Spring Security

Reference Documentation
3.2.0.RC1

Ben Alex , Luke Taylor

Copyright ©

Spring Security

Table of Contents

L 1= 7= Lo Xi
IR =Y 1] o S = 5 (Yo 1
I [011 oo (1 Tod 1T o KPP PPN 2
1.1. What iS SPriNg SECUILY?ceeiiiiieiiii et 2

O o 11 o P 3

1.3. Release NUMDEINGiii et e e e e eenas 4

1.4. Getting SPriNg SECUIILY ...cceuuiiiiii ettt e e e et e e eaa e eenes 4
ProjeCt MOAUIESiiiiiei e e e e e e e e 4
Core - SPriNg-SECUIi tY-COM €.] @& .oiieuieiiiiiei e e 4

Remoting - spring-security-remdting. jar ...cocoooiinniiiiiinneiiiinnenennn, 5

Web - spring-security-web. jaroccooiiiiiiiiiiiiii e 5

Config - spring-security-config.jar ..o 5

LDAP - spring-security-ldap.jar . 5

ACL - spring-security-acl.jar ..ccoociiiiiiiiiiiii e 5

CAS - SPring-SeCUrity-Cas. j Al ..cooiiiiiiiiiiiiieeiiee e 5

OpeniD - spring-security-openid.jarocoooooiiiiiiiiiniiiiinneei e, 5

ChecKing OUL the SOUICEc.vuiii e 5

2. What's Nnew in SPring SECUIMLY 3.1 ...iuuniiii it e e ean s 7
2.1. High level updates found Spring SECUrity 3.1cccuuiiiiiiiiiiniiiiiiie e 7

2.2. Spring Security 3.1 Namespace UPAateScceevvuiviiieiiiieiiie e e e e 7

3. Security Namespace CONfIQUIALIONcc.uiiiuiiiiiii e e e aa e 9
K 70 T 1o o 11 od 1T o I N 9
Design of the NaMESPACEccvuiiiiiiiiie e e 10

3.2. Getting Started with Security Namespace Configurationcccoceveiiiiiennneennnn. 10
Web. XM ConfIQUIAtionoooouiiiii e 10

A Minimal <htt p> Configurationcooiiiiiiiiii e 11

Form and Basic LOgin OPLIONSc.uuiiiiiiiiieii et 12

Setting a Default Post-Login Destinationccoveviuiiineiiiiinneiiiineeceiinnn 14

(oo T 10 1ol = =T o |1 o [P 14

Using other Authentication ProVIidersc.ovieeiiiiiiiiiee e 14

Adding a Password ENCOAETc..uiiiiiiiiiiiiiii e 15

3.3. Advanced WEebD FEALUIESccoouiiriiiiii et 16
Remember-Me AUthentiCationcooiiiiiiiiii e 16

Adding HTTP/HTTPS Channel SECUNLYooiviiiiiiiiii e 16

SESSION MANAGEIMENTuiiii e e e e e e e e et e e e e e e e aanees 16

Detecting TIMEOULSc.uuiiit e e e e e eenns 16

Concurrent SESSION CONLIOIc.uuuiiiiiiiieiii e 17

Session Fixation Attack ProteCtioneueiiiiiieiiiiiiiiiii e 18

OPENID SUPPOIT ettt et et e et e e et e et e en e ea e eaneen 18

ALHDULE EXCRANGE ... 19

RS o T g YTl o 1= = To = 19

Adding in YOUr OWN FiltEIS ... 20

Setting a Custom Aut henti cati onEntryPoi ntccccooeiiiiiiiiiinniiinnnn, 22

G V1Y { T To ST Tor U 22

The <gl obal - met hod- security> Elementccoooeiiiiiiiiiiiiii e 22

Adding Security Pointcuts using pr ot ect-poi ntcutcccooeeviviiiiinnnnnnn, 24

3.5. The Default AccessSDECISIONMANAGETc..viiiuiiiiiieiie e 24

3.2.0.RC1 Spring Security ii

Spring Security

Customizing the AccesSDECISIONMANAGETvvuuieiiieeiiee e e 24

3.6. The Authentication Manager and the Namespacecccovviiiiiiiiiiiiieiineeeeeen, 25

4. Sample APPHCALIONSieii e 26

o O 1 (o T = S T T o] o] - 26

A ©o] o] = To! 1< S PP PP 26

4.3, LDAP SamPIE ..o 27

4.4, OPENID SAMPIE ...vuiiiiii e 27

4.5, CAS SAMPIE oo e 27

A.6. JAAS SAMPIE <. 28

4.7. Pre-Authentication SampIeiiiiiii e 28

5. Spring Security COMIMUINILYcuuniii e e et e e e e et e eanaees 29

5.1, ISSUE TFACKING .evtieiiitiieee ettt ettt e e et eaeba e 29

5.2. BECOMING INVOIVEA .. ceeniiiiiiii e e e e e e e e e e s 29

5.3. Further INfOrmationo.iiiiiiiii e e 29

[I. Architecture and IMpPIEMENTALIONiiiiiii e e e eeees 30

6. TECHNICAI OVEIVIEW ...ttt et e et e et e e e eaa e 31

6.1. RUNtIME ENVIFONMENToiiiieii et e e e e e e eaa e eees 31

6.2. C0Ore COMPONEBINTS ...ttt ettt ettt e e e e e e e eenes 31

SecurityContextHolder, SecurityContext and Authentication Objects 31

Obtaining information about the Current USercoooeivieiiiiiiiieiiiieeeeeeenn, 31

The USerDetailSSEIVICEcouuuiiiiiiiii ettt e s 32

LT =T a1 (=To /U 11 0o]] Y 33

SUMIMIBITY ettt ettt et et et e et e et e et e et e en e an e e e e et e eneenns 33

6.3, AULNENTICALIONietiiie e e e e e 33

What is authentication in SPring SECUILY?c..viiviiiiiiiiie e 33

Setting the SecurityContextHolder Contents Directlycooooiviiiiiiiiiiiiiieins 36

6.4. Authentication in @ Web ApPliCatioNoooviiiiiiiiiii e 36

EXceptionTranslationFiltercoivuiiiiii e 37

AUthentiCatiONENTIYPOINTc.uiii e e e 37

Authentication MeChaniSIMcouiiiiiiii e 37

Storing the Securi t yCont ext between requestsccoevviieviiieiii v, 38

6.5. Access-Control (Authorization) in SPring SECUNLYocouuiiiiiiiiiiieieei e 38

Security and AOP AGVICEcouuuiiiiiii e 39

Secure Objects and the Abst ract Securitylnterceptorcoooveviiiviieennnns 39

What are Configuration AttribUES?co.uiiiiiiiiii e 39

RUNASMEANAGET ..eeiieiieeiiee ettt e e 40

PN (T g LN Y/oTox= 1110 0117 F= U = o = 40

Extending the Secure Object Model ... 41

B.6. LOCAIIZALION ...ttt 41

A Oe] (oIS T=T AV o= PP 43
7.1. The Aut hent i cat i onManager, Provi der Manager and

Aut hent i Cat i ONPr OV HBIS e e e 43

Erasing Credentials on Successful Authenticationccccooviiiiiiiiii e, 44

DaoAut henti cat i ONPrOVI Der ... 44

7.2. User Det ai | sServi ce Implementationsccooveiiiiiiieiiiineee e 44

IN-Memory AUtNENLICALIONccuuiiii e e 45

JADCDAOT TP e 45

AULNOTEY GIOUPS ...eiiiieeeiii ettt et e e e e e 46

A T - 1Y (o T o N = T T LT o 46

What iS @ NASH? ... e 46

3.2.0.RC1 Spring Security il

Spring Security

Adding Salt to @ Hashcoooeeiiii a7

Hashing and AUuthentiCationcc.oiiiiiiiiiii e 47

[II. Web APPICALION SECUILY ...cieetiieiiii ettt et e e e e e b 49

8. The Security Filter CRainc..iiiiiii e e e e e e e e ees 50

8.1. Del egat i NGFI | 1 &5 PrOXY ..o 50

8.2. Fi [1 €5 CNai NPT OXY oottt et 50

Bypassing the Filter Chaincocooiiiiiii e 52

8.3, FIIEr OFAEIING ..eeniiieiiii e et e e e eaes 52

8.4. Request Matching and Ht t pFi rewal | ... 52

8.5. Use with other Filter-Based Frameworksccccoiieiiiiiniiiiiiii e 53

8.6. Advanced Namespace Configurationccooeiiiiiiiiiiiiiiei e 54

9. COre SECUILY FlEIS ..oouei et eeeaa e e e 55

9.1 FilterSecurityl Nt erCePl OF oo 55

9.2. ExceptionTransl ati ONFi |t er ..o 56

Aut henti cati ONENE T YPOI NT ..o 56

AccessDeni edHANAl €5 ... 57

SavedRequest s and the Request Cache Interfaceccoiviiiiiiiiiiinicnees 57

9.3. SecurityContext PersistenceFilter ..., 58

SecurityCont Xt REPOSI 1 OFY .uiiiiiiii i e 58

9.4. User nanePasswor dAut henticationFilter ..., 59

Application Flow on Authentication Success and Failureccccoooeviiinieiinnnnnn. 59

10. Basic and Digest AUthentiCationoiiiiiiiiiii e e e e 61

10.1. Basi cAut henti cati ONFi | L er ..o 61

CONFIGUIALION .oeuieiii e et et et e e et e e e eaan e eees 61

10.2. Digest Authenticati OnNFi It er ..o 62

1070] 01To 01 £=11 o] o H TSP UPTRPRTRR 63

11. Remember-Me AUtheNtiCAtIONc.uiiiiiiiiei e e e e e 64

L0, OVEIVIEW ettt ettt ettt ettt e ettt e e ettt e e e e e bt e e e e etb e e e eebtnaeeeeatnaeaees 64

11.2. Simple Hash-Based Token APProachcoooiiiiiiiiiiiiiniiee e 64

11.3. Persistent TOKEN APPIOACKuuiiiiiiie e 65

11.4. Remember-Me Interfaces and Implementationscccocviviiiiieiieevin e, 65

TokenBasedRemMEMDEIMESEIVICESccuuiiiiiiiii et 65

PersistentTokenBasedRememberMeSEerVIiCeSccouuuiveiiiiiiieiiiiii e 66

ST T ST T T 1Y = U = o =T 0 =T o P 67

12.1. SessionManagemeNntFilter 67

12.2. Sessi onAUt hent i Cat i ONSET At €Y w.vuiveieinieiiii e 67

12.3. CoNCUITENCY CONIOl ..ouuuiii e e e e e e e aan e 68
Querying the Sessi onRegi st ry for currently authenticated users and their

LTSS [1 1P 69

13. ANoONYMOUS AULNENTICALIONiiii i e e e e e eens 71

P31, OVEIVIEW ittt ettt ettt et e e et et b e e et e e et e e et e e et e et ab e e eaeeeanns 71

13.2. CONFIGUIALION ..eeiieiiie et ettt e e e 71

13.3. Authenticati ONTrUSt RESOI VI oo 72

Y11 g Vo] 4= 1 o] o H PSP OPPRPPPRR 74

14. AuthOrization AFCRITECIUIEi.eiii et e e e e e een s 75

I N U1 T 1 1= PP 75

14.2. Pre-Invocation Handlingco.iiiiiii e 75

The AcCesSSDECISIONMAENAGETc.uuiiiiiiiiiei e 75

Voting-Based AccessDecisionManager Implementationsccoeevvveveviineennnnn. 76

ROI BVt BF e e 77

3.2.0.RC1 Spring Security iv

Spring Security

Aut hent i cat @dVOL B ..o 77

CUSEOM VOIS ..ottt e et e e e enns 77

14.3. After Invocation HandliNgoooiiiiiiiii e 77
14.4. Hierarchical ROIEScoioiiiiiii e 78

15. Secure Object IMPIEMENTALIONSiiii e 80
15.1. AOP Alliance (MethodInvocation) Security Interceptorcccoevveviiiiiieiiiiinneenns 80
Explicit MethodSecurityInterceptor Configurationc.cocooiiiiiiiiii i, 80

15.2. Aspectd (JoinPoint) Security INterceploroieuui it 80

16. Expression-Based ACCESS CONLIOlooiiiiiiiiiiii e 84
L16.0. OVEIVIEW ...t eeeiit ettt ettt ettt e ettt e e ettt e e ettt e e e ettt e e e e etb e e e e eatn e eeeeatnaeaees 84
Common BUilt-IN EXPreSSIONSvuuuiiiiiiiiaiia e a e 84

16.2. WeD SeCUrity EXPIreSSIONS ...ccouuuiiiiiiiieieiii e e ettt et e e e e eeeai e eens 84
16.3. Method SeCUrity EXPrESSIONS ...ccuuuiiieiieeiieii e e e e et e e e e et e e e eaneees 85
@Pre and @POST ANNOTALIONSiviiiieiii e e e e ena e 85

Access Control using @r eAut hori ze and @ost Aut hori ze 85

Filtering using @r eFilter and @PoStFi lter ...coccooviviiiiiiiiees 86

BUIIE-IN EXPrESSIONS ..ceiiiiiieiiie ettt ettt e e e e e e eanas 86

The Per m ssi onEval uat or interfaceccoooveeieiiiiiiiiii e 86

V2R 2o [11 o) F= U o o] o= P 88
17. Domain ODbJect SECUILY (ACLS) ...ieuuiiiiiiiie ettt et e e e e e e e eaaeas 89
A R @ V= 1= 89
A 1=V O o o3 T o] £ 89
17.3. GetliNg STAMEAceeniiie et 91

18. Pre-AuthentiCation SCENATMOSccuuiiieiieiii et e e e e e e eenas 94
18.1. Pre-Authentication Framework ClIasSescccuiiiiiiiiiiiieiiiiine e 94
AbstractPreAuthenticatedProcessingFilterooooiiiiiiiiii e, 94
J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource 95
PreAuthenticated AuthenticationProviderccoveiviiiiiiiiii e 95
Http403ForbiddenENtryPOINtcc.uniiiiiii e 95

18.2. Concrete IMPIEMENLAtiONScoeuuiiiiiiiiie e 95
Request-Header Authentication (Siteminder)cccocoiiiiiiiiiiii e, 95
Siteminder Example Configurationccooooiiiiiiiiiiii e 96

J2EE Container AUthentiCationcooouiiiiiie e 96

19. LDAP AULNENLICALION ...uuiiiiiiiiee et e e et e e e et e e e eab e e eenanaeeees 97
FO.1. OVEIVIEW ittt ettt et e et e ettt et e e e e e et e e et e e et e e e et e eeaeeeanns 97
19.2. Using LDAP With SPring SECUNLYuiiiiiiieiiiii e 97
19.3. Configuring an LDAP SEIVEYciuiiiiii et e e e e e ean s 97
Using an Embedded TeSt SEIVETcc.u it 98

Using Bind AUThENtICAtIONocoeiiiiiiiiii e 98

(0T To [T aTo A U1 oo 11 1= P 98

19.4. Implementation CIASSEScoouiiiii e 99
LdapAuthenticator IMmplementationsooveiiiiiiiiiiiii e 99

Common FUNCHONAILYiveiiii e e 99
BINAAULNENTICATOTiieieii et 100
PasswordCompariSoNAUtNENLICALOrcoeuviiiiiiiiiiecii e 100

Connecting to the LDAP SEIVELc.uiiiiiiiie et e e e 100

LDAP S€Arch ODJECLS ... cceuiiiiiiiii it ea e 100

Fi | ter BasedLdapUser Searchcoooiiiiiiiiiiiiii e, 100
LdapAUthoritieSPOPUIALONoiiiieiiee e e 100

Spring Bean Configurationooou oo 101

3.2.0.RC1 Spring Security %

Spring Security

LDAP Attributes and Customized UserDetailScooceiieiiiiiiiiiiiiiiieeciiieeeees 102

19.5. Active Directory AUtNENLICAtIONc.uuiiiuiiiiiie e 102
Acti veDirect oryLdapAut henticati onProvidercccoooviiiiiiiiiiininnnns 102

Active Directory Error COUESocvvuiiiiiiiiiiieei e e e e e e e e e 103

20. JSP Tag LIDIArIES ...ceeiiiiiieii ettt e e e e et e e e e eaes 104
20.1. Declaring the TagliD ... 104

40 I I (=B U | B o] g 4 = I Vo 104
Disabling Tag Authorization for TESHNGcccuuiiiiiiii e 105

20.3. The aut hent i Cati ONTAG ..cccevuiiiiiii e 105
20.4. The accesSCONt IOl 11 St TaAQ ievvuieiinieiii e e e e e e 105

21. Java Authentication and Authorization Service (JAAS) Providercccocviveviinieiineeennn. 106
I T @ Y= 1 PN 106
21.2. AbstractJaasAuthenticationProVideroooviiiiiiiiiiiiic e 106
JAAS CallbackHaNnIErc..iiii e 106

JAAS AULNOTIEYGIANTETciiiiiieeei e e 106

21.3. DefaultJaasAuthenticationProVIAErovveiiiiiiiiiiii e 107
INMEMOryCONFIQUIALIONiiuiii e e eb e e e 107
DefaultJaasAuthenticationProvider Example Configurationcccc.oeeeevnneeen. 107

21.4. JaasAUthenticatioNPrOVIAEToiiiiiiiiiiii e 108
21.5. RUNNING 8S @ SUDJECT ...iiiiiiiii e e e 109

22, CAS AUTNENLICALION ...ttt e e e et e e e et e e e e e ean s 110
P B O 1Y 1= PO 110
22.2. HOW CAS WOTKS ...iieiiiieiiiii ettt e et e e et e et e e et s e e et e e e e et e e e aaann s 110
Spring Security and CAS Interaction SEQUENCEccuvvviiiiiiiiieiiineiiieeineeeiees 110

22.3. Configuration of CAS CHENLciiiiii e 112
Service Ticket AUNENLICALIONcc.uiiiiiiii e 112

SINGIE LOGOUL ..ttt ettt 114
Authenticating to a Stateless Service with CAScooiiiiiiii e, 116
Configuring CAS to Obtain Proxy Granting Ticketsc.cccoviviiiiiiiiiennnns 116

Calling a Stateless Service Using a Proxy Ticketcccvivieiiiiinneiiinnnnnn. 117

Proxy Ticket AUtheNntiCAtioNcveiuiiiiiii e e 117

23. X.509 AUTNENTICALIONuiiiiiiii et e et e e e e e et e ea e eaaeas 120
B2 T T @ 1= V1 S 120
23.2. Adding X.509 Authentication to Your Web Applicationcccoccoevvviiiiiinennnnn. 120
23.3. Setting UP SSL N TOMCALcuuiiiiiiiieei et 121

24. Run-As Authentication ReplacemMEeNtuuii it 122
24,1, OVEIVIEW ...ttt ettt ettt e ettt e e e e et e e e ettt e e e ettt e e e eatnneeeettnaeeeenanaeaees 122
24.2. CONFIQUIALION ..uiiie et e et e et e et e e et e e b e eenaaes 122

25. Spring Security Crypto MOGUIEiiiiiii e 124
P2 T I 1o o 0T 1 o] o U RSPP 124
25,2, ENCIYPEOIS ottt e et 124
BYESENCIYPION <.t 124

1= =1 0] Y] (o) 124

25.3. KEY GENEIALOISuiiiietiei ettt et e e et e et e e e e e e e e e aees 125
BYtESKEYGENEIALOLiiiiiiiiee ettt et e 125

Y 1 aT0 | =Y =T 0 1= = (o 125

25.4. PasSWOrd ENCOINGuiiuniiiieiieee e 125

A. Security Database SCREM@oouuuiii e 127
F N B O L= S Tod o =T oo - PSP 127
Group AULNOIITIES ... e et e e ees 127

3.2.0.RC1 Spring Security Vi

Spring Security

A.2. Persistent Login (Remember-Me) SChemaccoooviviiiiiiiii i 128
AL3. ACL SCREMIA .ot 128
HYPEISONIC SQL ..ttt e et e e e e e e e 128
053 (0|1 130
B. The SeCUItY NAMESPACE ... ccuuiiii ittt e et e et e et e et e e e e e et e e et e eanaeeees 131
B.1. Web ApPlICAtION SECUILYcoevtiiiiiiii et e 131
(0 L= o 11 o 131
0 0 o PSPPSR 131
SNEE P> ALIDULES oo e 131
Child Elements of <http> ...coovniiiiiii e 133
<access-deni ed-handl er> ... 134
Parent Elements of <access-deni ed-handl er>ccoooiiiiiiiiiiniiiiens 134
<access-deni ed- handl er > Attributesccooiiiiiiii 134
BB S i 134
Parent Elements of <hEader S> ... 135
Child Elements of <header S> ... 135
<CACKE- CONE T Ol > et e e eaans 135
Parent Elements of <cache-control >cooiiiiiiiiiii e 135

D 15 B S PPPPR 135
SNST S> AMIDULES ..o e 135
Parent Elements of <hSt S> 136
A 0P ONS > i e 136
<frame-opti oNS> AUMNDULES ... 136
Parent Elements of <f rame- opti ONS>cooiiiiiiiiiii 136
TR 1 o) =T o2 o P 137
.. 137
Parent Elements of <XSS-Prot @Cti ON> ..o 137
<CONt BN - LY PE- OPL i ONS> Lot e e e e e e e aen 137
Parent Elements of <content -t ype-opti ONS> ..o, 137

D == 1o 1= 137
<header-attributes> ANDULEScooviiiiiii e 137
Parent Elements of <header > ... 137

= T 001 1 1Y0 1010 1 PSPPI 138
Parent Elements of <ANONYMDUS™oooviiiiiiiiii e e e e e e 138
<ANONYIMDUS> ALHDULES ...oniiii e e 138
D0 P 138
Parent Elements Of <CSIf > . 138
SCSTT > AMIDULES ..o e e 138

o U3 A0 3 T I =Y P 139
Parent Elements of <customfilter> ... 139
<customfilter> AUNDULES ... 139
<EeXPressi 0N-Nandl BI > ... 139
Parent Elements of <expressi on-handl er>ccooooiiiiiiiin i, 139
<expressi on- handl er > AUNDULESooiiiiiiiiiiii e 139

S 0T 1 ¢ o Yo T 0 P 139
Parent Elements of <f orm 1 0gi N> ... 140
<form | ogi N> AUMNDULESoeee e 140

SN L P- DAST O oot e 141
Parent Elements of <htt p-basi > ..o 141

<ht t p- basi €> AUMNDULESooueii e 141

3.2.0.RC1 Spring Security vii

Spring Security

<http-firewal | > EIEMENt ..o 141
<http-firewal | > AUNDULES ..o 141
S T L A=Y o = o A | P 141
Parent Elements of <i ntercept-url > ... 141
<intercept-url > AUNDULES ..o 142
S T PR 142
Parent EIements Of <j €8> .o 142
<J B> ATIDULES ..oeee e 142
£ o Yo 01U 143
Parent Elements of <l 0gOUL > ... 143
<l OQOUL > ALLHDULES ...eeiieee e e 143
o] o LY T o Bl o To | 0 BRI 143
Parent Elements of <openi d-10gi N> ..o 143
<openi d-10gi N> AMHDULES ...t 143
Child Elements of <openid-login> ..o 144
<At i DUt E- EXCNANGE ™ i 144
Parent Elements of <attri but e-exchange>c.ocoiiiiiiiiiiini e, 145
<attribut e-exchange> AUMDULESc..iiiiiiiiiiiiii e 145
Child Elements of <attri but e-exchange>ccoooviiiiiiiiin i, 145
<openi d-at tri DUL > oo e 145
Parent Elements of <openid-attribute> ..., 145
<openi d-attribute> AtNDULESoiviniii 145
S oTo] o R o2V o] oI 1 1o - PP UUPT PP 145
Parent Elements of <port - MAPPI NS> ..o 145
Child Elements of <port - MBPPIi NS> ..o e 145
o To] o R o2V o] oI T PP 146
Parent Elements of <port - MapPi N> ... 146
<pPOrt - mappi NG> ANDULES ... e e 146
Y1100 0T T Al 0= PP PTPPT 146
Parent Elements of <remenber-me> ..., 146
<renmenber - Me> AIDULES ..o 146
<request - cache> EIEMeNt ... 147
Parent Elements of <r equest - CaCche>ccoooviiiiiiiiii i 147
<request - cache> AtINDULEScccouiiiii e 147
<SESSI ON- MBNAGENMEBNT > L.t et e e e et eeaa e eees 147
Parent Elements of <sessSi on- managenent >ooovviiiiiiniiiiiiin e 148
<sessi on- managenent > ADULESovviiiiiiii e 148
Child elements of <sessi ON- MANAgEMBNT > ... i 148
<CONCUN FENCY-CONE T Ol > oo e e e e e eees 148
Parent Elements of <concurrency-control >cccooiiiiiiiiin i, 148
<concurrency-control > ARNDULES ... 149
80101 PP 149
Parent Elements Of <X509> ... 149
X509 ALIDULES ... et e e 149
<Fi Tt er-Chal M- MBP> .ot 150
<filter-chai n-map> AtNDULESoiviiii e, 150
Child Elements of <filter-chai n-map>ccccooviiiiiiiii e, 150
SEI Lt eI - Chal N> e 150
Parent Elements of <filter-chain> ..., 150
<filter-chai N> ANDULES ..o 150

Spring Security viii

Spring Security

<filter-invocation-definition-SOUrCe>cccciiiiiiiiiiiiiiiiii e 150
<filter-invocation-definition-source> Attributesccoceeevnneennn. 150
Child Elements of <fi | t er-i nvocati on-definition-source>................. 151

<filter-security-nmetadat a-SOUIrCe>ccoiiiiiiiiiiiiiiii e 151
<filter-security-netadata-source> Attributesc...cceviiiiiiiinnann.n. 151
Child Elements of <fi | ter-security-netadata-source>cccceereeenns 152

B.2. AUthentiCation SErVICESiiiiiiiiieii e 152

<aut hent i Cati ON- MBNAGET > ...t a e eaens 152
<aut henti cati on- manager > AINDULEScoooviiiiiiiiiiii e, 152
Child Elements of <aut henti cati on-manager>cccoccceiveiiiiiiiiieviin e, 152

<aut henti cati ON- ProVvi eI > .. 152
Parent Elements of <aut henti cation-provider>ccccooviiiiiniiiiinnenennnn, 153
<aut henti cati on-provi der > Attributescoovvviiiiiiiiii e, 153
Child Elements of <aut henti cation-provider>cccoiiiiiiiiiiniiiiines 153

<J ADC- USEBI - SBI VI CE> Lo 153
<j dbc-user-service> AHDULEScooviiiiii e 153

SPASSWOI 0- BNCOUET > ittt e e et et e et e e et e e eanaaeeas 154
Parent Elements of <passwor d- encoder >ccoiiiiiiiiiiiiiiiineee e 154
<passwor d- encoder > ARINDULESooovniiiiii i 154
Child Elements of <passwor d- eNCOder >ccoiiiiiiiiiiiiiiiiee e 155

oF: L A=Y o YU 1 o = PPN 155
Parent Elements of <sal t-SOUIrCe> ... 155
<sal t-source> AHDULES ... 155

S Y =T =Y =Y BV o = 155
<user-service> ADULES ..., 155
Child Elements Of SUSEr - SEr Vi CE> ..ot 155

U5 = PP 155
Parent Elements Of SUSEr > ... e 155
SUSEI > ALIDULES ..ot et e e e 156

B.3. MEhOU SECUILY ...eeiiiiie et 156

<gl obal - MBt hOd- SECUI I LY > 1o e e e s 156
<gl obal - met hod- security> Attributesc.coooiiiii 156
Child Elements of <gl obal - met hod- security>ccooooiiiiiiiiiiiiies 157

<after-invocati ON-Provi er> .. 157
Parent Elements of <aft er-i nvocati on-provider>cccoiiiiiiiiiiiniennenn. 157
<after-invocation-provider> Attributescccooiiiiiii 157

<pre-post-annotati on-handl i N>ccoooiiiiiiiii 158
Parent Elements of <pr e- post -annot ati on-handling>ccooeeeiinnnin. 158
Child Elements of <pr e- post-annot ati on-handling>cccooeeiievnnn. 158

<invocation-attribute-factory> ... 158
Parent Elements of <i nvocation-attribute-factory>cc..ccoiviiiiinnin. 158
<invocation-attribute-factory> Attributesc..c.ocoiiiiiiiii 158

<POSt -1 NVOCAL i ON-A0VI CE> 1oiiiiiiiii e e e e e 158
Parent Elements of <post -i nvocati on-advi Ce>c..ooiiiiiiiiiiiiiiiiees 158
<post-invocati on-advi ce> Attributesccooooiiiiii 158

<Pre-i NVOCAt i ON- A0V CE> Lottt e e e e e e e e eeen 158
Parent Elements of <pr e-i nvocati on-advi Ce>cccceeviiiiniiniiiiniinnecennnn, 158
<pre-invocati on-advi ce> Attributescccoooiiiiii 159

Securing Methods using <prot ect - poi NECUL >ooiiiiiiiiii e 159
Parent Elements of <pr ot ect - poi Nt CUL > ..o 159

3.2.0.RC1 Spring Security iX

Spring Security

<protect-poi Nt cut > AHINDULESoeiiiiiii e 159

<INt ercept - MBt NOUS> .. e e 159

<i ntercept-nmet hods> AMNDULEScooviiiiiii e 159

Child Elements of <i ntercept -met hods>ccooovii i 159

<met hod-security-metadat a- SOUT CE> ..iiiiiiiiiiiiii e 159
<nmet hod- securi ty- net adat a- sour ce> Attributescccooeeveiiiiiinnennnn. 159

Child Elements of <net hod- securi ty-netadata-source>ccceeeevnnnnns 160

S 0] S0) A <Y TP 160
Parent Elements of <prot €Ct > ... 160

<Prot €Ct > ANDULES ...ieiiii e e e 160

B.4. LDAP NameSPaCe OPLIONScuuuiiiiiieiiiii et e e e e e et e et e e e e et e e e eanaeeees 160
Defining the LDAP Server using the <l dap- server > Elementccc...oooiiiiiennnnn. 160

<l dap-server> AtrBULES ..o 160

<l dap-authenti cati on-pProvi er > ... 161
Parent Elements of <l dap- aut henti cati on-provider>ccccoeevriinnnnnnn. 161

<l dap- aut henti cati on- provi der > Attributesc.occoeviiiiiiiiiecs 161

Child Elements of <I dap- aut henti cati on-provider>cc.ccoiviiineennnnn. 162
<PASSWOT 0= COMPAT B3 Louuiiiiiii i ieeiiii e e ettt e e e et e e e et e e e e st e e eaat s e e e aatn e e e astnaaeaastnaaaaens 162
Parent Elements of <passSWor d- CONPAr €3coovviiiiiiiiiiiiceeeee e 163
<passwor d- conpar €> ARMNDULESoiiiii i 163

Child Elements of <passSWor d- CONMPAT €3c.uiiiiiiiiiieiiiiiie e 163

S o E= T o R U EY =T =Y =Y RV R o 163

<l dap- user-servi ce> ArDULES ..o 163

C. Spring Security DEPENUENCIESiiiiiiiiieee et e e 165
(O =Y o L I Yo B Y =T oa U g I YA o o 1 G = P 165
C.2. SPrinNg-SECUri tY-TeMDE I N cuuiiiiiiiiii e 165
C.3. SPriNg-SECUNi tY-WED Lo e e 166
C.4. SPring-SeCUMi t Y-l dap ciooiieeiiii i e e e e e 166
C.5. SPring-SeCUri tY-CONFI Q oo e 167
C.6. SPriNg-SECUNi tY-a8Cl i e 167
ORIy oL I Yo B oY =T oa U I YA o= = 167
C.8. SPrinNg-SeCUri tY-0PENI A .o e e 168
C.O.spring-security-taglibS . 168
3.2.0.RC1 Spring Security X

Spring Security

Preface

<partintro>

Spring Security provides a comprehensive security solution for J2EE-based enterprise software
applications. As you will discover as you venture through this reference guide, we have tried to provide
you a useful and highly configurable security system.

Security is an ever-moving target, and it's important to pursue a comprehensive, system-wide approach.
In security circles we encourage you to adopt "layers of security”, so that each layer tries to be as secure
as possible in its own right, with successive layers providing additional security. The "tighter" the security
of each layer, the more robust and safe your application will be. At the bottom level you'll need to deal
with issues such as transport security and system identification, in order to mitigate man-in-the-middle
attacks. Next you'll generally utilise firewalls, perhaps with VPNs or IP security to ensure only authorised
systems can attempt to connect. In corporate environments you may deploy a DMZ to separate public-
facing servers from backend database and application servers. Your operating system will also play
a critical part, addressing issues such as running processes as non-privileged users and maximising
file system security. An operating system will usually also be configured with its own firewall. Hopefully
somewhere along the way you'll be trying to prevent denial of service and brute force attacks against
the system. An intrusion detection system will also be especially useful for monitoring and responding to
attacks, with such systems able to take protective action such as blocking offending TCP/IP addresses in
real-time. Moving to the higher layers, your Java Virtual Machine will hopefully be configured to minimize
the permissions granted to different Java types, and then your application will add its own problem
domain-specific security configuration. Spring Security makes this latter area - application security -
much easier.

Of course, you will need to properly address all security layers mentioned above, together with
managerial factors that encompass every layer. A non-exhaustive list of such managerial factors would
include security bulletin monitoring, patching, personnel vetting, audits, change control, engineering
management systems, data backup, disaster recovery, performance benchmarking, load monitoring,
centralised logging, incident response procedures etc.

With Spring Security being focused on helping you with the enterprise application security layer, you will
find that there are as many different requirements as there are business problem domains. A banking
application has different needs from an ecommerce application. An ecommerce application has different
needs from a corporate sales force automation tool. These custom requirements make application
security interesting, challenging and rewarding.

Please read Part |, “Getting Started”, in its entirety to begin with. This will introduce you to the framework
and the namespace-based configuration system with which you can get up and running quite quickly.
To get more of an understanding of how Spring Security works, and some of the classes you might
need to use, you should then read Part Il, “Architecture and Implementation”. The remaining parts of this
guide are structured in a more traditional reference style, designed to be read on an as-required basis.
We'd also recommend that you read up as much as possible on application security issues in general.
Spring Security is not a panacea which will solve all security issues. It is important that the application
is designed with security in mind from the start. Attempting to retrofit it is not a good idea. In particular,
if you are building a web application, you should be aware of the many potential vulnerabilities such
as cross-site scripting, request-forgery and session-hijacking which you should be taking into account
from the start. The OWASP web site (http://www.owasp.org/) maintains a top ten list of web application
vulnerabilities as well as a lot of useful reference information.

We hope that you find this reference guide useful, and we welcome your feedback and suggestions.

3.2.0.RC1 Spring Security Xi

#jira

Spring Security

Finally, welcome to the Spring Security community.
</partintro>

3.2.0.RC1 Spring Security Xii

#community

Part |. Getting Started

The later parts of this guide provide an in-depth discussion of the framework architecture and
implementation classes, which you need to understand if you want to do any serious customization. In
this part, we'll introduce Spring Security 3.0, give a brief overview of the project's history and take a
slightly gentler look at how to get started using the framework. In particular, we'll look at namespace
configuration which provides a much simpler way of securing your application compared to the traditional
Spring bean approach where you have to wire up all the implementation classes individually.

We'll also take a look at the sample applications that are available. It's worth trying to run these and
experimenting with them a bit even before you read the later sections - you can dip back into them as
your understanding of the framework increases. Please also check out the project website as it has
useful information on building the project, plus links to articles, videos and tutorials.

http://static.springsource.org/spring-security/site/index.html

Spring Security

1. Introduction

1.1 What is Spring Security?

Spring Security provides comprehensive security services for J2EE-based enterprise software
applications. There is a particular emphasis on supporting projects built using The Spring Framework,
which is the leading J2EE solution for enterprise software development. If you're not using Spring for
developing enterprise applications, we warmly encourage you to take a closer look at it. Some familiarity
with Spring - and in particular dependency injection principles - will help you get up to speed with Spring
Security more easily.

People use Spring Security for many reasons, but most are drawn to the project after finding the security
features of J2EE's Servlet Specification or EJB Specification lack the depth required for typical enterprise
application scenarios. Whilst mentioning these standards, it's important to recognise that they are not
portable at a WAR or EAR level. Therefore, if you switch server environments, it is typically a lot of
work to reconfigure your application's security in the new target environment. Using Spring Security
overcomes these problems, and also brings you dozens of other useful, customisable security features.

As you probably know two major areas of application security are “authentication” and “authorization”
(or "access-control”). These are the two main areas that Spring Security targets. “Authentication” is
the process of establishing a principal is who they claim to be (a “principal” generally means a user,
device or some other system which can perform an action in your application). “Authorization” refers to
the process of deciding whether a principal is allowed to perform an action within your application. To
arrive at the point where an authorization decision is needed, the identity of the principal has already
been established by the authentication process. These concepts are common, and not at all specific
to Spring Security.

At an authentication level, Spring Security supports a wide range of authentication models. Most of

these authentication models are either provided by third parties, or are developed by relevant standards

bodies such as the Internet Engineering Task Force. In addition, Spring Security provides its own set of

authentication features. Specifically, Spring Security currently supports authentication integration with

all of these technologies:

» HTTP BASIC authentication headers (an IETF RFC-based standard)

» HTTP Digest authentication headers (an IETF RFC-based standard)

« HTTP X.509 client certificate exchange (an IETF RFC-based standard)

» LDAP (a very common approach to cross-platform authentication needs, especially in large
environments)

» Form-based authentication (for simple user interface needs)

* OpenlD authentication

» Authentication based on pre-established request headers (such as Computer Associates Siteminder)

» JA-SIG Central Authentication Service (otherwise known as CAS, which is a popular open source
single sign-on system)

» Transparent authentication context propagation for Remote Method Invocation (RMI) and Httpinvoker
(a Spring remoting protocol)

» Automatic "remember-me" authentication (so you can tick a box to avoid re-authentication for a
predetermined period of time)

« Anonymous authentication (allowing every unauthenticated call to automatically assume a particular
security identity)

» Run-as authentication (which is useful if one call should proceed with a different security identity)

» Java Authentication and Authorization Service (JAAS)

3.2.0.RC1 Spring Security 2

Spring Security

» JEE container autentication (so you can still use Container Managed Authentication if desired)
» Kerberos

» Java Open Source Single Sign On (JOSSO) *
e OpenNMS Network Management Platform *

* AppFuse *

» AndroMDA *

* Mule ESB *

» Direct Web Request (DWR) *

e Grails *

e Tapestry *

e JTrac*

e Jasypt *

* Roller*

 Elastic Path *

 Atlassian Crowd *

» Your own authentication systems (see below)

(* Denotes provided by a third party

Many independent software vendors (ISVs) adopt Spring Security because of this significant choice of
flexible authentication models. Doing so allows them to quickly integrate their solutions with whatever
their end clients need, without undertaking a lot of engineering or requiring the client to change their
environment. If none of the above authentication mechanisms suit your needs, Spring Security is an
open platform and it is quite simple to write your own authentication mechanism. Many corporate users
of Spring Security need to integrate with "legacy" systems that don't follow any particular security
standards, and Spring Security is happy to "play nicely" with such systems.

Irrespective of the authentication mechanism, Spring Security provides a deep set of authorization
capabilities. There are three main areas of interest - authorizing web requests, authorizing whether
methods can be invoked, and authorizing access to individual domain object instances. To help you
understand the differences, consider the authorization capabilities found in the Servlet Specification web
pattern security, EJB Container Managed Security and file system security respectively. Spring Security
provides deep capabilities in all of these important areas, which we'll explore later in this reference guide.

1.2 History

Spring Security began in late 2003 as “The Acegi Security System for Spring”. A question was posed
on the Spring Developers' mailing list asking whether there had been any consideration given to a
Spring-based security implementation. At the time the Spring community was relatively small (especially
compared with the size today!), and indeed Spring itself had only existed as a SourceForge project from
early 2003. The response to the question was that it was a worthwhile area, although a lack of time
currently prevented its exploration.

With that in mind, a simple security implementation was built and not released. A few weeks later another
member of the Spring community inquired about security, and at the time this code was offered to them.
Several other requests followed, and by January 2004 around twenty people were using the code. These
pioneering users were joined by others who suggested a SourceForge project was in order, which was
duly established in March 2004.

In those early days, the project didn't have any of its own authentication modules. Container Managed
Security was relied upon for the authentication process, with Acegi Security instead focusing on

3.2.0.RC1 Spring Security 3

Spring Security

authorization. This was suitable at first, but as more and more users requested additional container
support, the fundamental limitation of container-specific authentication realm interfaces became clear.
There was also a related issue of adding new JARs to the container's classpath, which was a common
source of end user confusion and misconfiguration.

Acegi Security-specific authentication services were subsequently introduced. Around a year later,
Acegi Security became an official Spring Framework subproject. The 1.0.0 final release was published in
May 2006 - after more than two and a half years of active use in numerous production software projects
and many hundreds of improvements and community contributions.

Acegi Security became an official Spring Portfolio project towards the end of 2007 and was rebranded
as “Spring Security”.

Today Spring Security enjoys a strong and active open source community. There are thousands of
messages about Spring Security on the support forums. There is an active core of developers who work
on the code itself and an active community which also regularly share patches and support their peers.

1.3 Release Numbering

Itis useful to understand how Spring Security release numbers work, as it will help you identify the effort
(or lack thereof) involved in migrating to future releases of the project. Each release uses a standard
triplet of integers: MAJOR.MINOR.PATCH. The intent is that MAJOR versions are incompatible, large-
scale upgrades of the API. MINOR versions should largely retain source and binary compatibility with
older minor versions, thought there may be some design changes and incompatible udates. PATCH
level should be perfectly compatible, forwards and backwards, with the possible exception of changes
which are to fix bugs and defects.

The extent to which you are affected by changes will depend on how tightly integrated your code is. If
you are doing a lot of customization you are more likely to be affected than if you are using a simple
namespace configuration.

You should always test your application thoroughly before rolling out a new version.

1.4 Getting Spring Security

You can get hold of Spring Security in several ways. You can download a packaged distribution from the
main Spring download page, download individual jars (and sample WAR files) from the Maven Central
repository (or a SpringSource Maven repository for snapshot and milestone releases) or, alternatively,
you can build the project from source yourself. See the project web site for more details.

Project Modules

In Spring Security 3.0, the codebase has been sub-divided into separate jars which more clearly
separate different functionaltiy areas and third-party dependencies. If you are using Maven to build your
project, then these are the modules you will add to your pom xmi . Even if you're not using Maven, we'd
recommend that you consult the pom xm files to get an idea of third-party dependencies and versions.
Alternatively, a good idea is to examine the libraries that are included in the sample applications.

Core -spring-security-core.jar

Contains core authentication and access-contol classes and interfaces, remoting support and basic
provisioning APIls. Required by any application which uses Spring Security. Supports standalone

3.2.0.RC1 Spring Security 4

http://www.springsource.com/download/community?project=Spring%20Security

Spring Security

applications, remote clients, method (service layer) security and JDBC user provisioning. Contains the
top-level packages:

e org.springfranework. security.core

e org.springframework. security. access

e org.springfranmework. security. authentication
» org.springframework. security. provisioning
Remoting - spri ng-security-renoting.jar

Provides intergration with Spring Remoting. You don't need this unless you are writing a remote client
which uses Spring Remoting. The main package is or g. spri ngf ranewor k. security. renoting.

Web - spring-security-web.jar

Contains filters and related web-security infrastructure code. Anything with a servlet APl dependency.
You'll need it if you require Spring Security web authentication services and URL-based access-control.
The main package is or g. spri ngf ranewor k. securi ty. web.

Config - spri ng-security-config.jar

Contains the security namespace parsing code. You need it if you are using the Spring Security XML
namespace for configuration. The main package is or g. spri ngf ranewor k. security. config.
None of the classes are intended for direct use in an application.

LDAP - spring-security-1dap.jar

LDAP authentication and provisioning code. Required if you need to use LDAP authentication or manage
LDAP user entries. The top-level package is or g. spri ngf ramewor k. security. | dap.

ACL -spring-security-acl.jar

Specialized domain object ACL implementation. Used to apply security to
specific domain object instances within your application. The top-level package is
org. springframework. security. acls.

CAS -spring-security-cas.jar

Spring Security's CAS client integration. If you want to use Spring Security web authentication with a
CAS single sign-on server. The top-level package is or g. spri ngf ramewor k. security. cas.

OpenID - spri ng-security-openid.jar

OpenID web authentication support. Used to authenticate users against an external OpenID server.
org. springframewor k. security. openi d. Requires OpeniD4Java.

Checking out the Source

Since Spring Security is an Open Source project, we'd strongly encourage you to check out the source
code using git. This will give you full access to all the sample applications and you can build the most
up to date version of the project easily. Having the source for a project is also a huge help in debugging.
Exception stack traces are no longer obscure black-box issues but you can get straight to the line that's

3.2.0.RC1 Spring Security 5

Spring Security

causing the problem and work out what's happening. The source is the ultimate documentation for a
project and often the simplest place to find out how something actually works.

To obtain the source for the project, use the following git command:

git clone git://git.springsource.org/spring-security/spring-security.git

This will give you access to the entire project history (including all releases and branches) on your local
machine.

3.2.0.RC1 Spring Security 6

Spring Security

2. What's new in Spring Security 3.1

This section contains summary of the updates found in Spring Security 3.1. A detailed list of changes
can be found in the project's JIRA

2.1 High level updates found Spring Security 3.1

Below you can find a high level summary of updates to Spring Security 3.1.

Support for multiple http elements

Support for stateless authentication

DebugFilter provides additional debugging information

Improved Active Directory LDAP support (i.e. ActiveDirectoryLdapAuthenticationProvider)
Added Basic Crypto Module.

The namespace is fully documented in the reference appendix.

Added dependencies section to the reference appendix

Support HitpOnly Flag for Cookies in Servlet 3.0 environments
InMemoryUserDetailsManager provides in memory implementation of UserDetailsManager
Support for hasPermission expression on the authorize JSP tag

Support for disabling Ul security (for testing purposes)

Support erasing credentials after successful authentication

Support clearing cookies on logout

Spring Security Google App Engine example application

Support for CAS proxy tickets

Support for arbitrary implementations of JAAS Configuration

Support nested switching of users for SwitchUserFilter

2.2 Spring Security 3.1 namespace updates

Below you can find a summary of updates to the Spring Security 3.1 namespace.

Added support for multiple <http> elements and support for determining which one to use with
http@pattern, http@request-matcher, and http@security. Further information can be found in
Namespace Configuration section of the reference.

Added stateless option for http@create-session

Added support for http@authentication-manager-ref and global-method-security@authentication-
manager-ref.

3.2.0.RC1 Spring Security 7

https://jira.springsource.org/secure/IssueNavigator!executeAdvanced.jspa?jqlQuery=project+%3D+SEC+AND+fixVersion+in+%2812315%2C+11892%2C+11634%2C+11633%2C+11632%2C+11174%29+order+by+priority%2C+type&runQuery=true&clear=true
#nsa-http
#nsa-http-pattern
#nsa-http-request-matcher
#nsa-http-security
#ns-config
#nsa-http-create-session
#nsa-http-authentication-manager-ref
#nsa-global-method-security-authentication-manager-ref
#nsa-global-method-security-authentication-manager-ref

Spring Security

e Added http@name

» Added http@request-matcher-ref and filter-chain@request-matcher-ref

e Added <debug>

e Added Support for setting the AuthenticationDetailsSource using the namespace. See
form-login@authentication-details-source-ref, openid-login@authentication-details-source-ref, http-
basic@authentication-details-source-ref, and x509 @authentication-details-source-ref.

» Added support for http/expression-handler. This allows <expression-handler> to be used for web
access expressions.

» Added authentication-manager@erase-credentials

» Added http-basic@entry-point-ref

» Added logout@delete-cookies

» Added remember-me@authentication-success-handler-ref

» Added <metadata-source-ref>

» Added global-method-security@metadata-source-ref

» Added global-method-security@mode

» Added <attribute-exchange>

» Added remember-me@use-secure-cookie

» Added http@jaas-api-provision

» Added form-login@username-parameter and form-login@ password-parameter

3.2.0.RC1 Spring Security 8

#nsa-http-name
#nsa-http-request-matcher-ref
#nsa-filter-chain-request-matcher-ref
#nsa-debug
#nsa-form-login-authentication-details-source-ref
#nsa-openid-login-authentication-details-source-ref
#nsa-http-basic-authentication-details-source-ref
#nsa-http-basic-authentication-details-source-ref
#nsa-x509-authentication-details-source-ref
#nsa-expression-handler
#nsa-authentication-manager-erase-credentials
#nsa-http-basic-entry-point-ref
#nsa-logout-delete-cookies
#nsa-remember-me-authentication-success-handler-ref
#nsa-method-security-metadata-source
#nsa-global-method-security-metadata-source-ref
#nsa-global-method-security-mode
#nsa-attribute-exchange
#nsa-remember-me-use-secure-cookie
#nsa-http-jaas-api-provision
#nsa-form-login-username-parameter
#nsa-form-login-password-parameter

Spring Security

3. Security Namespace Configuration

3.1 Introduction

Namespace configuration has been available since version 2.0 of the Spring framework. It allows you to
supplement the traditional Spring beans application context syntax with elements from additional XML
schema. You can find more information in the Spring _Reference Documentation. A namespace element
can be used simply to allow a more concise way of configuring an individual bean or, more powerfully,
to define an alternative configuration syntax which more closely matches the problem domain and hides
the underlying complexity from the user. A simple element may conceal the fact that multiple beans
and processing steps are being added to the application context. For example, adding the following
element from the security namespace to an application context will start up an embedded LDAP server
for testing use within the application:

<security: | dap-server />

This is much simpler than wiring up the equivalent Apache Directory Server beans. The most common
alternative configuration requirements are supported by attributes on the | dap- ser ver element and
the user is isolated from worrying about which beans they need to create and what the bean property
names are. %. Use of a good XML editor while editing the application context file should provide
information on the attributes and elements that are available. We would recommend that you try out the
SpringSource Tool Suite as it has special features for working with standard Spring namespaces.

To start using the security namespace in your application context, you need to have the spri ng-
security-config jar on your classpath. Then all you need to do is add the schema declaration to
your application context file:

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: security="http://ww.springfranework. org/ schema/ security"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schema/ security
http://ww. springfranework. org/ schema/ security/spring-security.xsd">

</ beans>

In many of the examples you will see (and in the sample) applications, we will often use "security”" as
the default namespace rather than "beans", which means we can omit the prefix on all the security
namespace elements, making the content easier to read. You may also want to do this if you have your
application context divided up into separate files and have most of your security configuration in one of
them. Your security application context file would then start like this

2you can find out more about the use of the | dap- server element in the chapter on LDAP.

3.2.0.RC1 Spring Security 9

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html
http://www.springsource.com/products/sts
#ldap

Spring Security

<beans: beans xm ns="http://ww:. springframework. or g/ schema/ security"
xm ns: beans="ht t p: // ww. spri ngf ramewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. org/ schema/ security
http://ww. springframework. org/ schema/ security/spring-security.xsd">

</ beans: beans>

We'll assume this syntax is being used from now on in this chapter.
Design of the Namespace

The namespace is designed to capture the most common uses of the framework and provide a simplified
and concise syntax for enabling them within an application. The design is based around the large-scale
dependencies within the framework, and can be divided up into the following areas:

» Web/HTTP Security - the most complex part. Sets up the filters and related service beans used to
apply the framework authentication mechanisms, to secure URLs, render login and error pages and
much more.

» Business Object (Method) Security - options for securing the service layer.
» AuthenticationManager - handles authentication requests from other parts of the framework.

» AccessDecisionManager - provides access decisions for web and method security. A default one will
be registered, but you can also choose to use a custom one, declared using normal Spring bean
syntax.

« AuthenticationProviders - mechanisms against which the authentication manager authenticates
users. The namespace provides supports for several standard options and also a means of adding
custom beans declared using a traditional syntax.

» UserDetailsService - closely related to authentication providers, but often also required by other
beans.

We'll see how to configure these in the following sections.

3.2 Getting Started with Security Namespace Configuration

In this section, we'll look at how you can build up a namespace configuration to use some of the main
features of the framework. Let's assume you initially want to get up and running as quickly as possible
and add authentication support and access control to an existing web application, with a few test logins.
Then we'll look at how to change over to authenticating against a database or other security repository.
In later sections we'll introduce more advanced namespace configuration options.

web. xm Configuration

The first thing you need to do is add the following filter declaration to your web. xni file:

3.2.0.RC1 Spring Security 10

Spring Security

<filter>
<filter-nane>springSecurityFilterChain</filter-nane>
<filter-class>org.springframework.web. filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mpping>
<filter-nane>springSecurityFilterChain</filter-nane>
<url-pattern>/*</url-pattern>

</filter-mappi ng>

This provides a hook into the Spring Security web infrastructure. Del egat i ngFi | t er Pr oxy is a Spring
Framework class which delegates to a filter implementation which is defined as a Spring bean in your
application context. In this case, the bean is named “springSecurityFilterChain”, which is an internal
infrastructure bean created by the namespace to handle web security. Note that you should not use
this bean name yourself. Once you've added this to your web. xm , you're ready to start editing your
application context file. Web security services are configured using the <ht t p> element.

A Minimal <ht t p> Configuration

All you need to enable web security to begin with is

<ht t p>
<intercept-url pattern="/**" access="ROLE USER' />
<formlogin />
<l ogout />

</ http>

Which says that we want all URLs within our application to be secured, requiring the role ROLE_USER
to access them, we want to log in to the application using a form with username and password, and
that we want a logout URL registered which will allow us to log out of the application. <ht t p> element
is the parent for all web-related namespace functionality. The <i nt er cept - ur | > element defines a
patt er n which is matched against the URLs of incoming requests using an ant path style syntax4.
You can also use regular-expression matching as an alternative (see the namespace appendix for more
details). The access attribute defines the access requirements for requests matching the given pattern.
With the default configuration, this is typically a comma-separated list of roles, one of which a user
must have to be allowed to make the request. The prefix “ROLE_" is a marker which indicates that
a simple comparison with the user's authorities should be made. In other words, a normal role-based
check should be used. Access-control in Spring Security is not limited to the use of simple roles (hence
the use of the prefix to differentiate between different types of security attributes). We'll see later how
the interpretation can vary5.

% Note

You can use multiple <i nt er cept - ur | > elements to define different access requirements for
different sets of URLSs, but they will be evaluated in the order listed and the first match will be used.
So you must put the most specific matches at the top. You can also add a et hod attribute to

“See the section on Request Matching in the Web Application Infrastructure chapter for more details on how matches are actually
performed.

>The interpretation of the comma-separated values in the access attribute depends on the implementation of the
AccessDecisionManager which is used. In Spring Security 3.0, the attribute can also be populated with an EL expression.

3.2.0.RC1 Spring Security 11

#request-matching
#ns-access-manager
#el-access

Spring Security

limit the match to a particular HTTP method (GET, PCST, PUT etc.). If a request matches multiple
patterns, the method-specific match will take precedence regardless of ordering.

To add some users, you can define a set of test data directly in the namespace:

<aut henti cat i on- manager >
<aut henti cati on- provi der >
<user-servi ce>
<user name="jim" password="jim spassword" authorities="ROLE USER ROLE_ADM N' />
<user name="bob" password="bobspassword" authorities="ROLE_USER' />
</ user-servi ce>
</ aut henti cati on- provi der >
</ aut henti cat i on- manager >

If you are familiar with pre-namespace versions of the framework, you can probably already
guess roughly what's going on here. The <http> element is responsible for creating a
Fi | t er Chai nPr oxy and the filter beans which it uses. Common problems like incorrect filter
ordering are no longer an issue as the filter positions are predefined.

The <aut hent i cat i on- provi der > element creates a DaoAut hent i cati onProvi der bean
and the <user - servi ce> element creates an | nMenor yDaol npl . All aut henti cati on-
provi der elements must be children of the <aut henti cati on- manager > element, which
creates a Pr ovi der Manager and registers the authentication providers with it. You can find more
detailed information on the beans that are created in the namespace appendix. It's worth cross-
checking this if you want to start understanding what the important classes in the framework are
and how they are used, particularly if you want to customise things later.

The configuration above defines two users, their passwords and their roles within the application (which
will be used for access control). It is also possible to load user information from a standard properties
file using the pr operti es attribute on user - ser vi ce. See the section on in-memory authentication
for more details on the file format. Using the <aut hent i cat i on- pr ovi der > element means that the
user information will be used by the authentication manager to process authentication requests. You
can have multiple <aut hent i cat i on- pr ovi der > elements to define different authentication sources
and each will be consulted in turn.

At this point you should be able to start up your application and you will be required to log in to proceed.
Try it out, or try experimenting with the “tutorial” sample application that comes with the project.

Form and Basic Login Options

You might be wondering where the login form came from when you were prompted to log in, since we
made no mention of any HTML files or JSPs. In fact, since we didn't explicitly set a URL for the login
page, Spring Security generates one automatically, based on the features that are enabled and using
standard values for the URL which processes the submitted login, the default target URL the user will
be sent to after logging in and so on. However, the namespace offers plenty of support to allow you to
customize these options. For example, if you want to supply your own login page, you could use:

3.2.0.RC1 Spring Security 12

#appendix-namespace
#core-services-in-memory-service

Spring Security

<htt p>
<intercept-url pattern="/login.jsp*" access="|S AUTHENTI CATED ANONYMOUSLY"/ >
<intercept-url pattern="/**" access="ROLE USER' />
<forml ogin | ogin-page="/login.jsp />

</ http>

Also note that we've added an extra i nt er cept - url element to say that any requests for the login
page should be available to anonymous users 8 Otherwise the request would be matched by the pattern
/** and it wouldn't be possible to access the login page itself! This is a common configuration error
and will result in an infinite loop in the application. Spring Security will emit a warning in the log if your
login page appears to be secured. It is also possible to have all requests matching a particular pattern
bypass the security filter chain completely, by defining a separate ht t p element for the pattern like this:

<http pattern="/css/**" security="none"/>
<http pattern="/login.jsp*" security="none"/>

<htt p>
<intercept-url pattern="/**" access="ROLE _USER' />
<form |l ogin | ogi n-page='/login.jsp' />

</ http>

From Spring Security 3.1 it is now possible to use multiple ht t p elements to define separate security
filter chain configurations for different request patterns. If the pat t er n attribute is omitted froman ht t p
element, it matches all requests. Creating an unsecured pattern is a simple example of this syntax,
where the pattern is mapped to an empty filter chain ° we'll look at this new syntax in more detail in
the chapter on the Security Filter Chain.

It's important to realise that these unsecured requests will be completely oblivious to any Spring
Security web-related configuration or additional attributes such as r equi r es- channel , so you will
not be able to access information on the current user or call secured methods during the request. Use
access='1S AUTHENTI CATED ANONYMOUSLY' as an alternative if you still want the security filter
chain to be applied.

If you want to use basic authentication instead of form login, then change the configuration to

<ht t p>
<intercept-url pattern="/**" access="ROLE USER' />
<http-basic />

</ http>

Basic authentication will then take precedence and will be used to prompt for a login when a user
attempts to access a protected resource. Form login is still available in this configuration if you wish to
use it, for example through a login form embedded in another web page.

8see the chapter on anonymous authentication and also the AuthenticatedVoter class for more details on how the value
| S_AUTHENTI CATED_ANONYMOUSLY is processed.

%The use of multiple <ht t p> elements is an important feature, allowing the nhamespace to simultaneously support both stateful
and stateless paths within the same application, for example. The previous syntax, using the attribute fi | t er s="none" on an
i ntercept-url elementisincompatible with this change and is no longer supported in 3.1.

3.2.0.RC1 Spring Security 13

#filter-chains-with-ns
#anonymous
#authz-authenticated-voter

Spring Security

Setting a Default Post-Login Destination

If a form login isn't prompted by an attempt to access a protected resource, the def aul t -t ar get -
ur | option comes into play. This is the URL the user will be taken to after successfully logging in, and
defaults to "/". You can also configure things so that the user always ends up at this page (regardless
of whether the login was "on-demand" or they explicitly chose to log in) by setting the al ways- use-
defaul t-target attribute to "true". This is useful if your application always requires that the user
starts at a "home" page, for example:

<http pattern="/login. htnt" security="none"/>
<ht t p>
<intercept-url pattern='/**' access=' ROLE USER />
<form | ogin | ogin-page='/1ogin. htm default-target-url="/hone.htn
al ways-use-default-target="true' />
</ http>

For even more control over the destination, you can use the aut henti cati on- success- handl er -
r ef attribute as an alternative to def aul t -t ar get - ur | . The referenced bean should be an instance
of Aut hent i cat i onSuccessHandl er. You'll find more on this in the Core Filters chapter and also in
the namespace appendix, as well as information on how to customize the flow when authentication fails.

Logout Handling

The | ogout element adds support for logging out by navigating to a particular URL. The default logout
URLis/j _spring_security_ | ogout, butyou can set it to something else using the | ogout - ur |
attribute. More information on other available attributes may be found in the namespace appendix.

Using other Authentication Providers

In practice you will need a more scalable source of user information than a few names added to the
application context file. Most likely you will want to store your user information in something like a
database or an LDAP server. LDAP namespace configuration is dealt with in the LDAP chapter, so we
won't cover it here. If you have a custom implementation of Spring Security's User Det ai | sSer vi ce,
called "myUserDetailsService" in your application context, then you can authenticate against this using

<aut henti cat i on- manager >
<aut henti cati on- provi der user-service-ref="myUserDetail sService'/>
</ aut henti cati on- manager >

If you want to use a database, then you can use

<aut henti cati on- manager >
<aut henti cati on- provi der >
<j dbc-user-servi ce dat a-source-ref="securityDataSource"/>
</ aut henti cati on- provi der >
</ aut henti cat i on- manager >

3.2.0.RC1 Spring Security 14

#form-login-flow-handling
#ldap

Spring Security

Where “securityDataSource” is the name of a Dat aSour ce bean in the application context, pointing at
a database containing the standard Spring Security user data tables. Alternatively, you could configure
a Spring Security JdbcDaol npl bean and point at that using the user - ser vi ce-r ef attribute:

<aut henti cat i on- manager >
<aut henti cati on-provi der user-service-ref="myUserDetail sService'/>
</ aut henti cati on- manager >

<beans: bean i d="nyUser Det ai | sServi ce"
cl ass="org. spri ngframework. security.core.userdetails.jdbc.JdbcDaol npl ">
<beans: property nane="dat aSource" ref="dataSource"/>
</ beans: bean>

You can also use standard Aut hent i cati onPr ovi der beans as follows

<aut henti cati on- manager >
<aut henti cati on-provi der ref='"myAuthenticationProvider'/>
</ aut henti cat i on- manager >

where myAut henti cati onProvi der is the name of a bean in your application context which
implements Aut henti cati onProvi der. You can use multiple aut henticati on-provider
elements, in which case the providers will be queried in the order they are declared. See Section 3.6,
“The Authentication Manager and the Namespace” for more on information on how the Spring Security
Aut hent i cat i onManager is configured using the namespace.

Adding a Password Encoder

Passwords should always be encoded using a secure hashing algorithm designed for the purpose (not
a standard algorithm like SHA or MD5). This is supported by the <passwor d- encoder > element. With
bcrypt encoded passwords, the original authentication provider configuration would look like this:

<beans: bean nane="bcrypt Encoder" cl ass="org. spri ngfranework.security.crypto.bcrypt.BCryptPasswordEncoder"/
>

<aut henti cati on- manager >
<aut henti cati on- provi der >
<passwor d- encoder ref="bcrypt Encoder"/>
<user-servi ce>
<user name="jim" password="d7e635leaal3189a5a3641bah846c8e8c69ba39f"
aut horities="ROLE USER, ROLE_ ADM N' />
<user nane="bob" password="4e7421b1b8765d8f 9406d87e7cc6aa784c4ab97f"
aut horiti es="ROLE_USER"' />
</ user - servi ce>
</ aut henti cati on- provi der >
</ aut henti cat i on- manager >

Bcrypt is a good choice for most cases, unless you have a legacy system which forces you to use
a different algorithm. If you are using a simple hashing algorithm or, even worse, storing plain text
passwords, then you should consider migrating to a more secure option like berypt.

3.2.0.RC1 Spring Security 15

#db_schema_users_authorities

Spring Security

3.3 Advanced Web Features

Remember-Me Authentication

See the separate Remember-Me chapter for information on remember-me namespace configuration.

Adding HTTP/HTTPS Channel Security

If your application supports both HTTP and HTTPS, and you require that particular URLs can only
be accessed over HTTPS, then this is directly supported using the r equi r es- channel attribute on
<intercept-url>:

<htt p>
<intercept-url pattern="/secure/**" access="ROLE USER' requires-channel ="https"/>
<intercept-url pattern="/**" access="ROLE _USER' requires-channel ="any"/>

</ http>

With this configuration in place, if a user attempts to access anything matching the "/secure/**" pattern
using HTTP, they will first be redirected to an HTTPS URL 5 The available options are "http", "https"”
or "any". Using the value "any" means that either HTTP or HTTPS can be used.

If your application uses non-standard ports for HTTP and/or HTTPS, you can specify a list of port
mappings as follows:

<ht t p>

<port - mappi ngs>
<port-mappi ng http="9080" https="9443"/>
</ port - mappi ngs>
</ http>

Note that in order to be truly secure, an application should not use HTTP at all or switch between
HTTP and HTTPS. It should start in HTTPS (with the user entering an HTTPS URL) and use a secure
connection throughout to avoid any possibility of man-in-the-middle attacks.

Session Management

Detecting Timeouts

You can configure Spring Security to detect the submission of an invalid session ID and redirect the
user to an appropriate URL. This is achieved through the sessi on- managenent element:

<htt p>

<sessi on- managenent invalid-session-url="/invalidSession.htnm />
</ http>

Note that if you use this mechanism to detect session timeouts, it may falsely report an error if the
user logs out and then logs back in without closing the browser. This is because the session cookie is

5For more details on how channel-processing is implemented, see the Javadoc for Channel Processi ngFi | t er and related
classes.

3.2.0.RC1 Spring Security 16

#remember-me

Spring Security

not cleared when you invalidate the session and will be resubmitted even if the user has logged out.
You may be able to explicitly delete the JSESSIONID cookie on logging out, for example by using the
following syntax in the logout handler:

<ht t p>
<l ogout del et e-cooki es="JSESSI ONI D* />
</ http>

Unfortunately this can't be guaranteed to work with every servlet container, so you will need to test it
in your environment™.

Concurrent Session Control

If you wish to place constraints on a single user's ability to log in to your application, Spring Security
supports this out of the box with the following simple additions. First you need to add the following
listener to your web. xm file to keep Spring Security updated about session lifecycle events:

<listener>
<li stener-cl ass>
org. springframewor k. security.web. sessi on. Ht t pSessi onEvent Publ i sher
</listener-class>
</listener>

Then add the following lines to your application context:

<ht t p>

<sessi on- managenent >
<concurrency-control max-sessions="1" />
</ sessi on- managemnent >
</ http>

This will prevent a user from logging in multiple times - a second login will cause the first to be invalidated.
Often you would prefer to prevent a second login, in which case you can use

<ht t p>

<sessi on- managenent >
<concurrency-control max-sessions="1" error-if-maxi num exceeded="true" />
</ sessi on- managemnent >
</ http>

The second login will then be rejected. By “rejected”, we mean that the user will be sent to the
aut henti cation-fail ure-url ifform-based login is being used. If the second authentication takes

16 you are running your application behind a proxy, you may also be able to remove the session cookie by configuring the
proxy server. For example, using Apache HTTPD's mod_headers, the following directive would delete the JSESSI ONI D cookie
by expiring it in the response to a logout request (assuming the application is deployed under the path / t ut ori al):

<LocationMatch "/tutorial/j_spring_security |ogout">

Header al ways set Set-Cookie "JSESSI ONl D=; Pat h=/tutori al ; Expi res=Thu, 01 Jan 1970
00: 00: 00 Gwvr"
</ Locat i onMat ch>

3.2.0.RC1 Spring Security 17

Spring Security

place through another non-interactive mechanism, such as “remember-me”, an “unauthorized” (402)
error will be sent to the client. If instead you want to use an error page, you can add the attribute
sessi on-aut henti cati on-error-url tothe sessi on- managenent element.

If you are using a customized authentication filter for form-based login, then you have to configure
concurrent session control support explicitly. More details can be found in the Session Management

chapter.

Session Fixation Attack Protection

Session fixation attacks are a potential risk where it is possible for a malicious attacker to create a
session by accessing a site, then persuade another user to log in with the same session (by sending
them a link containing the session identifier as a parameter, for example). Spring Security protects
against this automatically by creating a new session or otherwise changing the session ID when a user
logs in. If you don't require this protection, or it conflicts with some other requirement, you can control the
behavior using the sessi on-fi xati on- prot ecti on attribute on <sessi on- nanagenent >, which
has four options

* none - Don't do anything. The original session will be retained.

* newSessi on - Create a new "clean" session, without copying the existing session data (Spring
Security-related attributes will still be copied).

* m grat eSessi on - Create a new session and copy all existing session attributes to the new session.
This is the default in Servlet 3.0 or older containers.

» changeSessi onl d - Do not create a new session. Instead, use the session fixation protection
provided by the Servlet container (Ht t pSer vl et Request #changeSessi onl d()). This option is
only available in Servlet 3.1 (Java EE 7) and newer containers. Specifying it in older containers will
result in an exception. This is the default in Servlet 3.1 and newer containers.

When session fixation protection occurs, it results in a Sessi onFi xat i onPr ot ecti onEvent being

published in the application context. If you use changeSessi onl d, this protection will also result in

any j avax. servl et. http. H t pSessi onl dLi st ener s being notified, so use caution if your code
listens for both events. See the Session Management chapter for additional information.

OpenID Support

The namespace supports OpenlID login either instead of, or in addition to normal form-based login, with
a simple change:

<htt p>
<intercept-url pattern="/**" access="ROLE USER' />
<openi d-1ogin />

</ http>

You should then register yourself with an OpenID provider (such as myopenid.com), and add the user
information to your in-memory <user - servi ce>:

<user nane="http://jim.hendrix.nyopenid.conm" authorities="ROLE USER' />

You should be able to login using the nyopeni d. comsite to authenticate. It is also possible to select a
specific User Det ai | sSer vi ce bean for use OpenID by setting the user - ser vi ce-r ef attribute on

3.2.0.RC1 Spring Security 18

#session-mgmt
#session-mgmt
http://en.wikipedia.org/wiki/Session_fixation
#session-mgmt
http://openid.net/

Spring Security

the openi d- | ogi n element. See the previous section on authentication providers for more information.
Note that we have omitted the password attribute from the above user configuration, since this set of
user data is only being used to load the authorities for the user. A random password will be generate
internally, preventing you from accidentally using this user data as an authentication source elsewhere
in your configuration.

Attribute Exchange

Support for OpenID attribute exchange. As an example, the following configuration would attempt to
retrieve the email and full name from the OpenlID provider, for use by the application:

<openi d- | ogi n>
<attri but e- exchange>
<openi d-attribute name="emni | " type="http://axschensn. org/contact/
emai |l " required="true"/>
<openi d-attri bute name="name" type="http://axschena. or g/ namePer son"/ >
</ attri bute-exchange>
</ openi d- | ogi n>

The “type” of each OpenlD attribute is a URI, determined by a particular schema, in this case http://
axschema.org/. If an attribute must be retrieved for successful authentication, the r equi r ed attribute
can be set. The exact schema and attributes supported will depend on your OpenlID provider. The
attribute values are returned as part of the authentication process and can be accessed afterwards
using the following code:

Openl DAut henti cati onToken token =
(Openl DAut hent i cati onToken) Securi t yCont ext Hol der . get Cont ext (). get Aut henti cation();

Li st<Openl DAttribute> attri butes = token.getAttributes();
The Openl DAt tri but e contains the attribute type and the retrieved value (or values in the case
of multi-valued attributes). We'll see more about how the Securi t yCont ext Hol der class is used
when we look at core Spring Security components in the technical overview chapter. Multiple attribute
exchange configurations are also be supported, if you wish to use multiple identity providers. You can
supply multiple at t ri but e- exchange elements, usingani denti fi er - mat cher attribute on each.
This contains a regular expression which will be matched against the OpenlID identifier supplied by
the user. See the OpenID sample application in the codebase for an example configuration, providing
different attribute lists for the Google, Yahoo and MyOpenlID providers.

Response Headers

A lot of different attacks to hijack content, sessions or connections are available and lately browsers
(optionally) can help to prevent those attacks. To enable these features we need to send some additional
headers to the client. Spring Security allows for easy configuration for several headers.
<progamlisting> <headers/> </progamlisting>

Specifying the single headers element adds all the explicitly supported headers with their default
settings. If you only want select headers to be added, you can add one or more of the child elements
as shown below.

<progamlisting> <headers> <!-- Add Cache-Control and Pragma headers --> <cache-control/> <!-- Add
X-Content-Type-Options with value of nosniff --> <content-type-options/> <!-- Add custom headers -->
<header name="foo" value="bar"/> <-- Adds HTTP Strict Transport Security (HSTS) for secure requests
--> <hsts/> <!-- Add X-Frame-Options with a value of DENY --> <frame-options/> <!-- Adds X-XSS-
Protection with value of 1; mode=block--> <xss-protection/> </headers> </progamlisting>

3.2.0.RC1 Spring Security 19

#ns-auth-providers
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://axschema.org/
http://axschema.org/
#core-components

Spring Security

For additional information on how to customize the headers element refer to the headers section of the
Security Namespace appendix.

Adding in Your Own Filters

If you've used Spring Security before, you'll know that the framework maintains a chain of filters in
order to apply its services. You may want to add your own filters to the stack at particular locations
or use a Spring Security filter for which there isn't currently a namespace configuration option (CAS,
for example). Or you might want to use a customized version of a standard namespace filter, such as
the User namePasswor dAut hent i cat i onFi | t er which is created by the <f or m | ogi n> element,
taking advantage of some of the extra configuration options which are available by using the bean
explicitly. How can you do this with nhamespace configuration, since the filter chain is not directly
exposed?

The order of the filters is always strictly enforced when using the namespace. When the application
context is being created, the filter beans are sorted by the namespace handling code and the standard
Spring Security filters each have an alias in the namespace and a well-known position.

~ Note

In previous versions, the sorting took place after the filter instances had been created, during
post-processing of the application context. In version 3.0+ the sorting is now done at the bean
metadata level, before the classes have been instantiated. This has implications for how you
add your own filters to the stack as the entire filter list must be known during the parsing of the
<ht t p> element, so the syntax has changed slightly in 3.0.

The filters, aliases and namespace elements/attributes which create the filters are shown in Table 3.1,
“Standard Filter Aliases and Ordering”. The filters are listed in the order in which they occur in the filter
chain.

Table 3.1. Standard Filter Aliases and Ordering

Alias Filter Class Namespace
Element or
Attribute

CHANNEL_FILTER Channel Processi ngFil ter htt p/
i ntercept-
url @equires-
channel

SECURITY_CONTEXT_FILTER SecurityCont ext Persi stenceFiltattp

CONCURRENT_SESSION_FILTER Concurrent Sessi onFil ter sessi on-
managemnent /
concurrency-

control
HEADERS_ FILTER HeaderWiterFilter htt p/ headers
CSRF_FILTER CsrfFilter http/csrf
LOGOUT_FILTER Logout Fil ter htt p/ | ogout
X509 FILTER X509Aut henti cationFilter ht t p/ x509

3.2.0.RC1 Spring Security 20

nsa-headers

Spring Security

Alias Filter Class Namespace
Element or
Attribute
PRE_AUTH_FILTER Astract PreAut henti cat edProcessN#gFi | ter
Subclasses
CAS_FILTER CasAut henti cationFilter N/A
FORM_LOGIN_FILTER User nanePasswor dAut henti cat i onhi t p&f or m
l ogin
BASIC_AUTH_FILTER Basi cAut henti cati onFil ter http/ http-
basi c

SERVLET_API_SUPPORT_FILTER Securi t yCont ext Hol der Awar eRequbst Bi | t er

@ervlet-api-

provi si on
JAAS_API_SUPPORT_FILTER JaasApi I ntegrationFilter htt p/ @ aas-

api - provi sion
REMEMBER_ME_FILTER Renmenmber MeAut henti cati onFilterhttp/

r enenber - e
ANONYMOUS_FILTER AnonynousAut henti cationFilter http/

anonynmous
SESSION_MANAGEMENT_FILTER Sessi onManagenent Fi | t er sessi on-

nanagement
EXCEPTION_TRANSLATION_FILTER ExceptionTransl ati onFilter http
FILTER_SECURITY_INTERCEPTOR FilterSecuritylnterceptor http
SWITCH_USER_FILTER Swi tchUserFilter N/A

You can add your own filter to the stack, using the cust om fi | t er element and one of these names
to specify the position your filter should appear at:

<ht t p>
<customfilter position="FORM LOG N FILTER" ref="nyFilter" />
</ http>

<beans: bean id="nyFilter" class="com nyconpany. M/Speci al Aut henticationFilter"/>

You can also use the af t er or bef or e attributes if you want your filter to be inserted before or after
another filter in the stack. The names "FIRST" and "LAST" can be used with the posi t i on attribute to
indicate that you want your filter to appear before or after the entire stack, respectively.

~ Avoiding filter position conflicts

If you are inserting a custom filter which may occupy the same position as one of the standard
filters created by the namespace then it's important that you don't include the namespace

3.2.0.RC1 Spring Security 21

Spring Security

versions by mistake. Remove any elements which create filters whose functionality you want to
replace.

Note that you can't replace filters which are created by the use of the <http>
elementitself - Securi t yCont ext Per si st enceFi |l ter, Excepti onTransl ationFilter
or FilterSecuritylnterceptor. Some other filters are added by default, but you can
disable them. An AnonynousAut henti cati onFilter is added by default and unless you
have session-fixation protection disabled, a Sessi onManagenent Fi | t er will also be added
to the filter chain.

If you're replacing a namespace filter which requires an authentication entry point (i.e. where the
authentication process is triggered by an attempt by an unauthenticated user to access to a secured
resource), you will need to add a custom entry point bean too.

Setting a Custom Aut hent i cat i onEnt r yPoi nt

If you aren't using form login, OpenlID or basic authentication through the namespace, you may want
to define an authentication filter and entry point using a traditional bean syntax and link them into the
namespace, as we've just seen. The corresponding Aut hent i cat i onEnt r yPoi nt can be set using
the ent ry- poi nt - r ef attribute on the <ht t p> element.

The CAS sample application is a good example of the use of custom beans with the namespace,
including this syntax. If you aren't familiar with authentication entry points, they are discussed in the
technical overview chapter.

3.4 Method Security

From version 2.0 onwards Spring Security has improved support substantially for adding security to your
service layer methods. It provides support for JSR-250 annotation security as well as the framework's
original @ecur ed annotation. From 3.0 you can also make use of new expression-based annotations.
You can apply security to a single bean, using the i nt er cept - net hods element to decorate the bean
declaration, or you can secure multiple beans across the entire service layer using the AspectJ style
pointcuts.

The <gl obal - net hod- security> Element

This element is used to enable annotation-based security in your application (by setting the appropriate
attributes on the element), and also to group together security pointcut declarations which will be applied
across your entire application context. You should only declare one <gl obal - et hod- security>
element. The following declaration would enable support for Spring Security's @ecur ed:

<gl obal - met hod- security secured-annotations="enabl ed" />

Adding an annotation to a method (on an class or interface) would then limit the access to that method
accordingly. Spring Security's native annotation support defines a set of attributes for the method. These
will be passed to the AccessDeci si onManager for it to make the actual decision:

3.2.0.RC1 Spring Security 22

#ns-session-fixation
#tech-intro-auth-entry-point
#el-access

Spring Security

public interface BankService {

@ecur ed(" | S_AUTHENTI CATED_ANONYMOUSLY")
publ i c Account readAccount(Long id);

@ecur ed(" | S_AUTHENTI CATED_ANONYMOUSLY")
public Account[] findAccounts();

@ecur ed(" ROLE_TELLER")
publ i c Account post (Account account, double anpunt);

}
Support for JSR-250 annotations can be enabled using

<gl obal - met hod- security jsr250-annotati ons="enabl ed" />

These are standards-based and allow simple role-based constraints to be applied but do not have the
power Spring Security's native annotations. To use the new expression-based syntax, you would use

<gl obal - met hod- security pre-post-annotations="enabl ed" />

and the equivalent Java code would be

public interface BankService {

@r eAut hori ze("i sAnonynous() ")
publ i c Account readAccount (Long id);

@r eAut hori ze("i sAnonynous() ")
public Account[] findAccounts();

@r eAut hori ze("hasAut hority(' ROLE_TELLER)")
publ i c Account post (Account account, double anount);

Expression-based annotations are a good choice if you need to define simple rules that go beyond
checking the role names against the user's list of authorities.

5 Note

The annotated methods will only be secured for instances which are defined as Spring beans
(in the same application context in which method-security is enabled). If you want to secure
instances which are not created by Spring (using the new operator, for example) then you need
to use AspectJ.

5 Note

You can enable more than one type of annotation in the same application, but only one type
should be used for any interface or class as the behaviour will not be well-defined otherwise. If two
annotations are found which apply to a particular method, then only one of them will be applied.

3.2.0.RC1 Spring Security 23

Spring Security

Adding Security Pointcuts using pr ot ect - poi nt cut

The use of prot ect - poi nt cut is particularly powerful, as it allows you to apply security to many
beans with only a simple declaration. Consider the following example:

<gl obal - met hod- security>
<prot ect - poi nt cut expressi on="execution(* com nyconpany.*Service.*(..))"
access="ROLE USER'/ >
</ gl obal - met hod- security>

This will protect all methods on beans declared in the application context whose classes are in the
com nycomnpany package and whose class names end in "Service". Only users with the ROLE_USER
role will be able to invoke these methods. As with URL matching, the most specific matches must come
first in the list of pointcuts, as the first matching expression will be used. Security annotations take
precedence over pointcuts.

3.5 The Default AccessDecisionManager

This section assumes you have some knowledge of the underlying architecture for access-control within
Spring Security. If you don't you can skip it and come back to it later, as this section is only really relevant
for people who need to do some customization in order to use more than simple role-based security.

When you use a namespace configuration, a default instance of AccessDeci si onManager is
automatically registered for you and will be used for making access decisions for method invocations and
web URL access, based on the access attributes you specify in your i nt er cept -ur| and pr ot ect -
poi nt cut declarations (and in annotations if you are using annotation secured methods).

The default strategy isto use an Af f i r nat i veBased AccessDeci si onManager with a Rol eVot er
and an Aut hent i cat edVot er . You can find out more about these in the chapter on authorization.

Customizing the AccessDecisionManager

If you need to use a more complicated access control strategy then it is easy to set an alternative for
both method and web security.

For method security, you do this by setting the access- deci si on- manager -ref attribute on
gl obal - net hod- security to the i d of the appropriate AccessDeci si onManager bean in the
application context:

<gl obal - net hod- security access-deci si on-manager -ref =" myAccessDeci si onManager Bean" >

</ gl obal - met hod- security>

The syntax for web security is the same, but on the ht t p element:

<http access-deci si on- manager -ref =" myAccessDeci si onManager Bean" >

</ http>

3.2.0.RC1 Spring Security 24

#authz-arch

Spring Security

3.6 The Authentication Manager and the Namespace

The main interface which provides authentication services in Spring Security is the
Aut hent i cat i onManager . This is usually an instance of Spring Security's Pr ovi der Manager class,
which you may already be familiar with if you've used the framework before. If not, it will be covered
later, in the technical overview chapter. The bean instance is registered using the aut henti cati on-
nmanager namespace element. You can't use a custom Aut hent i cat i onManager if you are using
either HTTP or method security through the namespace, but this should not be a problem as you have
full control over the Aut hent i cati onPr ovi der s that are used.

You may want to register additional Aut hent i cat i onPr ovi der beans with the Pr ovi der Manager
and you can do this using the <aut hent i cati on- pr ovi der > element with the r ef attribute, where
the value of the attribute is the name of the provider bean you want to add. For example:

<aut henti cati on- manager >
<aut henti cati on-provi der ref="casAuthenti cati onProvider"/>
</ aut henti cati on- manager >

<bean i d="casAut henti cati onProvi der"
cl ass="org. springframewor k. security.cas. aut henti cati on. CasAut henti cati onProvi der">

</ bean>

Another common requirement is that another bean in the context may require a reference to the
Aut hent i cat i onManager . You can easily register an alias for the Aut hent i cat i onManager and
use this name elsewhere in your application context.

<security:aut henticati on-nmanager alias="authenticati onManager">
</ security:aut hentication-nanager >
<bean i d="cust om zedFor nLogi nFilter"

cl ass="com soneconpany. security. web. Cust onfornLogi nFil ter">

<property nane="aut henti cati onManager" ref="aut henti cati onManager"/>

</ bean>

3.2.0.RC1 Spring Security 25

#tech-intro-authentication

Spring Security

4. Sample Applications

There are several sample web applications that are available with the project. To avoid an overly
large download, only the "tutorial" and "contacts" samples are included in the distribution zip file. The
others can be built directly from the source which you can obtain as described in the introduction.
It's easy to build the project yourself and there's more information on the project web site at _http:/
www.springsource.org/security/ . All paths referred to in this chapter are relative to the project source
directory.

4.1 Tutorial Sample

The tutorial sample is a nice basic example to get you started. It uses simple namespace configuration
throughout. The compiled application is included in the distribution zip file, ready to be deployed
into your web container (spri ng-security-sanpl es-tutorial-3.1.x.war). The form-based
authentication mechanism is used in combination with the commonly-used remember-me authentication
provider to automatically remember the login using cookies.

We recommend you start with the tutorial sample, as the XML is minimal and easy to follow. Most
importantly, you can easily add this one XML file (and its corresponding web. xnl entries) to your
existing application. Only when this basic integration is achieved do we suggest you attempt adding in
method authorization or domain object security.

4.2 Contacts

The Contacts Sample is an advanced example in that it illustrates the more powerful features of domain
object access control lists (ACLs) in addition to basic application security. The application provides an
interface with which the users are able to administer a simple database of contacts (the domain objects).

To deploy, simply copy the WAR file from Spring Security distribution into your container’s webapps
directory. The war should be called spring-security-sanpl es-contacts-3. 1. x.war (the
appended version number will vary depending on what release you are using).

After starting your container, check the application can load. Visit http://I ocal host: 8080/
cont act s (or whichever URL is appropriate for your web container and the WAR you deployed).

Next, click "Debug". You will be prompted to authenticate, and a series of usernames and passwords
are suggested on that page. Simply authenticate with any of these and view the resulting page. It should
contain a success message similar to the following:

Security Debug Information

Authentication object is of type:
org.springframework.security.authentication.UsernamePasswordAuthenticationToken

Authentication object as a String:

org.springframework.security.authentication.UsernamePasswordAuthenticationToken@1f127853:
Principal: org.springframework.security.core.userdetails.User@b07ed00: Username: rod; \
Password: [PROTECTED]; Enabled: true; AccountNonExpired: true;

credentialsNonExpired: true; AccountNonLocked: true; \

3.2.0.RC1 Spring Security 26

#get-source
http://www.springsource.org/security/
http://www.springsource.org/security/
#ns-form-and-basic
#remember-me

Spring Security

Granted Authorities: ROLE_SUPERVISOR, ROLE_USER; \

Password: [PROTECTED]; Authenticated: true; \

Details: org.springframework.security.web.authentication.WebAuthenticationDetails@0: \
RemotelpAddress: 127.0.0.1; Sessionld: 8fkp8t83ohar; \

Granted Authorities: ROLE_SUPERVISOR, ROLE_USER

Authentication object holds the following granted authorities:

ROLE_SUPERVISOR (getAuthority(): ROLE_SUPERVISOR)
ROLE_USER (getAuthority(): ROLE_USER)

Success! Your web filters appear to be properly configured!

Once you successfully receive the above message, return to the sample application's home page and
click "Manage". You can then try out the application. Notice that only the contacts available to the
currently logged on user are displayed, and only users with ROLE_SUPERVI SOR are granted access to
delete their contacts. Behind the scenes, the Met hodSecuri t yl nt er cept or is securing the business
objects.

The application allows you to modify the access control lists associated with different contacts. Be sure
to give this a try and understand how it works by reviewing the application context XML files.

4.3 LDAP Sample

The LDAP sample application provides a basic configuration and sets up both a namespace
configuration and an equivalent configuration using traditional beans, both in the same application
context file. This means there are actually two identical authentication providers configured in this
application.

4.4 OpenlID Sample

The OpenID sample demonstrates how to use the namespace to configure OpenlD and how to set
up attribute exchange configurations for Google, Yahoo and MyOpenlID identity providers (you can
experiment with adding others if you wish). It uses the JQuery-based openid-selector project to provide
a user-friendly login page which allows the user to easily select a provider, rather than typing in the
full OpenlD identifier.

The application differs from normal authentication scenarios in that it allows any user to access the site
(provided their OpenlID authentication is successful). The first time you login, you will get a “Welcome
[your name]"™ message. If you logout and log back in (with the same OpenlD identity) then this should
change to “Welcome Back”. This is achieved by using a custom User Det ai | sSer vi ce which assigns
a standard role to any user and stores the identities internally in a map. Obviously a real application
would use a database instead. Have a look at the source form more information. This class also takes
into account the fact that different attributes may be returned from different providers and builds the
name with which it addresses the user accordingly.

4.5 CAS Sample

The CAS sample requires that you run both a CAS server and CAS client. It isn't included in the
distribution so you should check out the project code as described in the introduction. You'll find the

3.2.0.RC1 Spring Security 27

http://openid.net/specs/openid-attribute-exchange-1_0.html
http://code.google.com/p/openid-selector/
#get-source

Spring Security

relevant files under the sanpl e/ cas directory. There's also a Readne. t xt file in there which explains
how to run both the server and the client directly from the source tree, complete with SSL support.

4.6 JAAS Sample

The JAAS sample is very simple example of how to use a JAAS LoginModule with Spring Security.
The provided LoginModule will successfully authenticate a user if the username equals the password
otherwise a LoginException is thrown. The AuthorityGranter used in this example always grants the role
ROLE_USER. The sample application also demonstrates how to run as the JAAS Subject returned by
the LoginModule by setting jaas-api-provision equal to "true".

4.7 Pre-Authentication Sample

This sample application demonstrates how to wire up beans from the pre-authentication framework to
make use of login information from a J2EE container. The user name and roles are those setup by the
container.

The code is in sanpl es/ pr eaut h.

3.2.0.RC1 Spring Security 28

#nsa-http-jaas-api-provision
#preauth

Spring Security

5. Spring Security Community

5.1 Issue Tracking

Spring Security uses JIRA to manage bug reports and enhancement requests. If you find a bug, please
log a report using JIRA. Do not log it on the support forum, mailing list or by emailing the project's
developers. Such approaches are ad-hoc and we prefer to manage bugs using a more formal process.

If possible, in your issue report please provide a JUnit test that demonstrates any incorrect behaviour.
Or, better yet, provide a patch that corrects the issue. Similarly, enhancements are welcome to be logged
in the issue tracker, although we only accept enhancement requests if you include corresponding unit
tests. This is necessary to ensure project test coverage is adequately maintained.

You can access the issue tracker at http://jira.springsource.org/browse/SEC.

5.2 Becoming Involved

We welcome your involvement in the Spring Security project. There are many ways of contributing,
including reading the forum and responding to questions from other people, writing new code,
improving existing code, assisting with documentation, developing samples or tutorials, or simply making
suggestions.

5.3 Further Information

Questions and comments on Spring Security are welcome. You can use the Spring Community Forum
web site at htt p: //f orum spri ngsour ce. or g to discuss Spring Security with other users of the
framework. Remember to use JIRA for bug reports, as explained above.

3.2.0.RC1 Spring Security 29

http://jira.springsource.org/browse/SEC
http://forum.springsource.org

Part Il. Architecture
and Implementation

Once you are familiar with setting up and running some namespace-configuration based applications,
you may wish to develop more of an understanding of how the framework actually works behind the
namespace facade. Like most software, Spring Security has certain central interfaces, classes and
conceptual abstractions that are commonly used throughout the framework. In this part of the reference
guide we will look at some of these and see how they work together to support authentication and
access-control within Spring Security.

Spring Security

6. Technical Overview

6.1 Runtime Environment

Spring Security 3.0 requires a Java 5.0 Runtime Environment or higher. As Spring Security aims to
operate in a self-contained manner, there is no need to place any special configuration files into your
Java Runtime Environment. In particular, there is no need to configure a special Java Authentication
and Authorization Service (JAAS) policy file or place Spring Security into common classpath locations.

Similarly, if you are using an EJB Container or Servlet Container there is no need to put any special
configuration files anywhere, nor include Spring Security in a server classloader. All the required files
will be contained within your application.

This design offers maximum deployment time flexibility, as you can simply copy your target artifact (be
it a JAR, WAR or EAR) from one system to another and it will immediately work.

6.2 Core Components

In Spring Security 3.0, the contents of the spri ng- security-core jar were stripped down to the
bare minimum. It no longer contains any code related to web-application security, LDAP or namespace
configuration. We'll take a look here at some of the Java types that you'll find in the core module. They
represent the building blocks of the the framework, so if you ever need to go beyond a simple namespace
configuration then it's important that you understand what they are, even if you don't actually need to
interact with them directly.

SecurityContextHolder, SecurityContext and Authentication Objects

The most fundamental object is Securi t yCont ext Hol der. This is where we store details of the
present security context of the application, which includes details of the principal currently using the
application. By default the Secur it yCont ext Hol der uses a Thr eadLocal to store these details,
which means that the security context is always available to methods in the same thread of execution,
even if the security context is not explicitly passed around as an argument to those methods. Using a
Thr eadLocal in this way is quite safe if care is taken to clear the thread after the present principal's
request is processed. Of course, Spring Security takes care of this for you automatically so there is no
need to worry about it.

Some applications aren't entirely suitable for using a Thr eadLocal , because of the specific way
they work with threads. For example, a Swing client might want all threads in a Java Virtual Machine
to use the same security context. Securi t yCont ext Hol der can be configured with a strategy on
startup to specify how you would like the context to be stored. For a standalone application you
would use the Securit yCont ext Hol der. MODE_GLOBAL strategy. Other applications might want
to have threads spawned by the secure thread also assume the same security identity. This is
achieved by using Secur i t yCont ext Hol der . MODE_| NHERI TABLETHREADL OCAL. You can change
the mode from the default Secur i t yCont ext Hol der . MODE_THREADLQOCAL in two ways. The first is
to set a system property, the second is to call a static method on Securi t yCont ext Hol der . Most
applications won't need to change from the default, but if you do, take a look at the JavaDocs for
Securi t yCont ext Hol der to learn more.

Obtaining information about the current user

Inside the Securi t yCont ext Hol der we store details of the principal currently interacting with the
application. Spring Security uses an Aut hent i cat i on object to represent this information. You won't

3.2.0.RC1 Spring Security 31

Spring Security

normally need to create an Aut hent i cat i on object yourself, but it is fairly common for users to query
the Aut hent i cat i on object. You can use the following code block - from anywhere in your application
- to obtain the name of the currently authenticated user, for example:

bj ect principal = SecurityContextHol der. get Context().getAuthentication().getPrincipal();

if (principal instanceof UserDetails) {

String username = ((UserDetail s)principal).getUsername();
} else {

String username = principal.toString();

}

The object returned by the call to get Cont ext () is an instance of the Securi t yCont ext interface.
This is the object that is kept in thread-local storage. As we'll see below, most authentication mechanisms
withing Spring Security return an instance of User Det ai | s as the principal.

The UserDetailsService

Another item to note from the above code fragment is that you can obtain a principal from the
Aut hent i cat i on object. The principal is just an Obj ect . Most of the time this can be cast into a
User Det ai | s object. User Det ai | s is a core interface in Spring Security. It represents a principal,
but in an extensible and application-specific way. Think of User Det ai | s as the adapter between your
own user database and what Spring Security needs inside the Securi t yCont ext Hol der . Being a
representation of something from your own user database, quite often you will cast the User Det ai | s
to the original object that your application provided, so you can call business-specific methods (like
get Emai | (), get Enpl oyeeNunber () and so on).

By now you're probably wondering, so when do | provide a User Det ai | s object? How do | do that? |
thought you said this thing was declarative and | didn't need to write any Java code - what gives? The
short answer is that there is a special interface called User Det ai | sSer vi ce. The only method on this
interface accepts a St ri ng-based username argument and returns a User Det ai | s:

UserDetai | s | oadUser ByUser name(St ri ng usernane) throws User nameNot FoundExcepti on;

This is the most common approach to loading information for a user within Spring Security and you will
see it used throughout the framework whenever information on a user is required.

On successful authentication, User Det ai | s is used to build the Aut henti cati on object that is
stored in the Securi t yCont ext Hol der (more on this below). The good news is that we provide
a number of User Det ai | sSer vi ce implementations, including one that uses an in-memory map
(I nMenor yDaol npl) and another that uses JDBC (JdbcDaol npl). Most users tend to write their
own, though, with their implementations often simply sitting on top of an existing Data Access Object
(DAO) that represents their employees, customers, or other users of the application. Remember
the advantage that whatever your User Det ai | sSer vi ce returns can always be obtained from the
Securi t yCont ext Hol der using the above code fragment.

~ Note

There is often some confusion about User Det ai | sServi ce. It is purely a DAO for user
data and performs no other function other than to supply that data to other components
within the framework. In particular, it does not authenticate the user, which is done

3.2.0.RC1 Spring Security 32

#tech-intro-authentication

Spring Security

by the Aut henti cati onManager. In many cases it makes more sense to implement
Aut hent i cati onPr ovi der directly if you require a custom authentication process.

GrantedAuthority

Besides the principal, another important method provided by Authentication is
get Authorities(). This method provides an array of GrantedAuthority objects. A
Grant edAut hori ty is, not surprisingly, an authority that is granted to the principal. Such authorities
are usually “roles”, such as ROLE_ADM NI STRATOR or ROLE_HR SUPERVI SOR. These roles are later
on configured for web authorization, method authorization and domain object authorization. Other
parts of Spring Security are capable of interpreting these authorities, and expect them to be present.
Grant edAut hor i t y objects are usually loaded by the User Det ai | sSer vi ce.

Usually the Gr ant edAut hor i t y objects are application-wide permissions. They are not specific to a
given domain object. Thus, you wouldn't likely have a G- ant edAut hori t y to represent a permission
to Enpl oyee object number 54, because if there are thousands of such authorities you would quickly
run out of memory (or, at the very least, cause the application to take a long time to authenticate a user).
Of course, Spring Security is expressly designed to handle this common requirement, but you'd instead
use the project's domain object security capabilities for this purpose.

Summary

Just to recap, the major building blocks of Spring Security that we've seen so far are:

» SecurityCont ext Hol der, to provide access to the Securi t yCont ext .

e SecurityContext, to hold the Authentication and possibly request-specific security
information.

e Aut henti cati on, to represent the principal in a Spring Security-specific manner.

* Grant edAut hori ty, to reflect the application-wide permissions granted to a principal.

e UserDetails, to provide the necessary information to build an Authentication object from your
application's DAOs or other source of security data.

e UserDet ai | sServi ce, to create a User Det ai | s when passed in a St ri ng-based username (or
certificate ID or the like).

Now that you've gained an understanding of these repeatedly-used components, let's take a closer look
at the process of authentication.

6.3 Authentication

Spring Security can participate in many different authentication environments. While we recommend
people use Spring Security for authentication and not integrate with existing Container Managed
Authentication, it is nevertheless supported - as is integrating with your own proprietary authentication
system.

What is authentication in Spring Security?
Let's consider a standard authentication scenario that everyone is familiar with.
1. A user is prompted to log in with a username and password.

2. The system (successfully) verifies that the password is correct for the username.

3.2.0.RC1 Spring Security 33

#core-services-authentication-manager
#core-services-authentication-manager

Spring Security

3.

The context information for that user is obtained (their list of roles and so on).

4. A security context is established for the user

5.

The user proceeds, potentially to perform some operation which is potentially protected by an access
control mechanism which checks the required permissions for the operation against the current
security context information.

The first three items constitute the authentication process so we'll take a look at how these take place
within Spring Security.

1.

The wusername and password are obtained and combined into an instance of
User nanePasswor dAut henti cat i onToken (an instance of the Aut henti cati on interface,
which we saw earlier).

. The token is passed to an instance of Aut hent i cati onManager for validation.

. The Aut hent i cat i onManager returns a fully populated Aut hent i cat i on instance on successful

authentication.

. The security context is established by calling

Securi t yCont ext Hol der. get Cont ext (). set Authentication(...), passing in the
returned authentication object.

From that point on, the user is considered to be authenticated. Let's look at some code as an example.

3.2.0.RC1 Spring Security 34

Spring Security

i mport org.springframework. security. authentication.*;

i nport org.springfranmework. security.core.*;

i nport org.springfranmework. security.core.authority.Sinpl eG ant edAut hority;
i mport org.springframework. security. core. context. SecurityContextHol der;

public class AuthenticationExanple {
private static Authenticati onManager am = new Sanpl eAut henti cati onManager () ;

public static void main(String[] args) throws Exception {
Buf f eredReader in = new BufferedReader (new | nput StreanReader (Systemin));

whi l e(true) {

System out. println("Please enter your usernane:");

String name = in.readLine();

System out. println("Please enter your password:");

String password = in.readLine();

try {
Aut henti cati on request = new User namePasswor dAut henti cati onToken(name, password);
Aut hentication result = am aut henti cate(request);
Securi t yCont ext Hol der. get Cont ext (). set Aut henti cati on(result);
br eak;

} catch(Authenticati onException e) {
Systemout. println("Authentication failed: " + e.getMessage());

}

System out. println("Successfully authenticated. Security context contains: " +
Securi t yCont ext Hol der . get Cont ext (). get Aut henti cation());

cl ass Sanpl eAut henti cati onManager i npl ements Aut henti cati onManager {
static final List<GantedAuthority> AUTHORI TIES = new ArraylLi st <G ant edAut hority>();

static {
AUTHORI Tl ES. add(new Si npl eG ant edAut hori ty(" ROLE_USER"));
}

public Authentication authenticate(Authentication auth) throws AuthenticationException {
if (auth.getNane().equal s(auth.getCredentials())) {
return new User nanePasswor dAut henti cati onToken(aut h. get Nane(),
aut h. get Credenti al s(), AUTHORI TIES);
}

t hrow new BadCr edenti al sExcepti on("Bad Credential s");

}

}

Here we have written a little program that asks the user to enter a username and password and performs
the above sequence. The Aut hent i cat i onManager which we've implemented here will authenticate
any user whose username and password are the same. It assigns a single role to every user. The output
from the above will be something like:

3.2.0.RC1 Spring Security 35

Spring Security

Pl ease enter your usernamne:

bob

Pl ease enter your password:

password

Aut hentication failed: Bad Credentials

Pl ease enter your usernane:

bob

Pl ease enter your password:

bob

Successful ly authenticated. Security context contains: \
org. springframework. security. authenticati on. User nanePasswor dAut henti cati onToken@41d0230:
\
Princi pal : bob; Password: [PROTECTED]; \
Aut henticated: true; Details: null; \
Granted Authorities: ROLE USER

Note that you don't normally need to write any code like this. The process will normally occur internally,
in a web authentication filter for example. We've just included the code here to show that the question
of what actually constitutes authentication in Spring Security has quite a simple answer. A user is
authenticated when the Securit yCont ext Hol der contains a fully populated Aut henti cati on
object.

Setting the SecurityContextHolder Contents Directly

In fact, Spring Security doesnt mind how you put the Authentication object
inside the SecurityContextHol der. The only critical requirement is that the
Securi t yCont ext Hol der contains an Aut henti cati on which represents a principal before the
Abst ract Securityl nterceptor (which we'll see more about later) needs to authorize a user
operation.

You can (and many users do) write their own filters or MVC controllers to provide interoperability
with authentication systems that are not based on Spring Security. For example, you might be using
Container-Managed Authentication which makes the current user available from a ThreadLocal or JNDI
location. Or you might work for a company that has a legacy proprietary authentication system, which
is a corporate "standard" over which you have little control. In situations like this it's quite easy to
get Spring Security to work, and still provide authorization capabilities. All you need to do is write a
filter (or equivalent) that reads the third-party user information from a location, build a Spring Security-
specific Aut hent i cat i on object, and put itinto the Secur i t yCont ext Hol der . In this case you also
need to think about things which are normally taken care of automatically by the built-in authentication
infrastructure. For example, you might need to pre-emptively create an HTTP session to cache the
context between requests, before you write the response to the client®.

If you're wondering how the Aut hent i cat i onManager is implemented in a real world example, we'll
look at that in the core services chapter.

6.4 Authentication in a Web Application

Now let's explore the situation where you are using Spring Security in a web application (without
web. xm security enabled). How is a user authenticated and the security context established?

Consider a typical web application's authentication process:

Ytisn't possible to create a session once the response has been committed.

3.2.0.RC1 Spring Security 36

tech-intro-sec-context-persistence
tech-intro-sec-context-persistence
#core-services-authentication-manager

Spring Security

1. You visit the home page, and click on a link.
2. Arequest goes to the server, and the server decides that you've asked for a protected resource.

3. As you're not presently authenticated, the server sends back a response indicating that you must
authenticate. The response will either be an HTTP response code, or a redirect to a particular web

page.

4. Depending on the authentication mechanism, your browser will either redirect to the specific web
page so that you can fill out the form, or the browser will somehow retrieve your identity (via a BASIC
authentication dialogue box, a cookie, a X.509 certificate etc.).

5. The browser will send back a response to the server. This will either be an HTTP POST containing
the contents of the form that you filled out, or an HTTP header containing your authentication details.

6. Next the server will decide whether or not the presented credentials are valid. If they're valid, the
next step will happen. If they're invalid, usually your browser will be asked to try again (so you return
to step two above).

7. The original request that you made to cause the authentication process will be retried. Hopefully
you've authenticated with sufficient granted authorities to access the protected resource. If you have
sufficient access, the request will be successful. Otherwise, you'll receive back an HTTP error code
403, which means "forbidden".

Spring Security has distinct classes responsible for most of the steps described above. The
main participants (in the order that they are used) are the ExceptionTransl ationFilter, an
Aut hent i cati onEnt r yPoi nt and an “authentication mechanism”, which is responsible for calling
the Aut hent i cati onManager which we saw in the previous section.

ExceptionTranslationFilter

ExceptionTransl ationFilter is a Spring Security filter that has responsibility for detecting
any Spring Security exceptions that are thrown. Such exceptions will generally be thrown by an
Abst ract Securi tyl nterceptor, which is the main provider of authorization services. We will
discuss Abst ract Securi t yl nt er cept or in the next section, but for now we just need to know that it
produces Java exceptions and knows nothing about HTTP or how to go about authenticating a principal.
Instead the Excepti onTransl ati onFi | t er offers this service, with specific responsibility for either
returning error code 403 (if the principal has been authenticated and therefore simply lacks sufficient
access - as per step seven above), or launching an Aut henti cati onEnt r yPoi nt (if the principal
has not been authenticated and therefore we need to go commence step three).

AuthenticationEntryPoint

The Aut hent i cati onEnt r yPoi nt is responsible for step three in the above list. As you can imagine,
each web application will have a default authentication strategy (well, this can be configured like nearly
everything else in Spring Security, but let's keep it simple for now). Each major authentication system
will have its own Aut hent i cat i onEnt r yPoi nt implementation, which typically performs one of the
actions described in step 3.

Authentication Mechanism

Once your browser submits your authentication credentials (either as an HTTP form post or HTTP
header) there needs to be something on the server that “collects” these authentication details. By now

3.2.0.RC1 Spring Security 37

Spring Security

we're at step six in the above list. In Spring Security we have a special name for the function of collecting
authentication details from a user agent (usually a web browser), referring to it as the “authentication
mechanism”. Examples are form-base login and Basic authentication. Once the authentication details
have been collected from the user agent, an Aut henti cati on “request” object is built and then
presented to the Aut hent i cat i onManager .

After the authentication mechanism receives back the fully-populated Aut hent i cat i on object, it will
deem the request valid, put the Aut hent i cati on into the Securi t yCont ext Hol der, and cause the
original request to be retried (step seven above). If, on the other hand, the Aut hent i cat i onManager
rejected the request, the authentication mechanism will ask the user agent to retry (step two above).

Storing the Securi t yCont ext between requests

Depending on the type of application, there may need to be a strategy in place to store the security
context between user operations. In a typical web application, a user logs in once and is subsequently
identified by their session Id. The server caches the principal information for the duration session. In
Spring Security, the responsibility for storing the Securi t yCont ext between requests falls to the
Securi t yCont ext Per si st enceFi | t er, which by default stores the context as an Ht t pSessi on
attribute between HTTP requests. It restores the context to the Securi t yCont ext Hol der for each
request and, crucially, clears the SecurityCont ext Hol der when the request completes. You
shouldn't interact directly with the Ht t pSessi on for security purposes. There is simply no justification
for doing so - always use the Secur i t yCont ext Hol der instead.

Many other types of application (for example, a stateless RESTful web service) do not use
HTTP sessions and will re-authenticate on every request. However, it is still important that
the SecurityCont ext Persi stenceFilter is included in the chain to make sure that the
Securi t yCont ext Hol der is cleared after each request.

~ Note

In an application which receives concurrent requests in a single session, the same
Securi t yCont ext instance will be shared between threads. Even though a Thr eadLocal
is being used, it is the same instance that is retrieved from the HttpSessi on for
each thread. This has implications if you wish to temporarily change the context under
which a thread is running. If you just use SecurityCont ext Hol der. get Cont ext (),
and call set Aut henti cation(anAut hentication) on the returned context object,
then the Authentication object wil change in all concurrent threads which
share the same SecurityContext instance. You can customize the behaviour of
Securi tyCont ext Persi stenceFil ter to create a completely new Securit yCont ext
for each request, preventing changes in one thread from affecting another. Alternatively you
can create a new instance just at the point where you temporarily change the context. The
method Secur i t yCont ext Hol der. cr eat eEnpt yCont ext () always returns a new context
instance.

6.5 Access-Control (Authorization) in Spring Security

The main interface responsible for making access-control decisions in Spring Security is the
AccessDeci si onManager. It has a deci de method which takes an Aut henti cati on object
representing the principal requesting access, a “secure object” (see below) and a list of security
metadata attributes which apply for the object (such as a list of roles which are required for access to
be granted).

3.2.0.RC1 Spring Security 38

Spring Security

Security and AOP Advice

If you're familiar with AOP, you'd be aware there are different types of advice available: before, after,
throws and around. An around advice is very useful, because an advisor can elect whether or not to
proceed with a method invocation, whether or not to modify the response, and whether or not to throw an
exception. Spring Security provides an around advice for method invocations as well as web requests.
We achieve an around advice for method invocations using Spring's standard AOP support and we
achieve an around advice for web requests using a standard Filter.

For those not familiar with AOP, the key point to understand is that Spring Security can help you protect
method invocations as well as web requests. Most people are interested in securing method invocations
on their services layer. This is because the services layer is where most business logic resides in
current-generation J2EE applications. If you just need to secure method invocations in the services
layer, Spring's standard AOP will be adequate. If you need to secure domain objects directly, you will
likely find that AspectJ is worth considering.

You can elect to perform method authorization using AspectJ or Spring AOP, or you can elect to
perform web request authorization using filters. You can use zero, one, two or three of these approaches
together. The mainstream usage pattern is to perform some web request authorization, coupled with
some Spring AOP method invocation authorization on the services layer.

Secure Objects and the Abstract Securityl nterceptor

So what is a “secure object” anyway? Spring Security uses the term to refer to any object that can
have security (such as an authorization decision) applied to it. The most common examples are method
invocations and web requests.

Each supported secure object type has its own interceptor class, which is a subclass of
Abst ract Securi tyl nt er cept or. Importantly, by the time the Abst r act Securi tyl nterceptor
is called, the Securi t yCont ext Hol der will contain a valid Aut henti cati on if the principal has
been authenticated.

Abstract Securityl nterceptor provides a consistent workflow for handling secure object
requests, typically:

1. Look up the “configuration attributes” associated with the present request

2. Submitting the secure object, current Aut hentication and configuration attributes to the
AccessDeci si onManager for an authorization decision

3. Optionally change the Aut hent i cat i on under which the invocation takes place
4. Allow the secure object invocation to proceed (assuming access was granted)

5. Call the Afterlnvocati onManager if configured, once the invocation has returned. If the
invocation raised an exception, the Af t er | nvocat i onManager will not be invoked.

What are Configuration Attributes?

A “configuration attribute” can be thought of as a String that has special meaning to the
classes used by Abstract Securitylnterceptor. They are represented by the interface
Confi gAttri but e within the framework. They may be simple role names or have more complex

3.2.0.RC1 Spring Security 39

Spring Security

meaning, depending on the how sophisticated the AccessDeci si onManager implementation is. The
Abst ract Securityl nterceptor is configured with a Securi t yMet adat aSour ce which it uses
to look up the attributes for a secure object. Usually this configuration will be hidden from the user.
Configuration attributes will be entered as annotations on secured methods or as access attributes
on secured URLs. For example, when we saw something like <i ntercept-url pattern="/
secure/**' access=' ROLE_A, ROLE B' /> in the namespace introduction, this is saying that the
configuration attributes ROLE_A and ROLE_B apply to web requests matching the given pattern. In
practice, with the default AccessDeci si onManager configuration, this means that anyone who has a
G ant edAut hor i t y matching either of these two attributes will be allowed access. Strictly speaking
though, they are just attributes and the interpretation is dependent on the AccessDeci si onManager
implementation. The use of the prefix ROLE_ is a marker to indicate that these attributes are roles
and should be consumed by Spring Security's Rol eVot er . This is only relevant when a voter-based
AccessDeci si onManager is in use. We'll see how the AccessDeci si onManager is implemented
in the authorization chapter.

RunAsManager

Assuming AccessDeci si onManager decides to allow the request, the
Abst ract Securityl nterceptor wil normally just proceed with the request. Having said that,
on rare occasions users may want to replace the Aut henti cati on inside the Securit yCont ext
with a different Aut henti cati on, which is handled by the AccessDeci si onManager calling a
RunAsManager . This might be useful in reasonably unusual situations, such as if a services layer
method needs to call a remote system and present a different identity. Because Spring Security
automatically propagates security identity from one server to another (assuming you're using a properly-
configured RMI or Httplnvoker remoting protocol client), this may be useful.

AfterInvocationManager

Following the secure object invocation proceeding and then returning - which may mean a method
invocation completing or a filter chain proceeding - the Abst r act Securi tyl nt er cept or gets one
final chance to handle the invocation. At this stage the Abst r act Securi t yl nt er cept or is interested
in possibly modifying the return object. We might want this to happen because an authorization
decision couldn't be made “on the way in” to a secure object invocation. Being highly pluggable,
Abst ract Securityl nterceptor will pass control to an Aft erl nvocat i onManager to actually
modify the object if needed. This class can even entirely replace the object, or throw an exception, or not
change it in any way as it chooses. The after-invocation checks will only be executed if the invocation
is successful. If an exception occurs, the additional checks will be skipped.

Abst ract Securitylnterceptor and its related objects are shown in Figure 6.1, “Security
interceptors and the “secure object” model”.

3.2.0.RC1 Spring Security 40

#authz-arch

Spring Security

AuthenticationManager

AccessDecisionManager SecurityMetadataSource

RunAsManager |, - AbstractSecuritylnterceptor — | AfterinvocationManager

Aspect)Securitylnterceptor MethodSecuritylnterceptor
secires FilterSecuritylnterceptor Secqres
SED*I’E‘E
JoinPoint MethodInvocation

Filterlnvocation

Figure 6.1. Security interceptors and the “secure object” model
Extending the Secure Object Model

Only developers contemplating an entirely new way of intercepting and authorizing requests would need
to use secure objects directly. For example, it would be possible to build a new secure object to secure
calls to a messaging system. Anything that requires security and also provides a way of intercepting
a call (like the AOP around advice semantics) is capable of being made into a secure object. Having
said that, most Spring applications will simply use the three currently supported secure object types
(AOP Alliance Met hodl nvocat i on, AspectJ Joi nPoi nt and webrequestFi | t er | nvocat i on) with
complete transparency.

6.6 Localization

Spring Security supports localization of exception messages that end users are likely to see. If your
application is designed for English-speaking users, you don't need to do anything as by default all
Security Security messages are in English. If you need to support other locales, everything you need
to know is contained in this section.

All exception messages can be localized, including messages related to authentication failures and
access being denied (authorization failures). Exceptions and logging messages that are focused on
developers or system deployers (including incorrect attributes, interface contract violations, using
incorrect constructors, startup time validation, debug-level logging) are not localized and instead are
hard-coded in English within Spring Security's code.

Shipping in the Spring-security-core-xx.jar you will find an
org. springframewor k. security package that in turn contains a messages. properti es file,
as well as localized versions for some common languages. This should be referred to by your

3.2.0.RC1 Spring Security 41

Spring Security

Appl i cati onCont ext, as Spring Security classes implement Spring's MessageSour ceAwar e
interface and expect the message resolver to be dependency injected at application context startup time.
Usually all you need to do is register a bean inside your application context to refer to the messages.
An example is shown below:

<bean i d="nmessageSour ce"
cl ass="org. spri ngframewor k. cont ext. support . Rel oadabl eResour ceBundl eMessageSour ce" >
<property nane="basenanme" val ue="cl asspat h: or g/ spri ngf ranewor k/ security/ messages"/ >
</ bean>

The nmessages. properti es is named in accordance with standard resource bundles and represents
the default language supported by Spring Security messages. This default file is in English.

If you wish to customize the messages. properti es file, or support other languages, you should copy
the file, rename it accordingly, and register it inside the above bean definition. There are not a large
number of message keys inside this file, so localization should not be considered a major initiative. If
you do perform localization of this file, please consider sharing your work with the community by logging
a JIRA task and attaching your appropriately-named localized version of nessages. properti es.

Spring Security relies on Spring's localization support in order to actually lookup the appropriate
message. In order for this to work, you have to make sure that the locale from the incoming
request is stored in Spring's or g. spri ngf ramewor k. cont ext . i 18n. Local eCont ext Hol der .
Spring MVC's Di spat cher Ser vl et does this for your application automatically, but since Spring
Security's filters are invoked before this, the Local eCont ext Hol der needs to be set up to contain
the correct Local e before the filters are called. You can either do this in a filter yourself (which must
come before the Spring Security filters in web. xm) or you can use Spring's Request Context Fi |l t er.
Please refer to the Spring Framework documentation for further details on using localization with Spring.

The “contacts” sample application is set up to use localized messages.

3.2.0.RC1 Spring Security 42

Spring Security

7. Core Services

Now that we have a high-level overview of the Spring Security architecture and its core classes,
let's take a closer look at one or two of the core interfaces and their implementations, in particular
the Aut hent i cat i onManager , User Det ai | sSer vi ce and the AccessDeci si onManager . These
crop up regularly throughout the remainder of this document so it's important you know how they are
configured and how they operate.

7.1 The Aut hent i cat i onManager, Provi der Manager and
Aut hent i cati onProvi ders

The Aut hent i cat i onManager is just an interface, so the implementation can be anything we choose,
but how does it work in practice? What if we need to check multiple authentication databases or a
combination of different authentication services such as a database and an LDAP server?

The default implementation in Spring Security is called Pr ovi der Manager and rather than handling
the authentication request itself, it delegates to a list of configured Aut henti cati onProvi ders,
each of which is queried in turn to see if it can perform the authentication. Each provider will either
throw an exception or return a fully populated Aut hent i cat i on object. Remember our good friends,
User Det ai | s and User Det ai | sSer vi ce? If not, head back to the previous chapter and refresh your
memory. The most common approach to verifying an authentication request is to load the corresponding
User Det ai | s and check the loaded password against the one that has been entered by the user. This
is the approach used by the DaoAut hent i cati onPr ovi der (see below). The loaded User Det ai | s
object - and particularly the Gr ant edAut hori tys it contains - will be used when building the fully
populated Aut hent i cat i on object which is returned from a successful authentication and stored in
the Securi t yCont ext .

If you are using the namespace, an instance of Pr ovi der Manager is created and maintained internally,
and you add providers to it by using the namespace authentication provider elements (see the
namespace chapter). In this case, you should not declare a Pr ovi der Manager bean in your application
context. However, if you are not using the namespace then you would declare it like so:

<bean i d="aut henti cati onManager"
cl ass="org. springframewor k. security.authentication. Provi der Manager" >
<property nanme="providers">
<list>
<ref |ocal ="daoAut henti cati onProvider"/>
<ref | ocal ="anonynousAut henti cati onProvi der"/>
<ref | ocal ="| dapAut henti cati onProvi der"/>
</[list>
</ property>
</ bean>

In the above example we have three providers. They are tried in the order shown (which is implied
by the use of a List), with each provider able to attempt authentication, or skip authentication
by simply returning nul | . If all implementations return null, the Provi der Manager will throw a
Provi der Not FoundExcept i on. If you're interested in learning more about chaining providers, please
refer to the Pr ovi der Manager JavaDocs.

Authentication mechanisms such as a web form-login processing filter are injected with a reference
to the Provi der Manager and will call it to handle their authentication requests. The providers you

3.2.0.RC1 Spring Security 43

#ns-auth-manager
#ns-auth-manager

Spring Security

require will sometimes be interchangeable with the authentication mechanisms, while at other times they
will depend on a specific authentication mechanism. For example, DaoAut hent i cati onPr ovi der
and LdapAut henti cati onProvi der are compatible with any mechanism which submits a simple
username/password authentication request and so will work with form-based logins or HTTP Basic
authentication. On the other hand, some authentication mechanisms create an authentication
request object which can only be interpreted by a single type of Aut henti cati onProvi der.
An example of this would be JA-SIG CAS, which uses the notion of a service ticket and so
can therefore only be authenticated by a CasAut henti cati onProvi der. You needn't be too
concerned about this, because if you forget to register a suitable provider, you'll simply receive a
Pr ovi der Not FoundExcept i on when an attempt to authenticate is made.

Erasing Credentials on Successful Authentication

By default (from Spring Security 3.1 onwards) the Provi der Manager will attempt to clear any
sensitive credentials information from the Aut hent i cat i on object which is returned by a successful
authentication request. This prevents information like passwords being retained longer than necessary.

This may cause issues when you are using a cache of user objects, for example, to improve performance
in a stateless application. If the Aut hent i cat i on contains a reference to an object in the cache (such
as a User Det ai | s instance) and this has its credentials removed, then it will no longer be possible
to authenticate against the cached value. You need to take this into account if you are using a cache.
An obvious solution is to make a copy of the object first, either in the cache implementation or in the
Aut hent i cati onProvi der which creates the returned Aut hent i cat i on object. Alternatively, you
can disable the er aseCr edent i al sSAft er Aut henti cati on property on Provi der Manager . See
the Javadoc for more information.

DaoAut henti cati onProvi der

The simplest Authenticati onProvider implemented by Spring Security is
DaoAut henti cat i onProvi der, which is also one of the earliest supported by the framework. It
leverages a User Det ai | sServi ce (as a DAO) in order to lookup the username, password and
Grant edAut hori tys. It authenticates the user simply by comparing the password submitted in a
User nanePasswor dAut hent i cat i onToken against the one loaded by the User Det ai | sSer vi ce.
Configuring the provider is quite simple:

<bean i d="daoAut henti cati onProvi der"
cl ass="org. springframewor k. security.authentication. dao. DaoAut henti cati onProvi der">
<property nane="user Det ai | sServi ce" ref="i nMenoryDaol npl "/ >
<property nane="passwor dEncoder" ref="passwordEncoder"/>
</ bean>

The Passwor dEncoder is optional. A Passwor dEncoder provides encoding and decoding
of passwords presented in the UserDetails object that is returned from the configured
User Det ai | sSer vi ce. This will be discussed in more detail below.

7.2 User Det ai | sServi ce Implementations

As mentioned in the earlier in this reference guide, most authentication providers take advantage
of the UserDetails and UserDetail sService interfaces. Recall that the contract for
User Det ai | sSer vi ce is a single method:

3.2.0.RC1 Spring Security 44

#core-services-password-encoding

Spring Security

User Detai | s | oadUser ByUser nane(String usernane) throws UsernaneNot FoundExcepti on;

The returned User Det ai | s is an interface that provides getters that guarantee non-null provision of
authentication information such as the username, password, granted authorities and whether the user
account is enabled or disabled. Most authentication providers will use a User Det ai | sSer vi ce, even
if the username and password are not actually used as part of the authentication decision. They may
use the returned User Det ai | s object just for its G ant edAut hor ity information, because some
other system (like LDAP or X.509 or CAS etc) has undertaken the responsibility of actually validating
the credentials.

Given User Det ai | sServi ce is so simple to implement, it should be easy for users to retrieve
authentication information using a persistence strategy of their choice. Having said that, Spring Security
does include a couple of useful base implementations, which we'll look at below.

In-Memory Authentication

Is easy to use create a custom User Det ai | sSer vi ce implementation that extracts information from a
persistence engine of choice, but many applications do not require such complexity. This is particularly
true if you're building a prototype application or just starting integrating Spring Security, when you don't
really want to spend time configuring databases or writing User Det ai | sSer vi ce implementations.
For this sort of situation, a simple option is to use the user-servi ce element from the security
namespace:

<user-service id="userDetailsService">
<user name="jim" password="jim spassword" authorities="ROLE USER ROLE_ADM N' />
<user name="bob" password="bobspassword" authorities="ROLE_USER' />

</ user-servi ce>

This also supports the use of an external properties file:

<user-service id="userDetail sService" properties="users.properties"/>

The properties file should contain entries in the form

user name=passwor d, gr ant edAut hori ty[, grant edAut hority] [, enabl ed| di sabl ed]

For example

jim=jimspassword, ROLE_USER, ROLE_ADM N, enabl ed
bob=bobspasswor d, ROLE_USER, enabl ed

JdbcDaol npl

Spring Security also includes a User Det ai | sSer vi ce that can obtain authentication information from
a JDBC data source. Internally Spring JDBC is used, so it avoids the complexity of a fully-featured object
relational mapper (ORM) just to store user details. If your application does use an ORM tool, you might
prefer to write a custom User Det ai | sSer vi ce to reuse the mapping files you've probably already
created. Returning to JdbcDaol npl , an example configuration is shown below:

3.2.0.RC1 Spring Security 45

#ns-minimal

Spring Security

<bean i d="dat aSource" cl ass="org.springframework.jdbc. datasource. Dri ver Manager Dat aSour ce" >
<property nane="driverC assNane" val ue="org. hsql db. jdbcDriver"/>
<property name="url" val ue="j dbc: hsql db: hsql : //1 ocal host: 9001"/ >
<property name="usernanme" val ue="sa"/>
<property nane="password" val ue=""/>
</ bean>

<bean i d="user Det ai | sSer vi ce"
cl ass="org. springframework. security.core.userdetails.jdbc.JdbcDaol npl ">
<property nanme="dat aSource" ref="dataSource"/>
</ bean>

You can use different relational database management systems by modifying the
Dri ver Manager Dat aSour ce shown above. You can also use a global data source obtained from
JNDI, as with any other Spring configuration.

Authority Groups

By default, JdbcDaol npl loads the authorities for a single user with the assumption that the authorities
are mapped directly to users (see the database schema appendix). An alternative approach is to partition
the authorities into groups and assign groups to the user. Some people prefer this approach as a means
of administering user rights. See the JdbcDaol npl Javadoc for more information on how to enable the
use of group authorities. The group schema is also included in the appendix.

7.3 Password Encoding

Spring Security's Passwor dEncoder interface is used to support the use of passwords which
are encoded in some way in persistent storage. You should never store passwords in plain text.
Always use a one-way password hashing algorithm such as bcrypt which uses a built-in salt
value which is different for each stored password. Do not use a plain hash function such as
MD5 or SHA, or even a salted version. Bcrypt is deliberately designed to be slow and to hinder
offline password cracking, whereas standard hash algorithms are fast and can easily be used
to test thousands of passwords in parallel on custom hardware. You might think this doesn't
apply to you since your password database is secure and offline attacks aren't a risk. If so, do
some research and read up on all the high-profile sites which have been compromised in this
way and have been pilloried for storing their passwords insecurely. It's best to be on the safe
side. Using or g. spri ngf ramewor k. security. crypto. bcrypt. BCrypt Passwor dEncoder " is
a good choice for security. There are also compatible implementations in other common programming
languages so it a good choice for interoperability too.

If you are using a legacy system which already has hashed passwords, then you will need to
use an encoder which matches your current algorithm, at least until you can migrate your users
to a more secure scheme (usually this will involve asking the user to set a new password, since
hashes are irreversible). Spring Security has a package containing legacy password encoding
implementation, namely, or g. spri ngf ramewor k. security. aut henti cati on. encodi ng. The
DaoAut henti cat i onProvi der can be injected with either the new or legacy Passwor dEncoder

types.

What is a hash?

Password hashing is not unique to Spring Security but is a common source of confusion for users who
are not familiar with the concept. A hash (or digest) algorithm is a one-way function which produces a

3.2.0.RC1 Spring Security 46

#appendix-schema

Spring Security

piece of fixed-length output data (the hash) from some input data, such as a password. As an example,
the MD5 hash of the string “password” (in hexadecimal) is

5f 4dcc3b5aa765d61d8327deb882cf 99

A hash is “one-way” in the sense that it is very difficult (effectively impossible) to obtain the original
input given the hash value, or indeed any possible input which would produce that hash value. This
property makes hash values very useful for authentication purposes. They can be stored in your user
database as an alternative to plaintext passwords and even if the values are compromised they do not
immediately reveal a password which can be used to login. Note that this also means you have no way
of recovering the password once it is encoded.

Adding Salt to a Hash

One potential problem with the use of password hashes that it is relatively easy to get round the one-way
property of the hash if a common word is used for the input. People tend to choose similar passwords
and huge dictionaries of these from previously hacked sites are available online. For example, if you
search for the hash value 5f 4dcc3b5aa765d61d8327deb882cf 99 using google, you will quickly
find the original word “password”. In a similar way, an attacker can build a dictionary of hashes from
a standard word list and use this to lookup the original password. One way to help prevent this is to
have a suitably strong password policy to try to prevent common words from being used. Another is to
use a “salt” when calculating the hashes. This is an additional string of known data for each user which
is combined with the password before calculating the hash. Ideally the data should be as random as
possible, but in practice any salt value is usually preferable to none. Using a salt means that an attacker
has to build a separate dictionary of hashes for each salt value, making the attack more complicated
(but not impossible).

Bcrypt automatically generates a random salt value for each password when it is encoded, and stores
it in the berypt string in a standard format.

~ Note

The legacy approach to handling salt was to inject a SaltSource into the
DaoAut henti cati onProvi der, which would obtain a salt value for a particular user and pass
it to the Passwor dEncoder . Using bcrypt means you don't have worry about the details of salt
handling (such as where the the value is stored), as it is all done internally. So we'd strongly
recommend you use bcrypt unless you already have a system in place which stores the salt
separately.

Hashing and Authentication

When an authentication provider (such as Spring Security's DaoAut hent i cati onPr ovi der) needs
to check the password in a submitted authentication request against the known value for a user, and
the stored password is encoded in some way, then the submitted value must be encoded using exactly
the same algorithm. It's up to you to check that these are compatible as Spring Security has no control
over the persistent values. If you add password hashing to your authentication configuration in Spring
Security, and your database contains plaintext passwords, then there is no way authentication can
succeed. Even if you are aware that your database is using MD5 to encode the passwords, for example,
and your application is configured to use Spring Security's Mi5Passwor dEncoder , there are still things
that can go wrong. The database may have the passwords encoded in Base 64, for example while the
encoder is using hexadecimal strings (the default). Alternatively your database may be using upper-case

3.2.0.RC1 Spring Security a7

Spring Security

while the output from the encoder is lower-case. Make sure you write a test to check the output from your
configured password encoder with a known password and salt combination and check that it matches
the database value before going further and attempting to authenticate through your application. Using
a standard like bcrypt will avoid these issues.

If you want to generate encoded passwords directly in Java for storage in your user database, then you
can use the encode method on the Passwor dEncoder .

3.2.0.RC1 Spring Security 48

Part IlIl. Web Application Security

Most Spring Security users will be using the framework in applications which make user of HTTP
and the Servlet API. In this part, we'll take a look at how Spring Security provides authentication
and access-control features for the web layer of an application. We'll look behind the facade of the
namespace and see which classes and interfaces are actually assembled to provide web-layer security.
In some situations it is necessary to use traditional bean configuration to provide full control over the
configuration, so we'll also see how to configure these classes directly without the namespace.

Spring Security

8. The Security Filter Chain

Spring Security's web infrastructure is based entirely on standard servlet filters. It doesn't use servlets
or any other servlet-based frameworks (such as Spring MVC) internally, so it has no strong links to
any particular web technology. It deals in Ht t pSer vl et Request sand Ht t pSer vl et Responses and
doesn't care whether the requests come from a browser, a web service client, an Ht t pl nvoker or an
AJAX application.

Spring Security maintains a filter chain internally where each of the filters has a particular responsibility
and filters are added or removed from the configuration depending on which services are required. The
ordering of the filters is important as there are dependencies between them. If you have been using
namespace configuration, then the filters are automatically configured for you and you don't have to
define any Spring beans explicitly but here may be times when you want full control over the security
filter chain, either because you are using features which aren't supported in the namespace, or you are
using your own customized versions of classes.

8.1 Del egati ngFi | t er Proxy

When using servlet filters, you obviously need to declare them in your web. xni , or they will be ignored
by the servlet container. In Spring Security, the filter classes are also Spring beans defined in the
application context and thus able to take advantage of Spring's rich dependency-injection facilities and
lifecycle interfaces. Spring's Del egat i ngFi | t er Pr oxy provides the link between web. xm and the
application context.

When using Del egat i ngFi | t er Pr oxy, you will see something like this in the web. xmi file:

<filter>
<filter-name>nyFilter</filter-name>
<filter-class>org.springfranmework.web.filter.Del egatingFilterProxy</filter-class>
</[filter>

<filter-nmppi ng>
<filter-name>nyFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mappi ng>

Notice that the filter is actually a Del egati ngFi |l t er Proxy, and not the class that will actually
implement the logic of the filter. What Del egati ngFi | t er Proxy does is delegate the Filter's
methods through to a bean which is obtained from the Spring application context. This enables the bean
to benefit from the Spring web application context lifecycle support and configuration flexibility. The bean
must implement j avax. servl et. Fi | t er and it must have the same name as thatinthefilter-
name element. Read the Javadoc for Del egat i ngFi | t er Pr oxy for more information

8.2 Fi | t er Chai nPr oxy

Spring Security's web infrastructure should only be used by delegating to an instance of
Fi | t er Chai nProxy. The security filters should not be used by themselves. In theory you could
declare each Spring Security filter bean that you require in your application context file and add a
corresponding Del egati ngFi | t er Proxy entry to web. xm for each filter, making sure that they
are ordered correctly, but this would be cumbersome and would clutter up the web. xm file quickly
if you have a lot of filters. Fi | t er Chai nProxy lets us add a single entry to web. xm and deal

3.2.0.RC1 Spring Security 50

#ns-config

Spring Security

entirely with the application context file for managing our web security beans. It is wired using a
Del egati ngFi | t er Pr oxy, just like in the example above, but withthe fi | t er - nane set to the bean
name “filterChainProxy”. The filter chain is then declared in the application context with the same bean
name. Here's an example:

<bean id="filterChai nProxy" class="org.springfranmework.security.web. FilterChai nProxy">
<const ruct or - ar g>
<list>
<sec:filter-chain pattern="/restful/**" filters="
securityCont ext Persi st enceFi | t er Wt hASCFal se,
basi cAut henti cationFilter,
exceptionTransl ationFilter,
filterSecuritylnterceptor" />
<sec:filter-chain pattern="/**" filters="
securityCont ext Persi st enceFi | t er Wt hASCTr ue,
formLoginFilter,
exceptionTransl ationFilter,
filterSecuritylnterceptor" />
</[list>
</ const ructor - ar g>
</ bean>

The namespace element fil t er - chai n is used for convenience to set up the security filter chain(s)
which are required within the application. 2 0t maps a particular URL pattern to a list of filters built
up from the bean names specified in the fil t ers element, and combines them in a bean of type
Securi tyFilter Chai n. The patt er n attribute takes an Ant Paths and the most specific URIs should
appear first 3. At runtime the Fi | t er Chai nPr oxy will locate the first URI pattern that matches the
current web request and the list of filter beans specified by the f i | t er s attribute will be applied to that
request. The filters will be invoked in the order they are defined, so you have complete control over the
filter chain which is applied to a particular URL.

You may have noticed we have declared two SecurityContextPersistenceFilters
in the filter chain (ASC is short for allowSessionCreation, a property of
Securi t yCont ext Per si st enceFi |l ter). As web services will never present a j sessi oni d on
future requests, creating Ht t pSessi ons for such user agents would be wasteful. If you had a high-
volume application which required maximum scalability, we recommend you use the approach shown
above. For smaller applications, using a single Securi t yCont ext Per si st enceFi | t er (with its
default al | owSessi onCr eati on ast r ue) would likely be sufficient.

Note that Fi | t er Chai nProxy does not invoke standard filter lifecycle methods on the filters it
is configured with. We recommend you use Spring's application context lifecycle interfaces as an
alternative, just as you would for any other Spring bean.

When we looked at how to set up web security using namespace configuration, we used a
Del egati ngFi | t er Pr oxy with the name “springSecurityFilterChain”. You should now be able to see
that this is the name of the Fi | t er Chai nPr oxy which is created by the namespace.

Note that you'll need to include the security namespace in your application context XML file in order to use this syntax. The older
syntax which used a fi | t er - chai n- map is still supported, but is deprecated in favour of the constructor argument injection.
3Instead of a path pattern, the r equest - mat cher - r ef attribute can be used to specify a Request Mat cher instance for more
powerful matching

3.2.0.RC1 Spring Security 51

#ns-web-xml

Spring Security

Bypassing the Filter Chain

You can use the attribute fi | ters = "none" as an alternative to supplying a filter bean list. This will
omit the request pattern from the security filter chain entirely. Note that anything matching this path will
then have no authentication or authorization services applied and will be freely accessible. If you want
to make use of the contents of the Securi t yCont ext contents during a request, then it must have
passed through the security filter chain. Otherwise the Secur i t yCont ext Hol der will not have been
populated and the contents will be null.

8.3 Filter Ordering

The order that filters are defined in the chain is very important. Irrespective of which filters you are
actually using, the order should be as follows:

1. Channel Processi ngFi | t er, because it might need to redirect to a different protocol

2. SecurityCont ext PersistenceFilter, so a SecurityContext can be set up in the
Securi tyCont ext Hol der at the beginning of a web request, and any changes to the
Securi t yCont ext can be copied to the Ht t pSessi on when the web request ends (ready for use
with the next web request)

3. Concurrent Sessi onFi | t er, because it uses the Securi t yCont ext Hol der functionality and
needs to update the Sessi onRegi st ry to reflect ongoing requests from the principal

4. Authentication processing mechanisms - User nanmePasswor dAut henticationFilter,
CasAut henticationFilter, BasicAuthenticationFilter etc - so that the
Securi t yCont ext Hol der can be modified to contain a valid Aut hent i cat i on request token

5. The Securit yCont ext Hol der Awar eRequest Fi | ter, if you are using it to install a Spring
Security aware Ht t pSer vl et Request W apper into your servlet container

6. The JaasApilntegrationFilter, if a JaasAuthenticationToken is in the
Securi t yCont ext Hol der this will process the FilterChain as the Subject in the
JaasAut henti cati onToken

7. Renenber MeAut hent i cati onFi | t er, so that if no earlier authentication processing mechanism
updated the Securi t yCont ext Hol der, and the request presents a cookie that enables remember-
me services to take place, a suitable remembered Aut hent i cat i on object will be put there

8. AnonynopusAut henti cati onFi | t er, so that if no earlier authentication processing mechanism
updated the Securi t yCont ext Hol der, an anonymous Aut hent i cat i on object will be put there

9. Excepti onTransl ati onFi | t er, to catch any Spring Security exceptions so that either an HTTP
error response can be returned or an appropriate Aut hent i cati onEnt r yPoi nt can be launched

10Fi I ter Securi tyl nterceptor, to protect web URIs and raise exceptions when access is denied

8.4 Request Matching and Ht t pFi r ewal |

Spring Security has several areas where patterns you have defined are tested against incoming
requests in order to decide how the request should be handled. This occurs when the
Fi | t er Chai nPr oxy decides which filter chain a request should be passed through and also when the
FilterSecurityl nterceptor decides which security constraints apply to a request. It's important

3.2.0.RC1 Spring Security 52

Spring Security

to understand what the mechanism is and what URL value is used when testing against the patterns
that you define.

The Servlet Specification defines several properties for the HttpServl et Request which are
accessible via getter methods, and which we might want to match against. These are the cont ext Pat h,
servl et Pat h, pat hl nf o and queryStri ng. Spring Security is only interested in securing paths
within the application, so the cont ext Pat h is ignored. Unfortunately, the servlet spec does not
define exactly what the values of ser vl et Pat h and pat hl nf o will contain for a particular request
URI. For example, each path segment of a URL may contain parameters, as defined in REC 2396°.
The Specification does not clearly state whether these should be included in the ser vl et Pat h and
pat hl nf o values and the behaviour varies between different servlet containers. There is a danger that
when an application is deployed in a container which does not strip path parameters from these values,
an attacker could add them to the requested URL in order to cause a pattern match to succeed or fail
unexpectedly.7. Other variations in the incoming URL are also possible. For example, it could contain
path-traversal sequences (like / . . /) or multiple forward slashes (/ /) which could also cause pattern-
matches to fail. Some containers normalize these out before performing the servlet mapping, but others
don't. To protect against issues like these, Fi | t er Chai nPr oxy uses an Ht t pFi rewal | strategy to
check and wrap the request. Un-normalized requests are automatically rejected by default, and path
parameters and duplicate slashes are removed for matching purposes.s. It is therefore essential that
a Fi | t er Chai nPr oxy is used to manage the security filter chain. Note that the ser vl et Pat h and
pat hl nf o values are decoded by the container, so your application should not have any valid paths
which contain semi-colons, as these parts will be removed for matching purposes.

As mentioned above, the default strategy is to use Ant-style paths for matching and this is likely to be
the best choice for most users. The strategy is implemented in the class Ant Pat hRequest Mat cher
which uses Spring's Ant Pat hivat cher to perform a case-insensitive match of the pattern against the
concatenated ser vl et Pat h and pat hl nf o, ignoring the quer yStri ng.

If for some reason, you need a more powerful matching strategy, you can use regular expressions.
The strategy implementation is then RegexRequest Mat cher . See the Javadoc for this class for more
information.

In practice we recommend that you use method security at your service layer, to control access to your
application, and do not rely entirely on the use of security constraints defined at the web-application
level. URLs change and it is difficult to take account of all the possible URLs that an application might
support and how requests might be manipulated. You should try and restrict yourself to using a few
simple ant paths which are simple to understand. Always try to use a “deny-by-default” approach where
you have a catch-all wildcard (/ ** or **) defined last and denying access.

Security defined at the service layer is much more robust and harder to bypass, so you should always
take advantage of Spring Security's method security options.

8.5 Use with other Filter-Based Frameworks

If you're using some other framework that is also filter-based, then you need to make sure that the Spring
Security filters come first. This enables the Secur i t yCont ext Hol der to be populated in time for use

SYou have probably seen this when a browser doesn't support cookies and the j sessi oni d parameter is appended to the URL
after a semi-colon. However the RFC allows the presence of these parameters in any path segment of the URL

"The original values will be returned once the request leaves the Fi | t er Chai nPr oxy, so will still be available to the application.
830, for example, an original request path / secure; hack=1/sonmefile. ht m ; hack=2 will be returned as /secure/
sonefile. htni.

3.2.0.RC1 Spring Security 53

http://www.ietf.org/rfc/rfc2396.txt

Spring Security

by the other filters. Examples are the use of SiteMesh to decorate your web pages or a web framework
like Wicket which uses a filter to handle its requests.

8.6 Advanced Namespace Configuration

As we saw earlier in the namespace chapter, it's possible to use multiple ht t p elements to define
different security configurations for different URL patterns. Each element creates a filter chain within the
internal Fi | t er Chai nPr oxy and the URL pattern that should be mapped to it. The elements will be
added in the order they are declared, so the most specific patterns must again be declared first. Here's
another example, for a similar situation to that above, where the application supports both a stateless
RESTful API and also a normal web application which users log into using a form.

<I-- Statel ess RESTful service using Basic authentication -->

<http pattern="/restful/**" create-session="statel ess">
<intercept-url pattern='/**' access=' ROLE REMOTE />
<http-basic />

</ http>

<I-- Enpty filter chain for the |ogin page -->
<http pattern="/login. htnt" security="none"/>

<I-- Additional filter chain for normal users, matching all other requests -->
<ht t p>

<intercept-url pattern='/**' access=' ROLE USER />

<form |l ogin | ogin-page='/login. htm default-target-url="/home.htnt/>

<l ogout />
</ http>

3.2.0.RC1 Spring Security 54

Spring Security

9. Core Security Filters

There are some key filters which will always be used in a web application which uses Spring Security,
so we'll look at these and their supporting classes and interfaces first. We won't cover every feature, so
be sure to look at the Javadoc for them if you want to get the complete picture.

9.1FilterSecuritylnterceptor

We've already seen FilterSecuritylnterceptor briefly when discussing access-control in
general, and we've already used it with the namespace where the <i nt ercept - url > elements
are combined to configure it internally. Now we'll see how to explicitly configure it for use with a
Fi | t er Chai nProxy, along with its companion filter Excepti onTransl ati onFil ter. A typical
configuration example is shown below:

<bean id="filterSecuritylnterceptor"
cl ass="org. springframewor k. security.web.access.intercept.FilterSecuritylnterceptor">
<property nane="aut henticati onManager" ref="aut henticati onManager"/>
<property nane="accessDeci si onManager" ref="accessDeci si onManager"/ >
<property nanme="securityMetadat aSource" >
<security:filter-security-nmetadata-source>
<security:intercept-url pattern="/secure/super/**" access="ROLE WE_DONT_HAVE"/ >
<security:intercept-url pattern="/secure/**" access="ROLE_SUPERVI SOR, ROLE TELLER'/ >
</security:filter-security-netadata-source>
</ property>
</ bean>

FilterSecurityl nterceptor isresponsible for handling the security of HTTP resources. It requires
a reference to an Aut hent i cati onManager and an AccessDeci si onManager . It is also supplied
with configuration attributes that apply to different HTTP URL requests. Refer back to the original
discussion on these in the technical introduction.

The FilterSecuritylnterceptor can be configured with configuration attributes in two ways.
The first, which is shown above, is using the <fi | t er - securi t y- met adat a- sour ce> namespace
element. This is similar to the <ht t p> element from the namespace chapter but the <i nt er cept -
ur |l > child elements only use the pattern and access attributes. Commas are used to delimit
the different configuration attributes that apply to each HTTP URL. The second option is to
write your own SecurityMet adat aSour ce, but this is beyond the scope of this document.
Irrespective of the approach used, the Securit yMet adat aSour ce is responsible for returning a
Li st <Confi gAttri but e>containing all of the configuration attributes associated with a single secure
HTTP URL.

It should be noted that the FilterSecuritylnterceptor.setSecurityMetadataSource()
method actually expects an instance of FilterlnvocationSecurityMetadataSource. This
is a marker interface which subclasses SecurityMetadataSource. It simply denotes
the SecurityMetadataSource understands Filterlnvocations. In the interests of
simplicity we'll continue to refer to the FilterlnvocationSecurityMetadataSource as a
Securi t yMet adat aSour ce, as the distinction is of little relevance to most users.

The Securi t yMet adat aSour ce created by the namespace syntax obtains the configuration attributes
for a particular Fi | t er I nvocat i on by matching the request URL against the configured patt ern
attributes. This behaves in the same way as it does for namespace configuration. The default is to treat

3.2.0.RC1 Spring Security 55

#tech-intro-access-control
#tech-intro-access-control
#tech-intro-config-attributes
#tech-intro-config-attributes

Spring Security

all expressions as Apache Ant paths and regular expressions are also supported for more complex
cases. The pat h- t ype attribute is used to specify the type of pattern being used. It is not possible to
mix expression syntaxes within the same definition. As an example, the previous configuration using
regular expressions instead of Ant paths would be written as follows:

<bean id="filterlnvocationlnterceptor"
cl ass="org. springframework. security.web.access.intercept.FilterSecuritylnterceptor">
<property nane="aut henti cati onManager" ref="authenticati onManager"/>
<property nane="accessDeci si onManager" ref="accessDeci si onManager"/ >
<property nanme="runAsManager" ref="runAsManager"/>
<property nane="securityMet adat aSource" >
<security:filter-security-netadata-source path-type="regex">
<security:intercept-url pattern="\A/secure/super/.*\Z" access="ROLE WE_DONT_HAVE"/ >
<security:intercept-url pattern="\Alsecure/.*
\" access="ROLE_SUPERVI SOR, ROLE_TELLER"/ >
</security:filter-security-nmetadata-source>
</ property>
</ bean>

Patterns are always evaluated in the order they are defined. Thus it is important that more specific
patterns are defined higher in the list than less specific patterns. This is reflected in our example above,
where the more specific / secur e/ super/ pattern appears higher than the less specific / secur e/
pattern. If they were reversed, the / secur e/ pattern would always match and the / secur e/ super/
pattern would never be evaluated.

9.2 ExceptionTransl ationFilter

The Excepti onTransl ati onFi | t er sitsabovetheFi | t er Securi tyl nt er cept or inthe security
filter stack. It doesn't do any actual security enforcement itself, but handles exceptions thrown by the
security interceptors and provides suitable and HTTP responses.

<bean i d="excepti onTransl ationFilter"

cl ass="org. springframewor k. security.web. access. Excepti onTransl ationFilter">
<property nane="aut henti cati onEntryPoint" ref="authenticationEntryPoint"/>
<property nane="accessDeni edHandl er" ref="accessDeni edHandl er"/>
</ bean>

<bean i d="aut henti cati onEntryPoi nt"

cl ass="org. springframewor k. security.web. aut henti cati on. Logi nUrl Aut henti cati onEntryPoi nt">
<property nanme="| ogi nFornJr|" val ue="/1ogin.jsp"/>
</ bean>

<bean i d="accessDeni edHandl er"
cl ass="org. springframewor k. security.web. access. AccessDeni edHandl er | npl ">
<property nane="errorPage" val ue="/accessDeni ed. htni'/ >
</ bean>

Aut henti cati onEnt r yPoi nt

The Aut hent i cat i onEnt r yPoi nt will be called if the user requests a secure HTTP resource but they
are not authenticated. An appropriate Aut hent i cati onExcepti on or AccessDeni edExcepti on
will be thrown by a security interceptor further down the call stack, triggering the cormence method
on the entry point. This does the job of presenting the appropriate response to the user so that
authentication can begin. The one we've used here is Logi nUr| Aut henti cati onEnt ryPoi nt,

3.2.0.RC1 Spring Security 56

Spring Security

which redirects the request to a different URL (typically a login page). The actual implementation used
will depend on the authentication mechanism you want to be used in your application.

AccessDeni edHandl er

What happens if a user is already authenticated and they try to access a protected resource? In normal
usage, this shouldn't happen because the application workflow should be restricted to operations to
which a user has access. For example, an HTML link to an administration page might be hidden from
users who do not have an admin role. You can't rely on hiding links for security though, as there's
always a possibility that a user will just enter the URL directly in an attempt to bypass the restrictions.
Or they might modify a RESTful URL to change some of the argument values. Your application must
be protected against these scenarios or it will definitely be insecure. You will typically use simple web
layer security to apply constraints to basic URLs and use more specific method-based security on your
service layer interfaces to really nail down what is permissible.

If an AccessDeni edExcept i on isthrown and a user has already been authenticated, then this means
that an operation has been attempted for which they don't have enough permissions. In this case,
ExceptionTransl ati onFi |l ter will invoke a second strategy, the AccessDeni edHandl er. By
default, an AccessDeni edHandl er | npl is used, which just sends a 403 (Forbidden) response to the
client. Alternatively you can configure an instance explicitly (as in the above example) and set an error
page URL which it will forwards the request to 3. This can be a simple “access denied” page, such
as a JSP, or it could be a more complex handler such as an MVC controller. And of course, you can
implement the interface yourself and use your own implementation.

It's also possible to supply a custom AccessDeni edHandl er when you're using the namespace to
configure your application. See the namespace appendix for more details.

SavedRequest s and the Request Cache Interface

Another of Excepti onTransl ati onFi | t er's responsibilities is to save the current request before
invoking the Aut henti cati onEntryPoi nt. This allows the request to be restored after the use
has authenticated (see previous overview of web authentication). A typical example would be
where the user logs in with a form, and is then redirected to the original URL by the default
SavedRequest Awar eAut hent i cati onSuccessHandl er (see below).

The Request Cache encapsulates the functionality required for storing and retrieving
Ht t pSer vl et Request instances. By defaultthe Ht t pSessi onRequest Cache is used, which stores
the request in the Ht t pSessi on. The Request CacheFi | t er has the job of actually restoring the
saved request from the cache when the user is redirected to the original URL.

Under normal circumstances, you shouldn't need to modify any of this functionality, but the saved-
request handling is a “best-effort” approach and there may be situations which the default configuration
isn't able to handle. The use of these interfaces makes it fully pluggable from Spring Security 3.0
onwards.

3we use a forward so that the SecurityContextHolder still contains details of the principal, which may be useful for displaying to
the user. In old releases of Spring Security we relied upon the servlet container to handle a 403 error message, which lacked
this useful contextual information.

3.2.0.RC1 Spring Security 57

#nsa-access-denied-handler
#tech-intro-web-authentication
#form-login-flow-handling

Spring Security

9.3 SecurityCont ext Persi stenceFilter

We covered the purpose of this all-important filter in the Technical Overview chapter so you might want
to re-read that section at this point. Let's first take a look at how you would configure it for use with a
Fi | t er Chai nPr oxy. A basic configuration only requires the bean itself

<bean id="securityContext PersistenceFilter"
cl ass="org. spri ngframewor k. security.web. cont ext. SecurityContext PersistenceFilter"/>

As we saw previously, this filter has two main tasks. It is responsible for storage of the
Securi t yCont ext contents between HTTP requests and for clearing the Secur i t yCont ext Hol der
when a request is completed. Clearing the Thr eadLocal in which the context is stored is essential, as
it might otherwise be possible for a thread to be replaced into the servlet container's thread pool, with
the security context for a particular user still attached. This thread might then be used at a later stage,
performing operations with the wrong credentials.

Securi t yCont ext Repository

From Spring Security 3.0, the job of loading and storing the security context is now delegated to a
separate strategy interface:

public interface SecurityContextRepository {
Securi tyCont ext | oadCont ext (H t pRequest ResponseHol der request ResponseHol der) ;
voi d saveCont ext (SecurityCont ext context, HttpServletRequest request,
Ht t pSer vl et Response response) ;

}
The H t pRequest ResponseHol der is simply a container for the incoming request and response
objects, allowing the implementation to replace these with wrapper classes. The returned contents will
be passed to the filter chain.

The default implementation is H t pSessi onSecurit yCont ext Reposi t ory, which stores the
security context as an Ht t pSessi on attribute 8 The most important configuration parameter for this
implementation is the al | owSessi onCr eat i on property, which defaults to t r ue, thus allowing the
class to create a session if it needs one to store the security context for an authenticated user (it
won't create one unless authentication has taken place and the contents of the security context have
changed). If you don't want a session to be created, then you can set this property to f al se:

<bean i d="securityCont ext PersistenceFilter"
cl ass="org. springframewor k. security.web. context. SecurityContextPersistenceFilter">
<property nane='securityCont ext Repository' >

<bean cl ass='org. spri ngframework. security.web. context. H t pSessi onSecurit yCont ext Repository' >
<property nane="al |l owSessi onCreation' val ue='false' />
</ bean>
</ property>
</ bean>

8in Spring Security 2.0 and earlier, this filter was called Ht t pSessi onCont ext | nt egrati onFi | t er and performed all the
work of storing the context was performed by the filter itself. If you were familiar with this class, then most of the configuration
options which were available can now be found on Ht t pSessi onSecuri t yCont ext Reposi tory.

3.2.0.RC1 Spring Security 58

#tech-intro-sec-context-persistence

Spring Security

Alternatively you could provide an instance of Nul | Securi t yCont ext Reposi t ory, a “null object”
implementation, which will prevent the security context from being stored, even if a session has already
been created during the request.

9.4 User nanmePasswor dAut henti cati onFil ter

We've now seen the three main filters which are always present in a Spring Security web configuration.
These are also the three which are automatically created by the namespace <htt p> element and
cannot be substituted with alternatives. The only thing that's missing now is an actual authentication
mechanism, something that will allow a user to authenticate. This filter is the most commonly used
authentication filter and the one that is most often customized °. It also provides the implementation
used by the <f or m | ogi n> element from the namespace. There are three stages required to configure
it.

1. Configure a Logi nUr | Aut hent i cati onEnt r yPoi nt with the URL of the login page, just as we
did above, and set it on the Excepti onTransl ati onFilter.

2. Implement the login page (using a JSP or MVC controller).
3. Configure an instance of User namePasswor dAut hent i cat i onFi | t er in the application context

4. Add the filter bean to your filter chain proxy (making sure you pay attention to the order).

The login form simply containsj _user nane andj _passwor d input fields, and posts to the URL thatis
monitored by the filter (by default thisis/j _spri ng_security_check). The basic filter configuration
looks something like this:

<bean id="authenticationFilter" class=

"org.springframework. security.web. aut henti cati on. User nanePasswor dAut henti cati onFilter">
<property nane="aut henti cati onManager" ref="aut henti cati onManager"/>
<property nanme="filterProcessesUr|" value="/j_spring_security_check"/>

</ bean>

Application Flow on Authentication Success and Failure

The filter calls the configured Aut henticationManager to process each authentication
request. The destination following a successful authentication or an authentication failure is
controlled by the Aut henti cati onSuccessHandl er and Aut henti cati onFail ureHandl er
strategy interfaces, respectively. The filter has properties which allow you to
set these so you can customize the behaviour completely 1 Some standard
implementations are supplied such as SinpleUrl Aut henticati onSuccessHandl er,
SavedRequest Awar eAut hent i cat i onSuccessHandl er,

Si npl eUr | Aut hent i cati onFai | ur eHandl er and
Excepti onMappi ngAut henti cati onFai | ur eHandl er. Have a look at the Javadoc for these
classes and also for Abst r act Aut henti cat i onProcessi ngFi | t er to get an overview of how they
work and the supported features.

OFor historical reasons, prior to Spring Security 3.0, this filter was called Aut hent i cati onProcessi ngFi | t er and the entry
point was called Aut hent i cati onProcessi ngFi | t er Ent r yPoi nt . Since the framework now supports many different forms
of authentication, they have both been given more specific names in 3.0.

in versions prior to 3.0, the application flow at this point had evolved to a stage was controlled by a mix of properties on this
class and strategy plugins. The decision was made for 3.0 to refactor the code to make these two strategies entirely responsible.

3.2.0.RC1 Spring Security 59

http://en.wikipedia.org/wiki/Null_Object_pattern

Spring Security

If authentication is successful, the resulting Aut henti cati on object will be placed into the
Securi tyCont ext Hol der. The configured Aut henti cati onSuccessHandl er will then be
called to either redirect or forward the user to the appropriate destination. By default a
SavedRequest Awar eAut hent i cat i onSuccessHandl er is used, which means that the user will
be redirected to the original destination they requested before they were asked to login.

~ Note

The Excepti onTransl ati onFi | t er caches the original request a user makes. When the
user authenticates, the request handler makes use of this cached request to obtain the original
URL and redirect to it. The original request is then rebuilt and used as an alternative.

If authentication fails, the configured Aut hent i cat i onFai | ur eHand! er will be invoked.

3.2.0.RC1 Spring Security 60

Spring Security

10. Basic and Digest Authentication

Basic and digest authentiation are alternative authentication mechanisms which are popular in web
applications. Basic authentication is often used with stateless clients which pass their credentials on
each request. It's quite common to use it in combination with form-based authentication where an
application is used through both a browser-based user interface and as a web-service. However, basic
authentication transmits the password as plain text so it should only really be used over an encrypted
transport layer such as HTTPS.

10.1 Basi cAut henti cati onFilter

Basi cAut henti cationFilter is responsible for processing basic authentication credentials
presented in HTTP headers. This can be used for authenticating calls made by Spring remoting protocols
(such as Hessian and Burlap), as well as normal browser user agents (such as Firefox and Internet
Explorer). The standard governing HTTP Basic Authentication is defined by RFC 1945, Section 11,
and Basi cAut henti cati onFi |l t er conforms with this RFC. Basic Authentication is an attractive
approach to authentication, because it is very widely deployed in user agents and implementation is
extremely simple (it's just a Base64 encoding of the username:password, specified in an HTTP header).

Configuration
To implement HTTP Basic Authentication, you need to add a Basi cAut henti cati onFi | t er to your

filter chain. The application context should contain Basi cAut henti cati onFi | t er and its required
collaborator:

<bean i d="basi cAut henticationFilter"
cl ass="org. springframework. security.web. aut henti cati on. ww. Basi cAut henticationFilter">
<property nane="aut henti cati onManager" ref="aut henti cati onManager"/>
<property nane="aut henticationEntryPoint" ref="authenticationEntryPoint"/>

</ bean>

<bean i d="aut henti cati onEntryPoi nt"
cl ass="org. spri ngframework. security.web. aut henti cati on. ww. Basi cAut henti cati onEntryPoi nt">
<property name="real mNanme" val ue="Nanme O Your Real m'/>

</ bean>

The configured Aut hent i cati onManager processes each authentication request. If authentication
fails, the configured Aut hent i cati onEnt r yPoi nt will be used to retry the authentication process.
Usually you will use the filter in combination with a Basi cAut henti cati onEntryPoi nt, which
returns a 401 response with a suitable header to retry HTTP Basic authentication. If authentication is
successful, the resulting Aut hent i cat i on object will be placed into the Secur i t yCont ext Hol der
as usual.

If the authentication event was successful, or authentication was not attempted because the
HTTP header did not contain a supported authentication request, the filter chain will continue
as normal. The only time the filter chain will be interrupted is if authentication fails and the
Aut hent i cati onEnt r yPoi nt is called.

3.2.0.RC1 Spring Security 61

Spring Security

10.2 Di gest Aut henti cationFil ter

Di gest Aut henti cationFilter is capable of processing digest authentication credentials
presented in HTTP headers. Digest Authentication attempts to solve many of the weaknesses of
Basic authentication, specifically by ensuring credentials are never sent in clear text across the wire.
Many user agents support Digest Authentication, including FireFox and Internet Explorer. The standard
governing HTTP Digest Authentication is defined by RFC 2617, which updates an earlier version of
the Digest Authentication standard prescribed by RFC 2069. Most user agents implement RFC 2617.
Spring Security's Di gest Aut hent i cati onFi |l t er is compatible with the "aut h" quality of protection
(qop) prescribed by RFC 2617, which also provides backward compatibility with RFC 2069. Digest
Authentication is a more attractive option if you need to use unencrypted HTTP (i.e. no TLS/HTTPS) and
wish to maximise security of the authentication process. Indeed Digest Authentication is a mandatory
requirement for the WebDAYV protocol, as noted by RFC 2518 Section 17.1.

Digest Authentication is definitely the most secure choice between Form Authentication, Basic
Authentication and Digest Authentication, although extra security also means more complex user agent
implementations. Central to Digest Authentication is a "nonce". This is a value the server generates.
Spring Security's nonce adopts the following format:

base64(expirationTime + ":" + mdS5Hex(expirationTime + ":" + key))
expirationTi me: The date and time when the nonce expires, expressed in nmlliseconds
key: A private key to prevent nodification of the nonce token

The Di gest Aut hent i cat onEnt r yPoi nt has a property specifying the key used for generating the
nonce tokens, along with a nonceVal i di t ySeconds property for determining the expiration time
(default 300, which equals five minutes). Whist ever the nonce is valid, the digest is computed by
concatenating various strings including the username, password, nonce, URI being requested, a client-
generated nonce (merely arandom value which the user agent generates each request), the realm name
etc, then performing an MD5 hash. Both the server and user agent perform this digest computation,
resulting in different hash codes if they disagree on an included value (eg password). In Spring Security
implementation, if the server-generated nonce has merely expired (but the digest was otherwise valid),
the Di gest Aut henti cati onEnt ryPoi nt will send a "stal e=true" header. This tells the user
agent there is no need to disturb the user (as the password and username etc is correct), but simply
to try again using a new nonce.

An appropriate value for Di gest Aut henticati onEntryPoint's nonceVali ditySeconds
parameter will depend on your application. Extremely secure applications should note that an
intercepted authentication header can be used to impersonate the principal until the expi rati onTi e
contained in the nonce is reached. This is the key principle when selecting an appropriate setting, but
it would be unusual for immensely secure applications to not be running over TLS/HTTPS in the first
instance.

Because of the more complex implementation of Digest Authentication, there are often user agent
issues. For example, Internet Explorer fails to present an "opaque" token on subsequent requests in
the same session. Spring Security filters therefore encapsulate all state information into the "nonce"
token instead. In our testing, Spring Security's implementation works reliably with FireFox and Internet
Explorer, correctly handling nonce timeouts etc.

3.2.0.RC1 Spring Security 62

Spring Security

Configuration

Now that we've reviewed the theory, let's see how to use it. To implement HTTP Digest Authentication,
it is necessary to define Di gest Aut henti cati onFi |l t er in the filter chain. The application context
will need to define the Di gest Aut henti cati onFi | t er and its required collaborators:

<bean i d="digestFilter" class=
"org. springframework. security.web. aut henti cati on. ww. Di gest Aut henti cati onFilter">
<property nane="user Det ai | sServi ce" ref="jdbcDaol npl "/ >
<property nane="aut henti cati onEntryPoint" ref="di gestEntryPoint"/>
<property nane="user Cache" ref="userCache"/>
</ bean>

<bean i d="di gest EntryPoi nt" cl ass=
"org. springframework. security.web. aut henti cati on. ww. Di gest Aut henti cati onEntryPoi nt">
<property nane="real mNane" val ue="Contacts Real mvia D gest Authentication"/>
<property nanme="key" val ue="acegi"/>
<property nane="nonceVal i ditySeconds" val ue="10"/>
</ bean>

The configured User Det ai | sSer vi ce is needed because Di gest Aut henti cati onFilter must
have direct access to the clear text password of a user. Digest Authentication will NOT work if you
are using encoded passwords in your DAO ! The DAO collaborator, along with the User Cache, are
typically shared directly with a DaoAut hent i cat i onPr ovi der. The aut henti cati onEntryPoi nt
property must be Di gest Aut hent i cati onEnt ryPoi nt, so that Di gest Aut henti cationFilter
can obtain the correct r eal mNane and key for digest calculations.

Like Basi cAut henti cati onFi | t er, if authentication is successful an Aut henti cati on request
token will be placed into the Securi t yCont ext Hol der . If the authentication event was successful,
or authentication was not attempted because the HTTP header did not contain a Digest Authentication
request, the filter chain will continue as normal. The only time the filter chain will be interrupted is if
authentication fails and the Aut henti cati onEnt ryPoi nt is called, as discussed in the previous
paragraph.

Digest Authentication's RFC offers a range of additional features to further increase security. For
example, the nonce can be changed on every request. Despite this, Spring Security implementation
was designed to minimise the complexity of the implementation (and the doubtless user agent
incompatibilities that would emerge), and avoid needing to store server-side state. You are invited to
review RFC 2617 if you wish to explore these features in more detail. As far as we are aware, Spring
Security's implementation does comply with the minimum standards of this RFC.

Yt is possible to encode the password in the format HEX(MD5(username:realm:password)) provided the

Di gest Aut henti cati onFi | t er. passwor dAl r eadyEncoded is set to t r ue. However, other password encodings will not
work with digest authentication.

3.2.0.RC1 Spring Security 63

Spring Security

11. Remember-Me Authentication

11.1 Overview

Remember-me or persistent-login authentication refers to web sites being able to remember the identity
of a principal between sessions. This is typically accomplished by sending a cookie to the browser,
with the cookie being detected during future sessions and causing automated login to take place.
Spring Security provides the necessary hooks for these operations to take place, and has two concrete
remember-me implementations. One uses hashing to preserve the security of cookie-based tokens and
the other uses a database or other persistent storage mechanism to store the generated tokens.

Note that both implemementations require a User Det ai | sSer vi ce. If you are using an authentication
provider which doesn't use a User Det ai | sSer vi ce (for example, the LDAP provider) then it won't
work unless you also have a User Det ai | sSer vi ce bean in your application context.

11.2 Simple Hash-Based Token Approach

This approach uses hashing to achieve a useful remember-me strategy. In essence a cookie is sent to
the browser upon successful interactive authentication, with the cookie being composed as follows:

base64(usernane + ":" + expirationTime + ":" +
md5Hex(username + ":" + expirationTime + ":" password + ":" + key))
user nane: As identifiable to the UserDetail sService
passwor d: That matches the one in the retrieved UserDetails
expirationTi me: The date and time when the renmenber-nme token expires,
expressed in mlliseconds
key: A private key to prevent nodification of the renenber-ne token

As such the remember-me token is valid only for the period specified, and provided that the username,
password and key does not change. Notably, this has a potential security issue in that a captured
remember-me token will be usable from any user agent until such time as the token expires. This is
the same issue as with digest authentication. If a principal is aware a token has been captured, they
can easily change their password and immediately invalidate all remember-me tokens on issue. If more
significant security is needed you should use the approach described in the next section. Alternatively
remember-me services should simply not be used at all.

If you are familiar with the topics discussed in the chapter on namespace configuration, you can enable
remember-me authentication just by adding the <r emenber - ne> element:

<htt p>

<r enmenber - nre key="nyAppKey"/ >
</ http>

The User Det ai | sSer vi ce will normally be selected automatically. If you have more than one in
your application context, you need to specify which one should be used with the user - ser vi ce- r ef
attribute, where the value is the name of your User Det ai | sSer vi ce bean.

3.2.0.RC1 Spring Security 64

#ns-config

Spring Security

11.3 Persistent Token Approach

This approach is based on the article http://jaspan.com/
improved_persistent_login_cookie_best_practice with some minor modifications 2. To use the this
approach with namespace configuration, you would supply a datasource reference:

<ht t p>

<renenber - me dat a- sour ce-r ef =" soneDat aSour ce"/ >
</ http>

The database should contain a per si st ent _| ogi ns table, created using the following SQL (or
equivalent):

create tabl e persistent_|logins (usernanme varchar(64) not null,
series varchar(64) prinmary key,
token varchar(64) not null,
| ast _used tinestanp not null)

11.4 Remember-Me Interfaces and Implementations

Remember-me authentication is not used with basic authentication, given it is often not used with
Ht t pSessi ons. Remember-me is used with User nanePasswor dAut henti cationFilter, and
is implemented via hooks in the Abstract Aut henti cati onProcessi ngFi | t er superclass. The
hooks will invoke a concrete Remenber MeSer vi ces at the appropriate times. The interface looks like
this:

Aut henti cati on autolLogi n(Htt pServl et Request request, HttpServlet Response response);
voi d | ogi nFai | (HttpServl et Request request, H tpServl et Response response);
voi d | ogi nSuccess(Htt pServl et Request request, HttpServl et Response response,

Aut henti cati on successful Aut henti cation);

Please refer to the JavaDocs for a fuller discussion on what the methods do, although
note at this stage that AbstractAuthenticationProcessingFilter only calls the
loginFail () and |oginSuccess() methods. The autolLogin() method is called by
Renenber MeAut hent i cati onFi | t er whenever the Securi t yCont ext Hol der does not contain
an Aut hent i cati on. This interface therefore provides the underlying remember-me implementation
with sufficient notification of authentication-related events, and delegates to the implementation
whenever a candidate web request might contain a cookie and wish to be remembered. This design
allows any number of remember-me implementation strategies. We've seen above that Spring Security
provides two implementations. We'll look at these in turn.

TokenBasedRememberMeServices

This implementation supports the simpler approach described in
Section 11.2, “Simple Hash-Based Token Approach”. TokenBasedRenmenber MeServices

ZEssentiaIIy, the username is not included in the cookie, to prevent exposing a valid login name unecessarily. There is a discussion
on this in the comments section of this article.

3.2.0.RC1 Spring Security 65

http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice

Spring Security

generates a Renember MeAut hent i cati onToken, which is processed by
Renenmber MeAut hent i cati onProvi der. A key is shared between this authentication provider
and the TokenBasedRenenber MeServi ces. In addition, TokenBasedRenmenber MeServi ces
requires A UserDetailsService from which it can retrieve the username and password for signature
comparison purposes, and generate the Renmenber MeAut hent i cat i onToken to contain the correct
G ant edAut hori tys. Some sort of logout command should be provided by the application that
invalidates the cookie if the user requests this. TokenBasedRenenhber MeSer vi ces also implements
Spring Security's Logout Handl er interface so can be used with Logout Fi | t er to have the cookie
cleared automatically.

The beans required in an application context to enable remember-me services are as follows:

<bean id="renmenber MeFi |l ter" class=

"org. springframewor k. security.web. aut henti cati on. renmenber me. Remenber MeAut henti cati onFil ter">
<property nane="renenber MeServi ces" ref="remenber MeServi ces"/>
<property nane="aut henti cati onManager" ref="theAut henti cati onManager" />

</ bean>

<bean i d="renmenber MeServi ces" class=

"org. springframework. security.web. aut henti cati on. renmenber me. TokenBasedRenenber MeSer vi ces" >
<property nane="userDetail sService" ref="nyUserDetail sService"/>
<property nane="key" val ue="springRocks"/>

</ bean>

<bean i d="renmenber MeAut henti cati onProvi der" class=

"org. springframework. security. authentication.renmenber me. Remenber MeAut henti cati onProvi der" >
<property nane="key" val ue="springRocks"/>

</ bean>

Don't forget to add your Remenber MeSer vi ces implementation to your
User namePasswor dAut henti cati onFi |l t er. set Remenber MeSer vi ces() property, include the
Renmenber MeAut henti cati onProvi der in your Aut henti cati onManager. set Provi ders()
list, and add Remenber MeAut henti cationFilter into your FilterChainProxy (typically
immediately after your User nanePasswor dAut henti cati onFilter).

PersistentTokenBasedRememberMeServices

This class can be used in the same way as TokenBasedRenenber MeSer vi ces, but it additionally
needs to be configured with a Per si st ent TokenReposi t ory to store the tokens. There are two
standard implementations.

e I nMenor yTokenReposi t oryl npl which is intended for testing only.

» JdbcTokenReposi t oryl npl which stores the tokens in a database.
The database schema is described above in Section 11.3, “Persistent Token Approach”.

3.2.0.RC1 Spring Security 66

Spring Security

12. Session Management

HTTP session related functonality is handled by a combination of the Sessi onManagenent Fi | t er
and the Sessi onAut hent i cati onStr at egy interface, which the filter delegates to. Typical usage
includes session-fixation protection attack prevention, detection of session timeouts and restrictions on
how many sessions an authenticated user may have open concurrently.

12.1 SessionManagementFilter

The Sessi onManagenent Fil ter checks the contents of the SecurityCont ext Repository
against the current contents of the Securit yCont ext Hol der to determine whether a user has
been authenticated during the current request, typically by a non-interactive authentication mechanism,
such as pre-authentication or remember-me L if the repository contains a security context, the filter
does nothing. If it doesn't, and the thread-local Securit yCont ext contains a (non-anonymous)
Aut hent i cat i on object, the filter assumes they have been authenticated by a previous filter in the
stack. It will then invoke the configured Sessi onAut henti cati onStr at egy.

If the wuser is not -currently authenticated, the filter will check whether an invalid
session ID has been requested (because of a timeout, for example) and will invoke
the configured | nval i dSessi onStrat egy, if one is set. The most common behaviour is
just to redirect to a fixed URL and this is encapsulated in the standard implementation
Si npl eRedi rect I nval i dSessi onSt r at egy. The latter is also used when configuring an invalid
session URL through the namespace, as described earlier.

12.2 Sessi onAut henti cati onStr at egy

Sessi onAut henticationStrategy is used by both SessionManagenentFilter and
Abst ract Aut henti cati onProcessi ngFi | t er, so if you are using a customized form-login class,
for example, you will need to inject it into both of these. In this case, a typical configuration, combining
the namespace and custom beans might look like this:

<ht t p>
<customfilter position="FORM LOG N FILTER" ref="nyAuthFilter" />
<sessi on- managenent sessi on-aut henti cati on-strategy-ref="sas"/>
</ http>

<beans: bean i d="myAuthFilter" class=
"org. springframewor k. security.web. aut henti cati on. User nanePasswor dAut henti cationFilter">
<beans: property nane="sessi onAut henti cati onStrategy" ref="sas" />

</ beans: bean>
<beans: bean i d="sas" cl ass=

"org. springframework. security.web. aut henticati on. sessi on. Sessi onFi xati onProtecti onStrategy"
/>

Note that the use of the default, Sessi onFi xat i onPr ot ecti onStr at egy may cause issues if you
are storing beans in the session which implement Ht t pSessi onBi ndi ngLi st ener , including Spring
session-scoped beans. See the Javadoc for this class for more information.

Authentication by mechanisms which perform a redirect after authenticating (such as form-login) will not be detected by
Sessi onManagenent Fi | ter, as the filter will not be invoked during the authenticating request. Session-management
functionality has to be handled separately in these cases.

3.2.0.RC1 Spring Security 67

#ns-session-mgmt

Spring Security

12.3 Concurrency Control

Spring Security is able to prevent a principal from concurrently authenticating to the same application
more than a specified number of times. Many ISVs take advantage of this to enforce licensing, whilst
network administrators like this feature because it helps prevent people from sharing login names. You
can, for example, stop user “Batman” from logging onto the web application from two different sessions.
You can either expire their previous login or you can report an error when they try to log in again,
preventing the second login. Note that if you are using the second approach, a user who has not explicitly
logged out (but who has just closed their browser, for example) will not be able to log in again until their
original session expires.

Concurrency control is supported by the namespace, so please check the earlier namespace chapter
for the simplest configuration. Sometimes you need to customize things though.

The implementation uses a specialized version of Sessi onAut henti cati onStrat egy, called
Concur rent Sessi onCont r ol Aut henti cati onStrat egy.

» Note

Previously the concurrent authentication check was made by the Pr ovi der Manager , which
could be injected with a Concur r ent Sessi onCont r ol | er . The latter would check if the user
was attempting to exceed the number of permitted sessions. However, this approach required
that an HTTP session be created in advance, which is undesirable. In Spring Security 3, the
user is first authenticated by the Aut henti cati onManager and once they are successfully
authenticated, a session is created and the check is made whether they are allowed to have
another session open.

To use concurrent session support, you'll need to add the following to web. xni :

<li stener>
<listener-class>
org. springframework. security.web. session. Ht pSessi onEvent Publ i sher
</listener-class>
</l|istener>

In addition, you will need to add the Concur r ent Sessi onFi | t er to your Fi | t er Chai nPr oxy. The
Concur rent Sessi onFi | t er requires two properties, sessi onRegi st ry, which generally points to
an instance of Sessi onRegi stryl npl , and expi redUr | , which points to the page to display when
a session has expired. A configuration using the namespace to create the Fi | t er Chai nPr oxy and
other default beans might look like this:

3.2.0.RC1 Spring Security 68

Spring Security

<htt p>
<customfilter position="CONCURRENT_SESSI ON FI LTER' ref="concurrencyFilter" />
<customfilter position="FORM LOG N FILTER" ref="nyAuthFilter" />

<sessi on- nenagenent sessi on-authentication-strategy-ref="sas"/>
</ http>

<beans: bean i d="concurrencyFilter"
cl ass="org. springframework. security.web. sessi on. Concurrent Sessi onFilter">
<beans: property nane="sessi onRegi stry" ref="sessionRegistry" />
<beans: property nane="expiredUr|l" val ue="/session-expired. htni />

</ beans: bean>

<beans: bean i d="nyAuthFilter" class=
"org. springframewor k. security.web. aut henti cati on. User nanePasswor dAut henti cationFilter">
<beans: property nane="sessi onAut henti cati onStrategy" ref="sas" />
<beans: property nane="aut henti cati onManager" ref="aut henticati onManager" />

</ beans: bean>

<beans: bean i d="sas" class="org.springfranmework.security.web. authentication. session. ConpositeSessi onAut hent
<beans: const ruct or - ar g>
<beans:|ist>

<beans: bean cl ass="org. spri ngframework. security.web. aut henti cati on. sessi on. Concurrent Sessi onCont r ol Aut hent
<beans: constructor-arg ref="sessi onRegi stry"/>
<beans: property nanme="maxi nunSessi ons" val ue="1" />
<beans: property nane="excepti onl f Maxi nunExceeded" val ue="true" />
</ beans: bean>

<beans: bean cl ass="org. spri ngframework. security.web. aut henti cati on. sessi on. Sessi onFi xati onProt ecti onStrat
</ beans: bean>

<beans: bean cl ass="org. spri ngframework. security.web. aut henti cati on. sessi on. Regi st er Sessi onAut henti cati onS|
<beans: constructor-arg ref="sessi onRegi stry"/>
</ beans: bean>
</ beans:|ist>
</ beans: const ruct or - ar g>
</ beans: bean>

<beans: bean i d="sessi onRegi stry"
cl ass="org. springframework. security. core.session. Sessi onRegi strylnmpl" />

Adding the listener to web. xm causes an Applicati onEvent to be published to the Spring
Appl i cati onCont ext every time a Ht t pSessi on commences or terminates. This is critical, as it
allows the Sessi onRegi stryl npl to be notified when a session ends. Without it, a user will never
be able to log back in again once they have exceeded their session allowance, even if they log out of
another session or it times out.

Querying the Sessi onRegi st ry for currently authenticated users and their
sessions

Setting up concurrency-control, either through the namespace or using plain beans has the useful side
effect of providing you with a reference to the Sessi onRegi st ry which you can use directly within
your application, so even if you don't want to restrict the number of sessions a user may have, it may
be worth setting up the infrastructure anyway. You can set the nmaxi nmunSessi on property to -1 to
allow unlimited sessions. If you're using the namespace, you can set an alias for the internally-created

3.2.0.RC1 Spring Security 69

Spring Security

Sessi onRegi st ry using the sessi on-regi stry-al i as attribute, providing a reference which you
can inject into your own beans.

The get Al l Pri nci pal s() method supplies you with a list of the currently authenticated users.
You can list a user's sessions by calling the get Al | Sessi ons(bj ect principal, boolean
i ncl udeExpi r edSessi ons) method, which returns a list of Sessi onl nf or mat i on objects. You
can also expire a user's session by calling expi r eNow() on a Sessi onl nf or mat i on instance. When
the user returns to the application, they will be prevented from proceeding. You may find these methods
useful in an administration application, for example. Have a look at the Javadoc for more information.

3.2.0.RC1 Spring Security 70

Spring Security

13. Anonymous Authentication

13.1 Overview

It's generally considered good security practice to adopt a “deny-by-default” where you explicitly specify
what is allowed and disallow everything else. Defining what is accessible to unauthenticated users is a
similar situation, particularly for web applications. Many sites require that users must be authenticated
for anything other than a few URLs (for example the home and login pages). In this case it is easiest
to define access configuration attributes for these specific URLs rather than have for every secured
resource. Put differently, sometimes it is nice to say ROLE_SOVETHI NGis required by default and only
allow certain exceptions to this rule, such as for login, logout and home pages of an application. You
could also omit these pages from the filter chain entirely, thus bypassing the access control checks, but
this may be undesirable for other reasons, particularly if the pages behave differently for authenticated
users.

This is what we mean by anonymous authentication. Note that there is no real conceptual difference
between a user who is “anonymously authenticated” and an unauthenticated user. Spring Security's
anonymous authentication just gives you a more convenient way to configure your access-control
attributes. Calls to servlet API calls such as get Cal | er Pri nci pal , for example, will still return null
even though there is actually an anonymous authentication object in the Secur i t yCont ext Hol der .

There are other situations where anonymous authentication is useful, such as when an auditing
interceptor queries the Securi t yCont ext Hol der to identify which principal was responsible for a
given operation. Classes can be authored more robustly if they know the Secur i t yCont ext Hol der
always contains an Aut hent i cat i on object, and never nul I .

13.2 Configuration

Anonymous authentication support is provided automatically when using the HTTP configuration Spring
Security 3.0 and can be customized (or disabled) using the <anonynmous> element. You don't need to
configure the beans described here unless you are using traditional bean configuration.

Three classes that together provide the anonymous authentication feature.
AnonynousAut henti cati onToken is an implementation of Authentication, and
stores the G antedAuthoritys which apply to the anonymous principal. There
is a corresponding AnonymousAut henti cati onProvi der, which is chained into the
Pr ovi der Manager so that AnonynousAut henti cati onTokens are accepted. Finally, there is an
AnonynousAut henti cati onFi | t er, which is chained after the normal authentication mechanisms
and automatically adds an AnonynousAut henti cati onToken to the Securi t yCont ext Hol der if
there is no existing Aut hent i cat i on held there. The definition of the filter and authentication provider
appears as follows:

3.2.0.RC1 Spring Security 71

Spring Security

<bean i d="anonynousAut hFilter"
cl ass="org. springframewor k. security.web. aut henti cati on. AnonymousAut henti cationFilter">
<property nanme="key" val ue="foobar"/>
<property nane="userAttribute" val ue="anonynousUser, ROLE_ANONYMOUS"/ >
</ bean>

<bean i d="anonynopusAut henti cati onProvi der"
cl ass="org. springframewor k. security.authenticati on. AnonynousAut henti cati onProvi der">
<property nanme="key" val ue="foobar"/>
</ bean>

The key is shared between the filter and authentication provider, so that tokens created by
the former are accepted by the latter’. The userAttribute is expressed in the form of
user nanmel nTheAut henti cati onToken, gr ant edAut hority[, grantedAut hority]. This is
the same syntax as used after the equals sign for | nMenor yDaol npl 's user Map property.

As explained earlier, the benefit of anonymous authentication is that all URI patterns can have security
applied to them. For example:

<bean id="filterSecuritylnterceptor"
cl ass="org. springframework. security.web.access.intercept.FilterSecuritylnterceptor">
<property nane="aut henti cati onManager" ref="aut henticati onManager"/>
<property nane="accessDeci si onManager" ref="htt pRequest AccessDeci si onManager"/>
<property nane="securityMetadata">
<security:filter-security-netadata-source>
<security:intercept-url pattern='/index.jsp'" access='"ROLE_ANONYMOUS, ROLE_USER />
<security:intercept-url pattern='/hello.htm access="ROLE_ANONYMOUS, ROLE USER />
<security:intercept-url pattern='/logoff.jsp' access='" ROLE_ANONYMOUS, ROLE USER />
<security:intercept-url pattern='/login.jsp' access="ROLE_ANONYMOUS, ROLE_USER />
<security:intercept-url pattern='/**' access=' ROLE_USER />
</security:filter-security-netadata-source>" +
</ property>
</ bean>

13.3 Aut henti cati onTr ust Resol ver

Rounding out the anonymous authentication discussion is the Aut henti cati onTr ust Resol ver
interface, with its corresponding Aut henti cati onTrust Resol ver | npl implementation. This
interface provides an i sAnonynous(Aut henti cati on) method, which allows interested classes to
take into account this special type of authentication status. The Excepti onTr ansl ati onFi | t er uses
this interface in processing AccessDeni edExcepti ons. If an AccessDeni edExcept i on is thrown,
and the authentication is of an anonymous type, instead of throwing a 403 (forbidden) response, the filter
will instead commence the Aut hent i cat i onEnt r yPoi nt so the principal can authenticate properly.

The use of the key property should not be regarded as providing any real security here. It is merely a book-keeping exercise.
If you are sharing a Pr ovi der Manager which contains an AnonynousAut hent i cati onPr ovi der in a scenario where it is
possible for an authenticating client to construct the Aut hent i cat i on object (such as with RMI invocations), then a malicious
client could submit an AnonynousAut hent i cat i onToken which it had created itself (with chosen username and authority list).
If the key is guessable or can be found out, then the token would be accepted by the anonymous provider. This isn't a problem with
normal usage but if you are using RMI you would be best to use a customized Pr ovi der Manager which omits the anonymous
provider rather than sharing the one you use for your HTTP authentication mechanisms.

3.2.0.RC1 Spring Security 72

Spring Security

This is a necessary distinction, otherwise principals would always be deemed “authenticated” and never
be given an opportunity to login via form, basic, digest or some other normal authentication mechanism.

You will often see the ROLE_ANONYMOUS attribute in the above interceptor configuration replaced
with | S_AUTHENTI CATED_ANONYMOUSLY, which is effectively the same thing when defining access
controls. This is an example of the use of the Aut henti cat edVot er which we will see in
the authorization chapter. It uses an Aut henti cati onTrust Resol ver to process this particular
configuration attribute and grant access to anonymous users. The Aut hent i cat edVot er approach
is more powerful, since it allows you to differentiate between anonymous, remember-me and
fully-authenticated users. If you don't need this functionality though, then you can stick with
ROLE_ANONYMOUS, which will be processed by Spring Security's standard Rol eVot er .

3.2.0.RC1 Spring Security 73

#authz-authenticated-voter

Part IV. Authorization

The advanced authorization capabilities within Spring Security represent one of the most compelling
reasons for its popularity. Irrespective of how you choose to authenticate - whether using a Spring
Security-provided mechanism and provider, or integrating with a container or other non-Spring Security
authentication authority - you will find the authorization services can be used within your application in
a consistent and simple way.

In this part we'll explore the different Abst r act Securi t yl nt er cept or implementations, which were
introduced in Part I. We then move on to explore how to fine-tune authorization through use of domain
access control lists.

Spring Security

14. Authorization Architecture

14.1 Authorities

As we saw in the technical overview, all Aut henti cati on implementations store a list of
Grant edAut hority objects. These represent the authorities that have been granted to the
principal. The G ant edAut hority objects are inserted into the Aut henticati on object by
the Aut henti cati onManager and are later read by AccessDeci si onManager s when making
authorization decisions.

G ant edAut hori ty is an interface with only one method:

String getAuthority();

This method allows AccessDeci si onManager s to obtain a precise St ri ng representation of the
Grant edAut hori ty. By returning a representation as a Stri ng, a G ant edAut hority can be
easily “read” by most AccessDeci si onManagers. If a Grant edAut hority cannot be precisely
represented as a Stri ng, the Grant edAut hori ty is considered “complex” and get Aut hority()
must return nul | .

An example of a “complex” G- ant edAut hority would be an implementation that stores a list of
operations and authority thresholds that apply to different customer account numbers. Representing
this complex GrantedAuthority as a String would be quite difficult, and as a result the
get Aut hori ty() method should return nul | . This will indicate to any AccessDeci si onManager
that it will need to specifically support the G- ant edAut hor i t y implementation in order to understand
its contents.

Spring Security includes one concrete Grant edAut hority implementation,
Grant edAut hori tyl npl . This allows any user-specified String to be converted into a
Grant edAut hori ty. All Aut henti cati onProvi ders included with the security architecture use
Grant edAut hori tyl npl to populate the Aut henti cat i on object.

14.2 Pre-Invocation Handling

As we've also seen in the Technical Overview chapter, Spring Security provides interceptors which
control access to secure objects such as method invocations or web requests. A pre-invocation decision
on whether the invocation is allowed to proceed is made by the AccessDeci si onManager .

The AccessDecisionManager

The AccessDeci si onManager is called by the AbstractSecuritylnterceptor and is
responsible for making final access control decisions. The AccessDeci si onManager interface
contains three methods:

voi d deci de(Aut henti cati on authentication, OCbject secure(ject,

Col I ecti on<ConfigAttri bute> attrs) throws AccessDeni edExcepti on;
bool ean supports(ConfigAttribute attribute);
bool ean supports(Cd ass cl azz);

3.2.0.RC1 Spring Security 75

#tech-granted-authority
#secure-objects

Spring Security

The AccessDeci si onManager's deci de method is passed all the relevant information it needs
in order to make an authorization decision. In particular, passing the secure Obj ect enables
those arguments contained in the actual secure object invocation to be inspected. For example,
let's assume the secure object was a Met hodl nvocati on. It would be easy to query the
Met hodl nvocat i on for any Cust omer argument, and then implement some sort of security logic
in the AccessDeci si onManager to ensure the principal is permitted to operate on that customer.
Implementations are expected to throw an AccessDeni edExcept i on if access is denied.

The supports(ConfigAttribute) method is called by the Abstract Securityl nterceptor
at startup time to determine if the AccessDeci si onManager can process the passed
ConfigAttribute.Thesupports(d ass) methodis called by a security interceptor implementation
to ensure the configured AccessDeci si onManager supports the type of secure object that the security
interceptor will present.

Voting-Based AccessDecisionManager Implementations

Whilst users can implement their own AccessDeci si onManager to control all aspects of authorization,
Spring Security includes several AccessDeci si onManager implementations that are based on voting.
Figure 14.1, “Voting Decision Manager” illustrates the relevant classes.

AccessDecisionManager

ConfigAttribute @ AccessDecisionVoter

* :
= | Y
: AbstractAccessDecisionManager P
I

N
L 1

SecurityConfig Pl '
RoleVater '

AuthenticatedVoter

AffirmativeBased

UnanimousBased

ConsensusBased

Figure 14.1. Voting Decision Manager

Using this approach, a series of AccessDeci si onVot er implementations are polled on an
authorization decision. The AccessDeci si onManager then decides whether or not to throw an
AccessDeni edExcept i on based on its assessment of the votes.

The AccessDeci si onVot er interface has three methods:
int vote(Authentication authentication, Object object, Collection<ConfigAttribute> attrs);

bool ean supports(ConfigAttribute attribute);
bool ean supports(C ass cl azz);

Concrete implementations return an int, with possible values being reflected in the
AccessDeci si onVot er static fields ACCESS ABSTAI N, ACCESS DENI EDand ACCESS GRANTED. A

3.2.0.RC1 Spring Security 76

Spring Security

voting implementation will return ACCESS_ABSTAI Nif it has no opinion on an authorization decision. If
it does have an opinion, it must return either ACCESS_DENI ED or ACCESS_GRANTED.

There are three concrete AccessDeci si onManager s provided with Spring Security that tally the
votes. The ConsensusBased implementation will grant or deny access based on the consensus of
non-abstain votes. Properties are provided to control behavior in the event of an equality of votes
or if all votes are abstain. The Af fi r mat i veBased implementation will grant access if one or more
ACCESS_CGRANTEDvotes were received (i.e. a deny vote will be ignored, provided there was at least one
grant vote). Like the ConsensusBased implementation, there is a parameter that controls the behavior
if all voters abstain. The Unani nousBased provider expects unanimous ACCESS GRANTED votes in
order to grant access, ignoring abstains. It will deny access if there is any ACCESS_DENI ED vote. Like
the other implementations, there is a parameter that controls the behaviour if all voters abstain.

It is possible to implement a custom AccessDeci si onManager that tallies votes differently. For
example, votes from a particular AccessDeci si onVot er might receive additional weighting, whilst a
deny vote from a particular voter may have a veto effect.

Rol eVot er

The most commonly used AccessDeci si onVot er provided with Spring Security is the simple
Rol eVot er, which treats configuration attributes as simple role names and votes to grant access if the
user has been assigned that role.

It will vote if any Confi gAt tri but e begins with the prefix ROLE . It will vote to grant access if there
is a & ant edAut hor i t y which returns a St r i ng representation (via the get Aut hori t y() method)
exactly equal to one or more Conf i gAtt ri but es starting with the prefix ROLE_. If there is no exact
match of any Conf i gAttri but e starting with ROLE_, the Rol eVot er will vote to deny access. If no
Confi gAttri but e begins with ROLE_, the voter will abstain.

Aut hent i cat edVot er

Another voter which we've implicitly seen is the Aut henti cat edVot er, which can be used to
differentiate between anonymous, fully-authenticated and remember-me authenticated users. Many
sites allow certain limited access under remember-me authentication, but require a user to confirm their
identity by logging in for full access.

When we've used the attribute | S AUTHENTI CATED_ANONYMOUSLY to grant anonymous access, this
attribute was being processed by the Aut hent i cat edVot er . See the Javadoc for this class for more
information.

Custom Voters

Obviously, you can also implement a custom AccessDeci si onVot er and you can put just about any
access-control logic you want in it. It might be specific to your application (business-logic related) or
it might implement some security administration logic. For example, you'll find a _blog article on the
SpringSource web site which describes how to use a voter to deny access in real-time to users whose
accounts have been suspended.

14.3 After Invocation Handling

Whilst the AccessDeci si onManager is called by the Abstract Securitylnterceptor before
proceeding with the secure object invocation, some applications need a way of modifying the object
actually returned by the secure object invocation. Whilst you could easily implement your own AOP

3.2.0.RC1 Spring Security 77

http://blog.springsource.com/2009/01/02/spring-security-customization-part-2-adjusting-secured-session-in-real-time/

Spring Security

concern to achieve this, Spring Security provides a convenient hook that has several concrete
implementations that integrate with its ACL capabilities.

Figure 14.2, “After Invocation Implementation” illustrates Spring Security's
Afterlnvocati onManager and its concrete implementations.

AfterinvocationManager AfterinvocationProvider
b 1.n v o

I
I
I ’ ._
I
1

AfterinvocationProviderManager AbstractAciProvider PostinvocationAdvica

Provider

AclEntryAfterinvocationProvider

Figure 14.2. After Invocation Implementation

Like many other parts of Spring Security, Afterlnvocati onManager has a single
concrete implementation, Afterlnvocati onProvi der Manager, which polls a list of
AfterlnvocationProvi ders. Each Afterl nvocati onProvi der is allowed to modify the return
object or throw an AccessDeni edExcept i on. Indeed multiple providers can modify the object, as the
result of the previous provider is passed to the next in the list.

Please be aware that if you're using Aft er |l nvocati onManager, you will still need configuration
attributes that allow the Met hodSecurityl nterceptor's AccessDeci si onManager to allow
an operation. If you're using the typical Spring Security included AccessDeci si onManager
implementations, having no configuration attributes defined for a particular secure method invocation will
cause each AccessDeci si onVot er to abstain from voting. In turn, if the AccessDeci si onManager
property "al | ow f Al | Abst ai nDeci si ons"isf al se,an AccessDeni edExcept i on will be thrown.
You may avoid this potential issue by either (i) setting "al | ow f Al | Abst ai nDeci si ons" to t rue
(although this is generally not recommended) or (ii) simply ensure that there is at least one configuration
attribute that an AccessDeci si onVot er will vote to grant access for. This latter (recommended)
approach is usually achieved through a ROLE_USER or ROLE_AUTHENTI CATED configuration attribute.

14.4 Hierarchical Roles

It is a common requirement that a particular role in an application should automatically “include” other
roles. For example, in an application which has the concept of an “admin” and a “user” role, you may
want an admin to be able to do everything a normal user can. To achieve this, you can either make
sure that all admin users are also assigned the “user” role. Alternatively, you can modify every access
constraint which requires the “user” role to also include the “admin” role. This can get quite complicated
if you have a lot of different roles in your application.

The use of a role-hierarchy allows you to configure which roles (or authorities) should include others.
An extended version of Spring Security's Rol eVot er, Rol eHi er ar chyVot er, is configured with a
Rol eHi er ar chy, from which it obtains all the “reachable authorities” which the user is assigned. A
typical configuration might look like this:

3.2.0.RC1 Spring Security 78

#authz-role-voter

Spring Security

<bean id="rol eVoter" class="org.springfranework.security.access. vote. Rol eHi erarchyVoter">
<constructor-arg ref="rol eH erarchy" />
</ bean>
<bean id="rol eH erarchy"
cl ass="org. springframework. security.access. hi erarchi cal rol es. Rol eHi erarchyl npl ">
<property nane="hi erarchy">
<val ue>
ROLE_ADM N > ROLE_STAFF
ROLE_STAFF > ROLE_USER
ROLE_USER > ROLE_GUEST
</ val ue>
</ property>
</ bean>

Here we have four roles in a hierarchy ROLE_ ADM N => ROLE STAFF => ROLE _USER =>
ROLE_GUEST. A user who is authenticated with ROLE_ADM N, will behave as if they have all four roles
when security contraints are evaluated against an AccessDeci si onManager cconfigured with the
above Rol eHi er ar chyVot er. The > symbol can be thought of as meaning “includes”.

Role hierarchies offer a convenient means of simplifying the access-control configuration data for your
application and/or reducing the number of authorities which you need to assign to a user. For more
complex requirements you may wish to define a logical mapping between the specific access-rights
your application requires and the roles that are assigned to users, translating between the two when
loading the user information.

3.2.0.RC1 Spring Security 79

Spring Security

15. Secure Object Implementations

15.1 AOP Alliance (MethodInvocation) Security Interceptor

Prior to Spring Security 2.0, securing Met hodl nvocati ons needed quite a lot of boiler plate
configuration. Now the recommended approach for method security is to use hamespace configuration.
This way the method security infrastructure beans are configured automatically for you so you don't
really need to know about the implementation classes. We'll just provide a quick overview of the classes
that are involved here.

Method security in enforced using a MethodSecuritylnterceptor, which secures
Met hodl nvocat i ons. Depending on the configuration approach, an interceptor may be
specific to a single bean or shared between multiple beans. The interceptor uses a
Met hodSecuri t yMet adat aSour ce instance to obtain the configuration attributes that apply to
a particular method invocation. MapBasedMet hodSecuri t yMet adat aSour ce is used to store
configuration attributes keyed by method names (which can be wildcarded) and will be used
internally when the attributes are defined in the application context using the <i nt er cept - net hods>
or <pr ot ect - poi nt > elements. Other implementations will be used to handle annotation-based
configuration.

Explicit MethodSecuritylnterceptor Configuration

You can of course configure a Met hodSecuri tyl t er cept or directly in your application context for
use with one of Spring AOP's proxying mechanisms:

<bean i d="bankManager Security" class=

"org. springframework. security.access.intercept.aopalliance. MethodSecuritylnterceptor">
<property nane="aut henti cati onManager" ref="aut henti cati onManager"/>
<property nane="accessDeci si onManager" ref="accessDeci si onManager"/ >
<property nane="afterlnvocati onVanager" ref="afterlnvocati onManager"/>
<property nanme="securityMet adat aSource" >

<sec: net hod- securi ty- net adat a- sour ce>

<sec: protect nethod="com nyconpany. BankManager . del ete*" access="ROLE_SUPERVI SOR'/ >

</ sec: net hod- security- met adat a- sour ce>
</ property>
</ bean>

15.2 AspectJ (JoinPoint) Security Interceptor

The AspectJ security interceptor is very similar to the AOP Alliance security interceptor discussed in the
previous section. Indeed we will only discuss the differences in this section.

The Aspect] interceptor is named Aspect JSecuri t yl nt er cept or . Unlike the AOP Alliance security
interceptor, which relies on the Spring application context to weave in the security interceptor
via proxying, the Aspect JSecuritylnterceptor is weaved in via the Aspect] compiler. It
would not be uncommon to use both types of security interceptors in the same application, with
Aspect JSecurityl nterceptor being used for domain object instance security and the AOP
Alliance Met hodSecuri t yl nt er cept or being used for services layer security.

3.2.0.RC1 Spring Security 80

<sec: prot ect nethod="com nyconpany. BankManager . get Bal ance" access="ROLE TELLER, ROLE_SUPERVI SOR"/

#ns-method-security

Spring Security

Let's first consider how the Aspect JSecuri tyl nt er cept or is configured in the Spring application
context:

<bean i d="bankManager Security" class=

"org. springframework. security.access.intercept.aspectj.AspectJMet hodSecuritylnterceptor">
<property nane="aut henticati onManager" ref="authenticati onManager"/>
<property nane="accessDeci si onManager" ref="accessDeci si onManager"/>
<property nane="afterlnvocati onManager" ref="afterlnvocati onManager"/>
<property nane="securityMet adat aSource" >
<sec: net hod- securi ty- net adat a- sour ce>
<sec: protect method="com nyconpany. BankManager . del et e*" access="ROLE_SUPERVI SOR'/ >

<sec: protect nethod="com nyconpany. BankManager . get Bal ance" access="ROLE_TELLER, ROLE_SUPERVI SCR"/
</ sec: met hod- security-nmet adat a- sour ce>

</ property>
</ bean>

As you can see, aside from the class name, the AspectJSecuritylnterceptor is
exactly the same as the AOP Alliance security interceptor. Indeed the two interceptors can
share the same securityMetadat aSource, as the SecurityMet adataSource works with
java.l ang. refl ect. Met hods rather than an AOP library-specific class. Of course, your access
decisions have access to the relevant AOP library-specific invocation (ie Met hodl nvocati on or
Joi nPoi nt) and as such can consider a range of addition criteria when making access decisions (such
as method arguments).

Next you'll need to define an AspectJ aspect . For example:

3.2.0.RC1 Spring Security 81

Spring Security

package org. springfranmework. security. sanpl es. aspectj ;

i mport org.springframework. security.access.intercept.aspectj.AspectJSecuritylnterceptor;
i nport org.springfranmework. security.access.intercept.aspectj.AspectJCal |l back;

i mport org.springframework. beans. factory. |nitializingBean;

publ i c aspect Donmmi nObj ect | nst anceSecurityAspect inplenents InitializingBean {

private AspectJSecuritylnterceptor securitylnterceptor;

poi nt cut donmmi nhj ect | nst anceExecution(): target(PersistableEntity)
&& execution(public * *(..)) && !wi thin(Domai nCbj ect| nstanceSecurityAspect);

bj ect around(): donmmi nObj ect | nst anceExecution() {
if (this.securitylnterceptor == null) {
return proceed();

Aspect JCal | back cal | back = new AspectJCal | back() {
public Object proceedWthObject() {
return proceed();

b

return this.securitylnterceptor.invoke(thisJoinPoint, callback);

publ i c AspectJSecuritylnterceptor getSecuritylnterceptor() {
return securitylnterceptor;

public void setSecuritylnterceptor(AspectJSecuritylnterceptor securitylnterceptor) ({
this.securitylnterceptor = securitylnterceptor;

public void afterPropertiesSet() throws Exception {
if (this.securitylnterceptor == null)
throw new |11 egal Argunent Excepti on("securitylnterceptor required");

In the above example, the security interceptor will be applied to every instance of
Per si st abl eEnt i t y, which is an abstract class not shown (you can use any other class or poi nt cut
expression you like). For those curious, Aspect JCal | back is needed because the proceed();
statement has special meaning only within an ar ound() body. The Aspect JSecuri tyl nt er cept or
calls this anonymous Aspect JCal | back class when it wants the target object to continue.

You will need to configure Spring to load the aspect and wire it with the
Aspect JSecuri tyl nt er cept or. A bean declaration which achieves this is shown below:

<bean i d="donmai n(bj ect | nst anceSecuri t yAspect "
cl ass="security.sanpl es. aspect . Domai nObj ect | nst anceSecurit yAspect"
factory-net hod="aspect O " >
<property nane="securitylnterceptor" ref="bankManager Security"/>
</ bean>

3.2.0.RC1 Spring Security 82

Spring Security

That's it! Now you can create your beans from anywhere within your application, using whatever means
you think fit (eg new Per son() ;) and they will have the security interceptor applied.

3.2.0.RC1 Spring Security 83

Spring Security

16. Expression-Based Access Control

Spring Security 3.0 introduced the ability to use Spring EL expressions as an authorization mechanism in
addition to the simple use of configuration attributes and access-decision voters which have seen before.
Expression-based access control is built on the same architecture but allows complicated boolean logic
to be encapsulated in a single expression.

16.1 Overview

Spring Security uses Spring EL for expression support and you should look at how that works if you are
interested in understanding the topic in more depth. Expressions are evaluated with a “root object” as
part of the evaluation context. Spring Security uses specific classes for web and method security as the
root object, in order to provide built-in expressions and access to values such as the current principal.

Common Built-In Expressions

The base class for expression root objects is Securit yExpr essi onRoot . This provides some
common expressions which are available in both web and method security.

Table 16.1. Common built-in expressions

Expression Description
hasRol e([rol e]) Returns t r ue if the current principal has the specified role.

hasAnyRol e([rol el, rol e2]) Returns t r ue if the current principal has any of the supplied roles
(given as a comma-separated list of strings)

princi pal Allows direct access to the principal object representing the current
user
aut henti cati on Allows direct access to the current Aut henti cati on object

obtained from the Securi t yCont ext

permtAll Always evaluates to t r ue

denyAl | Always evaluates to f al se

i sAnonynous() Returns t r ue if the current principal is an anonymous user

i sRemerber Me() Returns t r ue if the current principal is a remember-me user
i sAut henti cat ed() Returns t r ue if the user is not anonymous

i sFul | yAut henti cat ed() Returns t r ue if the user is not an anonymous or a remember-me
user

16.2 Web Security Expressions

To use expressions to secure individual URLs, you would first need to set the use- expr essi ons
attribute in the <ht t p> element to t r ue. Spring Security will then expect the access attributes of the
<i nt er cept - ur |l > elements to contain Spring EL expressions. The expressions should evaluate to a
boolean, defining whether access should be allowed or not. For example:

3.2.0.RC1 Spring Security 84

Spring Security

<http use-expressions="true">
<intercept-url pattern="/adm n*"
access="hasRol e(' adm n') and hasl pAddress(' 192.168.1.0/24")"/>

</ http>

Here we have defined that the “admin” area of an application (defined by the URL pattern) should
only be available to users who have the granted authority “admin” and whose IP address matches
a local subnet. We've already seen the built-in hasRol e expression in the previous section. The
expression hasl pAddress is an additional built-in expression which is specific to web security.
It is defined by the WebSecurit yExpr essi onRoot class, an instance of which is used as the
expression root object when evaluation web-access expressions. This object also directly exposed the
Ht t pSer vl et Request object under the name r equest so you can invoke the request directly in an
expression.

If expressions are being used, a WeDbExpressionVoter wil be added to the
AccessDeci si onManager which is used by the namespace. So if you aren't using the namespace
and want to use expressions, you will have to add one of these to your configuration.

16.3 Method Security Expressions

Method security is a bit more complicated than a simple allow or deny rule. Spring Security 3.0 introduced
some new annotations in order to allow comprehensive support for the use of expressions.

@°r e and @Post Annotations

There are four annotations which support expression attributes to allow pre and post-invocation
authorization checks and also to support filtering of submitted collection arguments or return values.
They are @r eAut hori ze, @r eFi | t er, @ost Aut hor i ze and @ost Fi | t er . Their use is enabled
through the gl obal - net hod- securi t y namespace element:

<gl obal - met hod- security pre-post-annotati ons="enabl ed"/>

Access Control using @r eAut hori ze and @Post Aut hori ze

The most obviously useful annotation is @ eAut hor i ze which decides whether a method can actually
be invoked or not. For example (from the “Contacts” sample application)

@°r eAut hori ze("hasRol e(' ROLE_USER) ")

public void create(Contact contact);
which means that access will only be allowed for users with the role "ROLE_USER". Obviously the same
thing could easily be achieved using a traditional configuration and a simple configuration attribute for
the required role. But what about:

@°r eAut hori ze(" hasPer ni ssi on(#contact, 'admn')")

public voi d del etePerm ssion(Contact contact, Sid recipient, Perm ssion perm ssion);
Here we're actually using a method argument as part of the expression to decide whether the current
user has the “admin’permission for the given contact. The built-in hasPer ni ssi on() expression is
linked into the Spring Security ACL module through the application context, as we'll see below. You
can access any of the method arguments by name as expression variables, provided your code has

3.2.0.RC1 Spring Security 85

#el-permission-evaluator

Spring Security

debug information compiled in. Any Spring-EL functionality is available within the expression, so you
can also access properties on the arguments. For example, if you wanted a particular method to only
allow access to a user whose username matched that of the contact, you could write

@Pr eAut hori ze(" #cont act . name == aut henti cati on. nane")
public void doSonet hi ng(Contact contact);

Here we are accessing another built—in expression, aut hent i cat i on, which is the Aut hent i cati on
stored in the security context. You can also access its “principal” property directly, using the expression
princi pal . The value will often be a User Det ai | s instance, so you might use an expression like
princi pal . usernane or pri nci pal . enabl ed.

Less commonly, you may wish to perform an access-control check after the method has been invoked.
This can be achieved using the @ost Aut hori ze annotation. To access the return value from a
method, use the built-in name r et ur nQbj ect in the expression.

Filtering using @r eFi |l ter and @ostFilter

As you may already be aware, Spring Security supports filtering of collections and arrays and this can
now be achieved using expressions. This is most commonly performed on the return value of a method.
For example:

@°r eAut hori ze("hasRol e(' ROLE_USER) ")

@ostFilter("hasPerm ssion(filterObject, '"read') or hasPerm ssion(filterObject,
"adnmin')")

public List<Contact> getAll();

When using the @Post Fi | t er annotation, Spring Security iterates through the returned collection and
removes any elements for which the supplied expression is false. The name fil t er Obj ect refers
to the current object in the collection. You can also filter before the method call, using @r eFi |l ter,
though this is a less common requirement. The syntax is just the same, but if there is more than one
argument which is a collection type then you have to select one by name using the fi | t er Tar get
property of this annotation.

Note that filtering is obviously not a substitute for tuning your data retrieval queries. If you are filtering
large collections and removing many of the entries then this is likely to be inefficient.

Built-In Expressions

There are some built-in expressions which are specific to method security, which we have already seen
in use above. The filterTarget and r et ur nVal ue values are simple enough, but the use of the
hasPer m ssi on() expression warrants a closer look.

The Per m ssi onEval uat or interface

hasPer m ssi on() expressions are delegated to an instance of Perm ssi onEval uator. It is
intended to bridge between the expression system and Spring Security's ACL system, allowing you to
specify authorization constraints on domain objects, based on abstract permissions. It has no explicit
dependencies on the ACL module, so you could swap that out for an alternative implementation if
required. The interface has two methods:

3.2.0.RC1 Spring Security 86

Spring Security

bool ean hasPer mi ssi on(Aut henti cati on aut henticati on, Object targetDomai nObject,
bj ect perm ssion);

bool ean hasPer mi ssi on(Aut henti cati on authentication, Serializable targetld,
String target Type, bject perm ssion);

which map directly to the available versions of the expression, with the exception that the first argument
(the Aut hent i cat i on object) is not supplied. The first is used in situations where the domain object,
to which access is being controlled, is already loaded. Then expression will return true if the current
user has the given permission for that object. The second version is used in cases where the object is
not loaded, but its identifier is known. An abstract “type” specifier for the domain object is also required,
allowing the correct ACL permissions to be loaded. This has traditionally been the Java class of the
object, but does not have to be as long as it is consistent with how the permissions are loaded.

To use hasPer mi ssi on() expressions, you have to explicitly configure a Per mi ssi onEval uat or
in your application context. This would look something like this:

<security: gl obal - net hod- security pre-post-annotations="enabl ed">
<security: expression-handl er ref="expressi onHandl er"/>
</ security: gl obal - net hod-security>

<bean i d="expressi onHandl er" cl ass=
"org. springframework. security.access. expressi on. net hod. Def aul t Met hodSecuri t yExpr essi onHandl er "
<property nanme="perni ssi onEval uator" ref="myPerni ssi onEval uator"/>
</ bean>

Where nyPer mi ssi onEval uat or is the bean which implements Per ni ssi onEval uat or . Usually
this will be the implementation from the ACL module which is called Acl Per m ssi onEval uat or. See
the “Contacts” sample application configuration for more details.

3.2.0.RC1 Spring Security 87

Part V. Additional Topics

In this part we cover features which require a knowledge of previous chapters as well as some of the
more advanced and less-commonly used features of the framework.

Spring Security

17. Domain Object Security (ACLS)

17.1 Overview

Complex applications often will find the need to define access permissions not simply at a web request
or method invocation level. Instead, security decisions need to comprise both who (Aut hent i cati on),
where (Met hodl nvocat i on) and what (SoneDonai nQbj ect). In other words, authorization decisions
also need to consider the actual domain object instance subject of a method invocation.

Imagine you're designing an application for a pet clinic. There will be two main groups of users of your
Spring-based application: staff of the pet clinic, as well as the pet clinic's customers. The staff will have
access to all of the data, whilst your customers will only be able to see their own customer records. To
make it a little more interesting, your customers can allow other users to see their customer records,
such as their "puppy preschool” mentor or president of their local "Pony Club”. Using Spring Security
as the foundation, you have several approaches that can be used:

1. Write your business methods to enforce the security. You could consult a collection within
the Customer domain object instance to determine which users have access. By using the
Securi t yCont ext Hol der. get Cont ext (). get Aut henti cati on(), you'll be able to access
the Aut henti cati on object.

2. Write an AccessDeci si onVot er to enforce the security from the G ant edAut hori ty[] s stored
in the Aut hent i cati on object. This would mean your Aut henti cat i onManager would need
to populate the Aut henti cati on with custom Gr ant edAut hori t y[Js representing each of the
Cust onmer domain object instances the principal has access to.

3. Write an AccessDeci si onVot er to enforce the security and open the target Cust oner domain
object directly. This would mean your voter needs access to a DAO that allows it to retrieve the
Cust omer object. It would then access the Cust omer object's collection of approved users and
make the appropriate decision.

Each one of these approaches is perfectly legitimate. However, the first couples your authorization
checking to your business code. The main problems with this include the enhanced difficulty of unit
testing and the fact it would be more difficult to reuse the Cust oner authorization logic elsewhere.
Obtaining the Gr ant edAut hori t y[] sfrom the Aut hent i cat i on object is also fine, but will not scale
to large numbers of Cust omnrer s. If a user might be able to access 5,000 Cust oner s (unlikely in this
case, but imagine if it were a popular vet for a large Pony Club!) the amount of memory consumed
and time required to construct the Aut hent i cati on object would be undesirable. The final method,
opening the Cust oner directly from external code, is probably the best of the three. It achieves
separation of concerns, and doesn't misuse memory or CPU cycles, but it is still inefficient in that
both the AccessDeci si onVot er and the eventual business method itself will perform a call to the
DAO responsible for retrieving the Cust oner object. Two accesses per method invocation is clearly
undesirable. In addition, with every approach listed you'll need to write your own access control list
(ACL) persistence and business logic from scratch.

Fortunately, there is another alternative, which we'll talk about below.

17.2 Key Concepts

Spring Security's ACL services are shipped in the spri ng- security-acl - xxx. j ar. You will need
to add this JAR to your classpath to use Spring Security's domain object instance security capabilities.

3.2.0.RC1 Spring Security 89

Spring Security

Spring Security's domain object instance security capabilities centre on the concept of an access control
list (ACL). Every domain object instance in your system has its own ACL, and the ACL records details of
who can and can't work with that domain object. With this in mind, Spring Security delivers three main
ACL-related capabilities to your application:

» A way of efficiently retrieving ACL entries for all of your domain objects (and modifying those ACLSs)
« A way of ensuring a given principal is permitted to work with your objects, before methods are called

« A way of ensuring a given principal is permitted to work with your objects (or something they return),
after methods are called

As indicated by the first bullet point, one of the main capabilities of the Spring Security ACL module
is providing a high-performance way of retrieving ACLs. This ACL repository capability is extremely
important, because every domain object instance in your system might have several access control
entries, and each ACL might inherit from other ACLs in a tree-like structure (this is supported out-of-the-
box by Spring Security, and is very commonly used). Spring Security's ACL capability has been carefully
designed to provide high performance retrieval of ACLs, together with pluggable caching, deadlock-
minimizing database updates, independence from ORM frameworks (we use JDBC directly), proper
encapsulation, and transparent database updating.

Given databases are central to the operation of the ACL module, let's explore the four main tables used
by default in the implementation. The tables are presented below in order of size in a typical Spring
Security ACL deployment, with the table with the most rows listed last:

* ACL_SID allows us to uniquely identify any principal or authority in the system ("SID" stands for
"security identity"). The only columns are the ID, a textual representation of the SID, and a flag to
indicate whether the textual representation refers to a principal name or a G ant edAut hority.
Thus, there is a single row for each unique principal or G- ant edAut hori ty. When used in the
context of receiving a permission, a SID is generally called a "recipient".

e ACL_CLASS allows us to uniquely identify any domain object class in the system. The only columns
are the ID and the Java class name. Thus, there is a single row for each unique Class we wish to
store ACL permissions for.

 ACL_OBJECT_IDENTITY stores information for each unique domain object instance in the system.
Columns include the ID, a foreign key to the ACL_CLASS table, a unique identifier so we know which
ACL_CLASS instance we're providing information for, the parent, a foreign key to the ACL_SID table
to represent the owner of the domain object instance, and whether we allow ACL entries to inherit
from any parent ACL. We have a single row for every domain object instance we're storing ACL
permissions for.

» Finally, ACL_ENTRY stores the individual permissions assigned to each recipient. Columns include
a foreign key to the ACL_OBJECT _IDENTITY, the recipient (ie a foreign key to ACL_SID), whether
we'll be auditing or not, and the integer bit mask that represents the actual permission being granted
or denied. We have a single row for every recipient that receives a permission to work with a domain
object.

As mentioned in the last paragraph, the ACL system uses integer bit masking. Don't worry, you need
not be aware of the finer points of bit shifting to use the ACL system, but suffice to say that we have 32
bits we can switch on or off. Each of these bits represents a permission, and by default the permissions
are read (bit 0), write (bit 1), create (bit 2), delete (bit 3) and administer (bit 4). It's easy to implement

3.2.0.RC1 Spring Security 90

Spring Security

your own Per mi ssi on instance if you wish to use other permissions, and the remainder of the ACL
framework will operate without knowledge of your extensions.

It is important to understand that the number of domain objects in your system has absolutely no
bearing on the fact we've chosen to use integer bit masking. Whilst you have 32 bits available for
permissions, you could have billions of domain object instances (which will mean billions of rows in
ACL_OBJECT_IDENTITY and quite probably ACL_ENTRY). We make this point because we've found
sometimes people mistakenly believe they need a bit for each potential domain object, which is not
the case.

Now that we've provided a basic overview of what the ACL system does, and what it looks like at a table

structure, let's explore the key interfaces. The key interfaces are:

e Acl : Every domain object has one and only one Acl object, which internally holds the
AccessControl Entrys as well as knows the owner of the Acl. An Acl does not refer
directly to the domain object, but instead to an Cbj ectldentity. The Acl is stored in the
ACL_OBJECT_IDENTITY table.

* AccessControl Entry: An Acl holds multiple AccessControl Entrys, which are often
abbreviated as ACEs in the framework. Each ACE refers to a specific tuple of Per m ssi on, Si d and
Acl . An ACE can also be granting or non-granting and contain audit settings. The ACE is stored in
the ACL_ENTRY table.

» Permi ssi on: A permission represents a particular immutable bit mask, and offers convenience
functions for bit masking and outputting information. The basic permissions presented above (bits 0
through 4) are contained in the BasePer i ssi on class.

* Sid: The ACL module needs to refer to principals and Grant edAut hority[]s. A level of
indirection is provided by the Si d interface, which is an abbreviation of "security identity". Common
classes include Pri nci pal Si d (to represent the principal inside an Aut hent i cat i on object) and
Gr ant edAut hori t ySi d. The security identity information is stored in the ACL_SID table.

e« Objectldentity: Each domain object is represented internally within the ACL module by an
Obj ect | denti ty. The default implementation is called Cbj ect 1 denti tyl npl .

» Acl Servi ce: Retrieves the Acl applicable for a given Obj ectldentity. In the included
implementation (JdbcAcl Servi ce), retrieval operations are delegated to a LookupSt r at egy.
The LookupSt r at egy provides a highly optimized strategy for retrieving ACL information, using
batched retrievals (Basi cLookupSt r at egy) and supporting custom implementations that leverage
materialized views, hierarchical queries and similar performance-centric, non-ANSI SQL capabilities.

» Mut abl eAcl Servi ce: Allows a modified Acl to be presented for persistence. It is not essential to
use this interface if you do not wish.

Please note that our out-of-the-box AclService and related database classes all use ANSI SQL. This
should therefore work with all major databases. At the time of writing, the system had been successfully
tested using Hypersonic SQL, PostgreSQL, Microsoft SQL Server and Oracle.

Two samples ship with Spring Security that demonstrate the ACL module. The first is the Contacts
Sample, and the other is the Document Management System (DMS) Sample. We suggest taking a look
over these for examples.

17.3 Getting Started

To get starting using Spring Security's ACL capability, you will need to store your ACL information
somewhere. This necessitates the instantiation of a Dat aSour ce using Spring. The Dat aSour ce is
then injected into a JdbcMut abl eAcl Servi ce and Basi cLookupSt r at egy instance. The latter
provides high-performance ACL retrieval capabilities, and the former provides mutator capabilities.

3.2.0.RC1 Spring Security 91

Spring Security

Refer to one of the samples that ship with Spring Security for an example configuration. You'll also need
to populate the database with the four ACL-specific tables listed in the last section (refer to the ACL
samples for the appropriate SQL statements).

Once you've created the required schema and instantiated JdbcMut abl eAcl Ser vi ce, you'll next
need to ensure your domain model supports interoperability with the Spring Security ACL package.
Hopefully Obj ect | denti t yl npl will prove sufficient, as it provides a large number of ways in which it
can be used. Most people will have domain objects that contain a publ i ¢ Seri al i zabl e get1d()
method. If the return type is long, or compatible with long (eg an int), you will find you need not give
further considerationto Cbj ect | dent i t y issues. Many parts of the ACL module rely on long identifiers.
If you're not using long (or an int, byte etc), there is a very good chance you'll need to reimplement a
number of classes. We do not intend to support non-long identifiers in Spring Security's ACL module,
as longs are already compatible with all database sequences, the most common identifier data type,
and are of sufficient length to accommodate all common usage scenarios.

The following fragment of code shows how to create an Acl , or modify an existing Acl :

/'l Prepare the information we'd |like in our access control entry (ACE)
bjectldentity oi = new Objectldentitylnpl (Foo.class, new Long(44));
Sid sid = new Princi pal Si d(" Samant ha") ;

Permi ssion p = BasePerni ssi on. ADM NI STRATI ON,

/'l Create or update the rel evant ACL
Mut abl eAcl acl = null;
try {
acl = (Mutabl eAcl) acl Service. readAcl Byl d(oi);
} catch (Not FoundException nfe) {
acl = acl Service. createAcl (0i);

}

/1 Now grant sone permissions via an access control entry (ACE)
acl .insertAce(acl.getEntries().length, p, sid, true);
acl Servi ce. updat eAcl (acl) ;

In the example above, we're retrieving the ACL associated with the "Foo" domain object with identifier
number 44. We're then adding an ACE so that a principal named "Samantha" can "administer" the
object. The code fragment is relatively self-explanatory, except the insertAce method. The first argument
to the insertAce method is determining at what position in the Acl the new entry will be inserted. In the
example above, we're just putting the new ACE at the end of the existing ACEs. The final argument is
a boolean indicating whether the ACE is granting or denying. Most of the time it will be granting (true),
but if it is denying (false), the permissions are effectively being blocked.

Spring Security does not provide any special integration to automatically create, update or delete ACLs
as part of your DAO or repository operations. Instead, you will need to write code like shown above for
your individual domain objects. It's worth considering using AOP on your services layer to automatically
integrate the ACL information with your services layer operations. We've found this quite an effective
approach in the past.

Once you've used the above techniques to store some ACL information in the database, the next step
is to actually use the ACL information as part of authorization decision logic. You have a number of
choices here. You could write your own AccessDeci si onVot er or Afterl nvocati onProvi der
that respectively fires before or after a method invocation. Such classes would use Acl Servi ce
to retrieve the relevant ACL and then call Acl.isG anted(Permission[] perm ssion,
Sid[] sids, boolean admnistrativeMde) to decide whether permission is granted or

3.2.0.RC1 Spring Security 92

Spring Security

denied. Alternately, you could use our Acl EntryVot er, Acl EntryAfterl nvocati onProvi der
or Acl EntryAfterlnvocationCol | ectionFilteringProvider classes. All of these classes
provide a declarative-based approach to evaluating ACL information at runtime, freeing you from
needing to write any code. Please refer to the sample applications to learn how to use these classes.

3.2.0.RC1 Spring Security 93

Spring Security

18. Pre-Authentication Scenarios

There are situations where you want to use Spring Security for authorization, but the user has already
been reliably authenticated by some external system prior to accessing the application. We refer to these
situations as “pre-authenticated” scenarios. Examples include X.509, Siteminder and authentication by
the J2EE container in which the application is running. When using pre-authentication, Spring Security
has to

1. Identify the user making the request.

2. Obtain the authorities for the user.

The details will depend on the external authentication mechanism. A user might be identified by their
certificate information in the case of X.509, or by an HTTP request header in the case of Siteminder.
If relying on container authentication, the user will be identified by calling the get User Pri nci pal ()
method on the incoming HTTP request. In some cases, the external mechanism may supply role/
authority information for the user but in others the authorities must be obtained from a separate source,
such as a User Det ai | sServi ce.

18.1 Pre-Authentication Framework Classes

Because most pre-authentication mechanisms follow the same pattern, Spring Security has a set
of classes which provide an internal framework for implementing pre-authenticated authentication
providers. This removes duplication and allows new implementations to be added in a structured fashion,
without having to write everything from scratch. You don't need to know about these classes if you want
to use something like X.509 authentication, as it already has a namespace configuration option which
is simpler to use and get started with. If you need to use explicit bean configuration or are planning on
writing your own implementation then an understanding of how the provided implementations work will
be useful. You will find classes under the org.springframework.security.web.authentication.preauth. We
just provide an outline here so you should consult the Javadoc and source where appropriate.

AbstractPreAuthenticatedProcessingFilter

This class will check the current contents of the security context and, if empty, it will attempt to extract
user information from the HTTP request and submit it to the Aut hent i cati onManager . Subclasses
override the following methods to obtain this information:

protected abstract Object getPreAuthenticatedPrincipal (HtpServletRequest request);

protected abstract Object getPreAuthenticatedCredential s(HttpServletRequest request);

After calling these, the filter will create a Pr eAut hent i cat edAut hent i cat i onToken containing the
returned data and submit it for authentication. By “authentication” here, we really just mean further
processing to perhaps load the user's authorities, but the standard Spring Security authentication
architecture is followed.

Like other Spring Security authentication filters, the pre-authentication filter has
an authenticationDetail sSource property which by default will create a
WebAut henti cati onDet ai | s object to store additional information such as the session-identifier and
originating IP address in the det ai | s property of the Aut hent i cat i on object. In cases where user
role information can be obtained from the pre-authentication mechanism, the data is also stored in this
property, with the details implementing the Gr ant edAut hori t i esCont ai ner interface. This enables

3.2.0.RC1 Spring Security 94

#x509

Spring Security

the authentication provider to read the authorities which were externally allocated to the user. We'll look
at a concrete example next.

J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

If the filter is configured with an aut henti cati onDet ai | sSour ce which is an instance of this
class, the authority information is obtained by calling the i sUser I nRol e(String role) method
for each of a pre-determined set of “mappable roles”. The class gets these from a configured
Mappabl eAttri but esRetri ever. Possible implementations include hard-coding a list in the
application context and reading the role information from the <security-r ol e> information in a
web. xm file. The pre-authentication sample application uses the latter approach.

There is an additional stage where the roles (or attributes) are mapped to Spring Security
Grant edAut hor i ty objects using a configured At t ri but es2G- ant edAut hori ti esMapper. The
default will just add the usual ROLE_ prefix to the names, but it gives you full control over the behaviour.

PreAuthenticatedAuthenticationProvider

The pre-authenticated provider has little more to do than load the User Det ai | s object for the user.
It does this by delegating to a Aut henti cati onUser Det ai | sSer vi ce. The latter is similar to the
standard User Det ai | sSer vi ce but takes an Aut hent i cat i on object rather than just user name:

public interface Authenticati onUserDetail sService {
UserDetail s | oadUser Det ai | s(Aut henti cati on token) throws UsernaneNot FoundExcepti on;

}
This interface may have also other uses but with pre-authentication it allows access to the authorities
which were packaged in the Aut henti cati on object, as we saw in the previous section. The
PreAut hent i cat edG ant edAut hori ti esUser Det ai | sSer vi ce class does this. Alternatively, it
may delegate to a standard User Det ai | sSer vi ce via the User Det ai | sByNanmeSer vi ceW apper
implementation.

Http403ForbiddenEntryPoint

The Aut henti cati onEnt r yPoi nt was discussed in the technical overview chapter. Normally it is
responsible for kick-starting the authentication process for an unauthenticated user (when they try to
access a protected resource), but in the pre-authenticated case this doesn't apply. You would only
configure the Excepti onTr ansl ati onFi | t er with an instance of this class if you aren't using pre-
authentication in combination with other authentication mechanisms. It will be called if the user is
rejected by the Abst r act Pr eAut hent i cat edPr ocessi ngFi | t er resulting in a null authentication.
It always returns a 403-forbidden response code if called.

18.2 Concrete Implementations

X.509 authentication is covered in its own chapter. Here we'll look at some classes which provide support
for other pre-authenticated scenarios.

Request-Header Authentication (Siteminder)

An external authentication system may supply information to the application by setting specific
headers on the HTTP request. A well known example of this is Siteminder, which passes
the username in a header called SM USER. This mechanism is supported by the class

3.2.0.RC1 Spring Security 95

#tech-intro-auth-entry-point
#x509

Spring Security

Request Header Aut henti cati onFi | t er which simply extracts the username from the header. It
defaults to using the name SM_USER as the header name. See the Javadoc for more details.

N\ 'Fip

Note that when using a system like this, the framework performs no authentication checks at
all and it is extremely important that the external system is configured properly and protects all
access to the application. If an attacker is able to forge the headers in their original request
without this being detected then they could potentially choose any username they wished.

Siteminder Example Configuration

A typical configuration using this filter would look like this:

<security:http>

<l-- Additional http configuration omtted -->

<security:customfilter position="PRE_AUTH FILTER' ref="sitemi nderFilter" />
</security: http>

<bean id="sitemi nderFilter" class=
"org. springframewor k. security.web. aut henti cati on. preaut h. Request Header Aut henti cationFilter">
<property nane="princi pal Request Header" val ue="SM USER'/ >
<property nane="aut henticati onManager" ref="authenticati onManager" />
</ bean>

<bean i d="preaut hAut hProvi der"
cl ass="org. springframewor k. security.web. aut henti cati on. preaut h. PreAut henti cat edAut henti cati onProvi der">
<property nane="preAut henti cat edUser Det ai | sServi ce">
<bean i d="user Det ai | sServi ceW apper"

cl ass="org. springframework. security.core.userdetails. UserDetail sByNaneSer vi ceW apper " >
<property nane="user Det ai | sServi ce" ref="userDetail sService"/>
</ bean>
</ property>
</ bean>

<security: aut henticati on- manager alias="authenticati onManager">
<security:aut hentication-provider ref="preauthAuthProvider" />
</ security:aut hentication-nmanager>

We've assumed here that the security namespace is being used for configuration. It's also assumed
that you have added a User Det ai | sSer vi ce (called “userDetailsService”) to your configuration to
load the user's roles.

J2EE Container Authentication

The class J2eePr eAut henti cat edProcessi ngFil ter will extract the username from the
user Princi pal property of the HtpServletRequest. Use of this filter would usually
be combined with the use of J2EE roles as described above in the section called
“J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource”.

There is a sample application in the codebase which uses this approach, so get hold of the code from
subversion and have a look at the application context file if you are interested. The code is in the
sanpl es/ pr eaut h directory.

3.2.0.RC1 Spring Security 96

#ns-config

Spring Security

19. LDAP Authentication

19.1 Overview

LDAP is often used by organizations as a central repository for user information and as an authentication
service. It can also be used to store the role information for application users.

There are many different scenarios for how an LDAP server may be configured so Spring Security's
LDAP provider is fully configurable. It uses separate strategy interfaces for authentication and role
retrieval and provides default implementations which can be configured to handle a wide range of
situations.

You should be familiar with LDAP before trying to use it with Spring Security. The following link provides
a good introduction to the concepts involved and a guide to setting up a directory using the free LDAP
server OpenLDAP: htt p: //ww. zyt rax. com books/ | dap/. Some familiarity with the JNDI APIs
used to access LDAP from Java may also be useful. We don't use any third-party LDAP libraries (Mozilla,
JLDAP etc.) in the LDAP provider, but extensive use is made of Spring LDAP, so some familiarity with
that project may be useful if you plan on adding your own customizations.

19.2 Using LDAP with Spring Security

LDAP authentication in Spring Security can be roughly divided into the following stages.

1. Obtaining the unique LDAP “Distinguished Name”, or DN, from the login name. This will
often mean performing a search in the directory, unless the exact mapping of usernames
to DNs is known in advance. So a user might enter the name “joe” when logging
in, but the actual name used to authenticate to LDAP will be the full DN, such as
ui d=j oe, ou=users, dc=spri ngsour ce, dc=com

2. Authenticating the user, either by “binding” as that user or by performing a remote “compare
operation of the user's password against the password attribute in the directory entry for the DN.

3. Loading the list of authorities for the user.

The exception is when the LDAP directory is just being used to retrieve user information and
authenticate against it locally. This may not be possible as directories are often set up with limited read
access for attributes such as user passwords.

We will look at some configuration scenarios below. For full information on available configuration
options, please consult the security namespace schema (information from which should be available
in your XML editor).

19.3 Configuring an LDAP Server

The first thing you need to do is configure the server against which authentication should take place.
This is done using the <I dap- ser ver > element from the security namespace. This can be configured
to point at an external LDAP server, using the ur | attribute:

<l dap-server url="Idap://springframework. org: 389/ dc=spri ngf ramewor k, dc=org" />

3.2.0.RC1 Spring Security 97

http://www.zytrax.com/books/ldap/

Spring Security

Using an Embedded Test Server

The <I dap- server > element can also be used to create an embedded server, which can be very
useful for testing and demonstrations. In this case you use it without the ur | attribute:

<| dap-server root="dc=spri ngfranework, dc=org"/>

Here we've specified that the root DIT of the directory should be “dc=springframework,dc=org”, which
is the default. Used this way, the namespace parser will create an embedded Apache Directory server
and scan the classpath for any LDIF files, which it will attempt to load into the server. You can customize
this behaviour using the | di f attribute, which defines an LDIF resource to be loaded:

<l dap-server |dif="classpath:users.|dif" />

This makes it a lot easier to get up and running with LDAP, since it can be inconvenient to work all the
time with an external server. It also insulates the user from the complex bean configuration needed to
wire up an Apache Directory server. Using plain Spring Beans the configuration would be much more
cluttered. You must have the necessary Apache Directory dependency jars available for your application
to use. These can be obtained from the LDAP sample application.

Using Bind Authentication

This is the most common LDAP authentication scenario.

<l dap- aut henti cati on- provi der user-dn-pattern="ui d={0}, ou=peopl e"/ >

This simple example would obtain the DN for the user by substituting the user login name in the supplied
pattern and attempting to bind as that user with the login password. This is OK if all your users are
stored under a single node in the directory. If instead you wished to configure an LDAP search filter to
locate the user, you could use the following:

<l dap- aut henti cati on- provi der user-search-filter="(uid={0})"
user - sear ch- base="ou=peopl e"/ >

If used with the server definition above, this would perform a search under the DN
ou=peopl e, dc=spri ngf r anewor k, dc=or g using the value of the user - sear ch-fi | t er attribute
as a filter. Again the user login name is substituted for the parameter in the filter name, so it will search
for an entry with the ui d attribute equal to the user name. If user - sear ch- base isn't supplied, the
search will be performed from the root.

Loading Authorities

How authorities are loaded from groups in the LDAP directory is controlled by the following attributes.

e group-sear ch- base. Defines the part of the directory tree under which group searches should be
performed.

e group-rol e-attribute. The attribute which contains the name of the authority defined by the
group entry. Defaults to cn

3.2.0.RC1 Spring Security 98

Spring Security

e group-search-filter. The filter which is used to search for group membership. The default is
uni queMember ={ 0}, corresponding to the gr oupCf Uni queNanes LDAP class ! In this case, the
substituted parameter is the full distinguished name of the user. The parameter { 1} can be used if
you want to filter on the login name.

So if we used the following configuration

<l dap- aut henti cati on- provi der user-dn-pattern="ui d={0}, ou=peopl e"
gr oup- sear ch- base="ou=gr oups" />

and authenticated successfully as user “ben”, the subsequent loading of authorities would
perform a search under the directory entry ou=groups, dc=spri ngframework, dc=org,
looking for entries which contain the attribute uni queMenber with value
ui d=ben, ou=peopl e, dc=spri ngf r amewor k, dc=or g. By default the authority names will have the
prefix ROLE_ prepended. You can change this using the r ol e- pr ef i x attribute. If you don't want any
prefix, use r ol e- prefi x="none". For more information on loading authorities, see the Javadoc for
the Def aul t LdapAut hori ti esPopul at or class.

19.4 Implementation Classes

The namespace configuration options we've used above are simple to use and much more concise
than using Spring beans explicitly. There are situations when you may need to know how to configure
Spring Security LDAP directly in your application context. You may wish to customize the behaviour of
some of the classes, for example. If you're happy using hamespace configuration then you can skip
this section and the next one.

The main LDAP provider class, LdapAut henti cati onProvi der, doesn't actually do much
itself but delegates the work to two other beans, an LdapAuthenticator and an
LdapAut hori ti esPopul at or which are responsible for authenticating the user and retrieving the
user's set of G ant edAut hori t ys respectively.

LdapAuthenticator Implementations

The authenticator is also responsible for retrieving any required user attributes. This is because the
permissions on the attributes may depend on the type of authentication being used. For example, if
binding as the user, it may be necessary to read them with the user's own permissions.

There are currently two authentication strategies supplied with Spring Security:
» Authentication directly to the LDAP server ("bind" authentication).

» Password comparison, where the password supplied by the user is compared with the one stored in
the repository. This can either be done by retrieving the value of the password attribute and checking
it locally or by performing an LDAP "compare" operation, where the supplied password is passed to
the server for comparison and the real password value is never retrieved.

Common Functionality

Before it is possible to authenticate a user (by either strategy), the distinguished name (DN)
has to be obtained from the login name supplied to the application. This can be done either
by simple pattern-matching (by setting the setUserDnPatterns array property) or by setting the
userSearch property. For the DN pattern-matching approach, a standard Java pattern format is

3.2.0.RC1 Spring Security 99

Spring Security

used, and the login name will be substituted for the parameter {0} . The pattern should be relative
to the DN that the configured Spri ngSecurityCont ext Source will bind to (see the section
on connecting to the LDAP server for more information on this). For example, if you are using
an LDAP server with the URL | dap: / / nronkeynachi ne. co. uk/ dc=spri ngf ranmewor k, dc=or g,
and have a pattern ui d={ 0}, ou=gr eat apes, then a login name of "gorilla" will map to a DN
ui d=goril | a, ou=gr eat apes, dc=spri ngf ramewor k, dc=or g. Each configured DN pattern will
be tried in turn until a match is found. For information on using a search, see the section on search
objects below. A combination of the two approaches can also be used - the patterns will be checked
first and if no matching DN is found, the search will be used.

BindAuthenticator

The class Bi ndAut hent i cat or in the package
org. springframework. security. | dap. aut henti cati on implements the bind authentication
strategy. It simply attempts to bind as the user.

PasswordComparisonAuthenticator

The class PasswordConpari sonAut henticator implements the password comparison
authentication strategy.

Connecting to the LDAP Server

The beans discussed above have to be able to connect to the server. They both have
to be supplied with a SpringSecurityContextSource which is an extension of Spring
LDAP's Cont ext Source. Unless you have special requirements, you will usually configure a
Def aul t Spri ngSecurityCont ext Sour ce bean, which can be configured with the URL of your
LDAP server and optionally with the username and password of a "manager" user which will be used
by default when binding to the server (instead of binding anonymously). For more information read the
Javadoc for this class and for Spring LDAP's Abst r act Cont ext Sour ce.

LDAP Search Objects

Often a more complicated strategy than simple DN-matching is required to locate a user entry in the
directory. This can be encapsulated in an LdapUser Sear ch instance which can be supplied to the
authenticator implementations, for example, to allow them to locate a user. The supplied implementation
is Fi | t er BasedLdapUser Sear ch.

Fi | t er BasedLdapUser Sear ch

This bean uses an LDAP filter to match the user object in the directory. The process is explained in
the Javadoc for the corresponding search method on the JDK DirContext class. As explained there, the
search filter can be supplied with parameters. For this class, the only valid parameter is { 0} which will
be replaced with the user's login name.

LdapAuthoritiesPopulator

After authenticating the user successfully, the LdapAut henti cat i onProvi der will attempt to load
a set of authorities for the user by calling the configured LdapAut horiti esPopul at or bean.
The Def aul t LdapAut hori ti esPopul at or is an implementation which will load the authorities by
searching the directory for groups of which the user is a member (typically these will be gr oupOf Nanes

3.2.0.RC1 Spring Security 100

http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)

Spring Security

or gr oupOF Uni queNarnes entries in the directory). Consult the Javadoc for this class for more details
on how it works.

If you want to use LDAP only for authentication, but load the authorities from a difference source (such
as a database) then you can provide your own implementation of this interface and inject that instead.

Spring Bean Configuration

A typical configuration, using some of the beans we've discussed here, might look like this:

<bean i d="cont ext Sour ce"
cl ass="org. springframework. security.| dap. Def aul t Spri ngSecurityCont ext Sour ce">
<constructor-arg val ue="I dap:// nonkeynachi ne: 389/ dc=spri ngf ramewor k, dc=or g"/ >
<property nane="userDn" val ue="cn=nmanager, dc=spri ngf ramewor k, dc=org"/ >
<property nane="password" val ue="password"/>
</ bean>

<bean i d="| dapAut hProvi der"
cl ass="org. springframewor k. security.|dap.authentication. LdapAut henti cati onProvi der">
<const ruct or - ar g>
<bean cl ass="org. spri ngfranmework. security.|dap. authentication. Bi ndAut henti cator">
<constructor-arg ref="context Source"/>
<property name="user DnPatterns" >
<l'i st ><val ue>ui d={ 0} , ou=peopl e</ val ue></1i st >
</ property>
</ bean>
</ constructor-arg>
<const ruct or - ar g>
<bean

cl ass="org. springframework. security.|dap.userdetails. DefaultLdapAuthoritiesPopul ator">
<constructor-arg ref="context Source"/>
<constructor-arg val ue="ou=groups"/>
<property nane="groupRol eAttribute" val ue="ou"/>
</ bean>
</ constructor - arg>
</ bean>

This would set up the provider to access an LDAP server with URL | dap: / / monkeynmachi ne: 389/
dc=spri ngf ranewor k, dc=or g. Authentication will be performed by attempting to bind
with the DN ui d=<user -1 ogi n- nane>, ou=peopl e, dc=spri ngf ramewor k, dc=or g. After
successful authentication, roles will be assigned to the user by searching under the DN
ou=gr oups, dc=spri ngf ranmewor k, dc=or g with the default filter (menber =<user' s- DN>) . The
role name will be taken from the “ou” attribute of each match.

To configure a user search object, which uses the filter (ui d=<user -1 ogi n- nane>) for use instead
of the DN-pattern (or in addition to it), you would configure the following bean

<bean i d="user Sear ch"
cl ass="org. springframework. security.|dap.search. FilterBasedLdapUser Sear ch">
<constructor-arg i ndex="0" val ue=""/>
<constructor-arg index="1" val ue="(ui d={0})"/>
<constructor-arg index="2" ref="context Source" />
</ bean>

3.2.0.RC1 Spring Security 101

Spring Security

and use it by setting the Bi ndAut hent i cat or bean's userSearch property. The authenticator would
then call the search object to obtain the correct user's DN before attempting to bind as this user.

LDAP Attributes and Customized UserDetails

The net result of an authentication using LdapAut henti cati onProvi der is the same as a
normal Spring Security authentication using the standard User Det ai | sServi ce interface. A
User Det ai | s object is created and stored in the returned Aut hent i cat i on object. As with using a
User Det ai | sSer vi ce, acommon requirement is to be able to customize this implementation and add
extra properties. When using LDAP, these will normally be attributes from the user entry. The creation
of the User Det ai | s object is controlled by the provider's User Det ai | sCont ext Mapper strategy,
which is responsible for mapping user objects to and from LDAP context data:

public interface UserDetail sContext Mapper {
User Det ai | s mapUser Fr onCont ext (Di r Cont ext Operati ons ctx, String usernane,
Col | ecti on<Grant edAut hority> authorities);

voi d mapUser ToCont ext (User Detai | s user, DirContextAdapter ctx);
}

Only the first method is relevant for authentication. If you provide an implementation of this interface and
inject it into the LdapAut hent i cat i onPr ovi der, you have control over exactly how the UserDetails
object is created. The first parameter is an instance of Spring LDAP's Di r Cont ext Oper at i ons which
gives you access to the LDAP attributes which were loaded during authentication. The user nane
parameter is the name used to authenticate and the final parameter is the collection of authorities loaded
for the user by the configured LdapAut hori ti esPopul at or.

The way the context data is loaded varies slightly depending on the type of authentication you are
using. With the Bi ndAut hent i cat or, the context returned from the bind operation will be used to read
the attributes, otherwise the data will be read using the standard context obtained from the configured
Cont ext Sour ce (when a search is configured to locate the user, this will be the data returned by the
search object).

19.5 Active Directory Authentication

Active Directory supports its own non-standard authentication options, and the normal usage pattern
doesn't fit too cleanly with the standard LdapAut henti cati onProvi der. Typically authentication
is performed using the domain username (in the form user @onai n), rather than using an LDAP
distinguished name. To make this easier, Spring Security 3.1 has an authentication provider which is
customized for a typical Active Directory setup.

ActiveDi rectorylLdapAut henti cati onProvi der
Configuring Act i veDi r ect or yLdapAut hent i cati onProvi der is quite straightforward. You just

need to supply the domain name and an LDAP URL supplying the address of the server 3 An example
configuration would then look like this:

31tis also possible to obtain the server's IP address using a DNS lookup. This is not currently supported, but hopefully will be
in a future version.

3.2.0.RC1 Spring Security 102

Spring Security

<bean i d="adAut henti cati onProvi der"
cl ass="org. springframewor k. security.|dap.aut hentication.ad. ActiveDirectorylLdapAut henti cati onProvider">
<constructor-arg val ue="nydomai n. com' />
<constructor-arg val ue="|dap://adserver. nydomai n. coml " />
</ bean>

}

Note that there is no need to specify a separate Cont ext Sour ce in order to define the server
location - the bean is completely self-contained. A user named “Sharon”, for example, would
then be able to authenticate by entering either the username shar on or the full Active Directory
user Pri nci pal Nane, namely shar on@ydomai n. com The user's directory entry will then be
located, and the attributes returned for possible use in customizing the created User Det ai | s object (a
User Det ai | sCont ext Mapper can be injected for this purpose, as described above). All interaction
with the directory takes place with the identity of the user themselves. There is no concept of a “manager”
user.

By default, the user authorities are obtained from the nenber O attribute values of the user entry. The
authorities allocated to the user can again be customized using a User Det ai | sCont ext Mapper . You
can also inject a Gr ant edAut hori ti esMaper into the provider instance to control the authorities
which end up in the Aut hent i cat i on object.

Active Directory Error Codes

By default, a failed result will cause a standard Spring Security BadCr edent i al sExcepti on. If you
set the property convert SubEr r or CodesToExcepti ons to t r ue, the exception messages will be
parsed to attempt to extract the Active Directory-specific error code and raise a more specific exception.
Check the class Javadoc for more information.

3.2.0.RC1 Spring Security 103

Spring Security

20. JSP Tag Libraries

Spring Security has its own taglib which provides basic support for accessing security information and
applying security constraints in JSPs.

20.1 Declaring the Taglib

To use any of the tags, you must have the security taglib declared in your JSP:

<Yg@@taglib prefix="sec" uri="http://ww.springframework.org/security/tags" %

20.2 The aut hori ze Tag

This tag is used to determine whether its contents should be evaluated or not. In Spring
Security 3.0, it can be used in two ways ! The first approach uses a web-security expression,
specified in the access attribute of the tag. The expression evaluation will be delegated to
the Securi t yExpressi onHandl er <Fi | t er | nvocat i on> defined in the application context (you
should have web expressions enabled in your <ht t p> namespace configuration to make sure this
service is available). So, for example, you might have

<sec: aut hori ze access="hasRol e(' supervisor')">

This content will only be visible to users who have
the "supervisor" authority in their list of <tt>GantedAuthority</tt>s.

</ sec: aut hori ze>

A common requirement is to only show a patrticular link, if the user is actually allowed to click it. How can
we determine in advance whether something will be allowed? This tag can also operate in an alternative
mode which allows you to define a particular URL as an attribute. If the user is allowed to invoke that
URL, then the tag body will be evaluated, otherwise it will be skipped. So you might have something like

<sec: aut hori ze url="/adni n">

This content will only be visible to users who are authorized to send requests to the "/
admi n" URL.

</ sec: aut hori ze>

To use this tag there must also be an instance of Wbl nvocat i onPri vi | egeEval uat or in your
application context. If you are using the namespace, one will automatically be registered. This is an
instance of Def aul t Wbl nvocati onPri vi | egeEval uat or, which creates a dummy web request
for the supplied URL and invokes the security interceptor to see whether the request would succeed
or fail. This allows you to delegate to the access-control setup you defined using i nt er cept - ur |
declarations within the <ht t p> namespace configuration and saves having to duplicate the information
(such as the required roles) within your JSPs. This approach can also be combined with a net hod
attribute, supplying the HTTP method, for a more specific match.

The boolean result of evaluating the tag (whether it grants or denies access) can be stored in a page
context scope variable by setting the var attribute to the variable name, avoiding the need for duplicating
and re-evaluating the condition at other points in the page.

YThe legacy options from Spring Security 2.0 are also supported, but discouraged.

3.2.0.RC1 Spring Security 104

#el-access-web

Spring Security

Disabling Tag Authorization for Testing

Hiding a link in a page for unauthorized users doesn't prevent them from accessing the URL. They
could just type it into their browser directly, for example. As part of your testing process, you may
want to reveal the hidden areas in order to check that links really are secured at the back end. If
you set the system property spring. security. di sabl eUl Security totrue, the aut hori ze
tag will still run but will not hide its contents. By default it will also surround the content with . .. </ span>tags. This allows you to display “hidden” content with a
particular CSS style such as a different background colour. Try running the “tutorial” sample application
with this property enabled, for example.

You can also set the properties spring. security.securedU Prefix and
spring. security. securedU Suffi x if you want to change surrounding text from the default span
tags (or use empty strings to remove it completely).

20.3 The aut henti cati onTag

This tag allows access to the current Aut henti cati on object stored in the security context. It
renders a property of the object directly in the JSP. So, for example, if the pri nci pal property
of the Aut hentication is an instance of Spring Security's User Det ai | s object, then using
<sec:aut hentication property="principal.usernanme" /> will render the name of the
current user.

Of course, it isn't necessary to use JSP tags for this kind of thing and some people prefer to keep as
little logic as possible in the view. You can access the Aut hent i cat i on object in your MVC controller
(by calling Secur i t yCont ext Hol der. get Cont ext (). get Aut henti cati on()) and add the data
directly to your model for rendering by the view.

20.4 The accesscontrol I i st Tag

This tag is only valid when used with Spring Security's ACL module. It checks a comma-separated list
of required permissions for a specified domain object. If the current user has any of those permissions,
then the tag body will be evaluated. If they don't, it will be skipped. An example might be

<sec: accesscontrol | i st hasPerm ssion="1, 2" domai nObj ect =" ${someChj ect}" >

This will be shown if the user has either of the permissions
represented by the values "1" or "2" on the given object.

</ sec: accesscontrol |ist>

The permissions are passed to the Per m ssi onFact or y defined in the application context, converting
them to ACL Per mi ssi on instances, so they may be any format which is supported by the factory - they
don't have to be integers, they could be strings like READor WRI TE. If no Per mi ssi onFact ory is found,
an instance of Def aul t Per mi ssi onFact ory will be used. The Acl Ser vi cefrom the application
context will be used to load the Acl instance for the supplied object. The Acl will be invoked with the
required permissions to check if any of them are granted.

This tag also supports the var attribute, in the same way as the aut hori ze tag.

3.2.0.RC1 Spring Security 105

Spring Security

21. Java Authentication and Authorization Service
(JAAS) Provider

21.1 Overview

Spring Security provides a package able to delegate authentication requests to the Java Authentication
and Authorization Service (JAAS). This package is discussed in detail below.

21.2 AbstractJaasAuthenticationProvider

The AbstractJaasAut henticationProvider is the basis for the provided JAAS
Aut hent i cati onPr ovi der implementations. Subclasses must implement a method that creates the
Logi nCont ext. The Abst ract JaasAut henti cati onProvi der has a number of dependencies
that can be injected into it that are discussed below.

JAAS CallbackHandler

Most JAAS Logi nMbdul es require a callback of some sort. These callbacks are usually used to obtain
the username and password from the user.

In a Spring Security deployment, Spring Security is responsible for this user interaction (via the
authentication mechanism). Thus, by the time the authentication request is delegated through to JAAS,
Spring Security's authentication mechanism will already have fully-populated an Aut henti cati on
object containing all the information required by the JAAS Logi nMbdul e.

Therefore, the JAAS package for Spring Security provides two default callback handlers,
JaasNaneCal | backHandl er and JaasPasswor dCal | backHandl er. Each of these callback
handlers implement JaasAut henti cati onCal | backHandl er. In most cases these callback
handlers can simply be used without understanding the internal mechanics.

For those needing full control over the callback behavior, internally
Abst ract JaasAut henti cati onProvi der wraps these
JaasAut henti cati onCal | backHandl ers with an Internal Cal | backHandl er. The
I nt er nal Cal | backHandl er is the class that actually implements JAAS’ normal Cal | backHandl er
interface. Any time that the JAAS LoginMdule is wused, it is passed a list of
application context configured | nternal Cal | backHandl ers. If the Logi nMbdul e requests
a callback against the Internal Cal | backHandl ers, the callback is in-turn passed to the
JaasAut henti cat i onCal | backHandl er s being wrapped.

JAAS AuthorityGranter

JAAS works with principals. Even "roles" are represented as principals in JAAS. Spring Security, on the
other hand, works with Aut hent i cati on objects. Each Aut henti cat i on object contains a single
principal, and multiple G- ant edAut hori t ys. To facilitate mapping between these different concepts,
Spring Security's JAAS package includes an Aut hori t yGr ant er interface.

An AuthorityGranter is responsible for inspecting a JAAS principal and returning
a set of Strings, representing the authorities assigned to the principal. For
each returned authority string, the AbstractJaasAuthenticationProvider creates a

3.2.0.RC1 Spring Security 106

Spring Security

JaasG ant edAut hority (which implements Spring Security’'s Grant edAut hority interface)
containing the authority string and the JAAS principal that the Aut hori tyG ant er was passed.
The Abst ract JaasAut henti cati onProvi der obtains the JAAS principals by firstly successfully
authenticating the user's credentials using the JAAS Logi nMbdul e, and then accessing the
Logi nCont ext it returns. A call to Logi nCont ext. get Subj ect().getPrincipal s() is
made, with each resulting principal passed to each Aut horityG anter defined against the
Abst ract JaasAut henti cati onProvi der. set Aut horityG ant ers(Li st) property.

Spring Security does not include any production Aut hor i t yGr ant er s given that every JAAS principal
has an implementation-specific meaning. However, there is a Test Aut hori t yG ant er in the unit
tests that demonstrates a simple Aut hor i t yGr ant er implementation.

21.3 DefaultJaasAuthenticationProvider

The Def aul t JaasAut henti cati onProvi der allows a JAAS Configuration object to be
injected into it as a dependency. It then creates a Logi nCont ext using the injected JAAS
Confi guration. This means that Def aul t JaasAut henti cati onProvi der is not bound any
particular implementation of Conf i gur ati on as JaasAut henti cati onProvi der is.

InMemoryConfiguration

In order to make it easy to injecta Conf i gur at i oninto Def aul t JaasAut henti cati onProvi der,a
default in memory implementation named | nMenor yConf i gur at i on is provided. The implementation
constructor accepts a Map where each key represents a login configuration name and the value
represents an Array of AppConfi gurati onEntrys. | nMenor yConfi gurati on also supports a
default Ar r ay of AppConf i gur ati onEnt r y objects that will be used if no mapping is found within the
provided Map. For details, refer to the class level javadoc of | nMenor yConfi gur ati on.

DefaultJaasAuthenticationProvider Example Configuration

While the Spring configuration for | nMenor yConf i gur at i on can be more verbose than the standarad
JAAS configuration files, using it in conjuction with Def aul t JaasAut hent i cati onPr ovi der is more
flexible than JaasAut hent i cat i onPr ovi der since it not dependant on the default Conf i gur ati on
implementation.

An example configuration of Def aul t JaasAut henti cati onProvi der using
I nMenor yConfi gur at i on is provided below. Note that custom implementations of Conf i gur ati on
can easily be injected into Def aul t JaasAut henti cati onProvi der as well.

3.2.0.RC1 Spring Security 107

Spring Security

<bean i d="j aasAut hProvi der"

cl ass="org. springframework. security.authentication.jaas. Defaul tJaasAut henti cati onProvi der" >
<property name="configuration">
<bean cl ass="org. spri ngfranework. security.authentication.jaas.nmenory.|nMenoryConfiguration">
<const ruct or - ar g>
<map>
==
SPRINGSECURI TY is the default | ogi nContextNane
for AbstractJaasAut henticati onProvi der
===
<entry key="SPRI NGSECURI TY" >
<array>
<bean cl ass="javax. security. auth. | ogin. AppConfi gurati onEntry">
<constructor-arg val ue="sanpl e. Sanpl eLogi nModul e" />
<constructor-arg>
<util:constant static-field=
"javax. security.auth. | ogi n. AppConfi gurati onEntry
$Logi nModul eCont r ol Fl ag. REQUI RED"/ >
</ constructor-arg>
<const ruct or - ar g>
<map></ map>
</ constructor-arg>
</ bean>
</array>
</entry>
</ map>
</ const ructor - ar g>
</ bean>
</ property>
<property nane="aut horityGanters">

<list>
<l-- You will need to wite your own inplenmentati on of AuthorityG anter -->
<bean cl ass="org. spri ngfranework. security.authentication.jaas. TestAuthorityGanter"/>
</list>
</ property>
</ bean>

21.4 JaasAuthenticationProvider

The JaasAut henti cati onProvi der assumes the default Configuration is an instance
of _ConfigFile. This assumption is made in order to attempt to update the Confi gurati on.
The JaasAut henti cati onProvi der then uses the default Configuration to create the
Logi nCont ext .

Let's assume we have a JAAS login configuration file, / WEB- | NF/ | ogi n. conf , with the following
contents:

JAASTest {
sanpl e. Sanpl eLogi nModul e required
b

Like all Spring Security beans, the JaasAut hent i cat i onPr ovi der is configured via the application
context. The following definitions would correspond to the above JAAS login configuration file:

3.2.0.RC1 Spring Security 108

http://download.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/sun/security/auth/login/ConfigFile.html

Spring Security

<bean i d="j aasAut henti cati onProvi der"
cl ass="org. springframewor k. security.authentication.jaas.JaasAut henticati onProvi der">
<property nanme="| ogi nConfi g" val ue="/WEB-I| NF/ | ogi n. conf"/>
<property nane="|ogi nCont ext Nane" val ue="JAASTest"/ >
<property nane="cal | backHandl ers" >
<list>
<bean
cl ass="org. springframework. security.authentication.jaas.JaasNaneCal | backHandl er"/ >
<bean
cl ass="org. springfranmewor k. security. aut hentication.jaas.JaasPasswordCal | backHandl er"/

</[list>
</ property>
<property nanme="aut horityG anters">
<list>
<bean cl ass="org. spri ngfranewor k. security. authentication.jaas. TestAuthorityGanter"/

</list>
</ property>
</ bean>

21.5 Running as a Subject

If configured, the JaasApilntegrationFilter wil attempt to run as the Subject on the
JaasAut hent i cat i onToken. This means that the Subj ect can be accessed using:

Subj ect subj ect = Subject. get Subj ect (AccessControl |l er.getContext());

This integration can easily be configured using the jaas-api-provision attribute. This feature is useful
when integrating with legacy or external API's that rely on the JAAS Subject being populated.

3.2.0.RC1 Spring Security 109

#nsa-http-jaas-api-provision

Spring Security

22. CAS Authentication

22.1 Overview

JA-SIG produces an enterprise-wide single sign on system known as CAS. Unlike other initiatives,
JA-SIG's Central Authentication Service is open source, widely used, simple to understand, platform
independent, and supports proxy capabilities. Spring Security fully supports CAS, and provides an easy
migration path from single-application deployments of Spring Security through to multiple-application
deployments secured by an enterprise-wide CAS server.

You can learn more about CAS atht t p: // www. j a- si g. or g/ cas. You will also need to visit this site
to download the CAS Server files.

22.2 How CAS Works

Whilst the CAS web site contains documents that detail the architecture of CAS, we present the general
overview again here within the context of Spring Security. Spring Security 3.x supports CAS 3. At the
time of writing, the CAS server was at version 3.4.

Somewhere in your enterprise you will need to setup a CAS server. The CAS server is simply a standard
WAR file, so there isn't anything difficult about setting up your server. Inside the WAR file you will
customise the login and other single sign on pages displayed to users.

When deploying a CAS 3.4 server, you will also need to specify an Aut henti cati onHandl er
in the depl oyer Confi gCont ext. xm included with CAS. The Aut henti cati onHandl er has
a simple method that returns a boolean as to whether a given set of Credentials is valid.
Your Aut henti cati onHandl er implementation will need to link into some type of backend
authentication repository, such as an LDAP server or database. CAS itself includes numerous
Aut hent i cati onHandl er s out of the box to assist with this. When you download and deploy the
server war file, it is set up to successfully authenticate users who enter a password matching their
username, which is useful for testing.

Apart from the CAS server itself, the other key players are of course the secure web applications
deployed throughout your enterprise. These web applications are known as "services". There are three
types of services. Those that authenticate service tickets, those that can obtain proxy tickets, and those
that authenticate proxy tickets. Authenticating a proxy ticket differs because the list of proxies must be
validated and often times a proxy ticket can be reused.

Spring Security and CAS Interaction Sequence

The basic interaction between a web browser, CAS server and a Spring Security-secured service is
as follows:

1. The web user is browsing the service's public pages. CAS or Spring Security is not involved.

2. The user eventually requests a page that is either secure or one of the beans it uses is secure.
Spring Security's Excepti onTr ansl ati onFi | t er will detect the AccessDeni edExcepti on or
Aut henti cati onExcepti on.

3. Because the user's Authentication object (or lack thereof) caused an
Aut henti cati onException, the ExceptionTransl ati onFilter will call the configured

3.2.0.RC1 Spring Security 110

Spring Security

Aut hent i cati onEnt r yPoi nt . If using CAS, this will be the CasAut hent i cati onEnt r yPoi nt
class.

4. The CasAut henticationEntryPoint will redirect the user's browser to the CAS
server. It will also indicate a service parameter, which is the callback URL for the
Spring Security service (your application). For example, the URL to which the browser
is redirected might be https://my.conpany. com cas/| ogi n?servi ce=htt ps¥8AWRF
%2Fserver 3. conmpany. con?2Fwebapp%F spring_cas_security check.

5. After the user's browser redirects to CAS, they will be prompted for their username and password.
If the user presents a session cookie which indicates they've previously logged on, they will not be
prompted to login again (there is an exception to this procedure, which we'll cover later). CAS will
use the Passwor dHandl er (or Aut henti cati onHandl er if using CAS 3.0) discussed above to
decide whether the username and password is valid.

6. Upon successful login, CAS will redirect the user's browser back to the original service.
It will also include a ticket parameter, which is an opaque string representing the
"service ticket". Continuing our earlier example, the URL the browser is redirected
to might be https://server3. conpany. com webapp/j _spring cas_security_ check?
ti cket =ST- 0- ER94xMIm6pha35CQRoZ.

7.Back in the service web application, the CasAuthenticationFilter is always
listening for requests to /j _spring_cas_security check (this is configurable, but
we'll use the defaults in this introduction). The processing filter will construct a
User nanmePasswor dAut hent i cat i onToken representing the service ticket. The principal will be
equal to CasAut henti cati onFil t er. CAS _STATEFUL | DENTI FI ER, whilst the credentials will
be the service ticket opaque value. This authentication request will then be handed to the configured
Aut hent i cati onManager .

8. The Aut henti cati onManager implementation will be the Provi der Manager, which is in
turn configured with the CasAut henti cati onProvi der. The CasAut henti cati onProvi der
only responds to UsernanePasswordAut henticationTokens containing the CAS-
specific principal (such as CasAut henticationFilter.CAS STATEFUL | DENTI FI ER) and
CasAut henti cati onTokens (discussed later).

9. CasAut hent i cati onProvi der will validate the service ticket using a Ti cket Vali dat or
implementation. This will typically be a Cas20Servi ceTi cket Val i dat or which is one
of the classes included in the CAS client library. In the event the application
needs to validate proxy tickets, the Cas20ProxyTi cketValidator is wused. The
Ti cket Val i dat or makes an HTTPS request to the CAS server in order to validate
the service ticket. It may also include a proxy -callback URL, which is included
in this example: https:// my. conpany. com cas/ proxyVal i dat e?servi ce=htt ps¥8AWRF
%2Fser ver 3. conmpany. con¥2Fwebapp
9%2F] _spring_cas_security_check&ticket=ST-0-

ER94xMImMm6pha35CQRoZ&pgt Ur | =ht t ps: // server 3. company. com webapp/
j _spring_cas_security_proxyreceptor.

10Back on the CAS server, the validation request will be received. If the presented service ticket
matches the service URL the ticket was issued to, CAS will provide an affirmative response in XML
indicating the username. If any proxy was involved in the authentication (discussed below), the list
of proxies is also included in the XML response.

3.2.0.RC1 Spring Security 111

Spring Security

11[OPTIONAL] If the request to the CAS validation service included the proxy callback URL
(in the pgt Url parameter), CAS will include a pgtlou string in the XML response. This
pgt |l ou represents a proxy-granting ticket 10U. The CAS server will then create its own
HTTPS connection back to the pgtUrl. This is to mutually authenticate the CAS server
and the claimed service URL. The HTTPS connection will be used to send a proxy granting
ticket to the original web application. For example, htt ps: // server 3. conpany. com webapp/
j _spring_cas_security_proxyreceptor ?pgtl ou=PGTI QU- 0-
ROzI gr | 4pdAQnMBv IVWO3vnNpevwg St bSGecq3vKB2SgSFFRnj PHE &pgt | d=PGT- 1-
si 9YKKHLr t ACBo64r nsi 3v2nf 7cpCRes Xg5MyESZFAr baZi OKH.

12The Cas20Ti cket Val i dat or will parse the XML received from the CAS server. It will return to the
CasAut henti cati onProvi der aTi cket Response, which includes the username (mandatory),
proxy list (if any were involved), and proxy-granting ticket IOU (if the proxy callback was requested).

13Next CasAut henticationProvider wil call a configured CasProxyDecider. The
CasProxyDeci der indicates whether the proxy list in the Ti cket Response is acceptable to
the service. Several implementations are provided with Spring Security: Rej ect ProxyTi cket s,
Accept AnyCasPr oxy and NanedCasPr oxyDeci der . These names are largely self-explanatory,
except NamedCasPr oxyDeci der which allows a Li st of trusted proxies to be provided.

14CasAut henti cati onProvi der will next request a Aut henti cati onUser Det ai | sServi ce to
load the Gr ant edAut hor i t y objects that apply to the user contained in the Asserti on.

151f there were no problems, CasAut henti cati onProvi der constructs a
CasAut henti cati onToken including the details contained in the Ti cket Response and the
Grant edAut hori tys.

16Control then returns to CasAuthenticationFilter, which places the created
CasAut henti cati onToken in the security context.

17The user's browser is redirected to the original page that caused the Aut henti cati onExcepti on
(or a custom destination depending on the configuration).

It's good that you're still here! Let's now look at how this is configured

22.3 Configuration of CAS Client

The web application side of CAS is made easy due to Spring Security. It is assumed you already know
the basics of using Spring Security, so these are not covered again below. We'll assume a hamespace
based configuration is being used and add in the CAS beans as required. Each section builds upon the
previous section. A full CAS sample application can be found in the Spring Security Samples.

Service Ticket Authentication

This section describes how to setup Spring Security to authenticate Service Tickets. Often times this is
all a web application requires. You will need to add a Ser vi cePr operti es bean to your application
context. This represents your CAS service:

3.2.0.RC1 Spring Security 112

#form-login-flow-handling
#cas-sample

Spring Security

<bean i d="servi ceProperties"
cl ass="org. springframework. security.cas. Servi ceProperties">
<property nane="service"
val ue="https://| ocal host: 8443/ cas-sanpl e/j _spring_cas_security_check"/>
<property nane="sendRenew' val ue="fal se"/>
</ bean>

The servi ce must equal a URL that will be monitored by the CasAut henti cati onFilter. The
sendRenew defaults to false, but should be set to true if your application is particularly sensitive. What
this parameter does is tell the CAS login service that a single sign on login is unacceptable. Instead, the
user will need to re-enter their username and password in order to gain access to the service.

The following beans should be configured to commence the CAS authentication process (assuming
you're using a hamespace configuration):

<security:http entry-point-ref="casEntryPoint">

<security:customfilter position="CAS FILTER' ref="casFilter" />
</security: http>

<bean id="casFilter"
class="org. springframework. security.cas.web. CasAut henti cati onFilter">
<property nanme="aut henti cati onManager" ref="aut henti cati onManager"/>
</ bean>

<bean i d="casEntryPoi nt"
cl ass="org. springframewor k. security. cas.web. CasAut henti cati onEnt ryPoi nt" >
<property name="logi nU|" val ue="https://|ocal host: 9443/ cas/| ogi n"/>
<property nane="servi ceProperties" ref="serviceProperties"/>
</ bean>

For CAS to operate, the Excepti onTransl ati onFilter must have its
aut henti cati onEntryPoi nt property set to the CasAuthenticati onEntryPoint bean.
This can easily be done using entry-point-ref as is done in the example above. The
CasAut henti cati onEnt r yPoi nt must refer to the Ser vi cePr opert i es bean (discussed above),
which provides the URL to the enterprise's CAS login server. This is where the user's browser will be
redirected.

The CasAut henti cationFilter has very similar properties to the
User nanePasswor dAut henti cati onFil ter (used for form-based logins). You can use these
properties to customize things like behavior for authentication success and failure.

Next you need to add a CasAut henti cat i onProvi der and its collaborators:

3.2.0.RC1 Spring Security 113

#ns-entry-point-ref

Spring Security

<security: aut henticati on- manager alias="authenticati onManager">
<security: aut hentication-provider ref="casAuthenticationProvider" />
</ security:aut hentication-nmanager>

<bean i d="casAut henti cati onProvi der"
cl ass="org. springframework. security.cas. aut henti cati on. CasAut henti cati onProvi der">
<property nane="aut henti cati onUser Det ai | sServi ce">

<bean cl ass="org. spri ngframework. security.core. userdetails. UserDetail sByNameServi ceW apper"
<constructor-arg ref="user Service" />
</ bean>
</ property>
<property nane="servi ceProperties" ref="serviceProperties" />
<property name="ticket Val i dator">
<bean cl ass="org.jasig.cas.client.validation.Cas20Servi ceTi cketVal i dator">
<constructor-arg i ndex="0" val ue="https://|ocal host: 9443/ cas" />
</ bean>
</ property>
<property nane="key" val ue="an_id_for_this_auth_provider_only"/>
</ bean>

<security:user-service id="userService">
<security:user nane="joe" password="joe" authorities="ROLE USER' />

</ security:user-service>

The CasAut henti cati onProvi der uses a User Det ai | sSer vi ce instance to load the authorities
for a user, once they have been authenticated by CAS. We've shown a simple in-memory setup here.
Note that the CasAut henti cat i onProvi der does not actually use the password for authentication,
but it does use the authorities.

The beans are all reasonably self-explanatory if you refer back to the How CAS Works section.

This completes the most basic configuration for CAS. If you haven't made any mistakes, your web
application should happily work within the framework of CAS single sign on. No other parts of Spring
Security need to be concerned about the fact CAS handled authentication. In the following sections we
will discuss some (optional) more advanced configurations.

Single Logout

The CAS protocol supports Single Logout and can be easily added to your Spring Security configuration.
Below are updates to the Spring Security configuration that handle Single Logout

3.2.0.RC1 Spring Security 114

#cas-how-it-works

Spring Security

<security:http entry-point-ref="casEntryPoint">

<security: | ogout |ogout-success-url="/cas-|ogout.jsp"/>

<security:customfilter ref="requestSinglelLogoutFilter" before="LOGOUT_FILTER'/>

<security:customfilter ref="singlelLogoutFilter" before="CAS FILTER'/>
</security: http>

<l-- This filter handles a Single Logout Request fromthe CAS Server -->
<bean id="singl eLogoutFilter" class="org.jasig.cas.client.session.SingleSignQtFilter"/>
<I-- This filter redirects to the CAS Server to signal Single Logout should be perforned
===
<bean i d="request Si ngl eLogoutFilter"
cl ass="org. springframewor k. security.web. aut henti cati on. | ogout. LogoutFilter">
<constructor-arg value="https://|ocal host: 9443/ cas/| ogout"/>
<const ruct or - ar g>
<bean cl ass=

"org. springframewor k. security.web. aut henti cation. | ogout. SecurityContextLogout Handl er"/ >
</ const ructor - ar g>
<property nane="filterProcessesUr|" value="/j spring cas_security_ |logout"/>

</ bean>

The | ogout element logs the user out of the local application, but does not terminate the
session with the CAS server or any other applications that have been logged into. The
request Si ngl eLogout Fi | t er filter will allow the url of / spring_security_cas_| ogout to be
requested to redirect the application to the configured CAS Server logout url. Then the CAS Server will
send a Single Logout request to all the services that were signed into. The si ngl eLogout Fi |l ter
handles the Single Logout request by looking up the Ht t pSessi on in a static Map and then invalidating
it.

It might be confusing why both the | ogout element and the si ngl eLogout Fi | t er are needed. It
is considered best practice to logout locally first since the Si ngl eSi gnQut Fi | t er just stores the
Ht t pSessi on in a static Map in order to call invalidate on it. With the configuration above, the flow of
logout would be:

1. The user requests /j _spring_security_| ogout which would log the user out of the local
application and send the user to the logout success page.

2. The logout success page, / cas- | ogout . j sp, should instruct the user to click a link pointing to /
j _spring_cas_security_l ogout in order to logout out of all applications.

3. When the user clicks the link, the user is redirected to the CAS single logout URL (https://
| ocal host : 9443/ cas/ | ogout).

4. On the CAS Server side, the CAS single logout URL then submits single logout requests to all the
CAS Services. On the CAS Service side, JASIG's Si ngl eSi gnQut Fi | t er processes the logout
request by invaliditing the original session.

The next step is to add the following to your web.xml

3.2.0.RC1 Spring Security 115

Spring Security

<filter>
<filter-nane>characterEncodi ngFilter</filter-nanme>
<filter-class>org.springframework.web. filter.CharacterEncodingFilter</filter-class>
<i ni t-paranp
<par am nane>encodi ng</ par am nane>
<par am val ue>UTF- 8</ par am val ue>
</init-paranr
</[filter>
<filter-mpping>
<filter-nane>characterEncodi ngFilter</filter-nanme>
<url-pattern>/*</url-pattern>
</filter-mappi ng>
<listener>
<l istener-class>org.jasig.cas.client.session.SingleSignQutHttpSessionListener</
|'i stener-class>
</listener>

When using the SingleSignOutFilter you might encounter some encoding issues. Therefore it is
recommended to add the Char act er Encodi ngFi | t er to ensure that the character encoding is
correctwhen using the Si ngl eSi gnQut Fi | t er . Again, refer to JASIG's documentation for details. The
Si ngl eSi gnCQut Ht t pSessi onLi st ener ensures that when an Ht t pSessi on expires, the mapping
used for single logout is removed.

Authenticating to a Stateless Service with CAS

This section describes how to authenticate to a service using CAS. In other words, this section discusses
how to setup a client that uses a service that authenticates with CAS. The next section describes how
to setup a stateless service to Authenticate using CAS.

Configuring CAS to Obtain Proxy Granting Tickets

In order to authenticate to a stateless service, the application needs to obtain a proxy granting ticket
(PGT). This section describes how to configure Spring Security to obtain a PGT building upon then
Service Ticket Authentication configuration.

The first step is to include a ProxyG ant i ngTi cket St or age in your Spring Security configuration.
This is used to store PGT's that are obtained by the CasAut hent i cati onFi | t er so that they can be
used to obtain proxy tickets. An example configuration is shown below

<l--
NOTE: In a real application you should not use an in nmenory inplenentation. You wll
al so want
to ensure to clean up expired tickets by calling

ProxyG anti ngTi cket St or age. cl eanup()

-->

<bean i d="pgt Storage" class="org.jasig.cas.client.proxy.ProxyG antingTi cket Storagel npl"/
>

The next step is to update the CasAut henti cati onProvi der to be able to obtain proxy tickets.
To do this replace the Cas20Ser vi ceTi cket Val i dat or with a Cas20Pr oxyTi cket Val i dat or.
The proxyCal | backUr| should be set to a URL that the application will receive PGT's at. Last, the
configuration should also reference the Pr oxyGr ant i ngTi cket St or age soitcan use a PGT to obtain
proxy tickets. You can find an example of the configuration changes that should be made below.

3.2.0.RC1 Spring Security 116

cas-st

Spring Security

<bean i d="casAut henti cati onProvi der"
cl ass="org. springframewor k. security.cas. aut henti cati on. CasAut henti cati onProvi der">

<property nane="ticket Val i dator">
<bean cl ass="org.jasig.cas.client.validation.Cas20ProxyTi cket Val i dator" >
<constructor-arg val ue="https://I| ocal host: 9443/ cas"/ >

<property nane="proxyCal | backUrl"
val ue="https://| ocal host: 8443/ cas-sanpl e/j _spring_cas_security_proxyreceptor"/

<property nane="proxyG antingTi cket St orage" ref="pgt Storage"/>
</ bean>
</ property>
</ bean>

The last step is to update the CasAut henticationFilter to accept PGT and to store them
in the ProxyGranti ngTi cket St or age. It is important the the pr oxyRecept or Url matches the
proxyCal | backUr| of the Cas20Pr oxyTi cket Val i dat or. An example configuration is shown
below.

<bean id="casFilter"
cl ass="org. springframework. security.cas.web. CasAut henti cati onFilter">

<property nane="proxyG antingTi cket St orage" ref="pgt Storage"/>
<property nane="proxyReceptorUrl" value="/j_spring_cas_security_proxyreceptor"/>
</ bean>

Calling a Stateless Service Using a Proxy Ticket

Now that Spring Security obtains PGTs, you can use them to create proxy tickets which can be used
to authenticate to a stateless service. The CAS sample application contains a working example in the
Pr oxyTi cket Sanpl eSer vl et . Example code can be found below:

protected void doGet (H t pServl et Request request, HttpServl et Response response)
throws Servl et Exception, | OException {

/1l NOTE: The CasAut henticationToken can al so be obtai ned using
/] SecurityCont ext Hol der. get Cont ext (). get Aut henti cati on()
final CasAuthenticationToken token = (CasAuthenticati onToken)

request. get User Pri nci pal () ;
/'l proxyTicket could be reused to nake calls to the CAS service even if the
/] target url differs
final String proxyTicket =

t oken. get Assertion().getPrincipal ().getProxyTicket For(targetUrl);

/1l Make a renpote call using the proxy ticket

final String serviceU |l = targetUrl+"?ticket="+URLEncoder.encode(proxyTicket,
"UTF-8");

String proxyResponse = ConmonUtil s. get ResponseFronServer (serviceU |, "UTF-8");

Proxy Ticket Authentication

The CasAut henti cati onPr ovi der distinguishes between stateful and stateless clients. A stateful
clientis considered any that submitstothefi | t er ProcessUr| ofthe CasAut henticationFilter.

3.2.0.RC1 Spring Security 117

#cas-sample

Spring Security

A stateless client is any that presents an authentication request to CasAut henti cati onFil ter on
a URL other thanthefilterProcessuUrl .

Because remoting protocols have no way of presenting themselves within the context of an
Ht t pSessi on, itisn't possible to rely on the default practice of storing the security context in the session
between requests. Furthermore, because the CAS server invalidates a ticket after it has been validated
by the Ti cket Val i dat or, presenting the same proxy ticket on subsequent requests will not work.

One obvious option is to not use CAS at all for remoting protocol clients. However, this would eliminate
many of the desirable features of CAS. As a middle-ground, the CasAut henti cati onPr ovi der
uses a Statel essTi cketCache. This is used solely for stateless clients which use a
principal equal to CasAut henti cati onFilter. CAS STATELESS | DENTI FI ER. What happens is
the CasAut henti cati onProvi der will store the resulting CasAut henti cati onToken in the
St at el essTi cket Cache, keyed on the proxy ticket. Accordingly, remoting protocol clients can
present the same proxy ticket and the CasAut henti cati onPr ovi der will not need to contact the
CAS server for validation (aside from the first request). Once authenticated, the proxy ticket could be
used for URLs other than the original target service.

This section builds upon the previous sections to accomodate proxy ticket authentication. The first step
is to specify to authenticate all artifacts as shown below.

<bean i d="servi ceProperties"
cl ass="org. springframework. security.cas. Servi ceProperties">

<property name="aut henticateAll Artifacts" val ue="true"/>
</ bean>

The next step is to specify servi ceProperties and the aut henticati onDet ai | sSource
for the CasAuthenticationFilter. The serviceProperties property instructs the
CasAut henticationFilter to attempt to authenticate all artifacts instead of only ones
present on the filterProcessUrl. The Servi ceAuthenticationDetail sSource creates
a ServiceAuthenticationDetails that ensures the current URL, based upon the
Ht t pServl et Request, is used as the service URL when validating the ticket. The
method for generating the service URL can be customized by injecting a custom
Aut hent i cati onDet ai | sSour ce that returns a custom Ser vi ceAut henti cati onDetail s.

<bean id="casFilter"
cl ass="org. springframework. security.cas.web. CasAut henticationFilter">

<property nane="servi ceProperties" ref="serviceProperties"/>
<property nane="aut henti cati onDet ai | sSour ce" >
<bean cl ass=

"org.springframewor k. security.cas.web. aut henti cati on. Servi ceAut henti cati onDet ai | sSour ce"/
>
</ property>
</ bean>

You will also need to update the CasAut henti cati onProvi der to handle proxy tickets. To do
this replace the Cas20Ser vi ceTi cket Val i dat or with a Cas20Pr oxyTi cket Val i dat or . You will
need to configure the st at el essTi cket Cache and which proxies you want to accept. You can find
an example of the updates required to accept all proxies below.

3.2.0.RC1 Spring Security 118

Spring Security

<bean i d="casAut henti cati onProvi der"
cl ass="org. springframework. security.cas. aut henti cati on. CasAut henti cati onProvi der">

<property name="ti cket Val i dat or ">
<bean cl ass="org.jasig.cas.client.validation.Cas20ProxyTi cketVal i dator">
<constructor-arg val ue="https://| ocal host: 9443/ cas"/ >
<property nanme="accept AnyProxy" val ue="true"/>
</ bean>
</ property>
<property nanme="st at el essTi cket Cache" >

<bean cl ass="org. spri ngframewor k. security.cas. aut henti cati on. EhCacheBasedTi cket Cache" >
<property name="cache">
<bean cl ass="net . sf.ehcache. Cache"
init-nethod="initialise" destroy-nmethod="di spose">
<constructor-arg val ue="casTi ckets"/>
<constructor-arg val ue="50"/>
<constructor-arg val ue="true"/>
<constructor-arg val ue="fal se"/>
<constructor-arg val ue="3600"/>
<constructor-arg val ue="900"/>
</ bean>
</ property>
</ bean>
</ property>
</ bean>

3.2.0.RC1 Spring Security 119

Spring Security

23. X.509 Authentication

23.1 Overview

The most common use of X.509 certificate authentication is in verifying the identity of a server when
using SSL, most commonly when using HTTPS from a browser. The browser will automatically check
that the certificate presented by a server has been issued (ie digitally signed) by one of a list of trusted
certificate authorities which it maintains.

You can also use SSL with “mutual authentication”; the server will then request a valid certificate from
the client as part of the SSL handshake. The server will authenticate the client by checking that its
certificate is signed by an acceptable authority. If a valid certificate has been provided, it can be obtained
through the servlet API in an application. Spring Security X.509 module extracts the certificate using a
filter. It maps the certificate to an application user and loads that user's set of granted authorities for use
with the standard Spring Security infrastructure.

You should be familiar with using certificates and setting up client authentication for your servlet
container before attempting to use it with Spring Security. Most of the work is in creating and installing
suitable certificates and keys. For example, if you're using Tomcat then read the instructions here
http://tontat. apache. org/tontat-6. 0-doc/ ssl - howt 0. ht nl . It's important that you get
this working before trying it out with Spring Security

23.2 Adding X.509 Authentication to Your Web Application

Enabling X.509 client authentication is very straightforward. Just add the <x509/ > element to your http
security namespace configuration.

<htt p>
<x509 subj ect-princi pal -regex="CN=(.*?)," user-service-ref="userService"/>;

</ http>

The element has two optional attributes:

* subj ect - princi pal -regex. The regular expression used to extract a username from the
certificate's subject name. The default value is shown above. This is the username which will be
passed to the User Det ai | sSer vi ce to load the authorities for the user.

e user-service-ref. This is the bean Id of the User Det ai | sSer vi ce to be used with X.509. It
isn't needed if there is only one defined in your application context.

The subj ect - pri nci pal - r egex should contain a single group. For example the default expression
"CN=(.*?)," matches the common name field. So if the subject name in the certificate is "CN=Jimi
Hendrix, OU=...", this will give a user name of "Jimi Hendrix". The matches are case insensitive.
So "emailAddress=(.?)," will match "EMAILADDRESS=jimi@hendrix.org,CN=..." giving a user name
"imi@hendrix.org". If the client presents a certificate and a valid username is successfully extracted,
then there should be a valid Aut hent i cat i on object in the security context. If no certificate is found,
or no corresponding user could be found then the security context will remain empty. This means that
you can easily use X.509 authentication with other options such as a form-based login.

3.2.0.RC1 Spring Security 120

http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

Spring Security

23.3 Setting up SSL in Tomcat

There are some pre-generated certificates in the sanpl es/ certi fi cate directory in the Spring
Security project. You can use these to enable SSL for testing if you don't want to generate your own.
The file server . j ks contains the server certificate, private key and the issuing certificate authority
certificate. There are also some client certificate files for the users from the sample applications. You
can install these in your browser to enable SSL client authentication.

To run tomcat with SSL support, drop the ser ver . j ks file into the tomcat conf directory and add the
following connector to the server . xmi file

<Connect or port="8443" protocol ="HTTP/ 1. 1" SSLEnabl ed="true" schene="https" secure="true"
clientAut h="true" ssl Protocol ="TLS"
keyst oreFi | e="${cat al i na. hone}/ conf/server.jks"
keyst or eType="JKS" keyst or ePass="password"
truststoreFil e="${catalina. home}/conf/server.jks"
truststoreType="JKS" truststorePass="password"
/>

cl i ent Aut h can also be set to want if you still want SSL connections to succeed even if the client
doesn't provide a certificate. Clients which don't present a certificate won't be able to access any
objects secured by Spring Security unless you use a non-X.509 authentication mechanism, such as
form authentication.

3.2.0.RC1 Spring Security 121

Spring Security

24. Run-As Authentication Replacement

24.1 Overview

The Abstract Securityl nterceptor is able to temporarily replace the Aut henti cat i on object
in the SecurityContext and SecurityCont extHol der during the secure object callback
phase. This only occurs if the original Aut henti cati on object was successfully processed
by the Authenticati onManager and AccessDeci si onManager. The RunAsManager will
indicate the replacement Aut henticati on object, if any, that should be used during the
Securityl nterceptorCall back.

By temporarily replacing the Aut henti cati on object during the secure object callback phase,
the secured invocation will be able to call other objects which require different authentication and
authorization credentials. It will also be able to perform any internal security checks for specific
Grant edAut hori ty objects. Because Spring Security provides a number of helper classes that
automatically configure remoting protocols based on the contents of the Secur i t yCont ext Hol der,
these run-as replacements are particularly useful when calling remote web services

24.2 Configuration

A RunAsManager interface is provided by Spring Security:

Aut henti cati on buil dRunAs(Aut henti cati on authentication, OCbject object,
Li st<Confi gAttribute> config);

bool ean supports(ConfigAttribute attribute);

bool ean supports(d ass cl azz);

The first method returns the Authentication object that should replace the existing
Aut henti cati on object for the duration of the method invocation. If the method returns
nul |, it indicates no replacement should be made. The second method is used by the
Abst ract Securityl nterceptor as part of its startup validation of configuration attributes. The
support s(Cd ass) method is called by a security interceptor implementation to ensure the configured
RunAsManager supports the type of secure object that the security interceptor will present.

One concrete implementation of a RunAsManager is provided with Spring Security. The
RunAsManager | npl class returns a replacement RunAsUser Token if any Conf i gAt t ri but e starts
with RUN_AS_. If any such Confi gAttri bute is found, the replacement RunAsUser Token will
contain the same principal, credentials and granted authorities as the original Aut henti cati on
object, along with a new G- ant edAut hori t yl npl for each RUN_AS_ Confi gAttri but e. Each new
G ant edAut hori tyl npl will be prefixed with ROLE_, followed by the RUN_AS Confi gAttri bute.
For example, a RUN_AS SERVER will result in the replacement RunAsUser Token containing a
ROLE_RUN_AS_SERVER granted authority.

The replacement RunAsUser Token is just like any other Authentication object. It
needs to be authenticated by the Aut henti cati onManager, probably via delegation to a
suitable Aut henti cati onProvi der. The RunAsl npl Aut henti cati onProvi der performs such
authentication. It simply accepts as valid any RunAsUser Token presented.

To ensure malicious code does not create a RunAsUser Token and present it for guaranteed
acceptance by the RunAsl npl Aut henti cati onProvi der, the hash of a key is stored in all

3.2.0.RC1 Spring Security 122

Spring Security

generated tokens. The RunAsManager | npl and RunAsl npl Aut henti cati onProvi der is created
in the bean context with the same key:

<bean i d="runAsManager"
cl ass="org. springframework. security.access.intercept. RunAsManager | npl ">
<property nane="key" val ue="ny_run_as_password"/>
</ bean>

<bean i d="runAsAut henti cati onProvi der"
cl ass="org. springframewor k. security.access.intercept. RunAsl npl Aut henti cati onProvi der" >
<property nane="key" val ue="my_run_as_password"/>
</ bean>

By using the same key, each RunAsUser Token can be validated it was created by an approved
RunAsManager | mpl . The RunAsUser Token is immutable after creation for security reasons

3.2.0.RC1 Spring Security 123

Spring Security

25. Spring Security Crypto Module

25.1 Introduction

The Spring Security Crypto module provides support for symmetric encryption, key generation, and
password encoding. The code is distributed as part of the core module but has no dependencies on
any other Spring Security (or Spring) code.

25.2 Encryptors

The Encryptors class provides factory methods for constructing symmetric encryptors. Using this class,
you can create ByteEncryptors to encrypt data in raw byte[] form. You can also construct TextEncryptors
to encrypt text strings. Encryptors are thread safe.

BytesEncryptor

Use the Encryptors.standard factory method to construct a "standard" BytesEncryptor:

Encrypt ors. st andard(" password", "salt");

The "standard" encryption method is 256-bit AES using PKCS #5's PBKDF2 (Password-Based Key
Derivation Function #2). This method requires Java 6. The password used to generate the SecretKey
should be kept in a secure place and not be shared. The salt is used to prevent dictionary attacks against
the key in the event your encrypted data is compromised. A 16-byte random initialization vector is also
applied so each encrypted message is unique.

The provided salt should be in hex-encoded String form, be random, and be at least 8 bytes in length.
Such a salt may be generated using a KeyGenerator:

String salt = KeyGenerators.string().generateKey(); // generates a random 8-byte salt that
is then hex-encoded

TextEncryptor

Use the Encryptors.text factory method to construct a standard TextEncryptor:

Encryptors. text ("password", "salt");

A TextEncryptor uses a standard BytesEncryptor to encrypt text data. Encrypted results are returned
as hex-encoded strings for easy storage on the filesystem or in the database.

Use the Encryptors.queryableText factory method to construct a "queryable" TextEncryptor:

Encrypt ors. quer yabl eText (" password", "salt");

The difference between a queryable TextEncryptor and a standard TextEncryptor has to do with
initialization vector (iv) handling. The iv used in a queryable TextEncryptor#encrypt operation is shared,

3.2.0.RC1 Spring Security 124

Spring Security

or constant, and is not randomly generated. This means the same text encrypted multiple times will
always produce the same encryption result. This is less secure, but necessary for encrypted data that
needs to be queried against. An example of queryable encrypted text would be an OAuth apiKey.

25.3 Key Generators

The KeyGenerators class provides a number of convenience factory methods for constructing different
types of key generators. Using this class, you can create a BytesKeyGenerator to generate byte[] keys.
You can also construct a StringKkeyGenerator to generate string keys. KeyGenerators are thread safe.

BytesKeyGenerator

Use the KeyGenerators.secureRandom factory methods to generate a BytesKeyGenerator backed by
a SecureRandom instance:

KeyGener at or generator = KeyGenerators. secureRandon();
byte[] key = generator.generatekKey();

The default key length is 8 bytes. There is also a KeyGenerators.secureRandom variant that provides
control over the key length:

KeyGener at or s. secur eRandon{ 16) ;

Use the KeyGenerators.shared factory method to construct a BytesKeyGenerator that always returns
the same key on every invocation:

KeyCGener at or s. shar ed(16) ;

StringKeyGenerator

Use the KeyGenerators.string factory method to construct a 8-byte, SecureRandom KeyGenerator that
hex-encodes each key as a String:

KeyCGenerators.string();

25.4 Password Encoding

The password package of the spring-security-crypto module provides support for encoding passwords.
Passwor dEncoder is the central service interface and has the following signature:

public interface PasswordEncoder {
String encode(String rawPassword);
bool ean mat ches(String rawPassword, String encodedPassword);

3.2.0.RC1 Spring Security 125

Spring Security

The matches method returns true if the rawPassword, once encoded, equals the encodedPassword.
This method is designed to support password-based authentication schemes.

The BCr ypt Passwor dEncoder implementation uses the widely supported "bcrypt" algorithm to hash
the passwords. Berypt uses a random 16 byte salt value and is a deliberately slow algorithm, in order
to hinder password crackers. The amount of work it does can be tuned using the "strength" parameter
which takes values from 4 to 31. The higher the value, the more work has to be done to calculate the
hash. The default value is 10. You can change this value in your deployed system without affecting
existing passwords, as the value is also stored in the encoded hash.

/'l Create an encoder with strength 16

BCr ypt Passwor dEncoder encoder = new BCrypt Passwor dEncoder (16) ;
String result = encoder. encode("myPassword");

assert True(encoder. mat ches(" nyPassword", result));

3.2.0.RC1 Spring Security 126

Spring Security

Appendix A. Security Database
Schema

There are various database schema used by the framework and this appendix provides a single
reference point to them all. You only need to provide the tables for the areas of functonality you require.

DDL statements are given for the HSQLDB database. You can use these as a guideline for defining the
schema for the database you are using.

A.1 User Schema

The standard JDBC implementation of the User Det ai | sSer vi ce (JdbcDaol npl) requires tables to
load the password, account status (enabled or disabled) and a list of authorities (roles) for the user.

create table users(
user nane var char _i gnorecase(50) not null prinmary key
password varchar _i gnorecase(50) not null
enabl ed bool ean not null);

create table authorities (
user nane var char _i gnorecase(50) not null
aut hority varchar _i gnorecase(50) not null
constraint fk_authorities_users foreign key(usernane) references users(usernane));
create unique index ix_auth_username on authorities (usernane, authority);

Group Authorities

Spring Security 2.0 introduced support for group authorities in JdbcDaol npl . The table structure if
groups are enabled is as follows:

create table groups (
id bigint generated by default as identity(start with 0) primary key,
group_nane var char_i gnorecase(50) not null);

create table group_authorities (
group_id bigint not null
authority varchar(50) not null
constraint fk_group_authorities_group foreign key(group_id) references groups(id));

create table group_nenbers (
id bigint generated by default as identity(start with 0) primary key,
user nane var char (50) not null
group_id bigint not null
constraint fk_group_menbers_group foreign key(group_id) references groups(id));

Remember that these tables are only required if you are using the provided JDBC
User Det ai | sServi ce implementation. If you write your own or choose to implement
Aut hent i cati onProvi der withouta User Det ai | sSer vi ce, then you have complete freedom over
how you store the data, as long as the interface contract is satisfied.

3.2.0.RC1 Spring Security 127

Spring Security

A.2 Persistent Login (Remember-Me) Schema

This table is used to store data used by the more secure persistent token remember-me implementation.
If you are using JdbcTokenReposi t or yl npl either directly or through the namespace, then you will
need this table.

create tabl e persistent_logins (
user nane varchar (64) not null,
series varchar(64) prinmary key,
token varchar(64) not null,
| ast _used timestanp not null);

A.3 ACL Schema

There are four tables used by the Spring Security ACL implementation.

1. acl _si d stores the security identities recognised by the ACL system. These can be unique principals
or authorities which may apply to multiple principals.

2. acl _cl ass defines the domain object types to which ACLs apply. The cl ass column stores the
Java class name of the object.

3. acl _object _identity stores the object identity definitions of specific domai objects.
4. acl _ent ry stores the ACL permissions which apply to a specific object identity and security identity.

It is assumed that the database will auto-generate the primary keys for each of the identities. The
JdbcMut abl eAcl Servi ce has to be able to retrieve these when it has created a new row in the
acl _si d oracl _cl ass tables. It has two properties which define the SQL needed to retrieve these
valuescl assl dentityQueryandsi dl dentityQuery.Bothofthese defaulttocal | identity()

Hypersonic SQL

The default schema works with the embedded HSQLDB database that is used in unit tests within the
framework.

3.2.0.RC1 Spring Security 128

#remember-me-persistent-token
#domain-acls

Spring Security

create table acl_sid (
id bigint generated by default as identity(start with 100) not null primry key,
princi pal bool ean not null
sid varchar_i gnorecase(100) not null
constraint uni que_uk_1 uni que(sid,principal));

create table acl _class (
id bigint generated by default as identity(start with 100) not null primry key,
cl ass varchar_i gnorecase(100) not null
constraint uni que_uk_2 uni que(class));

create table acl _object_identity (
id bigint generated by default as identity(start with 100) not null primary key,
object_id_class bigint not null
object_id_identity bigint not null
par ent _obj ect bigint,
owner _sid bigint not null
entries_inheriting bool ean not null
constraint uni que_uk_3 uni que(object_id_class,object_id_identity),

constraint foreign_fk_2 foreign key(object_id_class)references acl_class(id),
constraint foreign_fk_3 foreign key(owner_sid)references acl_sid(id));

create table acl _entry (
id bigint generated by default as identity(start with 100) not null primary key,
acl _object_identity bigint not null,ace_order int not null,sid bigint not null
mask integer not null, granting bool ean not null, audit_success bool ean not null
audit_failure bool ean not null
constrai nt uni que_uk_4 uni que(acl _object _identity, ace_order),
constraint foreign_fk_4 foreign key(acl_object_identity)
references acl _object_identity(id),
constraint foreign fk_5 foreign key(sid) references acl_sid(id));

constraint foreign fk_1 foreign key(parent_object)references acl_object_identity(id),

3.2.0.RC1 Spring Security

129

Spring Security

PostgreSQL

create table acl _sid(
id bigserial not null primry key,
princi pal bool ean not null,
sid varchar(100) not null,
constraint uni que_uk_1 uni que(sid,principal));

create table acl _class(
id bigserial not null primry key,
cl ass varchar (100) not null,
constraint uni que_uk_2 uni que(cl ass));

create table acl _object_identity(
id bigserial primry key,
object_id_class bigint not null,
object_id_identity bigint not null,
par ent _obj ect bigint,
owner _si d bigint,
entries_inheriting bool ean not null,
constraint uni que_uk_3 uni que(object_id_class,object_id_identity),
constraint foreign_ fk_1 foreign key(parent_object) references acl_object_identity(id),
constraint foreign_fk_2 foreign key(object_id_class) references acl _class(id),
constraint foreign_fk_3 foreign key(owner_sid) references acl_sid(id));

create table acl _entry(
id bigserial primry key,
acl _object _identity bigint not null,
ace_order int not null,
sid bigint not null,
mask integer not null,
granting bool ean not null,
audit _success bool ean not null,
audit_failure bool ean not null,
constrai nt uni que_uk_4 uni que(acl _object_identity, ace_order),
constraint foreign_fk_4 foreign key(acl_object_identity)
references acl _object_identity(id),
constraint foreign_fk_5 foreign key(sid) references acl_sid(id));

You will have to set the classldentityQuery and sidldentityQuery properties of
JdbcMut abl eAcl Ser vi ce to the following values, respectively:

» select currval (pg_get _serial _sequence('acl _class', 'id"))

» select currval (pg_get _serial _sequence('acl _sid , "id))

3.2.0.RC1 Spring Security 130

Spring Security

Appendix B. The Security Namespace

This appendix provides a reference to the elements available in the security namespace and information
on the underlying beans they create (a knowledge of the individual classes and how they work together is
assumed - you can find more information in the project Javadoc and elsewhere in this document). If you
haven't used the namespace before, please read the introductory chapter on namespace configuration,
as this is intended as a supplement to the information there. Using a good quality XML editor while
editing a configuration based on the schema is recommended as this will provide contextual information
on which elements and attributes are available as well as comments explaining their purpose. The
namespace is written in RELAX NG Compact format and later converted into an XSD schema. If you
are familiar with this format, you may wish to examine the schema file directly.

B.1 Web Application Security
<debug>

Enables Spring Security debugging infrastructure. This will provide human-readable (multi-line)
debugging information to monitor requests coming into the security filters. This may include sensitive
information, such as request parameters or headers, and should only be used in a development
environment.

<htt p>

If you use an <http> element within your application, a Filter Chai nProxy bean named
"springSecurityFilterChain" is created and the configuration within the element is used to build a filter
chain within Fi | t er Chai nPr oxy. As of Spring Security 3.1, additional ht t p elements can be used to
add extra filter chains *. Some core filters are always created in a filter chain and others will be added
to the stack depending on the attributes and child elements which are present. The positions of the
standard filters are fixed (see the filter order table in the namespace introduction), removing a common
source of errors with previous versions of the framework when users had to configure the filter chain
explicitly in the Fi | t er Chai nPr oxy bean. You can, of course, still do this if you need full control of
the configuration.

All filters which require a reference to the Aut hent i cat i onManager will be automatically injected with
the internal instance created by the namespace configuration (see the introductory chapter for more on
the Aut henti cat i onManager).

Each <htt p> namespace block always creates an SecurityCont ext Persi stenceFilter, an
ExceptionTranslationFilter and a FilterSecuritylnterceptor. These are fixed and
cannot be replaced with alternatives.

<ht t p> Attributes
The attributes on the <ht t p> element control some of the properties on the core filters.
access-deci si on- nanager - r ef

Optional attribute specifying the ID of the AccessDeci si onManager implementation which should be
used for authorizing HTTP requests. By default an Af fi r mat i veBased implementation is used for
with a Rol eVot er and an Aut hent i cat edVot er .

“See the introductory chapter for how to set up the mapping from your web. xm

3.2.0.RC1 Spring Security 131

#ns-config
http://www.relaxng.org/
https://fisheye.springsource.org/browse/spring-security/config/src/main/resources/org/springframework/security/config/spring-security-3.2.rnc
#filter-stack
#ns-auth-manager
#ns-web-xml

Spring Security

access-deni ed- page

Deprecated in favour of the access-denied-handler child element.

aut hent i cati on- manager - r ef
Areference to the Aut hent i cat i onManager used forthe Fi | t er Chai n created by this http element.
auto-config

Automatically registers a login form, BASIC authentication, logout services. If set to "true", all of these
capabilities are added (although you can still customize the configuration of each by providing the
respective element). If unspecified, defaults to "false". Use of this attribute is not recommended. Use
explicit configuration elements instead to avoid confusion.

creat e-sessi on

Controls the eagerness with which an HTTP session is created by Spring Security classes. Options
include:

» al ways - Spring Security will proactively create a session if one does not exist.
» i f Requi r ed - Spring Security will only create a session only if one is required (default value).
* never - Spring Security will never create a session, but will make use of one if the application does.

» st at el ess - Spring Security will not create a session and ignore the session for obtaining a Spring
Aut hent i cati on.

di sabl e-url-rewiting

Prevents session IDs from being appended to URLSs in the application. Clients must use cookies if this
attribute is setto t r ue. The default is f al se.

entry- poi nt - ref

Normally the Aut henti cati onEnt ryPoi nt used will be set depending on which authentication
mechanisms have been configured. This attribute allows this behaviour to be overridden by defining a
customized Aut hent i cat i onEnt r yPoi nt bean which will start the authentication process.

j aas- api - provi si on

If available, runs the request as the Subj ect acquired from the JaasAut henti cati onToken which
is implemented by adding a JaasApi | nt egrati onFi | t er bean to the stack. Defaults to f al se.

nane
A bean identifier, used for referring to the bean elsewhere in the context.
once- per -r equest

Corresponds to the observeOncePer Request property of FilterSecuritylnterceptor.
Defaults to t r ue.

pat h-type

Deprecated in favor of request-matcher.

3.2.0.RC1 Spring Security 132

#nsa-access-denied-handler
#nsa-http-request-matcher

Spring Security

pattern

Defining a pattern for the http element controls the requests which will be filtered through the list of
filters which it defines. The interpretation is dependent on the configured request-matcher. If no pattern
is defined, all requests will be matched, so the most specific patterns should be declared first.

real m

Sets the realm name used for basic authentication (if enabled). Corresponds to the r eal nName property
on Basi cAut henti cati onEnt r yPoi nt .

request - mat cher

Defines the Request Mat cher strategy used inthe Fi | t er Chai nPr oxy and the beans created by the
i nt ercept -url tomatch incoming requests. Options are currently ant , r egex and ci Regex, for ant,
regular-expression and case-insensitive regular-expression repsectively. A separate instance is created
for each intercept-url element using its pattern and method attributes. Ant paths are matched using an
Ant Pat hRequest Mat cher and regular expressions are matched using a RegexRequest Mat cher .
See the Javadoc for these classes for more details on exactly how the matching is preformed. Ant paths
are the default strategy.

request - mat cher - r ef

A referenece to a bean that implements Request Mat cher that will determine if this Fi | t er Chai n
should be used. This is a more powerful alternative to pattern.

security

A request pattern can be mapped to an empty filter chain, by setting this attribute to none. No security
will be applied and none of Spring Security's features will be available.

security-context-repository-ref

Allows injection of a custom Securi t yCont ext Repository into the
Securi tyCont ext Persi stenceFilter.

servl et - api - provi si on

Provides versions of Ht t pSer vl et Request security methods such as
isUserlnRole() and getPrincipal() which are implemented by adding a
Securi t yCont ext Hol der Awar eRequest Fi | t er bean to the stack. Defaults to t r ue.

use- expressi ons

Enables EL-expressions in the access attribute, as described in the chapter on expression-based
access-control.

Child Elements of <http>

» access-denied-handler

e anonymous
o csIf

» custom-filter

» expression-handler

3.2.0.RC1 Spring Security 133

#nsa-http
#nsa-http-request-matcher
#nsa-intercept-url
#nsa-intercept-url-pattern
#nsa-intercept-url-method
#nsa-http-pattern
#el-access-web
#el-access-web
#nsa-access-denied-handler
#nsa-anonymous
#nsa-csrf
#nsa-custom-filter
#nsa-expression-handler

Spring Security

 form-login
* headers
* http-basic

* intercept-url

> jee
* logout

» openid-login
* port-mappings
e remember-me

» request-cache

» session-management

« x509
<access-deni ed- handl er >

This element allows you to set the err or Page property for the default AccessDeni edHandl er
used by the ExceptionTransl ati onFilter, using the error-page attribute, or to supply your
own implementation using the ref attribute. This is discussed in more detail in the section on the
ExceptionTransl ati onFilter.

Parent Elements of <access- deni ed- handl er >
* http

<access-deni ed- handl er > Attributes
error-page

The access denied page that an authenticated user will be redirected to if they request a page which
they don't have the authority to access.

ref

Defines a reference to a Spring bean of type AccessDeni edHandl| er
<header s>

This element allows for configuring additional (security) headers to be send with the response. It enables
easy configuration for several headers and also allows for setting custom headers through the header
element.

» Cache-Control and Pragna - Can be set using the cache-control element. This ensures that the
browser does not cache your secured pages.

e Strict-Transport-Security -Can be set using the hsts element. This ensures that the browser
automatically requests HTTPS for future requests.

3.2.0.RC1 Spring Security 134

#nsa-form-login
#nsa-headers
#nsa-http-basic
#nsa-intercept-url
#nsa-jee
#nsa-logout
#nsa-openid-login
#nsa-port-mappings
#nsa-remember-me
#nsa-request-cache
#nsa-session-management
#nsa-x509
#nsa-access-denied-handler-error-page
#nsa-access-denied-handler-ref
#access-denied-handler
#nsa-http
#nsa-header
#nsa-cache-control
#nsa-hsts

Spring Security

e X-Frane- Opti ons - Can be set using the frame-options element. The X-Frame-Options header
can be used to prevent clickjacking attacks.

e X- XSS- Prot ecti on - Can be set using the xss-protection element. The X-XSS-Protection header
can be used by browser to do basic control.

e X- Cont ent - Type- Opt i ons - Can be set using the content-type-options element. The
<a>X-Content-Type-Options
header prevents Internet Explorer from MIME-sniffing a response away from the declared content-
type. This also applies to Google Chrome, when downloading extensions.

Parent Elements of <header s>
* http

Child Elements of <header s>
» cache-control

 content-type-options

» frame-options

* header

* hsts

* Xss-protection
<cache-control >

Adds Cache- Cont r ol and Pr agna headers to ensure that the browser does not cache your secured
pages.

Parent Elements of <cache-control >

» headers
<hst s>

When enabled adds the Strict-Transport-Security header to the response for any secure request. This
allows the server to instruct browsers to automatically use HTTPS for future requests.

<hst s> Attributes

i ncl ude- sub- donai ns

Specifies if subdomains should be included. Default true.
nax- age- seconds

Specifies the maximum ammount of time the host should be considered a Known HSTS Host. Default
one year.

request - mat cher - r ef

The RequestMatcher instance to be used to determine if the header should be set. Default is if
HttpServiletRequest.isSecure() is true.

3.2.0.RC1 Spring Security 135

#nsa-frame-options
http://en.wikipedia.org/wiki/Clickjacking#X-Frame-Options
#nsa-xss-protection
http://en.wikipedia.org/wiki/Cross-site_scripting
#nsa-content-type-options
#nsa-http
#nsa-cache-control
#nsa-content-type-options
#nsa-frame-options
#nsa-header
#nsa-hsts
#nsa-xss-protection
#nsa-headers
http://tools.ietf.org/html/rfc6797

Spring Security

Parent Elements of <hst s>
* headers
<frame-opti ons>

When enabled adds the X-Frame-Options header to the response, this allows newer browsers to do
some security checks and prevent clickjacking attacks.

<f rane- opti ons> Attributes
frame- opti ons-policy

» DENY The page cannot be displayed in a frame, regardless of the site attempting to do so. This is the
default when frame-options-policy is specified.

* SAMECRI @ N The page can only be displayed in a frame on the same origin as the page itself

» ALLOW FROM ori gi n The page can only be displayed in a frame on the specified origin.

In other words, if you specify DENY, not only will attempts to load the page in a frame fail when loaded
from other sites, attempts to do so will fail when loaded from the same site. On the other hand, if you
specify SAMEORIGIN, you can still use the page in a frame as long as the site including it in a frame
it is the same as the one serving the page.

franme-opti ons-strategy
Select the Al | owFr onft r at egy to use when using the ALLOW-FROM policy.

» static Use asingle static ALLOW-FROM value. The value can be set through the value attribute.

» regexp Use a regelur expression to validate incoming requests and if they are allowed. The regular
expression can be set through the value attribute. The request parameter used to retrieve the value
to validate can be specified using the from-parameter.

» whitelistAcomma-seperated list containing the allowed domains. The comma-seperated list can
be set through the value attribute. The request parameter used to retrieve the value to validate can
be specified using the from-parameter.

frame-opti ons-ref

Instead of using one of the predefined strategies it is also possible to use a custom
Al | owFr ontt r at egy. The reference to this bean can be specified through this ref attribute.

frame- opti ons-val ue
The value to use when ALLOW-FROM is used a strategy.
frame- options-from paraneter

Specify the name of the request parameter to use when using regexp or whitelist for the ALLOW-FROM
strategy.

Parent Elements of <f r ame- opti ons>

» headers

3.2.0.RC1 Spring Security 136

#nsa-headers
http://tools.ietf.org/html/draft-ietf-websec-x-frame-options
http://en.wikipedia.org/wiki/Clickjacking
#nsa-frame-options-origin
#nsa-frame-options-value
#nsa-frame-options-value
#nsa-frame-options-from-parameter
#nsa-frame-options-value
#nsa-frame-options-from-parameter
#nsa-frame-options-strategy
#nsa-headers

Spring Security

<XSs-protection>

Adds the

<a>X-XSS-Protection header

to the response to assist in protecting against
<a>reflected / “Type-1" Cross-Site Scripting (XSS)
attacks. This is in no-way a full protection to XSS attacks!

Xss- protection-enabl ed

Enable or Disable
<a>reflected / “Type-1" Cross-Site Scripting (XSS)
protection.

XSs-protection-bl ock

When true and xss-protection-enabled is true, adds mode=block to the header. This indicates to the
browser that the page should not be loaded at all. When false and xss-protection-enabled is true, the
page will still be rendered when an reflected attack is detected but the response will be modified to
protect against the attack. Note that there are sometimes ways of bypassing this mode which can often

times make blocking the page more desirable.
Parent Elements of <xss- prot ecti on>

» headers
<content-type-options>

Add the X-Content-Type-Options header with the value of nosniff to the response. This
<a>disables MIME-sniffing
for IE8+ and Chrome extensions.

Parent Elements of <cont ent -t ype- opt i ons>

» headers

<header >

Add additional headers to the response, both the name and value need to be specified.

<header - at tri but es> Attributes

header - nanme

The nane of the header.

header - val ue

The val ue of the header to add.

header - r ef

Reference to a custom implementation of the Header Wi t er interface.
Parent Elements of <header >

» headers

3.2.0.RC1 Spring Security

137

#nsa-headers
#nsa-headers
#nsa-headers

Spring Security

<anonynobus>
Adds an AnonynousAut henti cationFilter to the stack and an
AnonynousAut henti cati onProvi der. Required if you are using the

I S AUTHENTI CATED_ANONYMOUSLY attribute.
Parent Elements of <anonynmous>

* http

<anonynous> Attributes

enabl ed

With the default namespace setup, the anonymous "authentication" facility is automatically enabled.
You can disable it using this property.

granted-aut hority

The granted authority that should be assigned to the anonymous request. Commonly this is used
to assign the anonymous request particular roles, which can subsequently be used in authorization
decisions. If unset, defaults to ROLE_ANONYMOUS.

key

The key shared between the provider and filter. This generally does not need to be set. If unset, it will
default to a secure randomly generated value. This means setting this value can improve startup time
when using the anonymous functionality since secure random values can take a while to be generated.

user nane

The username that should be assigned to the anonymous request. This allows the principal to be
identified, which may be important for logging and auditing. if unset, defaults to anonynousUser .

<csrf>

This element will add

<a>CSRF

to the application. It also updates the default RequestCache to only replay "GET" requests upon
successful authentication.

Parent Elements of <csrf >

* http

<csrf > Attributes

t oken-repository-ref

The CsrfTokenRepository to use. The defaultis Ht t pSessi onCsr f TokenRepository.
request - mat cher - r ef

The RequestMatcher instance to be used to determine if CSRF should be applied. Default is any HTTP
method except "GET", "TRACE", "HEAD", "OPTIONS".

3.2.0.RC1 Spring Security 138

#nsa-http
#nsa-http

Spring Security

<customfilter>

This element is used to add a filter to the filter chain. It doesn't create any additional beans but is used
to select a bean of type j avax. servl et . Fi | t er which is already defined in the application context
and add that at a particular position in the filter chain maintained by Spring Security. Full details can
be found in the _namespace chapter.

Parent Elements of <custom filter>
* http

<customfilter> Attributes

after

The filter immediately after which the custom-filter should be placed in the chain. This feature will only
be needed by advanced users who wish to mix their own filters into the security filter chain and have
some knowledge of the standard Spring Security filters. The filter names map to specific Spring Security
implementation filters.

bef ore
The filter immediately before which the custom-filter should be placed in the chain
position

The explicit position at which the custom-filter should be placed in the chain. Use if you are replacing
a standard filter.

r ef

Defines a reference to a Spring bean that implements Fi | t er .
<expr essi on- handl er >

Defines the Securi t yExpr essi onHandl er instance which will be used if expression-based access-
control is enabled. A default implementation (with no ACL support) will be used if not supplied.

Parent Elements of <expr essi on- handl er >

» global-method-security

. mp
<expr essi on- handl er > Attributes
ref

Defines a reference to a Spring bean that implements Securi t yExpr essi onHandl er.
<form|l ogi n>

Used to add an User namePasswor dAut henticationFilter to the filter stack and an
Logi nUr | Aut henti cati onEnt r yPoi nt to the application context to provide authentication on
demand. This will always take precedence over other namespace-created entry points. If no attributes

3.2.0.RC1 Spring Security 139

#ns-custom-filters
#nsa-http
#nsa-global-method-security
#nsa-http

Spring Security

are supplied, a login page will be generated automatically at the URL "/spring_security login" " The
behaviour can be customized using the <f or m | ogi n> Attributes.

Parent Elements of <f or m | ogi n>
* http

<f or m | ogi n> Attributes

al ways-use-defaul t-target

If set to true, the user will always start at the value given by default-target-url, regardless of
how they arrived at the login page. Maps to the al waysUseDef aul t Tar get Ur|l property of
User nanmePasswor dAut henti cati onFi | t er. Default value is f al se.

aut henti cati on-detail s-source-ref
Reference to an Aut hent i cat i onDet ai | sSour ce which will be used by the authentication filter

aut hentication-failure-handl er-ref

Can be used as an alternative to authentication-failure-url, giving you full control over the navigation flow
after an authentication failure. The value should be he name of an Aut hent i cat i onFai | ur eHand! er
bean in the application context.

authentication-failure-url

Maps to the aut henti cationFail ureUrl property of
User namePasswor dAut henti cati onFi | t er. Defines the URL the browser will be redirected to
on login failure. Defaults to / spri ng_security_ | ogi n?l ogi n_error, which will be automatically
handled by the automatic login page generator, re-rendering the login page with an error message.

aut henti cati on-success-handl er-ref

This can be used as an alternative to default-target-url and always-use-default-target, giving you full
control over the navigation flow after a successful authentication. The value should be the name of an
Aut hent i cati onSuccessHandl er bean in the application context. By default, an implementation
of SavedRequest Awar eAut hent i cati onSuccessHandl er is used and injected with the default-

target-url .

defaul t-target-url

Maps to the def aul t Tar get Ur| property of User nanePasswor dAut henti cati onFi |l ter. If not
set, the default value is "/" (the application root). A user will be taken to this URL after logging in, provided
they were not asked to login while attempting to access a secured resource, when they will be taken
to the originally requested URL.

| ogi n- page

The URL that should be used to render the login page. Maps to the | ogi nFor mr | property of the
Logi nUr | Aut henti cati onEnt r yPoi nt . Defaults to "/spring_security_login".

"This feature is really just provided for convenience and is not intended for production (where a view technology will have been
chosen and can be used to render a customized login page). The class Def aul t Logi nPageCGener ati ngFi | t er is responsible
for rendering the login page and will provide login forms for both normal form login and/or OpenlD if required.

3.2.0.RC1 Spring Security 140

#nsa-form-login-attributes
#nsa-http
#nsa-form-login-default-target-url
#nsa-form-login-authentication-failure-url
#nsa-form-login-default-target-url
#nsa-form-login-always-use-default-target
#nsa-form-login-default-target-url
#nsa-form-login-default-target-url

Spring Security

| ogi n- processi ng-url

Mapstothefilter ProcessesUr| property of User nanePasswor dAut henti cationFilter.The
default value is "/j_spring_security _check".

passwor d- par anet er
The name of the request parameter which contains the password. Defaults to "j_password".
user nane- par anet er

The name of the request parameter which contains the username. Defaults to "j_username".
<ht t p- basi c>

Adds a BasicAuthenticationFilter and BasicAuthenticationEntryPoint to the
configuration. The latter will only be used as the configuration entry point if form-based login is not
enabled.

Parent Elements of <ht t p- basi ¢>

* http

<ht t p- basi c> Attributes

aut henti cati on-detail s-source-ref

Reference to an Aut hent i cat i onDet ai | sSour ce which will be used by the authentication filter
entry- poi nt-ref

Sets the Aut hent i cati onEnt r yPoi nt which is used by the Basi cAut henti cati onFilter.
<htt p-firewal | >Element

This is a top-level element which can be used to inject a custom implementation of Ht t pFi r ewal | into
the Fi | t er Chai nPr oxy created by the namespace. The default implementation should be suitable
for most applications.

<htt p-firewal | > Attributes
ref

Defines a reference to a Spring bean that implements Ht t pFi r ewal | .
<intercept-url>

This element is used to define the set of URL patterns that the application is
interested in and to configure how they should be handled. It is used to construct the
FilterlnvocationSecurityMetadataSource used by the FilterSecuritylnterceptor. It
is also responsible for configuring a Channel Processi ngFi | t er if particular URLs need to be
accessed by HTTPS, for example. When matching the specified patterns against an incoming request,
the matching is done in the order in which the elements are declared. So the most specific matches
patterns should come first and the most general should come last.

Parent Elements of <i nt ercept -url >

« filter-invocation-definition-source

3.2.0.RC1 Spring Security 141

#nsa-http
#nsa-filter-invocation-definition-source

Spring Security

« filter-security-metadata-source

. mp
<i nt ercept-url > Attributes
access

Lists the access attributes which will be stored in the
FilterlnvocationSecurityMetadat aSour ce for the defined URL pattern/method combination.
This should be a comma-separated list of the security configuration attributes (such as role names).

filters

Can only take the value “none”. This will cause any matching request to bypass the Spring Security
filter chain entirely. None of the rest of the <ht t p> configuration will have any effect on the request
and there will be no security context available for its duration. Access to secured methods during the
request will fail.

nmet hod

The HTTP Method which will be used in combination with the pattern to match an incoming request.
If omitted, any method will match. If an identical pattern is specified with and without a method, the
method-specific match will take precedence.

pattern

The pattern which defines the URL path. The content will depend on the r equest - mat cher attribute
from the containing http element, so will default to ant path syntax.

requi res- channel

Can be “http” or “https” depending on whether a particular URL pattern should be accessed over HTTP
or HTTPS respectively. Alternatively the value “any” can be used when there is no preference. If this
attribute is present on any <i nt er cept - ur | > element, then a Channel Processi ngFi | t er will be
added to the filter stack and its additional dependencies added to the application context.

If a<port - mappi ngs> configuration is added, this will be used to by the Secur eChannel Pr ocessor
and | nsecur eChannel Processor beans to determine the ports used for redirecting to HTTP/HTTPS.

<j ee>

Adds a J2eePreAuthenticatedProcessingFilter to the filter chain to provide integration with container
authentication.

Parent Elements of <j ee>

* http

<j ee> Attributes

nmappabl e-rol es

A comma-separate list of roles to look for in the incoming HttpServietRequest.
user-service-ref

A reference to a user-service (or UserDetailsService bean) Id

3.2.0.RC1 Spring Security 142

#nsa-filter-security-metadata-source
#nsa-http
#nsa-http

Spring Security

<| ogout >

Adds a LogoutFilter to the filter stack. This is configured with a
Securi t yCont ext Logout Handl er .

Parent Elements of <l ogout >

* http

<l ogout > Attributes

The del et e- cooki es attribute

A comma-separated list of the names of cookies which should be deleted when the user logs out.
Thei nval i dat e- sessi on attribute

Maps to the i nval i dat eHt t pSessi on of the Securit yCont ext Logout Handl er. Defaults to
"true", so the session will be invalidated on logout.

The | ogout - success-url attribute
The destination URL which the user will be taken to after logging out. Defaults to "/".

Setting this attribute will inject the Sessi onManagenent Fi | ter with a
Si npl eRedi rect I nval i dSessi onSt r at egy configured with the attribute value. When an invalid
session ID is submitted, the strategy will be invoked, redirecting to the configured URL.

The | ogout - ur |l attribute

The URL which will cause a logout (i.e. which will be processed by the filter). Defaults to "/
j_spring_security_logout".

The success- handl er - ref attribute

May be used to supply an instance of Logout SuccessHandl er which will be invoked to control the
navigation after logging out.

<openi d- | ogi n>

Similar to <formlogin> and has the same attributes. The default value for | ogi n-
processi ng-url is "/j_spring_openid_security _check". An Openl DAut henti cati onFilter and
Openl DAut hent i cati onProvi der will be registered. The latter requires a reference to a
User Det ai | sSer vi ce. Again, this can be specified by i d, using the user - servi ce-r ef attribute,
or will be located automatically in the application context.

Parent Elements of <openi d- | ogi n>

* http

<openi d- | ogi n> Attributes

al ways-use-defaul t-target

Whether the user should always be redirected to the default-target-url after login.
aut henti cati on-detail s-source-ref

Reference to an AuthenticationDetailsSource which will be used by the authentication filter

3.2.0.RC1 Spring Security 143

#nsa-http
#nsa-http

Spring Security

aut hentication-failure-handl er-ref

Reference to an AuthenticationFailureHandler bean which should be used to handle a failed
authentication request. Should not be used in combination with authentication-failure-url as the
implementation should always deal with navigation to the subsequent destination

aut hentication-failure-url

The URL for the login failure page. If no login failure URL is specified, Spring Security will automatically
create a failure login URL at /spring_security login?login_error and a corresponding filter to render that
login failure URL when requested.

aut henti cati on-success-handl er-ref

Reference to an AuthenticationSuccessHandler bean which should be used to handle a successful
authentication request. Should not be used in combination with default-target-url (or always-use-default-
target) as the implementation should always deal with navigation to the subsequent destination

defaul t-target-url

The URL that will be redirected to after successful authentication, if the user's previous action could
not be resumed. This generally happens if the user visits a login page without having first requested a
secured operation that triggers authentication. If unspecified, defaults to the root of the application.

| ogi n- page

The URL for the login page. If no login URL is specified, Spring Security will automatically create a login
URL at /spring_security login and a corresponding filter to render that login URL when requested.

| ogi n- processi ng-url

The URL that the login form is posted to. If unspecified, it defaults to /|_spring_security _check.
passwor d- par anet er

The name of the request parameter which contains the password. Defaults to "j_password".
user-servi ce-ref

A reference to a user-service (or UserDetailsService bean) Id

user nane- par anmet er

The name of the request parameter which contains the username. Defaults to "j_username”.
Child Elements of <openid-login>

 attribute-exchange

<attri but e- exchange>

The attri but e- exchange element defines the list of attributes which should be requested from
the identity provider. An example can be found in the OpenlD Support section of the namespace
configuration chapter. More than one can be used, in which case each must have an i denti fi er-
mat ch attribute, containing a regular expression which is matched against the supplied OpenID
identifier. This allows different attribute lists to be fetched from different providers (Google, Yahoo etc).

3.2.0.RC1 Spring Security 144

#nsa-openid-login-default-target-url
#nsa-openid-login-always-use-default-target
#nsa-openid-login-always-use-default-target
#nsa-attribute-exchange
#ns-openid

Spring Security

Parent Elements of <at t ri but e- exchange>
» openid-login

<attri but e- exchange> Attributes
identifier-match

A regular expression which will be compared against the claimed identity, when deciding which attribute-
exchange configuration to use during authentication.

Child Elements of <attri but e- exchange>

* openid-attribute

<openi d-attri bute>

Attributes used when making an OpenlID AX Fetch Request
Parent Elements of <openi d-attri but e>

 attribute-exchange

<openi d-attri but e> Attributes
count

Specifies the number of attributes that you wish to get back. For example, return 3 emails. The default
value is 1.

nane
Specifies the name of the attribute that you wish to get back. For example, email.
required

Specifies if this attribute is required to the OP, but does not error out if the OP does not return the
attribute. Default is false.

type

Specifies the attribute type. For example, http://axschema.org/contact/email. See your OP's
documentation for valid attribute types.

<port - mappi ngs>

By default, an instance of Port Mapper | npl will be added to the configuration for use in redirecting
to secure and insecure URLs. This element can optionally be used to override the default mappings
which that class defines. Each child <por t - mappi ng> element defines a pair of HTTP:HTTPS ports.
The default mappings are 80:443 and 8080:8443. An example of overriding these can be found in the
namespace introduction.

Parent Elements of <port - mappi ngs>
. mp
Child Elements of <port - mappi ngs>

 port-mapping

3.2.0.RC1 Spring Security 145

#nsa-openid-login
#nsa-openid-attribute
http://openid.net/specs/openid-attribute-exchange-1_0.html#fetch_request
#nsa-attribute-exchange
#ns-requires-channel
#nsa-http
#nsa-port-mapping

Spring Security

<port - mappi ng>

Provides a method to map http ports to https ports when forcing a redirect.
Parent Elements of <port - mappi ng>

* port-mappings

<port - mappi ng> Attributes

http

The http port to use.

htt ps

The https port to use.
<r emenber - me>

Adds the Remenber MeAut henti cati onFil ter to the stack. This in turn will be configured with
either a TokenBasedRenenber MeSer vi ces, a Per si st ent TokenBasedRenenber MeSer vi ces
or a user-specified bean implementing Remenber MeSer vi ces depending on the attribute settings.

Parent Elements of <r enenber - ne>

* http

<r enenber - me> Attributes

aut henti cati on- success- handl er - r ef

Sets the aut henti cati onSuccessHandl er property on the
Renmember MeAut hent i cati onFi | t er if custom navigation is required. The value should be the name
of a Aut hent i cat i onSuccessHandl er bean in the application context.

dat a- source-ref

A reference to a Dat aSour ce bean. If this is set, Per si st ent TokenBasedRenenber MeSer vi ces
will be used and configured with a JdbcTokenReposi t or yl npl instance.

r emenber - me- par anet er

The name of the request parameter which toggles remember-me authentication.
Defaults to " spring_security remember_me". Maps to the ‘“parameter" property of
Abst r act Remenber MeSer vi ces.

key

Maps to the "key" property of Abst r act Renenber MeSer vi ces. Should be set to a unique value to
ensure that remember-me cookies are only valid within the one application 102 |t this is not set a secure
random value will be generated. Since generating secure random values can take a while, setting this
value explicitly can help improve startup times when using the remember me functionality.

1921his doesn't affect the use of Per si st ent TokenBasedRemenber MeSer vi ces, where the tokens are stored on the server

side.

3.2.0.RC1 Spring Security 146

#nsa-port-mappings
#nsa-http

Spring Security

services-alias

Exports the internally defined Renenber MeSer vi ces as a bean alias, allowing it to be used by other
beans in the application context.

servi ces-ref

Allows complete control of the Remenber MeSer vi ces implementation that will be used by the filter.
The value should be the i d of a bean in the application context which implements this interface. Should
also implement Logout Handl er if a logout filter is in use.

t oken-repository-ref

Configures a Per si st ent TokenBasedRenmenber MeSer vi ces but allows the use of a custom
Per si st ent TokenReposi t ory bean.

t oken-val i di ty-seconds

Maps to the t okenVal i di t ySeconds property of Abst r act Renmenber MeSer vi ces. Specifies the
period in seconds for which the remember-me cookie should be valid. By default it will be valid for 14
days.

use- secur e- cooki e

It is recommended that remember-me cookies are only submitted over HTTPS and thus should be
flagged as “secure”. By default, a secure cookie will be used if the connection over which the login
request is made is secure (as it should be). If you set this property to f al se, secure cookies will not
be used. Setting it to t r ue will always set the secure flag on the cookie. This attribute maps to the
useSecur eCooki e property of Abst r act Renmenber MeSer vi ces.

user-service-ref

The remember-me services implementations require access to a User Det ai | sSer vi ce, so there has
to be one defined in the application context. If there is only one, it will be selected and used automatically
by the namespace configuration. If there are multiple instances, you can specify a bean i d explicitly
using this attribute.

<r equest - cache> Element

Sets the Request Cache instance which will be used by the Except i onTr ansl ati onFi | t er to store
request information before invoking an Aut hent i cati onEnt r yPoi nt .

Parent Elements of <r equest - cache>
* http

<r equest - cache> Attributes

r ef

Defines a reference to a Spring bean that is a Request Cache.
<sessi on- managenent >

Session-management related functionality is implemented by the addition of a
Sessi onManagenent Fi | t er to the filter stack.

3.2.0.RC1 Spring Security 147

#nsa-http

Spring Security

Parent Elements of <sessi on- managenent >

» http
<sessi on- managenent > Attributes
i nval i d- session-url

Setting this attribute will inject the Sessi onManagenent Fi | t er with a
Si npl eRedi rect I nval i dSessi onSt r at egy configured with the attribute value. When an invalid
session ID is submitted, the strategy will be invoked, redirecting to the configured URL.

sessi on-aut hentication-error-url

Defines the URL of the error page which should be shown when the SessionAuthenticationStrategy
raises an exception. If not set, an unauthorized (402) error code will be returned to the client. Note that
this attribute doesn't apply if the error occurs during a form-based login, where the URL for authentication
failure will take precedence.

sessi on- aut henti cati on-strategy-ref
Allows injection of the SessionAuthenticationStrategy instance used by the SessionManagementFilter
session-fixation-protection

Indicates how session fixation protection will be applied when a user authenticates. If set to
"none”, no protection will be applied. "newSession" will create a new empty session, with only
Spring Security-related attributes migrated. "migrateSession" will create a new session and copy all
session attributes to the new session. In Servlet 3.1 (Java EE 7) and newer containers, specifying
"changeSessionld" will keep the existing session and use the container-supplied session fixation
protection (HttpServletRequest#changeSessionld()). Defaults to "changeSessionld" in Servlet 3.1 and
newer containers, "migrateSession" in older containers. Throws an exception if "changeSessionld" is
used in older containers.

If session fixation protection is enabled, the Sessi onManagenent Filter is injected with an
appropriately configured Def aul t Sessi onAut henti cati onStrat egy. See the Javadoc for this
class for more details.

Child elements of <sessi on- nanagenent >

e concurrency-control

<concurrency-contr ol >

Adds support for concurrent session control, allowing limits to be placed on the number
of active sessions a user can have. A Concurrent SessionFilter wil be created,
and a Concurrent SessionControl Aut henticationStrategy will be used with the
Sessi onManagenent Filter. If a form | ogi n element has been declared, the strategy object
will also be injected into the created authentication filter. An instance of Sessi onRegi stry (a
Sessi onRegi st ryl npl instance unless the user wishes to use a custom bean) will be created for
use by the strategy.

Parent Elements of <concurrency-control >

» session-management

3.2.0.RC1 Spring Security 148

#nsa-http
#nsa-concurrency-control
#nsa-session-management

Spring Security

<concurrency-control > Attributes
error-if-maxi num exceeded

If setto "true" a Sessi onAut henti cat i onExcept i on will be raised when a user attempts to exceed
the maximum allowed number of sessions. The default behaviour is to expire the original session.

expi red-url

The URL a user will be redirected to if they attempt to use a session which has been "expired" by the
concurrent session controller because the user has exceeded the number of allowed sessions and has
logged in again elsewhere. Should be set unless excepti on-i f - maxi num exceeded is set. If no
value is supplied, an expiry message will just be written directly back to the response.

max- sessi ons

Maps to the maxi munSessi ons property of
Concurrent Sessi onCont r ol Aut henti cati onStrat egy.

session-registry-alias

It can also be useful to have a reference to the internal session registry for use in your own beans or
an admin interface. You can expose the internal bean using the sessi on-r egi st ry-al i as attribute,
giving it a name that you can use elsewhere in your configuration.

session-regi stry-ref

The user can supply their own Sessi onRegi st ry implementation using the sessi on-regi stry-
r ef attribute. The other concurrent session control beans will be wired up to use it.

<x509>

Adds support for X.509 authentication. An X509Aut henti cati onFi | t er will be added to the stack
and an Ht t p403For bi ddenEnt r yPoi nt bean will be created. The latter will only be used if no other
authentication mechanisms are in use (its only functionality is to return an HTTP 403 error code). A
Pr eAut hent i cat edAut hent i cat i onPr ovi der will also be created which delegates the loading of
user authorities to a User Det ai | sSer vi ce.

Parent Elements of <x509>

* http

<x509> Attributes

aut henti cati on-detail s-source-ref

A reference to an Aut hent i cat i onDet ai | sSour ce
subj ect - pri nci pal - regex

Defines a regular expression which will be used to extract the username from the certificate (for use
with the User Det ai | sSer vi ce).

user-servi ce-ref

Allows a specific User Det ai | sSer vi ce to be used with X.509 in the case where multiple instances are
configured. If not set, an attempt will be made to locate a suitable instance automatically and use that.

3.2.0.RC1 Spring Security 149

#nsa-http

Spring Security

<filter-chain-nmap>

Used to explicitly configure a FilterChainProxy instance with a FilterChainMap
<filter-chai n- map> Attributes

pat h-type

Superseded by the request-matcher attribute

request - mat cher

Supersedes the 'path-type’ attribute. Defines the strategy use for matching incoming requests. Currently
the options are 'ant' (for ant path patterns), 'regex’' for regular expressions and 'ciRegex' for case-
insensitive regular expressions.

Child Elements of <fi | t er - chai n- map>

« filter-chain
<filter-chain>

Used within to define a specific URL pattern and the list of filters which apply to the URLs matching
that pattern. When multiple filter-chain elements are assembled in a list in order to configure a
FilterChainProxy, the most specific patterns must be placed at the top of the list, with most general ones
at the bottom.

Parent Elements of <fi | t er - chai n>
* filter-chain-map

<filter-chai n> Attributes

filters

A comma separated list of references to Spring beans that implement Fi | t er . The value "none" means
that no Fi | t er 's should be used for this Fi | t er Chai n.

pattern

A-pattern that creates RequestMatcher in combination with the request-matcher

request - mat cher - r ef

A reference to a Request Mat cher that will be used to determine if the Fil ter'sfromthefilters
attribute should be invoked.

<filter-invocation-definition-source>
Deprecated synonym for filter-security-metadata-source
<filter-invocation-definition-source> Attributes
id

A bean identifier, used for referring to the bean elsewhere in the context.

3.2.0.RC1 Spring Security 150

#nsa-filter-chain-map-request-matcher
#nsa-filter-chain
#nsa-filter-chain-map
#nsa-filter-chain-map-request-matcher

Spring Security

| ower case- conpari sons
Compare after forcing to lowercase

pat h-type

Superseded by request-matcher
request - mat cher

Supersedes the 'path-type’ attribute. Defines the strategy use for matching incoming requests. Currently
the options are 'ant' (for ant path patterns), ‘regex’ for regular expressions and 'ciRegex’ for case-
insensitive regular expressions.

use-expressions

Enables the use of expressions in the 'access' attributes in <intercept-url> elements rather than the
traditional list of configuration attributes. Defaults to 'false’. If enabled, each attribute should contain a
single boolean expression. If the expression evaluates to 'true’, access will be granted.

Child Elements of <filter-i nvocati on-definition-source>

* intercept-url
<filter-security-netadata-source>

Used to explicitly configure a FilterSecurityMetadataSource bean for use with a FilterSecuritylnterceptor.
Usually only needed if you are configuring a FilterChainProxy explicitly, rather than using the <http>
element. The intercept-url elements used should only contain pattern, method and access attributes.
Any others will result in a configuration error.

<filter-security-netadata-source> Attributes

id

A bean identifier, used for referring to the bean elsewhere in the context.
| ower case- conpari sons

Compare after forcing to lower case

pat h-type

Superseded by request-matcher

request - mat cher

Supersedes the 'path-type’ attribute. Defines the strategy use for matching incoming requests. Currently
the options are 'ant' (for ant path patterns), 'regex' for regular expressions and 'ciRegex' for case-
insensitive regular expressions.

use- expressi ons

Enables the use of expressions in the 'access' attributes in <intercept-url> elements rather than the
traditional list of configuration attributes. Defaults to 'false’. If enabled, each attribute should contain a
single boolean expression. If the expression evaluates to 'true’, access will be granted.

3.2.0.RC1 Spring Security 151

#nsa-filter-invocation-definition-source-request-matcher
#nsa-intercept-url
#nsa-filter-security-metadata-source-request-matcher

Spring Security

Child Elements of <fil ter-security-netadata-source>

* intercept-url

B.2 Authentication Services

Before Spring Security 3.0, an Aut hent i cat i onManager was automatically registered internally. Now
you must register one explicitly using the <aut henti cati on- manager > element. This creates an
instance of Spring Security's Pr ovi der Manager class, which needs to be configured with a list of one
or more Aut henti cati onProvi der instances. These can either be created using syntax elements
provided by the namespace, or they can be standard bean definitions, marked for addition to the list
using the aut henti cati on- provi der element.

<aut henti cati on- manager >

Every Spring Security application which uses the namespace must have include this element
somewhere. It is responsible for registering the Authenticati onManager which provides
authentication services to the application. All elements which create Aut henti cati onProvi der
instances should be children of this element.

<aut hent i cat i on- manager > Attributes
alias

This attribute allows you to define an alias name for the internal instance for use in your own
configuration. Its use is described in the namespace introduction.

erase-credential s

If set to true, the AuthenticationManger will attempt to clear any credentials data in the
returned Authentication object, once the user has been authenticated. Literally it maps to the
eraseCredenti al sAft er Aut henti cati on property of the Pr ovi der Manager . This is discussed
in the Core Services chapter.

id

This attribute allows you to define an id for the internal instance for use in your own configuration. It is
the same a the alias element, but provides a more consistent experience with elements that use the
id attribute.

Child Elements of <aut henti cati on- manager >

» authentication-provider

» |dap-authentication-provider

<aut henti cati on- provi der >

Unless used with a ref attribute, this element is shorthand for configuring a
DaoAut hent i cat i onProvi der. DaoAut henti cati onProvi der loads user information from a
User Det ai | sSer vi ce and compares the username/password combination with the values supplied
at login. The User Det ai | sSer vi ce instance can be defined either by using an available namespace
element (j dbc- user-service or by using the user-servi ce-ref attribute to point to a bean
defined elsewhere in the application context). You can find examples of these variations in the
namespace introduction.

3.2.0.RC1 Spring Security 152

#nsa-intercept-url
#ns-auth-manager
#core-services-erasing-credentials
#nsa-authentication-provider
#nsa-ldap-authentication-provider
#core-services-dao-provider
#ns-auth-providers

Spring Security

Parent Elements of <aut hent i cati on- provi der >

» authentication-manager

<aut hent i cati on- provi der > Attributes

r ef

Defines a reference to a Spring bean that implements Aut hent i cat i onPr ovi der

If you have written your own Aut hent i cat i onPr ovi der implementation (or want to configure one
of Spring Security's own implementations as a traditional bean for some reason, then you can use the

following syntax to add it to the internal Pr ovi der Manager 's list:

<security: aut henti cati on- manager >
<security:aut hentication-provider ref="myAuthenticationProvider" />
</ security:aut henticati on-nmanager >

<bean i d="nyAut henti cati onProvi der" class="com sonet hi ng. MyAut henti cati onProvi der"/>

user -service-ref

A reference to a bean that implements UserDetailsService that may be created using the standard bean

element or the custom user-service element.
Child Elements of <aut henti cati on- provi der >

* jdbc-user-service

» |ldap-user-service

» password-encoder

* user-service
<j dbc- user-servi ce>
Causes creation of a JDBC-based UserDetailsService.

<j dbc- user - servi ce> Attributes

aut horities-by-usernane-query

An SQL statement to query for a user's granted authorities given a username.

The default is

sel ect usernane, authority fromauthorities where usernane = ?

cache-ref
Defines a reference to a cache for use with a UserDetailsService.
dat a- sour ce-r ef

The bean ID of the DataSource which provides the required tables.

3.2.0.RC1 Spring Security

153

#nsa-authentication-manager
#nsa-jdbc-user-service
#nsa-ldap-user-service
#nsa-password-encoder
#nsa-user-service

Spring Security

group-aut horiti es-by-user nane- query
An SQL statement to query user's group authorities given a username.

The default is

sel ect
g.id, g.group_nane, ga.authority
from
groups g, group_nenbers gm group_authorities ga
wher e
gmusernane = ? and g.id = ga.group_id and g.id = gmgroup_id

id
A bean identifier, used for referring to the bean elsewhere in the context.
rol e-prefix

A non-empty string prefix that will be added to role strings loaded from persistent storage (default is
"ROLE_"). Use the value "none" for no prefix in cases where the default is non-empty.

user s- by- user nane- query
An SQL statement to query a username, password, and enabled status given a username.

The default is

sel ect usernane, password, enabled from users where usernanme = ?

<passwor d- encoder >

Authentication providers can optionally be configured to use a password encoder as described
in the namespace introduction. This will result in the bean being injected with the appropriate
Passwor dEncoder instance, potentially with an accompanying Sal t Sour ce bean to provide salt
values for hashing.

Parent Elements of <passwor d- encoder >

» authentication-provider

» password-compare

<passwor d- encoder > Attributes

base64

Whether a string should be base64 encoded
hash

Defines the hashing algorithm used on user passwords. We recommend strongly against using MD4,
as it is a very weak hashing algorithm.

ref

Defines a reference to a Spring bean that implements Passwor dEncoder

3.2.0.RC1 Spring Security 154

#ns-password-encoder
#nsa-authentication-provider
#nsa-password-compare

Spring Security

Child Elements of <passwor d- encoder >

 salt-source
<sal t - source>

Password salting strategy. A system-wide constant or a property from the UserDetails object can be
used.

Parent Elements of <sal t - sour ce>

» password-encoder

<sal t - sour ce> Attributes

ref

Defines a reference to a Spring bean Id.

system w de

A single value that will be used as the salt for a password encoder.
user-property

A property of the UserDetails object which will be used as salt by a password encoder. Typically
something like "username" might be used.

<user -servi ce>

Creates an in-memory UserDetailsService from a properties file or a list of "user" child elements.
Usernames are converted to lower-case internally to allow for case-insensitive lookups, so this should
not be used if case-sensitivity is required.

<user - servi ce> Attributes

id

A bean identifier, used for referring to the bean elsewhere in the context.
properties

The location of a Properties file where each line is in the format of

user name=passwor d, gr ant edAut hori ty[, grant edAut hority] [, enabl ed| di sabl ed]

Child Elements of <user - servi ce>
* user

<user >

Represents a user in the application.
Parent Elements of <user >

* user-service

3.2.0.RC1 Spring Security 155

#nsa-salt-source
#nsa-password-encoder
#nsa-user
#nsa-user-service

Spring Security

<user > Attributes
authorities

One of more authorities granted to the user. Separate authorities with a comma (but no space). For
example, "ROLE_USER,ROLE_ADMINISTRATOR"

di sabl ed

Can be set to "true" to mark an account as disabled and unusable.
| ocked

Can be set to "true” to mark an account as locked and unusable.
name

The username assigned to the user.

password

The password assigned to the user. This may be hashed if the corresponding authentication provider
supports hashing (remember to set the "hash" attribute of the "user-service" element). This attribute be
omitted in the case where the data will not be used for authentication, but only for accessing authorities.
If omitted, the namespace will generate a random value, preventing its accidental use for authentication.
Cannot be empty.

B.3 Method Security

<gl obal - net hod- security>

This element is the primary means of adding support for securing methods on Spring Security beans.
Methods can be secured by the use of annotations (defined at the interface or class level) or by defining
a set of pointcuts as child elements, using AspectJ syntax.

<gl obal - net hod- securi t y> Attributes
access-deci si on- manager - r ef

Method security uses the same AccessDeci si onManager configuration as web security, but this can
be overridden using this attribute. By default an AffirmativeBased implementation is used for with a
RoleVoter and an AuthenticatedVoter.

aut hent i cati on- manager - r ef
A reference to an Aut hent i cat i onManager that should be used for method security.
j sr250- annot ati ons

Specifies whether JSR-250 style attributes are to be used (for example "RolesAllowed"). This will require
the javax.annotation.security classes on the classpath. Setting this to true also adds a Jsr 250Vot er
to the AccessDeci si onManager, so you need to make sure you do this if you are using a custom
implementation and want to use these annotations.

<net adat a- sour ce- r ef > Attribute

An external Met hodSecur i t yMet adat aSour ce instance can be supplied which will take priority over
other sources (such as the default annotations).

3.2.0.RC1 Spring Security 156

Spring Security

The node Attribute

This attribute can be set to “aspectj” to specify that AspectJ should be used instead of the default Spring
AOP. Secured methods must be woven with the Annot at i onSecuri t yAspect from the spri ng-
security-aspect s module.

or der
Allows the advice "order" to be set for the method security interceptor.
pr e- post - annot ati ons

Specifies whether the use of Spring Security's pre and post invocation annotations (@PreFilter,
@PreAuthorize, @PostFilter, @PostAuthorize) should be enabled for this application context. Defaults
to "disabled".

proxy-target-class
If true, class based proxying will be used instead of interface based proxying.
run- as- manager - r ef

A reference to an optional RunAsManager implementation which will be used by the configured
Met hodSecuri tyl nt er cept or

secur ed- annot ati ons

Specifies whether the use of Spring Security's @Secured annotations should be enabled for this
application context. Defaults to "disabled".

Child Elements of <gl obal - met hod- security>

 after-invocation-provider

» expression-handler

* pre-post-annotation-handling

* protect-pointcut
<after-invocation-provider>

This element can be used to decorate an Afterlnvocati onProvi der for use by the security
interceptor maintained by the <gl obal - met hod- securi t y> namespace. You can define zero or
more of these within the gl obal - met hod- securi ty element, each with a r ef attribute pointing to
an Afterl nvocati onProvi der bean instance within your application context.

Parent Elements of <aft er-i nvocati on- provi der >

» global-method-security

<after-invocation-provider> Attributes
ref

Defines a reference to a Spring bean that implements Aft er | nvocati onProvi der.

3.2.0.RC1 Spring Security 157

#nsa-after-invocation-provider
#nsa-expression-handler
#nsa-pre-post-annotation-handling
#nsa-protect-pointcut
#nsa-global-method-security

Spring Security

<pr e- post - annot at i on- handl i ng>

Allows the default expression-based mechanism for handling Spring Security's pre and post invocation
annotations (@PreFilter, @PreAuthorize, @PostFilter, @PostAuthorize) to be replace entirely. Only
applies if these annotations are enabled.

Parent Elements of <pr e- post - annot at i on- handl i ng>

» global-method-security

Child Elements of <pr e- post - annot at i on- handl i ng>

 invocation-attribute-factory

* post-invocation-advice

* pre-invocation-advice

<i nvocation-attribute-factory>

Defines the PrePostinvocationAttributeFactory instance which is used to generate pre and post
invocation metadata from the annotated methods.

Parent Elements of <i nvocati on-attri bute-factory>

* pre-post-annotation-handling

<i nvocation-attribute-factory> Attributes
ref

Defines a reference to a Spring bean Id.
<post -invocati on-advi ce>

Customizes the Post | nvocat i onAdvi cePr ovi der with the ref as the
Post | nvocat i onAut hori zat i onAdvi ce for the <pre-post-annotation-handling> element.

Parent Elements of <post -i nvocat i on- advi ce>

e pre-post-annotation-handling

<post -i nvocati on- advi ce> Attributes
ref

Defines a reference to a Spring bean Id.
<pre-invocation-advi ce>

Customizes the PrelnvocationAuthorizati onAdviceVoter with the ref as the
Pr el nvocat i onAut hori zat i onAdvi ceVot er for the <pre-post-annotation-handling> element.

Parent Elements of <pr e-i nvocat i on- advi ce>

* pre-post-annotation-handling

3.2.0.RC1 Spring Security 158

#nsa-global-method-security
#nsa-invocation-attribute-factory
#nsa-post-invocation-advice
#nsa-pre-invocation-advice
#nsa-pre-post-annotation-handling
#nsa-pre-post-annotation-handling
#nsa-pre-post-annotation-handling

Spring Security

<pre-invocation-advi ce> Attributes
ref

Defines a reference to a Spring bean Id.

Securing Methods using <pr ot ect - poi nt cut >

Rather than defining security attributes on an individual method or class basis using the @ecur ed
annotation, you can define cross-cutting security constraints across whole sets of methods and
interfaces in your service layer using the <pr ot ect - poi nt cut > element. You can find an example
in the namespace introduction.

Parent Elements of <pr ot ect - poi nt cut >

» global-method-security

<pr ot ect - poi nt cut > Attributes
access

Access configuration attributes list that applies to all methods matching the pointcut, e.g.
"ROLE_A,ROLE_B"

expressi on

An Aspect] expression, including the ‘execution’' keyword. For example, ‘execution(int
com.foo.TargetObject.countLength(String))" (without the quotes).

<i nt er cept - net hods>

Can be used inside a bean definition to add a security interceptor to the bean and set up access
configuration attributes for the bean's methods

<i nt er cept - met hods> Attributes

access-deci si on- manager - r ef

Optional AccessDecisionManager bean ID to be used by the created method security interceptor.
Child Elements of <i nt er cept - met hods>

* protect

<nmet hod- security- net adat a- sour ce>

Creates a MethodSecurityMetadataSource instance

<nmet hod- securi ty- net adat a- sour ce> Attributes

id

A bean identifier, used for referring to the bean elsewhere in the context.
use- expressi ons

Enables the use of expressions in the 'access' attributes in <intercept-url> elements rather than the
traditional list of configuration attributes. Defaults to ‘'false'. If enabled, each attribute should contain a
single boolean expression. If the expression evaluates to 'true’, access will be granted.

3.2.0.RC1 Spring Security 159

#ns-protect-pointcut
#nsa-global-method-security
#nsa-protect

Spring Security

Child Elements of <net hod- securi t y- net adat a- sour ce>

* protect
<pr ot ect >

Defines a protected method and the access control configuration attributes that apply to it. We strongly
advise you NOT to mix "protect" declarations with any services provided "global-method-security".

Parent Elements of <pr ot ect >

 intercept-methods

« method-security-metadata-source

<pr ot ect > Attributes

access

Access configuration attributes list that applies to the method, e.g. "ROLE_A,ROLE_B".
nmet hod

A method name

B.4 LDAP Namespace Options

LDAP is covered in some details in its own chapter. We will expand on that here with some explanation
of how the namespace options map to Spring beans. The LDAP implementation uses Spring LDAP
extensively, so some familiarity with that project's API may be useful.

Defining the LDAP Server using the <I dap- ser ver > Element

This element sets up a Spring LDAP Cont ext Sour ce for use by the other LDAP beans, defining
the location of the LDAP server and other information (such as a username and password, if it
doesn't allow anonymous access) for connecting to it. It can also be used to create an embedded
server for testing. Details of the syntax for both options are covered in the LDAP chapter.
The actual Cont ext Sour ce implementation is Def aul t Spri ngSecuri t yCont ext Sour ce which
extends Spring LDAP's LdapCont ext Sour ce class. The nanager - dn and nmanager - passwor d
attributes map to the latter's user Dn and passwor d properties respectively.

If you only have one server defined in your application context, the other LDAP namespace-defined
beans will use it automatically. Otherwise, you can give the element an "id" attribute and refer to it
from other namespace beans using the server-ref attribute. This is actually the bean i d of the
Cont ext Sour ce instance, if you want to use it in other traditional Spring beans.

<| dap- server > Attributes

id

A bean identifier, used for referring to the bean elsewhere in the context.
I dif

Explicitly specifies an Idif file resource to load into an embedded LDAP server. The Idiff is should be a
Spring resource pattern (i.e. classpath:init.Idiff). The default is classpath*:*.Idiff

3.2.0.RC1 Spring Security 160

#nsa-protect
#nsa-intercept-methods
#nsa-method-security-metadata-source
#ldap
#ldap-server

Spring Security

manager - dn

Username (DN) of the "manager” user identity which will be used to authenticate to a (hon-embedded)
LDAP server. If omitted, anonymous access will be used.

nanager - password
The password for the manager DN. This is required if the manager-dn is specified.
port

Specifies an IP port number. Used to configure an embedded LDAP server, for example. The default
value is 33389.

r oot
Optional root suffix for the embedded LDAP server. Default is "dc=springframework,dc=org"
url

Specifies the Idap server URL when not using the embedded LDAP server.

<| dap- aut henti cati on- provi der >

This element is shorthand for the creation of an LdapAuthenticationProvider
instance. By default this will be configured with a Bi ndAut henticator instance and a
Def aul t Aut hori ti esPopul at or. As with all namespace authentication providers, it must be
included as a child of the aut henti cat i on- provi der element.

Parent Elements of <l dap- aut henti cati on- provi der >

« authentication-manager

<l dap- aut hent i cati on- provi der > Attributes
group-role-attribute

The LDAP attribute name which contains the role name which will be used within Spring Security. Maps
to the Def aul t LdapAut hori ti esPopul at or's gr oupRol eAt t ri but e property. Defaults to "cn".

gr oup- sear ch- base

Search base for group membership searches. Maps to the Def aul t LdapAut horiti esPopul ator's
gr oupSear chBase constructor argument. Defaults to "™ (searching from the root).

group-search-filter

Group search filter. Maps to the Def aul t LdapAut hori ti esPopul at or's gr oupSear chFi l ter
property. Defaults to (uniqueMember={0}). The substituted parameter is the DN of the user.

rol e-prefix

A non-empty string prefix that will be added to role strings loaded from persistent. Maps to the
Def aul t LdapAut hori ti esPopul at or'sr ol ePr ef i x property. Defaults to "ROLE_". Use the value
"none" for no prefix in cases where the default is non-empty.

3.2.0.RC1 Spring Security 161

#nsa-authentication-manager

Spring Security

server-ref

The optional server to use. If omitted, and a default LDAP server is registered (using <ldap-server> with
no Id), that server will be used.

user - cont ext - mapper - r ef

Allows explicit customization of the loaded user object by specifying a UserDetailsContextMapper bean
which will be called with the context information from the user's directory entry

user-detail s-cl ass

Allows the objectClass of the user entry to be specified. If set, the framework will attempt to load standard
attributes for the defined class into the returned UserDetails object

user-dn-pattern

If your users are at a fixed location in the directory (i.e. you can work out the DN directly from the
username without doing a directory search), you can use this attribute to map directly to the DN. It maps
directly to the user DnPat t er ns property of Abst r act LdapAut henti cat or . The value is a specific
pattern used to build the user's DN, for example "uid={0},ou=people". The key "{0}" must be present
and will be substituted with the username.

user - sear ch- base
Search base for user searches. Defaults to "". Only used with a 'user-search-filter'.

If you need to perform a search to locate the user in the directory, then you can set
these attributes to control the search. The Bi ndAut henticator will be configured with a
Fi | t er BasedLdapUser Sear ch and the attribute values map directly to the first two arguments of
that bean's constructor. If these attributes aren't set and no user - dn- pat t er n has been supplied as
an alternative, then the default search values of user - search-filter="(ui d={0})" and user -
sear ch- base="" will be used.

user-search-filter

The LDAP filter used to search for users (optional). For example "(uid={0})". The substituted parameter
is the user's login name.

If you need to perform a search to locate the user in the directory, then you can set
these attributes to control the search. The Bi ndAut henticator will be configured with a
Fi | t er BasedLdapUser Sear ch and the attribute values map directly to the first two arguments of
that bean's constructor. If these attributes aren't set and no user - dn- pat t er n has been supplied as
an alternative, then the default search values of user - search-filter="(ui d={0})" and user -
sear ch-base="" will be used.

Child Elements of <| dap- aut henti cati on- provi der >

* password-compare

<passwor d- conpar e>

This is used as child element to <I dap- pr ovi der > and switches the authentication strategy from
Bi ndAut hent i cat or to Passwor dConpar i sonAut henti cat or.

3.2.0.RC1 Spring Security 162

#nsa-password-compare

Spring Security

Parent Elements of <passwor d- conpar e>

» |dap-authentication-provider

<passwor d- conpar e> Attributes
hash

Defines the hashing algorithm used on user passwords. We recommend strongly against using MD4,
as it is a very weak hashing algorithm.

password-attribute
The attribute in the directory which contains the user password. Defaults to "userPassword".
Child Elements of <passwor d- conpar e>

» password-encoder

<| dap- user - servi ce>

This element configures an LDAP UserDetail sService. The class wused is
LdapUser Det ai | sSer vi ce which is a combination of a Fi | t er BasedLdapUser Search and a
Def aul t LdapAut horiti esPopul at or. The attributes it supports have the same usage as in
<l dap- provi der >.

<l dap- user - servi ce> Attributes

cache-ref

Defines a reference to a cache for use with a UserDetailsService.
group-role-attribute

The LDAP attribute name which contains the role name which will be used within Spring Security.
Defaults to “cn".

gr oup- sear ch- base

Search base for group membership searches. Defaults to ™ (searching from the root).
group-search-filter

Group search filter. Defaults to (unigueMember={0}). The substituted parameter is the DN of the user.
id

A bean identifier, used for referring to the bean elsewhere in the context.

rol e-prefix

A non-empty string prefix that will be added to role strings loaded from persistent storage (e.g. "ROLE_").
Use the value "none" for no prefix in cases where the default is non-empty.

server-ref

The optional server to use. If omitted, and a default LDAP server is registered (using <ldap-server> with
no Id), that server will be used.

3.2.0.RC1 Spring Security 163

#nsa-ldap-authentication-provider
#nsa-password-encoder

Spring Security

user - cont ext - mapper - r ef

Allows explicit customization of the loaded user object by specifying a UserDetailsContextMapper bean
which will be called with the context information from the user's directory entry

user-detail s-cl ass

Allows the objectClass of the user entry to be specified. If set, the framework will attempt to load standard
attributes for the defined class into the returned UserDetails object

user - sear ch- base
Search base for user searches. Defaults to "". Only used with a 'user-search-filter'.
user-search-filter

The LDAP filter used to search for users (optional). For example "(uid={0})". The substituted parameter
is the user's login name.

3.2.0.RC1 Spring Security 164

Spring Security

Appendix C. Spring Security
Dependencies

This appendix provides a reference of the modules in Spring Security and the additional dependencies
that they require in order to function in a running application. We don't include dependenices that are
only used when building or testing Spring Security itself. Nor do we include transitive dependencies
which are required by external dependencies.

The version of Spring required is listed on the project website, so the specific versions are omitted
for Spring dependencies below. Note that some of the dependencies listed as “optional” below may
still be required for other non-security functionality in a Spring application. Also dependencies listed as
“optional” may not actually be marked as such in the project's Maven pom files if they are used in most
applications. They are “optional” only in the sense that you don't need them unless you are using the
specified functionality.

Where a module depends on another Spring Security module, the non-optional dependencies of the
module it depends on are also assumed to be required and are not listed separately.

C.1spring-security-core

The core module must be included in any project using Spring Security.

Table C.1. Core Depenendencies

Dependency Version Description

aopalliance 1.0 Required for method security implementation.

ehcache 1.6.2 Required if the ehcache-based user cache
implementation is used (optional).

spring-aop Method security is based on Spring AOP

spring-beans Required for Spring configuration

spring-expression Required for expression-based method security
(optional)

spring-jdbc Required if using a database to store user data
(optional).

spring-tx Required if using a database to store user data
(optional).

aspectjrt 1.6.10 Required if using AspectJ support (optional).

jsr250-api 1.0 Required if you are using JSR-250 method-
security annotations (optional).

C.2spring-security-renoting

This module is typically required in web applications which use the Servlet API.

3.2.0.RC1 Spring Security 165

Spring Security

Table C.2. Remoting Dependencies

Dependency

Version

Description

spring-security-core

spring-web

C.3spring-security-web

Required for clients which use HTTP remoting
support.

This module is typically required in web applications which use the Serviet API.

Table C.3. Web Dependencies

Dependency

spring-security-core

Version

Description

spring-web Spring web support classes are used
extensively.

spring-jdbc Required for JDBC-based persistent remember-
me token repository (optional).

spring-tx Required by remember-me persistent token

C.4spring-security-I|dap

repository implementations (optional).

This module is only required if you are using LDAP authentication.

Table C.4. LDAP Dependencies

Dependency Version Description

spring-security-core

spring-ldap-core 1.3.0 LDAP support is based on Spring LDAP.

spring-tx Data exception classes are required.

apache-ds ! 155 Required if you are using an embedded LDAP
server (optional).

shared-ldap 0.9.15 Required if you are using an embedded LDAP
server (optional).

ldapsdk 4.1 Mozilla LdapSDK. Used for decoding LDAP

password policy controls if you are using
password-policy functionality with OpenLDAP,
for example.

“The modules apacheds- cor e, apacheds- cor e- ent ry, apacheds- pr ot ocol - shar ed, apacheds- pr ot ocol - | dap and

apacheds- server-j ndi are required.

3.2.0.RC1

Spring Security 166

Spring Security

C.5spring-security-config

This module is required if you are using Spring Security namespace configuration.

Table C.5. Config Dependencies

Dependency Version Description

spring-security-core

spring-security-web Required if you are using any web-related
namespace configuration (optional).

spring-security-ldap Required if you are using the LDAP namespace
options (optional).

spring-security-openid Required if you are using OpenlD authentication
(optional).

aspectjweaver 1.6.10 Required if using the protect-pointcut

C.6spring-security-acl

The ACL module.

Table C.6. ACL Dependencies

namespace syntax (optional).

Dependency Version Description

spring-security-core

ehcache 1.6.2 Required if the ehcache-based ACL cache
implementation is used (optional if you are using
your own implementation).

spring-jdbc Required if you are using the default JDBC-
based AclService (optional if you implement your
own).

spring-tx Required if you are using the default JDBC-

based AclService (optional if you implement your
own).

C.7 spring-security-cas

The CAS module provides integration with JA-SIG CAS.

Table C.7. CAS Dependencies

Dependency

Version

Description

spring-security-core

spring-security-web

3.2.0.RC1

Spring Security

167

Spring Security

Dependency Version Description

cas-client-core 3.1.12 The JA-SIG CAS Client. This is the basis of the
Spring Security integration.

ehcache 1.6.2 Required if you are using the ehcache-based
ticket cache (optional).

C.8 spring-security-openid
The OpenID module.
Table C.8. OpenID Dependencies

Dependency Version Description
spring-security-core
spring-security-web

openid4java-nodeps 0.9.6 Spring Security's OpenlID integration uses
OpeniD4Java.

httpclient 4.1.1 openid4java-nodeps depends on HttpClient 4.

guice 2.0 openid4java-nodeps depends on Guice 2.

C.9spring-security-taglibs
Provides Spring Security's JSP tag implementations.
Table C.9. Taglib Dependencies

Dependency Version Description

spring-security-core

spring-security-web

spring-security-acl Required if you are using the
accesscontrol li st tagor

hasPer m ssi on() expressions with ACLs
(optional).

spring-expression Required if you are using SPEL expressions in
your tag access constraints.

3.2.0.RC1 Spring Security 168

	Spring Security
	Table of Contents
	Preface
	Part I. Getting Started
	1. Introduction
	1.1 What is Spring Security?
	1.2 History
	1.3 Release Numbering
	1.4 Getting Spring Security
	Project Modules
	Core - spring-security-core.jar
	Remoting - spring-security-remoting.jar
	Web - spring-security-web.jar
	Config - spring-security-config.jar
	LDAP - spring-security-ldap.jar
	ACL - spring-security-acl.jar
	CAS - spring-security-cas.jar
	OpenID - spring-security-openid.jar

	Checking out the Source

	2. What's new in Spring Security 3.1
	2.1 High level updates found Spring Security 3.1
	2.2 Spring Security 3.1 namespace updates

	3. Security Namespace Configuration
	3.1 Introduction
	Design of the Namespace

	3.2 Getting Started with Security Namespace Configuration
	web.xml Configuration
	A Minimal <http> Configuration
	Form and Basic Login Options
	Setting a Default Post-Login Destination

	Logout Handling
	Using other Authentication Providers
	Adding a Password Encoder

	3.3 Advanced Web Features
	Remember-Me Authentication
	Adding HTTP/HTTPS Channel Security
	Session Management
	Detecting Timeouts
	Concurrent Session Control
	Session Fixation Attack Protection

	OpenID Support
	Attribute Exchange

	Response Headers
	Adding in Your Own Filters
	Setting a Custom AuthenticationEntryPoint

	3.4 Method Security
	The <global-method-security> Element
	Adding Security Pointcuts using protect-pointcut

	3.5 The Default AccessDecisionManager
	Customizing the AccessDecisionManager

	3.6 The Authentication Manager and the Namespace

	4. Sample Applications
	4.1 Tutorial Sample
	4.2 Contacts
	4.3 LDAP Sample
	4.4 OpenID Sample
	4.5 CAS Sample
	4.6 JAAS Sample
	4.7 Pre-Authentication Sample

	5. Spring Security Community
	5.1 Issue Tracking
	5.2 Becoming Involved
	5.3 Further Information

	Part II. Architecture and Implementation
	6. Technical Overview
	6.1 Runtime Environment
	6.2 Core Components
	SecurityContextHolder, SecurityContext and Authentication Objects
	Obtaining information about the current user

	The UserDetailsService
	GrantedAuthority
	Summary

	6.3 Authentication
	What is authentication in Spring Security?
	Setting the SecurityContextHolder Contents Directly

	6.4 Authentication in a Web Application
	ExceptionTranslationFilter
	AuthenticationEntryPoint
	Authentication Mechanism
	Storing the SecurityContext between requests

	6.5 Access-Control (Authorization) in Spring Security
	Security and AOP Advice
	Secure Objects and the AbstractSecurityInterceptor
	What are Configuration Attributes?
	RunAsManager
	AfterInvocationManager
	Extending the Secure Object Model

	6.6 Localization

	7. Core Services
	7.1 The AuthenticationManager, ProviderManager and AuthenticationProviders
	Erasing Credentials on Successful Authentication
	DaoAuthenticationProvider

	7.2 UserDetailsService Implementations
	In-Memory Authentication
	JdbcDaoImpl
	Authority Groups

	7.3 Password Encoding
	What is a hash?
	Adding Salt to a Hash
	Hashing and Authentication

	Part III. Web Application Security
	8. The Security Filter Chain
	8.1 DelegatingFilterProxy
	8.2 FilterChainProxy
	Bypassing the Filter Chain

	8.3 Filter Ordering
	8.4 Request Matching and HttpFirewall
	8.5 Use with other Filter-Based Frameworks
	8.6 Advanced Namespace Configuration

	9. Core Security Filters
	9.1 FilterSecurityInterceptor
	9.2 ExceptionTranslationFilter
	AuthenticationEntryPoint
	AccessDeniedHandler
	SavedRequests and the RequestCache Interface

	9.3 SecurityContextPersistenceFilter
	SecurityContextRepository

	9.4 UsernamePasswordAuthenticationFilter
	Application Flow on Authentication Success and Failure

	10. Basic and Digest Authentication
	10.1 BasicAuthenticationFilter
	Configuration

	10.2 DigestAuthenticationFilter
	Configuration

	11. Remember-Me Authentication
	11.1 Overview
	11.2 Simple Hash-Based Token Approach
	11.3 Persistent Token Approach
	11.4 Remember-Me Interfaces and Implementations
	TokenBasedRememberMeServices
	PersistentTokenBasedRememberMeServices

	12. Session Management
	12.1 SessionManagementFilter
	12.2 SessionAuthenticationStrategy
	12.3 Concurrency Control
	Querying the SessionRegistry for currently authenticated users and their sessions

	13. Anonymous Authentication
	13.1 Overview
	13.2 Configuration
	13.3 AuthenticationTrustResolver

	Part IV. Authorization
	14. Authorization Architecture
	14.1 Authorities
	14.2 Pre-Invocation Handling
	The AccessDecisionManager
	Voting-Based AccessDecisionManager Implementations
	RoleVoter
	AuthenticatedVoter
	Custom Voters

	14.3 After Invocation Handling
	14.4 Hierarchical Roles

	15. Secure Object Implementations
	15.1 AOP Alliance (MethodInvocation) Security Interceptor
	Explicit MethodSecurityInterceptor Configuration

	15.2 AspectJ (JoinPoint) Security Interceptor

	16. Expression-Based Access Control
	16.1 Overview
	Common Built-In Expressions

	16.2 Web Security Expressions
	16.3 Method Security Expressions
	@Pre and @Post Annotations
	Access Control using @PreAuthorize and @PostAuthorize
	Filtering using @PreFilter and @PostFilter

	Built-In Expressions
	The PermissionEvaluator interface

	Part V. Additional Topics
	17. Domain Object Security (ACLs)
	17.1 Overview
	17.2 Key Concepts
	17.3 Getting Started

	18. Pre-Authentication Scenarios
	18.1 Pre-Authentication Framework Classes
	AbstractPreAuthenticatedProcessingFilter
	J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

	PreAuthenticatedAuthenticationProvider
	Http403ForbiddenEntryPoint

	18.2 Concrete Implementations
	Request-Header Authentication (Siteminder)
	Siteminder Example Configuration

	J2EE Container Authentication

	19. LDAP Authentication
	19.1 Overview
	19.2 Using LDAP with Spring Security
	19.3 Configuring an LDAP Server
	Using an Embedded Test Server
	Using Bind Authentication
	Loading Authorities

	19.4 Implementation Classes
	LdapAuthenticator Implementations
	Common Functionality
	BindAuthenticator
	PasswordComparisonAuthenticator

	Connecting to the LDAP Server
	LDAP Search Objects
	FilterBasedLdapUserSearch

	LdapAuthoritiesPopulator
	Spring Bean Configuration
	LDAP Attributes and Customized UserDetails

	19.5 Active Directory Authentication
	ActiveDirectoryLdapAuthenticationProvider
	Active Directory Error Codes

	20. JSP Tag Libraries
	20.1 Declaring the Taglib
	20.2 The authorize Tag
	Disabling Tag Authorization for Testing

	20.3 The authenticationTag
	20.4 The accesscontrollist Tag

	21. Java Authentication and Authorization Service (JAAS) Provider
	21.1 Overview
	21.2 AbstractJaasAuthenticationProvider
	JAAS CallbackHandler
	JAAS AuthorityGranter

	21.3 DefaultJaasAuthenticationProvider
	InMemoryConfiguration
	DefaultJaasAuthenticationProvider Example Configuration

	21.4 JaasAuthenticationProvider
	21.5 Running as a Subject

	22. CAS Authentication
	22.1 Overview
	22.2 How CAS Works
	Spring Security and CAS Interaction Sequence

	22.3 Configuration of CAS Client
	Service Ticket Authentication
	Single Logout
	Authenticating to a Stateless Service with CAS
	Configuring CAS to Obtain Proxy Granting Tickets
	Calling a Stateless Service Using a Proxy Ticket

	Proxy Ticket Authentication

	23. X.509 Authentication
	23.1 Overview
	23.2 Adding X.509 Authentication to Your Web Application
	23.3 Setting up SSL in Tomcat

	24. Run-As Authentication Replacement
	24.1 Overview
	24.2 Configuration

	25. Spring Security Crypto Module
	25.1 Introduction
	25.2 Encryptors
	BytesEncryptor
	TextEncryptor

	25.3 Key Generators
	BytesKeyGenerator
	StringKeyGenerator

	25.4 Password Encoding

	Appendix A. Security Database Schema
	A.1 User Schema
	Group Authorities

	A.2 Persistent Login (Remember-Me) Schema
	A.3 ACL Schema
	Hypersonic SQL
	PostgreSQL

	Appendix B. The Security Namespace
	B.1 Web Application Security
	<debug>
	<http>
	<http> Attributes
	access-decision-manager-ref
	access-denied-page
	authentication-manager-ref
	auto-config
	create-session
	disable-url-rewriting
	entry-point-ref
	jaas-api-provision
	name
	once-per-request
	path-type
	pattern
	realm
	request-matcher
	request-matcher-ref
	security
	security-context-repository-ref
	servlet-api-provision
	use-expressions

	Child Elements of <http>

	<access-denied-handler>
	Parent Elements of <access-denied-handler>
	<access-denied-handler> Attributes
	error-page
	ref

	<headers>
	Parent Elements of <headers>
	Child Elements of <headers>

	<cache-control>
	Parent Elements of <cache-control>

	<hsts>
	<hsts> Attributes
	include-sub-domains
	max-age-seconds
	request-matcher-ref

	Parent Elements of <hsts>

	<frame-options>
	<frame-options> Attributes
	frame-options-policy
	frame-options-strategy
	frame-options-ref
	frame-options-value
	frame-options-from-parameter

	Parent Elements of <frame-options>

	<xss-protection>
	
	xss-protection-enabled
	xss-protection-block

	Parent Elements of <xss-protection>

	<content-type-options>
	Parent Elements of <content-type-options>

	<header>
	<header-attributes> Attributes
	header-name
	header-value
	header-ref

	Parent Elements of <header>

	<anonymous>
	Parent Elements of <anonymous>
	<anonymous> Attributes
	enabled
	granted-authority
	key
	username

	<csrf>
	Parent Elements of <csrf>
	<csrf> Attributes
	token-repository-ref
	request-matcher-ref

	<custom-filter>
	Parent Elements of <custom-filter>
	<custom-filter> Attributes
	after
	before
	position
	ref

	<expression-handler>
	Parent Elements of <expression-handler>
	<expression-handler> Attributes
	ref

	<form-login>
	Parent Elements of <form-login>
	<form-login> Attributes
	always-use-default-target
	authentication-details-source-ref
	authentication-failure-handler-ref
	authentication-failure-url
	authentication-success-handler-ref
	default-target-url
	login-page
	login-processing-url
	password-parameter
	username-parameter

	<http-basic>
	Parent Elements of <http-basic>
	<http-basic> Attributes
	authentication-details-source-ref
	entry-point-ref

	<http-firewall> Element
	<http-firewall> Attributes
	ref

	<intercept-url>
	Parent Elements of <intercept-url>
	<intercept-url> Attributes
	access
	filters
	method
	pattern
	requires-channel

	<jee>
	Parent Elements of <jee>
	<jee> Attributes
	mappable-roles
	user-service-ref

	<logout>
	Parent Elements of <logout>
	<logout> Attributes
	The delete-cookies attribute
	The invalidate-session attribute
	The logout-success-url attribute
	The logout-url attribute
	The success-handler-ref attribute

	<openid-login>
	Parent Elements of <openid-login>
	<openid-login> Attributes
	always-use-default-target
	authentication-details-source-ref
	authentication-failure-handler-ref
	authentication-failure-url
	authentication-success-handler-ref
	default-target-url
	login-page
	login-processing-url
	password-parameter
	user-service-ref
	username-parameter

	Child Elements of <openid-login>

	<attribute-exchange>
	Parent Elements of <attribute-exchange>
	<attribute-exchange> Attributes
	identifier-match

	Child Elements of <attribute-exchange>

	<openid-attribute>
	Parent Elements of <openid-attribute>
	<openid-attribute> Attributes
	count
	name
	required
	type

	<port-mappings>
	Parent Elements of <port-mappings>
	Child Elements of <port-mappings>

	<port-mapping>
	Parent Elements of <port-mapping>
	<port-mapping> Attributes
	http
	https

	<remember-me>
	Parent Elements of <remember-me>
	<remember-me> Attributes
	authentication-success-handler-ref
	data-source-ref
	remember-me-parameter
	key
	services-alias
	services-ref
	token-repository-ref
	token-validity-seconds
	use-secure-cookie
	user-service-ref

	<request-cache> Element
	Parent Elements of <request-cache>
	<request-cache> Attributes
	ref

	<session-management>
	Parent Elements of <session-management>
	<session-management> Attributes
	invalid-session-url
	session-authentication-error-url
	session-authentication-strategy-ref
	session-fixation-protection

	Child elements of <session-management>

	<concurrency-control>
	Parent Elements of <concurrency-control>
	<concurrency-control> Attributes
	error-if-maximum-exceeded
	expired-url
	max-sessions
	session-registry-alias
	session-registry-ref

	<x509>
	Parent Elements of <x509>
	<x509> Attributes
	authentication-details-source-ref
	subject-principal-regex
	user-service-ref

	<filter-chain-map>
	<filter-chain-map> Attributes
	path-type
	request-matcher

	Child Elements of <filter-chain-map>

	<filter-chain>
	Parent Elements of <filter-chain>
	<filter-chain> Attributes
	filters
	pattern
	request-matcher-ref

	<filter-invocation-definition-source>
	<filter-invocation-definition-source> Attributes
	id
	lowercase-comparisons
	path-type
	request-matcher
	use-expressions

	Child Elements of <filter-invocation-definition-source>

	<filter-security-metadata-source>
	<filter-security-metadata-source> Attributes
	id
	lowercase-comparisons
	path-type
	request-matcher
	use-expressions

	Child Elements of <filter-security-metadata-source>

	B.2 Authentication Services
	<authentication-manager>
	<authentication-manager> Attributes
	alias
	erase-credentials
	id

	Child Elements of <authentication-manager>

	<authentication-provider>
	Parent Elements of <authentication-provider>
	<authentication-provider> Attributes
	ref
	user-service-ref

	Child Elements of <authentication-provider>

	<jdbc-user-service>
	<jdbc-user-service> Attributes
	authorities-by-username-query
	cache-ref
	data-source-ref
	group-authorities-by-username-query
	id
	role-prefix
	users-by-username-query

	<password-encoder>
	Parent Elements of <password-encoder>
	<password-encoder> Attributes
	base64
	hash
	ref

	Child Elements of <password-encoder>

	<salt-source>
	Parent Elements of <salt-source>
	<salt-source> Attributes
	ref
	system-wide
	user-property

	<user-service>
	<user-service> Attributes
	id
	properties

	Child Elements of <user-service>

	<user>
	Parent Elements of <user>
	<user> Attributes
	authorities
	disabled
	locked
	name
	password

	B.3 Method Security
	<global-method-security>
	<global-method-security> Attributes
	access-decision-manager-ref
	authentication-manager-ref
	jsr250-annotations
	<metadata-source-ref> Attribute
	The mode Attribute
	order
	pre-post-annotations
	proxy-target-class
	run-as-manager-ref
	secured-annotations

	Child Elements of <global-method-security>

	<after-invocation-provider>
	Parent Elements of <after-invocation-provider>
	<after-invocation-provider> Attributes
	ref

	<pre-post-annotation-handling>
	Parent Elements of <pre-post-annotation-handling>
	Child Elements of <pre-post-annotation-handling>

	<invocation-attribute-factory>
	Parent Elements of <invocation-attribute-factory>
	<invocation-attribute-factory> Attributes
	ref

	<post-invocation-advice>
	Parent Elements of <post-invocation-advice>
	<post-invocation-advice> Attributes
	ref

	<pre-invocation-advice>
	Parent Elements of <pre-invocation-advice>
	<pre-invocation-advice> Attributes
	ref

	Securing Methods using <protect-pointcut>
	Parent Elements of <protect-pointcut>
	<protect-pointcut> Attributes
	access
	expression

	<intercept-methods>
	<intercept-methods> Attributes
	access-decision-manager-ref

	Child Elements of <intercept-methods>

	<method-security-metadata-source>
	<method-security-metadata-source> Attributes
	id
	use-expressions

	Child Elements of <method-security-metadata-source>

	<protect>
	Parent Elements of <protect>
	<protect> Attributes
	access
	method

	B.4 LDAP Namespace Options
	Defining the LDAP Server using the <ldap-server> Element
	<ldap-server> Attributes
	id
	ldif
	manager-dn
	manager-password
	port
	root
	url

	<ldap-authentication-provider>
	Parent Elements of <ldap-authentication-provider>
	<ldap-authentication-provider> Attributes
	group-role-attribute
	group-search-base
	group-search-filter
	role-prefix
	server-ref
	user-context-mapper-ref
	user-details-class
	user-dn-pattern
	user-search-base
	user-search-filter

	Child Elements of <ldap-authentication-provider>

	<password-compare>
	Parent Elements of <password-compare>
	<password-compare> Attributes
	hash
	password-attribute

	Child Elements of <password-compare>

	<ldap-user-service>
	<ldap-user-service> Attributes
	cache-ref
	group-role-attribute
	group-search-base
	group-search-filter
	id
	role-prefix
	server-ref
	user-context-mapper-ref
	user-details-class
	user-search-base
	user-search-filter

	Appendix C. Spring Security Dependencies
	C.1 spring-security-core
	C.2 spring-security-remoting
	C.3 spring-security-web
	C.4 spring-security-ldap
	C.5 spring-security-config
	C.6 spring-security-acl
	C.7 spring-security-cas
	C.8 spring-security-openid
	C.9 spring-security-taglibs

