withthe Aspect JSecuri t yl nt er cept or.
A bean declaration which achieves thisis shown below:

<bean i d="domai nObj ect | nst anceSecuri t yAspect "
cl ass="security.sanpl es. aspect . Donai nObj ect | nst anceSecuri t yAspect"
factory-nmet hod="aspect O0f ">
<property nanme="securitylnterceptor" ref="bankManager Security"/>
</ bean>

That's it! Now you can create your beans from anywhere within your application, using whatever means you
think fit (egnew Per son() ;) and they will have the security interceptor applied.

311 81

Spring Security

Spring Security 3.0 introduced the ability to use Spring EL expressions as an authorization mechanism in
addition to the simple use of configuration attributes and access-decision voters which have seen before.
Expression-based access control is built on the same architecture but allows complicated boolean logic to be
encapsulated in a single expression.

16.1 Overview

Spring Security uses Spring EL for expression support and you should look at how that works if you are
interested in understanding the topic in more depth. Expressions are evaluated with a “root object” as part of
the evaluation context. Spring Security uses specific classes for web and method security as the root object, in
order to provide built-in expressions and access to values such as the current principal.

Common Built-In Expressions

The base class for expression root objects is Secur i t yExpr essi onRoot . This provides some common
expressions which are available in both web and method security.

Table 16.1. Common built-in expressions

Expression Description

hasRol e([rol e]) Returnst r ue if the current principal has the specified role.

hasAnyRol e([rol el, r ol e2])Returnst r ue if thecurrent principal hasany of the supplied roles(given
as a comma-separated list of strings)

princi pal Allowsdirect accessto the principal object representing the current user

aut henti cation Allowsdirect accessto the current Aut hent i cat i on object obtained
from the Secur i t yCont ext

perm t Al Alwaysevaluatestot r ue

denyAl | Alwaysevaluatestof al se

i SAnonynous() Returnst r ue if the current principal is an anonymous user
i sSRemenber Me() Returnst r ue if the current principal is a remember-me user
i SAut henti cat ed() Returnst r ue if the user is not anonymous

i sFul I yAut henti cated() Returnst r ue if the user isnot an anonymous or a remember-me user

16.2 Web Security Expressions

To useexpressionsto secureindividual URLSs, youwouldfirst needto settheuse- expr essi ons attributein
the<ht t p>elementtot r ue. Spring Security will then expect theaccess attributes of the<i nt er cept -
ur | > elements to contain Spring EL expressions. The expressions should evaluate to a boolean, defining
whether access should be alowed or not. For example:

311 82

Spring Security

<http use-expressions="true">
<intercept-url pattern="/adm n*"
access="hasRol e(' adm n') and hasl pAddress(' 192.168.1.0/24")"/>

</ http>

Here we have defined that the “admin” area of an application (defined by the URL pattern) should only
be avalable to users who have the granted authority “admin” and whose IP address matches a local
subnet. We've aready seen the built-in hasRol e expression in the previous section. The expression
hasl| pAddr ess is an additional built-in expression which is specific to web security. It is defined by the
WebSecurit yExpr essi onRoot class, an instance of which is used as the expression root object when
evaluation web-access expressions. This object also directly exposed the Ht t pSer vl et Request object
under the namer equest so you can invoke the request directly in an expression.

If expressionsare being used, aWebExpr essi onVot er will beaddedtothe AccessDeci si onManager
which is used by the namespace. So if you aren't using the namespace and want to use expressions, you will
have to add one of these to your configuration.

16.3 Method Security Expressions

Method security is a bit more complicated than a simple allow or deny rule. Spring Security 3.0 introduced
some hew annotations in order to allow comprehensive support for the use of expressions.

@°r e and @ost Annotations

There are four annotations which support expression attributes to allow pre and post-invocation authorization
checks and aso to support filtering of submitted collection arguments or return values. They are
@r eAut hori ze, @reFil ter, @ost Aut hori ze and @Post Fi | t er. Their useis enabled through
thegl obal - net hod- securi t y namespace element:

<gl obal - met hod- security pre-post-annotati ons="enabl ed"/>

Access Control using @r eAut hori ze and @Post Aut hori ze

The most obviously useful annotation is @r eAut hor i ze which decides whether a method can actualy be
invoked or not. For example (from the “ Contacts’ sample application)

@r eAut hori ze("hasRol e(' ROLE_USER) ")
public void create(Contact contact);

which means that access will only be alowed for users with the role "ROLE_USER". Obviously the same
thing could easily be achieved using a traditional configuration and a simple configuration attribute for the
required role. But what about:

@Pr eAut hori ze(" hasPer m ssi on(#contact, 'admn')")
public void del et ePermi ssi on(Contact contact, Sid recipient, Pernission pernission);

Here we're actualy using a method argument as part of the expression to decide whether the current user

has the “admin” permission for the given contact. The built-in hasPer m ssi on() expression islinked into
the Spring Security ACL module through the application context, as we'll see below. Y ou can access any of

311 83

Spring Security

the method arguments by name as expression variables, provided your code has debug information compiled
in. Any Spring-EL functionality is available within the expression, so you can also access properties on the
arguments. For example, if you wanted a particular method to only allow access to a user whose username
matched that of the contact, you could write

@r eAut hori ze("#cont act. nane == aut henti cati on. nane")
publ i c voi d doSonet hi ng(Cont act contact);

Here we are accessing another built—in expression, aut hent i cat i on, which isthe Aut henti cati on
stored in the security context. You can also access its “principal” property directly, using the expression
princi pal . The value will often be a User Det ai | s instance, so you might use an expression like
pri nci pal . user nanme or pri nci pal . enabl ed.

Less commonly, you may wish to perform an access-control check after the method has been invoked. This
can be achieved using the @ost Aut hor i ze annotation. To access the return value from a method, use the
built-in namer et ur nCbj ect inthe expression.

Filtering using @r eFil ter and @ostFilter

Asyou may aready be aware, Spring Security supports filtering of collections and arrays and this can now be
achieved using expressions. Thisis most commonly performed on the return value of a method. For example:

@°r eAut hori ze("hasRol e(' ROLE_USER) ")

@ostFilter("hasPerm ssion(filterObject, 'read') or hasPerm ssion(filterCbject, '"admn')")

public List<Contact> getAll();
When using the @ost Fi | t er annotation, Spring Security iterates through the returned collection and
removes any elements for which the supplied expression is false. The name fi |l t er Obj ect refers to the
current object in the collection. You can aso filter before the method call, using @r eFi | t er, though this
is aless common requirement. The syntax is just the same, but if there is more than one argument which is a
collection type then you have to select one by nameusing thef i | t er Tar get property of this annotation.

Note that filtering is obvioudly not a substitute for tuning your dataretrieval queries. If you are filtering large
collections and removing many of the entries then thisislikely to be inefficient.

Built-In Expressions

There are some built-in expressions which are specific to method security, which we have aready seen
in use above. The filterTarget and returnVal ue vaues are simple enough, but the use of the
hasPer ni ssi on() expression warrants a closer 1ook.

The Per m ssi onEval uat or interface

hasPer nmi ssi on() expressionsaredelegatedto aninstanceof Per m ssi onEval uat or . Itisintendedto
bridge between the expression system and Spring Security's ACL system, allowing you to specify authorization
constraints on domain objects, based on abstract permissions. It has no explicit dependencies on the ACL
module, so you could swap that out for an aternative implementation if required. The interface has two
methods:

311 84

Spring Security

bool ean hasPer m ssi on(Aut henti cati on aut henticati on, Object targetDomai nObj ect,
Obj ect perm ssion);

bool ean hasPer m ssi on(Aut henti cati on aut hentication, Serializable targetld,
String target Type, Object pernission);

which map directly to the available versions of the expression, with the exception that the first argument
(the Aut hent i cat i on object) is not supplied. The first is used in situations where the domain object, to
which accessis being controlled, is already loaded. Then expression will return true if the current user has the
given permission for that object. The second version is used in cases where the object is not loaded, but its
identifier is known. An abstract “type” specifier for the domain object is aso required, allowing the correct
ACL permissionsto be loaded. This has traditionally been the Java class of the object, but does not have to be
aslong asit is consistent with how the permissions are loaded.

Touse hasPer m ssi on() expressions, you have to explicitly configure aPer ni ssi onEval uat or in
your application context. Thiswould look something like this:

<security: gl obal - net hod-security pre-post-annotations="enabl ed">
<security: expression-handl er ref="expressi onHandl er"/>
</ security: gl obal - net hod-security>

<bean i d="expressi onHandl er" cl ass=
"org. springfranmework. security.access. expressi on. net hod. Def aul t Met hodSecuri t yExpr essi onHandl er ">

<property nanme="permn ssi onEval uator" ref="myPerm ssionEval uator"/>
</ bean>
Where myPer m ssi onEval uat or is the bean which implements Per i ssi onEval uat or . Usually
this will be the implementation from the ACL module which is called Acl Per ni ssi onEval uat or. See
the “Contacts’” sample application configuration for more details.

311 85

Part V. Additional Topics

In this part we cover features which require a knowledge of previous chapters as well as some of the more
advanced and less-commonly used features of the framework.

Spring Security

17.1 Overview

Complex applications often will find the need to define access permissions not simply at a web request or
method invocation level. Instead, security decisions need to comprise both who (Aut hent i cat i on), where
(Met hodl nvocat i on) and what (SomreDomai nQbj ect). In other words, authorization decisions also
need to consider the actual domain object instance subject of a method invocation.

Imagine you're designing an application for apet clinic. Therewill be two main groups of users of your Spring-
based application: staff of the pet clinic, as well as the pet clinic's customers. The staff will have access to
all of the data, whilst your customers will only be able to see their own customer records. To make it alittle
more interesting, your customers can allow other users to see their customer records, such as their "puppy
preschool" mentor or president of their local "Pony Club". Using Spring Security as the foundation, you have
several approaches that can be used:

1. Write your business methods to enforce the security. You could consult a collection within
the Custoner domain object instance to determine which users have access. By using the
Secur it yCont ext Hol der . get Cont ext () . get Aut henti cati on(), you'll be able to access
the Aut hent i cat i on object.

2. Write an AccessDeci si onVot er to enforce the security from the G- ant edAut hori ty[] s stored
in the Aut henti cati on object. This would mean your Aut henti cati onManager would need
to populate the Aut hent i cati on with custom G- ant edAut hor it y[]s representing each of the
Cust orrer domain object instances the principal has accessto.

3. Writean AccessDeci si onVot er toenforcethe security and open thetarget Cust omer domain object
directly. Thiswould mean your voter needs accessto aDAO that allowsit to retrievethe Cust onrer object.
It would then accessthe Cust onmer object'scollection of approved users and make the appropriate decision.

Each one of these approaches is perfectly legitimate. However, the first couples your authorization checking
to your business code. The main problems with this include the enhanced difficulty of unit testing and
the fact it would be more difficult to reuse the Cust oner authorization logic elsawhere. Obtaining the
G ant edAut hori ty[] s from the Aut henti cati on object is also fine, but will not scale to large
numbersof Cust oner s. If auser might beableto access 5,000 Cust oner s(unlikely inthiscase, butimagine
if it wereapopular vet for alarge Pony Club!) the amount of memory consumed and time required to construct
the Aut hent i cat i on object would be undesirable. The final method, opening the Cust orrer directly from
external code, is probably the best of the three. It achieves separation of concerns, and doesn't misuse memory
or CPU cycles, but it is still inefficient in that both the AccessDeci si onVot er and the eventual business
method itself will perform acall to the DAO responsible for retrieving the Cust oner object. Two accesses
per method invocation is clearly undesirable. In addition, with every approach listed you'll need to write your
own access control list (ACL) persistence and business logic from scratch.

Fortunately, there is another alternative, which we'll talk about below.

17.2 Key Concepts

Spring Security's ACL services are shipped inthe spri ng- securi ty-acl - xxx. j ar. You will need to
add this JAR to your classpath to use Spring Security's domain object instance security capabilities.

311 87

Spring Security

Spring Security's domain object instance security capabilities centre on the concept of an access control list
(ACL). Every domain object instancein your system hasits own ACL, and the ACL records details of who can
and can't work with that domain object. With this in mind, Spring Security delivers three main ACL-related
capabilitiesto your application:

* A way of efficiently retrieving ACL entriesfor all of your domain objects (and modifying those ACLS)
» A way of ensuring agiven principal is permitted to work with your objects, before methods are called

» A way of ensuring agiven principal is permitted to work with your objects (or something they return), after
methods are called

As indicated by the first bullet point, one of the main capabilities of the Spring Security ACL module is
providing a high-performance way of retrieving ACLs. ThisACL repository capability is extremely important,
because every domain object instance in your system might have several access control entries, and each ACL
might inherit from other ACLs in a tree-like structure (this is supported out-of-the-box by Spring Security,
and is very commonly used). Spring Security's ACL capability has been carefully designed to provide high
performance retrieval of ACLSs, together with pluggable caching, deadlock-minimizing database updates,
independence from ORM frameworks (we use JDBC directly), proper encapsulation, and transparent database
updating.

Given databases are central to the operation of the ACL module, let's explore the four main tables used by
default in the implementation. The tables are presented below in order of sizein atypical Spring Security ACL
deployment, with the table with the most rows listed | ast:

* ACL_SID dlowsusto uniquely identify any principal or authority in the system ("SID" stands for "security
identity"). The only columns are the ID, a textual representation of the SID, and a flag to indicate whether
the textual representation refersto aprincipal nameor aGr ant edAut hori t y. Thus, thereisasingle row
for each unique principal or Gr ant edAut hori t y. When used in the context of receiving a permission,
aSID isgeneraly called a"recipient”.

e ACL_CLASS dlows usto uniquely identify any domain object class in the system. The only columns are
the ID and the Java class name. Thus, there is a single row for each unique Class we wish to store ACL
permissions for.

 ACL_OBJECT_IDENTITY stores information for each unique domain object instance in the system.
Columns include the ID, a foreign key to the ACL_CLASS table, a unique identifier so we know which
ACL_CLASS instance we're providing information for, the parent, aforeign key to the ACL_SID table to
represent the owner of the domain object instance, and whether we allow ACL entries to inherit from any
parent ACL. We have asingle row for every domain object instance we're storing ACL permissions for.

e Finally, ACL_ENTRY stores the individual permissions assigned to each recipient. Columns include a
foreign key to the ACL_OBJECT_IDENTITY, the recipient (ie aforeign key to ACL_SID), whether we'll
be auditing or not, and the integer bit mask that represents the actual permission being granted or denied.
We have asingle row for every recipient that receives a permission to work with a domain object.

As mentioned in the last paragraph, the ACL system uses integer bit masking. Don't worry, you need not be
aware of the finer points of bit shifting to use the ACL system, but suffice to say that we have 32 bits we can

311 88

Spring Security

switch on or off. Each of these bits represents a permission, and by default the permissions are read (bit 0),
write (bit 1), create (bit 2), delete (bit 3) and administer (bit 4). It's easy to implement your own Per i ssi on
instance if you wish to use other permissions, and the remainder of the ACL framework will operate without
knowledge of your extensions.

It isimportant to understand that the number of domain objects in your system has absolutely no bearing on
the fact we've chosen to use integer bit masking. Whilst you have 32 bits available for permissions, you could
have billions of domain object instances (which will mean billions of rowsin ACL_OBJECT_IDENTITY and
quite probably ACL_ENTRY). We make this point because we've found sometimes people mistakenly believe
they need a bit for each potential domain object, which is not the case.

Now that we've provided a basic overview of what the ACL system does, and what it looks like at a table

structure, let's explore the key interfaces. The key interfaces are:

e« Acl: Every doman object has one and only one Acl object, which internaly holds the
AccessControl Entrysaswell as knows the owner of the Acl . An Acl does not refer directly to the
domain object, but instead toan Gbj ect | denti ty. TheAcl isstoredinthe ACL_OBJECT_IDENTITY
table.

e AccessControl Entry: An Acl holds multiple AccessControl Entrys, which are often
abbreviated as ACEs in the framework. Each ACE refers to a specific tuple of Per m ssi on, Si d and
Acl . An ACE can aso be granting or non-granting and contain audit settings. The ACE is stored in the
ACL_ENTRY table.

» Perm ssi on: A permission represents a particular immutable bit mask, and offers convenience functions
for bit masking and outputting information. The basic permissions presented above (bits 0 through 4) are
contained in the BasePer m ssi on class.

* Sid: The ACL module needs to refer to principals and Grant edAut hority[]s A level of
indirection is provided by the Si d interface, which is an abbreviation of "security identity”. Common
classes include Pri nci pal Si d (to represent the principal inside an Aut hent i cati on object) and
Gr ant edAut hori t ySi d. The security identity information is stored in the ACL_SID table.

e hjectldentity: Each domain object is represented internally within the ACL module by an
Qoj ect | dent i ty. The default implementation iscalled Obj ect | denti tyl npl .

» Acl Service: Retrieves the Acl applicable for a given Objectldentity. In the included
implementation (JdbcAcl Ser vi ce), retrieval operations are delegated to a LookupSt r at egy. The
LookupSt r at egy provides a highly optimized strategy for retrieving ACL information, using batched
retrievals(Basi cLookupSt r at egy) and supporting custom implementations that |everage materialized
views, hierarchical queries and similar performance-centric, non-ANSI SQL capabilities.

» Mut abl eAcl Ser vi ce: Allows amodified Acl to be presented for persistence. It is not essentia to use
thisinterface if you do not wish.

Please note that our out-of-the-box AclService and related database classes all use ANSI SQL. This should
therefore work with al major databases. At the time of writing, the system had been successfully tested using
Hypersonic SQL, PostgreSQL, Microsoft SQL Server and Oracle.

Two samples ship with Spring Security that demonstrate the ACL module. The first is the Contacts Sample,
and the other is the Document Management System (DM S) Sample. We suggest taking a look over these for
examples.

311 89

Spring Security

17.3 Getting Started

To get starting using Spring Security's ACL capability, you will need to store your ACL information
somewhere. This necessitates the instantiation of a Dat aSour ce using Spring. The Dat aSour ce is then
injected into aJdbcMut abl eAcl Ser vi ce and Basi cLookupSt r at egy instance. The latter provides
high-performance ACL retrieval capabilities, and the former provides mutator capabilities. Refer to one of the
samples that ship with Spring Security for an example configuration. Y ou'll also need to popul ate the database
with the four ACL-specific tables listed in the last section (refer to the ACL samples for the appropriate SQL
statements).

Once you've created the required schema and instantiated JdbcMut abl eAcl Ser vi ce, you'll next need
to ensure your domain model supports interoperability with the Spring Security ACL package. Hopefully
oj ect I denti tyl npl will prove sufficient, asit provides alarge number of waysin which it can be used.
Most people will have domain objects that contain apubl i ¢ Seri al i zabl e get|d() method. If the
return typeislong, or compatible with long (eg an int), you will find you need not give further consideration to
bj ectl dent ity issues. Many parts of the ACL module rely on long identifiers. If you're not using long
(or an int, byte etc), there is a very good chance you'll need to reimplement a number of classes. We do not
intend to support non-long identifiersin Spring Security's ACL module, as longs are already compatible with
all database sequences, the most common identifier data type, and are of sufficient length to accommodate all
common usage scenarios.

The following fragment of code shows how to create an Acl , or modify an existing Acl :

/Il Prepare the information we'd like in our access control entry (ACE)
Cbjectldentity oi = new Objectldentityl npl (Foo.class, new Long(44));
Sid sid = new Principal Si d("Samant ha");

Perm ssion p = BasePer nm ssi on. ADM NI STRATI ON;

/] Create or update the relevant ACL
Mut abl eAcl acl = null;
try {
acl = (Mutabl eAcl) acl Service.readAcl Byl d(oi);
} catch (Not FoundException nfe) {
acl = acl Service. createAcl (0i);

}

/1l Now grant some permi ssions via an access control entry (ACE)
acl .insertAce(acl.getEntries().length, p, sid, true);
acl Servi ce. updat eAcl (acl) ;

In the example above, were retrieving the ACL associated with the "Foo" domain object with identifier
number 44. We're then adding an ACE so that a principal named " Samantha can "administer" the object. The
code fragment is relatively self-explanatory, except the insertAce method. The first argument to the insertAce
method is determining at what position in the Acl the new entry will be inserted. In the example above, we're
just putting the new ACE at the end of the existing ACESs. The final argument is a boolean indicating whether
the ACE is granting or denying. Most of the time it will be granting (true), but if it is denying (false), the
permissions are effectively being blocked.

Spring Security does not provide any special integration to automatically create, update or delete ACL s as part
of your DAO or repository operations. Instead, you will need to write code like shown above for your individual

311 90

Spring Security

domain objects. It's worth considering using AOP on your services layer to automatically integrate the ACL
information with your services layer operations. We've found this quite an effective approach in the past.

Once you've used the above techniques to store some ACL information in the database, the next step
is to actually use the ACL information as part of authorization decision logic. You have a number of
choices here. You could write your own AccessDeci si onVot er or Afterl nvocati onProvi der
that respectively fires before or after a method invocation. Such classes would use Acl Servi ce
to retrieve the relevant ACL and then call Acl.isG ant ed(Perm ssion[] per m ssi on,
Sid[] sids, boolean adninistrativeMde) to decide whether permission is granted or
denied. Alternately, you could use our Acl Ent ryVot er, Acl EntryAfterl nvocati onProvi der
or Acl EntryAfterlnvocationColl ectionFilteringProvider classes. All of these classes
provide a declarative-based approach to evaluating ACL information at runtime, freeing you from needing to
write any code. Please refer to the sample applications to learn how to use these classes.

311 91

Spring Security

There are situations where you want to use Spring Security for authorization, but the user has already been
reliably authenticated by some external system prior to accessing the application. Werefer to these situations as
“pre-authenticated” scenarios. Examples include X.509, Siteminder and authentication by the J2EE container
in which the application is running. When using pre-authentication, Spring Security hasto

1. Identify the user making the request.

2. Obtain the authorities for the user.

Thedetailswill depend on the external authentication mechanism. A user might beidentified by their certificate
information in the case of X.509, or by an HT TP request header in the case of Siteminder. If relying on container
authentication, the user will be identified by caling the get User Pri nci pal () method on the incoming
HTTP request. In some cases, the external mechanism may supply role/authority information for the user but
in others the authorities must be obtained from a separate source, such asaUser Det ai | sSer vi ce.

18.1 Pre-Authentication Framework Classes

Because most pre-authentication mechanisms follow the same pattern, Spring Security has a set of classes
which provide an internal framework for implementing pre-authenticated authentication providers. This
removes duplication and alows new implementations to be added in a structured fashion, without having
to write everything from scratch. You don't need to know about these classes if you want to use something
like X.509 authentication, as it already has a namespace configuration option which is simpler to use and get
started with. If you need to use explicit bean configuration or are planning on writing your own implementation
then an understanding of how the provided implementations work will be useful. Y ou will find classes under
the org.springframework.security .web.authenti cation.preauth. We just provide an outline here so you should
consult the Javadoc and source where appropriate.

AbstractPreAuthenticatedProcessingFilter

This class will check the current contents of the security context and, if empty, it will attempt to extract user
information from the HTTP request and submit it to the Aut hent i cat i onManager . Subclasses override
the following methods to obtain this information:

protected abstract Object getPreAuthenticatedPrincipal (HtpServl et Request request);

protected abstract Object getPreAuthenticatedCredential s(HttpServl et Request request);

After calling these, the filter will create aPr eAut hent i cat edAut hent i cati onToken containing the
returned data and submit it for authentication. By “authentication” here, we really just mean further processing
to perhaps load the user's authorities, but the standard Spring Security authentication architecture is followed.

Like other Spring Security authentication filters, the pre-authentication filter has
an authenticationDetail sSource property which by default will create a
WebAut hent i cati onDet ai | s object to store additional information such as the session-identifier and
originating |P addressin the det ai | s property of the Aut hent i cat i on object. In cases where user role
information can be obtai ned from the pre-authentication mechanism, the datais al so stored in this property, with
the detailsimplementingthe G- ant edAut hori ti esCont ai ner interface. Thisenablesthe authentication

311 92

Spring Security

provider to read the authorities which were externally allocated to the user. We'll ook at a concrete example
next.

J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

If the filter is configured with an aut henti cati onDet ai | sSour ce which is an instance of
this class, the authority information is obtained by calling the i sUserl nRol e(String role)
method for each of a pre-determined set of “mappable roles’. The class gets these from a configured
Mappabl eAttri but esRetri ever. Possible implementations include hard-coding a list in the
application context and reading theroleinformationfromthe<securi t y- r ol e>informationinaweb. xni
file. The pre-authentication sample application uses the latter approach.

There is an additional stage where the roles (or attributes) are mapped to Spring Security
G ant edAut hor ity objects using aconfigured At t ri but es2Gr ant edAut hori ti esMapper. The
default will just add the usual ROLE_ prefix to the names, but it gives you full control over the behaviour.

PreAuthenticatedAuthenticationProvider

The pre-authenticated provider has little more to do than load the User Det ai | s object for the user. It does
this by delegating to a Aut hent i cati onUser Det ai | sSer vi ce. The latter is similar to the standard
User Det ai | sSer vi ce but takesan Aut hent i cat i on object rather than just user name:

public interface AuthenticationUserDetail sService {
UserDetails | oadUser Det ai | s(Aut henti cati on token) throws User naneNot FoundExcepti on;

}
This interface may have also other uses but with pre-authentication it allows access to the authorities
which were packaged in the Aut henti cati on object, as we saw in the previous section. The
Pr eAut hent i cat edG ant edAut hori ti esUser Det ai | sSer vi ce classdoesthis. Alternatively, it
may delegate to a standard User Det ai | sSer vi ce viathe User Det ai | sByNaneSer vi ceW apper
implementation.

Http403ForbiddenEntryPoint

The Aut hent i cati onEnt r yPoi nt was discussed in the technical overview chapter. Normally it is
responsible for kick-starting the authentication process for an unauthenticated user (when they try to access
a protected resource), but in the pre-authenticated case this doesn't apply. You would only configure the
Excepti onTransl ati onFi | t er with an instance of this class if you aren't using pre-authentication
in combination with other authentication mechanisms. It will be caled if the user is rejected by the
Abst ract PreAut hent i cat edPr ocessi ngFi | t er resultinginanull authentication. It alwaysreturns
a403-forbidden response code if called.

18.2 Concrete Implementations

X.509 authentication is covered in its own chapter. Here we'll ook at some classes which provide support for
other pre-authenticated scenarios.

311 93

Spring Security

Request-Header Authentication (Siteminder)

An external authentication system may supply information to the application by setting specific headers on
the HTTP request. A well known example of thisis Siteminder, which passes the username in a header called
SM_USER. This mechanism is supported by the class Request Header Aut henti cati onFi | t er which
simply extracts the username from the header. It defaults to using the name SM_USER as the header name.
See the Javadoc for more details.

Tip

Note that when using a system like this, the framework performs no authentication checks at al and
it is extremely important that the external system is configured properly and protects all access to
the application. If an attacker is able to forge the headers in their original request without this being
detected then they could potentially choose any username they wished.

Siteminder Example Configuration

A typical configuration using this filter would look like this:

<security: http>

<l-- Additional http configuration onmtted -->

<security:customfilter position="PRE _AUTH FILTER' ref="sitenmi nderFilter" />
</security: http>

<bean id="sitemi nderFilter" class=
"org. springframework. security.web. aut henti cati on. preaut h. Request Header Aut henti cati onFil ter">
<property nanme="princi pal Request Header" val ue="SM USER'/ >
<property nane="aut henti cati onManager" ref="authenticati onManager" />
</ bean>

<bean i d="pr eaut hAut hProvi der"
cl ass="org. springframework. security.web. aut henti cati on. preaut h. PreAut henti cat edAut henti cati onProvi der">
<property name="preAut henti cat edUser Det ai | sServi ce">
<bean i d="user Det ai | sSer vi ceW apper "
cl ass="org. springframework. security.core.userdetails. UserDet ail sByNaneSer vi ceW apper" >
<property nanme="user Det ai |l sServi ce" ref="userDetail sService"/>
</ bean>
</ property>
</ bean>

<security:authentication-nmanager alias="authenticati onManager">
<security:aut hentication-provider ref="preauthAuthProvider" />
</ security: aut henticati on- manager >

We've assumed here that the security namespaceisbeing used for configuration. It's also assumed that you have
added aUser Det ai | sSer vi ce (called “userDetailsService”) to your configuration to |oad the user'sroles.

J2EE Container Authentication

The class J2eePr eAut henti cat edProcessi ngFilter will extract the username from the
userPrinci pal property of the Htt pServl et Request. Use of this filter would usualy
be combined with the use of J2EE roles as described above in the section caled
* J2eeBasedPreA uthenti catedWebA uthenti cationDetail sSource” .

311 94

Spring Security

Thereisasample application in the codebase which usesthis approach, so get hold of the code from subversion
and have alook at the application context file if you are interested. The code isin the sanpl es/ pr eaut h
directory.

311 95

Spring Security

19.1 Overview

LDAP is often used by organizations as a central repository for user information and as an authentication
service. It can aso be used to store the role information for application users.

There are many different scenarios for how an LDAP server may be configured so Spring Security's LDAP
provider is fully configurable. It uses separate strategy interfaces for authentication and role retrieval and
provides default implementations which can be configured to handle a wide range of situations.

Y ou should be familiar with LDAP before trying to use it with Spring Security. The following link provides
agood introduction to the concepts involved and a guide to setting up a directory using the free LDAP server
OpenLDAP: ht t p: / / www. zyt r ax. conf books/ | dap/ . Some familiarity with the INDI APIs used to
access LDAP from Java may also be useful. We don't use any third-party LDAP libraries (Mozilla, JLDAP
etc.) in the LDAP provider, but extensive use is made of Spring LDAP, so some familiarity with that project
may be useful if you plan on adding your own customizations.

19.2 Using LDAP with Spring Security

LDAP authentication in Spring Security can be roughly divided into the following stages.

1. Obtaining the unique LDAP “Distinguished Name”, or DN, from the login name. This will often mean
performing a search in the directory, unless the exact mapping of usernames to DNsis known in advance.
So a user might enter the name “joe” when logging in, but the actual name used to authenticate to LDAP
will bethe full DN, such asui d=j oe, ou=user s, dc=spri ngsour ce, dc=com

2. Authenticating the user, either by “binding” asthat user or by performing aremote “compare” operation of
the user's password against the password attribute in the directory entry for the DN.

3. Loading the list of authorities for the user.

The exception is when the LDAP directory is just being used to retrieve user information and authenticate
against it locally. Thismay not be possible as directories are often set up with limited read accessfor attributes
such as user passwords.

We will look at some configuration scenarios below. For full information on available configuration options,
please consult the security namespace schema (information from which should be available in your XML
editor).

19.3 Configuring an LDAP Server

The first thing you need to do is configure the server against which authentication should take place. Thisis
done using the <I dap- ser ver > element from the security namespace. This can be configured to point at
an external LDAP server, using theur | attribute:

<l dap-server url="Idap://springframework. org: 389/ dc=spri ngf ramewor k, dc=org" />

311 96

http://www.zytrax.com/books/ldap/

Spring Security

Using an Embedded Test Server

The <l dap- ser ver > element can also be used to create an embedded server, which can be very useful for
testing and demonstrations. In this case you use it without the ur | attribute:

<l dap- server root="dc=spri ngfranmework, dc=org"/>

Here we've specified that the root DIT of the directory should be “dc=springframework,dc=org”, which isthe
default. Used this way, the namespace parser will create an embedded Apache Directory server and scan the
classpath for any LDIF files, which it will attempt to load into the server. Y ou can customize this behaviour
using thel di f attribute, which defines an LDIF resource to be loaded:

<l dap-server |dif="classpath:users.Idif" />

This makesit alot easier to get up and running with LDAP, since it can be inconvenient to work al the time
with an externa server. It also insulates the user from the complex bean configuration needed to wire up an
Apache Directory server. Using plain Spring Beans the configuration would be much more cluttered. Y ou
must have the necessary Apache Directory dependency jars available for your application to use. These can
be obtained from the LDAP sample application.

Using Bind Authentication

Thisisthe most common LDAP authentication scenario.

<l dap- aut henti cati on- provi der user-dn-pattern="ui d={0}, ou=peopl e"/ >

This simple example would obtain the DN for the user by substituting the user login name in the supplied
pattern and attempting to bind as that user with the login password. Thisis OK if all your users are stored
under a single node in the directory. If instead you wished to configure an LDAP search filter to locate the
user, you could use the following:

<l dap- aut henti cati on-provi der user-search-filter="(ui d={0})"
user - sear ch- base="ou=peopl e"/ >

If used with the server definition above, this would perform a search under the DN
ou=peopl e, dc=spri ngfranmewor k, dc=org using the value of the user-search-filter
attribute as a filter. Again the user login name is substituted for the parameter in the filter name, so it will
search for an entry with the ui d attribute equal to the user name. If user - sear ch- base isn't supplied, the
search will be performed from the root.

Loading Authorities

How authorities are loaded from groupsin the LDAP directory is controlled by the following attributes.

311 97

Spring Security

» group- sear ch- base. Defines the part of the directory tree under which group searches should be
performed.

e group-rol e-attri bute. The attribute which contains the name of the authority defined by the group
entry. Defaultsto cn

e group-search-filter. The filter which is used to search for group membership. The default is
uni queMenber ={ 0}, corresponding to the gr oupOF Uni queNanes LDAP class ! In this case, the
substituted parameter isthe full distinguished name of the user. The parameter { 1} can be used if you want
to filter on the login name.

So if we used the following configuration

<l dap- aut henti cati on- provi der user-dn-pattern="ui d={0}, ou=peopl e"
gr oup- sear ch- base="ou=gr oups" />

and authenticated successfully as user “ben”, the subsequent loading of authorities would
perform a search under the directory entry ou=groups, dc=spri ngframework, dc=or g,
looking for entries which contain the attribute uni queMenber with value
ui d=ben, ou=peopl e, dc=spri ngf r amewor k, dc=or g. By default the authority nameswill havethe
prefix ROLE_ prepended. You can change this using the r ol e- pr efi x attribute. If you don't want any
prefix, user ol e- pr efi x="none". For more information on loading authorities, see the Javadoc for the
Def aul t LdapAut hori ti esPopul at or class.

19.4 Implementation Classes

The namespace configuration options we've used above are simple to use and much more concise than using
Spring beans explicitly. There are situations when you may need to know how to configure Spring Security
LDAP directly in your application context. Y ou may wish to customize the behaviour of some of the classes,
for example. If you're happy using namespace configuration then you can skip this section and the next one.

The main LDAP provider class, LdapAut henti cati onPr ovi der, doesn't actually do much itself but
delegatesthework to two other beans, an LdapAut hent i cat or andanLdapAut hori ti esPopul at or
which are responsible for authenticating the user and retrieving the user's set of Gr ant edAut horitys
respectively.

LdapAuthenticator Implementations

The authenticator isalso responsiblefor retrieving any required user attributes. Thisisbecause the permissions
on the attributes may depend on the type of authentication being used. For example, if binding as the user, it
may be necessary to read them with the user's own permissions.

There are currently two authentication strategies supplied with Spring Security:
» Authentication directly to the LDAP server ("bind" authentication).

» Password comparison, where the password supplied by the user is compared with the one stored in the
repository. This can either be done by retrieving the value of the password attribute and checking it locally

311 98

Spring Security

or by performing an LDAP "compare" operation, where the supplied password is passed to the server for
comparison and the real password value is never retrieved.

Common Functionality

Beforeit is possible to authenticate a user (by either strategy), the distinguished name (DN) has to be obtained
from the login name supplied to the application. This can be done either by simple pattern-matching (by setting
the setUserDnPatterns array property) or by setting the userSearch property. For the DN pattern-matching
approach, astandard Java pattern format is used, and the login name will be substituted for the parameter { 0} .
The pattern should berelative to the DN that the configured Spr i ngSecur i t yCont ext Sour ce will bind
to (seethe section on connecting to the LDAP server for moreinformation on this). For example, if you areusing
an LDAP server withthe URL | dap: / / nonkeynachi ne. co. uk/ dc=spri ngf r amewor k, dc=or g,
and have a pattern ui d={ 0}, ou=gr eat apes, then a login name of "gorilla" will map to a DN
ui d=goril | a, ou=gr eat apes, dc=spri ngf r amewor k, dc=or g. Each configured DN pattern will
be tried in turn until a match is found. For information on using a search, see the section on search objects
below. A combination of the two approaches can also be used - the patterns will be checked first and if no
matching DN is found, the search will be used.

BindAuthenticator

The class Bi ndAut henti cat or in the package
org. springfranmewor k. security. | dap. aut henti cati on implements the bind authentication
strategy. It simply attempts to bind as the user.

PasswordComparisonAuthenticator

TheclassPasswor dConpar i sonAut hent i cat or implements the password comparison authentication
strategy.

Connecting to the LDAP Server

The beans discussed above have to be able to connect to the server. They both have to be supplied with a
SpringSecurit yCont ext Sour ce whichisan extension of Spring LDAP's Cont ext Sour ce. Unless
you have special requirements, you will usually configureaDef aul t Spri ngSecuri t yCont ext Sour ce
bean, which can be configured with the URL of your LDAP server and optionally with the username
and password of a "manager” user which will be used by default when binding to the server (instead
of binding anonymously). For more information read the Javadoc for this class and for Spring LDAP's
Abst r act Cont ext Sour ce.

LDAP Search Objects

Often a more complicated strategy than simple DN-matching is required to locate a user entry in the
directory. This can be encapsulated in an LdapUser Sear ch instance which can be supplied to the
authenticator implementations, for example, to alow them to locate a user. The supplied implementation is
Fi | t er BasedLdapUser Sear ch.

Fil t er BasedLdapUser Sear ch

This bean wuses an LDAP filter to maich the wuser object in the directory.
The process is explaned in the Javadoc for the corresponding search method

311 99

Spring Security

on the JDK DirContext class [http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/
DirContext.html#search(javax.naming.Name,%20java.lang. String,%20java.lang.Object(],

%20javax.naming.directory.SearchControls)]. As explained there, the search filter can be supplied with
parameters. For this class, the only valid parameter is{ 0} which will be replaced with the user'slogin name.

LdapAuthoritiesPopulator

After authenticating the user successfully, the LdapAut henti cati onProvi der will attempt to load
a set of authorities for the user by calling the configured LdapAut hori ti esPopul at or bean. The
Def aul t LdapAut hori ti esPopul at or is an implementation which will load the authorities by
searching the directory for groups of which the user is a member (typically these will be gr oupOf Nanes
or gr oupOr Uni queNanes entries in the directory). Consult the Javadoc for this class for more details on
how it works.

If you want to use LDAP only for authentication, but load the authorities from a difference source (such as a
database) then you can provide your own implementation of this interface and inject that instead.

Spring Bean Configuration

A typical configuration, using some of the beans we've discussed here, might look like this:

<bean i d="cont ext Sour ce"
cl ass="org. springframework. security.|dap. Defaul t Spri ngSecurityCont ext Source" >
<constructor-arg val ue="I dap: // nonkeynmachi ne: 389/ dc=spri ngf ramewor k, dc=or g"/ >
<property nane="userDn" val ue="cn=manager, dc=spri ngf ramewor k, dc=org"/ >
<property nane="password" val ue="password"/>
</ bean>

<bean i d="I| dapAut hPr ovi der"
cl ass="org. springframework. security.|dap. aut henticati on. LdapAut henti cati onProvi der">
<const ruct or - ar g>
<bean cl ass="org. spri ngframework. security.| dap. aut henti cati on. Bi ndAut henti cat or">
<constructor-arg ref="context Source"/>
<property name="user DnPatterns">
<l i st ><val ue>ui d={ 0}, ou=peopl e</ val ue></1i st>
</ property>
</ bean>
</ constructor-arg>
<const ruct or - ar g>
<bean
cl ass="org. springframework. security.|dap.userdetails.DefaultLdapAuthoritiesPopul ator">
<constructor-arg ref="context Source"/>
<constructor-arg val ue="ou=groups"/>
<property nanme="groupRol eAttri bute" val ue="ou"/>
</ bean>
</ constructor-arg>
</ bean>

This would set up the provider to access an LDAP server with URL | dap: // monkeyrmachi ne: 389/
dc=spri ngfranmewor k, dc=or g. Authentication will be peformed by attempting to bind
with the DN ui d=<user - | ogi n- nane>, ou=peopl e, dc=spri ngf r amewor k, dc=or g. After
successful authentication, roles will be assigned to the user by searching under the DN

311 100

http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)

Spring Security

ou=gr oups, dc=spri ngfranmewor k, dc=or g with thedefault filter (menber =<user' s- DN>) . The
role name will be taken from the “ou” attribute of each match.

To configure a user search object, which uses the filter (ui d=<user - | ogi n- nane>) for use instead of
the DN-pattern (or in addition to it), you would configure the following bean

<bean i d="user Sear ch"
cl ass="org. springframework. security.|dap. search. FilterBasedLdapUser Sear ch">
<constructor-arg i ndex="0" val ue=""/>
<constructor-arg index="1" val ue="(uid={0})"/>
<constructor-arg index="2" ref="contextSource" />

</ bean>

and use it by setting the Bi ndAut hent i cat or bean's userSearch property. The authenticator would then
call the search object to obtain the correct user's DN before attempting to bind as this user.

LDAP Attributes and Customized UserDetails

The net result of an authentication using LdapAut hent i cati onPr ovi der isthesameasanormal Spring
Security authentication using the standard User Det ai | sSer vi ce interface. A User Det ai | s object is
created and stored in the returned Aut hent i cat i on object. As with using a User Det ai | sSer vi ce,
a common reguirement is to be able to customize this implementation and add extra properties. When using
LDAP, these will normally be attributes from the user entry. The creation of the User Det ai | s object is
controlled by the provider's User Det ai | sCont ext Mapper strategy, which is responsible for mapping
user objectsto and from LDAP context data:

public interface UserDetail sCont ext Mapper {
UserDet ai | s mapUser Fr omCont ext (Di r Cont ext Operati ons ctx, String usernane,
Col | ecti on<G ant edAut hority> authorities);

voi d mapUser ToCont ext (User Det ai | s user, DirContext Adapter ctx);
}

Only the first method is relevant for authentication. If you provide an implementation of this interface and
inject it into the LdapAut hent i cat i onPr ovi der, you have control over exactly how the UserDetails
object is created. The first parameter is an instance of Spring LDAP's Di r Cont ext Qper at i ons which
gives you access to the LDAP attributes which were loaded during authentication. The user nane parameter
is the name used to authenticate and the final parameter is the collection of authorities loaded for the user by
the configured LdapAut hori ti esPopul at or.

The way the context datais|oaded varies slightly depending on the type of authentication you are using. With
the Bi ndAut hent i cat or , the context returned from the bind operation will be used to read the attributes,
otherwise the data will be read using the standard context obtained from the configured Cont ext Sour ce
(when asearch is configured to locate the user, thiswill be the data returned by the search object).

19.5 Active Directory Authentication

Active Directory supports its own non-standard authentication options, and the normal usage pattern doesn't
fit too cleanly with the standard LdapAut hent i cat i onPr ovi der . Typicaly authentication is performed

311 101

Spring Security

using the domain username (in theform user @lomai n), rather than using an LDAP distinguished name. To
make this easier, Spring Security 3.1 has an authentication provider which is customized for atypical Active
Directory setup.

ActiveDi rectorylLdapAut henti cati onProvi der

Configuring Act i veDi rect or yLdapAut hent i cati onPr ovi der is quite straightforward. You just
need to supply the domain name and an LDAP URL supplying the address of the server 2 An example
configuration would then look like this:

<bean i d="adAut henti cati onProvi der"
cl ass="org. springframework. security.| dap. authenticati on. ad. Acti veDi rect oryLdapAut henti cati onProvi der">
<constructor-arg val ue="nydomai n. com' />
<constructor-arg val ue="I dap:// adserver. mydomai n. coml " />
</ bean>

}

Note that there is no need to specify a separate Cont ext Sour ce in order to define the server location - the
bean is completely self-contained. A user named “ Sharon”, for example, would then be able to authenticate
by entering either the username shar on or the full Active Directory user Pri nci pal Nane, namely
shar on@rydomai n. com The user's directory entry will then be located, and the attributes returned for
possible use in customizing the created User Det ai | s object (aUser Det ai | sCont ext Mapper can be
injected for this purpose, as described above). All interaction with the directory takes place with the identity
of the user themselves. Thereis no concept of a“manager” user.

By default, the user authorities are obtained from the nenber O attribute values of the user entry. The
authorities allocated to the user can again be customized using aUser Det ai | sCont ext Mapper . You can
asoinjectaG ant edAut hori ti esMaper into the provider instance to control the authorities which end
upinthe Aut hent i cati on object.

Active Directory Error Codes

By default, afailed result will cause a standard Spring Security BadCr edent i al sExcept i on. If you set
the property conver t SubEr r or CodesToExcepti ons tot r ue, the exception messages will be parsed
to attempt to extract the Active Directory-specific error code and raise a more specific exception. Check the
class Javadoc for more information.

Atisaso possible to obtain the server's | P address using a DNS lookup. Thisis not currently supported, but hopefully will be in afuture
version.

311 102

Spring Security

Spring Security hasits own taglib which providesbasic support for accessing security information and applying
security constraintsin JSPs.

20.1 Declaring the Taglib

To use any of the tags, you must have the security taglib declared in your JSP:

<U@taglib prefix="sec" uri="http://ww.springfranmework.org/security/tags" %

20.2 The aut hori ze Tag

This tag is used to determine whether its contents should be evaluated or not. In Spring
Security 3.0, it can be used in two ways 1 The first approach uses a web-security expression,
specified in the access attribute of the tag. The expression evauation will be delegated to the
SecurityExpressi onHandl er<Fil terlnvocati on> defined in the application context (you
should have web expressions enabled in your <ht t p> namespace configuration to make sure this service is
available). So, for example, you might have

<sec: authorize access="hasRol e(' supervisor')">

This content will only be visible to users who have
the "supervisor" authority in their list of <tt>GantedAuthority</tt>s.

</ sec: aut hori ze>

A common requirement is to only show a particular link, if the user is actually alowed to click it. How can
we determine in advance whether something will be allowed? This tag can also operate in an alternative mode
which alows you to define aparticular URL as an attribute. If the user is allowed to invoke that URL, then the
tag body will be evaluated, otherwise it will be skipped. So you might have something like

<sec:aut horize url ="/adm n">
This content will only be visible to users who are authorized to send requests to the "/adm n" URL.

</ sec: aut hori ze>

To use this tag there must also be an instance of Wbl nvocati onPri vi | egeEval uat or in your
application context. If you are using the namespace, one will automatically be registered. Thisisan instance of
Def aul t Wbl nvocat i onPri vi | egeEval uat or , which createsadummy web request for the supplied
URL and invokes the security interceptor to see whether the request would succeed or fail. This allows you
to delegate to the access-control setup you defined using i nt er cept - ur | declarations within the<ht t p>
namespace configuration and saves having to duplicate the information (such as the required roles) within your
JSPs. This approach can also be combined with anet hod attribute, supplying the HTTP method, for a more
specific match.

The legacy options from Spring Security 2.0 are also supported, but discouraged.

311 103

Spring Security

The boolean result of evaluating the tag (whether it grants or denies access) can be stored in a page context
scope variable by setting the var attribute to the variable name, avoiding the need for duplicating and re-
evaluating the condition at other points in the page.

Disabling Tag Authorization for Testing

Hiding a link in a page for unauthorized users doesn't prevent them from accessing the URL. They
could just type it into their browser directly, for example. As part of your testing process, you may
want to reveal the hidden areas in order to check that links really are secured at the back end. If you
set the system property spring. security. di sabl eUl Security to true, the aut hori ze tag
will still run but will not hide its contents. By default it will also surround the content with . .. </ span> tags. Thisallows you to display “hidden” content with a
particular CSS style such as a different background colour. Try running the “tutorial” sample application with
this property enabled, for example.

You can dso set the properties spring.security.securedU Prefix and
spring. security. securedU Suf fix if youwant to change surrounding text from the default span
tags (or use empty strings to remove it completely).

20.3 The aut henti cati onTag

This tag allows access to the current Aut henti cati on object stored in the security context. It
renders a property of the object directly in the JSP. So, for example, if the pri nci pal property
of the Aut hentication is an instance of Spring Security's User Det ai | s object, then using
<sec:authentication property="principal.usernane” /> will render the name of the
current user.

Of course, it isn't necessary to use JSP tags for this kind of thing and some people prefer to keep as little logic
as possible in the view. You can access the Aut hent i cat i on object in your MV C controller (by calling
Securi t yCont ext Hol der. get Cont ext (). get Aut henti cati on()) and add the data directly to
your model for rendering by the view.

20.4 The accesscontrol li st Tag

This tag is only valid when used with Spring Security's ACL module. It checks a commarseparated list of
required permissions for a specified domain object. If the current user has any of those permissions, then the
tag body will be evaluated. If they don't, it will be skipped. An example might be

<sec: accesscontrol | i st hasPerni ssion="1, 2" domai nObj ect =" ${ sonmeCbj ect}" >

This will be shown if the user has either of the perm ssions
represented by the values "1" or "2" on the given object.

</ sec: accesscontrol | ist>

The permissionsare passed to the Per ni ssi onFact or y defined in the application context, converting them
to ACL Per mi ssi on instances, so they may be any format which is supported by the factory - they don't have
to be integers, they could be strings like READ or WRI TE. If no Per m ssi onFact or y isfound, an instance

311 104

Spring Security

of Def aul t Per m ssi onFact ory will be used. The Acl Ser vi cefrom the application context will be
used to load the Acl instance for the supplied object. The Acl will be invoked with the required permissions
to check if any of them are granted.

Thistag also supportsthevar attribute, in the same way asthe aut hori ze tag.

311 105

Spring Security

21.1 Overview

Spring Security provides a package able to delegate authentication requests to the Java Authentication and
Authorization Service (JAAS). This package is discussed in detail below.

21.2 AbstractJaasAuthenticationProvider

The AbstractJaasAuthenticationProvider is the basis for the provided JAAS
Aut henti cati onProvi der implementations. Subclasses must implement a method that creates the
Logi nCont ext . TheAbstract JaasAut henti cati onProvi der hasanumber of dependencies that
can be injected into it that are discussed below.

JAAS CallbackHandler

Most JAAS Logi nMbdul esrequire a callback of some sort. These callbacks are usually used to obtain the
username and password from the user.

In aSpring Security deployment, Spring Security isresponsible for this user interaction (viathe authentication
mechanism). Thus, by the time the authentication request is delegated through to JAAS, Spring Security's
authentication mechanism will already have fully-populated an Aut hent i cat i on object containing all the
information required by the JAAS Logi nModul e.

Therefore, the JAAS package for Spring Security provides two default calback handlers,
JaasNaneCal | backHandl er and JaasPasswor dCal | backHandl er. Each of these callback
handlers implement JaasAut hent i cat i onCal | backHandl er . In most cases these callback handlers
can simply be used without understanding the internal mechanics.

For those needing full control over the callback behavior, internally
Abst ract JaasAut henti cati onProvi der wraps these
JaasAut henti cati onCal | backHandl ers with an |Internal Call backHandl er. The
I nt ernal Cal | backHandl er isthe classthat actualy implements JAAS normal Cal | backHandl er
interface. Any time that the JAAS LoginMdule is wused, it is passed a list of
application context configured | nternal Cal | backHandl ers. If the Logi nMbdul e requests
a calback against the I nternal Cal | backHandl ers, the calback is in-turn passed to the
JaasAut henti cati onCal | backHandl| er s being wrapped.

JAAS AuthorityGranter

JAAS works with principals. Even "roles’ are represented as principals in JAAS. Spring Security, on the
other hand, works with Aut henti cati on objects. Each Aut henti cati on object contains a single
principal, and multiple G- ant edAut hori tys. To facilitate mapping between these different concepts,
Spring Security's JAAS package includes an Aut hor i t yGr ant er interface.

An AuthorityGranter is responsible for inspecting a JAAS principa and returning a set
of Strings, representing the authorities assigned to the principal. For each returned authority
string, the Abstract JaasAut henticati onProvi der creates a JaasG ant edAuthority

311 106

Spring Security

(which implements Spring Security’'s Grant edAut hority interface) containing the authority
string and the JAAS principa that the AuthorityGranter was passed. The
Abstract JaasAut henti cati onProvi der obtans the JAAS principals by firstly successfully
authenticating the user's credentials using the JAAS Logi nModul e, and then accessing the
Logi nCont ext it returns. A cal to Logi nCont ext. get Subj ect (). getPrincipal s() is
made, with each resulting principal passed to each AuthorityG anter defined against the
Abst ract JaasAut henti cati onProvi der. set AuthorityG anters(List) property.

Spring Security does not include any production Aut hor i t yGr ant er sgiven that every JAAS principal has
an implementation-specific meaning. However, thereisa Test Aut hori t yG ant er in the unit tests that
demonstratesasimple Aut hori t yGr ant er implementation.

21.3 DefaultJaasAuthenticationProvider

TheDef aul t JaasAut henti cati onProvi der alowsaJAASConf i gur at i on object to beinjected
into it as a dependency. It then createsaLogi nCont ext using the injected JAAS Confi gur at i on. This
means that Def aul t JaasAut hent i cati onProvi der is not bound any particular implementation of
Confi gurati onasJaasAut henti cati onProvi der is.

InMemoryConfiguration

In order to makeit easy to inject aConf i gur at i on into Def aul t JaasAut henti cati onProvi der,
adefault in memory implementation named | nMenor yConf i gur at i on is provided. The implementation
constructor accepts a Map where each key represents a login configuration name and the value represents an
Array of AppConfi gurati onEntrys. | nMenor yConfi gur ati on also supportsadefault Ar r ay of
AppConfi gur ati onEnt ry objectsthat will be used if no mapping is found within the provided Map. For
details, refer to the class level javadoc of | nMenor yConfi gurati on.

DefaultJaasAuthenticationProvider Example Configuration

While the Spring configuration for | nMenor yConf i gur ati on can be more verbose than the standarad
JAAS configurationfiles, using it in conjuction with Def aul t JaasAut hent i cat i onPr ovi der ismore
flexible than JaasAut hent i cati onPr ovi der sinceit not dependant on the default Conf i gur ati on
implementation.

An example configuration of Def aul t JaasAut hent i cati onPr ovi der using
| nMenor yConfi gurati on is provided below. Note that custom implementations of Conf i gur ati on
can easily beinjected into Def aul t JaasAut hent i cat i onPr ovi der aswell.

<bean i d="j aasAut hProvi der"
cl ass="org. springframework. security.authentication.jaas. Defaul t JaasAut henti cati onProvi der" >
<property nanme="configuration">
<bean cl ass="org. spri ngfranmewor k. security. authentication.jaas. menory. | nMenoryConfiguration">
<constructor-arg>
<r’r‘ap>
<l--
SPRI NGSECURI TY is the default | ogi nContext Nane
for AbstractJaasAut henticati onProvi der
-->

311 107

Spring Security

<entry key="SPRI NGSECURI TY" >
<array>
<bean cl ass="j avax. security. auth. | ogi n. AppConfi gurati onEntry">
<constructor-arg val ue="sanpl e. Sanpl eLogi nMbdul e" />
<const ruct or - ar g>
<util:constant static-field=
"javax. security. auth. | ogi n. AppConfi gurati onEntry$Logi nMddul eControl Fl ag. REQUI RED'/ >
</ constructor-arg>
<constructor-arg>
<map></ map>
</ constructor-arg>
</ bean>
</ array>
</entry>
</ map>
</ constructor-arg>
</ bean>
</ property>
<property nanme="aut horityG anters">

<list>
<l-- You will need to wite your own inplenentati on of AuthorityGanter -->
<bean cl ass="org. springframework. security. authentication.jaas. TestAuthorityGanter"/>
</list>
</ property>
</ bean>

21.4 JaasAuthenticationProvider

The JaasAut henti cati onProvi der assumes the default Confi guration is an instance
of ConfigFile [http://download.oracle.com/javase/1.4.2/docs/guide/security/j aas/spec/com/sun/security/auth/
login/ConfigFile.ntml]. This assumption is made in order to attempt to update the Confi gur ati on.
The JaasAut henticati onProvi der then uses the default Confi guration to create the
Logi nCont ext .

Let's assume we have a JAAS login configuration file, / WEB- | NF/ | ogi n. conf, with the following
contents:

JAASTest {
sanpl e. Sanpl eLogi nMbdul e required;
b

Like all Spring Security beans, the JaasAut hent i cati onProvi der is configured via the application
context. The following definitions would correspond to the above JAAS login configuration file:

<bean i d="j aasAut henti cati onProvi der"
cl ass="org. springframework. security. aut henti cati on.j aas. JaasAut henti cati onProvi der">
<property nane="| ogi nConfi g" val ue="/WEB-| NF/ | ogi n. conf"/>
<property name="| ogi nCont ext Nane" val ue="JAASTest"/>
<property nane="cal | backHandl ers" >
<list>
<bean
cl ass="org. springframewor k. security. aut henti cati on.j aas. JaasNaneCal | backHandl er "/ >
<bean
cl ass="org. springframework. security. authentication.jaas.JaasPasswordCal | backHandl er" />
</list>

311 108

http://download.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/sun/security/auth/login/ConfigFile.html
http://download.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/sun/security/auth/login/ConfigFile.html
http://download.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/sun/security/auth/login/ConfigFile.html

Spring Security

</ property>
<property nanme="aut horityG anters">
<list>
<bean cl ass="org. spri ngframework. security. authentication.jaas. TestAuthorityGanter"/>

</[list>
</ property>
</ bean>

21.5 Running as a Subject

If configured, the JaasApi | ntegrationFilter will attempt to run as the Subj ect on the
JaasAut henti cati onToken. Thismeansthat the Subj ect can be accessed using:

Subj ect subj ect = Subject. get Subj ect (AccessControl | er.getContext());

This integration can easily be configured using the jaas-api-provision attribute. This feature is useful when
integrating with legacy or external API'sthat rely on the JAAS Subject being popul ated.

311 109

Spring Security

22.1 Overview

JA-SIG produces an enterprise-wide single sign on system known as CAS. Unlike other initiatives, JA-SIG's
Central Authentication Service is open source, widely used, simple to understand, platform independent, and
supports proxy capabilities. Spring Security fully supports CAS, and provides an easy migration path from
single-application deployments of Spring Security through to multiple-application deployments secured by an
enterprise-wide CAS server.

You can learn more about CAS at htt p: / / www. j a- si g. or g/ cas. You will also need to visit this site
to download the CAS Server files.

22.2 How CAS Works

Whilst the CAS web site contains documents that detail the architecture of CAS, we present the general
overview again here within the context of Spring Security. Spring Security 3.x supports CAS 3. At the time
of writing, the CAS server was at version 3.4.

Somewherein your enterprise you will need to setup a CAS server. The CAS server issimply astandard WAR
file, so there isn't anything difficult about setting up your server. Inside the WAR file you will customise the
login and other single sign on pages displayed to users.

When deploying a CAS 3.4 server, you will also need to specify an Aut henti cati onHandl er
in the depl oyer Confi gCont ext . xm included with CAS. The Aut henti cati onHandl er has
a simple method that returns a boolean as to whether a given set of Credentials is valid. Your
Aut hent i cati onHandl er implementation will need to link into some type of backend authentication
repository, suchasan LDAP server or database. CASitself includesnumerous Aut hent i cat i onHandl er s
out of the box to assist with this. When you download and deploy the server war file, it is set up to successfully
authenticate users who enter a password matching their username, which is useful for testing.

Apart from the CAS server itsdlf, the other key players are of course the secure web applications deployed
throughout your enterprise. These web applications are known as "services'. There are three types of services.
Those that authenticate service tickets, those that can obtain proxy tickets, and those that authenticate proxy
tickets. Authenticating a proxy ticket differs because the list of proxies must be validated and often times a
proxy ticket can be reused.

Spring Security and CAS Interaction Sequence
The basic interaction between aweb browser, CAS server and a Spring Security-secured serviceis asfollows:
1. Theweb user is browsing the service's public pages. CAS or Spring Security is not involved.

2. The user eventually requests a page that is either secure or one of the beans it uses is secure.
Spring Security's Except i onTr ansl ati onFi | t er will detect the AccessDeni edExcepti on or
Aut henti cati onExcepti on.

3. Because the user's Authentication object (or lack thereof) caused an
Aut henti cati onExcepti on, the Excepti onTransl ati onFilter will call the configured

311 110

Spring Security

Aut henti cati onEnt ryPoi nt . If using CAS, thiswill bethe CasAut hent i cati onEnt r yPoi nt
class.

4. The CasAut henticationEntryPoint will redirect the user's browser to the CAS
server. It will also indicate a service parameter, which is the callback URL for the
Spring Security service (your application). For example, the URL to which the browser
is redirected might be https://ny.conpany. coni cas/| ogi n?servi ce=htt ps¥3AYRRF
%2Fserver 3. conpany. conb@Fwebapp%2Fj spring_cas_security_ check.

5. After the user's browser redirects to CAS, they will be prompted for their username and password.
If the user presents a session cookie which indicates they've previously logged on, they will not be
prompted to login again (there is an exception to this procedure, which welll cover later). CAS will use
the Passwor dHandl er (or Aut henti cat i onHandl er if using CAS 3.0) discussed aboveto decide
whether the username and password is valid.

6. Upon successful login, CAS will redirect the user's browser back to the original service. It will also
include at i cket parameter, which is an opague string representing the "service ticket". Continuing our
earlier example, the URL the browser is redirected to might be ht t ps: / / server 3. conpany. coni
webapp/j _spring_cas_security check?ticket =ST- 0- ER94xMIm6pha35CQRoZ.

7. Back in the service web application, the CasAuthenticationFilter is aways
listening for reguests to /j_spring_cas_security_check (this is configurable, but
well use the defaults in this introduction). The processing filter will construct a
User nanePasswor dAut hent i cat i onToken representing the service ticket. The principal will be
equal to CasAut henti cati onFi |l ter. CAS _STATEFUL_| DENTI FI ER, whilst the credentials will
be the service ticket opaque value. This authentication request will then be handed to the configured
Aut hent i cati onManager .

8. The Aut henti cati onManager implementation will be the Provi der Manager, which is in
turn configured with the CasAut hent i cati onPr ovi der . The CasAut henti cat i onProvi der
only responds to UsernanePasswordAut henticati onTokens containing the CAS
specific principal (such as CasAut henti cati onFilter. CAS _STATEFUL | DENTI FI ER) and
CasAut hent i cat i onTokens (discussed later).

9. CasAut henti cati onProvi der will validate the service ticket using a Ti cket Val i dat or
implementation. This will typically be a Cas20ServiceTi cketValidator which is
one of the classes included in the CAS client library. In the event the application
needs to validate proxy tickets, the Cas20ProxyTi cketValidator is wused. The
Ti cket Val i dator makes an HTTPS request to the CAS server in order to vaidate
the service ticket. It may also include a proxy calback URL, which is included in
this example: https://ny. conpany. conl cas/ proxyVal i dat e?servi ce=htt ps¥38A%RF
%2Fser ver 3. conpany. conf2Fwebapp
%2Fj spring_cas_security_checké&ticket=ST-0-

ER94xMImMm6pha35CQRoZ&pgt Ur | =ht t ps: // server 3. conpany. com webapp/
j _spring_cas_security_proxyreceptor.

10.Back on the CAS server, the validation request will be received. If the presented service ticket matches
the service URL the ticket was issued to, CAS will provide an affirmative response in XML indicating

311 111

Spring Security

the username. If any proxy was involved in the authentication (discussed below), the list of proxiesis also
included in the XML response.

11[OPTIONAL] If the request to the CAS validation service included the proxy callback URL
(in the pgt Url parameter), CAS will include a pgtlou string in the XML response. This
pgtl ou represents a proxy-granting ticket 10U. The CAS server will then create its own
HTTPS connection back to the pgt Url . This is to mutually authenticate the CAS server and
the claimed service URL. The HTTPS connection will be used to send a proxy granting ticket
to the origina web application. For example, https://server 3. conpany. conl webapp/
j _spring_cas_security_proxyreceptor?pgtl ou=PGTlI OU 0-
ROzl gr | 4pdAQaMBY IVWOBVNnNpevwgSt bSGeq3vKB2SqSFFRnj PHE &pgt | d=PGT- 1-
si 9YkkHLr t ACBo64r msi 3v2nf 7cpCRes Xg5MpESZFAr bazi OKH.

12.The Cas20Ti cket Val i dat or will parse the XML received from the CAS server. It will return to the
CasAut henti cati onProvi der aTi cket Response, which includes the username (mandatory),
proxy list (if any were involved), and proxy-granting ticket IOU (if the proxy callback was requested).

13.Next CasAut henticationProvider will cal a configured CasProxyDecider. The
CasPr oxyDeci der indicates whether the proxy list in the Ti cket Response is acceptable to
the service. Severa implementations are provided with Spring Security: Rej ect Pr oxyTi cket s,
Accept AnyCasPr oxy and NamedCasPr oxyDeci der . These names are largely sdlf-explanatory,
except NamedCasPr oxyDeci der which alowsali st of trusted proxies to be provided.

14.CasAut hent i cat i onPr ovi der will next request a Aut hent i cati onUser Det ai | sServi ce
toload the Gr ant edAut hor i t y objects that apply to the user contained inthe Asserti on.

15.1f there were no problems, CasAut henti cati onProvi der constructs a
CasAut henti cati onToken including the details contained in the Ti cket Response and the
G ant edAut hori tys.

16.Control then returns to CasAuthenticationFilter, which places the created
CasAut hent i cat i onToken in the security context.

17.The user's browser is redirected to the original page that caused the Aut hent i cat i onExcepti on (or
a custom destination depending on the configuration).

It'sgood that you're still here! Let's now look at how thisis configured

22.3 Configuration of CAS Client

Theweb application side of CASismade easy dueto Spring Security. It isassumed you aready know the basics
of using Spring Security, so these are not covered again below. We'll assume a namespace based configuration
isbeing used and add in the CA S beans as required. Each section builds upon the previous section. A full CAS
sample application can be found in the Spring Security Samples.

311 112

Spring Security

Service Ticket Authentication

This section describes how to setup Spring Security to authenticate Service Tickets. Often timesthisis all a
web application requires. You will need to add a Ser vi cePr operti es bean to your application context.
This represents your CAS service:

<bean i d="servi ceProperties"
cl ass="org. springframework. security.cas. Servi ceProperties">
<property nane="service"
val ue="https://| ocal host: 8443/ cas-sanpl e/j _spring_cas_security check"/>
<property nane="sendRenew' val ue="fal se"/>
</ bean>

The servi ce must equal a URL that will be monitored by the CasAut henti cationFilter. The
sendRenewdefaults to false, but should be set to true if your application is particularly sensitive. What this
parameter doesistell the CAS login service that a single sign on login is unacceptable. Instead, the user will
need to re-enter their username and password in order to gain access to the service.

The following beans should be configured to commence the CAS authentication process (assuming you're
using a namespace configuration):

<security:http entry-point-ref="casEntryPoint">

<security:customfilter position="CAS FILTER' ref="casFilter" />
</security: http>

<bean id="casFilter"
cl ass="org. springframework. security.cas.web. CasAut henticationFilter">
<property nanme="aut henti cati onManager" ref="aut henti cati onManager"/>
</ bean>

<bean i d="casEntryPoi nt"
cl ass="org. springframewor k. security.cas.web. CasAut henti cati onEnt ryPoi nt">
<property nanme="l|ogi nUrl" val ue="https://| ocal host: 9443/ cas/| ogin"/>
<property nanme="servi ceProperties" ref="serviceProperties"/>
</ bean>

For CAS to operate, the ExceptionTranslationFilter must have its
aut henti cati onEnt ryPoi nt property set to the CasAut henticati onEntryPoi nt bean.
This can easily be done using entry-point-ref as is done in the example above. The
CasAut henti cati onEnt r yPoi nt must refer to the Ser vi cePr operti es bean (discussed above),
which providesthe URL to the enterprise sCASlogin server. Thisiswherethe user'sbrowser will beredirected.

The CasAut henti cationFilter has very similar properties to the
User nanePasswor dAut henti cati onFil ter (used for form-based logins). You can use these
properties to customize things like behavior for authentication success and failure.

Next you need to add aCasAut hent i cati onProvi der and its collaborators:

311 113

Spring Security

<security: aut henticati on- manager alias="authenticati onManager">
<security:authentication-provider ref="casAuthenticationProvider" />
</ security:aut henticati on-manager >

<bean i d="casAut henti cati onProvi der"
cl ass="org. springframework. security.cas. aut henti cati on. CasAut henti cati onProvi der">
<property nanme="aut henti cati onUser Det ai | sServi ce">
<bean cl ass="org. spri ngframework. security.core. userdetails. UserDet ai | sByNameSer vi ceW apper ">
<constructor-arg ref="user Service" />
</ bean>
</ property>
<property nanme="servi ceProperties" ref="serviceProperties" />
<property nanme="ti cket Val i dator">
<bean cl ass="org.jasig.cas.client.validation. Cas20ServiceTi cket Val i dator">
<constructor-arg index="0" val ue="https://| ocal host: 9443/ cas" />
</ bean>
</ property>
<property nanme="key" val ue="an_id_for_this_auth_provider_only"/>
</ bean>

<security:user-service id="userService">
<security:user nanme="joe" password="joe" authorities="ROLE USER' />

</ security:user-service>

The CasAut henti cati onProvi der usesaUser Det ai | sSer vi ce instance to load the authorities
for auser, once they have been authenticated by CAS. We've shown a simple in-memory setup here. Note that
the CasAut henti cati onProvi der doesnot actually use the password for authentication, but it does use
the authorities.

The beans are all reasonably self-explanatory if you refer back to the How CAS Works section.

This completes the most basic configuration for CAS. If you haven't made any mistakes, your web application
should happily work within the framework of CAS single sign on. No other parts of Spring Security need to be
concerned about the fact CA S handled authentication. In the foll owing sectionswewill discuss some (optional)
more advanced configurations.

Single Logout

The CAS praotocol supports Single Logout and can be easily added to your Spring Security configuration.
Below are updates to the Spring Security configuration that handle Single Logout

<security:http entry-point-ref="casEntryPoint">

<security: | ogout |ogout-success-url="/cas-|ogout.jsp"/>

<security:customfilter ref="requestSinglelLogoutFilter" before="LOGOUT_FILTER'/>

<security:customfilter ref="singleLogoutFilter" before="CAS FILTER'/>
</security: http>

<l-- This filter handles a Single Logout Request fromthe CAS Server -->
<bean i d="singl eLogoutFilter" class="org.jasig.cas.client.session.SingleSignQtFilter"/>
<l-- This filter redirects to the CAS Server to signal Single Logout should be perfornmed -->
<bean i d="request Si ngl eLogoutFilter"
cl ass="org. spri ngframewor k. security.web. aut hentication.| ogout. LogoutFilter">
<constructor-arg val ue="https://| ocal host: 9443/ cas/ | ogout"/ >

311 114

Spring Security

<const ruct or - ar g>
<bean cl ass=
"org. springfranmework. security.web. aut hentication.| ogout. SecurityCont ext Logout Handl er"/>
</ constructor-arg>
<property nanme="filterProcessesU|" value="/j_spring_cas_security_|ogout"/>
</ bean>

Thel ogout element logs the user out of the local application, but does not terminate the session with the
CAS server or any other applications that have been logged into. The r equest Si ngl eLogout Fi | t er
filter will allow theurl of / spring _security_cas_| ogout to be requested to redirect the application
to the configured CAS Server logout url. Then the CAS Server will send a Single Logout request to al the
services that were signed into. The si ngl eLogout Fi | t er handles the Single Logout request by looking
upthe Ht t pSessi on inastatic Map and then invalidating it.

It might be confusing why both the | ogout element and the si ngl eLogout Fi | t er are needed. It
is considered best practice to logout localy first since the Si ngl eSi gnQut Fi | t er just stores the
Ht t pSessi on in a static Map in order to cal invalidate on it. With the configuration above, the flow of
logout would be:

1. Theuserrequests/ j _spring_security_ | ogout whichwouldlogtheuser out of thelocal application
and send the user to the logout success page.

2. The logout success page, / cas- | ogout . j sp, should instruct the user to click a link pointing to /
j _spring_cas_security_ | ogout inordertologout out of al applications.

3. When the user clicks the link, the user is redirected to the CAS single logout URL (https://
| ocal host: 9443/ cas/ | ogout).

4. On the CAS Server side, the CAS single logout URL then submits single logout requests to all the CAS
Services. On the CAS Service side, JASIG's Si ngl eSi gnQut Fi | t er processes the logout request by
invaliditing the original session.

The next step is to add the following to your web.xml

<filter>
<filter-nane>characterEncodi ngFilter</filter-name>
<filter-class>org.springframework.web.filter.CharacterEncodingFilter</filter-class>
<init-paran>
<par am nane>encodi ng</ par am nanme>
<par am val ue>UTF- 8</ par am val ue>
</init-paranm>
</[filter>
<filter-mappi ng>
<filter-name>characterEncodi ngFilter</filter-nanme>
<url-pattern>/*</url-pattern>
</filter-mppi ng>
<l'i st ener>
<listener-class>org.jasig.cas.client.session.SingleSignQutHttpSessionListener</listener-class>
</listener>

When using the SingleSignOutFilter you might encounter some encoding issues. Therefore it is
recommended to add the Char act er Encodi ngFi | t er to ensure that the character encoding is correct
when using the Si ngl eSi gnQut Fi |l ter. Again, refer to JASIG's documentation for details. The

311 115

Spring Security

Si ngl eSi gnQut Ht t pSessi onLi st ener ensures that when an Ht t pSessi on expires, the mapping
used for single logout is removed.

Authenticating to a Stateless Service with CAS

This section describes how to authenticate to a service using CAS. In other words, this section discusses how
to setup a client that uses a service that authenticates with CAS. The next section describes how to setup a
statel ess service to Authenticate using CAS.

Configuring CAS to Obtain Proxy Granting Tickets

In order to authenticate to a stateless service, the application needs to obtain a proxy granting ticket (PGT).
This section describes how to configure Spring Security to obtain a PGT building upon then Service Ticket
Authentication [cas-st] configuration.

Thefirst stepistoincludeaPr oxy G- ant i ngTi cket St or age inyour Spring Security configuration. This
is used to store PGT's that are obtained by the CasAut hent i cati onFi | t er so that they can be used to
obtain proxy tickets. An example configuration is shown below

o

NOTE: In a real application you should not use an in nenory inplenentation. You will also want
to ensure to clean up expired tickets by calling ProxyG antingTi cket St orage. cl eanup()

-->

<bean i d="pgt St orage" class="org.jasig.cas.client.proxy.ProxyG antingTi cket St oragel npl"/>

The next step is to update the CasAut henti cati onProvi der to be able to obtain proxy tickets.
To do this replace the Cas20Ser vi ceTi cket Val i dat or with a Cas20Pr oxyTi cket Val i dat or .
The proxyCal | backUr | should be set to a URL that the application will receive PGT's at. Last, the
configuration should also reference the Pr oxyGrant i ngTi cket St or age so it can use a PGT to obtain
proxy tickets. Y ou can find an example of the configuration changes that should be made below.

<bean i d="casAut henti cati onProvi der"
cl ass="org. spri ngframework. security.cas. aut henti cati on. CasAut henti cati onProvi der">

<property nane="ticket Validator">
<bean cl ass="org.jasig.cas.client.validation.Cas20ProxyTi cket Val i dat or">
<constructor-arg val ue="https://| ocal host: 9443/ cas"/>

<property name="proxyCal |l backUrl"
val ue="https:/ /| ocal host: 8443/ cas-sanpl e/ _spring_cas_security_proxyreceptor"/>
<property nane="proxyG anti ngTi cket St or age" ref="pgt Storage"/>
</ bean>
</ property>
</ bean>

The last step is to update the CasAut henti cati onFilter to accept PGT and to store them in
the ProxyG anti ngTi cket St or age. It is important the the pr oxyRecept or Url matches the
proxyCal | backUr| of the Cas20Pr oxyTi cket Val i dat or. An example configuration is shown
below.

311 116

cas-st
cas-st
cas-st

Spring Security

<bean id="casFilter"
cl ass="org. spri ngframewor k. security.cas.web. CasAut henti cati onFilter">

<property nanme="proxyG anti ngTi cket St or age" ref="pgt St orage"/>
<property nanme="proxyReceptorUrl" val ue="/j_spring_cas_security_proxyreceptor"/>
</ bean>

Calling a Stateless Service Using a Proxy Ticket

Now that Spring Security obtains PGTs, you can use them to create proxy tickets which can be used
to authenticate to a stateless service. The CAS sample application contains a working example in the
ProxyTi cket Sanpl eSer vl et . Example code can be found below:

protected void doGet (HttpServl et Request request, HitpServletResponse response)
throws Servl et Exception, | COException {
/1 NOTE: The CasAut henticationToken can al so be obtai ned using
/'l SecurityCont ext Hol der. get Cont ext (). get Aut henti cati on()
final CasAuthenticationToken token = (CasAut henticationToken) request.getUserPrincipal ();
/'l proxyTicket could be reused to nake calls to the CAS service even if the
I/ target url differs
final String proxyTicket = token.getAssertion().getPrincipal().getProxyTicketFor(targetUrl);

/1 Make a renote call using the proxy ticket
final String serviceUrl = targetUrl+"?ticket="+URLEncoder.encode(proxyTicket, "UTF-8");
String proxyResponse = CommonlUti |l s. get ResponseFronfServer (servi ceUrl, "UTF-8");

Proxy Ticket Authentication

TheCasAut hent i cati onPr ovi der distinguishes between stateful and stateless clients. A stateful client
is considered any that submits to the fi |l t er ProcessUr| of the CasAut henticationFilter. A
stateless client is any that presents an authentication request to CasAut henti cati onFi |l t er onaURL
other thanthefi |l t er ProcessUrl .

Because remoting protocols have no way of presenting themselves within the context of an Ht t pSessi on,
it isn't possible to rely on the default practice of storing the security context in the session between
requests. Furthermore, because the CAS server invalidates a ticket after it has been validated by the
Ti cket Val i dat or, presenting the same proxy ticket on subsequent requests will not work.

One obvious option is to not use CAS at al for remoting protocol clients. However, this would eliminate
many of the desirable features of CAS. As a middle-ground, the CasAut henti cati onProvi der
uses a St at el essTi cket Cache. This is used solely for stateless clients which use a principa
equal to CasAut henticationFilter.CAS_STATELESS | DENTI FI ER. What happens is the
CasAut henti cati onProvi der will store the resulting CasAut henti cati onToken in the
St at el essTi cket Cache, keyed on the proxy ticket. Accordingly, remoting protocol clients can present
the same proxy ticket and the CasAut hent i cat i onPr ovi der will not need to contact the CAS server
for validation (aside from the first request). Once authenticated, the proxy ticket could be used for URL s other
than the original target service.

This section builds upon the previous sections to accomodate proxy ticket authentication. The first step isto
specify to authenticate all artifacts as shown below.

311 117

Spring Security

<bean i d="servi ceProperties"
cl ass="org. springframework. security.cas. Servi ceProperties">

<property nanme="aut henticateAl |l Artifacts" value="true"/>
</ bean>

The next step is to specify servi ceProperties and the aut henti cati onDet ai | sSource
for the CasAuthenticationFilter. The serviceProperties propety instructs the
CasAut henticationFilter to atempt to authenticate all artifacts instead of only ones
present on the filterProcessUrl. The Servi ceAut henti cati onDet ai | sSource creates
a ServiceAuthenticationDetails tha ensures the current URL, based upon the
Ht t pSer vl et Request , isused as the service URL when validating the ticket. The method for generating
the service URL can be customized by injecting acustom Aut hent i cat i onDet ai | sSour ce that returns
acustom Ser vi ceAut henti cati onDetail s.

<bean id="casFilter"
cl ass="org. springframework. security.cas.web. CasAut henti cati onFilter">

<property nane="servi ceProperties" ref="serviceProperties"/>
<property nane="aut henti cati onDet ai | sSour ce">
<bean cl ass=
"org. springfranmework. security.cas.web. aut henti cati on. Servi ceAut henti cati onDet ai | sSour ce"/ >
</ property>
</ bean>

You will also need to update the CasAut hent i cati onPr ovi der to handle proxy tickets. To do this
replace the Cas20Ser vi ceTi cket Val i dat or with a Cas20Pr oxyTi cket Val i dat or. You will
need to configure the st at el essTi cket Cache and which proxies you want to accept. You can find an
example of the updates required to accept all proxies below.

<bean i d="casAut henti cati onProvi der"
cl ass="org. spri ngframewor k. security.cas. aut henti cati on. CasAut henti cati onProvi der">

<property nane="ticket Val i dator">
<bean cl ass="org.jasig.cas.client.validation.Cas20ProxyTi cket Val i dat or">
<constructor-arg val ue="https://| ocal host: 9443/ cas"/ >
<property nane="accept AnyProxy" val ue="true"/>
</ bean>
</ property>
<property nane="st at el essTi cket Cache">
<bean cl ass="org. spri ngframework. security.cas. aut henticati on. EhCacheBasedTi cket Cache" >
<property nanme="cache">
<bean cl ass="net . sf. ehcache. Cache"
init-method="initialise" destroy-nmethod="di spose">
<constructor-arg val ue="casTi ckets"/>
<constructor-arg val ue="50"/>
<constructor-arg val ue="true"/>
<constructor-arg val ue="fal se"/>
<constructor-arg val ue="3600"/>
<constructor-arg val ue="900"/>
</ bean>
</ property>
</ bean>
</ property>

311 118

Spring Security

</ bean>

311 119

Spring Security

23.1 Overview

Themost common use of X.509 certificate authenticationisin verifying theidentity of aserver when using SSL,
most commonly when using HTTPS from a browser. The browser will automatically check that the certificate
presented by a server has been issued (ie digitally signed) by one of alist of trusted certificate authorities which
it maintains.

You can also use SSL with “mutual authentication”; the server will then request a valid certificate from the
client as part of the SSL handshake. The server will authenticate the client by checking that its certificate is
signed by an acceptable authority. If avalid certificate has been provided, it can be obtained through the serviet
API inan application. Spring Security X.509 module extractsthe certificate using afilter. It mapsthe certificate
to an application user and loads that user's set of granted authorities for use with the standard Spring Security
infrastructure.

Y ou should be familiar with using certificates and setting up client authentication for your serviet container
before attempting to use it with Spring Security. Most of the work is in creating and instaling suitable
certificates and keys. For example, if you're using Tomcat then read the instructions here http://
t ontat . apache. org/ t ontat - 6. 0- doc/ ssl - howt 0. ht m . It'simportant that you get thisworking
before trying it out with Spring Security

23.2 Adding X.509 Authentication to Your Web Application

Enabling X.509 client authentication is very straightforward. Just add the <x509/ > element to your http
security namespace configuration.

<ht t p>
<x509 subj ect-princi pal -regex="CN=(.*?)," user-service-ref="user Service"/>;
</ http>
The element has two optional attributes:

e subj ect - princi pal - regex. Theregular expression used to extract a username from the certificate's
subject name. The default value is shown above. This is the username which will be passed to the
User Det ai | sSer vi ce toload the authorities for the user.

» user-service-ref.ThisisthebeanIdof theUser Det ai | sSer vi ce to be used with X.5009. It isn't
needed if there is only one defined in your application context.

The subj ect - pri nci pal - r egex should contain a single group. For example the default expression

"CN=(.*?)," matches the common name field. So if the subject name in the certificate is "CN=Jimi
Hendrix, OU=...", this will give a user name of "Jimi Hendrix". The matches are case insensitive.
So "emailAddress=(.?)," will match "EMAILADDRESS=jimi @hendrix.org,CN=..." giving a user name
"jimi@hendrix.org". If the client presents a certificate and a valid username is successfully extracted, then
there should be a valid Aut hent i cat i on object in the security context. If no certificate is found, or no
corresponding user could be found then the security context will remain empty. This meansthat you can easily
use X.509 authentication with other options such as aform-based login.

311 120

http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

Spring Security

23.3 Setting up SSL in Tomcat

There are some pre-generated certificatesin the sanpl es/ certi fi cat e directory in the Spring Security
project. You can use these to enable SSL for testing if you don't want to generate your own. The file
server . | ks containsthe server certificate, private key and the issuing certificate authority certificate. There
are also some client certificate files for the users from the sample applications. Y ou can install these in your
browser to enable SSL client authentication.

To run tomcat with SSL support, drop the ser ver . j ks file into the tomcat conf directory and add the
following connector to theser ver . xm file

<Connect or port="8443" protocol ="HTTP/ 1. 1" SSLEnabl ed="true" scheme="https" secure="true"
clientAuth="true" sslProtocol ="TLS"
keyst oreFi | e="${cat al i na. hone}/ conf/server.jks"
keyst or eType="JKS" keyst or ePass="password"
truststoreFil e="${catalina. home}/conf/server.jks"
truststoreType="JKS" truststorePass="password"
/>

cl i ent Aut h can aso be set towant if you still want SSL connections to succeed even if the client doesn't
provide a certificate. Clients which don't present a certificate won't be able to access any objects secured by
Spring Security unless you use a non-X.509 authentication mechanism, such as form authentication.

311 121

Spring Security

24.1 Overview

The Abstract Securitylnterceptor is able to temporarily replace the Aut hentication
object in the Securi t yCont ext and SecurityCont ext Hol der during the secure object callback
phase. This only occurs if the origina Authentication object was successfully processed
by the Aut henti cati onManager and AccessDeci si onManager. The RunAsManager will
indicate the replacement Aut henti cati on object, if any, that should be used during the
Securityl nterceptorCall back.

By temporarily replacing the Aut hent i cat i on abject during the secure object callback phase, the secured
invocation will be ableto call other objectswhich require different authentication and authorization credentials.
It will also beableto perform any internal security checksfor specific G- ant edAut hor i t y objects. Because
Spring Security provides a number of helper classes that automatically configure remoting protocols based
on the contents of the Secur i t yCont ext Hol der , these run-as replacements are particularly useful when
calling remote web services

24.2 Configuration

A RunAsManager interfaceis provided by Spring Security:

Aut henti cati on buil dRunAs(Aut henti cati on authentication, Cbject object,
Li st <Confi gAttri bute> config);

bool ean supports(ConfigAttribute attribute);

bool ean supports(d ass cl azz);

The first method returnsthe Aut hent i cat i on object that should replace the existing Aut hent i cat i on
object for the duration of the method invocation. If the method returns nul | , it indicates no replacement
should bemade. The second methodisused by the Abst r act Securi t yl nt er cept or aspart of itsstartup
validation of configuration attributes. The support s(C ass) method is called by a security interceptor
implementation to ensure the configured RunAsManager supports the type of secure object that the security
interceptor will present.

One concrete implementation of a RunAsManager is provided with Spring Security. The
RunAsManager | npl class returns a replacement RunAsUser Token if any Confi gAttri but e starts
with RUN_AS . If any such Confi gAttri bute is found, the replacement RunAsUser Token will
contain the same principal, credentials and granted authorities as the original Aut hent i cati on object,
along with a new Grant edAut horityl npl for each RUN_AS_ Confi gAttri bute. Each new
G ant edAut hori t yl nmpl will be prefixed with ROLE_, followed by the RUN_AS Conf i gAttri bute.
For example, a RUN_AS SERVER will result in the replacement RunAsUser Token containing a
RCLE_RUN_AS SERVER granted authority.

The replacement RunAsUser Token is just like any other Authentication object. It
needs to be authenticated by the Aut henti cati onManager, probably via delegation to a
suitable Aut hent i cati onProvi der. The RunAsl npl Aut henti cati onProvi der performs such
authentication. It simply accepts asvalid any RunAsUser Token presented.

311 122

Spring Security

To ensure malicious code does not create a RunAsUser Token and present it for guaranteed acceptance by
the RunAsl npl Aut henti cati onProvi der, the hash of a key is stored in all generated tokens. The
RunAsManager | npl and RunAsl| npl Aut hent i cati onProvi der iscreated in the bean context with
the same key:

<bean i d="runAsManager"
cl ass="org. spri ngframework. security.access.intercept. RunAsManager | npl ">
<property nanme="key" val ue="ny_run_as_password"/>
</ bean>

<bean i d="runAsAut henti cati onProvi der"
cl ass="org. springframework. security.access.intercept.RunAsl npl Aut henti cati onProvi der" >
<property nane="key" val ue="my_run_as_password"/>
</ bean>

By using the same key, each RunAsUser Token can be validated it was created by an approved
RunAsManager | npl . The RunAsUser Token isimmutable after creation for security reasons

311 123

Spring Security

25.1 Introduction

The Spring Security Crypto module provides support for symmetric encryption, key generation, and password
encoding. The code is distributed as part of the core module but has no dependencies on any other Spring
Security (or Spring) code.

25.2 Encryptors

The Encryptors class provides factory methods for constructing symmetric encryptors. Using this class, you
can create ByteEncryptorsto encrypt datain raw byte[] form. Y ou can a so construct TextEncryptorsto encrypt
text strings. Encryptors are thread safe.

BytesEncryptor

Use the Encryptors.standard factory method to construct a"standard" BytesEncryptor:

Encrypt ors. st andard("password", "salt");

The"standard" encryption method is 256-hit AES using PK CS#5's PBK DF2 (Password-Based K ey Derivation
Function #2). This method requires Java 6. The password used to generate the SecretKey should be kept in
a secure place and not be shared. The salt is used to prevent dictionary attacks against the key in the event
your encrypted datais compromised. A 16-byte random initialization vector is also applied so each encrypted
message is unique.

The provided salt should be in hex-encoded String form, be random, and be at least 8 bytesin length. Such a
salt may be generated using a KeyGenerator:

String salt = KeyGenerators.string().generateKey(); // generates a random 8-byte salt that is then hex-encoded

TextEncryptor

Use the Encryptors.text factory method to construct a standard TextEncryptor:

Encryptors. text ("password", "salt");

A TextEncryptor uses a standard BytesEncryptor to encrypt text data. Encrypted results are returned as hex-
encoded strings for easy storage on the filesystem or in the database.

Use the Encryptors.queryableText factory method to construct a ' queryable" TextEncryptor:

Encrypt ors. quer yabl eText ("password", "salt");

The difference between a queryable TextEncryptor and a standard TextEncryptor has to do with initialization
vector (iv) handling. The iv used in a queryable TextEncryptor#encrypt operation is shared, or constant, and

311 124

Spring Security

is not randomly generated. This means the same text encrypted multiple times will always produce the same
encryption result. This is less secure, but necessary for encrypted data that needs to be queried against. An
example of queryable encrypted text would be an OAuth apiKey.

25.3 Key Generators

The KeyGenerators class provides a number of convenience factory methods for constructing different types
of key generators. Using this class, you can create a BytesK eyGenerator to generate byte[] keys. Y ou can also
construct a StringKk eyGenerator to generate string keys. KeyGenerators are thread safe.

BytesKeyGenerator

Use the KeyGenerators.secureRandom factory methods to generate a BytesKeyGenerator backed by a
SecureRandom instance:

KeyGener at or generator = KeyGenerators. secur eRandon();
byte[] key = generator.generateKey();

The default key length is 8 bytes. There is aso a KeyGenerators.secureRandom variant that provides control
over the key length:

KeyGener at or s. secur eRandon{ 16) ;

Use the KeyGenerators.shared factory method to construct a BytesK eyGenerator that always returns the same
key on every invocation:

KeyGener at or s. shar ed(16) ;

StringKeyGenerator

Use the KeyGenerators.string factory method to construct a 8-byte, SecureRandom KeyGenerator that hex-
encodes each key as a String:

KeyGenerators. string();

25.4 Password Encoding

The password package of the spring-security-crypto module provides support for encoding passwords.
Passwor dEncoder isthe central service interface and has the following signature:

public interface PasswordEncoder {
String encode(String rawPassword);

311 125

Spring Security

bool ean mat ches(String rawPassword, String encodedPassword);

The matches method returnstrueif the rawPassword, once encoded, equal s the encodedPassword. This method
is designed to support password-based authentication schemes.

The St andar dPasswor dEncoder implementation applies 1024 iterations of the SHA-256 hashing
algorithm to the rawPassword combined with a site-wide secret and 8-byte random salt:

St andar dPasswor dEncoder encoder = new St andar dPasswor dEncoder ("secret");
String result = encoder. encode(" nyPassword");
assert True(encoder. mat ches("nyPassword", result));

The random salt ensures each hash is unique when the same password is used multiple times. The site-wide
secret should be stored in a saf e place separate from where passwords are stored, and is used to protect against
a bruce force attack in the event the database of passwords is compromised. 1024 iterations of the hashing
algorithm strengthens the key and makes it more difficult to compromise using a brute force attack.

311 126

Spring Security

Appendix A. Security Database Schema

There are various database schema used by the framework and this appendix provides a single reference point
to them all. You only need to provide the tables for the areas of functonality you require.

DDL statementsare given for the HSQL DB database. Y ou can use these asaguideline for defining the schema
for the database you are using.

A.1 User Schema

Thestandard JDBC implementation of theUser Det ai | sSer vi ce (JdbcDaol npl) requirestablestoload
the password, account status (enabled or disabled) and alist of authorities (roles) for the user.

create tabl e users(
user nanme var char _i gnorecase(50) not null prinmary key,
password varchar _i gnorecase(50) not null,
enabl ed bool ean not null);

create table authorities (
user nane varchar _i gnorecase(50) not nul |,
aut hority varchar _i gnorecase(50) not null,
constraint fk_authorities_users foreign key(usernane) references users(usernane));
create unique index ix_auth_usernane on authorities (usernane, authority);

Group Authorities

Spring Security 2.0 introduced support for group authoritiesin Jdbc Daol npl . The table structure if groups
are enabled isas follows:

create table groups (
id bigint generated by default as identity(start with 0) primry key,
group_nane varchar _i gnorecase(50) not null);

create table group_authorities (
group_id bigint not null,
aut hority varchar (50) not null,
constraint fk_group_authorities _group foreign key(group_id) references groups(id));

create table group_nenbers (
id bigint generated by default as identity(start with 0) primry key,
user nane varchar (50) not null,
group_id bigint not null,
constraint fk_group_nenbers_group foreign key(group_id) references groups(id));

Remember that these tables are only required if you are using the provided JDBC User Det ai | sSer vi ce
implementation. If you write your own or choose to implement Aut henti cati onProvi der without a
User Det ai | sSer vi ce, then you have complete freedom over how you store the data, as long as the
interface contract is satisfied.

311 127

Spring Security

A.2 Persistent Login (Remember-Me) Schema

Thistableis used to store data used by the more secure persistent token remember-me implementation. If you
areusing JdbcTokenReposi t or yl npl either directly or through the namespace, then you will need this
table.

create table persistent_logins (
user nanme varchar(64) not null,
series varchar(64) primry key,
token varchar(64) not null,
| ast _used tinestanp not null);

A.3 ACL Schema

There are four tables used by the Spring Security ACL implementation.

1. acl _si d stores the security identities recognised by the ACL system. These can be unique principals or
authorities which may apply to multiple principals.

2. acl _cl ass defines the domain object types to which ACLs apply. The cl ass column stores the Java
class name of the object.

3. acl _obj ect _i denti ty storesthe object identity definitions of specific domai objects.
4. acl _entry storesthe ACL permissions which apply to a specific object identity and security identity.

It is assumed that the database will auto-generate the primary keys for each of the identities. The
JdbcMut abl eAcl Servi ce has to be able to retrieve these when it has created a new row in the
acl _sidoracl _cl ass tables. It has two properties which define the SQL needed to retrieve these values
cl assldentityQuery andsidl dentityQuery. Bothof thesedefaulttocal | identity()

Hypersonic SQL

Thedefault schemaworkswith the embedded HSQL DB database that isused in unit testswithin the framework.

create table acl_sid (
id bigint generated by default as identity(start with 100) not null primry key,
princi pal bool ean not null,
sid varchar_i gnorecase(100) not null,
constraint uni que_uk_1 uni que(sid, principal));

create table acl _class (
id bigint generated by default as identity(start with 100) not null primry key,
cl ass varchar_i gnorecase(100) not null,
constraint uni que_uk_2 uni que(cl ass));

create table acl _object_identity (
id bigint generated by default as identity(start with 100) not null primary key,
object_id_class bigint not null,
object_id_identity bigint not null,
par ent _obj ect bigint,

311 128

Spring Security

owner_sid bigint not null,
entries_inheriting boolean not null,
constrai nt uni que_uk_3 uni que(obj ect _id_cl ass, object_id_identity),

constraint foreign_fk_1 foreign key(parent_object)references acl_object_identity(id),

constraint foreign_fk_2 foreign key(object_id_class)references acl_class(id),
constraint foreign fk_3 foreign key(owner_sid)references acl_sid(id));

create table acl _entry (
id bigint generated by default as identity(start with 100) not null primry key,
acl _object _identity bigint not null,ace_order int not null,sid bigint not null,
mask i nteger not null,granting bool ean not null, audit_success bool ean not null,
audit_failure bool ean not null,
constrai nt uni que_uk_4 uni que(acl _object_identity, ace_order),
constraint foreign_fk_4 foreign key(acl_object_identity)
references acl _object_identity(id),
constraint foreign_fk_5 foreign key(sid) references acl_sid(id));

PostgreSQL

create table acl _sid(
id bigserial not null primary key,
princi pal bool ean not null,
sid varchar (100) not null,
constraint uni que_uk_1 uni que(sid, principal));

create table acl _class(
id bigserial not null primary key,
cl ass varchar(100) not null,
constrai nt uni que_uk_2 uni que(cl ass));

create table acl _object _identity(
id bigserial primry key,
obj ect_id_class bigint not null,
object_id_identity bigint not null,
par ent _obj ect bi gi nt,
owner _si d bigint,
entries_inheriting bool ean not null,
constrai nt uni que_uk_3 uni que(obj ect _id_cl ass, object_id_identity),

constraint foreign_fk_1 foreign key(parent_object) references acl_object_identity(id),

constraint foreign_ fk_2 foreign key(object_id _class) references acl _class(id),
constraint foreign_fk_3 foreign key(owner_sid) references acl _sid(id));

create table acl _entry(
id bigserial primary key,
acl _object_identity bigint not null,
ace_order int not null,
sid bigint not null,
mask i nteger not null,
granti ng bool ean not null,
audi t _success bool ean not null,
audit_failure bool ean not null,
constrai nt uni que_uk_4 uni que(acl _object_identity, ace_order),
constraint foreign_fk_4 foreign key(acl_object_identity)
references acl _object_identity(id),
constraint foreign fk_5 foreign key(sid) references acl _sid(id));

You will have to set the classldentityQuery and sidldentityQuery properties of

JdbcMut abl eAcl Ser vi ce to the following values, respectively:

311

129

Spring Security

» select currval (pg_get _serial _sequence('acl _class', 'id'))

e select currval (pg_get _serial _sequence('acl _sid', '"id'))

311 130

Spring Security

Appendix B. The Security Namespace

This appendix provides areference to the elements available in the security namespace and information on the
underlying beans they create (a knowledge of the individual classes and how they work together is assumed
- you can find more information in the project Javadoc and elsewhere in this document). If you haven't used
the namespace before, please read the introductory chapter on namespace configuration, asthisisintended as
a supplement to the information there. Using a good quality XML editor while editing a configuration based
on the schema is recommended as this will provide contextual information on which elements and attributes
are available as well as comments explaining their purpose. The namespace is written in RELAX NG [http:/
www.relaxng.org/] Compact format and later converted into an XSD schema. If you are familiar with this
format, you may wish to examine the schema file [https://fisheye.springsource.org/browse/spring-security/
config/src/main/resources/org/springframework/security/config/spring-security-3.1.rnc] directly.

B.1 Web Application Security

<debug>

Enables Spring Security debugging infrastructure. This will provide human-readable (multi-line) debugging
information to monitor requests coming into the security filters. This may include sensitive information, such
as regquest parameters or headers, and should only be used in a development environment.

<htt p>

If you use an <http> element within your application, a Filter Chai nProxy bean named
"springSecurityFilterChain" is created and the configuration within the element is used to build afilter chain
withinFi | t er Chai nPr oxy. Asof Spring Security 3.1, additional ht t p elements can be used to add extra
filter chains 1. Some core filters are always created in a filter chain and others will be added to the stack
depending on the attributes and child elements which are present. The positions of the standard filters are fixed
(see thefilter order table in the namespace introduction), removing a common source of errors with previous
versions of the framework when users had to configurethefilter chain explicitly intheFi | t er Chai nPr oxy
bean. Y ou can, of course, till do thisif you need full control of the configuration.

All filterswhich require areference to the Aut hent i cat i onManager will be automatically injected with
the internal instance created by the namespace configuration (see the introductory chapter for more on the
Aut henti cati onManager).

Each <htt p> namespace block always creates an SecurityCont ext Persi stenceFilter, an
ExceptionTransl ationFilter and a FilterSecuritylnterceptor. These are fixed and
cannot be replaced with aternatives.

<ht t p> Attributes

The attributes on the <ht t p> element control some of the properties on the corefilters.

ISeethe introductory chapter for how to set up the mapping from your web. xm

311 131

http://www.relaxng.org/
http://www.relaxng.org/
http://www.relaxng.org/
https://fisheye.springsource.org/browse/spring-security/config/src/main/resources/org/springframework/security/config/spring-security-3.1.rnc
https://fisheye.springsource.org/browse/spring-security/config/src/main/resources/org/springframework/security/config/spring-security-3.1.rnc
https://fisheye.springsource.org/browse/spring-security/config/src/main/resources/org/springframework/security/config/spring-security-3.1.rnc

Spring Security

access-deci si on- manager - r ef

Optional attribute specifying the ID of the AccessDeci si onManager implementation which should be
used for authorizing HTTP requests. By default an Af f i r mat | veBased implementation is used for with a
Rol eVot er and an Aut hent i cat edVot er .

access- deni ed- page

Deprecated in favour of the access-denied-handler child element.

aut henti cati on- manager - r ef

A referenceto the Aut hent i cat i onManager used for theFi | t er Chai n created by this http element.
aut o-config

Automatically registers a login form, BASIC authentication, anonymous authentication, logout services,
remember-me and servlet-api-integration. If set to "true”, al of these capabilities are added (although you can
still customize the configuration of each by providing the respective element). If unspecified, defaultsto "false”.

create-session

Controls the eagerness with which an HTTP session is created by Spring Security classes. Options include:
» al ways - Spring Security will proactively create a session if one does not exist.

» i f Requi r ed - Spring Security will only create a session only if oneisrequired (default value).

e never - Spring Security will never create a session, but will make use of one if the application does.

st at el ess - Spring Security will not create a session and ignore the session for obtaining a Spring
Aut henti cati on.

di sabl e-url-rewiting

Prevents session | Dsfrom being appended to URL s in the application. Clients must use cookiesif this attribute
issettotrue. Thedefaultisf al se.

entry-point-ref

Normally the Aut henti cati onEntryPoi nt used will be set depending on which authentication
mechanisms have been configured. This attribute allows this behaviour to be overridden by defining a
customized Aut hent i cat i onEnt r yPoi nt bean which will start the authentication process.

j aas-api - provi sion

If available, runs the request as the Subj ect acquired from the JaasAut hent i cati onToken whichis
implemented by adding aJaasApi | nt egrati onFi | t er beanto the stack. Defaultsto f al se.

311 132

Spring Security

nane

A bean identifier, used for referring to the bean elsewhere in the context.

once- per - r equest

Correspondstotheobser veOncePer Request property of Fi | t er Securi tyl nt er cept or . Defaults
totrue.

pat h-type
Deprecated in favor of request-matcher.
pattern

Defining a pattern for the http element controls the requests which will be filtered through the list of filters
which it defines. The interpretation is dependent on the configured request-matcher. If no pattern is defined,
al requests will be matched, so the most specific patterns should be declared first.

real m

Sets the realm name used for basic authentication (if enabled). Corresponds to the r eal mName property on
Basi cAut henti cat i onEnt r yPoi nt .

request - mat cher

Defines the Request Mat cher strategy used in the Fi | t er Chai nPr oxy and the beans created by the
i ntercept-url to match incoming requests. Options are currently ant, r egex and ci Regex, for
ant, regular-expression and case-insensitive regular-expression repsectively. A separate instance is created
for each intercept-url element using its pattern and method attributes. Ant paths are matched using an
Ant Pat hRequest Mat cher and regular expressions are matched using aRegexRequest Mat cher . See
the Javadoc for these classes for more details on exactly how the matching is preformed. Ant paths are the
default strategy.

request - mat cher -ref

A refereneceto abean that implements Request Mat cher that will determineif thisFi | t er Chai n should
be used. Thisis amore powerful aternative to pattern.

security

A request pattern can be mapped to an empty filter chain, by setting this attribute to none. No security will
be applied and none of Spring Security's features will be available.

security-context-repository-ref

Allows injection of a custom SecurityCont ext Repository into the
Securi tyCont ext Persi stenceFilter.

311 133

Spring Security

servl et -api - provision

Provides versions of Ht t pSer vl et Request security methods such as
i sUser | nRol e() and getPrincipal () which are implemented by adding a
Secur it yCont ext Hol der Awar eRequest Fi | t er bean to the stack. Defaultstot r ue.

use- expr essi ons

Enables EL-expressions in the access attribute, as described in the chapter on expression-based access-
control.

Child Elements of <http>
* access-denied-handler

* anonymous

* custom-filter

» expression-handler

» form-login

* http-basic

* intercept-url

. jee

* logout

 openid-login

* port-mappings

* remember-me

* reguest-cache

* session-management

» x509
<access-deni ed- handl er >

This element allows you to set the err or Page property for the default AccessDeni edHandl er
used by the Excepti onTransl ati onFilter, using the error-page attribute, or to supply your
own implementation using the ref attribute. This is discussed in more detail in the section on the
ExceptionTransl ationFilter.

Parent Elements of <access- deni ed- handl er >

e http

311 134

Spring Security

<access- deni ed- handl er > Attributes
error-page

The access denied page that an authenticated user will be redirected to if they request a page which they don't
have the authority to access.

r ef

Defines areference to a Spring bean of type AccessDeni edHandl er

<anonynous>
Adds an AnonynousAut henti cationFil ter to the stack and an
AnonynousAut henti cati onProvi der. Required if you are using the

I S_AUTHENTI CATED_ANONYMOUSLY attribute.
Parent Elements of <anonynous>

e http

<anonynous> Attributes

enabl ed

With the default namespace setup, the anonymous "authentication” facility is automatically enabled. Y ou can
disable it using this property.

granted-aut hority

The granted authority that should be assigned to the anonymous request. Commonly this is used to assign
the anonymous request particular roles, which can subsequently be used in authorization decisions. If unset,
defaults to ROLE_ ANONYMOUS.

key

The key shared between the provider and filter. This generally does not need to be set. If unset, it will default
to a secure randomly generated value. This means setting this value can improve startup time when using the
anonymous functionality since secure random values can take a while to be generated.

user nane

The username that should be assigned to the anonymous request. This alows the principal to be identified,
which may be important for logging and auditing. if unset, defaultsto anonynousUser .

<customfilter>

This element is used to add a filter to the filter chain. It doesn't create any additional beans but is used to
select abean of typej avax. servl et . Fi | t er whichisalready defined in the application context and add

311 135

Spring Security

that at a particular position in the filter chain maintained by Spring Security. Full details can be found in the
namespace chapter.

Parent Elements of <custom filter>
* http

<customfilter> Attributes

after

The filter immediately after which the custom-filter should be placed in the chain. This feature will only
be needed by advanced users who wish to mix their own filters into the security filter chain and have
some knowledge of the standard Spring Security filters. The filter names map to specific Spring Security
implementation filters.

bef ore
Thefilter immediately before which the custom-filter should be placed in the chain
posi tion

Theexplicit position at which the custom-filter should be placed inthe chain. Useif you arereplacing astandard
filter.

r ef
Defines areference to a Spring bean that implementsFi | t er .
<expr essi on- handl er >

Defines the Securi t yExpr essi onHandl er instance which will be used if expression-based access-
control is enabled. A default implementation (with no ACL support) will be used if not supplied.

Parent Elements of <expr essi on- handl er >

* global-method-security

* http

<expr essi on- handl er > Attributes

ref

Defines areference to a Spring bean that implements Secur i t yExpr essi onHandl er .
<form|l ogi n>

Used to add an User nanePasswor dAut henti cationFilter to the filter stack and an
Logi nUr | Aut henti cati onEnt ryPoi nt to the application context to provide authentication on

311 136

Spring Security

demand. This will always take precedence over other namespace-created entry points. If no attributes are
supplied, alogin page will be generated automatically at the URL "/spring_security login" 2 The behaviour
can be customized using the <f or m | ogi n> Attributes.

Parent Elements of <f or m | ogi n>

* http

<f or m | ogi n> Attributes

al ways- use-defaul t-target

If set to true, the user will aways start at the value given by default-target-url, regardless of
how they arrived at the login page. Maps to the al waysUseDef aul t Tar get Ur|l property of
User nanePasswor dAut henti cati onFi | t er . Default valueisf al se.

aut henti cation-detail s-source-ref

Reference to an Aut hent i cat i onDet ai | sSour ce which will be used by the authentication filter
aut henti cation-fail ure-handl er-ref

Can be used as an dternative to authentication-failure-url, giving you full control over the navigation flow
after an authentication failure. The value should be he name of an Aut hent i cati onFai | ur eHandl er
bean in the application context.

aut hentication-failure-url

Maps to the aut henticationFail ureUrl property of
User nanePasswor dAut henti cati onFi | t er. Defines the URL the browser will be redirected to
on login failure. Defaultsto / spri ng_security_l ogi n?l ogi n_err or, which will be automatically
handled by the automatic login page generator, re-rendering the login page with an error message.

aut henti cati on-success-handl er -r ef

This can be used as an dternative to default-target-url and always-use-default-target, giving you full
control over the navigation flow after a successful authentication. The value should be the name of an
Aut henti cati onSuccessHandl er bean in the application context. By default, an implementation
of SavedRequest Awar eAut hent i cat i onSuccessHandl er is used and injected with the default-
target-url .

defaul t-target-url

Mapstothedef aul t Tar get Ur | property of User nanmePasswor dAut henti cati onFi |l t er. If not
set, the default value is /" (the application root). A user will be taken to this URL after logging in, provided

2This feature is really just provided for convenience and is not intended for production (where a view technology will have been chosen
and can be used to render acustomized login page). TheclassDef aul t Logi nPageCGener at i ngFi | t er isresponsiblefor rendering
the login page and will provide login forms for both normal form login and/or OpenID if required.

311 137

Spring Security

they were not asked to login while attempting to access a secured resource, when they will be taken to the
originally requested URL.

| ogi n- page

The URL that should be used to render the login page. Maps to the | ogi nFor mr | property of the
Logi nUr | Aut henti cati onEnt r yPoi nt . Defaultsto "/spring_security_login".

| ogi n- processi ng-url

Maps to the filter ProcessesUr| property of User nanmePasswor dAut henti cationFilter.
The default valueis"/j_spring_security _check".

passwor d- par anet er

The name of the request parameter which contains the password. Defaultsto "j_password".
user name- par anet er

The name of the request parameter which contains the username. Defaultsto "j_username”.
<ht t p- basi c>

Adds a Basi cAuthenticationFilter and Basi cAuthenticationEntryPoint to the
configuration. The latter will only be used as the configuration entry point if form-based login is not enabled.

Parent Elements of <htt p- basi ¢>

* http

<ht t p- basi c> Attributes

aut henti cati on-detail s-source-ref

Reference to an Aut hent i cat i onDet ai | sSour ce which will be used by the authentication filter
entry- poi nt-ref

Setsthe Aut hent i cati onEnt r yPoi nt whichisused by theBasi cAut henti cati onFilter.
<http-firewal | > Element

Thisis atop-level element which can be used to inject a custom implementation of Ht t pFi r ewal | intothe
Fi | t er Chai nProxy created by the namespace. The default implementation should be suitable for most
applications.

<http-firewal | > Attributes
r ef

Defines areference to a Spring bean that implements Ht t pFi r ewal | .

311 138

Spring Security

<intercept-url>

Thiselement is used to define the set of URL patterns that the application isinterested in and to configure how
they should be handled. It is used to construct the Fi | t er | nvocat i onSecur it yMet adat aSour ce
used by the FilterSecuritylnterceptor. It is aso responsible for configuring a
Channel Aut henti cati onFi | t er if particular URLsneed to be accessed by HTTPS, for example. When
matching the specified patterns against an incoming request, the matching is done in the order in which the
elements are declared. So the most specific matches patterns should come first and the most general should
come last.

Parent Elements of <i ntercept-url >
« filter-invocation-definition-source

* filter-security-metadata-source

* http

<i nt ercept - url > Attributes
access

Liststhe access attributes which will be storedintheFi | t er | nvocat i onSecuri t yMet adat aSour ce
for the defined URL pattern/method combination. This should be a comma-separated list of the security
configuration attributes (such as role names).

filters

Can only take the value “none”. Thiswill cause any matching request to bypass the Spring Security filter chain
entirely. None of the rest of the <ht t p> configuration will have any effect on the request and there will be no
security context available for its duration. Access to secured methods during the request will fail.

net hod

The HTTP Method which will be used in combination with the pattern to match an incoming request. If omitted,
any method will match. If an identical pattern is specified with and without a method, the method-specific
match will take precedence.

pattern

The pattern which defines the URL path. The content will depend on ther equest - mat cher attribute from
the containing http element, so will default to ant path syntax.

requi res- channe

Can be “http” or “https’ depending on whether a particular URL pattern should be accessed over HTTP or
HTTPS respectively. Alternatively the value “any” can be used when there is no preference. If this attribute is
present on any <i nt er cept - ur | > element, then aChannel Aut henti cati onFi | t er will be added
to the filter stack and its additional dependencies added to the application context.

311 139

Spring Security

If a<port - mappi ngs> configuration is added, thiswill be used to by the Secur eChannel Pr ocessor
and | nsecur eChannel Pr ocessor beansto determine the ports used for redirecting to HTTP/HTTPS.

<j ee>

Adds a J2eePreAuthenticatedProcessingFilter to the filter chain to provide integration with container
authentication.

Parent Elements of <j ee>

e http

<j ee> Attributes

mappabl e-r ol es

A comma-separate list of rolesto look for in the incoming HttpServletRequest.
user-service-ref

A reference to a user-service (or UserDetailsService bean) 1d

<l ogout >

Adds a LogoutFilter to the filter stack. This is configured with a
Securi t yCont ext Logout Handl er .

Parent Elements of <l ogout >

e http

<l ogout > Attributes

The del et e- cooki es attribute

A comma-separated list of the names of cookies which should be deleted when the user logs out.
The i nval i dat e- sessi on attribute

Maps to the i nval i dat eHt t pSessi on of the Securit yCont ext Logout Handl er . Defaults to
"true", so the session will be invalidated on logout.

The | ogout - success- url attribute

The destination URL which the user will be taken to after logging out. Defaultsto "/".

Setting this attribute will inject the Sessi onManagenent Fil ter with a
Si mpl eRedi rect | nval i dSessi onSt r at egy configured with the attribute value. When an invalid
session ID is submitted, the strategy will be invoked, redirecting to the configured URL.

311 140

Spring Security

The | ogout - url attribute

The URL which will cause a logout (i.e. which will be processed by the filter). Defaults to "/
j_spring_security _logout”.

The success- handl er -r ef attribute

May be used to supply an instance of Logout SuccessHandl er which will be invoked to control the
navigation after logging out.

<openi d- | ogi n>

Similar to <formlogin> and has the same attributes. The default value for | ogin-
processi ng-url is"/j_spring_openid_security_check”. An Openl DAut henti cati onFilter and
Openl DAut hent i cati onProvi der will be registered. The latter requires a reference to a
User Det ai | sSer vi ce. Again, thiscan be specified by i d, usingtheuser - servi ce-r ef atribute, or
will be located automatically in the application context.

Parent Elements of <openi d- | ogi n>

* http

<openi d- | ogi n> Attributes

al ways- use-default-target

Whether the user should always be redirected to the default-target-url after login.

aut henti cation-detail s-source-ref

Reference to an AuthenticationDetail sSource which will be used by the authentication filter
aut henti cation-fail ure-handl er-ref

Reference to an AuthenticationFailureHandler bean which should be used to handle a failed authentication
request. Should not be used in combination with authentication-failure-url asthe implementation should always
deal with navigation to the subsequent destination

aut hentication-failure-url

The URL for the login failure page. If no login failure URL is specified, Spring Security will automatically
create afailurelogin URL at /spring_security login?ogin_error and a corresponding filter to render that login
failure URL when requested.

aut henti cati on-success-handl er -r ef

Referenceto an AuthenticationSuccessHandl er bean which should be used to handle asuccessful authentication
request. Should not be used in combination with default-target-url (or aways-use-default-target) as the
implementation should always deal with navigation to the subsequent destination

311 141

Spring Security

defaul t-target-url

The URL that will be redirected to after successful authentication, if the user's previous action could not be
resumed. Thisgenerally happensif theuser visitsalogin page without having first requested a secured operation
that triggers authentication. If unspecified, defaults to the root of the application.

| ogi n- page

The URL for the login page. If no login URL is specified, Spring Security will automatically create alogin
URL at /spring_security login and a corresponding filter to render that login URL when requested.

| ogi n- processi ng-url

The URL that the login form is posted to. If unspecified, it defaultsto /j_spring_security_check.
passwor d- par anet er

The name of the request parameter which contains the password. Defaults to "j_password".
user-service-ref

A reference to a user-service (or UserDetailsService bean) 1d

user name- par anet er

The name of the request parameter which contains the username. Defaultsto "j_username”.
Child Elements of <openid-login>

* atribute-exchange

<attri but e- exchange>

The attri but e- exchange element defines the list of attributes which should be requested from the
identity provider. An example can be found in the OpenlD Support section of the namespace configuration
chapter. More than one can be used, in which case each must have an i denti fi er - mat ch attribute,
containing aregular expression which is matched against the supplied Openl D identifier. This allows different
attribute lists to be fetched from different providers (Google, Y ahoo etc).

Parent Elements of <attri but e- exchange>
» openid-login

<attri but e- exchange> Attributes

I dentifier-match

A regular expression which will be compared against the claimed identity, when deciding which attribute-
exchange configuration to use during authentication.

311 142

Spring Security

Child Elements of <at t ri but e- exchange>
 openid-attribute
<openi d-attri but e>

Attributes used when making an OpenlD AX Fetch Request [http://openid.net/specs/openid-attribute-
exchange-1 0.html#fetch request]

Parent Elements of <openi d-attri but e>

* atribute-exchange

<openi d- attri but e> Attributes

count

Specifiesthe number of attributesthat you wishto get back. For example, return 3 emails. Thedefault valueis 1.
nane

Specifies the name of the attribute that you wish to get back. For example, email.

required

Specifies if this attribute is required to the OP, but does not error out if the OP does not return the attribute.
Default isfalse.

type

Specifies the attribute type. For example, http://axschema.org/contact/email. See your OP's documentation for
valid attribute types.

<port - mappi ngs>

By default, aninstanceof Por t Mapper | npl will be added to the configuration for usein redirecting to secure
and insecure URLSs. This element can optionally be used to override the default mappings which that class
defines. Each child <por t - mappi ng> element defines a pair of HTTP:HTTPS ports. The default mappings
are 80:443 and 8080:8443. An example of overriding these can be found in the namespace introduction.

Parent Elements of <port - mappi ngs>
* http

Child Elements of <port - nappi ngs>
* port-mapping

<port - mappi ng>

Provides a method to map http ports to https ports when forcing a redirect.

311 143

http://openid.net/specs/openid-attribute-exchange-1_0.html#fetch_request
http://openid.net/specs/openid-attribute-exchange-1_0.html#fetch_request
http://openid.net/specs/openid-attribute-exchange-1_0.html#fetch_request

Spring Security

Parent Elements of <port - mappi ng>
* port-mappings

<port - mappi ng> Attributes

http

The http port to use.

htt ps

The https port to use.

<r enenber - ne>

Addsthe Remenmber MeAut henti cati onFi | t er tothestack. Thisin turn will be configured with either
a TokenBasedRenmenmber MeSer vi ces, a Per si st ent TokenBasedRenenber MeSer vi ces or a
user-specified bean implementing Renenber MeSer vi ces depending on the attribute settings.

Parent Elements of <r emenber - ne>

* http

<r enenber - me> Attributes

aut henti cati on- success- handl er-ref

Sets the aut henti cati onSuccessHandl er property on the
Renmenber MeAut hent i cati onFi | t er if custom navigation is required. The value should be the name
of aAut hent i cati onSuccessHandl er bean in the application context.

dat a- sour ce-r ef

A reference to a Dat aSour ce bean. If thisis set, Per si st ent TokenBasedRenenber MeSer vi ces
will be used and configured with aJdbc TokenReposi t or yl npl instance.

key

Mapstothe"key" property of Abst r act Remenber MeSer vi ces. Should be set to auniquevalueto ensure
that remember-me cookies are only valid within the one application 3. If thisis not set a secure random value
will be generated. Since generating secure random values can take a while, setting this value explicitly can
help improve startup times when using the remember me functionality.

servi ces-alias

Exportsthe internally defined Remenber MeSer vi ces asabean aias, allowing it to be used by other beans
in the application context.

3This doesn't affect the use of Per si st ent TokenBasedRenenber MeSer vi ces, where the tokens are stored on the server side.

311 144

Spring Security

servi ces-ref

Allows complete control of the Remenber MeSer vi ces implementation that will be used by the filter. The
value should be the i d of a bean in the application context which implements this interface. Should also
implement Logout Handl er if alogout filter isin use.

t oken-repository-ref

Configures a Per si st ent TokenBasedRenmenber MeSer vi ces but alows the use of a custom
Per si st ent TokenReposi t ory bean.

t oken-val i dity-seconds

Maps to the t okenVal i di t ySeconds property of Abst ract Remenber MeSer vi ces. Specifies the
period in seconds for which the remember-me cookie should be valid. By default it will be valid for 14 days.

use- secur e- cooki e

It is recommended that remember-me cookies are only submitted over HTTPS and thus should be flagged as
“secure”. By default, a secure cookie will be used if the connection over which the login request is made is
secure (asit should be). If you set this property to f al se, secure cookieswill not be used. Settingittot r ue
will always set the secure flag on the cookie. This attribute maps to the useSecur eCooki e property of
Abst r act Remenber MeSer vi ces.

user -service-ref

The remember-me services implementations require access to a User Det ai | sSer vi ce, so there has to
be one defined in the application context. If there is only one, it will be selected and used automatically by
the namespace configuration. If there are multiple instances, you can specify abean i d explicitly using this
attribute.

<r equest - cache> Element

Setsthe Request Cache instance which will be used by the Except i onTr ansl ati onFi | t er to store
request information before invoking an Aut hent i cat i onEnt r yPoi nt .

Parent Elements of <r equest - cache>
* http

<r equest - cache> Attributes

r ef

Defines areference to a Spring bean that isaRequest Cache.

<sessi on- managenent >

Session-management related functionality is implemented by the addition of a
Sessi onManagenent Fi | t er tothefilter stack.

311 145

Spring Security

Parent Elements of <sessi on- nanagenent >
e http

<sessi on- managenent > Attributes

i nval i d- sessi on-url

Setting this attribute will inject the Sessi onManagenent Fil ter with a
Si npl eRedi rect | nval i dSessi onSt rat egy configured with the attribute value. When an invalid
session ID is submitted, the strategy will be invoked, redirecting to the configured URL.

sessi on-aut hentication-error-url

Defines the URL of the error page which should be shown when the SessionAuthenticationStrategy raises an
exception. If not set, an unauthorized (402) error code will be returned to the client. Note that this attribute
doesn't apply if the error occurs during aform-based login, where the URL for authentication failure will take
precedence.

sessi on-aut henti cati on-strategy-ref

Allows injection of the SessionA uthenticationStrategy instance used by the SessionManagementFilter

session-fixation-protection

Indicateswhether an existing session should beinvalidated when auser authenticates and anew session started.
If set to "none" no change will be made. "newSession” will create a new empty session. "migrateSession” will
create a new session and copy the session attributes to the new session. Defaults to "migrateSession”.

If session fixation protectionisenabled, theSessi onManagenent Fi | t er isinjected with an appropriately
configured Def aul t Sessi onAut henti cati onStrat egy. See the Javadoc for this class for more
details.

Child elements of <sessi on- nranagenent >

° concurrency—control

<concurrency-contr ol >

Adds support for concurrent session control, alowing limits to be placed on the number of
active sessions a user can have. A Concurrent SessionFilter will be created, and a
Concurrent Sessi onContr ol St rat egy will be used with the Sessi onManagenent Fi |l ter. If
aform |l ogin element has been declared, the strategy object will aso be injected into the created
authentication filter. An instance of Sessi onRegi stry (aSessi onRegi st ryl npl instance unlessthe
user wishes to use a custom bean) will be created for use by the strategy.

Parent Elements of <concurrency-control >

* Session-management

311 146

Spring Security

<concurrency-cont rol > Attributes
error-if-maxi num exceeded

If set to "true” a Sessi onAut henti cati onExcepti on will be raised when a user attempts to exceed
the maximum allowed number of sessions. The default behaviour is to expire the original session.

expi red-url

The URL auser will beredirected toif they attempt to use asession which has been "expired" by the concurrent
session controller because the user has exceeded the number of allowed sessions and has logged in again
elsawhere. Should be set unlessexcepti on-i f - maxi num exceeded isset. If no value is supplied, an
expiry message will just be written directly back to the response.

max- sessi ons
Maps to the maxi munSessi ons property of Concur r ent Sessi onContr ol St r at egy.
session-registry-alias

It can also be useful to have areference to the internal session registry for use in your own beans or an admin
interface. You can expose the interna bean using the sessi on-regi stry-al i as attribute, giving it a
name that you can use elsewhere in your configuration.

session-regi stry-ref

The user can supply their own Sessi onRegi st ry implementation usingthesessi on-r egi stry-r ef
attribute. The other concurrent session control beans will be wired up to use it.

<x509>

Adds support for X.509 authentication. An X509Aut henti cati onFi | t er will be added to the stack
and an Ht t p403For bi ddenEnt r yPoi nt bean will be created. The latter will only be used if no other
authentication mechanisms are in use (its only functionality is to return an HTTP 403 error code). A
PreAut hent i cat edAut henti cati onProvi der will aso be created which delegates the loading of
user authoritiesto aUser Det ai | sSer vi ce.

Parent Elements of <x509>

e http

<x509> Attributes

aut henti cati on-detail s-source-ref
A referenceto an Aut hent i cat i onDet ai | sSour ce
subj ect - pri nci pal - r egex

Defines aregular expression which will be used to extract the username from the certificate (for use with the
User Det ai | sServi ce).

311 147

Spring Security

user -service-ref

Allows a specific User Det ai | sSer vi ce to be used with X.509 in the case where multiple instances are
configured. If not set, an attempt will be made to locate a suitable instance automatically and use that.

<filter-chai n- map>

Used to explicitly configure a FilterChainProxy instance with a FilterChainMap
<filter-chai n- map> Attributes

pat h-type

Superseded by the request-matcher attribute

request - mat cher

Supersedes the 'path-type' attribute. Defines the strategy use for matching incoming requests. Currently the
optionsare 'ant' (for ant path patterns), ‘'regex' for regular expressions and 'ciRegex’ for case-insensitive regular
expressions.

Child Elements of <fi | t er - chai n- map>
« filter-chain
<filter-chai n>

Used within to define a specific URL pattern and the list of filters which apply to the URLs matching that
pattern. When multiple filter-chain elements are assembled in alist in order to configure a FilterChainProxy,
the most specific patterns must be placed at the top of the list, with most general ones at the bottom.

Parent Elements of <fi | t er-chai n>
« filter-chain-map

<filter-chai n>Attributes
filters

A comma separated list of references to Spring beans that implement Fi | t er . The value "none" means that
no Fi | t er 'sshould be used for thisFi | t er Chai n.

pattern
A-pattern that creates RequestMatcher in combination with the request-matcher
request - mat cher - r ef

A reference to a Request Mat cher that will be used to determine if the Fil ter'sfromthefilters
attribute should be invoked.

311 148

Spring Security

<filter-invocation-definition-source>
Deprecated synonym for filter-security-metadata-source
<filter-invocation-definition-source>Attributes

i d

A bean identifier, used for referring to the bean elsewhere in the context.
| ower case- conpari sons

Compare after forcing to lowercase

pat h-type

Superseded by request-matcher

request - mat cher

Supersedes the 'path-type' attribute. Defines the strategy use for matching incoming requests. Currently the
optionsare 'ant' (for ant path patterns), 'regex' for regular expressions and 'ciRegex’ for case-insensitive regular
expressions.

use- expr essi ons

Enables the use of expressions in the 'access' attributes in <intercept-url> elements rather than the traditional
list of configuration attributes. Defaults to 'false’. If enabled, each attribute should contain a single boolean
expression. If the expression evaluates to 'true', access will be granted.

Child Elements of <filter-i nvocati on-definition-source>
* intercept-url
<filter-security-netadata-source>

Used to explicitly configure a FilterSecurityM etadataSource bean for use with a FilterSecuritylnterceptor.
Usually only needed if you are configuring a FilterChainProxy explicitly, rather than using the <http> element.
The intercept-url elements used should only contain pattern, method and access attributes. Any others will
result in a configuration error.

<filter-security-metadata-source> Attributes
I d
A bean identifier, used for referring to the bean elsewhere in the context.

| ower case- conpari sons

Compare after forcing to lower case

311 149

Spring Security

pat h-t ype
Superseded by request-matcher
request - mat cher

Supersedes the 'path-type' attribute. Defines the strategy use for matching incoming requests. Currently the
optionsare 'ant' (for ant path patterns), 'regex’ for regular expressions and 'ciRegex’ for case-insensitive regular
expressions.

use- expressi ons

Enables the use of expressions in the 'access' attributes in <intercept-url> elements rather than the traditional
list of configuration attributes. Defaults to 'false’. If enabled, each attribute should contain a single boolean
expression. If the expression evaluates to 'true', access will be granted.

Child Elements of <fi |t er-security-nmet adat a- sour ce>

* intercept-url

B.2 Authentication Services

Before Spring Security 3.0, an Aut hent i cat i onManager was automatically registered internally. Now
you must register oneexplicitly usingthe<aut hent i cat i on- manager > element. Thiscreatesan instance
of Spring Security's Pr ovi der Manager class, which needs to be configured with a list of one or more
Aut henti cati onProvi der instances. These can either be created using syntax elements provided
by the namespace, or they can be standard bean definitions, marked for addition to the list using the
aut henti cati on- provi der element.

<aut henti cati on- manager >

Every Spring Security application which uses the namespace must have include this element somewhere. It
isresponsible for registering the Aut hent i cat i onManager which provides authentication servicesto the
application. All elements which create Aut hent i cat i onProvi der instances should be children of this
element.

<aut henti cat i on- manager > Attributes
ali as

This attribute allows you to define an alias name for the internal instance for use in your own configuration.
Its use is described in the namespace introduction.

erase-credenti al s

If set to true, the AuthenticationManger will attempt to clear any credentids data in the
returned Authentication object, once the user has been authenticated. Literally it maps to the
eraseCredenti al sAft er Aut henti cat i on property of the Pr ovi der Manager . Thisis discussed
in the Core Services chapter.

311 150

Spring Security

id

This attribute allows you to define an id for the internal instance for use in your own configuration. It is the
same athe alias e ement, but provides a more consistent experience with elements that use the id attribute.

Child Elements of <aut hent i cat i on- nanager >
* authentication-provider

* |dap-authentication-provider

<aut henti cati on- provi der >

Unless used with a ref atribute, this element is shorthand for configuring a
DaoAut henti cati onProvi der. DaoAut henti cati onProvi der loads user information from a
User Det ai | sSer vi ce and compares the username/password combination with the values supplied at
login. TheUser Det ai | sSer vi ce instance can be defined either by using an avail able namespace element
(j dbc- user -servi ceorbyusingtheuser - ser vi ce- r ef attributeto point to abean defined el sewhere
in the application context). Y ou can find examples of these variations in the namespace introduction.

Parent Elements of <aut henti cati on- provi der>

* authentication-manager

<aut henti cati on- provi der > Attributes

r ef

Defines areference to a Spring bean that implements Aut hent i cat i onPr ovi der

If you have written your own Aut hent i cati onProvi der implementation (or want to configure one of
Spring Security's own implementations as a traditional bean for some reason, then you can use the following
syntax to add it to the internal Pr ovi der Manager 'slist:

<security: aut henticati on- manager >
<security:authentication-provider ref="myAuthenticationProvider" />
</ security:aut henticati on-manager >
<bean i d="nyAut henti cati onProvi der" class="com sonet hi ng. MyAut henti cati onProvi der"/>

user -service-ref

A reference to abean that implements UserDetail sService that may be created using the standard bean element
or the custom user-service element.

Child Elements of <aut henti cati on- pr ovi der >
* jdbc-user-service

* |dap-user-service

311 151

Spring Security

* password-encoder

* user-service

<j dbc- user-servi ce>

Causes creation of a JDBC-based UserDetailsService.

<j dbc- user - servi ce> Attributes

aut horiti es-by-user nane- query

An SQL statement to query for a user's granted authorities given a username.

The default is

sel ect username, authority from authorities where usernane = ?

cache-ref
Defines areference to a cache for use with a UserDetailsService.

dat a- sour ce-r ef

The bean 1D of the DataSource which provides the required tables.

group-aut horities-by-usernane-query
An SQL statement to query user's group authorities given a username.

The default is

sel ect
g.id, g.group_nane, ga.authority
from
groups g, group_nenbers gm group_authorities ga
wher e
gmusernane = ? and g.id = ga.group_id and g.id = gmgroup_id

i d
A bean identifier, used for referring to the bean elsewhere in the context.
rol e-prefix

A non-empty string prefix that will be added to role stringsloaded from persistent storage (defaultis"ROLE_").
Use the value "none" for no prefix in cases where the default is non-empty.

user s- by- user nane- query

An SQL statement to query a username, password, and enabled status given a username.

311 152

Spring Security

The default is

sel ect usernane, password, enabled from users where usernane = ?

<passwor d- encoder >

Authentication providers can optionally be configured to use apassword encoder as described inthe namespace
introduction. This will result in the bean being injected with the appropriate Passwor dEncoder instance,
potentially with an accompanying Sal t Sour ce bean to provide salt values for hashing.

Parent Elements of <passwor d- encoder >
* authentication-provider

 password-compare

<passwor d- encoder > Attributes
base64

Whether a string should be base64 encoded

hash

Defines the hashing algorithm used on user passwords. We recommend strongly against using MD4, asiit is
avery weak hashing algorithm.

r ef

Defines areference to a Spring bean that implements Passwor dEncoder
Child Elements of <passwor d- encoder >

* salt-source

<sal t - source>

Password salting strategy. A system-wide constant or a property from the UserDetails object can be used.
Parent Elements of <sal t - sour ce>

* password-encoder

<sal t - sour ce> Attributes

r ef

Defines areference to a Spring bean Id.

system w de

A single value that will be used as the salt for a password encoder.

311 153

Spring Security

user-property

A property of the UserDetails object which will be used as salt by a password encoder. Typically something
like "username" might be used.

<user-servi ce>

Creates an in-memory UserDetailsService from a propertiesfile or alist of "user" child elements. Usernames
are converted to lower-case internally to allow for case-insensitive lookups, so this should not be used if case-
sensitivity is required.

<user - servi ce> Attributes

I d

A bean identifier, used for referring to the bean elsewhere in the context.
properties

The location of a Properties file where each lineisin the format of

user nane=passwor d, gr ant edAut hori ty[, grant edAut hority] [, enabl ed| di sabl ed]
Child Elements of <user - servi ce>
o user
<user >
Represents a user in the application.
Parent Elements of <user >
e user-service
<user > Attributes
authorities

One of more authorities granted to the user. Separate authorities with a comma (but no space). For example,
"ROLE_USER,ROLE_ADMINISTRATOR"

di sabl ed
Can be set to "true" to mark an account as disabled and unusable.

| ocked

Can be set to "true" to mark an account as locked and unusable.

311 154

Spring Security

nane

The username assigned to the user.

password

The password assigned to the user. This may be hashed if the corresponding authentication provider supports
hashing (remember to set the "hash" attribute of the " user-service" element). Thisattribute be omittedinthe case
where the datawill not be used for authentication, but only for accessing authorities. If omitted, the namespace
will generate arandom value, preventing its accidental use for authentication. Cannot be empty.

B.3 Method Security

<gl obal - et hod- security>

This element is the primary means of adding support for securing methods on Spring Security beans. Methods
can be secured by the use of annotations (defined at the interface or classlevel) or by defining a set of pointcuts
as child elements, using AspectJ syntax.

<gl obal - net hod- securi t y> Attributes
access-deci si on- manager - r ef

Method security uses the same AccessDeci si onManager configuration as web security, but this can be
overridden using this attribute. By default an AffirmativeBased implementation is used for with a RoleV oter
and an AuthenticatedV oter.

aut henti cati on- manager - r ef

A referenceto an Aut hent i cat i onManager that should be used for method security.

j sr250-annot ati ons

Specifies whether JSR-250 style attributes are to be used (for example "RolesAllowed"). This will require
the javax.annotation.security classes on the classpath. Setting this to true also adds a Jsr 250Vot er to the
AccessDeci si onManager , soyou need to make sureyou do thisif you are using acustom implementation
and want to use these annotations.

<net adat a- sour ce-r ef > Attribute

An external Met hodSecuri t yMet adat aSour ce instance can be supplied which will take priority over
other sources (such as the default annotations).

The node Attribute

This attribute can be set to “aspectj” to specify that Aspectd should be used instead of the default Spring
AOP. Secured methods must be woven with the Annot ati onSecurit yAspect from the spri ng-
security-aspect s module.

311 155

Spring Security

or der
Allows the advice "order" to be set for the method security interceptor.
pr e- post - annot ati ons

Specifieswhether the use of Spring Security'spre and post invocati on annotations (@PreFilter, @PreAuthorize,
@PostFilter, @PostA uthorize) should be enabled for this application context. Defaults to "disabled”.

proxy-target-class
If true, class based proxying will be used instead of interface based proxying.
run- as- manager -r ef

A reference to an optional RunAsManager implementation which will be used by the configured
Met hodSecurityl nterceptor

secur ed- annot ati ons

Specifies whether the use of Spring Security's @Secured annotations should be enabled for this application
context. Defaults to "disabled".

Child Elements of <gl obal - net hod- security>
» after-invocation-provider

* expression-handler

* pre-post-annotation-handling

* protect-pointcut
<after-invocation-provider>

This element can be used to decorate an Afterlnvocati onProvi der for use by the security
interceptor maintained by the <gl obal - met hod- securi t y> namespace. Y ou can define zero or more
of these within the gl obal - met hod- security element, each with a r ef attribute pointing to an
Af terl nvocati onProvi der bean instance within your application context.

Parent Elements of <aft er-i nvocati on- provi der >
* global-method-security
<after-invocation-provider> Attributes

r ef

Defines areference to a Spring bean that implements Af t er | nvocat i onPr ovi der.

311 156

Spring Security

<pr e- post - annot at i on- handl i ng>

Allows the default expression-based mechanism for handling Spring Security's pre and post invocation
annotations (@PreFilter, @PreAuthorize, @PostFilter, @PostAuthorize) to be replace entirely. Only applies
if these annotations are enabled.

Parent Elements of <pr e- post - annot at i on- handl i ng>
* global-method-security

Child Elements of <pr e- post - annot at i on- handl i ng>
* invocation-attribute-factory

* post-invocation-advice

* pre-invocation-advice

<i nvocation-attri bute-factory>

Defines the PrePostinvocationAttributeFactory instance which is used to generate pre and post invocation
metadata from the annotated methods.

Parent Elements of <i nvocati on-attri bute-factory>
* pre-post-annotation-handling

<i nvocation-attri bute-factory> Attributes

r ef

Defines areference to a Spring bean |d.
<post -i nvocati on- advi ce>

Customizes the Post | nvocat i onAdvi ceProvi der with the ref as the
Post | nvocat i onAut hori zat i onAdvi ce for the <pre-post-annotation-handling> element.

Parent Elements of <post -i nvocati on- advi ce>
* pre-post-annotation-handling

<post -i nvocati on- advi ce> Attributes

ref

Defines areference to a Spring bean Id.
<pre-invocation-advi ce>

Customizes the Prel nvocati onAuthorizati onAdviceVoter with the ref as the
Prel nvocat i onAut hori zati onAdvi ceVot er for the <pre-post-annotation-handling> element.

311 157

Spring Security

Parent Elements of <pre-i nvocati on- advi ce>
* pre-post-annotation-handling

<pre-invocati on-advi ce> Attributes

r ef

Defines areference to a Spring bean Id.

Securing Methods using <pr ot ect - poi nt cut >

Rather than defining security attributes on an individual method or classbasisusing the @ecur ed annotation,
you can define cross-cutting security constraints across whole sets of methods and interfaces in your service
layer using the <pr ot ect - poi nt cut > element. Y ou can find an example in the namespace introduction.

Parent Elements of <pr ot ect - poi nt cut >

* global-method-security

<pr ot ect - poi nt cut > Attributes

access

Access configuration attributeslist that appliesto all methods matching the pointcut, e.g. "ROLE_A,ROLE_B"
expr essi on

An Aspect] expression, including the ‘execution' keyword. For example, ‘execution(int
com.foo.TargetObject.countLength(String))' (without the quotes).

<i nt er cept - net hods>

Can be used inside a bean definition to add a security interceptor to the bean and set up access configuration
attributes for the bean's methods

<i nt er cept - met hods> Attributes

access- deci si on- manager - r ef

Optional AccessDecisionManager bean ID to be used by the created method security interceptor.
Child Elements of <i nt er cept - met hods>

* protect

<net hod- security-nmet adat a- sour ce>

Creates a M ethodSecurityM etadataSource instance

311 158

Spring Security

<nmet hod- security- met adat a- sour ce> Attributes

I d

A bean identifier, used for referring to the bean elsewhere in the context.
use-expressions

Enables the use of expressions in the 'access attributes in <intercept-url> elements rather than the traditional
list of configuration attributes. Defaults to 'false’. If enabled, each attribute should contain a single boolean
expression. If the expression evaluates to 'true', access will be granted.

Child Elements of <net hod- securi t y- met adat a- sour ce>

* protect

<pr ot ect >

Defines a protected method and the access control configuration attributes that apply to it. We strongly advise
you NOT to mix "protect” declarations with any services provided "global-method-security".

Parent Elements of <pr ot ect >
* intercept-methods
» method-security-metadata-source

<pr ot ect > Attributes

access

Access configuration attributes list that applies to the method, e.g. "ROLE_A,ROLE_B".
met hod

A method name

B.4 LDAP Namespace Options

LDAP is covered in some details in its own chapter. We will expand on that here with some explanation of
how the namespace options map to Spring beans. The LDAP implementation uses Spring LDAP extensively,
so some familiarity with that project's APl may be useful.

Defining the LDAP Server using the <l dap- ser ver > Element

This element sets up a Spring LDAP Cont ext Sour ce for use by the other LDAP beans, defining the
location of the LDAP server and other information (such as a username and password, if it doesn't allow
anonymous access) for connecting to it. It can also be used to create an embedded server for testing. Details of
the syntax for both options are covered in the LDAP chapter. The actual Cont ext Sour ce implementation
isDef aul t Spri ngSecurityCont ext Sour ce which extends Spring LDAP'sLdapCont ext Sour ce

311 159

Spring Security

class. The manager - dn and manager - passwor d attributes map to the latter'suser Dn and passwor d
properties respectively.

If you only have one server defined in your application context, the other LDAP namespace-defined beanswill
use it automatically. Otherwise, you can give the element an "id" attribute and refer to it from other namespace
beans using the ser ver - r ef attribute. Thisis actually the bean i d of the Cont ext Sour ce instance, if
you want to use it in other traditional Spring beans.

<| dap- server > Attributes

I d

A bean identifier, used for referring to the bean elsewhere in the context.
| di f

Explicitly specifies an Idif file resourceto load into an embedded LDAP server. Theldiff is should be a Spring
resource pattern (i.e. classpath:init.Idiff). The default is classpath*:* .Idiff

manager - dn

Username (DN) of the "manager" user identity which will be used to authenticate to a (hon-embedded) LDAP
server. If omitted, anonymous access will be used.

manager - password
The password for the manager DN. Thisisrequired if the manager-dn is specified.
port

Specifies an |P port number. Used to configure an embedded LDAP server, for example. The default value
is 33389.

r oot
Optional root suffix for the embedded LDAP server. Default is " dc=springframework,dc=org"
ur |

Specifies the Idap server URL when not using the embedded LDAP server.

<| dap- aut henti cati on- provi der>

Thiselement isshorthand for the creation of anLdapAut hent i cat i onPr ovi der instance. By default this
will be configured with a Bi ndAut hent i cat or instance and a Def aul t Aut hori ti esPopul at or.
As with all namespace authentication providers, it must be included as a child of the aut hent i cati on-
provi der element.

Parent Elements of <l dap- aut henti cati on-provi der >

* authentication-manager

311 160

Spring Security

<| dap- aut henti cati on- provi der > Attributes

group-role-attribute

The LDAP attribute name which contains the role name which will be used within Spring Security. Maps to
the Def aul t LdapAut hori ti esPopul at or 'sgr oupRol eAt t ri but e property. Defaultsto "cn".

gr oup- sear ch- base

Search base for group membership searches. Maps to the Def aul t LdapAut hori ti esPopul at or's
gr oupSear chBase constructor argument. Defaultsto "" (searching from the root).

group-search-filter

Group search filter. Maps to the Def aul t LdapAut hori ti esPopul at or's gr oupSear chFi |l t er
property. Defaults to (uniqueMember={0}). The substituted parameter isthe DN of the user.

role-prefix

A non-empty string prefix that will be added to role strings loaded from persistent. Maps to the
Def aul t LdapAut hori ti esPopul at or'sr ol ePr ef i x property. Defaultsto "ROLE_". Usethevalue
"none" for no prefix in cases where the default is non-empty.

server-ref

The optional server to use. If omitted, and a default LDAP server is registered (using <ldap-server> with no
Id), that server will be used.

user - cont ext - mapper - r ef

Allowsexplicit customization of theloaded user object by specifying a UserDetail sContextM apper bean which
will be called with the context information from the user's directory entry

user -detail s-cl ass

Allows the objectClass of the user entry to be specified. If set, the framework will attempt to load standard
attributes for the defined class into the returned UserDetails object

user-dn-pattern

If your users are at afixed location in the directory (i.e. you can work out the DN directly from the username
without doing a directory search), you can use this attribute to map directly to the DN. It maps directly to the
user DnPat t er ns property of Abst r act LdapAut hent i cat or . Thevalueisaspecific pattern used to
build the user's DN, for example "uid={ 0} ,ou=peopl€". The key "{ 0} " must be present and will be substituted
with the username.

user - sear ch- base

Search base for user searches. Defaultsto ""'. Only used with a 'user-search-filter'.

311 161

Spring Security

If you need to perform a search to locate the user in the directory, then you can set these attributes to control
the search. The Bi ndAut hent i cat or will be configured withaFi | t er BasedLdapUser Sear ch and
the attribute values map directly to the first two arguments of that bean's constructor. If these attributes aren't
set and nouser - dn- pat t er n has been supplied as an adternative, then the default search values of user -
search-filter="(ui d={0})" anduser-sear ch- base="" will be used.

user-search-filter

The LDAP filter used to search for users (optional). For example "(uid={0})". The substituted parameter is
the user'slogin name.

If you need to perform a search to locate the user in the directory, then you can set these attributes to control
the search. The Bi ndAut hent i cat or will be configured withaFi | t er BasedLdapUser Sear ch and
the attribute values map directly to the first two arguments of that bean's constructor. If these attributes aren't
set and nouser - dn- pat t er n has been supplied as an adternative, then the default search values of user -
search-filter="(ui d={0})" anduser-sear ch- base="" will be used.

Child Elements of <| dap- aut henti cati on- provi der >
* password-compare
<passwor d- conpar e>

This is used as child element to <I dap- provi der > and switches the authentication strategy from
Bi ndAut hent i cat or to Passwor dConpar i sonAut henti cat or.

Parent Elements of <passwor d- conpar e>
* |dap-authentication-provider
<passwor d- conpar e> Attributes

hash

Defines the hashing algorithm used on user passwords. We recommend strongly against using MD4, asit is
avery weak hashing algorithm.

password-attri bute

The attribute in the directory which contains the user password. Defaults to "userPassword".
Child Elements of <passwor d- conpar e>

* password-encoder

<| dap- user-servi ce>

This element configures an LDAP UserDetail sService. The «class wused is
LdapUser Det ai | sSer vi ce which is a combination of a Fi | t er BasedLdapUser Sear ch and a

311 162

Spring Security

Def aul t LdapAut hori ti esPopul at or. The attributes it supports have the same usage asin <| dap-
provi der >.

<| dap- user - servi ce> Attributes

cache-ref

Defines areference to a cache for use with a UserDetailsService.
group-role-attribute

The LDAP attribute name which contains the role name which will be used within Spring Security. Defaults
to"cn".

gr oup- sear ch- base

Search base for group membership searches. Defaultsto " (searching from the root).
group-search-filter

Group search filter. Defaults to (unigueMember={ 0}). The substituted parameter isthe DN of the user.
I d

A bean identifier, used for referring to the bean elsewhere in the context.

rol e-prefix

A non-empty string prefix that will be added to role stringsloaded from persistent storage (e.g. "ROLE_"). Use
the value "none" for no prefix in cases where the default is non-empty.

server-ref

The optional server to use. If omitted, and a default LDAP server is registered (using <ldap-server> with no
Id), that server will be used.

user - cont ext - mapper - r ef

Allowsexplicit customization of theloaded user object by specifying aUserDetail sContextM apper bean which
will be called with the context information from the user's directory entry

user-det ail s-cl ass

Allows the objectClass of the user entry to be specified. If set, the framework will attempt to load standard
attributes for the defined class into the returned UserDetails object

user - sear ch- base

Search base for user searches. Defaultsto ""'. Only used with a 'user-search-filter'.

311 163

Spring Security

user-search-filter

The LDAP filter used to search for users (optional). For example "(uid={0})". The substituted parameter is
the user'slogin name.

311 164

Spring Security

Appendix C. Spring Security
Dependencies

This appendix provides a reference of the modules in Spring Security and the additional dependencies that
they require in order to function in a running application. We don't include dependenices that are only used
when building or testing Spring Security itself. Nor do we include transitive dependencies which are required
by external dependencies.

The version of Spring required islisted on the project website, so the specific versions are omitted for Spring
dependencies below. Note that some of the dependencies listed as “optional” below may still be required for
other non-security functionality in a Spring application. Also dependencieslisted as” optional” may not actually
be marked as such in the project's Maven pom filesif they are used in most applications. They are “optional”
only in the sense that you don't need them unless you are using the specified functionality.

Where a module depends on another Spring Security module, the non-optional dependencies of the module it
depends on are also assumed to be required and are not listed separately.

C.1spring-security-core

The core module must be included in any project using Spring Security.

Table C.1. Core Depenendencies

Dependency Version Description
aopalliance 1.0 Required for method security implementation.
ehcache 16.2 Required if the ehcache-based user cache
implementation is used (optional).
spring-aop Method security is based on Spring AOP
spring-beans Required for Spring configuration

spring-expression

Required for expression-based method security
(optional)

spring-jdbc

spring-tx

aspectjrt 16.10
jsr250-api 1.0

Required if using a database to store user data
(optional).

Required if using a database to store user data
(optional).

Required if using AspectJ support (optional).

Required if you are using JSR-250 method-security
annotations (optional).

311

165

Spring Security

C.2spring-security-renoting
This module is typically required in web applications which use the Serviet API.

Table C.2. Remoting Dependencies

Dependency Version Description

Spring-security-core

Spring-web Required for clients which use HTTP remoting
support.

C.3spring-security-web
Thismodule istypically required in web applications which use the Serviet API.

Table C.3. Web Dependencies

Dependency Version Description

spring-security-core

spring-web Spring web support classes are used extensively.

spring-jdbc Required for JDBC-based persistent remember-me
token repository (optional).

spring-tx Required by remember-me persistent token

repository implementations (optional).

C.4spring-security-I|dap
Thismodule isonly required if you are using L DAP authentication.

Table C.4. LDAP Dependencies

Dependency Version Description

Spring-security-core

spring-ldap-core 130 LDAP support is based on Spring LDAP.
spring-tx Data exception classes are required.
apache-ds ! 155 Required if you are using an embedded LDAP

server (optional).

shared-ldap 0.9.15 Required if you are using an embedded LDAP
server (optional).

311 166

Spring Security

Dependency Version Description

MozillaLdapSDK. Used for decoding LDAP
password policy controlsif you are using password-
policy functionality with OpenLDAP, for example.

|dapsdk 4.1

The modules apacheds- cor e, apacheds-core-entry, apacheds- prot ocol - shar ed, apacheds- prot ocol -1 dap

and apacheds- server-j ndi arerequired.

C.5spring-security-config

This moduleis required if you are using Spring Security namespace configuration.

Table C.5. Config Dependencies

Dependency Version Description

Spring-security-core

spring-security-web Required if you are using any web-related
namespace configuration (optional).

Spring-security-ldap Required if you are using the LDAP namespace
options (optional).

spring-security-openid Required if you are using Openl D authentication
(optional).

aspectjweaver 1.6.10 Required if using the protect-pointcut namespace

syntax (optional).

C.6spring-security-acl
The ACL module.

Table C.6. ACL Dependencies

Dependency Version

Description

Spring-security-core

ehcache 1.6.2

Required if the ehcache-based ACL cache
implementation is used (optional if you are using
your own implementation).

spring-jdbc

spring-tx

Required if you are using the default JDBC-based
AclService (optional if you implement your own).

Required if you are using the default JDBC-based
AclService (optional if you implement your own).

311

167

Spring Security

C.7 spring-security-cas
The CAS module provides integration with JA-SIG CAS.

Table C.7. CAS Dependencies

Dependency Version Description

spring-security-core

spring-security-web

cas-client-core 3.1.12 The JA-SIG CAS Client. Thisisthe basis of the
Spring Security integration.

ehcache 16.2 Required if you are using the ehcache-based ticket
cache (optional).

C.8 spring-security-openid
The Openl D module.

Table C.8. OpenlD Dependencies

Dependency Version Description
spring-security-core

spring-security-web

openid4java-nodeps 0.9.6 Spring Security's Openl D integration uses
OpeniD4Java.

httpclient 41.1 openid4java-nodeps depends on HttpClient 4.

guice 2.0 openid4java-nodeps depends on Guice 2.

C.9spring-security-taglibs
Provides Spring Security's JSP tag implementations.
Table C.9. Taglib Dependencies

Dependency Version Description

spring-security-core

spring-security-web

spring-security-acl Required if you are using the
accesscontrol li st tagor

311 168

Spring Security

Dependency Version Description
hasPer nmi ssi on() expressionswith ACLs
(optional).
spring-expression Required if you are using SPEL expressions in your

tag access constraints.

311 169

	Spring Security
	Table of Contents
	Preface
	Part I. Getting Started
	1. Introduction
	1.1 What is Spring Security?
	1.2 History
	1.3 Release Numbering
	1.4 Getting Spring Security
	Project Modules
	Core - spring-security-core.jar
	Remoting - spring-security-remoting.jar
	Web - spring-security-web.jar
	Config - spring-security-config.jar
	LDAP - spring-security-ldap.jar
	ACL - spring-security-acl.jar
	CAS - spring-security-cas.jar
	OpenID - spring-security-openid.jar

	Checking out the Source

	2. What's new in Spring Security 3.1
	2.1 High level updates found Spring Security 3.1
	2.2 Spring Security 3.1 namespace updates

	3. Security Namespace Configuration
	3.1 Introduction
	Design of the Namespace

	3.2 Getting Started with Security Namespace Configuration
	web.xml Configuration
	A Minimal <http> Configuration
	What does auto-config Include?

	Form and Basic Login Options
	Setting a Default Post-Login Destination

	Logout Handling
	Using other Authentication Providers
	Adding a Password Encoder

	3.3 Advanced Web Features
	Remember-Me Authentication
	Adding HTTP/HTTPS Channel Security
	Session Management
	Detecting Timeouts
	Concurrent Session Control
	Session Fixation Attack Protection

	OpenID Support
	Attribute Exchange

	Adding in Your Own Filters
	Setting a Custom AuthenticationEntryPoint

	3.4 Method Security
	The <global-method-security> Element
	Adding Security Pointcuts using protect-pointcut

	3.5 The Default AccessDecisionManager
	Customizing the AccessDecisionManager

	3.6 The Authentication Manager and the Namespace

	4. Sample Applications
	4.1 Tutorial Sample
	4.2 Contacts
	4.3 LDAP Sample
	4.4 OpenID Sample
	4.5 CAS Sample
	4.6 JAAS Sample
	4.7 Pre-Authentication Sample

	5. Spring Security Community
	5.1 Issue Tracking
	5.2 Becoming Involved
	5.3 Further Information

	Part II. Architecture and Implementation
	6. Technical Overview
	6.1 Runtime Environment
	6.2 Core Components
	SecurityContextHolder, SecurityContext and Authentication Objects
	Obtaining information about the current user

	The UserDetailsService
	GrantedAuthority
	Summary

	6.3 Authentication
	What is authentication in Spring Security?
	Setting the SecurityContextHolder Contents Directly

	6.4 Authentication in a Web Application
	ExceptionTranslationFilter
	AuthenticationEntryPoint
	Authentication Mechanism
	Storing the SecurityContext between requests

	6.5 Access-Control (Authorization) in Spring Security
	Security and AOP Advice
	Secure Objects and the AbstractSecurityInterceptor
	What are Configuration Attributes?
	RunAsManager
	AfterInvocationManager
	Extending the Secure Object Model

	6.6 Localization

	7. Core Services
	7.1 The AuthenticationManager, ProviderManager and AuthenticationProviders
	Erasing Credentials on Successful Authentication
	DaoAuthenticationProvider

	7.2 UserDetailsService Implementations
	In-Memory Authentication
	JdbcDaoImpl
	Authority Groups

	7.3 Password Encoding
	What is a hash?
	Adding Salt to a Hash
	Hashing and Authentication

	Part III. Web Application Security
	8. The Security Filter Chain
	8.1 DelegatingFilterProxy
	8.2 FilterChainProxy
	Bypassing the Filter Chain

	8.3 Filter Ordering
	8.4 Request Matching and HttpFirewall
	8.5 Use with other Filter-Based Frameworks
	8.6 Advanced Namespace Configuration

	9. Core Security Filters
	9.1 FilterSecurityInterceptor
	9.2 ExceptionTranslationFilter
	AuthenticationEntryPoint
	AccessDeniedHandler
	SavedRequests and the RequestCache Interface

	9.3 SecurityContextPersistenceFilter
	SecurityContextRepository

	9.4 UsernamePasswordAuthenticationFilter
	Application Flow on Authentication Success and Failure

	10. Basic and Digest Authentication
	10.1 BasicAuthenticationFilter
	Configuration

	10.2 DigestAuthenticationFilter
	Configuration

	11. Remember-Me Authentication
	11.1 Overview
	11.2 Simple Hash-Based Token Approach
	11.3 Persistent Token Approach
	11.4 Remember-Me Interfaces and Implementations
	TokenBasedRememberMeServices
	PersistentTokenBasedRememberMeServices

	12. Session Management
	12.1 SessionManagementFilter
	12.2 SessionAuthenticationStrategy
	12.3 Concurrency Control
	Querying the SessionRegistry for currently authenticated users and their sessions

	13. Anonymous Authentication
	13.1 Overview
	13.2 Configuration
	13.3 AuthenticationTrustResolver

	Part IV. Authorization
	14. Authorization Architecture
	14.1 Authorities
	14.2 Pre-Invocation Handling
	The AccessDecisionManager
	Voting-Based AccessDecisionManager Implementations
	RoleVoter
	AuthenticatedVoter
	Custom Voters

	14.3 After Invocation Handling
	14.4 Hierarchical Roles

	15. Secure Object Implementations
	15.1 AOP Alliance (MethodInvocation) Security Interceptor
	Explicit MethodSecurityInterceptor Configuration

	15.2 AspectJ (JoinPoint) Security Interceptor

	16. Expression-Based Access Control
	16.1 Overview
	Common Built-In Expressions

	16.2 Web Security Expressions
	16.3 Method Security Expressions
	@Pre and @Post Annotations
	Access Control using @PreAuthorize and @PostAuthorize
	Filtering using @PreFilter and @PostFilter

	Built-In Expressions
	The PermissionEvaluator interface

	Part V. Additional Topics
	17. Domain Object Security (ACLs)
	17.1 Overview
	17.2 Key Concepts
	17.3 Getting Started

	18. Pre-Authentication Scenarios
	18.1 Pre-Authentication Framework Classes
	AbstractPreAuthenticatedProcessingFilter
	J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

	PreAuthenticatedAuthenticationProvider
	Http403ForbiddenEntryPoint

	18.2 Concrete Implementations
	Request-Header Authentication (Siteminder)
	Siteminder Example Configuration

	J2EE Container Authentication

	19. LDAP Authentication
	19.1 Overview
	19.2 Using LDAP with Spring Security
	19.3 Configuring an LDAP Server
	Using an Embedded Test Server
	Using Bind Authentication
	Loading Authorities

	19.4 Implementation Classes
	LdapAuthenticator Implementations
	Common Functionality
	BindAuthenticator
	PasswordComparisonAuthenticator

	Connecting to the LDAP Server
	LDAP Search Objects
	FilterBasedLdapUserSearch

	LdapAuthoritiesPopulator
	Spring Bean Configuration
	LDAP Attributes and Customized UserDetails

	19.5 Active Directory Authentication
	ActiveDirectoryLdapAuthenticationProvider
	Active Directory Error Codes

	20. JSP Tag Libraries
	20.1 Declaring the Taglib
	20.2 The authorize Tag
	Disabling Tag Authorization for Testing

	20.3 The authenticationTag
	20.4 The accesscontrollist Tag

	21. Java Authentication and Authorization Service (JAAS) Provider
	21.1 Overview
	21.2 AbstractJaasAuthenticationProvider
	JAAS CallbackHandler
	JAAS AuthorityGranter

	21.3 DefaultJaasAuthenticationProvider
	InMemoryConfiguration
	DefaultJaasAuthenticationProvider Example Configuration

	21.4 JaasAuthenticationProvider
	21.5 Running as a Subject

	22. CAS Authentication
	22.1 Overview
	22.2 How CAS Works
	Spring Security and CAS Interaction Sequence

	22.3 Configuration of CAS Client
	Service Ticket Authentication
	Single Logout
	Authenticating to a Stateless Service with CAS
	Configuring CAS to Obtain Proxy Granting Tickets
	Calling a Stateless Service Using a Proxy Ticket

	Proxy Ticket Authentication

	23. X.509 Authentication
	23.1 Overview
	23.2 Adding X.509 Authentication to Your Web Application
	23.3 Setting up SSL in Tomcat

	24. Run-As Authentication Replacement
	24.1 Overview
	24.2 Configuration

	25. Spring Security Crypto Module
	25.1 Introduction
	25.2 Encryptors
	BytesEncryptor
	TextEncryptor

	25.3 Key Generators
	BytesKeyGenerator
	StringKeyGenerator

	25.4 Password Encoding

	Appendix A. Security Database Schema
	A.1 User Schema
	Group Authorities

	A.2 Persistent Login (Remember-Me) Schema
	A.3 ACL Schema
	Hypersonic SQL
	PostgreSQL

	Appendix B. The Security Namespace
	B.1 Web Application Security
	<debug>
	<http>
	<http> Attributes
	access-decision-manager-ref
	access-denied-page
	authentication-manager-ref
	auto-config
	create-session
	disable-url-rewriting
	entry-point-ref
	jaas-api-provision
	name
	once-per-request
	path-type
	pattern
	realm
	request-matcher
	request-matcher-ref
	security
	security-context-repository-ref
	servlet-api-provision
	use-expressions

	Child Elements of <http>

	<access-denied-handler>
	Parent Elements of <access-denied-handler>
	<access-denied-handler> Attributes
	error-page
	ref

	<anonymous>
	Parent Elements of <anonymous>
	<anonymous> Attributes
	enabled
	granted-authority
	key
	username

	<custom-filter>
	Parent Elements of <custom-filter>
	<custom-filter> Attributes
	after
	before
	position
	ref

	<expression-handler>
	Parent Elements of <expression-handler>
	<expression-handler> Attributes
	ref

	<form-login>
	Parent Elements of <form-login>
	<form-login> Attributes
	always-use-default-target
	authentication-details-source-ref
	authentication-failure-handler-ref
	authentication-failure-url
	authentication-success-handler-ref
	default-target-url
	login-page
	login-processing-url
	password-parameter
	username-parameter

	<http-basic>
	Parent Elements of <http-basic>
	<http-basic> Attributes
	authentication-details-source-ref
	entry-point-ref

	<http-firewall> Element
	<http-firewall> Attributes
	ref

	<intercept-url>
	Parent Elements of <intercept-url>
	<intercept-url> Attributes
	access
	filters
	method
	pattern
	requires-channel

	<jee>
	Parent Elements of <jee>
	<jee> Attributes
	mappable-roles
	user-service-ref

	<logout>
	Parent Elements of <logout>
	<logout> Attributes
	The delete-cookies attribute
	The invalidate-session attribute
	The logout-success-url attribute
	The logout-url attribute
	The success-handler-ref attribute

	<openid-login>
	Parent Elements of <openid-login>
	<openid-login> Attributes
	always-use-default-target
	authentication-details-source-ref
	authentication-failure-handler-ref
	authentication-failure-url
	authentication-success-handler-ref
	default-target-url
	login-page
	login-processing-url
	password-parameter
	user-service-ref
	username-parameter

	Child Elements of <openid-login>

	<attribute-exchange>
	Parent Elements of <attribute-exchange>
	<attribute-exchange> Attributes
	identifier-match

	Child Elements of <attribute-exchange>

	<openid-attribute>
	Parent Elements of <openid-attribute>
	<openid-attribute> Attributes
	count
	name
	required
	type

	<port-mappings>
	Parent Elements of <port-mappings>
	Child Elements of <port-mappings>

	<port-mapping>
	Parent Elements of <port-mapping>
	<port-mapping> Attributes
	http
	https

	<remember-me>
	Parent Elements of <remember-me>
	<remember-me> Attributes
	authentication-success-handler-ref
	data-source-ref
	key
	services-alias
	services-ref
	token-repository-ref
	token-validity-seconds
	use-secure-cookie
	user-service-ref

	<request-cache> Element
	Parent Elements of <request-cache>
	<request-cache> Attributes
	ref

	<session-management>
	Parent Elements of <session-management>
	<session-management> Attributes
	invalid-session-url
	session-authentication-error-url
	session-authentication-strategy-ref
	session-fixation-protection

	Child elements of <session-management>

	<concurrency-control>
	Parent Elements of <concurrency-control>
	<concurrency-control> Attributes
	error-if-maximum-exceeded
	expired-url
	max-sessions
	session-registry-alias
	session-registry-ref

	<x509>
	Parent Elements of <x509>
	<x509> Attributes
	authentication-details-source-ref
	subject-principal-regex
	user-service-ref

	<filter-chain-map>
	<filter-chain-map> Attributes
	path-type
	request-matcher

	Child Elements of <filter-chain-map>

	<filter-chain>
	Parent Elements of <filter-chain>
	<filter-chain> Attributes
	filters
	pattern
	request-matcher-ref

	<filter-invocation-definition-source>
	<filter-invocation-definition-source> Attributes
	id
	lowercase-comparisons
	path-type
	request-matcher
	use-expressions

	Child Elements of <filter-invocation-definition-source>

	<filter-security-metadata-source>
	<filter-security-metadata-source> Attributes
	id
	lowercase-comparisons
	path-type
	request-matcher
	use-expressions

	Child Elements of <filter-security-metadata-source>

	B.2 Authentication Services
	<authentication-manager>
	<authentication-manager> Attributes
	alias
	erase-credentials
	id

	Child Elements of <authentication-manager>

	<authentication-provider>
	Parent Elements of <authentication-provider>
	<authentication-provider> Attributes
	ref
	user-service-ref

	Child Elements of <authentication-provider>

	<jdbc-user-service>
	<jdbc-user-service> Attributes
	authorities-by-username-query
	cache-ref
	data-source-ref
	group-authorities-by-username-query
	id
	role-prefix
	users-by-username-query

	<password-encoder>
	Parent Elements of <password-encoder>
	<password-encoder> Attributes
	base64
	hash
	ref

	Child Elements of <password-encoder>

	<salt-source>
	Parent Elements of <salt-source>
	<salt-source> Attributes
	ref
	system-wide
	user-property

	<user-service>
	<user-service> Attributes
	id
	properties

	Child Elements of <user-service>

	<user>
	Parent Elements of <user>
	<user> Attributes
	authorities
	disabled
	locked
	name
	password

	B.3 Method Security
	<global-method-security>
	<global-method-security> Attributes
	access-decision-manager-ref
	authentication-manager-ref
	jsr250-annotations
	<metadata-source-ref> Attribute
	The mode Attribute
	order
	pre-post-annotations
	proxy-target-class
	run-as-manager-ref
	secured-annotations

	Child Elements of <global-method-security>

	<after-invocation-provider>
	Parent Elements of <after-invocation-provider>
	<after-invocation-provider> Attributes
	ref

	<pre-post-annotation-handling>
	Parent Elements of <pre-post-annotation-handling>
	Child Elements of <pre-post-annotation-handling>

	<invocation-attribute-factory>
	Parent Elements of <invocation-attribute-factory>
	<invocation-attribute-factory> Attributes
	ref

	<post-invocation-advice>
	Parent Elements of <post-invocation-advice>
	<post-invocation-advice> Attributes
	ref

	<pre-invocation-advice>
	Parent Elements of <pre-invocation-advice>
	<pre-invocation-advice> Attributes
	ref

	Securing Methods using <protect-pointcut>
	Parent Elements of <protect-pointcut>
	<protect-pointcut> Attributes
	access
	expression

	<intercept-methods>
	<intercept-methods> Attributes
	access-decision-manager-ref

	Child Elements of <intercept-methods>

	<method-security-metadata-source>
	<method-security-metadata-source> Attributes
	id
	use-expressions

	Child Elements of <method-security-metadata-source>

	<protect>
	Parent Elements of <protect>
	<protect> Attributes
	access
	method

	B.4 LDAP Namespace Options
	Defining the LDAP Server using the <ldap-server> Element
	<ldap-server> Attributes
	id
	ldif
	manager-dn
	manager-password
	port
	root
	url

	<ldap-authentication-provider>
	Parent Elements of <ldap-authentication-provider>
	<ldap-authentication-provider> Attributes
	group-role-attribute
	group-search-base
	group-search-filter
	role-prefix
	server-ref
	user-context-mapper-ref
	user-details-class
	user-dn-pattern
	user-search-base
	user-search-filter

	Child Elements of <ldap-authentication-provider>

	<password-compare>
	Parent Elements of <password-compare>
	<password-compare> Attributes
	hash
	password-attribute

	Child Elements of <password-compare>

	<ldap-user-service>
	<ldap-user-service> Attributes
	cache-ref
	group-role-attribute
	group-search-base
	group-search-filter
	id
	role-prefix
	server-ref
	user-context-mapper-ref
	user-details-class
	user-search-base
	user-search-filter

	Appendix C. Spring Security Dependencies
	C.1 spring-security-core
	C.2 spring-security-remoting
	C.3 spring-security-web
	C.4 spring-security-ldap
	C.5 spring-security-config
	C.6 spring-security-acl
	C.7 spring-security-cas
	C.8 spring-security-openid
	C.9 spring-security-taglibs

