
Spring Security Reference

Ben Alex , Luke Taylor , Rob Winch

Copyright ©

Spring Security Reference

please define title in your docbook file! ii

Table of Contents

... xiv
I. Preface ... 1
II. Getting Started ... 3

1. Introduction .. 4
1.1. What is Spring Security? ... 4
1.2. History .. 6
1.3. Release Numbering ... 6
1.4. Getting Spring Security .. 7

Usage with Maven ... 7
Maven Repositories .. 7
Spring Framework Bom .. 8

Gradle ... 8
Gradle Repositories .. 8
Using Spring 4.0.x and Gradle .. 9

Project Modules ... 9
Core - spring-security-core.jar ... 9
Remoting - spring-security-remoting.jar .. 10
Web - spring-security-web.jar .. 10
Config - spring-security-config.jar .. 10
LDAP - spring-security-ldap.jar .. 10
ACL - spring-security-acl.jar .. 10
CAS - spring-security-cas.jar ... 10
OpenID - spring-security-openid.jar .. 10

Checking out the Source .. 10
2. What’s new in Spring Security 4.0 ... 12

2.1. Features .. 12
2.2. Migrating from 3.x to 4.x .. 12

3. Java Configuration ... 14
3.1. Hello Web Security Java Configuration ... 14

AbstractSecurityWebApplicationInitializer ... 15
AbstractSecurityWebApplicationInitializer without Existing Spring 15
AbstractSecurityWebApplicationInitializer with Spring MVC 16

3.2. HttpSecurity ... 16
3.3. Java Configuration and Form Login .. 17
3.4. Authorize Requests ... 18
3.5. Authentication .. 19

In Memory Authentication ... 19
JDBC Authentication ... 19
LDAP Authentication ... 19

3.6. Multiple HttpSecurity .. 20
3.7. Method Security .. 21

EnableGlobalMethodSecurity ... 21
GlobalMethodSecurityConfiguration ... 22

3.8. Post Processing Configured Objects ... 23
4. Security Namespace Configuration .. 24

4.1. Introduction ... 24
Design of the Namespace .. 25

Spring Security Reference

please define title in your docbook file! iii

4.2. Getting Started with Security Namespace Configuration 25
web.xml Configuration .. 25
A Minimal <http> Configuration ... 26
Form and Basic Login Options .. 27

Setting a Default Post-Login Destination .. 28
Logout Handling ... 28
Using other Authentication Providers ... 28

Adding a Password Encoder ... 29
4.3. Advanced Web Features .. 30

Remember-Me Authentication ... 30
Adding HTTP/HTTPS Channel Security ... 30
Session Management ... 30

Detecting Timeouts ... 30
Concurrent Session Control .. 31
Session Fixation Attack Protection ... 32

OpenID Support ... 32
Attribute Exchange ... 33

Response Headers ... 33
Adding in Your Own Filters ... 33

Setting a Custom AuthenticationEntryPoint .. 35
4.4. Method Security .. 35

The <global-method-security> Element .. 35
Adding Security Pointcuts using protect-pointcut ... 37

4.5. The Default AccessDecisionManager .. 37
Customizing the AccessDecisionManager .. 37

4.6. The Authentication Manager and the Namespace .. 37
5. Sample Applications ... 39

5.1. Tutorial Sample ... 39
5.2. Contacts .. 39
5.3. LDAP Sample ... 40
5.4. OpenID Sample ... 40
5.5. CAS Sample ... 41
5.6. JAAS Sample .. 41
5.7. Pre-Authentication Sample ... 41

6. Spring Security Community ... 42
6.1. Issue Tracking ... 42
6.2. Becoming Involved .. 42
6.3. Further Information .. 42

III. Architecture and Implementation .. 43
7. Technical Overview .. 44

7.1. Runtime Environment ... 44
7.2. Core Components ... 44

SecurityContextHolder, SecurityContext and Authentication Objects 44
Obtaining information about the current user .. 44

The UserDetailsService .. 45
GrantedAuthority .. 46
Summary ... 46

7.3. Authentication .. 46
What is authentication in Spring Security? ... 46
Setting the SecurityContextHolder Contents Directly ... 49

Spring Security Reference

please define title in your docbook file! iv

7.4. Authentication in a Web Application .. 49
ExceptionTranslationFilter ... 50
AuthenticationEntryPoint ... 50
Authentication Mechanism .. 50
Storing the SecurityContext between requests ... 50

7.5. Access-Control (Authorization) in Spring Security .. 51
Security and AOP Advice ... 51
Secure Objects and the AbstractSecurityInterceptor ... 52

What are Configuration Attributes? .. 52
RunAsManager .. 52
AfterInvocationManager .. 53
Extending the Secure Object Model .. 54

7.6. Localization ... 54
8. Core Services .. 56

8.1. The AuthenticationManager, ProviderManager and AuthenticationProvider 56
Erasing Credentials on Successful Authentication ... 57
DaoAuthenticationProvider .. 57

8.2. UserDetailsService Implementations ... 57
In-Memory Authentication ... 58
JdbcDaoImpl .. 58

Authority Groups .. 59
8.3. Password Encoding ... 59

What is a hash? ... 59
Adding Salt to a Hash .. 59
Hashing and Authentication .. 60

IV. Testing ... 61
9. Testing Method Security ... 62

9.1. Security Test Setup ... 62
9.2. @WithMockUser .. 63
9.3. @WithUserDetails .. 64
9.4. @WithSecurityContext ... 64

10. Spring MVC Test Integration ... 66
10.1. Setting Up MockMvc and Spring Security .. 66
10.2. SecurityMockMvcRequestPostProcessors .. 66

Testing with CSRF Protection ... 66
Running a Test as a User in Spring MVC Test ... 67
Running as a User in Spring MVC Test with RequestPostProcessor 67

Running as a User in Spring MVC Test with Annotations 68
Testing HTTP Basic Authentication ... 68

10.3. SecurityMockMvcRequestBuilders ... 69
Testing Form Based Authentication ... 69
Testing Logout ... 69

10.4. SecurityMockMvcResultMatchers .. 69
Unauthenticated Assertion .. 70
Authenticated Assertion .. 70

V. Web Application Security .. 71
11. The Security Filter Chain .. 72

11.1. DelegatingFilterProxy ... 72
11.2. FilterChainProxy .. 72

Bypassing the Filter Chain .. 73

Spring Security Reference

please define title in your docbook file! v

11.3. Filter Ordering ... 74
11.4. Request Matching and HttpFirewall ... 74
11.5. Use with other Filter-Based Frameworks ... 75
11.6. Advanced Namespace Configuration ... 75

12. Core Security Filters ... 77
12.1. FilterSecurityInterceptor .. 77
12.2. ExceptionTranslationFilter ... 78

AuthenticationEntryPoint ... 78
AccessDeniedHandler ... 78
SavedRequest s and the RequestCache Interface .. 79

12.3. SecurityContextPersistenceFilter ... 79
SecurityContextRepository .. 80

12.4. UsernamePasswordAuthenticationFilter ... 80
Application Flow on Authentication Success and Failure 81

13. Servlet API integration .. 82
13.1. Servlet 2.5+ Integration .. 82

HttpServletRequest.getRemoteUser() .. 82
HttpServletRequest.getUserPrincipal() ... 82
HttpServletRequest.isUserInRole(String) .. 82

13.2. Servlet 3+ Integration ... 83
HttpServletRequest.authenticate(HttpServletRequest,HttpServletResponse) 83
HttpServletRequest.login(String,String) .. 83
HttpServletRequest.logout() ... 83
AsyncContext.start(Runnable) ... 83
Async Servlet Support .. 84

13.3. Servlet 3.1+ Integration .. 85
HttpServletRequest#changeSessionId() ... 85

14. Basic and Digest Authentication .. 86
14.1. BasicAuthenticationFilter .. 86

Configuration .. 86
14.2. DigestAuthenticationFilter ... 86

Configuration .. 87
15. Remember-Me Authentication ... 89

15.1. Overview ... 89
15.2. Simple Hash-Based Token Approach .. 89
15.3. Persistent Token Approach .. 90
15.4. Remember-Me Interfaces and Implementations ... 90

TokenBasedRememberMeServices ... 90
PersistentTokenBasedRememberMeServices ... 91

16. Cross Site Request Forgery (CSRF) .. 92
16.1. CSRF Attacks .. 92
16.2. Synchronizer Token Pattern ... 92
16.3. When to use CSRF protection .. 93

CSRF protection and JSON .. 93
CSRF and Stateless Browser Applications ... 93

16.4. Using Spring Security CSRF Protection ... 94
Use proper HTTP verbs .. 94
Configure CSRF Protection ... 94
Include the CSRF Token .. 95

Form Submissions .. 95

Spring Security Reference

please define title in your docbook file! vi

Ajax and JSON Requests ... 95
16.5. CSRF Caveats .. 96

Timeouts .. 96
Logging In .. 97
Logging Out ... 97
Multipart (file upload) .. 97

Placing MultipartFilter before Spring Security ... 97
Include CSRF token in action .. 98

HiddenHttpMethodFilter ... 98
16.6. Overriding Defaults .. 98

17. Security HTTP Response Headers .. 100
17.1. Default Security Headers .. 100

Cache Control .. 102
Content Type Options ... 103
HTTP Strict Transport Security (HSTS) .. 104
X-Frame-Options .. 105
X-XSS-Protection .. 106

17.2. Custom Headers .. 106
Static Headers .. 106
Headers Writer ... 107
DelegatingRequestMatcherHeaderWriter .. 108

18. Session Management ... 109
18.1. SessionManagementFilter ... 109
18.2. SessionAuthenticationStrategy .. 109
18.3. Concurrency Control .. 109

Querying the SessionRegistry for currently authenticated users and their
sessions ... 111

19. Anonymous Authentication .. 113
19.1. Overview ... 113
19.2. Configuration ... 113
19.3. AuthenticationTrustResolver ... 114

20. WebSocket Security .. 115
20.1. WebSocket Configuration ... 115
20.2. WebSocket Authentication .. 116
20.3. WebSocket Authorization .. 116

WebSocket Authorization Notes .. 117
WebSocket Authorization on Message Types ... 117
WebSocket Authorization on Destinations .. 118

Outbound Messages ... 118
20.4. Enforcing Same Origin Policy ... 118

Why Same Origin? ... 118
Spring WebSocket Allowed Origin ... 118
Adding CSRF to Stomp Headers ... 119
Disable CSRF within WebSockets ... 119

20.5. Working with SockJS ... 119
SockJS & frame-options ... 120
SockJS & Relaxing CSRF ... 120

VI. Authorization ... 122
21. Authorization Architecture .. 123

21.1. Authorities ... 123

Spring Security Reference

please define title in your docbook file! vii

21.2. Pre-Invocation Handling ... 123
The AccessDecisionManager .. 123
Voting-Based AccessDecisionManager Implementations 124

RoleVoter ... 125
AuthenticatedVoter ... 125
Custom Voters ... 125

21.3. After Invocation Handling ... 126
21.4. Hierarchical Roles .. 126

22. Secure Object Implementations ... 128
22.1. AOP Alliance (MethodInvocation) Security Interceptor 128

Explicit MethodSecurityInterceptor Configuration .. 128
22.2. AspectJ (JoinPoint) Security Interceptor .. 128

23. Expression-Based Access Control ... 131
23.1. Overview ... 131

Common Built-In Expressions ... 131
23.2. Web Security Expressions .. 132
23.3. Method Security Expressions .. 132

@Pre and @Post Annotations ... 133
Access Control using @PreAuthorize and @PostAuthorize 133
Filtering using @PreFilter and @PostFilter ... 134

Built-In Expressions .. 134
The PermissionEvaluator interface ... 135

VII. Additional Topics .. 136
24. Domain Object Security (ACLs) ... 137

24.1. Overview ... 137
24.2. Key Concepts .. 137
24.3. Getting Started .. 139

25. Pre-Authentication Scenarios ... 142
25.1. Pre-Authentication Framework Classes ... 142

AbstractPreAuthenticatedProcessingFilter .. 142
J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource 143

PreAuthenticatedAuthenticationProvider ... 143
Http403ForbiddenEntryPoint .. 143

25.2. Concrete Implementations .. 143
Request-Header Authentication (Siteminder) .. 143

Siteminder Example Configuration ... 144
Java EE Container Authentication ... 144

26. LDAP Authentication ... 145
26.1. Overview ... 145
26.2. Using LDAP with Spring Security .. 145
26.3. Configuring an LDAP Server ... 145

Using an Embedded Test Server ... 146
Using Bind Authentication ... 146
Loading Authorities ... 146

26.4. Implementation Classes ... 147
LdapAuthenticator Implementations ... 147

Common Functionality .. 147
BindAuthenticator .. 148
PasswordComparisonAuthenticator .. 148

Connecting to the LDAP Server .. 148

Spring Security Reference

please define title in your docbook file! viii

LDAP Search Objects ... 148
FilterBasedLdapUserSearch .. 148

LdapAuthoritiesPopulator .. 148
Spring Bean Configuration .. 149
LDAP Attributes and Customized UserDetails .. 149

26.5. Active Directory Authentication ... 150
ActiveDirectoryLdapAuthenticationProvider ... 150

Active Directory Error Codes ... 151
27. JSP Tag Libraries ... 152

27.1. Declaring the Taglib ... 152
27.2. The authorize Tag ... 152

Disabling Tag Authorization for Testing .. 153
27.3. The authentication Tag ... 153
27.4. The accesscontrollist Tag ... 153
27.5. The csrfInput Tag .. 154
27.6. The csrfMetaTags Tag ... 154

28. Java Authentication and Authorization Service (JAAS) Provider 156
28.1. Overview ... 156
28.2. AbstractJaasAuthenticationProvider ... 156

JAAS CallbackHandler .. 156
JAAS AuthorityGranter .. 156

28.3. DefaultJaasAuthenticationProvider .. 157
InMemoryConfiguration ... 157
DefaultJaasAuthenticationProvider Example Configuration 157

28.4. JaasAuthenticationProvider ... 158
28.5. Running as a Subject ... 159

29. CAS Authentication ... 160
29.1. Overview ... 160
29.2. How CAS Works .. 160

Spring Security and CAS Interaction Sequence .. 160
29.3. Configuration of CAS Client .. 162

Service Ticket Authentication .. 162
Single Logout ... 164
Authenticating to a Stateless Service with CAS .. 165

Configuring CAS to Obtain Proxy Granting Tickets 165
Calling a Stateless Service Using a Proxy Ticket 166

Proxy Ticket Authentication ... 166
30. X.509 Authentication ... 169

30.1. Overview ... 169
30.2. Adding X.509 Authentication to Your Web Application 169
30.3. Setting up SSL in Tomcat .. 169

31. Run-As Authentication Replacement .. 171
31.1. Overview ... 171
31.2. Configuration ... 171

32. Spring Security Crypto Module .. 173
32.1. Introduction .. 173
32.2. Encryptors ... 173

BytesEncryptor ... 173
TextEncryptor ... 173

32.3. Key Generators ... 174

Spring Security Reference

please define title in your docbook file! ix

BytesKeyGenerator ... 174
StringKeyGenerator .. 174

32.4. Password Encoding ... 174
33. Concurrency Support .. 175

33.1. DelegatingSecurityContextRunnable .. 175
33.2. DelegatingSecurityContextExecutor ... 176
33.3. Spring Security Concurrency Classes .. 177

34. Spring MVC Integration ... 178
34.1. @EnableWebMvcSecurity ... 178
34.2. @AuthenticationPrincipal .. 178
34.3. Spring MVC Async Integration .. 179
34.4. Spring MVC and CSRF Integration ... 179

Automatic Token Inclusion .. 179
Resolving the CsrfToken ... 180

VIII. Spring Data Integration .. 181
35. Spring Data & Spring Security Configuration .. 182
36. Security Expressions within @Query .. 183

IX. Appendix .. 184
37. Security Database Schema ... 185

37.1. User Schema ... 185
Group Authorities .. 185

37.2. Persistent Login (Remember-Me) Schema ... 186
37.3. ACL Schema ... 186

HyperSQL .. 186
PostgreSQL .. 188
MySQL and MariaDB .. 189
Microsoft SQL Server ... 190
Oracle Database .. 191

38. The Security Namespace .. 192
38.1. Web Application Security .. 192

<debug> ... 192
<http> .. 192

<http> Attributes ... 192
Child Elements of <http> ... 194

<access-denied-handler> .. 194
Parent Elements of <access-denied-handler> ... 194
<access-denied-handler> Attributes ... 195

<headers> .. 195
<headers> Attributes ... 195
Parent Elements of <headers> .. 195
Child Elements of <headers> .. 195

<cache-control> .. 196
<cache-control> Attributes ... 196
Parent Elements of <cache-control> .. 196

<hsts> .. 196
<hsts> Attributes .. 196
Parent Elements of <hsts> .. 196

<frame-options> .. 196
<frame-options> Attributes .. 196
Parent Elements of <frame-options> .. 197

Spring Security Reference

please define title in your docbook file! x

<xss-protection> ... 197
<xss-protection> Attributes .. 197
Parent Elements of <xss-protection> ... 197

<content-type-options> .. 197
<content-type-options> Attributes ... 197
Parent Elements of <content-type-options> .. 198

<header> ... 198
<header-attributes> Attributes .. 198
Parent Elements of <header> .. 198

<anonymous> ... 198
Parent Elements of <anonymous> ... 198
<anonymous> Attributes ... 198

<csrf> .. 198
Parent Elements of <csrf> ... 198
<csrf> Attributes ... 199

<custom-filter> .. 199
Parent Elements of <custom-filter> .. 199
<custom-filter> Attributes ... 199

<expression-handler> .. 199
Parent Elements of <expression-handler> .. 199
<expression-handler> Attributes .. 199

<form-login> ... 199
Parent Elements of <form-login> ... 200
<form-login> Attributes .. 200

<http-basic> ... 201
Parent Elements of <http-basic> .. 201
<http-basic> Attributes .. 201

<http-firewall> Element ... 201
<http-firewall> Attributes .. 201

<intercept-url> .. 201
Parent Elements of <intercept-url> ... 201
<intercept-url> Attributes ... 201

<jee> ... 202
Parent Elements of <jee> ... 202
<jee> Attributes .. 202

<logout> ... 202
Parent Elements of <logout> ... 202
<logout> Attributes .. 202

<openid-login> .. 203
Parent Elements of <openid-login> .. 203
<openid-login> Attributes ... 203
Child Elements of <openid-login> .. 204

<attribute-exchange> .. 204
Parent Elements of <attribute-exchange> ... 204
<attribute-exchange> Attributes ... 204
Child Elements of <attribute-exchange> ... 204

<openid-attribute> ... 204
Parent Elements of <openid-attribute> ... 204
<openid-attribute> Attributes .. 204

<port-mappings> ... 204

Spring Security Reference

please define title in your docbook file! xi

Parent Elements of <port-mappings> ... 205
Child Elements of <port-mappings> ... 205

<port-mapping> .. 205
Parent Elements of <port-mapping> ... 205
<port-mapping> Attributes ... 205

<remember-me> ... 205
Parent Elements of <remember-me> ... 205
<remember-me> Attributes .. 205

<request-cache> Element ... 206
Parent Elements of <request-cache> ... 206
<request-cache> Attributes .. 206

<session-management> .. 206
Parent Elements of <session-management> ... 206
<session-management> Attributes ... 206
Child Elements of <session-management> ... 207

<concurrency-control> ... 207
Parent Elements of <concurrency-control> ... 207
<concurrency-control> Attributes .. 207

<x509> ... 208
Parent Elements of <x509> ... 208
<x509> Attributes ... 208

<filter-chain-map> ... 208
<filter-chain-map> Attributes .. 208
Child Elements of <filter-chain-map> ... 208

<filter-chain> .. 208
Parent Elements of <filter-chain> ... 208
<filter-chain> Attributes ... 209

<filter-security-metadata-source> ... 209
<filter-security-metadata-source> Attributes .. 209
Child Elements of <filter-security-metadata-source> 209

38.2. WebSocket Security ... 209
<websocket-message-broker> ... 209

<websocket-message-broker> Attributes .. 210
Child Elements of <websocket-message-broker> 210

<intercept-message> ... 210
Parent Elements of <intercept-message> ... 210
<intercept-message> Attributes ... 210

38.3. Authentication Services .. 210
<authentication-manager> ... 211

<authentication-manager> Attributes .. 211
Child Elements of <authentication-manager> .. 211

<authentication-provider> .. 211
Parent Elements of <authentication-provider> ... 211
<authentication-provider> Attributes ... 211
Child Elements of <authentication-provider> ... 212

<jdbc-user-service> ... 212
<jdbc-user-service> Attributes ... 212

<password-encoder> ... 212
Parent Elements of <password-encoder> ... 213
<password-encoder> Attributes ... 213

Spring Security Reference

please define title in your docbook file! xii

Child Elements of <password-encoder> ... 213
<salt-source> .. 213

Parent Elements of <salt-source> .. 213
<salt-source> Attributes .. 213

<user-service> .. 213
<user-service> Attributes ... 213
Child Elements of <user-service> .. 213

<user> ... 213
Parent Elements of <user> ... 214
<user> Attributes .. 214

38.4. Method Security ... 214
<global-method-security> .. 214

<global-method-security> Attributes ... 214
Child Elements of <global-method-security> ... 215

<after-invocation-provider> .. 215
Parent Elements of <after-invocation-provider> ... 215
<after-invocation-provider> Attributes ... 215

<pre-post-annotation-handling> ... 215
Parent Elements of <pre-post-annotation-handling> 215
Child Elements of <pre-post-annotation-handling> 215

<invocation-attribute-factory> ... 216
Parent Elements of <invocation-attribute-factory> 216
<invocation-attribute-factory> Attributes .. 216

<post-invocation-advice> ... 216
Parent Elements of <post-invocation-advice> ... 216
<post-invocation-advice> Attributes .. 216

<pre-invocation-advice> .. 216
Parent Elements of <pre-invocation-advice> ... 216
<pre-invocation-advice> Attributes ... 216

Securing Methods using ... 216
Parent Elements of <protect-pointcut> ... 216
<protect-pointcut> Attributes .. 216

<intercept-methods> ... 217
<intercept-methods> Attributes .. 217
Child Elements of <intercept-methods> .. 217

<method-security-metadata-source> .. 217
<method-security-metadata-source> Attributes ... 217
Child Elements of <method-security-metadata-source> 217

<protect> .. 217
Parent Elements of <protect> .. 217
<protect> Attributes .. 217

38.5. LDAP Namespace Options ... 217
Defining the LDAP Server using the .. 218

<ldap-server> Attributes .. 218
<ldap-authentication-provider> ... 218

Parent Elements of <ldap-authentication-provider> 218
<ldap-authentication-provider> Attributes .. 218
Child Elements of <ldap-authentication-provider> 219

<password-compare> .. 219
Parent Elements of <password-compare> .. 219

Spring Security Reference

please define title in your docbook file! xiii

<password-compare> Attributes ... 220
Child Elements of <password-compare> .. 220

<ldap-user-service> .. 220
<ldap-user-service> Attributes ... 220

39. Spring Security Dependencies ... 221
39.1. spring-security-core .. 221
39.2. spring-security-remoting .. 222
39.3. spring-security-web .. 222
39.4. spring-security-ldap .. 222
39.5. spring-security-config .. 223
39.6. spring-security-acl .. 223
39.7. spring-security-cas ... 224
39.8. spring-security-openid .. 224
39.9. spring-security-taglibs ... 224

Spring Security Reference

please define title in your docbook file! xiv

Spring Security is a powerful and highly customizable authentication and access-control framework. It
is the de-facto standard for securing Spring-based applications.

Part I. Preface
Spring Security provides a comprehensive security solution for Java EE-based enterprise software
applications. As you will discover as you venture through this reference guide, we have tried to provide
you a useful and highly configurable security system.

Security is an ever-moving target, and it’s important to pursue a comprehensive, system-wide approach.
In security circles we encourage you to adopt "layers of security", so that each layer tries to be as secure
as possible in its own right, with successive layers providing additional security. The "tighter" the security
of each layer, the more robust and safe your application will be. At the bottom level you’ll need to deal
with issues such as transport security and system identification, in order to mitigate man-in-the-middle
attacks. Next you’ll generally utilise firewalls, perhaps with VPNs or IP security to ensure only authorised
systems can attempt to connect. In corporate environments you may deploy a DMZ to separate public-
facing servers from backend database and application servers. Your operating system will also play
a critical part, addressing issues such as running processes as non-privileged users and maximising
file system security. An operating system will usually also be configured with its own firewall. Hopefully
somewhere along the way you’ll be trying to prevent denial of service and brute force attacks against
the system. An intrusion detection system will also be especially useful for monitoring and responding to
attacks, with such systems able to take protective action such as blocking offending TCP/IP addresses in
real-time. Moving to the higher layers, your Java Virtual Machine will hopefully be configured to minimize
the permissions granted to different Java types, and then your application will add its own problem
domain-specific security configuration. Spring Security makes this latter area - application security -
much easier.

Of course, you will need to properly address all security layers mentioned above, together with
managerial factors that encompass every layer. A non-exhaustive list of such managerial factors would
include security bulletin monitoring, patching, personnel vetting, audits, change control, engineering
management systems, data backup, disaster recovery, performance benchmarking, load monitoring,
centralised logging, incident response procedures etc.

With Spring Security being focused on helping you with the enterprise application security layer, you will
find that there are as many different requirements as there are business problem domains. A banking
application has different needs from an ecommerce application. An ecommerce application has different
needs from a corporate sales force automation tool. These custom requirements make application
security interesting, challenging and rewarding.

Please read Part II, “Getting Started”, in its entirety to begin with. This will introduce you to the framework
and the namespace-based configuration system with which you can get up and running quite quickly.
To get more of an understanding of how Spring Security works, and some of the classes you might need
to use, you should then read Part III, “Architecture and Implementation”. The remaining parts of this
guide are structured in a more traditional reference style, designed to be read on an as-required basis.
We’d also recommend that you read up as much as possible on application security issues in general.
Spring Security is not a panacea which will solve all security issues. It is important that the application
is designed with security in mind from the start. Attempting to retrofit it is not a good idea. In particular,
if you are building a web application, you should be aware of the many potential vulnerabilities such
as cross-site scripting, request-forgery and session-hijacking which you should be taking into account
from the start. The OWASP web site (http://www.owasp.org/) maintains a top ten list of web application
vulnerabilities as well as a lot of useful reference information.

We hope that you find this reference guide useful, and we welcome your feedback and suggestions.

http://www.owasp.org/

Finally, welcome to the Spring Security community.

Part II. Getting Started
The later parts of this guide provide an in-depth discussion of the framework architecture and
implementation classes, which you need to understand if you want to do any serious customization. In
this part, we’ll introduce Spring Security 3.0, give a brief overview of the project’s history and take a
slightly gentler look at how to get started using the framework. In particular, we’ll look at namespace
configuration which provides a much simpler way of securing your application compared to the traditional
Spring bean approach where you have to wire up all the implementation classes individually.

We’ll also take a look at the sample applications that are available. It’s worth trying to run these and
experimenting with them a bit even before you read the later sections - you can dip back into them as
your understanding of the framework increases. Please also check out the project website as it has
useful information on building the project, plus links to articles, videos and tutorials.

http://static.springsource.org/spring-security/site/index.html

Spring Security Reference

please define title in your docbook file! 4

1. Introduction

1.1 What is Spring Security?

Spring Security provides comprehensive security services for Java EE-based enterprise software
applications. There is a particular emphasis on supporting projects built using The Spring Framework,
which is the leading Java EE solution for enterprise software development. If you’re not using Spring for
developing enterprise applications, we warmly encourage you to take a closer look at it. Some familiarity
with Spring - and in particular dependency injection principles - will help you get up to speed with Spring
Security more easily.

People use Spring Security for many reasons, but most are drawn to the project after finding the security
features of Java EE’s Servlet Specification or EJB Specification lack the depth required for typical
enterprise application scenarios. Whilst mentioning these standards, it’s important to recognise that they
are not portable at a WAR or EAR level. Therefore, if you switch server environments, it is typically a lot
of work to reconfigure your application’s security in the new target environment. Using Spring Security
overcomes these problems, and also brings you dozens of other useful, customisable security features.

As you probably know two major areas of application security are "authentication" and "authorization" (or
"access-control"). These are the two main areas that Spring Security targets. "Authentication" is the
process of establishing a principal is who they claim to be (a "principal" generally means a user, device
or some other system which can perform an action in your application)."Authorization" refers to the
process of deciding whether a principal is allowed to perform an action within your application. To arrive
at the point where an authorization decision is needed, the identity of the principal has already been
established by the authentication process. These concepts are common, and not at all specific to Spring
Security.

At an authentication level, Spring Security supports a wide range of authentication models. Most of
these authentication models are either provided by third parties, or are developed by relevant standards
bodies such as the Internet Engineering Task Force. In addition, Spring Security provides its own set of
authentication features. Specifically, Spring Security currently supports authentication integration with
all of these technologies:

• HTTP BASIC authentication headers (an IETF RFC-based standard)

• HTTP Digest authentication headers (an IETF RFC-based standard)

• HTTP X.509 client certificate exchange (an IETF RFC-based standard)

• LDAP (a very common approach to cross-platform authentication needs, especially in large
environments)

• Form-based authentication (for simple user interface needs)

• OpenID authentication

• Authentication based on pre-established request headers (such as Computer Associates Siteminder)

• JA-SIG Central Authentication Service (otherwise known as CAS, which is a popular open source
single sign-on system)

• Transparent authentication context propagation for Remote Method Invocation (RMI) and HttpInvoker
(a Spring remoting protocol)

Spring Security Reference

please define title in your docbook file! 5

• Automatic "remember-me" authentication (so you can tick a box to avoid re-authentication for a
predetermined period of time)

• Anonymous authentication (allowing every unauthenticated call to automatically assume a particular
security identity)

• Run-as authentication (which is useful if one call should proceed with a different security identity)

• Java Authentication and Authorization Service (JAAS)

• JEE container autentication (so you can still use Container Managed Authentication if desired)

• Kerberos

• Java Open Source Single Sign On (JOSSO) *

• OpenNMS Network Management Platform *

• AppFuse *

• AndroMDA *

• Mule ESB *

• Direct Web Request (DWR) *

• Grails *

• Tapestry *

• JTrac *

• Jasypt *

• Roller *

• Elastic Path *

• Atlassian Crowd *

• Your own authentication systems (see below)

(* Denotes provided by a third party

Many independent software vendors (ISVs) adopt Spring Security because of this significant choice of
flexible authentication models. Doing so allows them to quickly integrate their solutions with whatever
their end clients need, without undertaking a lot of engineering or requiring the client to change their
environment. If none of the above authentication mechanisms suit your needs, Spring Security is an
open platform and it is quite simple to write your own authentication mechanism. Many corporate users
of Spring Security need to integrate with "legacy" systems that don’t follow any particular security
standards, and Spring Security is happy to "play nicely" with such systems.

Irrespective of the authentication mechanism, Spring Security provides a deep set of authorization
capabilities. There are three main areas of interest - authorizing web requests, authorizing whether
methods can be invoked, and authorizing access to individual domain object instances. To help you
understand the differences, consider the authorization capabilities found in the Servlet Specification web

Spring Security Reference

please define title in your docbook file! 6

pattern security, EJB Container Managed Security and file system security respectively. Spring Security
provides deep capabilities in all of these important areas, which we’ll explore later in this reference guide.

1.2 History

Spring Security began in late 2003 as "The Acegi Security System for Spring". A question was posed
on the Spring Developers' mailing list asking whether there had been any consideration given to a
Spring-based security implementation. At the time the Spring community was relatively small (especially
compared with the size today!), and indeed Spring itself had only existed as a SourceForge project from
early 2003. The response to the question was that it was a worthwhile area, although a lack of time
currently prevented its exploration.

With that in mind, a simple security implementation was built and not released. A few weeks later another
member of the Spring community inquired about security, and at the time this code was offered to them.
Several other requests followed, and by January 2004 around twenty people were using the code. These
pioneering users were joined by others who suggested a SourceForge project was in order, which was
duly established in March 2004.

In those early days, the project didn’t have any of its own authentication modules. Container Managed
Security was relied upon for the authentication process, with Acegi Security instead focusing on
authorization. This was suitable at first, but as more and more users requested additional container
support, the fundamental limitation of container-specific authentication realm interfaces became clear.
There was also a related issue of adding new JARs to the container’s classpath, which was a common
source of end user confusion and misconfiguration.

Acegi Security-specific authentication services were subsequently introduced. Around a year later,
Acegi Security became an official Spring Framework subproject. The 1.0.0 final release was published in
May 2006 - after more than two and a half years of active use in numerous production software projects
and many hundreds of improvements and community contributions.

Acegi Security became an official Spring Portfolio project towards the end of 2007 and was rebranded
as "Spring Security".

Today Spring Security enjoys a strong and active open source community. There are thousands of
messages about Spring Security on the support forums. There is an active core of developers who work
on the code itself and an active community which also regularly share patches and support their peers.

1.3 Release Numbering

It is useful to understand how Spring Security release numbers work, as it will help you identify the effort
(or lack thereof) involved in migrating to future releases of the project. Each release uses a standard
triplet of integers: MAJOR.MINOR.PATCH. The intent is that MAJOR versions are incompatible, large-
scale upgrades of the API. MINOR versions should largely retain source and binary compatibility with
older minor versions, thought there may be some design changes and incompatible updates. PATCH
level should be perfectly compatible, forwards and backwards, with the possible exception of changes
which are to fix bugs and defects.

The extent to which you are affected by changes will depend on how tightly integrated your code is. If
you are doing a lot of customization you are more likely to be affected than if you are using a simple
namespace configuration.

You should always test your application thoroughly before rolling out a new version.

Spring Security Reference

please define title in your docbook file! 7

1.4 Getting Spring Security

You can get hold of Spring Security in several ways. You can download a packaged distribution
from the main Spring Security page, download individual jars from the Maven Central repository (or a
SpringSource Maven repository for snapshot and milestone releases) or, alternatively, you can build
the project from source yourself.

Usage with Maven

A minimal Spring Security Maven set of dependencies typically looks like the following:

pom.xml.

<dependencies>

<!-- ... other dependency elements ... -->

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-web</artifactId>

 <version>4.0.1.RELEASE</version>

</dependency>

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-config</artifactId>

 <version>4.0.1.RELEASE</version>

</dependency>

</dependencies>

If you are using additional features like LDAP, OpenID, etc. you will need to also include the appropriate
the section called “Project Modules”.

Maven Repositories

All GA releases (i.e. versions ending in .RELEASE) are deployed to Maven Central, so no additional
Maven repositories need to be declared in your pom.

If you are using a SNAPSHOT version, you will need to ensure you have the Spring Snapshot repository
defined as shown below:

pom.xml.

<repositories>

<!-- ... possibly other repository elements ... -->

<repository>

 <id>spring-snapshot</id>

 <name>Spring Snapshot Repository</name>

 <url>http://repo.springsource.org/snapshot</url>

</repository>

</repositories>

If you are using a milestone or release candidate version, you will need to ensure you have the Spring
Milestone repository defined as shown below:

pom.xml.

<repositories>

<!-- ... possibly other repository elements ... -->

<repository>

 <id>spring-milestone</id>

 <name>Spring Milestone Repository</name>

 <url>http://repo.springsource.org/milestone</url>

</repository>

</repositories>

http://spring.io/spring-security

Spring Security Reference

please define title in your docbook file! 8

Spring Framework Bom

Spring Security builds against Spring Framework 4.1.6.RELEASE, but should work with 4.0.x. The
problem that many users will have is that Spring Security’s transitive dependencies resolve Spring
Framework 4.1.6.RELEASE which can cause strange classpath problems.

One (tedious) way to circumvent this issue would be to include all the Spring Framework modules in
a <dependencyManagement> section of your pom. An alternative approach is to include the spring-
framework-bom within your <dependencyManagement> section of your pom.xml as shown below:

pom.xml.

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-framework-bom</artifactId>

 <version>4.1.6.RELEASE</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

</dependencyManagement>

This will ensure that all the transitive dependencies of Spring Security use the Spring 4.1.6.RELEASE
modules.

Note

This approach uses Maven’s "bill of materials" (BOM) concept and is only available in Maven
2.0.9+. For additional details about how dependencies are resolved refer to Maven’s Introduction
to the Dependency Mechanism documentation.

Gradle

A minimal Spring Security Gradle set of dependencies typically looks like the following:

build.gradle.

dependencies {

 compile 'org.springframework.security:spring-security-web:4.0.1.RELEASE'

 compile 'org.springframework.security:spring-security-config:4.0.1.RELEASE'

}

If you are using additional features like LDAP, OpenID, etc. you will need to also include the appropriate
the section called “Project Modules”.

Gradle Repositories

All GA releases (i.e. versions ending in .RELEASE) are deployed to Maven Central, so using the
mavenCentral() repository is sufficient for GA releases.

build.gradle.

repositories {

 mavenCentral()

}

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Management
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Spring Security Reference

please define title in your docbook file! 9

If you are using a SNAPSHOT version, you will need to ensure you have the Spring Snapshot repository
defined as shown below:

build.gradle.

repositories {

 maven { url 'https://repo.spring.io/snapshot' }

}

If you are using a milestone or release candidate version, you will need to ensure you have the Spring
Milestone repository defined as shown below:

build.gradle.

repositories {

 maven { url 'https://repo.spring.io/milestone' }

}

Using Spring 4.0.x and Gradle

By default Gradle will use the newest version when resolving transitive versions. This means that
often times no additional work is necessary when running Spring Security 4.0.1.RELEASE with Spring
Framework 4.1.6.RELEASE. However, at times there can be issues that come up so it is best to mitigate
this using Gradle’s ResolutionStrategy as shown below:

build.gradle.

configurations.all {

 resolutionStrategy.eachDependency { DependencyResolveDetails details ->

 if (details.requested.group == 'org.springframework') {

 details.useVersion '4.1.6.RELEASE'

 }

 }

}

This will ensure that all the transitive dependencies of Spring Security use the Spring 4.1.6.RELEASE
modules.

Note

This example uses Gradle 1.9, but may need modifications to work in future versions of Gradle
since this is an incubating feature within Gradle.

Project Modules

In Spring Security 3.0, the codebase has been sub-divided into separate jars which more clearly
separate different functionaltiy areas and third-party dependencies. If you are using Maven to build your
project, then these are the modules you will add to your pom.xml. Even if you’re not using Maven, we’d
recommend that you consult the pom.xml files to get an idea of third-party dependencies and versions.
Alternatively, a good idea is to examine the libraries that are included in the sample applications.

Core - spring-security-core.jar

Contains core authentication and access-contol classes and interfaces, remoting support and basic
provisioning APIs. Required by any application which uses Spring Security. Supports standalone
applications, remote clients, method (service layer) security and JDBC user provisioning. Contains the
top-level packages:

http://www.gradle.org/docs/current/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Spring Security Reference

please define title in your docbook file! 10

• org.springframework.security.core

• org.springframework.security.access

• org.springframework.security.authentication

• org.springframework.security.provisioning

Remoting - spring-security-remoting.jar

Provides intergration with Spring Remoting. You don’t need this unless you are writing a remote client
which uses Spring Remoting. The main package is org.springframework.security.remoting.

Web - spring-security-web.jar

Contains filters and related web-security infrastructure code. Anything with a servlet API dependency.
You’ll need it if you require Spring Security web authentication services and URL-based access-control.
The main package is org.springframework.security.web.

Config - spring-security-config.jar

Contains the security namespace parsing code. You need it if you are using the Spring Security XML
namespace for configuration. The main package is org.springframework.security.config.
None of the classes are intended for direct use in an application.

LDAP - spring-security-ldap.jar

LDAP authentication and provisioning code. Required if you need to use LDAP authentication or manage
LDAP user entries. The top-level package is org.springframework.security.ldap.

ACL - spring-security-acl.jar

Specialized domain object ACL implementation. Used to apply security to
specific domain object instances within your application. The top-level package is
org.springframework.security.acls.

CAS - spring-security-cas.jar

Spring Security’s CAS client integration. If you want to use Spring Security web authentication with a
CAS single sign-on server. The top-level package is org.springframework.security.cas.

OpenID - spring-security-openid.jar

OpenID web authentication support. Used to authenticate users against an external OpenID server.
org.springframework.security.openid. Requires OpenID4Java.

Checking out the Source

Since Spring Security is an Open Source project, we’d strongly encourage you to check out the source
code using git. This will give you full access to all the sample applications and you can build the most
up to date version of the project easily. Having the source for a project is also a huge help in debugging.
Exception stack traces are no longer obscure black-box issues but you can get straight to the line that’s
causing the problem and work out what’s happening. The source is the ultimate documentation for a
project and often the simplest place to find out how something actually works.

To obtain the source for the project, use the following git command:

Spring Security Reference

please define title in your docbook file! 11

git clone https://github.com/spring-projects/spring-security.git

This will give you access to the entire project history (including all releases and branches) on your local
machine.

Spring Security Reference

please define title in your docbook file! 12

2. What’s new in Spring Security 4.0

There are 175+ tickets resolved with the Spring Security 4.0 release.

2.1 Features

Below are the highlights of the new features found in Spring Security 4.0.

• Web Socket Support

• Test Support

• Spring Data Integration

• CSRF Token Argument Resolver

• More Secure Defaults

• Methods with role in them do not require ROLE_ For example, previously the following would be
required within XML configuration:

<intercept-url pattern="/**" access="hasRole('ROLE_USER')"/>

Now you can optionally omit the ROLE_ prefix. We do this to remove duplication. Specifically, since
the expression hasRole already defines the value as a role it automatically adds the prefix if it is not
there. For example, the following is the same as the previous configuration:

<intercept-url pattern="/**" access="hasRole('USER')"/>

Similarly, the following configuration:

@PreAuthorize("hasRole('ROLE_USER')")

is the same as this more concise configuration:

@PreAuthorize("hasRole('USER')")

• Many Integration Tests Added to Samples

• Deprecate @EnableWebMvcSecurity - by updating the minimum Spring Version, we can now allow
defaulting MVC integration with @EnableWebSecurity but still allow it to be overridden

2.2 Migrating from 3.x to 4.x

As exploits against applications evolve, so must Spring Security. As a major release version, the Spring
Security team took the opportunity to make some non-passive changes which focus on:

• Ensuring Spring Security is more secure by default

• Minimizing Information Leakage

• Removing deprecated APIs

For complete details on migrating from Spring Security 3 to Spring Security 4 refer to one of the guides
below:

http://goo.gl/ui9GCl
https://jira.spring.io/browse/SEC-2790
https://www.owasp.org/index.php/Establish_secure_defaults
https://www.owasp.org/index.php/Information_Leakage

Spring Security Reference

please define title in your docbook file! 13

• Migrating from Spring Security 3.x to 4.x (XML Configuration)

• Migrating from Spring Security 3.x to 4.x (Java Configuration)

http://docs.spring.io/spring-security/site/migrate/current/3-to-4/html5/migrate-3-to-4-xml.html
http://docs.spring.io/spring-security/site/migrate/current/3-to-4/html5/migrate-3-to-4-jc.html

Spring Security Reference

please define title in your docbook file! 14

3. Java Configuration
General support for Java Configuration was added to Spring framework in Spring 3.1. Since Spring
Security 3.2 there has been Spring Security Java Configuration support which enables users to easily
configure Spring Security without the use of any XML.

If you are familiar with the Chapter 4, Security Namespace Configuration then you should find quite a
few similarities between it and the Security Java Configuration support.

Note

Spring Security provides lots of sample applications that end in -jc which demonstrate the use
of Spring Security Java Configuration.

3.1 Hello Web Security Java Configuration

The first step is to create our Spring Security Java Configuration. The configuration creates a Servlet
Filter known as the springSecurityFilterChain which is responsible for all the security (protecting
the application URLs, validating submitted username and passwords, redirecting to the log in form, etc)
within your application. You can find the most basic example of a Spring Security Java configuration
below:

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.annotation.*;

import org.springframework.security.config.annotation.authentication.builders.*;

import org.springframework.security.config.annotation.web.configuration.*;

@EnableWebSecurity

public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Autowired

 public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {

 auth

 .inMemoryAuthentication()

 .withUser("user").password("password").roles("USER");

 }

}

Note

The name of the configureGlobal method is not important. However, it is important to only
configure AuthenticationManagerBuilder in a class annotated with either @EnableWebSecurity,
@EnableGlobalMethodSecurity, or @EnableGlobalAuthentication. Doing otherwise
has unpredictable results.

There really isn’t much to this configuration, but it does a lot. You can find a summary of the features
below:

• Require authentication to every URL in your application

• Generate a login form for you

• Allow the user with the Username user and the Password password to authenticate with form based
authentication

• Allow the user to logout

http://docs.spring.io/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java
https://github.com/spring-projects/spring-security/tree/master/samples

Spring Security Reference

please define title in your docbook file! 15

• CSRF attack prevention

• Session Fixation protection

• Security Header integration

• HTTP Strict Transport Security for secure requests

• X-Content-Type-Options integration

• Cache Control (can be overridden later by your application to allow caching of your static resources)

• X-XSS-Protection integration

• X-Frame-Options integration to help prevent Clickjacking

• Integrate with the following Servlet API methods

• HttpServletRequest#getRemoteUser()

• HttpServletRequest.html#getUserPrincipal()

• HttpServletRequest.html#isUserInRole(java.lang.String)

• HttpServletRequest.html#login(java.lang.String, java.lang.String)

• HttpServletRequest.html#logout()

AbstractSecurityWebApplicationInitializer

The next step is to register the springSecurityFilterChain with the war.
This can be done in Java Configuration with Spring’s WebApplicationInitializer
support in a Servlet 3.0+ environment. Not suprisingly, Spring Security provides
a base class AbstractSecurityWebApplicationInitializer that will ensure the
springSecurityFilterChain gets registered for you. The way in which we use
AbstractSecurityWebApplicationInitializer differs depending on if we are already using
Spring or if Spring Security is the only Spring component in our application.

• the section called “AbstractSecurityWebApplicationInitializer without Existing Spring” - Use these
instructions if you are not using Spring already

• the section called “AbstractSecurityWebApplicationInitializer with Spring MVC” - Use these
instructions if you are already using Spring

AbstractSecurityWebApplicationInitializer without Existing Spring

If you are not using Spring or Spring MVC, you will need to pass in the SecurityConfig into the
superclass to ensure the configuration is picked up. You can find an example below:

import org.springframework.security.web.context.*;

public class SecurityWebApplicationInitializer

 extends AbstractSecurityWebApplicationInitializer {

 public SecurityWebApplicationInitializer() {

 super(SecurityConfig.class);

 }

}

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Session_fixation
http://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
http://msdn.microsoft.com/en-us/library/ie/gg622941(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dd565647(v=vs.85).aspx
http://en.wikipedia.org/wiki/Clickjacking
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getRemoteUser()
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getUserPrincipal()
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#isUserInRole(java.lang.String)
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#login(java.lang.String,%20java.lang.String)
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#logout()
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html#mvc-container-config
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html#mvc-container-config

Spring Security Reference

please define title in your docbook file! 16

The SecurityWebApplicationInitializer will do the following things:

• Automatically register the springSecurityFilterChain Filter for every URL in your application

• Add a ContextLoaderListener that loads the SecurityConfig.

AbstractSecurityWebApplicationInitializer with Spring MVC

If we were using Spring elsewhere in our application we probably already had a
WebApplicationInitializer that is loading our Spring Configuration. If we use the
previous configuration we would get an error. Instead, we should register Spring Security
with the existing ApplicationContext. For example, if we were using Spring MVC our
SecurityWebApplicationInitializer would look something like the following:

import org.springframework.security.web.context.*;

public class SecurityWebApplicationInitializer

 extends AbstractSecurityWebApplicationInitializer {

}

This would simply only register the springSecurityFilterChain Filter for every URL in your application.
After that we would ensure that SecurityConfig was loaded in our existing ApplicationInitializer. For
example, if we were using Spring MVC it would be added in the getRootConfigClasses()

public class MvcWebApplicationInitializer extends

 AbstractAnnotationConfigDispatcherServletInitializer {

 @Override

 protected Class<?>[] getRootConfigClasses() {

 return new Class[] { SecurityConfig.class };

 }

 // ... other overrides ...

}

3.2 HttpSecurity

Thus far our SecurityConfig only contains information about how to authenticate our users.
How does Spring Security know that we want to require all users to be authenticated? How
does Spring Security know we want to support form based authentication? The reason for
this is that the WebSecurityConfigurerAdapter provides a default configuration in the
configure(HttpSecurity http) method that looks like:

protected void configure(HttpSecurity http) throws Exception {

 http

 .authorizeRequests()

 .anyRequest().authenticated()

 .and()

 .formLogin()

 .and()

 .httpBasic();

}

The default configuration above:

• Ensures that any request to our application requires the user to be authenticated

• Allows users to authenticate with form based login

Spring Security Reference

please define title in your docbook file! 17

• Allows users to authenticate with HTTP Basic authentication

You will notice that this configuration is quite similar the XML Namespace configuration:

<http>

 <intercept-url pattern="/**" access="authenticated"/>

 <form-login />

 <http-basic />

</http>

The Java Configuration equivalent of closing an XML tag is expressed using the and() method which
allows us to continue configuring the parent. If you read the code it also makes sense. I want to configure
authorized requests and configure form login and configure HTTP Basic authentication.

However, Java configuration has different defaults URLs and parameters. Keep this in mind when
creating custom login pages. The result is that our URLs are more RESTful. Additionally, it is not quite
so obvious we are using Spring Security which helps to prevent information leaks. For example:

3.3 Java Configuration and Form Login

You might be wondering where the login form came from when you were prompted to log in, since
we made no mention of any HTML files or JSPs. Since Spring Security’s default configuration does
not explicitly set a URL for the login page, Spring Security generates one automatically, based on the
features that are enabled and using standard values for the URL which processes the submitted login,
the default target URL the user will be sent to after logging in and so on.

While the automatically generated log in page is convenient to get up and running quickly, most
applications will want to provide their own log in page. To do so we can update our configuration as
seen below:

protected void configure(HttpSecurity http) throws Exception {

 http

 .authorizeRequests()

 .anyRequest().authenticated()

 .and()

 .formLogin()

 .loginPage("/login") ❶

 .permitAll(); ❷

}

❶ The updated configuration specifies the location of the log in page.

❷ We must grant all users (i.e. unauthenticated users) access to our log in page. The
formLogin().permitAll() method allows granting access to all users for all URLs associated
with form based log in.

An example log in page implemented with JSPs for our current configuration can be seen below:

Note

The login page below represents our current configuration. We could easily update our
configuration if some of the defaults do not meet our needs.

https://www.owasp.org/index.php/Information_Leak_(information_disclosure)

Spring Security Reference

please define title in your docbook file! 18

<c:url value="/login" var="loginUrl"/>

<form action="${loginUrl}" method="post"> ❶

 <c:if test="${param.error != null}"> ❷

 <p>

 Invalid username and password.

 </p>

 </c:if>

 <c:if test="${param.logout != null}"> ❸

 <p>

 You have been logged out.

 </p>

 </c:if>

 <p>

 <label for="username">Username</label>

 <input type="text" id="username" name="username"/> ❹

 </p>

 <p>

 <label for="password">Password</label>

 <input type="password" id="password" name="password"/> ❺

 </p>

 <input type="hidden" ❻

 name="${_csrf.parameterName}"

 value="${_csrf.token}"/>

 <button type="submit" class="btn">Log in</button>

</form>

❶ A POST to the /login URL will attempt to authenticate the user

❷ If the query parameter error exists, authentication was attempted and failed

❸ If the query parameter logout exists, the user was successfully logged out

❹ The username must be present as the HTTP parameter named username

❺ The password must be present as the HTTP parameter named password

❻ We must the section called “Include the CSRF Token” To learn more read the Chapter 16, Cross
Site Request Forgery (CSRF) section of the reference

3.4 Authorize Requests

Our examples have only required users to be authenticated and have done so for every URL in our
application. We can specify custom requirements for our URLs by adding multiple children to our
http.authorizeRequests() method. For example:

protected void configure(HttpSecurity http) throws Exception {

 http

 .authorizeRequests() ❶

 .antMatchers("/resources/**", "/signup", "/about").permitAll() ❷

 .antMatchers("/admin/**").hasRole("ADMIN") ❸

 .antMatchers("/db/**").access("hasRole('ADMIN') and hasRole('DBA')") ❹

 .anyRequest().authenticated() ❺

 .and()

 // ...

 .formLogin();

}

❶ There are multiple children to the http.authorizeRequests() method each matcher is
considered in the order they were declared.

❷ We specified multiple URL patterns that any user can access. Specifically, any user can access a
request if the URL starts with "/resources/", equals "/signup", or equals "/about".

❸ Any URL that starts with "/admin/" will be resticted to users who have the role "ROLE_ADMIN".
You will notice that since we are invoking the hasRole method we do not need to specify the
"ROLE_" prefix.

Spring Security Reference

please define title in your docbook file! 19

❹ Any URL that starts with "/db/" requires the user to have both "ROLE_ADMIN" and "ROLE_DBA".
You will notice that since we are using the hasRole expression we do not need to specify the
"ROLE_" prefix.

❺ Any URL that has not already been matched on only requires that the user be authenticated

3.5 Authentication

Thus far we have only taken a look at the most basic authentication configuration. Let’s take a look at
a few slightly more advanced options for configuring authentication.

In Memory Authentication

We have already seen an example of configuring in memory authentication for a single user. Below is
an example to configure multiple users:

@Autowired

public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {

 auth

 .inMemoryAuthentication()

 .withUser("user").password("password").roles("USER").and()

 .withUser("admin").password("password").roles("USER", "ADMIN");

}

JDBC Authentication

You can find the updates to suppport JDBC based authentication. The example below assumes that you
have already defined a DataSource within your application. The jdbc-jc sample provides a complete
example of using JDBC based authentication.

@Autowired

private DataSource dataSource;

@Autowired

public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {

 auth

 .jdbcAuthentication()

 .dataSource(dataSource)

 .withDefaultSchema()

 .withUser("user").password("password").roles("USER").and()

 .withUser("admin").password("password").roles("USER", "ADMIN");

}

LDAP Authentication

You can find the updates to suppport LDAP based authentication. The ldap-jc sample provides a
complete example of using LDAP based authentication.

@Autowired

private DataSource dataSource;

@Autowired

public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {

 auth

 .ldapAuthentication()

 .userDnPatterns("uid={0},ou=people")

 .groupSearchBase("ou=groups");

}

The example above uses the following LDIF and an embedded Apache DS LDAP instance.

https://github.com/spring-projects/spring-security/tree/master/samples/jdbc-jc
https://github.com/spring-projects/spring-security/tree/master/samples/ldap-jc

Spring Security Reference

please define title in your docbook file! 20

users.ldif.

dn: ou=groups,dc=springframework,dc=org

objectclass: top

objectclass: organizationalUnit

ou: groups

dn: ou=people,dc=springframework,dc=org

objectclass: top

objectclass: organizationalUnit

ou: people

dn: uid=admin,ou=people,dc=springframework,dc=org

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: Rod Johnson

sn: Johnson

uid: admin

userPassword: password

dn: uid=user,ou=people,dc=springframework,dc=org

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: Dianne Emu

sn: Emu

uid: user

userPassword: password

dn: cn=user,ou=groups,dc=springframework,dc=org

objectclass: top

objectclass: groupOfNames

cn: user

uniqueMember: uid=admin,ou=people,dc=springframework,dc=org

uniqueMember: uid=user,ou=people,dc=springframework,dc=org

dn: cn=admin,ou=groups,dc=springframework,dc=org

objectclass: top

objectclass: groupOfNames

cn: admin

uniqueMember: uid=admin,ou=people,dc=springframework,dc=org

3.6 Multiple HttpSecurity

We can configure multiple HttpSecurity instances just as we can have multiple <http> blocks. The key
is to extend the WebSecurityConfigurationAdapter multiple times. For example, the following is
an example of having a different configuration for URL’s that start with /api/.

Spring Security Reference

please define title in your docbook file! 21

@EnableWebSecurity

public class MultiHttpSecurityConfig {

 @Autowired

 public void configureGlobal(AuthenticationManagerBuilder auth) { ❶

 auth

 .inMemoryAuthentication()

 .withUser("user").password("password").roles("USER").and()

 .withUser("admin").password("password").roles("USER", "ADMIN");

 }

 @Configuration

 @Order(1) ❷

 public static class ApiWebSecurityConfigurationAdapter extends WebSecurityConfigurerAdapter {

 protected void configure(HttpSecurity http) throws Exception {

 http

 .antMatcher("/api/**") ❸

 .authorizeRequests()

 .anyRequest().hasRole("ADMIN")

 .and()

 .httpBasic();

 }

 }

 @Configuration ❹

 public static class FormLoginWebSecurityConfigurerAdapter extends WebSecurityConfigurerAdapter {

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http

 .authorizeRequests()

 .anyRequest().authenticated()

 .and()

 .formLogin();

 }

 }

}

❶ Configure Authentication as normal

❷ Create an instance of WebSecurityConfigurerAdapter that contains @Order to specify which
WebSecurityConfigurerAdapter should be considered first.

❸ The http.antMatcher states that this HttpSecurity will only be applicable to URLs that start
with /api/

❹ Create another instance of WebSecurityConfigurerAdapter. If the URL does not
start with /api/ this configuration will be used. This configuration is considered after
ApiWebSecurityConfigurationAdapter since it has an @Order value after 1 (no @Order
defaults to last).

3.7 Method Security

From version 2.0 onwards Spring Security has improved support substantially for adding security to your
service layer methods. It provides support for JSR-250 annotation security as well as the framework###s
original @Secured annotation. From 3.0 you can also make use of new expression-based annotations.
You can apply security to a single bean, using the intercept-methods element to decorate the bean
declaration, or you can secure multiple beans across the entire service layer using the AspectJ style
pointcuts.

EnableGlobalMethodSecurity

We can enable annotation-based security using the @EnableGlobalMethodSecurity annotation on
any @Configuration instance. For example, the following would enable Spring Security’s @Secured
annotation.

Spring Security Reference

please define title in your docbook file! 22

@EnableGlobalMethodSecurity(securedEnabled = true)

public class MethodSecurityConfig {

// ...

}

Adding an annotation to a method (on an class or interface) would then limit the access to that method
accordingly. Spring Security’s native annotation support defines a set of attributes for the method. These
will be passed to the AccessDecisionManager for it to make the actual decision:

public interface BankService {

@Secured("IS_AUTHENTICATED_ANONYMOUSLY")

public Account readAccount(Long id);

@Secured("IS_AUTHENTICATED_ANONYMOUSLY")

public Account[] findAccounts();

@Secured("ROLE_TELLER")

public Account post(Account account, double amount);

}

Support for JSR-250 annotations can be enabled using

@EnableGlobalMethodSecurity(jsr250Enabled = true)

public class MethodSecurityConfig {

// ...

}

These are standards-based and allow simple role-based constraints to be applied but do not have the
power Spring Security’s native annotations. To use the new expression-based syntax, you would use

@EnableGlobalMethodSecurity(prePostEnabled = true)

public class MethodSecurityConfig {

// ...

}

and the equivalent Java code would be

public interface BankService {

@PreAuthorize("isAnonymous()")

public Account readAccount(Long id);

@PreAuthorize("isAnonymous()")

public Account[] findAccounts();

@PreAuthorize("hasAuthority('ROLE_TELLER')")

public Account post(Account account, double amount);

}

GlobalMethodSecurityConfiguration

Sometimes you may need to perform operations that are more complicated than are possible with
the @EnableGlobalMethodSecurity annotation allow. For these instances, you can extend the
GlobalMethodSecurityConfiguration ensuring that the @EnableGlobalMethodSecurity
annotation is present on your subclass. For example, if you wanted to provide a custom
MethodSecurityExpressionHander, you could use the following configuration:

Spring Security Reference

please define title in your docbook file! 23

@EnableGlobalMethodSecurity(prePostEnabled = true)

public class MethodSecurityConfig extends GlobalMethodSecurityConfiguration {

 @Override

 protected MethodSecurityExpressionHandler createExpressionHandler() {

 // ... create and return custom MethodSecurityExpressionHandler ...

 return expressionHander;

 }

}

For additional information about methods that can be overriden, refer to the
GlobalMethodSecurityConfiguration Javadoc.

3.8 Post Processing Configured Objects

Spring Security’s Java Configuration does not expose every property of every object that it configures.
This simplifies the configuration for a majority of users. Afterall, if every property was exposed, users
could use standard bean configuration.

While there are good reasons to not directly expose every property, users may still need
more advanced configuration options. To address this Spring Security introduces the concept
of an ObjectPostProcessor which can used to modify or replace many of the Object
instances created by the Java Configuration. For example, if you wanted to configure the
filterSecurityPublishAuthorizationSuccess property on FilterSecurityInterceptor
you could use the following:

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 .authorizeRequests()

 .anyRequest().authenticated()

 .withObjectPostProcessor(new ObjectPostProcessor<FilterSecurityInterceptor>() {

 public <O extends FilterSecurityInterceptor> O postProcess(

 O fsi) {

 fsi.setPublishAuthorizationSuccess(true);

 return fsi;

 }

 });

}

Spring Security Reference

please define title in your docbook file! 24

4. Security Namespace Configuration

4.1 Introduction

Namespace configuration has been available since version 2.0 of the Spring framework. It allows you to
supplement the traditional Spring beans application context syntax with elements from additional XML
schema. You can find more information in the Spring Reference Documentation. A namespace element
can be used simply to allow a more concise way of configuring an individual bean or, more powerfully,
to define an alternative configuration syntax which more closely matches the problem domain and hides
the underlying complexity from the user. A simple element may conceal the fact that multiple beans
and processing steps are being added to the application context. For example, adding the following
element from the security namespace to an application context will start up an embedded LDAP server
for testing use within the application:

<security:ldap-server />

This is much simpler than wiring up the equivalent Apache Directory Server beans. The most common
alternative configuration requirements are supported by attributes on the ldap-server element and
the user is isolated from worrying about which beans they need to create and what the bean property
names are. 2. Use of a good XML editor while editing the application context file should provide
information on the attributes and elements that are available. We would recommend that you try out the
SpringSource Tool Suite as it has special features for working with standard Spring namespaces.

To start using the security namespace in your application context, you need to have the spring-
security-config jar on your classpath. Then all you need to do is add the schema declaration to
your application context file:

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:security="http://www.springframework.org/schema/security"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/security

 http://www.springframework.org/schema/security/spring-security.xsd">

 ...

</beans>

In many of the examples you will see (and in the sample) applications, we will often use "security" as
the default namespace rather than "beans", which means we can omit the prefix on all the security
namespace elements, making the content easier to read. You may also want to do this if you have your
application context divided up into separate files and have most of your security configuration in one of
them. Your security application context file would then start like this

<beans:beans xmlns="http://www.springframework.org/schema/security"

xmlns:beans="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/security

 http://www.springframework.org/schema/security/spring-security.xsd">

 ...

</beans:beans>

We’ll assume this syntax is being used from now on in this chapter.

2You can find out more about the use of the ldap-server element in the chapter on Chapter 26, LDAP Authentication.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmlsingle/spring-framework-reference.html
http://www.springsource.com/products/sts

Spring Security Reference

please define title in your docbook file! 25

Design of the Namespace

The namespace is designed to capture the most common uses of the framework and provide a simplified
and concise syntax for enabling them within an application. The design is based around the large-scale
dependencies within the framework, and can be divided up into the following areas:

• Web/HTTP Security - the most complex part. Sets up the filters and related service beans used to
apply the framework authentication mechanisms, to secure URLs, render login and error pages and
much more.

• Business Object (Method) Security - options for securing the service layer.

• AuthenticationManager - handles authentication requests from other parts of the framework.

• AccessDecisionManager - provides access decisions for web and method security. A default one will
be registered, but you can also choose to use a custom one, declared using normal Spring bean
syntax.

• AuthenticationProviders - mechanisms against which the authentication manager authenticates
users. The namespace provides supports for several standard options and also a means of adding
custom beans declared using a traditional syntax.

• UserDetailsService - closely related to authentication providers, but often also required by other
beans.

We’ll see how to configure these in the following sections.

4.2 Getting Started with Security Namespace Configuration

In this section, we’ll look at how you can build up a namespace configuration to use some of the main
features of the framework. Let’s assume you initially want to get up and running as quickly as possible
and add authentication support and access control to an existing web application, with a few test logins.
Then we’ll look at how to change over to authenticating against a database or other security repository.
In later sections we’ll introduce more advanced namespace configuration options.

web.xml Configuration

The first thing you need to do is add the following filter declaration to your web.xml file:

<filter>

<filter-name>springSecurityFilterChain</filter-name>

<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

<filter-name>springSecurityFilterChain</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

This provides a hook into the Spring Security web infrastructure. DelegatingFilterProxy is a Spring
Framework class which delegates to a filter implementation which is defined as a Spring bean in your
application context. In this case, the bean is named "springSecurityFilterChain", which is an internal
infrastructure bean created by the namespace to handle web security. Note that you should not use
this bean name yourself. Once you’ve added this to your web.xml, you’re ready to start editing your
application context file. Web security services are configured using the <http> element.

Spring Security Reference

please define title in your docbook file! 26

A Minimal <http> Configuration

All you need to enable web security to begin with is

<http>

<intercept-url pattern="/**" access="hasRole('USER')" />

<form-login />

<logout />

</http>

Which says that we want all URLs within our application to be secured, requiring the role ROLE_USER
to access them, we want to log in to the application using a form with username and password, and
that we want a logout URL registered which will allow us to log out of the application. <http> element
is the parent for all web-related namespace functionality. The <intercept-url> element defines a
pattern which is matched against the URLs of incoming requests using an ant path style syntax 4.
You can also use regular-expression matching as an alternative (see the namespace appendix for more
details). The access attribute defines the access requirements for requests matching the given pattern.
With the default configuration, this is typically a comma-separated list of roles, one of which a user
must have to be allowed to make the request. The prefix"ROLE_" is a marker which indicates that a
simple comparison with the user’s authorities should be made. In other words, a normal role-based
check should be used. Access-control in Spring Security is not limited to the use of simple roles (hence
the use of the prefix to differentiate between different types of security attributes). We’ll see later how
the interpretation can vary footnote:[The interpretation of the comma-separated values in the access
attribute depends on the implementation of the #1# which is used. In Spring Security 3.0, the attribute
can also be populated with an #2#.

Note

You can use multiple <intercept-url> elements to define different access requirements for
different sets of URLs, but they will be evaluated in the order listed and the first match will be
used. So you must put the most specific matches at the top. You can also add a method attribute
to limit the match to a particular HTTP method (GET, POST, PUT etc.).

To add some users, you can define a set of test data directly in the namespace:

<authentication-manager>

<authentication-provider>

 <user-service>

 <user name="jimi" password="jimispassword" authorities="ROLE_USER, ROLE_ADMIN" />

 <user name="bob" password="bobspassword" authorities="ROLE_USER" />

 </user-service>

</authentication-provider>

</authentication-manager>

If you are familiar with pre-namespace versions of the framework, you can probably already
guess roughly what’s going on here. The <http> element is responsible for creating a
FilterChainProxy and the filter beans which it uses. Common problems like incorrect filter
ordering are no longer an issue as the filter positions are predefined.

The <authentication-provider> element creates a DaoAuthenticationProvider bean
and the <user-service> element creates an InMemoryDaoImpl. All authentication-

4See the section on Section 11.4, “Request Matching and HttpFirewall” in the Web Application Infrastructure chapter for more
details on how matches are actually performed.

Spring Security Reference

please define title in your docbook file! 27

provider elements must be children of the <authentication-manager> element, which
creates a ProviderManager and registers the authentication providers with it. You can find more
detailed information on the beans that are created in the namespace appendix. It’s worth cross-
checking this if you want to start understanding what the important classes in the framework are
and how they are used, particularly if you want to customise things later.

The configuration above defines two users, their passwords and their roles within the application (which
will be used for access control). It is also possible to load user information from a standard properties
file using the properties attribute on user-service. See the section on in-memory authentication
for more details on the file format. Using the <authentication-provider> element means that the
user information will be used by the authentication manager to process authentication requests. You
can have multiple <authentication-provider> elements to define different authentication sources
and each will be consulted in turn.

At this point you should be able to start up your application and you will be required to log in to proceed.
Try it out, or try experimenting with the"tutorial" sample application that comes with the project.

Form and Basic Login Options

You might be wondering where the login form came from when you were prompted to log in, since we
made no mention of any HTML files or JSPs. In fact, since we didn’t explicitly set a URL for the login
page, Spring Security generates one automatically, based on the features that are enabled and using
standard values for the URL which processes the submitted login, the default target URL the user will
be sent to after logging in and so on. However, the namespace offers plenty of support to allow you to
customize these options. For example, if you want to supply your own login page, you could use:

<http>

<intercept-url pattern="/login.jsp*" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

<intercept-url pattern="/**" access="ROLE_USER" />

<form-login login-page='/login.jsp'/>

</http>

Also note that we’ve added an extra intercept-url element to say that any requests for the login
page should be available to anonymous users 5 and also the AuthenticatedVoter class for more details
on how the value IS_AUTHENTICATED_ANONYMOUSLY is processed.]. Otherwise the request would be
matched by the pattern /** and it wouldn’t be possible to access the login page itself! This is a common
configuration error and will result in an infinite loop in the application. Spring Security will emit a warning
in the log if your login page appears to be secured. It is also possible to have all requests matching a
particular pattern bypass the security filter chain completely, by defining a separate http element for
the pattern like this:

<http pattern="/css/**" security="none"/>

<http pattern="/login.jsp*" security="none"/>

<http use-expressions="false">

<intercept-url pattern="/**" access="ROLE_USER" />

<form-login login-page='/login.jsp'/>

</http>

From Spring Security 3.1 it is now possible to use multiple http elements to define separate security
filter chain configurations for different request patterns. If the pattern attribute is omitted from an http
element, it matches all requests. Creating an unsecured pattern is a simple example of this syntax,

5See the chapter on Chapter 19, Anonymous Authentication

Spring Security Reference

please define title in your docbook file! 28

where the pattern is mapped to an empty filter chain 6. We’ll look at this new syntax in more detail in
the chapter on the Security Filter Chain.

It’s important to realise that these unsecured requests will be completely oblivious to any Spring
Security web-related configuration or additional attributes such as requires-channel, so you will
not be able to access information on the current user or call secured methods during the request. Use
access='IS_AUTHENTICATED_ANONYMOUSLY' as an alternative if you still want the security filter
chain to be applied.

If you want to use basic authentication instead of form login, then change the configuration to

<http use-expressions="false">

<intercept-url pattern="/**" access="ROLE_USER" />

<http-basic />

</http>

Basic authentication will then take precedence and will be used to prompt for a login when a user
attempts to access a protected resource. Form login is still available in this configuration if you wish to
use it, for example through a login form embedded in another web page.

Setting a Default Post-Login Destination

If a form login isn’t prompted by an attempt to access a protected resource, the default-target-
url option comes into play. This is the URL the user will be taken to after successfully logging in, and
defaults to "/". You can also configure things so that the user always ends up at this page (regardless
of whether the login was "on-demand" or they explicitly chose to log in) by setting the always-use-
default-target attribute to "true". This is useful if your application always requires that the user
starts at a "home" page, for example:

<http pattern="/login.htm*" security="none"/>

<http use-expressions="false">

<intercept-url pattern='/**' access='ROLE_USER' />

<form-login login-page='/login.htm' default-target-url='/home.htm'

 always-use-default-target='true' />

</http>

For even more control over the destination, you can use the authentication-success-handler-
ref attribute as an alternative to default-target-url. The referenced bean should be an instance
of AuthenticationSuccessHandler. You’ll find more on this in the Core Filters chapter and also in
the namespace appendix, as well as information on how to customize the flow when authentication fails.

Logout Handling

The logout element adds support for logging out by navigating to a particular URL. The default logout
URL is /logout, but you can set it to something else using the logout-url attribute. More information
on other available attributes may be found in the namespace appendix.

Using other Authentication Providers

In practice you will need a more scalable source of user information than a few names added to the
application context file. Most likely you will want to store your user information in something like a

6The use of multiple <http> elements is an important feature, allowing the namespace to simultaneously support both stateful
and stateless paths within the same application, for example. The previous syntax, using the attribute filters="none" on an
intercept-url element is incompatible with this change and is no longer supported in 3.1.

Spring Security Reference

please define title in your docbook file! 29

database or an LDAP server. LDAP namespace configuration is dealt with in the LDAP chapter, so we
won’t cover it here. If you have a custom implementation of Spring Security’s UserDetailsService,
called "myUserDetailsService" in your application context, then you can authenticate against this using

<authentication-manager>

 <authentication-provider user-service-ref='myUserDetailsService'/>

</authentication-manager>

If you want to use a database, then you can use

<authentication-manager>

<authentication-provider>

 <jdbc-user-service data-source-ref="securityDataSource"/>

</authentication-provider>

</authentication-manager>

Where "securityDataSource" is the name of a DataSource bean in the application context, pointing at
a database containing the standard Spring Security user data tables. Alternatively, you could configure
a Spring Security JdbcDaoImpl bean and point at that using the user-service-ref attribute:

<authentication-manager>

<authentication-provider user-service-ref='myUserDetailsService'/>

</authentication-manager>

<beans:bean id="myUserDetailsService"

 class="org.springframework.security.core.userdetails.jdbc.JdbcDaoImpl">

<beans:property name="dataSource" ref="dataSource"/>

</beans:bean>

You can also use standard AuthenticationProvider beans as follows

<authentication-manager>

 <authentication-provider ref='myAuthenticationProvider'/>

</authentication-manager>

where myAuthenticationProvider is the name of a bean in your application context which
implements AuthenticationProvider. You can use multiple authentication-provider
elements, in which case the providers will be queried in the order they are declared. See Section 4.6,
“The Authentication Manager and the Namespace” for more on information on how the Spring Security
AuthenticationManager is configured using the namespace.

Adding a Password Encoder

Passwords should always be encoded using a secure hashing algorithm designed for the purpose (not
a standard algorithm like SHA or MD5). This is supported by the <password-encoder> element. With
bcrypt encoded passwords, the original authentication provider configuration would look like this:

<beans:bean name="bcryptEncoder"

 class="org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder"/>

<authentication-manager>

<authentication-provider>

 <password-encoder ref="bcryptEncoder"/>

 <user-service>

 <user name="jimi" password="d7e6351eaa13189a5a3641bab846c8e8c69ba39f"

 authorities="ROLE_USER, ROLE_ADMIN" />

 <user name="bob" password="4e7421b1b8765d8f9406d87e7cc6aa784c4ab97f"

 authorities="ROLE_USER" />

 </user-service>

</authentication-provider>

</authentication-manager>

Spring Security Reference

please define title in your docbook file! 30

Bcrypt is a good choice for most cases, unless you have a legacy system which forces you to use
a different algorithm. If you are using a simple hashing algorithm or, even worse, storing plain text
passwords, then you should consider migrating to a more secure option like bcrypt.

4.3 Advanced Web Features

Remember-Me Authentication

See the separate Remember-Me chapter for information on remember-me namespace configuration.

Adding HTTP/HTTPS Channel Security

If your application supports both HTTP and HTTPS, and you require that particular URLs can only
be accessed over HTTPS, then this is directly supported using the requires-channel attribute on
<intercept-url>:

<http>

<intercept-url pattern="/secure/**" access="ROLE_USER" requires-channel="https"/>

<intercept-url pattern="/**" access="ROLE_USER" requires-channel="any"/>

...

</http>

With this configuration in place, if a user attempts to access anything matching the "/secure/**" pattern
using HTTP, they will first be redirected to an HTTPS URL 7. The available options are "http", "https" or
"any". Using the value "any" means that either HTTP or HTTPS can be used.

If your application uses non-standard ports for HTTP and/or HTTPS, you can specify a list of port
mappings as follows:

<http>

...

<port-mappings>

 <port-mapping http="9080" https="9443"/>

</port-mappings>

</http>

Note that in order to be truly secure, an application should not use HTTP at all or switch between
HTTP and HTTPS. It should start in HTTPS (with the user entering an HTTPS URL) and use a secure
connection throughout to avoid any possibility of man-in-the-middle attacks.

Session Management

Detecting Timeouts

You can configure Spring Security to detect the submission of an invalid session ID and redirect the
user to an appropriate URL. This is achieved through the session-management element:

<http>

...

<session-management invalid-session-url="/invalidSession.htm" />

</http>

Note that if you use this mechanism to detect session timeouts, it may falsely report an error if the
user logs out and then logs back in without closing the browser. This is because the session cookie is

7For more details on how channel-processing is implemented, see the Javadoc for ChannelProcessingFilter and related
classes.

Spring Security Reference

please define title in your docbook file! 31

not cleared when you invalidate the session and will be resubmitted even if the user has logged out.
You may be able to explicitly delete the JSESSIONID cookie on logging out, for example by using the
following syntax in the logout handler:

<http>

<logout delete-cookies="JSESSIONID" />

</http>

Unfortunately this can’t be guaranteed to work with every servlet container, so you will need to test it
in your environment

Note

If you are running your application behind a proxy, you may also be able to remove the session
cookie by configuring the proxy server. For example, using Apache HTTPD’s mod_headers, the
following directive would delete the JSESSIONID cookie by expiring it in the response to a logout
request (assuming the application is deployed under the path /tutorial):

<LocationMatch "/tutorial/logout">

Header always set Set-Cookie "JSESSIONID=;Path=/tutorial;Expires=Thu, 01 Jan 1970 00:00:00 GMT"

</LocationMatch>

Concurrent Session Control

If you wish to place constraints on a single user’s ability to log in to your application, Spring Security
supports this out of the box with the following simple additions. First you need to add the following
listener to your web.xml file to keep Spring Security updated about session lifecycle events:

<listener>

<listener-class>

 org.springframework.security.web.session.HttpSessionEventPublisher

</listener-class>

</listener>

Then add the following lines to your application context:

<http>

...

<session-management>

 <concurrency-control max-sessions="1" />

</session-management>

</http>

This will prevent a user from logging in multiple times - a second login will cause the first to be invalidated.
Often you would prefer to prevent a second login, in which case you can use

<http>

...

<session-management>

 <concurrency-control max-sessions="1" error-if-maximum-exceeded="true" />

</session-management>

</http>

The second login will then be rejected. By "rejected", we mean that the user will be sent to the
authentication-failure-url if form-based login is being used. If the second authentication takes
place through another non-interactive mechanism, such as "remember-me", an "unauthorized" (401)
error will be sent to the client. If instead you want to use an error page, you can add the attribute
session-authentication-error-url to the session-management element.

Spring Security Reference

please define title in your docbook file! 32

If you are using a customized authentication filter for form-based login, then you have to configure
concurrent session control support explicitly. More details can be found in the Session Management
chapter.

Session Fixation Attack Protection

Session fixation attacks are a potential risk where it is possible for a malicious attacker to create a
session by accessing a site, then persuade another user to log in with the same session (by sending
them a link containing the session identifier as a parameter, for example). Spring Security protects
against this automatically by creating a new session or otherwise changing the session ID when a user
logs in. If you don’t require this protection, or it conflicts with some other requirement, you can control the
behavior using the session-fixation-protection attribute on <session-management>, which
has four options

• none - Don’t do anything. The original session will be retained.

• newSession - Create a new "clean" session, without copying the existing session data (Spring
Security-related attributes will still be copied).

• migrateSession - Create a new session and copy all existing session attributes to the new session.
This is the default in Servlet 3.0 or older containers.

• changeSessionId - Do not create a new session. Instead, use the session fixation protection
provided by the Servlet container (HttpServletRequest#changeSessionId()). This option is
only available in Servlet 3.1 (Java EE 7) and newer containers. Specifying it in older containers will
result in an exception. This is the default in Servlet 3.1 and newer containers.

When session fixation protection occurs, it results in a SessionFixationProtectionEvent being
published in the application context. If you use changeSessionId, this protection will also result in
any javax.servlet.http.HttpSessionIdListener s being notified, so use caution if your code
listens for both events. See the Session Management chapter for additional information.

OpenID Support

The namespace supports OpenID login either instead of, or in addition to normal form-based login, with
a simple change:

<http>

<intercept-url pattern="/**" access="ROLE_USER" />

<openid-login />

</http>

You should then register yourself with an OpenID provider (such as myopenid.com), and add the user
information to your in-memory <user-service> :

<user name="http://jimi.hendrix.myopenid.com/" authorities="ROLE_USER" />

You should be able to login using the myopenid.com site to authenticate. It is also possible to select a
specific UserDetailsService bean for use OpenID by setting the user-service-ref attribute on
the openid-login element. See the previous section on authentication providers for more information.
Note that we have omitted the password attribute from the above user configuration, since this set of
user data is only being used to load the authorities for the user. A random password will be generate
internally, preventing you from accidentally using this user data as an authentication source elsewhere
in your configuration.

http://en.wikipedia.org/wiki/Session_fixation
http://openid.net/

Spring Security Reference

please define title in your docbook file! 33

Attribute Exchange

Support for OpenID attribute exchange. As an example, the following configuration would attempt to
retrieve the email and full name from the OpenID provider, for use by the application:

<openid-login>

<attribute-exchange>

 <openid-attribute name="email" type="http://axschema.org/contact/email" required="true"/>

 <openid-attribute name="name" type="http://axschema.org/namePerson"/>

</attribute-exchange>

</openid-login>

The "type" of each OpenID attribute is a URI, determined by a particular schema, in this case http://
axschema.org/. If an attribute must be retrieved for successful authentication, the required attribute
can be set. The exact schema and attributes supported will depend on your OpenID provider. The
attribute values are returned as part of the authentication process and can be accessed afterwards
using the following code:

OpenIDAuthenticationToken token =

 (OpenIDAuthenticationToken)SecurityContextHolder.getContext().getAuthentication();

List<OpenIDAttribute> attributes = token.getAttributes();

The OpenIDAttribute contains the attribute type and the retrieved value (or values in the case
of multi-valued attributes). We’ll see more about how the SecurityContextHolder class is used
when we look at core Spring Security components in the technical overview chapter. Multiple attribute
exchange configurations are also be supported, if you wish to use multiple identity providers. You can
supply multiple attribute-exchange elements, using an identifier-matcher attribute on each.
This contains a regular expression which will be matched against the OpenID identifier supplied by
the user. See the OpenID sample application in the codebase for an example configuration, providing
different attribute lists for the Google, Yahoo and MyOpenID providers.

Response Headers

For additional information on how to customize the headers element refer to the Chapter 17, Security
HTTP Response Headers section of the reference.

Adding in Your Own Filters

If you’ve used Spring Security before, you’ll know that the framework maintains a chain of filters in
order to apply its services. You may want to add your own filters to the stack at particular locations
or use a Spring Security filter for which there isn’t currently a namespace configuration option (CAS,
for example). Or you might want to use a customized version of a standard namespace filter, such as
the UsernamePasswordAuthenticationFilter which is created by the <form-login> element,
taking advantage of some of the extra configuration options which are available by using the bean
explicitly. How can you do this with namespace configuration, since the filter chain is not directly
exposed?

The order of the filters is always strictly enforced when using the namespace. When the application
context is being created, the filter beans are sorted by the namespace handling code and the standard
Spring Security filters each have an alias in the namespace and a well-known position.

Note

In previous versions, the sorting took place after the filter instances had been created, during
post-processing of the application context. In version 3.0+ the sorting is now done at the bean

http://openid.net/specs/openid-attribute-exchange-1_0.html
http://axschema.org/
http://axschema.org/

Spring Security Reference

please define title in your docbook file! 34

metadata level, before the classes have been instantiated. This has implications for how you add
your own filters to the stack as the entire filter list must be known during the parsing of the <http>
element, so the syntax has changed slightly in 3.0.

The filters, aliases and namespace elements/attributes which create the filters are shown in Table 4.1,
“Standard Filter Aliases and Ordering”. The filters are listed in the order in which they occur in the filter
chain.

Table 4.1. Standard Filter Aliases and Ordering

Alias Filter Class Namespace Element or
Attribute

CHANNEL_FILTER ChannelProcessingFilter http/intercept-

url@requires-channel

SECURITY_CONTEXT_FILTER SecurityContextPersistenceFilterhttp

CONCURRENT_SESSION_FILTERConcurrentSessionFilter session-management/

concurrency-control

HEADERS_FILTER HeaderWriterFilter http/headers

CSRF_FILTER CsrfFilter http/csrf

LOGOUT_FILTER LogoutFilter http/logout

X509_FILTER X509AuthenticationFilter http/x509

PRE_AUTH_FILTER AbstractPreAuthenticatedProcessingFilter

Subclasses
N/A

CAS_FILTER CasAuthenticationFilter N/A

FORM_LOGIN_FILTER UsernamePasswordAuthenticationFilterhttp/form-login

BASIC_AUTH_FILTER BasicAuthenticationFilterhttp/http-basic

SERVLET_API_SUPPORT_FILTERSecurityContextHolderAwareRequestFilterhttp/@servlet-api-

provision

JAAS_API_SUPPORT_FILTER JaasApiIntegrationFilter http/@jaas-api-

provision

REMEMBER_ME_FILTER RememberMeAuthenticationFilterhttp/remember-me

ANONYMOUS_FILTER AnonymousAuthenticationFilterhttp/anonymous

SESSION_MANAGEMENT_FILTERSessionManagementFilter session-management

EXCEPTION_TRANSLATION_FILTERExceptionTranslationFilterhttp

FILTER_SECURITY_INTERCEPTORFilterSecurityInterceptorhttp

SWITCH_USER_FILTER SwitchUserFilter N/A

You can add your own filter to the stack, using the custom-filter element and one of these names
to specify the position your filter should appear at:

Spring Security Reference

please define title in your docbook file! 35

<http>

<custom-filter position="FORM_LOGIN_FILTER" ref="myFilter" />

</http>

<beans:bean id="myFilter" class="com.mycompany.MySpecialAuthenticationFilter"/>

You can also use the after or before attributes if you want your filter to be inserted before or after
another filter in the stack. The names "FIRST" and "LAST" can be used with the position attribute to
indicate that you want your filter to appear before or after the entire stack, respectively.

Avoiding filter position conflicts

If you are inserting a custom filter which may occupy the same position as one of the standard
filters created by the namespace then it’s important that you don’t include the namespace versions
by mistake. Remove any elements which create filters whose functionality you want to replace.

Note that you can’t replace filters which are created by the use of the <http>

element itself - SecurityContextPersistenceFilter, ExceptionTranslationFilter
or FilterSecurityInterceptor. Some other filters are added by default, but you can
disable them. An AnonymousAuthenticationFilter is added by default and unless you have
session-fixation protection disabled, a SessionManagementFilter will also be added to the
filter chain.

If you’re replacing a namespace filter which requires an authentication entry point (i.e. where the
authentication process is triggered by an attempt by an unauthenticated user to access to a secured
resource), you will need to add a custom entry point bean too.

Setting a Custom AuthenticationEntryPoint

If you aren’t using form login, OpenID or basic authentication through the namespace, you may want
to define an authentication filter and entry point using a traditional bean syntax and link them into the
namespace, as we’ve just seen. The corresponding AuthenticationEntryPoint can be set using
the entry-point-ref attribute on the <http> element.

The CAS sample application is a good example of the use of custom beans with the namespace,
including this syntax. If you aren’t familiar with authentication entry points, they are discussed in the
technical overview chapter.

4.4 Method Security

From version 2.0 onwards Spring Security has improved support substantially for adding security to your
service layer methods. It provides support for JSR-250 annotation security as well as the framework’s
original @Secured annotation. From 3.0 you can also make use of new expression-based annotations.
You can apply security to a single bean, using the intercept-methods element to decorate the bean
declaration, or you can secure multiple beans across the entire service layer using the AspectJ style
pointcuts.

The <global-method-security> Element

This element is used to enable annotation-based security in your application (by setting the appropriate
attributes on the element), and also to group together security pointcut declarations which will be applied
across your entire application context. You should only declare one <global-method-security>
element. The following declaration would enable support for Spring Security’s @Secured:

Spring Security Reference

please define title in your docbook file! 36

<global-method-security secured-annotations="enabled" />

Adding an annotation to a method (on an class or interface) would then limit the access to that method
accordingly. Spring Security’s native annotation support defines a set of attributes for the method. These
will be passed to the AccessDecisionManager for it to make the actual decision:

public interface BankService {

@Secured("IS_AUTHENTICATED_ANONYMOUSLY")

public Account readAccount(Long id);

@Secured("IS_AUTHENTICATED_ANONYMOUSLY")

public Account[] findAccounts();

@Secured("ROLE_TELLER")

public Account post(Account account, double amount);

}

Support for JSR-250 annotations can be enabled using

<global-method-security jsr250-annotations="enabled" />

These are standards-based and allow simple role-based constraints to be applied but do not have the
power Spring Security’s native annotations. To use the new expression-based syntax, you would use

<global-method-security pre-post-annotations="enabled" />

and the equivalent Java code would be

public interface BankService {

@PreAuthorize("isAnonymous()")

public Account readAccount(Long id);

@PreAuthorize("isAnonymous()")

public Account[] findAccounts();

@PreAuthorize("hasAuthority('ROLE_TELLER')")

public Account post(Account account, double amount);

}

Expression-based annotations are a good choice if you need to define simple rules that go beyond
checking the role names against the user’s list of authorities.

Note

The annotated methods will only be secured for instances which are defined as Spring beans (in
the same application context in which method-security is enabled). If you want to secure instances
which are not created by Spring (using the new operator, for example) then you need to use
AspectJ.

Note

You can enable more than one type of annotation in the same application, but only one type
should be used for any interface or class as the behaviour will not be well-defined otherwise. If two
annotations are found which apply to a particular method, then only one of them will be applied.

Spring Security Reference

please define title in your docbook file! 37

Adding Security Pointcuts using protect-pointcut

The use of protect-pointcut is particularly powerful, as it allows you to apply security to many
beans with only a simple declaration. Consider the following example:

<global-method-security>

<protect-pointcut expression="execution(* com.mycompany.*Service.*(..))"

 access="ROLE_USER"/>

</global-method-security>

This will protect all methods on beans declared in the application context whose classes are in the
com.mycompany package and whose class names end in "Service". Only users with the ROLE_USER
role will be able to invoke these methods. As with URL matching, the most specific matches must come
first in the list of pointcuts, as the first matching expression will be used. Security annotations take
precedence over pointcuts.

4.5 The Default AccessDecisionManager

This section assumes you have some knowledge of the underlying architecture for access-control within
Spring Security. If you don’t you can skip it and come back to it later, as this section is only really relevant
for people who need to do some customization in order to use more than simple role-based security.

When you use a namespace configuration, a default instance of AccessDecisionManager is
automatically registered for you and will be used for making access decisions for method invocations and
web URL access, based on the access attributes you specify in your intercept-url and protect-
pointcut declarations (and in annotations if you are using annotation secured methods).

The default strategy is to use an AffirmativeBased AccessDecisionManager with a RoleVoter
and an AuthenticatedVoter. You can find out more about these in the chapter on authorization.

Customizing the AccessDecisionManager

If you need to use a more complicated access control strategy then it is easy to set an alternative for
both method and web security.

For method security, you do this by setting the access-decision-manager-ref attribute on
global-method-security to the id of the appropriate AccessDecisionManager bean in the
application context:

<global-method-security access-decision-manager-ref="myAccessDecisionManagerBean">

...

</global-method-security>

The syntax for web security is the same, but on the http element:

<http access-decision-manager-ref="myAccessDecisionManagerBean">

...

</http>

4.6 The Authentication Manager and the Namespace

The main interface which provides authentication services in Spring Security is the
AuthenticationManager. This is usually an instance of Spring Security’s ProviderManager class,
which you may already be familiar with if you’ve used the framework before. If not, it will be covered
later, in the technical overview chapter. The bean instance is registered using the authentication-

Spring Security Reference

please define title in your docbook file! 38

manager namespace element. You can’t use a custom AuthenticationManager if you are using
either HTTP or method security through the namespace, but this should not be a problem as you have
full control over the AuthenticationProvider s that are used.

You may want to register additional AuthenticationProvider beans with the ProviderManager
and you can do this using the <authentication-provider> element with the ref attribute, where
the value of the attribute is the name of the provider bean you want to add. For example:

<authentication-manager>

<authentication-provider ref="casAuthenticationProvider"/>

</authentication-manager>

<bean id="casAuthenticationProvider"

 class="org.springframework.security.cas.authentication.CasAuthenticationProvider">

...

</bean>

Another common requirement is that another bean in the context may require a reference to the
AuthenticationManager. You can easily register an alias for the AuthenticationManager and
use this name elsewhere in your application context.

<security:authentication-manager alias="authenticationManager">

...

</security:authentication-manager>

<bean id="customizedFormLoginFilter"

 class="com.somecompany.security.web.CustomFormLoginFilter">

<property name="authenticationManager" ref="authenticationManager"/>

...

</bean>

Spring Security Reference

please define title in your docbook file! 39

5. Sample Applications

There are several sample web applications that are available with the project. To avoid an overly large
download, only the "tutorial" and "contacts" samples are included in the distribution zip file. The others
can be built directly from the source which you can obtain as described in the introduction. It’s easy to
build the project yourself and there’s more information on the project web site at http://spring.io/spring-
security/. All paths referred to in this chapter are relative to the project source directory.

5.1 Tutorial Sample

The tutorial sample is a nice basic example to get you started. It uses simple namespace configuration
throughout. The compiled application is included in the distribution zip file, ready to be deployed
into your web container (spring-security-samples-tutorial-3.1.x.war). The form-based
authentication mechanism is used in combination with the commonly-used remember-me authentication
provider to automatically remember the login using cookies.

We recommend you start with the tutorial sample, as the XML is minimal and easy to follow. Most
importantly, you can easily add this one XML file (and its corresponding web.xml entries) to your
existing application. Only when this basic integration is achieved do we suggest you attempt adding in
method authorization or domain object security.

5.2 Contacts

The Contacts Sample is an advanced example in that it illustrates the more powerful features of domain
object access control lists (ACLs) in addition to basic application security. The application provides an
interface with which the users are able to administer a simple database of contacts (the domain objects).

To deploy, simply copy the WAR file from Spring Security distribution into your container’s webapps
directory. The war should be called spring-security-samples-contacts-3.1.x.war (the
appended version number will vary depending on what release you are using).

After starting your container, check the application can load. Visit http://localhost:8080/contacts (or
whichever URL is appropriate for your web container and the WAR you deployed).

Next, click "Debug". You will be prompted to authenticate, and a series of usernames and passwords
are suggested on that page. Simply authenticate with any of these and view the resulting page. It should
contain a success message similar to the following:

http://spring.io/spring-security/
http://spring.io/spring-security/
http://localhost:8080/contacts

Spring Security Reference

please define title in your docbook file! 40

Security Debug Information

Authentication object is of type:

org.springframework.security.authentication.UsernamePasswordAuthenticationToken

Authentication object as a String:

org.springframework.security.authentication.UsernamePasswordAuthenticationToken@1f127853:

Principal: org.springframework.security.core.userdetails.User@b07ed00: Username: rod; \

Password: [PROTECTED]; Enabled: true; AccountNonExpired: true;

credentialsNonExpired: true; AccountNonLocked: true; \

Granted Authorities: ROLE_SUPERVISOR, ROLE_USER; \

Password: [PROTECTED]; Authenticated: true; \

Details: org.springframework.security.web.authentication.WebAuthenticationDetails@0: \

RemoteIpAddress: 127.0.0.1; SessionId: 8fkp8t83ohar; \

Granted Authorities: ROLE_SUPERVISOR, ROLE_USER

Authentication object holds the following granted authorities:

ROLE_SUPERVISOR (getAuthority(): ROLE_SUPERVISOR)

ROLE_USER (getAuthority(): ROLE_USER)

Success! Your web filters appear to be properly configured!

Once you successfully receive the above message, return to the sample application’s home page and
click "Manage". You can then try out the application. Notice that only the contacts available to the
currently logged on user are displayed, and only users with ROLE_SUPERVISOR are granted access to
delete their contacts. Behind the scenes, the MethodSecurityInterceptor is securing the business
objects.

The application allows you to modify the access control lists associated with different contacts. Be sure
to give this a try and understand how it works by reviewing the application context XML files.

5.3 LDAP Sample

The LDAP sample application provides a basic configuration and sets up both a namespace
configuration and an equivalent configuration using traditional beans, both in the same application
context file. This means there are actually two identical authentication providers configured in this
application.

5.4 OpenID Sample

The OpenID sample demonstrates how to use the namespace to configure OpenID and how to set
up attribute exchange configurations for Google, Yahoo and MyOpenID identity providers (you can
experiment with adding others if you wish). It uses the JQuery-based openid-selector project to provide
a user-friendly login page which allows the user to easily select a provider, rather than typing in the
full OpenID identifier.

The application differs from normal authentication scenarios in that it allows any user to access the site
(provided their OpenID authentication is successful). The first time you login, you will get a "Welcome
[your name]"" message. If you logout and log back in (with the same OpenID identity) then this should
change to "Welcome Back". This is achieved by using a custom UserDetailsService which assigns
a standard role to any user and stores the identities internally in a map. Obviously a real application
would use a database instead. Have a look at the source form more information. This class also takes
into account the fact that different attributes may be returned from different providers and builds the
name with which it addresses the user accordingly.

http://openid.net/specs/openid-attribute-exchange-1_0.html
http://code.google.com/p/openid-selector/

Spring Security Reference

please define title in your docbook file! 41

5.5 CAS Sample

The CAS sample requires that you run both a CAS server and CAS client. It isn’t included in the
distribution so you should check out the project code as described in the introduction. You’ll find the
relevant files under the sample/cas directory. There’s also a Readme.txt file in there which explains
how to run both the server and the client directly from the source tree, complete with SSL support.

5.6 JAAS Sample

The JAAS sample is very simple example of how to use a JAAS LoginModule with Spring Security.
The provided LoginModule will successfully authenticate a user if the username equals the password
otherwise a LoginException is thrown. The AuthorityGranter used in this example always grants the role
ROLE_USER. The sample application also demonstrates how to run as the JAAS Subject returned by
the LoginModule by setting jaas-api-provision equal to "true".

5.7 Pre-Authentication Sample

This sample application demonstrates how to wire up beans from the pre-authentication framework to
make use of login information from a Java EE container. The user name and roles are those setup by
the container.

The code is in samples/preauth.

Spring Security Reference

please define title in your docbook file! 42

6. Spring Security Community

6.1 Issue Tracking

Spring Security uses JIRA to manage bug reports and enhancement requests. If you find a bug, please
log a report using JIRA. Do not log it on the support forum, mailing list or by emailing the project’s
developers. Such approaches are ad-hoc and we prefer to manage bugs using a more formal process.

If possible, in your issue report please provide a JUnit test that demonstrates any incorrect behaviour.
Or, better yet, provide a patch that corrects the issue. Similarly, enhancements are welcome to be logged
in the issue tracker, although we only accept enhancement requests if you include corresponding unit
tests. This is necessary to ensure project test coverage is adequately maintained.

You can access the issue tracker at http://jira.springsource.org/browse/SEC.

6.2 Becoming Involved

We welcome your involvement in the Spring Security project. There are many ways of contributing,
including reading the forum and responding to questions from other people, writing new code,
improving existing code, assisting with documentation, developing samples or tutorials, or simply making
suggestions.

6.3 Further Information

Questions and comments on Spring Security are welcome. You can use the Spring Community Forum
web site at http://forum.springsource.org to discuss Spring Security with other users of the framework.
Remember to use JIRA for bug reports, as explained above.

http://jira.springsource.org/browse/SEC
http://forum.springsource.org

Part III. Architecture
and Implementation

Once you are familiar with setting up and running some namespace-configuration based applications,
you may wish to develop more of an understanding of how the framework actually works behind the
namespace facade. Like most software, Spring Security has certain central interfaces, classes and
conceptual abstractions that are commonly used throughout the framework. In this part of the reference
guide we will look at some of these and see how they work together to support authentication and
access-control within Spring Security.

Spring Security Reference

please define title in your docbook file! 44

7. Technical Overview

7.1 Runtime Environment

Spring Security 3.0 requires a Java 5.0 Runtime Environment or higher. As Spring Security aims to
operate in a self-contained manner, there is no need to place any special configuration files into your
Java Runtime Environment. In particular, there is no need to configure a special Java Authentication
and Authorization Service (JAAS) policy file or place Spring Security into common classpath locations.

Similarly, if you are using an EJB Container or Servlet Container there is no need to put any special
configuration files anywhere, nor include Spring Security in a server classloader. All the required files
will be contained within your application.

This design offers maximum deployment time flexibility, as you can simply copy your target artifact (be
it a JAR, WAR or EAR) from one system to another and it will immediately work.

7.2 Core Components

In Spring Security 3.0, the contents of the spring-security-core jar were stripped down to the
bare minimum. It no longer contains any code related to web-application security, LDAP or namespace
configuration. We’ll take a look here at some of the Java types that you’ll find in the core module. They
represent the building blocks of the the framework, so if you ever need to go beyond a simple namespace
configuration then it’s important that you understand what they are, even if you don’t actually need to
interact with them directly.

SecurityContextHolder, SecurityContext and Authentication Objects

The most fundamental object is SecurityContextHolder. This is where we store details of the
present security context of the application, which includes details of the principal currently using the
application. By default the SecurityContextHolder uses a ThreadLocal to store these details,
which means that the security context is always available to methods in the same thread of execution,
even if the security context is not explicitly passed around as an argument to those methods. Using a
ThreadLocal in this way is quite safe if care is taken to clear the thread after the present principal’s
request is processed. Of course, Spring Security takes care of this for you automatically so there is no
need to worry about it.

Some applications aren’t entirely suitable for using a ThreadLocal, because of the specific way
they work with threads. For example, a Swing client might want all threads in a Java Virtual Machine
to use the same security context. SecurityContextHolder can be configured with a strategy on
startup to specify how you would like the context to be stored. For a standalone application you
would use the SecurityContextHolder.MODE_GLOBAL strategy. Other applications might want
to have threads spawned by the secure thread also assume the same security identity. This is
achieved by using SecurityContextHolder.MODE_INHERITABLETHREADLOCAL. You can change
the mode from the default SecurityContextHolder.MODE_THREADLOCAL in two ways. The first is
to set a system property, the second is to call a static method on SecurityContextHolder. Most
applications won’t need to change from the default, but if you do, take a look at the JavaDocs for
SecurityContextHolder to learn more.

Obtaining information about the current user

Inside the SecurityContextHolder we store details of the principal currently interacting with the
application. Spring Security uses an Authentication object to represent this information. You won’t

Spring Security Reference

please define title in your docbook file! 45

normally need to create an Authentication object yourself, but it is fairly common for users to query
the Authentication object. You can use the following code block - from anywhere in your application
- to obtain the name of the currently authenticated user, for example:

Object principal = SecurityContextHolder.getContext().getAuthentication().getPrincipal();

if (principal instanceof UserDetails) {

String username = ((UserDetails)principal).getUsername();

} else {

String username = principal.toString();

}

The object returned by the call to getContext() is an instance of the SecurityContext interface.
This is the object that is kept in thread-local storage. As we’ll see below, most authentication
mechanisms withing Spring Security return an instance of UserDetails as the principal.

The UserDetailsService

Another item to note from the above code fragment is that you can obtain a principal from the
Authentication object. The principal is just an Object. Most of the time this can be cast into a
UserDetails object. UserDetails is a core interface in Spring Security. It represents a principal,
but in an extensible and application-specific way. Think of UserDetails as the adapter between
your own user database and what Spring Security needs inside the SecurityContextHolder.
Being a representation of something from your own user database, quite often you will cast the
UserDetails to the original object that your application provided, so you can call business-specific
methods (like`getEmail(), `getEmployeeNumber() and so on).

By now you’re probably wondering, so when do I provide a UserDetails object? How do I do that? I
thought you said this thing was declarative and I didn’t need to write any Java code - what gives? The
short answer is that there is a special interface called UserDetailsService. The only method on this
interface accepts a String-based username argument and returns a UserDetails:

UserDetails loadUserByUsername(String username) throws UsernameNotFoundException;

This is the most common approach to loading information for a user within Spring Security and you will
see it used throughout the framework whenever information on a user is required.

On successful authentication, UserDetails is used to build the Authentication object that is
stored in the SecurityContextHolder (more on this below). The good news is that we provide
a number of UserDetailsService implementations, including one that uses an in-memory map
(InMemoryDaoImpl) and another that uses JDBC (JdbcDaoImpl). Most users tend to write their
own, though, with their implementations often simply sitting on top of an existing Data Access Object
(DAO) that represents their employees, customers, or other users of the application. Remember
the advantage that whatever your UserDetailsService returns can always be obtained from the
SecurityContextHolder using the above code fragment.

Note

There is often some confusion about UserDetailsService. It is purely a DAO for user
data and performs no other function other than to supply that data to other components
within the framework. In particular, it does not authenticate the user, which is done
by the AuthenticationManager. In many cases it makes more sense to implement
AuthenticationProvider directly if you require a custom authentication process.

Spring Security Reference

please define title in your docbook file! 46

GrantedAuthority

Besides the principal, another important method provided by Authentication is
getAuthorities(). This method provides an array of GrantedAuthority objects. A
GrantedAuthority is, not surprisingly, an authority that is granted to the principal. Such authorities
are usually "roles", such as ROLE_ADMINISTRATOR or ROLE_HR_SUPERVISOR. These roles are later
on configured for web authorization, method authorization and domain object authorization. Other
parts of Spring Security are capable of interpreting these authorities, and expect them to be present.
GrantedAuthority objects are usually loaded by the UserDetailsService.

Usually the GrantedAuthority objects are application-wide permissions. They are not specific to a
given domain object. Thus, you wouldn’t likely have a GrantedAuthority to represent a permission
to Employee object number 54, because if there are thousands of such authorities you would quickly
run out of memory (or, at the very least, cause the application to take a long time to authenticate a user).
Of course, Spring Security is expressly designed to handle this common requirement, but you’d instead
use the project’s domain object security capabilities for this purpose.

Summary

Just to recap, the major building blocks of Spring Security that we’ve seen so far are:

• SecurityContextHolder, to provide access to the SecurityContext.

• SecurityContext, to hold the Authentication and possibly request-specific security
information.

• Authentication, to represent the principal in a Spring Security-specific manner.

• GrantedAuthority, to reflect the application-wide permissions granted to a principal.

• UserDetails, to provide the necessary information to build an Authentication object from your
application’s DAOs or other source of security data.

• UserDetailsService, to create a UserDetails when passed in a String-based username (or
certificate ID or the like).

Now that you’ve gained an understanding of these repeatedly-used components, let’s take a closer look
at the process of authentication.

7.3 Authentication

Spring Security can participate in many different authentication environments. While we recommend
people use Spring Security for authentication and not integrate with existing Container Managed
Authentication, it is nevertheless supported - as is integrating with your own proprietary authentication
system.

What is authentication in Spring Security?

Let’s consider a standard authentication scenario that everyone is familiar with.

1. A user is prompted to log in with a username and password.

2. The system (successfully) verifies that the password is correct for the username.

Spring Security Reference

please define title in your docbook file! 47

3. The context information for that user is obtained (their list of roles and so on).

4. A security context is established for the user

5. The user proceeds, potentially to perform some operation which is potentially protected by an access
control mechanism which checks the required permissions for the operation against the current
security context information.

The first three items constitute the authentication process so we’ll take a look at how these take place
within Spring Security.

1. The username and password are obtained and combined into an instance of
UsernamePasswordAuthenticationToken (an instance of the Authentication interface,
which we saw earlier).

2. The token is passed to an instance of AuthenticationManager for validation.

3. The AuthenticationManager returns a fully populated Authentication instance on successful
authentication.

4. The security context is established by calling
SecurityContextHolder.getContext().setAuthentication(…), passing in the returned
authentication object.

From that point on, the user is considered to be authenticated. Let’s look at some code as an example.

Spring Security Reference

please define title in your docbook file! 48

import org.springframework.security.authentication.*;

import org.springframework.security.core.*;

import org.springframework.security.core.authority.SimpleGrantedAuthority;

import org.springframework.security.core.context.SecurityContextHolder;

public class AuthenticationExample {

private static AuthenticationManager am = new SampleAuthenticationManager();

public static void main(String[] args) throws Exception {

 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

 while(true) {

 System.out.println("Please enter your username:");

 String name = in.readLine();

 System.out.println("Please enter your password:");

 String password = in.readLine();

 try {

 Authentication request = new UsernamePasswordAuthenticationToken(name, password);

 Authentication result = am.authenticate(request);

 SecurityContextHolder.getContext().setAuthentication(result);

 break;

 } catch(AuthenticationException e) {

 System.out.println("Authentication failed: " + e.getMessage());

 }

 }

 System.out.println("Successfully authenticated. Security context contains: " +

 SecurityContextHolder.getContext().getAuthentication());

}

}

class SampleAuthenticationManager implements AuthenticationManager {

static final List<GrantedAuthority> AUTHORITIES = new ArrayList<GrantedAuthority>();

static {

 AUTHORITIES.add(new SimpleGrantedAuthority("ROLE_USER"));

}

public Authentication authenticate(Authentication auth) throws AuthenticationException {

 if (auth.getName().equals(auth.getCredentials())) {

 return new UsernamePasswordAuthenticationToken(auth.getName(),

 auth.getCredentials(), AUTHORITIES);

 }

 throw new BadCredentialsException("Bad Credentials");

}

}

Here we have written a little program that asks the user to enter a username and password and performs
the above sequence. The AuthenticationManager which we’ve implemented here will authenticate
any user whose username and password are the same. It assigns a single role to every user. The output
from the above will be something like:

Please enter your username:

bob

Please enter your password:

password

Authentication failed: Bad Credentials

Please enter your username:

bob

Please enter your password:

bob

Successfully authenticated. Security context contains: \

org.springframework.security.authentication.UsernamePasswordAuthenticationToken@441d0230: \

Principal: bob; Password: [PROTECTED]; \

Authenticated: true; Details: null; \

Granted Authorities: ROLE_USER

Note that you don’t normally need to write any code like this. The process will normally occur internally,
in a web authentication filter for example. We’ve just included the code here to show that the question

Spring Security Reference

please define title in your docbook file! 49

of what actually constitutes authentication in Spring Security has quite a simple answer. A user is
authenticated when the SecurityContextHolder contains a fully populated Authentication
object.

Setting the SecurityContextHolder Contents Directly

In fact, Spring Security doesn’t mind how you put the Authentication object
inside the SecurityContextHolder. The only critical requirement is that the
SecurityContextHolder contains an Authentication which represents a principal before the
AbstractSecurityInterceptor (which we’ll see more about later) needs to authorize a user
operation.

You can (and many users do) write their own filters or MVC controllers to provide interoperability
with authentication systems that are not based on Spring Security. For example, you might be using
Container-Managed Authentication which makes the current user available from a ThreadLocal or JNDI
location. Or you might work for a company that has a legacy proprietary authentication system, which
is a corporate "standard" over which you have little control. In situations like this it’s quite easy to
get Spring Security to work, and still provide authorization capabilities. All you need to do is write a
filter (or equivalent) that reads the third-party user information from a location, build a Spring Security-
specific Authentication object, and put it into the SecurityContextHolder. In this case you also
need to think about things which are normally taken care of automatically by the built-in authentication
infrastructure. For example, you might need to pre-emptively create an HTTP session to cache the
context between requests, before you write the response to the client footnote:[It isn’t possible to create
a session once the response has been committed.

If you’re wondering how the AuthenticationManager is implemented in a real world example, we’ll
look at that in the core services chapter.

7.4 Authentication in a Web Application

Now let’s explore the situation where you are using Spring Security in a web application (without
web.xml security enabled). How is a user authenticated and the security context established?

Consider a typical web application’s authentication process:

1. You visit the home page, and click on a link.

2. A request goes to the server, and the server decides that you’ve asked for a protected resource.

3. As you’re not presently authenticated, the server sends back a response indicating that you must
authenticate. The response will either be an HTTP response code, or a redirect to a particular web
page.

4. Depending on the authentication mechanism, your browser will either redirect to the specific web
page so that you can fill out the form, or the browser will somehow retrieve your identity (via a BASIC
authentication dialogue box, a cookie, a X.509 certificate etc.).

5. The browser will send back a response to the server. This will either be an HTTP POST containing
the contents of the form that you filled out, or an HTTP header containing your authentication details.

6. Next the server will decide whether or not the presented credentials are valid. If they’re valid, the
next step will happen. If they’re invalid, usually your browser will be asked to try again (so you return
to step two above).

Spring Security Reference

please define title in your docbook file! 50

7. The original request that you made to cause the authentication process will be retried. Hopefully
you’ve authenticated with sufficient granted authorities to access the protected resource. If you have
sufficient access, the request will be successful. Otherwise, you’ll receive back an HTTP error code
403, which means "forbidden".

Spring Security has distinct classes responsible for most of the steps described above. The
main participants (in the order that they are used) are the ExceptionTranslationFilter, an
AuthenticationEntryPoint and an "authentication mechanism", which is responsible for calling
the AuthenticationManager which we saw in the previous section.

ExceptionTranslationFilter

ExceptionTranslationFilter is a Spring Security filter that has responsibility for detecting
any Spring Security exceptions that are thrown. Such exceptions will generally be thrown by an
AbstractSecurityInterceptor, which is the main provider of authorization services. We will
discuss AbstractSecurityInterceptor in the next section, but for now we just need to know that it
produces Java exceptions and knows nothing about HTTP or how to go about authenticating a principal.
Instead the ExceptionTranslationFilter offers this service, with specific responsibility for either
returning error code 403 (if the principal has been authenticated and therefore simply lacks sufficient
access - as per step seven above), or launching an AuthenticationEntryPoint (if the principal
has not been authenticated and therefore we need to go commence step three).

AuthenticationEntryPoint

The AuthenticationEntryPoint is responsible for step three in the above list. As you can imagine,
each web application will have a default authentication strategy (well, this can be configured like nearly
everything else in Spring Security, but let’s keep it simple for now). Each major authentication system
will have its own AuthenticationEntryPoint implementation, which typically performs one of the
actions described in step 3.

Authentication Mechanism

Once your browser submits your authentication credentials (either as an HTTP form post or HTTP
header) there needs to be something on the server that"collects" these authentication details. By now
we’re at step six in the above list. In Spring Security we have a special name for the function of collecting
authentication details from a user agent (usually a web browser), referring to it as the "authentication
mechanism". Examples are form-base login and Basic authentication. Once the authentication details
have been collected from the user agent, an Authentication`"request" object is built
and then presented to the `AuthenticationManager.

After the authentication mechanism receives back the fully-populated Authentication object, it will
deem the request valid, put the Authentication into the SecurityContextHolder, and cause the
original request to be retried (step seven above). If, on the other hand, the AuthenticationManager
rejected the request, the authentication mechanism will ask the user agent to retry (step two above).

Storing the SecurityContext between requests

Depending on the type of application, there may need to be a strategy in place to store the security
context between user operations. In a typical web application, a user logs in once and is subsequently
identified by their session Id. The server caches the principal information for the duration session. In
Spring Security, the responsibility for storing the SecurityContext between requests falls to the
SecurityContextPersistenceFilter, which by default stores the context as an HttpSession
attribute between HTTP requests. It restores the context to the SecurityContextHolder for each

Spring Security Reference

please define title in your docbook file! 51

request and, crucially, clears the SecurityContextHolder when the request completes. You
shouldn’t interact directly with the HttpSession for security purposes. There is simply no justification
for doing so - always use the SecurityContextHolder instead.

Many other types of application (for example, a stateless RESTful web service) do not use
HTTP sessions and will re-authenticate on every request. However, it is still important that
the SecurityContextPersistenceFilter is included in the chain to make sure that the
SecurityContextHolder is cleared after each request.

Note

In an application which receives concurrent requests in a single session, the same
SecurityContext instance will be shared between threads. Even though a ThreadLocal
is being used, it is the same instance that is retrieved from the HttpSession for
each thread. This has implications if you wish to temporarily change the context under
which a thread is running. If you just use SecurityContextHolder.getContext(),
and call setAuthentication(anAuthentication) on the returned context object,
then the Authentication object will change in all concurrent threads which
share the same SecurityContext instance. You can customize the behaviour of
SecurityContextPersistenceFilter to create a completely new SecurityContext for
each request, preventing changes in one thread from affecting another. Alternatively you can
create a new instance just at the point where you temporarily change the context. The method
SecurityContextHolder.createEmptyContext() always returns a new context instance.

7.5 Access-Control (Authorization) in Spring Security

The main interface responsible for making access-control decisions in Spring Security is the
AccessDecisionManager. It has a decide method which takes an Authentication object
representing the principal requesting access, a "secure object" (see below) and a list of security
metadata attributes which apply for the object (such as a list of roles which are required for access to
be granted).

Security and AOP Advice

If you’re familiar with AOP, you’d be aware there are different types of advice available: before, after,
throws and around. An around advice is very useful, because an advisor can elect whether or not to
proceed with a method invocation, whether or not to modify the response, and whether or not to throw an
exception. Spring Security provides an around advice for method invocations as well as web requests.
We achieve an around advice for method invocations using Spring’s standard AOP support and we
achieve an around advice for web requests using a standard Filter.

For those not familiar with AOP, the key point to understand is that Spring Security can help you protect
method invocations as well as web requests. Most people are interested in securing method invocations
on their services layer. This is because the services layer is where most business logic resides in current-
generation Java EE applications. If you just need to secure method invocations in the services layer,
Spring’s standard AOP will be adequate. If you need to secure domain objects directly, you will likely
find that AspectJ is worth considering.

You can elect to perform method authorization using AspectJ or Spring AOP, or you can elect to
perform web request authorization using filters. You can use zero, one, two or three of these approaches
together. The mainstream usage pattern is to perform some web request authorization, coupled with
some Spring AOP method invocation authorization on the services layer.

Spring Security Reference

please define title in your docbook file! 52

Secure Objects and the AbstractSecurityInterceptor

So what is a "secure object" anyway? Spring Security uses the term to refer to any object that can
have security (such as an authorization decision) applied to it. The most common examples are method
invocations and web requests.

Each supported secure object type has its own interceptor class, which is a subclass of
AbstractSecurityInterceptor. Importantly, by the time the AbstractSecurityInterceptor
is called, the SecurityContextHolder will contain a valid Authentication if the principal has
been authenticated.

AbstractSecurityInterceptor provides a consistent workflow for handling secure object
requests, typically:

1. Look up the "configuration attributes" associated with the present request

2. Submitting the secure object, current Authentication and configuration attributes to the
AccessDecisionManager for an authorization decision

3. Optionally change the Authentication under which the invocation takes place

4. Allow the secure object invocation to proceed (assuming access was granted)

5. Call the AfterInvocationManager if configured, once the invocation has returned. If the
invocation raised an exception, the AfterInvocationManager will not be invoked.

What are Configuration Attributes?

A "configuration attribute" can be thought of as a String that has special meaning to the
classes used by AbstractSecurityInterceptor. They are represented by the interface
ConfigAttribute within the framework. They may be simple role names or have more complex
meaning, depending on the how sophisticated the AccessDecisionManager implementation is. The
AbstractSecurityInterceptor is configured with a SecurityMetadataSource which it uses
to look up the attributes for a secure object. Usually this configuration will be hidden from the user.
Configuration attributes will be entered as annotations on secured methods or as access attributes
on secured URLs. For example, when we saw something like <intercept-url pattern='/

secure/**' access='ROLE_A,ROLE_B'/> in the namespace introduction, this is saying that the
configuration attributes ROLE_A and ROLE_B apply to web requests matching the given pattern. In
practice, with the default AccessDecisionManager configuration, this means that anyone who has a
GrantedAuthority matching either of these two attributes will be allowed access. Strictly speaking
though, they are just attributes and the interpretation is dependent on the AccessDecisionManager
implementation. The use of the prefix ROLE_ is a marker to indicate that these attributes are roles
and should be consumed by Spring Security’s`RoleVoter`. This is only relevant when a voter-based
AccessDecisionManager is in use. We’ll see how the AccessDecisionManager is implemented
in the authorization chapter.

RunAsManager

Assuming AccessDecisionManager decides to allow the request, the
AbstractSecurityInterceptor will normally just proceed with the request. Having said that,
on rare occasions users may want to replace the Authentication inside the SecurityContext
with a different Authentication, which is handled by the AccessDecisionManager calling a
RunAsManager. This might be useful in reasonably unusual situations, such as if a services layer

Spring Security Reference

please define title in your docbook file! 53

method needs to call a remote system and present a different identity. Because Spring Security
automatically propagates security identity from one server to another (assuming you’re using a properly-
configured RMI or HttpInvoker remoting protocol client), this may be useful.

AfterInvocationManager

Following the secure object invocation proceeding and then returning - which may mean a method
invocation completing or a filter chain proceeding - the AbstractSecurityInterceptor gets one
final chance to handle the invocation. At this stage the AbstractSecurityInterceptor is interested
in possibly modifying the return object. We might want this to happen because an authorization
decision couldn’t be made "on the way in" to a secure object invocation. Being highly pluggable,
AbstractSecurityInterceptor will pass control to an AfterInvocationManager to actually
modify the object if needed. This class can even entirely replace the object, or throw an exception, or not
change it in any way as it chooses. The after-invocation checks will only be executed if the invocation
is successful. If an exception occurs, the additional checks will be skipped.

AbstractSecurityInterceptor and its related objects are shown in Figure 7.1, “Security
interceptors and the "secure object" model”

Figure 7.1. Security interceptors and the "secure object" model

Spring Security Reference

please define title in your docbook file! 54

Extending the Secure Object Model

Only developers contemplating an entirely new way of intercepting and authorizing requests would need
to use secure objects directly. For example, it would be possible to build a new secure object to secure
calls to a messaging system. Anything that requires security and also provides a way of intercepting
a call (like the AOP around advice semantics) is capable of being made into a secure object. Having
said that, most Spring applications will simply use the three currently supported secure object types
(AOP Alliance MethodInvocation, AspectJ JoinPoint and web request FilterInvocation) with
complete transparency.

7.6 Localization

Spring Security supports localization of exception messages that end users are likely to see. If your
application is designed for English-speaking users, you don’t need to do anything as by default all
Security Security messages are in English. If you need to support other locales, everything you need
to know is contained in this section.

All exception messages can be localized, including messages related to authentication failures and
access being denied (authorization failures). Exceptions and logging messages that are focused on
developers or system deployers (including incorrect attributes, interface contract violations, using
incorrect constructors, startup time validation, debug-level logging) are not localized and instead are
hard-coded in English within Spring Security’s code.

Shipping in the spring-security-core-xx.jar you will find an
org.springframework.security package that in turn contains a messages.properties
file, as well as localized versions for some common languages. This should be referred to by
your`ApplicationContext`, as Spring Security classes implement Spring’s MessageSourceAware
interface and expect the message resolver to be dependency injected at application context startup time.
Usually all you need to do is register a bean inside your application context to refer to the messages.
An example is shown below:

<bean id="messageSource"

 class="org.springframework.context.support.ReloadableResourceBundleMessageSource">

<property name="basename" value="classpath:org/springframework/security/messages"/>

</bean>

The messages.properties is named in accordance with standard resource bundles and represents
the default language supported by Spring Security messages. This default file is in English.

If you wish to customize the messages.properties file, or support other languages, you should copy
the file, rename it accordingly, and register it inside the above bean definition. There are not a large
number of message keys inside this file, so localization should not be considered a major initiative. If
you do perform localization of this file, please consider sharing your work with the community by logging
a JIRA task and attaching your appropriately-named localized version of messages.properties.

Spring Security relies on Spring’s localization support in order to actually lookup the appropriate
message. In order for this to work, you have to make sure that the locale from the incoming
request is stored in Spring’s org.springframework.context.i18n.LocaleContextHolder.
Spring MVC’s DispatcherServlet does this for your application automatically, but since Spring
Security’s filters are invoked before this, the LocaleContextHolder needs to be set up to contain
the correct Locale before the filters are called. You can either do this in a filter yourself (which must
come before the Spring Security filters in`web.xml`) or you can use Spring’s RequestContextFilter.
Please refer to the Spring Framework documentation for further details on using localization with Spring.

Spring Security Reference

please define title in your docbook file! 55

The "contacts" sample application is set up to use localized messages.

Spring Security Reference

please define title in your docbook file! 56

8. Core Services
Now that we have a high-level overview of the Spring Security architecture and its core classes,
let’s take a closer look at one or two of the core interfaces and their implementations, in particular
the AuthenticationManager, UserDetailsService and the AccessDecisionManager. These
crop up regularly throughout the remainder of this document so it’s important you know how they are
configured and how they operate.

8.1 The AuthenticationManager, ProviderManager and
AuthenticationProvider

The AuthenticationManager is just an interface, so the implementation can be anything we choose,
but how does it work in practice? What if we need to check multiple authentication databases or a
combination of different authentication services such as a database and an LDAP server?

The default implementation in Spring Security is called ProviderManager and rather than handling
the authentication request itself, it delegates to a list of configured AuthenticationProvider s,
each of which is queried in turn to see if it can perform the authentication. Each provider will either
throw an exception or return a fully populated Authentication object. Remember our good friends,
UserDetails and UserDetailsService? If not, head back to the previous chapter and refresh your
memory. The most common approach to verifying an authentication request is to load the corresponding
UserDetails and check the loaded password against the one that has been entered by the user. This
is the approach used by the DaoAuthenticationProvider (see below). The loaded UserDetails
object - and particularly the GrantedAuthority s it contains - will be used when building the fully
populated Authentication object which is returned from a successful authentication and stored in
the SecurityContext.

If you are using the namespace, an instance of ProviderManager is created and maintained internally,
and you add providers to it by using the namespace authentication provider elements (see the
namespace chapter). In this case, you should not declare a ProviderManager bean in your application
context. However, if you are not using the namespace then you would declare it like so:

<bean id="authenticationManager"

 class="org.springframework.security.authentication.ProviderManager">

 <constructor-arg>

 <list>

 <ref local="daoAuthenticationProvider"/>

 <ref local="anonymousAuthenticationProvider"/>

 <ref local="ldapAuthenticationProvider"/>

 </list>

 </constructor-arg>

</bean>

In the above example we have three providers. They are tried in the order shown (which is implied
by the use of a List), with each provider able to attempt authentication, or skip authentication
by simply returning null. If all implementations return null, the ProviderManager will throw a
ProviderNotFoundException. If you’re interested in learning more about chaining providers, please
refer to the ProviderManager JavaDocs.

Authentication mechanisms such as a web form-login processing filter are injected with a reference
to the ProviderManager and will call it to handle their authentication requests. The providers you
require will sometimes be interchangeable with the authentication mechanisms, while at other times they
will depend on a specific authentication mechanism. For example, DaoAuthenticationProvider
and LdapAuthenticationProvider are compatible with any mechanism which submits a simple

Spring Security Reference

please define title in your docbook file! 57

username/password authentication request and so will work with form-based logins or HTTP Basic
authentication. On the other hand, some authentication mechanisms create an authentication
request object which can only be interpreted by a single type of AuthenticationProvider.
An example of this would be JA-SIG CAS, which uses the notion of a service ticket and so
can therefore only be authenticated by a CasAuthenticationProvider. You needn’t be too
concerned about this, because if you forget to register a suitable provider, you’ll simply receive a
ProviderNotFoundException when an attempt to authenticate is made.

Erasing Credentials on Successful Authentication

By default (from Spring Security 3.1 onwards) the ProviderManager will attempt to clear any
sensitive credentials information from the Authentication object which is returned by a successful
authentication request. This prevents information like passwords being retained longer than necessary.

This may cause issues when you are using a cache of user objects, for example, to improve performance
in a stateless application. If the Authentication contains a reference to an object in the cache (such
as a UserDetails instance) and this has its credentials removed, then it will no longer be possible
to authenticate against the cached value. You need to take this into account if you are using a cache.
An obvious solution is to make a copy of the object first, either in the cache implementation or in the
AuthenticationProvider which creates the returned Authentication object. Alternatively, you
can disable the eraseCredentialsAfterAuthentication property on ProviderManager. See
the Javadoc for more information.

DaoAuthenticationProvider

The simplest AuthenticationProvider implemented by Spring Security is
DaoAuthenticationProvider, which is also one of the earliest supported by the framework. It
leverages a UserDetailsService (as a DAO) in order to lookup the username, password and
GrantedAuthority s. It authenticates the user simply by comparing the password submitted in a
UsernamePasswordAuthenticationToken against the one loaded by the UserDetailsService.
Configuring the provider is quite simple:

<bean id="daoAuthenticationProvider"

 class="org.springframework.security.authentication.dao.DaoAuthenticationProvider">

<property name="userDetailsService" ref="inMemoryDaoImpl"/>

<property name="passwordEncoder" ref="passwordEncoder"/>

</bean>

The PasswordEncoder is optional. A PasswordEncoder provides encoding and decoding
of passwords presented in the UserDetails object that is returned from the configured
UserDetailsService. This will be discussed in more detail below.

8.2 UserDetailsService Implementations

As mentioned in the earlier in this reference guide, most authentication providers take advantage
of the UserDetails and UserDetailsService interfaces. Recall that the contract for
UserDetailsService is a single method:

UserDetails loadUserByUsername(String username) throws UsernameNotFoundException;

The returned UserDetails is an interface that provides getters that guarantee non-null provision of
authentication information such as the username, password, granted authorities and whether the user
account is enabled or disabled. Most authentication providers will use a`UserDetailsService`, even if
the username and password are not actually used as part of the authentication decision. They may use

Spring Security Reference

please define title in your docbook file! 58

the returned UserDetails object just for its GrantedAuthority information, because some other
system (like LDAP or X.509 or CAS etc) has undertaken the responsibility of actually validating the
credentials.

Given UserDetailsService is so simple to implement, it should be easy for users to retrieve
authentication information using a persistence strategy of their choice. Having said that, Spring Security
does include a couple of useful base implementations, which we’ll look at below.

In-Memory Authentication

Is easy to use create a custom UserDetailsService implementation that extracts information from a
persistence engine of choice, but many applications do not require such complexity. This is particularly
true if you’re building a prototype application or just starting integrating Spring Security, when you don’t
really want to spend time configuring databases or writing UserDetailsService implementations.
For this sort of situation, a simple option is to use the user-service element from the security
namespace:

<user-service id="userDetailsService">

<user name="jimi" password="jimispassword" authorities="ROLE_USER, ROLE_ADMIN" />

<user name="bob" password="bobspassword" authorities="ROLE_USER" />

</user-service>

This also supports the use of an external properties file:

<user-service id="userDetailsService" properties="users.properties"/>

The properties file should contain entries in the form

username=password,grantedAuthority[,grantedAuthority][,enabled|disabled]

For example

jimi=jimispassword,ROLE_USER,ROLE_ADMIN,enabled

bob=bobspassword,ROLE_USER,enabled

JdbcDaoImpl

Spring Security also includes a UserDetailsService that can obtain authentication information from
a JDBC data source. Internally Spring JDBC is used, so it avoids the complexity of a fully-featured object
relational mapper (ORM) just to store user details. If your application does use an ORM tool, you might
prefer to write a custom UserDetailsService to reuse the mapping files you’ve probably already
created. Returning to JdbcDaoImpl, an example configuration is shown below:

<bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource">

<property name="driverClassName" value="org.hsqldb.jdbcDriver"/>

<property name="url" value="jdbc:hsqldb:hsql://localhost:9001"/>

<property name="username" value="sa"/>

<property name="password" value=""/>

</bean>

<bean id="userDetailsService"

 class="org.springframework.security.core.userdetails.jdbc.JdbcDaoImpl">

<property name="dataSource" ref="dataSource"/>

</bean>

You can use different relational database management systems by modifying the
DriverManagerDataSource shown above. You can also use a global data source obtained from
JNDI, as with any other Spring configuration.

Spring Security Reference

please define title in your docbook file! 59

Authority Groups

By default, JdbcDaoImpl loads the authorities for a single user with the assumption that the authorities
are mapped directly to users (see the database schema appendix). An alternative approach is to partition
the authorities into groups and assign groups to the user. Some people prefer this approach as a means
of administering user rights. See the JdbcDaoImpl Javadoc for more information on how to enable the
use of group authorities. The group schema is also included in the appendix.

8.3 Password Encoding

Spring Security’s PasswordEncoder interface is used to support the use of passwords which
are encoded in some way in persistent storage. You should never store passwords in plain text.
Always use a one-way password hashing algorithm such as bcrypt which uses a built-in salt
value which is different for each stored password. Do not use a plain hash function such as
MD5 or SHA, or even a salted version. Bcrypt is deliberately designed to be slow and to hinder
offline password cracking, whereas standard hash algorithms are fast and can easily be used
to test thousands of passwords in parallel on custom hardware. You might think this doesn’t
apply to you since your password database is secure and offline attacks aren’t a risk. If so, do
some research and read up on all the high-profile sites which have been compromised in this
way and have been pilloried for storing their passwords insecurely. It’s best to be on the safe
side. Using org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder" is
a good choice for security. There are also compatible implementations in other common programming
languages so it a good choice for interoperability too.

If you are using a legacy system which already has hashed passwords, then you will need to
use an encoder which matches your current algorithm, at least until you can migrate your users
to a more secure scheme (usually this will involve asking the user to set a new password, since
hashes are irreversible). Spring Security has a package containing legacy password encoding
implementation, namely, org.springframework.security.authentication.encoding. The
DaoAuthenticationProvider can be injected with either the new or legacy PasswordEncoder
types.

What is a hash?

Password hashing is not unique to Spring Security but is a common source of confusion for users who
are not familiar with the concept. A hash (or digest) algorithm is a one-way function which produces a
piece of fixed-length output data (the hash) from some input data, such as a password. As an example,
the MD5 hash of the string "password" (in hexadecimal) is

5f4dcc3b5aa765d61d8327deb882cf99

A hash is "one-way" in the sense that it is very difficult (effectively impossible) to obtain the original
input given the hash value, or indeed any possible input which would produce that hash value. This
property makes hash values very useful for authentication purposes. They can be stored in your user
database as an alternative to plaintext passwords and even if the values are compromised they do not
immediately reveal a password which can be used to login. Note that this also means you have no way
of recovering the password once it is encoded.

Adding Salt to a Hash

One potential problem with the use of password hashes that it is relatively easy to get round the one-way
property of the hash if a common word is used for the input. People tend to choose similar passwords

Spring Security Reference

please define title in your docbook file! 60

and huge dictionaries of these from previously hacked sites are available online. For example, if you
search for the hash value 5f4dcc3b5aa765d61d8327deb882cf99 using google, you will quickly
find the original word "password". In a similar way, an attacker can build a dictionary of hashes from
a standard word list and use this to lookup the original password. One way to help prevent this is to
have a suitably strong password policy to try to prevent common words from being used. Another is to
use a"salt" when calculating the hashes. This is an additional string of known data for each user which
is combined with the password before calculating the hash. Ideally the data should be as random as
possible, but in practice any salt value is usually preferable to none. Using a salt means that an attacker
has to build a separate dictionary of hashes for each salt value, making the attack more complicated
(but not impossible).

Bcrypt automatically generates a random salt value for each password when it is encoded, and stores
it in the bcrypt string in a standard format.

Note

The legacy approach to handling salt was to inject a SaltSource into the
DaoAuthenticationProvider, which would obtain a salt value for a particular user and pass
it to the PasswordEncoder. Using bcrypt means you don’t have worry about the details of salt
handling (such as where the the value is stored), as it is all done internally. So we’d strongly
recommend you use bcrypt unless you already have a system in place which stores the salt
separately.

Hashing and Authentication

When an authentication provider (such as Spring Security’s DaoAuthenticationProvider) needs
to check the password in a submitted authentication request against the known value for a user, and
the stored password is encoded in some way, then the submitted value must be encoded using exactly
the same algorithm. It’s up to you to check that these are compatible as Spring Security has no control
over the persistent values. If you add password hashing to your authentication configuration in Spring
Security, and your database contains plaintext passwords, then there is no way authentication can
succeed. Even if you are aware that your database is using MD5 to encode the passwords, for example,
and your application is configured to use Spring Security’s Md5PasswordEncoder, there are still things
that can go wrong. The database may have the passwords encoded in Base 64, for example while the
encoder is using hexadecimal strings (the default). Alternatively your database may be using upper-case
while the output from the encoder is lower-case. Make sure you write a test to check the output from your
configured password encoder with a known password and salt combination and check that it matches
the database value before going further and attempting to authenticate through your application. Using
a standard like bcrypt will avoid these issues.

If you want to generate encoded passwords directly in Java for storage in your user database, then you
can use the encode method on the PasswordEncoder.

Part IV. Testing

Spring Security Reference

please define title in your docbook file! 62

9. Testing Method Security

This section demonstrates how to use Spring Security’s Test support to test method based security. We
first introduce a MessageService that requires the user to be authenticated in order to access it.

public class HelloMessageService implements MessageService {

 @PreAuthorize("authenticated")

 public String getMessage() {

 Authentication authentication = SecurityContextHolder.getContext()

 .getAuthentication();

 return "Hello " + authentication;

 }

}

The result of getMessage is a String saying "Hello" to the current Spring Security Authentication.
An example of the output is displayed below.

Hello org.springframework.security.authentication.UsernamePasswordAuthenticationToken@ca25360:

 Principal: org.springframework.security.core.userdetails.User@36ebcb: Username: user; Password:

 [PROTECTED]; Enabled: true; AccountNonExpired: true; credentialsNonExpired: true; AccountNonLocked:

 true; Granted Authorities: ROLE_USER; Credentials: [PROTECTED]; Authenticated: true; Details: null;

 Granted Authorities: ROLE_USER

9.1 Security Test Setup

Before we can use Spring Security Test support, we must perform some setup. An example can be
seen below:

@RunWith(SpringJUnit4ClassRunner.class) ❶

@ContextConfiguration ❷

public class WithMockUserTests {

This is a basic example of how to setup Spring Security Test. The highlights are:

❶ @RunWith instructs the spring-test module that it should create an ApplicationContext This is no
different than using the existing Spring Test support. For additional information, refer to the Spring
Reference

❷ @ContextConfiguration instructs the spring-test the configuration to use to create the
ApplicationContext. Since no configuration is specified, the default configuration locations will
be tried. This is no different than using the existing Spring Test support. For additional information,
refer to the Spring Reference

Note

Spring Security hooks into Spring Test support using the
WithSecurityContextTestExcecutionListener which will ensure our tests are ran with
the correct user. It does this by populating the SecurityContextHolder prior to running our
tests. After the test is done, it will clear out the SecurityContextHolder.

Remember we added the @PreAuthorize annotation to our HelloMessageService and so it
requires an authenticated user to invoke it. If we ran the following test, we would expect the following
test will pass:

http://docs.spring.io/spring-framework/docs/4.0.x/spring-framework-reference/htmlsingle/#integration-testing-annotations-standard
http://docs.spring.io/spring-framework/docs/4.0.x/spring-framework-reference/htmlsingle/#integration-testing-annotations-standard
http://docs.spring.io/spring-framework/docs/4.0.x/spring-framework-reference/htmlsingle/#testcontext-ctx-management

Spring Security Reference

please define title in your docbook file! 63

@Test(expected = AuthenticationCredentialsNotFoundException.class)

public void getMessageUnauthenticated() {

 messageService.getMessage();

}

9.2 @WithMockUser

The question is "How could we most easily run the test as a specific user?" The answer is to use
@WithMockUser. The following test will be ran as a user with the username "user", the password
"password", and the roles "ROLE_USER".

@Test

@WithMockUser

public void getMessageWithMockUser() {

 String message = messageService.getMessage();

 ...

}

Specifically the following is true:

• The user with the username "user" does not have to exist since we are mocking the user

• The Authentication that is populated in the SecurityContext is of type
UsernamePasswordAuthenticationToken

• The principal on the Authentication is Spring Security’s User object

• The User will have the username of "user", the password "password", and a single
GrantedAuthority named "ROLE_USER" is used.

Our example is nice because we are able to leverage a lot of defaults. What if we wanted to run the
test with a different username? The following test would run with the username "customUser". Again,
the user does not need to actually exist.

@Test

@WithMockUser("customUsername")

public void getMessageWithMockUserCustomUsername() {

 String message = messageService.getMessage();

 ...

}

We can also easily customize the roles. For example, this test will be invoked with the username "admin"
and the roles "ROLE_USER" and "ROLE_ADMIN".

@Test

@WithMockUser(username="admin",roles={"USER","ADMIN"})

public void getMessageWithMockUserCustomUser() {

 String message = messageService.getMessage();

 ...

}

Of course it can be a bit tedious placing the annotation on every test method. Instead, we can place
the annotation at the class level and every test will use the specified user. For example, the following
would run every test with a user with the username "admin", the password "password", and the roles
"ROLE_USER" and "ROLE_ADMIN".

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration

@WithMockUser(username="admin",roles={"USER","ADMIN"})

public class WithMockUserTests {

Spring Security Reference

please define title in your docbook file! 64

9.3 @WithUserDetails

While @WithMockUser is a very convenient way to get started, it may not work in all instances. For
example, it is common for applications to expect that the Authentication principal be of a specific
type. This is done so that the application can refer to the principal as the custom type and reduce
coupling on Spring Security.

The custom principal is often times returned by a custom UserDetailsService that returns an object
that implements both UserDetails and the custom type. For situations like this, it is useful to create the
test user using the custom UserDetailsService. That is exactly what @WithUserDetails does.

Assuming we have a UserDetailsService exposed as a bean, the following test will be invoked
with an Authentication of type UsernamePasswordAuthenticationToken and a principal that
is returned from the UserDetailsService with the username of "user".

@Test

@WithUserDetails

public void getMessageWithUserDetails() {

 String message = messageService.getMessage();

 ...

}

We can also customize the username used to lookup the user from our UserDetailsService. For
example, this test would be executed with a principal that is returned from the UserDetailsService
with the username of "customUsername".

@Test

@WithUserDetails("customUsername")

public void getMessageWithUserDetailsCustomUsername() {

 String message = messageService.getMessage();

 ...

}

Like @WithMockUser we can also place our annotation at the class level so that every test uses the
same user. However unlike @WithMockUser, @WithUserDetails requires the user to exist.

9.4 @WithSecurityContext

We have seen that @WithMockUser is an excellent choice if we are not using a custom
Authentication principal. Next we discovered that @WithUserDetails would allow us to use a
custom UserDetailsService to create our Authentication principal but required the user to exist.
We will now see an option that allows the most flexibility.

We can create our own annotation that uses the @WithSecurityContext to create
any SecurityContext we want. For example, we might create an annotation named
@WithMockCustomUser as shown below:

@WithSecurityContext(factory = WithMockCustomUserSecurityContextFactory.class)

public @interface WithMockCustomUser {

 String username() default "rob";

 String name() default "Rob Winch";

}

You can see that @WithMockCustomUser is annotated with the @WithSecurityContext
annotation. This is what signals to Spring Security Test support that we

Spring Security Reference

please define title in your docbook file! 65

intend to create a SecurityContext for the test. The @WithSecurityContext

annotation requires we specify a SecurityContextFactory that will create a new
SecurityContext given our @WithMockCustomUser annotation. You can find our
WithMockCustomUserSecurityContextFactory implementation below:

public class WithMockCustomUserSecurityContextFactory

 implements WithSecurityContextFactory<WithMockCustomUser> {

 @Override

 public SecurityContext createSecurityContext(WithMockCustomUser customUser) {

 SecurityContext context = SecurityContextHolder.createEmptyContext();

 CustomUserDetails principal =

 new CustomUserDetails(customUser.name(), customUser.username());

 Authentication auth =

 new UsernamePasswordAuthenticationToken(principal, "password", principal.getAuthorities());

 context.setAuthentication(auth);

 return context;

 }

}

We can now annotate a test class or a test method with our new annotation and Spring Security’s
WithSecurityContextTestExcecutionListener will ensure that our SecurityContext is
populated appropriately.

When creating your own WithSecurityContextFactory implementations, it is nice to
know that they can be annotated with standard Spring annotations. For example, the
WithUserDetailsSecurityContextFactory uses the @Autowired annotation to acquire the
UserDetailsService:

final class WithUserDetailsSecurityContextFactory

 implements WithSecurityContextFactory<WithUserDetails> {

 private UserDetailsService userDetailsService;

 @Autowired

 public WithUserDetailsSecurityContextFactory(UserDetailsService userDetailsService) {

 this.userDetailsService = userDetailsService;

 }

 public SecurityContext createSecurityContext(WithUserDetails withUser) {

 String username = withUser.value();

 Assert.hasLength(username, "value() must be non empty String");

 UserDetails principal = userDetailsService.loadUserByUsername(username);

 Authentication authentication = new UsernamePasswordAuthenticationToken(principal,

 principal.getPassword(), principal.getAuthorities());

 SecurityContext context = SecurityContextHolder.createEmptyContext();

 context.setAuthentication(authentication);

 return context;

 }

}

Spring Security Reference

please define title in your docbook file! 66

10. Spring MVC Test Integration

Spring Security provides comprehensive integration with Spring MVC Test

10.1 Setting Up MockMvc and Spring Security

In order to use Spring Security with Spring MVC Test it is necessary to add the
Spring Security FilterChainProxy as a Filter. It is also necessary to add Spring
Security’s TestSecurityContextHolderPostProcessor to support Running as a User
in Spring MVC Test with Annotations. This can be done using Spring Security’s
SecurityMockMvcConfigurers.springSecurity(). For example:

Note

Spring Security’s testing support requires spring-test-4.1.3.RELEASE or greater.

import static org.springframework.security.test.web.servlet.setup.SecurityMockMvcConfigurers.*;

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration

@WebAppConfiguration

public class CsrfShowcaseTests {

 @Autowired

 private WebApplicationContext context;

 private MockMvc mvc;

 @Before

 public void setup() {

 mvc = MockMvcBuilders

 .webAppContextSetup(context)

 .apply(springSecurity()) ❶

 .build();

 }

 ...

❶ SecurityMockMvcConfigurers.springSecurity() will perform all of the initial setup we
need to integrate Spring Security with Spring MVC Test

10.2 SecurityMockMvcRequestPostProcessors

Spring MVC Test provides a convenient interface called a RequestPostProcessor that can be used
to modify a request. Spring Security provides a number of RequestPostProcessor implementations
that make testing easier. In order to use Spring Security’s RequestPostProcessor implementations
ensure the following static import is used:

import static

 org.springframework.security.test.web.servlet.request.SecurityMockMvcRequestPostProcessors.*;

Testing with CSRF Protection

When testing any non safe HTTP methods and using Spring Security’s CSRF protection, you must
be sure to include a valid CSRF Token in the request. To specify a valid CSRF token as a request
parameter using the following:

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/testing.html#spring-mvc-test-framework

Spring Security Reference

please define title in your docbook file! 67

mvc

 .perform(post("/").with(csrf()))

If you like you can include CSRF token in the header instead:

mvc

 .perform(post("/").with(csrf().asHeader()))

You can also test providing an invalid CSRF token using the following:

mvc

 .perform(post("/").with(csrf().useInvalidToken()))

Running a Test as a User in Spring MVC Test

It is often desirable to run tests as a specific user. There are two simple ways of populating the user:

• Running as a User in Spring MVC Test with RequestPostProcessor

• Running as a User in Spring MVC Test with Annotations

Running as a User in Spring MVC Test with RequestPostProcessor

There are a number of options available to populate a test user. For example, the following will run as
a user (which does not need to exist) with the username "user", the password "password", and the role
"ROLE_USER":

mvc

 .perform(get("/").with(user("user")))

You can easily make customizations. For example, the following will run as a user (which does not
need to exist) with the username "admin", the password "pass", and the roles "ROLE_USER" and
"ROLE_ADMIN".

mvc

 .perform(get("/admin").with(user("admin").password("pass").roles("USER","ADMIN")))

If you have a custom UserDetails that you would like to use, you can easily specify that as well. For
example, the following will use the specified UserDetails (which does not need to exist) to run with
a UsernamePasswordAuthenticationToken that has a principal of the specified UserDetails:

mvc

 .perform(get("/").with(user(userDetails)))

If you want a custom Authentication (which does not need to exist) you can do so using the following:

mvc

 .perform(get("/").with(authentication(authentication)))

You can even customize the SecurityContext using the following:

mvc

 .perform(get("/").with(securityContext(securityContext)))

We can also ensure to run as a specific user for every request by using `MockMvcBuilders’s default
request. For example, the following will run as a user (which does not need to exist) with the username
"admin", the password "password", and the role "ROLE_ADMIN":

Spring Security Reference

please define title in your docbook file! 68

mvc = MockMvcBuilders

 .webAppContextSetup(context)

 .defaultRequest(get("/").with(user("user").roles("ADMIN")))

 .apply(springSecurity())

 .build();

If you find you are using the same user in many of your tests, it is recommended to move
the user to a method. For example, you can specify the following in your own class named
CustomSecurityMockMvcRequestPostProcessors:

public static RequestPostProcessor rob() {

 return user("rob").roles("ADMIN");

}

Now you can perform a static import on SecurityMockMvcRequestPostProcessors and use that
within your tests:

import static sample.CustomSecurityMockMvcRequestPostProcessors.*;

...

mvc

 .perform(get("/").with(rob()))

Running as a User in Spring MVC Test with Annotations

As an alternative to using a RequestPostProcessor to create your user, you can use annotations
described in Chapter 9, Testing Method Security. For example, the following will run the test with the
user with username "user", password "password", and role "ROLE_USER":

@Test

@WithMockUser

public void requestProtectedUrlWithUser() throws Exception {

 mvc

 .perform(get("/"))

 ...

}

Alternatively, the following will run the test with the user with username "user", password "password",
and role "ROLE_ADMIN":

@Test

@WithMockUser(roles="ADMIN")

public void requestProtectedUrlWithUser() throws Exception {

 mvc

 .perform(get("/"))

 ...

}

Testing HTTP Basic Authentication

While it has always been possible to authenticate with HTTP Basic, it was a bit tedious to remember the
header name, format, and encode the values. Now this can be done using Spring Security’s httpBasic
RequestPostProcessor. For example, the snippet below:

mvc

 .perform(get("/").with(httpBasic("user","password")))

will attempt to use HTTP Basic to authenticate a user with the username "user" and the password
"password" by ensuring the following header is populated on the HTTP Request:

Spring Security Reference

please define title in your docbook file! 69

Authorization: Basic dXNlcjpwYXNzd29yZA==

10.3 SecurityMockMvcRequestBuilders

Spring MVC Test also provides a RequestBuilder interface that can be used to create the
MockHttpServletRequest used in your test. Spring Security provides a few RequestBuilder
implementations that can be used to make testing easier. In order to use Spring Security’s
RequestBuilder implementations ensure the following static import is used:

import static org.springframework.security.test.web.servlet.request.SecurityMockMvcRequestBuilders.*;

Testing Form Based Authentication

You can easily create a request to test a form based authentication using Spring Security’s testing
support. For example, the following will submit a POST to "/login" with the username "user", the
password "password", and a valid CSRF token:

mvc

 .perform(formLogin())

It is easy to customize the request. For example, the following will submit a POST to "/auth" with the
username "admin", the password "pass", and a valid CSRF token:

mvc

 .perform(formLogin("/auth").user("admin").password("pass"))

We can also customize the parameters names that the username and password are included on. For
example, this is the above request modified to include the username on the HTTP parameter "u" and
the password on the HTTP parameter "p".

mvc

 .perform(formLogin("/auth").user("a","admin").password("p","pass"))

Testing Logout

While fairly trivial using standard Spring MVC Test, you can use Spring Security’s testing support to
make testing log out easier. For example, the following will submit a POST to "/logout" with a valid
CSRF token:

mvc

 .perform(logout())

You can also customize the URL to post to. For example, the snippet below will submit a POST to "/
signout" with a valid CSRF token:

mvc

 .perform(logout("/signout"))

10.4 SecurityMockMvcResultMatchers

At times it is desirable to make various security related assertions about a request. To accommodate this
need, Spring Security Test support implements Spring MVC Test’s ResultMatcher interface. In order
to use Spring Security’s ResultMatcher implementations ensure the following static import is used:

import static org.springframework.security.test.web.servlet.response.SecurityMockMvcResultMatchers.*;

Spring Security Reference

please define title in your docbook file! 70

Unauthenticated Assertion

At times it may be valuable to assert that there is no authenticated user associated with the result of a
MockMvc invocation. For example, you might want to test submitting an invalid username and password
and verify that no user is authenticated. You can easily do this with Spring Security’s testing support
using something like the following:

mvc

 .perform(formLogin().password("invalid"))

 .andExpect(unauthenticated());

Authenticated Assertion

It is often times that we must assert that an authenticated user exists. For example, we may want to
verify that we authenticated successfully. We could verify that a form based login was successful with
the following snippet of code:

mvc

 .perform(formLogin())

 .andExpect(authenticated());

If we wanted to assert the roles of the user, we could refine our previous code as shown below:

mvc

 .perform(formLogin().user("admin"))

 .andExpect(authenticated().withRoles("USER","ADMIN"));

Alternatively, we could verify the username:

mvc

 .perform(formLogin().user("admin"))

 .andExpect(authenticated().withUsername("admin"));

We can also combine the assertions:

mvc

 .perform(formLogin().user("admin").roles("USER","ADMIN"))

 .andExpect(authenticated().withUsername("admin"));

Part V. Web Application Security
Most Spring Security users will be using the framework in applications which make user of HTTP
and the Servlet API. In this part, we’ll take a look at how Spring Security provides authentication
and access-control features for the web layer of an application. We’ll look behind the facade of the
namespace and see which classes and interfaces are actually assembled to provide web-layer security.
In some situations it is necessary to use traditional bean configuration to provide full control over the
configuration, so we’ll also see how to configure these classes directly without the namespace.

Spring Security Reference

please define title in your docbook file! 72

11. The Security Filter Chain

Spring Security’s web infrastructure is based entirely on standard servlet filters. It doesn’t use servlets
or any other servlet-based frameworks (such as Spring MVC) internally, so it has no strong links to any
particular web technology. It deals in HttpServletRequest s and HttpServletResponse s and
doesn’t care whether the requests come from a browser, a web service client, an HttpInvoker or an
AJAX application.

Spring Security maintains a filter chain internally where each of the filters has a particular responsibility
and filters are added or removed from the configuration depending on which services are required. The
ordering of the filters is important as there are dependencies between them. If you have been using
namespace configuration, then the filters are automatically configured for you and you don’t have to
define any Spring beans explicitly but here may be times when you want full control over the security
filter chain, either because you are using features which aren’t supported in the namespace, or you are
using your own customized versions of classes.

11.1 DelegatingFilterProxy

When using servlet filters, you obviously need to declare them in your web.xml, or they will be ignored
by the servlet container. In Spring Security, the filter classes are also Spring beans defined in the
application context and thus able to take advantage of Spring’s rich dependency-injection facilities and
lifecycle interfaces. Spring’s DelegatingFilterProxy provides the link between web.xml and the
application context.

When using DelegatingFilterProxy, you will see something like this in the web.xml file:

<filter>

<filter-name>myFilter</filter-name>

<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

<filter-name>myFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

Notice that the filter is actually a DelegatingFilterProxy, and not the class that will actually
implement the logic of the filter. What DelegatingFilterProxy does is delegate the Filter’s
methods through to a bean which is obtained from the Spring application

context. This enables the bean to benefit from the Spring web application

context lifecycle support and configuration flexibility. The bean must

implement `javax.servlet.Filter and it must have the same name as that in the filter-
name element. Read the Javadoc for DelegatingFilterProxy for more information

11.2 FilterChainProxy

Spring Security’s web infrastructure should only be used by delegating to an instance of
FilterChainProxy. The security filters should not be used by themselves. In theory you could
declare each Spring Security filter bean that you require in your application context file and add a
corresponding DelegatingFilterProxy entry to web.xml for each filter, making sure that they
are ordered correctly, but this would be cumbersome and would clutter up the web.xml file quickly
if you have a lot of filters. FilterChainProxy lets us add a single entry to web.xml and deal
entirely with the application context file for managing our web security beans. It is wired using a

Spring Security Reference

please define title in your docbook file! 73

DelegatingFilterProxy, just like in the example above, but with the filter-name set to the bean
name "filterChainProxy". The filter chain is then declared in the application context with the same bean
name. Here’s an example:

<bean id="filterChainProxy" class="org.springframework.security.web.FilterChainProxy">

<constructor-arg>

 <list>

 <sec:filter-chain pattern="/restful/**" filters="

 securityContextPersistenceFilterWithASCFalse,

 basicAuthenticationFilter,

 exceptionTranslationFilter,

 filterSecurityInterceptor" />

 <sec:filter-chain pattern="/**" filters="

 securityContextPersistenceFilterWithASCTrue,

 formLoginFilter,

 exceptionTranslationFilter,

 filterSecurityInterceptor" />

 </list>

</constructor-arg>

</bean>

The namespace element filter-chain is used for convenience to set up the security filter chain(s)
which are required within the application. 1. It maps a particular URL pattern to a list of filters built
up from the bean names specified in the filters element, and combines them in a bean of type
SecurityFilterChain. The pattern attribute takes an Ant Paths and the most specific URIs should
appear first 2. At runtime the FilterChainProxy will locate the first URI pattern that matches the
current web request and the list of filter beans specified by the filters attribute will be applied to that
request. The filters will be invoked in the order they are defined, so you have complete control over the
filter chain which is applied to a particular URL.

You may have noticed we have declared two SecurityContextPersistenceFilter

s in the filter chain (ASC is short for allowSessionCreation, a property of
SecurityContextPersistenceFilter). As web services will never present a jsessionid on
future requests, creating HttpSession s for such user agents would be wasteful. If you had a high-
volume application which required maximum scalability, we recommend you use the approach shown
above. For smaller applications, using a single SecurityContextPersistenceFilter (with its
default allowSessionCreation as true) would likely be sufficient.

Note that FilterChainProxy does not invoke standard filter lifecycle methods on the filters it
is configured with. We recommend you use Spring’s application context lifecycle interfaces as an
alternative, just as you would for any other Spring bean.

When we looked at how to set up web security using namespace configuration, we used a
DelegatingFilterProxy with the name "springSecurityFilterChain". You should now be able to see
that this is the name of the FilterChainProxy which is created by the namespace.

Bypassing the Filter Chain

You can use the attribute filters = "none" as an alternative to supplying a filter bean list. This will
omit the request pattern from the security filter chain entirely. Note that anything matching this path will
then have no authentication or authorization services applied and will be freely accessible. If you want
to make use of the contents of the SecurityContext contents during a request, then it must have

1Note that you’ll need to include the security namespace in your application context XML file in order to use this syntax. The older
syntax which used a filter-chain-map is still supported, but is deprecated in favour of the constructor argument injection.
2Instead of a path pattern, the request-matcher-ref attribute can be used to specify a RequestMatcher instance for more
powerful matching

Spring Security Reference

please define title in your docbook file! 74

passed through the security filter chain. Otherwise the SecurityContextHolder will not have been
populated and the contents will be null.

11.3 Filter Ordering

The order that filters are defined in the chain is very important. Irrespective of which filters you are
actually using, the order should be as follows:

• ChannelProcessingFilter, because it might need to redirect to a different protocol

• SecurityContextPersistenceFilter, so a SecurityContext can be set up in the
SecurityContextHolder at the beginning of a web request, and any changes to the
SecurityContext can be copied to the HttpSession when the web request ends (ready for use
with the next web request)

• ConcurrentSessionFilter, because it uses the SecurityContextHolder functionality and
needs to update the SessionRegistry to reflect ongoing requests from the principal

• Authentication processing mechanisms - UsernamePasswordAuthenticationFilter,
CasAuthenticationFilter, BasicAuthenticationFilter etc - so that the
SecurityContextHolder can be modified to contain a valid Authentication request token

• The SecurityContextHolderAwareRequestFilter, if you are using it to install a Spring
Security aware HttpServletRequestWrapper into your servlet container

• The JaasApiIntegrationFilter, if a JaasAuthenticationToken is in the
SecurityContextHolder this will process the FilterChain as the Subject in the
JaasAuthenticationToken

• RememberMeAuthenticationFilter, so that if no earlier authentication processing mechanism
updated the SecurityContextHolder, and the request presents a cookie that enables remember-
me services to take place, a suitable remembered Authentication object will be put there

• AnonymousAuthenticationFilter, so that if no earlier authentication processing mechanism
updated the SecurityContextHolder, an anonymous Authentication object will be put there

• ExceptionTranslationFilter, to catch any Spring Security exceptions so that either an HTTP
error response can be returned or an appropriate AuthenticationEntryPoint can be launched

• FilterSecurityInterceptor, to protect web URIs and raise exceptions when access is denied

11.4 Request Matching and HttpFirewall

Spring Security has several areas where patterns you have defined are tested against incoming
requests in order to decide how the request should be handled. This occurs when the
FilterChainProxy decides which filter chain a request should be passed through and also when the
FilterSecurityInterceptor decides which security constraints apply to a request. It’s important
to understand what the mechanism is and what URL value is used when testing against the patterns
that you define.

The Servlet Specification defines several properties for the HttpServletRequest which are
accessible via getter methods, and which we might want to match against. These are the contextPath,
servletPath, pathInfo and queryString. Spring Security is only interested in securing paths
within the application, so the contextPath is ignored. Unfortunately, the servlet spec does not define

Spring Security Reference

please define title in your docbook file! 75

exactly what the values of servletPath and pathInfo will contain for a particular request URI.
For example, each path segment of a URL may contain parameters, as defined in RFC 2396 4.
The Specification does not clearly state whether these should be included in the servletPath and
pathInfo values and the behaviour varies between different servlet containers. There is a danger that
when an application is deployed in a container which does not strip path parameters from these values,
an attacker could add them to the requested URL in order to cause a pattern match to succeed or fail
unexpectedly. 5. Other variations in the incoming URL are also possible. For example, it could contain
path-traversal sequences (like /../) or multiple forward slashes (//) which could also cause pattern-
matches to fail. Some containers normalize these out before performing the servlet mapping, but others
don’t. To protect against issues like these, FilterChainProxy uses an HttpFirewall strategy to
check and wrap the request. Un-normalized requests are automatically rejected by default, and path
parameters and duplicate slashes are removed for matching purposes. 6. It is therefore essential that
a FilterChainProxy is used to manage the security filter chain. Note that the servletPath and
pathInfo values are decoded by the container, so your application should not have any valid paths
which contain semi-colons, as these parts will be removed for matching purposes.

As mentioned above, the default strategy is to use Ant-style paths for matching and this is likely to be
the best choice for most users. The strategy is implemented in the class AntPathRequestMatcher
which uses Spring’s AntPathMatcher to perform a case-insensitive match of the pattern against the
concatenated servletPath and pathInfo, ignoring the queryString.

If for some reason, you need a more powerful matching strategy, you can use regular expressions.
The strategy implementation is then`RegexRequestMatcher`. See the Javadoc for this class for more
information.

In practice we recommend that you use method security at your service layer, to control access to your
application, and do not rely entirely on the use of security constraints defined at the web-application
level. URLs change and it is difficult to take account of all the possible URLs that an application might
support and how requests might be manipulated. You should try and restrict yourself to using a few
simple ant paths which are simple to understand. Always try to use a"deny-by-default" approach where
you have a catch-all wildcard (/ or) defined last and denying access.

Security defined at the service layer is much more robust and harder to bypass, so you should always
take advantage of Spring Security’s method security options.

11.5 Use with other Filter-Based Frameworks

If you’re using some other framework that is also filter-based, then you need to make sure that the
Spring Security filters come first. This enables the SecurityContextHolder to be populated in time
for use by the other filters. Examples are the use of SiteMesh to decorate your web pages or a web
framework like Wicket which uses a filter to handle its requests.

11.6 Advanced Namespace Configuration

As we saw earlier in the namespace chapter, it’s possible to use multiple http elements to define
different security configurations for different URL patterns. Each element creates a filter chain within the

4You have probably seen this when a browser doesn’t support cookies and the jsessionid parameter is appended to the URL
after a semi-colon. However the RFC allows the presence of these parameters in any path segment of the URL
5The original values will be returned once the request leaves the FilterChainProxy, so will still be available to the application.
6So, for example, an original request path /secure;hack=1/somefile.html;hack=2 will be returned as /secure/
somefile.html.

http://www.ietf.org/rfc/rfc2396.txt

Spring Security Reference

please define title in your docbook file! 76

internal FilterChainProxy and the URL pattern that should be mapped to it. The elements will be
added in the order they are declared, so the most specific patterns must again be declared first. Here’s
another example, for a similar situation to that above, where the application supports both a stateless
RESTful API and also a normal web application which users log into using a form.

<!-- Stateless RESTful service using Basic authentication -->

<http pattern="/restful/**" create-session="stateless">

<intercept-url pattern='/**' access="hasRole('REMOTE')" />

<http-basic />

</http>

<!-- Empty filter chain for the login page -->

<http pattern="/login.htm*" security="none"/>

<!-- Additional filter chain for normal users, matching all other requests -->

<http>

<intercept-url pattern='/**' access="hasRole('USER')" />

<form-login login-page='/login.htm' default-target-url="/home.htm"/>

<logout />

</http>

Spring Security Reference

please define title in your docbook file! 77

12. Core Security Filters

There are some key filters which will always be used in a web application which uses Spring Security,
so we’ll look at these and their supporting classes and interfaces first. We won’t cover every feature, so
be sure to look at the Javadoc for them if you want to get the complete picture.

12.1 FilterSecurityInterceptor

We’ve already seen FilterSecurityInterceptor briefly when discussing access-control in
general, and we’ve already used it with the namespace where the <intercept-url> elements
are combined to configure it internally. Now we’ll see how to explicitly configure it for use with
a`FilterChainProxy`, along with its companion filter ExceptionTranslationFilter. A typical
configuration example is shown below:

<bean id="filterSecurityInterceptor"

 class="org.springframework.security.web.access.intercept.FilterSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>

<property name="accessDecisionManager" ref="accessDecisionManager"/>

<property name="securityMetadataSource">

 <security:filter-security-metadata-source>

 <security:intercept-url pattern="/secure/super/**" access="ROLE_WE_DONT_HAVE"/>

 <security:intercept-url pattern="/secure/**" access="ROLE_SUPERVISOR,ROLE_TELLER"/>

 </security:filter-security-metadata-source>

</property>

</bean>

FilterSecurityInterceptor is responsible for handling the security of HTTP resources. It requires
a reference to an AuthenticationManager and an AccessDecisionManager. It is also supplied
with configuration attributes that apply to different HTTP URL requests. Refer back to the original
discussion on these in the technical introduction.

The FilterSecurityInterceptor can be configured with configuration attributes in two ways.
The first, which is shown above, is using the <filter-security-metadata-source> namespace
element. This is similar to the <http> element from the namespace chapter but the <intercept-
url> child elements only use the pattern and access attributes. Commas are used to
delimit the different configuration attributes that apply to each HTTP URL. The second option
is to write your own`SecurityMetadataSource`, but this is beyond the scope of this document.
Irrespective of the approach used, the SecurityMetadataSource is responsible for returning a
List<ConfigAttribute> containing all of the configuration attributes associated with a single secure
HTTP URL.

It should be noted that the FilterSecurityInterceptor.setSecurityMetadataSource()
method actually expects an instance of FilterInvocationSecurityMetadataSource.
This is a marker interface which subclasses`SecurityMetadataSource`. It simply denotes
the SecurityMetadataSource understands FilterInvocation s. In the interests of
simplicity we’ll continue to refer to the FilterInvocationSecurityMetadataSource as a
SecurityMetadataSource, as the distinction is of little relevance to most users.

The SecurityMetadataSource created by the namespace syntax obtains the configuration attributes
for a particular FilterInvocation by matching the request URL against the configured pattern
attributes. This behaves in the same way as it does for namespace configuration. The default is
to treat all expressions as Apache Ant paths and regular expressions are also supported for more
complex cases. The request-matcher attribute is used to specify the type of pattern being used.

Spring Security Reference

please define title in your docbook file! 78

It is not possible to mix expression syntaxes within the same definition. As an example, the previous
configuration using regular expressions instead of Ant paths would be written as follows:

<bean id="filterInvocationInterceptor"

 class="org.springframework.security.web.access.intercept.FilterSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>

<property name="accessDecisionManager" ref="accessDecisionManager"/>

<property name="runAsManager" ref="runAsManager"/>

<property name="securityMetadataSource">

 <security:filter-security-metadata-source request-matcher="regex">

 <security:intercept-url pattern="\A/secure/super/.*\Z" access="ROLE_WE_DONT_HAVE"/>

 <security:intercept-url pattern="\A/secure/.*\" access="ROLE_SUPERVISOR,ROLE_TELLER"/>

 </security:filter-security-metadata-source>

</property>

</bean>

Patterns are always evaluated in the order they are defined. Thus it is important that more specific
patterns are defined higher in the list than less specific patterns. This is reflected in our example above,
where the more specific /secure/super/ pattern appears higher than the less specific /secure/
pattern. If they were reversed, the /secure/ pattern would always match and the /secure/super/
pattern would never be evaluated.

12.2 ExceptionTranslationFilter

The ExceptionTranslationFilter sits above the FilterSecurityInterceptor in the security
filter stack. It doesn’t do any actual security enforcement itself, but handles exceptions thrown by the
security interceptors and provides suitable and HTTP responses.

<bean id="exceptionTranslationFilter"

class="org.springframework.security.web.access.ExceptionTranslationFilter">

<property name="authenticationEntryPoint" ref="authenticationEntryPoint"/>

<property name="accessDeniedHandler" ref="accessDeniedHandler"/>

</bean>

<bean id="authenticationEntryPoint"

class="org.springframework.security.web.authentication.LoginUrlAuthenticationEntryPoint">

<property name="loginFormUrl" value="/login.jsp"/>

</bean>

<bean id="accessDeniedHandler"

 class="org.springframework.security.web.access.AccessDeniedHandlerImpl">

<property name="errorPage" value="/accessDenied.htm"/>

</bean>

AuthenticationEntryPoint

The AuthenticationEntryPoint will be called if the user requests a secure HTTP resource but they
are not authenticated. An appropriate AuthenticationException or AccessDeniedException
will be thrown by a security interceptor further down the call stack, triggering the commence method
on the entry point. This does the job of presenting the appropriate response to the user so that
authentication can begin. The one we’ve used here is LoginUrlAuthenticationEntryPoint,
which redirects the request to a different URL (typically a login page). The actual implementation used
will depend on the authentication mechanism you want to be used in your application.

AccessDeniedHandler

What happens if a user is already authenticated and they try to access a protected resource? In normal
usage, this shouldn’t happen because the application workflow should be restricted to operations to
which a user has access. For example, an HTML link to an administration page might be hidden from

Spring Security Reference

please define title in your docbook file! 79

users who do not have an admin role. You can’t rely on hiding links for security though, as there’s
always a possibility that a user will just enter the URL directly in an attempt to bypass the restrictions.
Or they might modify a RESTful URL to change some of the argument values. Your application must
be protected against these scenarios or it will definitely be insecure. You will typically use simple web
layer security to apply constraints to basic URLs and use more specific method-based security on your
service layer interfaces to really nail down what is permissible.

If an AccessDeniedException is thrown and a user has already been authenticated, then this means
that an operation has been attempted for which they don’t have enough permissions. In this case,
ExceptionTranslationFilter will invoke a second strategy, the AccessDeniedHandler. By
default, an AccessDeniedHandlerImpl is used, which just sends a 403 (Forbidden) response to the
client. Alternatively you can configure an instance explicitly (as in the above example) and set an error
page URL which it will forwards the request to 1. This can be a simple "access denied" page, such
as a JSP, or it could be a more complex handler such as an MVC controller. And of course, you can
implement the interface yourself and use your own implementation.

It’s also possible to supply a custom AccessDeniedHandler when you’re using the namespace to
configure your application. See the namespace appendix for more details.

SavedRequest s and the RequestCache Interface

Another of ExceptionTranslationFilter’s responsibilities is to save the current
request before invoking the `AuthenticationEntryPoint. This allows the request to
be restored after the use has authenticated (see previous overview of web authentication). A typical
example would be where the user logs in with a form, and is then redirected to the original URL by the
default SavedRequestAwareAuthenticationSuccessHandler (see below).

The RequestCache encapsulates the functionality required for storing and retrieving
HttpServletRequest instances. By default the HttpSessionRequestCache is used, which stores
the request in the HttpSession. The RequestCacheFilter has the job of actually restoring the
saved request from the cache when the user is redirected to the original URL.

Under normal circumstances, you shouldn’t need to modify any of this functionality, but the saved-
request handling is a "best-effort" approach and there may be situations which the default configuration
isn’t able to handle. The use of these interfaces makes it fully pluggable from Spring Security 3.0
onwards.

12.3 SecurityContextPersistenceFilter

We covered the purpose of this all-important filter in the Technical Overview chapter so you might want
to re-read that section at this point. Let’s first take a look at how you would configure it for use with a
FilterChainProxy. A basic configuration only requires the bean itself

<bean id="securityContextPersistenceFilter"

class="org.springframework.security.web.context.SecurityContextPersistenceFilter"/>

As we saw previously, this filter has two main tasks. It is responsible for storage of the
SecurityContext contents between HTTP requests and for clearing the SecurityContextHolder

1We use a forward so that the SecurityContextHolder still contains details of the principal, which may be useful for displaying to
the user. In old releases of Spring Security we relied upon the servlet container to handle a 403 error message, which lacked
this useful contextual information.

Spring Security Reference

please define title in your docbook file! 80

when a request is completed. Clearing the ThreadLocal in which the context is stored is essential, as
it might otherwise be possible for a thread to be replaced into the servlet container’s thread pool, with
the security context for a particular user still attached. This thread might then be used at a later stage,
performing operations with the wrong credentials.

SecurityContextRepository

From Spring Security 3.0, the job of loading and storing the security context is now delegated to a
separate strategy interface:

public interface SecurityContextRepository {

SecurityContext loadContext(HttpRequestResponseHolder requestResponseHolder);

void saveContext(SecurityContext context, HttpServletRequest request,

 HttpServletResponse response);

}

The HttpRequestResponseHolder is simply a container for the incoming request and response
objects, allowing the implementation to replace these with wrapper classes. The returned contents will
be passed to the filter chain.

The default implementation is HttpSessionSecurityContextRepository, which stores the
security context as an HttpSession attribute 2. The most important configuration parameter for this
implementation is the allowSessionCreation property, which defaults to true, thus allowing the
class to create a session if it needs one to store the security context for an authenticated user (it
won’t create one unless authentication has taken place and the contents of the security context have
changed). If you don’t want a session to be created, then you can set this property to false:

<bean id="securityContextPersistenceFilter"

 class="org.springframework.security.web.context.SecurityContextPersistenceFilter">

<property name='securityContextRepository'>

 <bean class='org.springframework.security.web.context.HttpSessionSecurityContextRepository'>

 <property name='allowSessionCreation' value='false' />

 </bean>

</property>

</bean>

Alternatively you could provide an instance of NullSecurityContextRepository, a "http://
en.wikipedia.org/wiki/Null_Object_pattern[null object]" implementation, which will prevent the security
context from being stored, even if a session has already been created during the request.

12.4 UsernamePasswordAuthenticationFilter

We’ve now seen the three main filters which are always present in a Spring Security web configuration.
These are also the three which are automatically created by the namespace <http> element and
cannot be substituted with alternatives. The only thing that’s missing now is an actual authentication
mechanism, something that will allow a user to authenticate. This filter is the most commonly used
authentication filter and the one that is most often customized 3. It also provides the implementation used
by the <form-login> element from the namespace. There are three stages required to configure it.

2In Spring Security 2.0 and earlier, this filter was called HttpSessionContextIntegrationFilter and performed all the
work of storing the context was performed by the filter itself. If you were familiar with this class, then most of the configuration
options which were available can now be found on`HttpSessionSecurityContextRepository`.
3For historical reasons, prior to Spring Security 3.0, this filter was called AuthenticationProcessingFilter and the entry
point was called AuthenticationProcessingFilterEntryPoint. Since the framework now supports many different forms
of authentication, they have both been given more specific names in 3.0.

Spring Security Reference

please define title in your docbook file! 81

• Configure a LoginUrlAuthenticationEntryPoint with the URL of the login page, just as we
did above, and set it on the ExceptionTranslationFilter.

• Implement the login page (using a JSP or MVC controller).

• Configure an instance of UsernamePasswordAuthenticationFilter in the application context

• Add the filter bean to your filter chain proxy (making sure you pay attention to the order).

The login form simply contains username and password input fields, and posts to the URL that is
monitored by the filter (by default this is /login). The basic filter configuration looks something like this:

<bean id="authenticationFilter" class=

"org.springframework.security.web.authentication.UsernamePasswordAuthenticationFilter">

<property name="authenticationManager" ref="authenticationManager"/>

</bean>

Application Flow on Authentication Success and Failure

The filter calls the configured AuthenticationManager to process each authentication
request. The destination following a successful authentication or an authentication failure is
controlled by the AuthenticationSuccessHandler and AuthenticationFailureHandler
strategy interfaces, respectively. The filter has properties which allow you to
set these so you can customize the behaviour completely 4. Some standard
implementations are supplied such as SimpleUrlAuthenticationSuccessHandler,
SavedRequestAwareAuthenticationSuccessHandler,
SimpleUrlAuthenticationFailureHandler and
ExceptionMappingAuthenticationFailureHandler. Have a look at the Javadoc for these
classes and also for AbstractAuthenticationProcessingFilter to get an overview of how they
work and the supported features.

If authentication is successful, the resulting Authentication object will be placed into the
SecurityContextHolder. The configured AuthenticationSuccessHandler will then be
called to either redirect or forward the user to the appropriate destination. By default a
SavedRequestAwareAuthenticationSuccessHandler is used, which means that the user will
be redirected to the original destination they requested before they were asked to login.

Note

The ExceptionTranslationFilter caches the original request a user makes. When the user
authenticates, the request handler makes use of this cached request to obtain the original URL
and redirect to it. The original request is then rebuilt and used as an alternative.

If authentication fails, the configured AuthenticationFailureHandler will be invoked.

4In versions prior to 3.0, the application flow at this point had evolved to a stage was controlled by a mix of properties on this class
and strategy plugins. The decision was made for 3.0 to refactor the code to make these two strategies entirely responsible.

Spring Security Reference

please define title in your docbook file! 82

13. Servlet API integration

This section describes how Spring Security is integrated with the Servlet API. The servletapi-xml sample
application demonstrates the usage of each of these methods.

13.1 Servlet 2.5+ Integration

HttpServletRequest.getRemoteUser()

The HttpServletRequest.getRemoteUser() will return the result of
SecurityContextHolder.getContext().getAuthentication().getName() which is
typically the current username. This can be useful if you want to display the current username in your
application. Additionally, checking if this is null can be used to indicate if a user has authenticated or
is anonymous. Knowing if the user is authenticated or not can be useful for determining if certain UI
elements should be shown or not (i.e. a log out link should only be displayed if the user is authenticated).

HttpServletRequest.getUserPrincipal()

The HttpServletRequest.getUserPrincipal() will return the result of
SecurityContextHolder.getContext().getAuthentication(). This means it is an
Authentication which is typically an instance of UsernamePasswordAuthenticationToken
when using username and password based authentication. This can be useful if you need additional
information about your user. For example, you might have created a custom UserDetailsService
that returns a custom UserDetails containing a first and last name for your user. You could obtain
this information with the following:

Authentication auth = httpServletRequest.getUserPrincipal();

// assume integrated custom UserDetails called MyCustomUserDetails

// by default, typically instance of UserDetails

MyCustomUserDetails userDetails = (MyCustomUserDetails) auth.getPrincipal();

String firstName = userDetails.getFirstName();

String lastName = userDetails.getLastName();

Note

It should be noted that it is typically bad practice to perform so much logic throughout your
application. Instead, one should centralize it to reduce any coupling of Spring Security and the
Servlet API’s.

HttpServletRequest.isUserInRole(String)

The HttpServletRequest.isUserInRole(String) will determine if
SecurityContextHolder.getContext().getAuthentication().getAuthorities()

contains a GrantedAuthority with the role passed into isUserInRole(String). Typically users
should not pass in the "ROLE_" prefix into this method since it is added automatically. For example,
if you want to determine if the current user has the authority "ROLE_ADMIN", you could use the the
following:

boolean isAdmin = httpServletRequest.isUserInRole("ADMIN");

This might be useful to determine if certain UI components should be displayed. For example, you might
display admin links only if the current user is an admin.

https://github.com/SpringSource/spring-security/blob/master/samples/servletapi-xml
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getRemoteUser()
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getUserPrincipal()
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#isUserInRole(java.lang.String)

Spring Security Reference

please define title in your docbook file! 83

13.2 Servlet 3+ Integration

The following section describes the Servlet 3 methods that Spring Security integrates with.

HttpServletRequest.authenticate(HttpServletRequest,HttpServletResponse)

The HttpServletRequest.authenticate(HttpServletRequest,HttpServletResponse) method can be used
to ensure that a user is authenticated. If they are not authenticated, the configured
AuthenticationEntryPoint will be used to request the user to authenticate (i.e. redirect to the login page).

HttpServletRequest.login(String,String)

The HttpServletRequest.login(String,String) method can be used to authenticate the user with the
current AuthenticationManager. For example, the following would attempt to authenticate with the
username "user" and password "password":

try {

httpServletRequest.login("user","password");

} catch(ServletException e) {

// fail to authenticate

}

Note

It is not necessary to catch the ServletException if you want Spring Security to process the failed
authentication attempt.

HttpServletRequest.logout()

The HttpServletRequest.logout() method can be used to log the current user out.

Typically this means that the SecurityContextHolder will be cleared out, the HttpSession will be
invalidated, any "Remember Me" authentication will be cleaned up, etc. However, the configured
LogoutHandler implementations will vary depending on your Spring Security configuration. It is important
to note that after HttpServletRequest.logout() has been invoked, you are still in charge of writing a
response out. Typically this would involve a redirect to the welcome page.

AsyncContext.start(Runnable)

The AsynchContext.start(Runnable) method that ensures your credentials will be propagated to
the new Thread. Using Spring Security’s concurrency support, Spring Security overrides the
AsyncContext.start(Runnable) to ensure that the current SecurityContext is used when processing the
Runnable. For example, the following would output the current user’s Authentication:

final AsyncContext async = httpServletRequest.startAsync();

async.start(new Runnable() {

 public void run() {

 Authentication authentication = SecurityContextHolder.getContext().getAuthentication();

 try {

 final HttpServletResponse asyncResponse = (HttpServletResponse) async.getResponse();

 asyncResponse.setStatus(HttpServletResponse.SC_OK);

 asyncResponse.getWriter().write(String.valueOf(authentication));

 async.complete();

 } catch(Exception e) {

 throw new RuntimeException(e);

 }

 }

});

http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#authenticate%28javax.servlet.http.HttpServletResponse%29
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#login%28java.lang.String,%20java.lang.String%29
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#logout%28%29
http://docs.oracle.com/javaee/6/api/javax/servlet/AsyncContext.html#start%28java.lang.Runnable%29

Spring Security Reference

please define title in your docbook file! 84

Async Servlet Support

If you are using Java Based configuration, you are ready to go. If you are using XML configuration, there
are a few updates that are necessary. The first step is to ensure you have updated your web.xml to use
at least the 3.0 schema as shown below:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

version="3.0">

</web-app>

Next you need to ensure that your springSecurityFilterChain is setup for processing asynchronous
requests.

<filter>

<filter-name>springSecurityFilterChain</filter-name>

<filter-class>

 org.springframework.web.filter.DelegatingFilterProxy

</filter-class>

<async-supported>true</async-supported>

</filter>

<filter-mapping>

<filter-name>springSecurityFilterChain</filter-name>

<url-pattern>/*</url-pattern>

<dispatcher>REQUEST</dispatcher>

<dispatcher>ASYNC</dispatcher>

</filter-mapping>

That’s it! Now Spring Security will ensure that your SecurityContext is propagated on asynchronous
requests too.

So how does it work? If you are not really interested, feel free to skip the remainder of this section,
otherwise read on. Most of this is built into the Servlet specification, but there is a little bit of tweaking
that Spring Security does to ensure things work with asynchronous requests properly. Prior to Spring
Security 3.2, the SecurityContext from the SecurityContextHolder was automatically saved as soon as
the HttpServletResponse was committed. This can cause issues in a Async environment. For example,
consider the following:

httpServletRequest.startAsync();

new Thread("AsyncThread") {

 @Override

 public void run() {

 try {

 // Do work

 TimeUnit.SECONDS.sleep(1);

 // Write to and commit the httpServletResponse

 httpServletResponse.getOutputStream().flush();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}.start();

The issue is that this Thread is not known to Spring Security, so the SecurityContext is not propagated
to it. This means when we commit the HttpServletResponse there is no SecuriytContext. When Spring
Security automatically saved the SecurityContext on committing the HttpServletResponse it would lose
our logged in user.

Spring Security Reference

please define title in your docbook file! 85

Since version 3.2, Spring Security is smart enough to no longer automatically save the SecurityContext
on commiting the HttpServletResponse as soon as HttpServletRequest.startAsync() is invoked.

13.3 Servlet 3.1+ Integration

The following section describes the Servlet 3.1 methods that Spring Security integrates with.

HttpServletRequest#changeSessionId()

The HttpServletRequest.changeSessionId() is the default method for protecting against Session
Fixation attacks in Servlet 3.1 and higher.

http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html#changeSessionId()

Spring Security Reference

please define title in your docbook file! 86

14. Basic and Digest Authentication

Basic and digest authentiation are alternative authentication mechanisms which are popular in web
applications. Basic authentication is often used with stateless clients which pass their credentials on
each request. It’s quite common to use it in combination with form-based authentication where an
application is used through both a browser-based user interface and as a web-service. However, basic
authentication transmits the password as plain text so it should only really be used over an encrypted
transport layer such as HTTPS.

14.1 BasicAuthenticationFilter

BasicAuthenticationFilter is responsible for processing basic authentication credentials
presented in HTTP headers. This can be used for authenticating calls made by Spring remoting protocols
(such as Hessian and Burlap), as well as normal browser user agents (such as Firefox and Internet
Explorer). The standard governing HTTP Basic Authentication is defined by RFC 1945, Section 11,
and BasicAuthenticationFilter conforms with this RFC. Basic Authentication is an attractive
approach to authentication, because it is very widely deployed in user agents and implementation is
extremely simple (it’s just a Base64 encoding of the username:password, specified in an HTTP header).

Configuration

To implement HTTP Basic Authentication, you need to add a BasicAuthenticationFilter to your
filter chain. The application context should contain BasicAuthenticationFilter and its required
collaborator:

<bean id="basicAuthenticationFilter"

class="org.springframework.security.web.authentication.www.BasicAuthenticationFilter">

<property name="authenticationManager" ref="authenticationManager"/>

<property name="authenticationEntryPoint" ref="authenticationEntryPoint"/>

</bean>

<bean id="authenticationEntryPoint"

class="org.springframework.security.web.authentication.www.BasicAuthenticationEntryPoint">

<property name="realmName" value="Name Of Your Realm"/>

</bean>

The configured AuthenticationManager processes each authentication request. If authentication
fails, the configured AuthenticationEntryPoint will be used to retry the authentication process.
Usually you will use the filter in combination with a`BasicAuthenticationEntryPoint`, which returns a 401
response with a suitable header to retry HTTP Basic authentication. If authentication is successful, the
resulting Authentication object will be placed into the SecurityContextHolder as usual.

If the authentication event was successful, or authentication was not attempted because the
HTTP header did not contain a supported authentication request, the filter chain will continue
as normal. The only time the filter chain will be interrupted is if authentication fails and the
AuthenticationEntryPoint is called.

14.2 DigestAuthenticationFilter

DigestAuthenticationFilter is capable of processing digest authentication credentials
presented in HTTP headers. Digest Authentication attempts to solve many of the weaknesses of
Basic authentication, specifically by ensuring credentials are never sent in clear text across the wire.
Many user agents support Digest Authentication, including FireFox and Internet Explorer. The standard

Spring Security Reference

please define title in your docbook file! 87

governing HTTP Digest Authentication is defined by RFC 2617, which updates an earlier version of
the Digest Authentication standard prescribed by RFC 2069. Most user agents implement RFC 2617.
Spring Security’s DigestAuthenticationFilter is compatible with the “auth” quality of protection
(qop) prescribed by RFC 2617, which also provides backward compatibility with RFC 2069. Digest
Authentication is a more attractive option if you need to use unencrypted HTTP (i.e. no TLS/HTTPS) and
wish to maximise security of the authentication process. Indeed Digest Authentication is a mandatory
requirement for the WebDAV protocol, as noted by RFC 2518 Section 17.1.

Digest Authentication is definitely the most secure choice between Form Authentication, Basic
Authentication and Digest Authentication, although extra security also means more complex user agent
implementations. Central to Digest Authentication is a "nonce". This is a value the server generates.
Spring Security’s nonce adopts the following format:

base64(expirationTime + ":" + md5Hex(expirationTime + ":" + key))

expirationTime: The date and time when the nonce expires, expressed in milliseconds

key: A private key to prevent modification of the nonce token

The DigestAuthenticatonEntryPoint has a property specifying the key used for generating the
nonce tokens, along with a nonceValiditySeconds property for determining the expiration time
(default 300, which equals five minutes). Whist ever the nonce is valid, the digest is computed by
concatenating various strings including the username, password, nonce, URI being requested, a client-
generated nonce (merely a random value which the user agent generates each request), the realm name
etc, then performing an MD5 hash. Both the server and user agent perform this digest computation,
resulting in different hash codes if they disagree on an included value (eg password). In Spring Security
implementation, if the server-generated nonce has merely expired (but the digest was otherwise valid),
the DigestAuthenticationEntryPoint will send a "stale=true" header. This tells the user
agent there is no need to disturb the user (as the password and username etc is correct), but simply
to try again using a new nonce.

An appropriate value for DigestAuthenticationEntryPoint’s `nonceValiditySeconds

parameter will depend on your application. Extremely secure applications should note that an
intercepted authentication header can be used to impersonate the principal until the expirationTime
contained in the nonce is reached. This is the key principle when selecting an appropriate setting, but
it would be unusual for immensely secure applications to not be running over TLS/HTTPS in the first
instance.

Because of the more complex implementation of Digest Authentication, there are often user agent
issues. For example, Internet Explorer fails to present an “opaque” token on subsequent requests in
the same session. Spring Security filters therefore encapsulate all state information into the “nonce”
token instead. In our testing, Spring Security’s implementation works reliably with FireFox and Internet
Explorer, correctly handling nonce timeouts etc.

Configuration

Now that we’ve reviewed the theory, let’s see how to use it. To implement HTTP Digest Authentication,
it is necessary to define DigestAuthenticationFilter in the filter chain. The application context
will need to define the DigestAuthenticationFilter and its required collaborators:

Spring Security Reference

please define title in your docbook file! 88

<bean id="digestFilter" class=

 "org.springframework.security.web.authentication.www.DigestAuthenticationFilter">

<property name="userDetailsService" ref="jdbcDaoImpl"/>

<property name="authenticationEntryPoint" ref="digestEntryPoint"/>

<property name="userCache" ref="userCache"/>

</bean>

<bean id="digestEntryPoint" class=

 "org.springframework.security.web.authentication.www.DigestAuthenticationEntryPoint">

<property name="realmName" value="Contacts Realm via Digest Authentication"/>

<property name="key" value="acegi"/>

<property name="nonceValiditySeconds" value="10"/>

</bean>

The configured UserDetailsService is needed because DigestAuthenticationFilter must
have direct access to the clear text password of a user. Digest Authentication will NOT work if you
are using encoded passwords in your DAO 1. The DAO collaborator, along with the UserCache, are
typically shared directly with a DaoAuthenticationProvider. The authenticationEntryPoint
property must be DigestAuthenticationEntryPoint, so that DigestAuthenticationFilter
can obtain the correct realmName and key for digest calculations.

Like BasicAuthenticationFilter, if authentication is successful an Authentication request
token will be placed into the SecurityContextHolder. If the authentication event was successful,
or authentication was not attempted because the HTTP header did not contain a Digest Authentication
request, the filter chain will continue as normal. The only time the filter chain will be interrupted is if
authentication fails and the AuthenticationEntryPoint is called, as discussed in the previous
paragraph.

Digest Authentication’s RFC offers a range of additional features to further increase security. For
example, the nonce can be changed on every request. Despite this, Spring Security implementation
was designed to minimise the complexity of the implementation (and the doubtless user agent
incompatibilities that would emerge), and avoid needing to store server-side state. You are invited to
review RFC 2617 if you wish to explore these features in more detail. As far as we are aware, Spring
Security’s implementation does comply with the minimum standards of this RFC.

1It is possible to encode the password in the format HEX(MD5(username:realm:password)) provided the
DigestAuthenticationFilter.passwordAlreadyEncoded is set to true. However, other password encodings will not
work with digest authentication.

Spring Security Reference

please define title in your docbook file! 89

15. Remember-Me Authentication

15.1 Overview

Remember-me or persistent-login authentication refers to web sites being able to remember the identity
of a principal between sessions. This is typically accomplished by sending a cookie to the browser,
with the cookie being detected during future sessions and causing automated login to take place.
Spring Security provides the necessary hooks for these operations to take place, and has two concrete
remember-me implementations. One uses hashing to preserve the security of cookie-based tokens and
the other uses a database or other persistent storage mechanism to store the generated tokens.

Note that both implemementations require a UserDetailsService. If you are using an authentication
provider which doesn’t use a UserDetailsService (for example, the LDAP provider) then it won’t
work unless you also have a UserDetailsService bean in your application context.

15.2 Simple Hash-Based Token Approach

This approach uses hashing to achieve a useful remember-me strategy. In essence a cookie is sent to
the browser upon successful interactive authentication, with the cookie being composed as follows:

base64(username + ":" + expirationTime + ":" +

md5Hex(username + ":" + expirationTime + ":" password + ":" + key))

username: As identifiable to the `UserDetailsService`

password: That matches the one in the retrieved UserDetails

expirationTime: The date and time when the remember-me token expires, expressed in milliseconds

key: A private key to prevent modification of the remember-me token

As such the remember-me token is valid only for the period specified, and provided that the username,
password and key does not change. Notably, this has a potential security issue in that a captured
remember-me token will be usable from any user agent until such time as the token expires. This is
the same issue as with digest authentication. If a principal is aware a token has been captured, they
can easily change their password and immediately invalidate all remember-me tokens on issue. If more
significant security is needed you should use the approach described in the next section. Alternatively
remember-me services should simply not be used at all.

If you are familiar with the topics discussed in the chapter on namespace configuration, you can enable
remember-me authentication just by adding the <remember-me> element:

<http>

...

<remember-me key="myAppKey"/>

</http>

The UserDetailsService will normally be selected automatically. If you have more than one in
your application context, you need to specify which one should be used with the user-service-ref
attribute, where the value is the name of your UserDetailsService bean.

Spring Security Reference

please define title in your docbook file! 90

15.3 Persistent Token Approach

This approach is based on the article http://jaspan.com/
improved_persistent_login_cookie_best_practice with some minor modifications 1. To use the this
approach with namespace configuration, you would supply a datasource reference:

<http>

...

<remember-me data-source-ref="someDataSource"/>

</http>

The database should contain a persistent_logins table, created using the following SQL (or
equivalent):

create table persistent_logins (username varchar(64) not null,

 series varchar(64) primary key,

 token varchar(64) not null,

 last_used timestamp not null)

15.4 Remember-Me Interfaces and Implementations

Remember-me authentication is not used with basic authentication, given it is often not used with
HttpSession s. Remember-me is used with UsernamePasswordAuthenticationFilter, and
is implemented via hooks in the AbstractAuthenticationProcessingFilter superclass. The
hooks will invoke a concrete RememberMeServices at the appropriate times. The interface looks like
this:

Authentication autoLogin(HttpServletRequest request, HttpServletResponse response);

void loginFail(HttpServletRequest request, HttpServletResponse response);

void loginSuccess(HttpServletRequest request, HttpServletResponse response,

 Authentication successfulAuthentication);

Please refer to the JavaDocs for a fuller discussion on what the methods do, although
note at this stage that AbstractAuthenticationProcessingFilter only calls the
loginFail() and loginSuccess() methods. The autoLogin() method is called by
RememberMeAuthenticationFilter whenever the SecurityContextHolder does not contain
an Authentication. This interface therefore provides the underlying remember-me implementation
with sufficient notification of authentication-related events, and delegates to the implementation
whenever a candidate web request might contain a cookie and wish to be remembered. This design
allows any number of remember-me implementation strategies. We’ve seen above that Spring Security
provides two implementations. We’ll look at these in turn.

TokenBasedRememberMeServices

This implementation supports the simpler approach described in
Section 15.2, “Simple Hash-Based Token Approach”. TokenBasedRememberMeServices

generates a RememberMeAuthenticationToken, which is processed by
RememberMeAuthenticationProvider. A key is shared between this authentication provider
and the TokenBasedRememberMeServices. In addition, TokenBasedRememberMeServices
requires A UserDetailsService from which it can retrieve the username and password for signature

1Essentially, the username is not included in the cookie, to prevent exposing a valid login name unecessarily. There is a discussion
on this in the comments section of this article.

http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice

Spring Security Reference

please define title in your docbook file! 91

comparison purposes, and generate the RememberMeAuthenticationToken to contain the correct
GrantedAuthority s. Some sort of logout command should be provided by the application that
invalidates the cookie if the user requests this. TokenBasedRememberMeServices also implements
Spring Security’s LogoutHandler interface so can be used with LogoutFilter to have the cookie
cleared automatically.

The beans required in an application context to enable remember-me services are as follows:

<bean id="rememberMeFilter" class=

"org.springframework.security.web.authentication.rememberme.RememberMeAuthenticationFilter">

<property name="rememberMeServices" ref="rememberMeServices"/>

<property name="authenticationManager" ref="theAuthenticationManager" />

</bean>

<bean id="rememberMeServices" class=

"org.springframework.security.web.authentication.rememberme.TokenBasedRememberMeServices">

<property name="userDetailsService" ref="myUserDetailsService"/>

<property name="key" value="springRocks"/>

</bean>

<bean id="rememberMeAuthenticationProvider" class=

"org.springframework.security.authentication.RememberMeAuthenticationProvider">

<property name="key" value="springRocks"/>

</bean>

Don’t forget to add your RememberMeServices implementation to your
UsernamePasswordAuthenticationFilter.setRememberMeServices() property, include the
RememberMeAuthenticationProvider in your AuthenticationManager.setProviders()
list, and add RememberMeAuthenticationFilter into your FilterChainProxy (typically
immediately after your UsernamePasswordAuthenticationFilter).

PersistentTokenBasedRememberMeServices

This class can be used in the same way as TokenBasedRememberMeServices, but it additionally
needs to be configured with a PersistentTokenRepository to store the tokens. There are two
standard implementations.

• InMemoryTokenRepositoryImpl which is intended for testing only.

• JdbcTokenRepositoryImpl which stores the tokens in a database.

The database schema is described above in Section 15.3, “Persistent Token Approach”.

Spring Security Reference

please define title in your docbook file! 92

16. Cross Site Request Forgery (CSRF)

This section discusses Spring Security’s Cross Site Request Forgery (CSRF) support.

16.1 CSRF Attacks

Before we discuss how Spring Security can protect applications from CSRF attacks, we will explain
what a CSRF attack is. Let’s take a look at a concrete example to get a better understanding.

Assume that your bank’s website provides a form that allows transferring money from the currently
logged in user to another bank account. For example, the HTTP request might look like:

POST /transfer HTTP/1.1

Host: bank.example.com

Cookie: JSESSIONID=randomid; Domain=bank.example.com; Secure; HttpOnly

Content-Type: application/x-www-form-urlencoded

amount=100.00&routingNumber=1234&account=9876

Now pretend you authenticate to your bank’s website and then, without logging out, visit an evil website.
The evil website contains an HTML page with the following form:

<form action="https://bank.example.com/transfer" method="post">

<input type="hidden"

 name="amount"

 value="100.00"/>

<input type="hidden"

 name="routingNumber"

 value="evilsRoutingNumber"/>

<input type="hidden"

 name="account"

 value="evilsAccountNumber"/>

<input type="submit"

 value="Win Money!"/>

</form>

You like to win money, so you click on the submit button. In the process, you have unintentionally
transferred $100 to a malicious user. This happens because, while the evil website cannot see your
cookies, the cookies associated with your bank are still sent along with the request.

Worst yet, this whole process could have been automated using JavaScript. This means you didn’t even
need to click on the button. So how do we protect ourselves from such attacks?

16.2 Synchronizer Token Pattern

The issue is that the HTTP request from the bank’s website and the request from the evil website are
exactly the same. This means there is no way to reject requests coming from the evil website and allow
requests coming from the bank’s website. To protect against CSRF attacks we need to ensure there is
something in the request that the evil site is unable to provide.

One solution is to use the Synchronizer Token Pattern. This solution is to ensure that each request
requires, in addition to our session cookie, a randomly generated token as an HTTP parameter. When
a request is submitted, the server must look up the expected value for the parameter and compare it
against the actual value in the request. If the values do not match, the request should fail.

We can relax the expectations to only require the token for each HTTP request that updates state.
This can be safely done since the same origin policy ensures the evil site cannot read the response.

http://en.wikipedia.org/wiki/Cross-site_request_forgery
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern

Spring Security Reference

please define title in your docbook file! 93

Additionally, we do not want to include the random token in HTTP GET as this can cause the tokens
to be leaked.

Let’s take a look at how our example would change. Assume the randomly generated token is present
in an HTTP parameter named _csrf. For example, the request to transfer money would look like this:

POST /transfer HTTP/1.1

Host: bank.example.com

Cookie: JSESSIONID=randomid; Domain=bank.example.com; Secure; HttpOnly

Content-Type: application/x-www-form-urlencoded

amount=100.00&routingNumber=1234&account=9876&_csrf=<secure-random>

You will notice that we added the _csrf parameter with a random value. Now the evil website will not
be able to guess the correct value for the _csrf parameter (which must be explicitly provided on the evil
website) and the transfer will fail when the server compares the actual token to the expected token.

16.3 When to use CSRF protection

When should you use CSRF protection? Our recommendation is to use CSRF protection for any request
that could be processed by a browser by normal users. If you are only creating a service that is used
by non-browser clients, you will likely want to disable CSRF protection.

CSRF protection and JSON

A common question is "do I need to protect JSON requests made by javascript?" The short answer
is, it depends. However, you must be very careful as there are CSRF exploits that can impact JSON
requests. For example, a malicious user can create a CSRF with JSON using the following form:

<form action="https://bank.example.com/transfer" method="post" enctype="text/plain">

<input name='{"amount":100,"routingNumber":"evilsRoutingNumber","account":"evilsAccountNumber",

 "ignore_me":"' value='test"}' type='hidden'>

<input type="submit"

 value="Win Money!"/>

</form>

This will produce the following JSON structure

{ "amount": 100,

"routingNumber": "evilsRoutingNumber",

"account": "evilsAccountNumber",

"ignore_me": "=test"

}

If an application were not validating the Content-Type, then it would be exposed to this exploit.
Depending on the setup, a Spring MVC application that validates the Content-Type could still be
exploited by updating the URL suffix to end with ".json" as shown below:

<form action="https://bank.example.com/transfer.json" method="post" enctype="text/plain">

<input name='{"amount":100,"routingNumber":"evilsRoutingNumber","account":"evilsAccountNumber",

 "ignore_me":"' value='test"}' type='hidden'>

<input type="submit"

 value="Win Money!"/>

</form>

CSRF and Stateless Browser Applications

What if my application is stateless? That doesn’t necessarily mean you are protected. In fact, if a
user does not need to perform any actions in the web browser for a given request, they are likely still
vulnerable to CSRF attacks.

http://blog.opensecurityresearch.com/2012/02/json-csrf-with-parameter-padding.html

Spring Security Reference

please define title in your docbook file! 94

For example, consider an application uses a custom cookie that contains all the state within it for
authentication instead of the JSESSIONID. When the CSRF attack is made the custom cookie will
be sent with the request in the same manner that the JSESSIONID cookie was sent in our previous
example.

Users using basic authentication are also vulnerable to CSRF attacks since the browser will
automatically include the username password in any requests in the same manner that the JSESSIONID
cookie was sent in our previous example.

16.4 Using Spring Security CSRF Protection

So what are the steps necessary to use Spring Security’s to protect our site against CSRF attacks? The
steps to using Spring Security’s CSRF protection are outlined below:

• Use proper HTTP verbs

• Configure CSRF Protection

• Include the CSRF Token

Use proper HTTP verbs

The first step to protecting against CSRF attacks is to ensure your website uses proper HTTP verbs.
Specifically, before Spring Security’s CSRF support can be of use, you need to be certain that your
application is using PATCH, POST, PUT, and/or DELETE for anything that modifies state.

This is not a limitation of Spring Security’s support, but instead a general requirement for proper CSRF
prevention. The reason is that including private information in an HTTP GET can cause the information to
be leaked. See RFC 2616 Section 15.1.3 Encoding Sensitive Information in URI’s for general guidance
on using POST instead of GET for sensitive information.

Configure CSRF Protection

The next step is to include Spring Security’s CSRF protection within your application. Some frameworks
handle invalid CSRF tokens by invaliding the user’s session, but this causes its own problems. Instead
by default Spring Security’s CSRF protection will produce an HTTP 403 access denied. This can
be customized by configuring the AccessDeniedHandler to process InvalidCsrfTokenException
differently.

As of Spring Security 4.0, CSRF protection is enabled by default with XML configuration. If you would
like to disable CSRF protection, the corresponding XML configuration can be seen below.

<http>

 <!-- ... -->

 <csrf disabled="true"/>

</http>

CSRF protection is enabled by default with Java configuration. If you would like to disable CSRF,
the corresponding Java configuration can be seen below. Refer to the Javadoc of csrf() for additional
customizations in how CSRF protection is configured.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3

Spring Security Reference

please define title in your docbook file! 95

@EnableWebSecurity

public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 .csrf().disable();

}

}

Include the CSRF Token

Form Submissions

The last step is to ensure that you include the CSRF token in all PATCH, POST, PUT, and DELETE
methods. One way to approach this is to use the _csrf request attribute to obtain the current
CsrfToken. An example of doing this with a JSP is shown below:

<c:url var="logoutUrl" value="/logout"/>

<form action="${logoutUrl}"

 method="post">

<input type="submit"

 value="Log out" />

<input type="hidden"

 name="${_csrf.parameterName}"

 value="${_csrf.token}"/>

</form>

An easier approach is to use the csrfInput tag from the Spring Security JSP tag library.

Note

If you are using Spring MVC <form:form> tag or Thymeleaf 2.1+ and are using
@EnableWebSecurity, the CsrfToken is automatically included for you (using the
CsrfRequestDataValueProcessor).

Ajax and JSON Requests

If you are using JSON, then it is not possible to submit the CSRF token within an HTTP parameter.
Instead you can submit the token within a HTTP header. A typical pattern would be to include the CSRF
token within your meta tags. An example with a JSP is shown below:

<html>

<head>

 <meta name="_csrf" content="${_csrf.token}"/>

 <!-- default header name is X-CSRF-TOKEN -->

 <meta name="_csrf_header" content="${_csrf.headerName}"/>

 <!-- ... -->

</head>

<!-- ... -->

Instead of manually creating the meta tags, you can use the simpler csrfMetaTags tag from the Spring
Security JSP tag library.

You can then include the token within all your Ajax requests. If you were using jQuery, this could be
done with the following:

http://www.thymeleaf.org/whatsnew21.html#reqdata

Spring Security Reference

please define title in your docbook file! 96

$(function () {

var token = $("meta[name='_csrf']").attr("content");

var header = $("meta[name='_csrf_header']").attr("content");

$(document).ajaxSend(function(e, xhr, options) {

 xhr.setRequestHeader(header, token);

});

});

As an alternative to jQuery, we recommend using cujoJS’s rest.js. The rest.js module provides advanced
support for working with HTTP requests and responses in RESTful ways. A core capability is the ability
to contextualize the HTTP client adding behavior as needed by chaining interceptors on to the client.

var client = rest.chain(csrf, {

token: $("meta[name='_csrf']").attr("content"),

name: $("meta[name='_csrf_header']").attr("content")

});

The configured client can be shared with any component of the application that needs to make a
request to the CSRF protected resource. One significant different between rest.js and jQuery is that only
requests made with the configured client will contain the CSRF token, vs jQuery where all requests will
include the token. The ability to scope which requests receive the token helps guard against leaking the
CSRF token to a third party. Please refer to the rest.js reference documentation for more information
on rest.js.

16.5 CSRF Caveats

There are a few caveats when implementing CSRF.

Timeouts

One issue is that the expected CSRF token is stored in the HttpSession, so as soon as the HttpSession
expires your configured AccessDeniedHandler will receive a InvalidCsrfTokenException. If you are
using the default AccessDeniedHandler, the browser will get an HTTP 403 and display a poor error
message.

Note

One might ask why the expected CsrfToken isn’t stored in a cookie. This is because there are
known exploits in which headers (i.e. specify the cookies) can be set by another domain. This is
the same reason Ruby on Rails no longer skips CSRF checks when the header X-Requested-
With is present. See this webappsec.org thread for details on how to perform the exploit. Another
disadvantage is that by removing the state (i.e. the timeout) you lose the ability to forcibly terminate
the token if it is compromised.

A simple way to mitigate an active user experiencing a timeout is to have some JavaScript that lets
the user know their session is about to expire. The user can click a button to continue and refresh the
session.

Alternatively, specifying a custom AccessDeniedHandler allows you to process the
InvalidCsrfTokenException any way you like. For an example of how to customize the
AccessDeniedHandler refer to the provided links for both xml and Java configuration.

http://cujojs.com/
https://github.com/cujojs/rest
https://github.com/cujojs/rest/tree/master/docs
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://weblog.rubyonrails.org/2011/2/8/csrf-protection-bypass-in-ruby-on-rails/
http://lists.webappsec.org/pipermail/websecurity_lists.webappsec.org/2011-February/007533.html
https://github.com/spring-projects/spring-security/blob/3.2.0.RC1/config/src/test/groovy/org/springframework/security/config/annotation/web/configurers/NamespaceHttpAccessDeniedHandlerTests.groovy#L64

Spring Security Reference

please define title in your docbook file! 97

Logging In

In order to protect against forging log in requests the log in form should be protected against CSRF
attacks too. Since the CsrfToken is stored in HttpSession, this means an HttpSession will be created
as soon as CsrfToken token attribute is accessed. While this sounds bad in a RESTful / stateless
architecture the reality is that state is necessary to implement practical security. Without state, we have
nothing we can do if a token is compromised. Practically speaking, the CSRF token is quite small in
size and should have a negligible impact on our architecture.

Logging Out

Adding CSRF will update the LogoutFilter to only use HTTP POST. This ensures that log out requires
a CSRF token and that a malicious user cannot forcibly log out your users.

One approach is to use a form for log out. If you really want a link, you can use JavaScript to have the
link perform a POST (i.e. maybe on a hidden form). For browsers with JavaScript that is disabled, you
can optionally have the link take the user to a log out confirmation page that will perform the POST.

If you really want to use HTTP GET with logout you can do so, but remember this is generally not
recommended. For example, the following Java Configuration will perform logout with the URL /logout
is requested with any HTTP method:

@EnableWebSecurity

public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 .logout()

 .logoutRequestMatcher(new AntPathRequestMatcher("/logout"));

}

}

Multipart (file upload)

There are two options to using CSRF protection with multipart/form-data. Each option has its tradeoffs.

• Placing MultipartFilter before Spring Security

• Include CSRF token in action

Note

Before you integrate Spring Security’s CSRF protection with multipart file upload, ensure that you
can upload without the CSRF protection first. More information about using multipart forms with
Spring can be found within the 17.10 Spring’s multipart (file upload) support section of the Spring
reference and the MultipartFilter javadoc.

Placing MultipartFilter before Spring Security

The first option is to ensure that the MultipartFilter is specified before the Spring Security filter.
Specifying the MultipartFilter before the Spring Security filter means that there is no authorization
for invoking the MultipartFilter which means anyone can place temporary files on your server.
However, only authorized users will be able to submit a File that is processed by your application. In

http://en.wikipedia.org/wiki/Cross-site_request_forgery#Forging_login_requests
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html#mvc-multipart
http://docs.spring.io/spring/docs/3.2.x/javadoc-api/org/springframework/web/multipart/support/MultipartFilter.html

Spring Security Reference

please define title in your docbook file! 98

general, this is the recommended approach because the temporary file upload should have a negligble
impact on most servers.

To ensure MultipartFilter is specified before the Spring Security filter with java configuration, users
can override beforeSpringSecurityFilterChain as shown below:

public class SecurityApplicationInitializer extends AbstractSecurityWebApplicationInitializer {

 @Override

 protected void beforeSpringSecurityFilterChain(ServletContext servletContext) {

 insertFilters(servletContext, new MultipartFilter());

 }

}

To ensure MultipartFilter is specified before the Spring Security filter with XML configuration,
users can ensure the <filter-mapping> element of the MultipartFilter is placed before the
springSecurityFilterChain within the web.xml as shown below:

<filter>

 <filter-name>MultipartFilter</filter-name>

 <filter-class>org.springframework.web.multipart.support.MultipartFilter</filter-class>

</filter>

<filter>

 <filter-name>springSecurityFilterChain</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

 <filter-name>MultipartFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>

 <filter-name>springSecurityFilterChain</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Include CSRF token in action

If allowing unauthorized users to upload temporariy files is not acceptable, an alternative is to place the
MultipartFilter after the Spring Security filter and include the CSRF as a query parameter in the
action attribute of the form. An example with a jsp is shown below

<form action="./upload?${_csrf.parameterName}=${_csrf.token}" method="post" enctype="multipart/form-

data">

The disadvantage to this approach is that query parameters can be leaked. More genearlly, it is
considered best practice to place sensitive data within the body or headers to ensure it is not leaked.
Additional information can be found in RFC 2616 Section 15.1.3 Encoding Sensitive Information in URI’s.

HiddenHttpMethodFilter

The HiddenHttpMethodFilter should be placed before the Spring Security filter. In general this is true,
but it could have additional implications when protecting against CSRF attacks.

Note that the HiddenHttpMethodFilter only overrides the HTTP method on a POST, so this is actually
unlikely to cause any real problems. However, it is still best practice to ensure it is placed before Spring
Security’s filters.

16.6 Overriding Defaults

Spring Security’s goal is to provide defaults that protect your users from exploits. This does not mean
that you are forced to accept all of its defaults.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3

Spring Security Reference

please define title in your docbook file! 99

For example, you can provide a custom CsrfTokenRepository to override the way in which the
CsrfToken is stored.

You can also specify a custom RequestMatcher to determine which requests are protected by CSRF
(i.e. perhaps you don’t care if log out is exploited). In short, if Spring Security’s CSRF protection
doesn’t behave exactly as you want it, you are able to customize the behavior. Refer to the the
section called “<csrf>” documentation for details on how to make these customizations with XML and
the CsrfConfigurer javadoc for details on how to make these customizations when using Java
configuration.

Spring Security Reference

please define title in your docbook file! 100

17. Security HTTP Response Headers

This section discusses Spring Security’s support for adding various security headers to the response.

17.1 Default Security Headers

Spring Security allows users to easily inject the default security headers to assist in protecting their
application. The default for Spring Security is to include the following headers:

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Pragma: no-cache

Expires: 0

X-Content-Type-Options: nosniff

Strict-Transport-Security: max-age=31536000 ; includeSubDomains

X-Frame-Options: DENY

X-XSS-Protection: 1; mode=block

Note

Strict-Transport-Security is only added on HTTPS requests

For additional details on each of these headers, refer to the corresponding sections:

• Cache Control

• Content Type Options

• HTTP Strict Transport Security

• X-Frame-Options

• X-XSS-Protection

While each of these headers are considered best practice, it should be noted that not all clients utilize
the headers, so additional testing is encouraged.

You can customize specific headers. For example, assume that want your HTTP response headers to
look like the following:

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Pragma: no-cache

Expires: 0

X-Content-Type-Options: nosniff

X-Frame-Options: SAMEORIGIN

X-XSS-Protection: 1; mode=block

Specifically, you want all of the default headers with the following customizations:

• X-Frame-Options to allow any request from same domain

• HTTP Strict Transport Security (HSTS) will not be addded to the response

You can easily do this with the following Java Configuration:

Spring Security Reference

please define title in your docbook file! 101

@EnableWebSecurity

public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 // ...

 .headers()

 .frameOptions()

 .sameOrigin()

 .and()

 .hsts().disable();

}

}

Alternatively, if you are using Spring Security XML Configuration, you can use the following:

<http>

 <!-- ... -->

 <headers>

 <frame-options policy="SAMEORIGIN" />

 <hsts disable="true"/>

 </headers>

</http>

If you do not want the defaults to be added and want explicit control over what should be used, you can
disable the defaults. An example for both Java and XML based configuration is provided below:

If you are using Spring Security’s Java Configuration the following will only add Cache Control.

@EnableWebSecurity

public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 // ...

 .headers()

 // do not use any default headers unless explicitly listed

 .defaultsDisabled()

 .cacheControl();

}

}

The following XML will only add Cache Control.

<http>

 <!-- ... -->

 <headers defaults-disabled="true">

 <cache-control/>

 </headers>

</http>

If necessary, you can disable all of the HTTP Security response headers with the following Java
Configuration:

Spring Security Reference

please define title in your docbook file! 102

@EnableWebSecurity

public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 // ...

 .headers().disable();

}

}

If necessary, you can disable all of the HTTP Security response headers with the following XML
configuration below:

<http>

 <!-- ... -->

 <headers disabled="true" />

</http>

Cache Control

In the past Spring Security required you to provide your own cache control for your web application.
This seemed reasonable at the time, but browser caches have evolved to include caches for secure
connections as well. This means that a user may view an authenticated page, log out, and then a
malicious user can use the browser history to view the cached page. To help mitigate this Spring Security
has added cache control support which will insert the following headers into you response.

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Pragma: no-cache

Expires: 0

Simply adding the <headers> element with no child elements will automatically add Cache Control and
quite a few other protections. However, if you only want cache control, you can enable this feature
using Spring Security’s XML namespace with the <cache-control> element and the headers@defaults-
disabled attribute.

<http>

 <!-- ... -->

 <headers defaults-disable="true">

 <cache-control />

 </headers>

</http>

Similarly, you can enable only cache control within Java Configuration with the following:

@EnableWebSecurity

public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 // ...

 .headers()

 .defaultsDisabled()

 .cacheControl();

}

}

Spring Security Reference

please define title in your docbook file! 103

If you actually want to cache specific responses, your application can selectively invoke
HttpServletResponse.setHeader(String,String) to override the header set by Spring Security. This is
useful to ensure things like CSS, JavaScript, and images are properly cached.

When using Spring Web MVC, this is typically done within your configuration. For example, the following
configuration will ensure that the cache headers are set for all of your resources:

@EnableWebMvc

public class WebMvcConfiguration extends WebMvcConfigurerAdapter {

 @Override

 public void addResourceHandlers(ResourceHandlerRegistry registry) {

 registry

 .addResourceHandler("/resources/**")

 .addResourceLocations("/resources/")

 .setCachePeriod(31556926);

 }

 // ...

}

Content Type Options

Historically browsers, including Internet Explorer, would try to guess the content type of a request using
content sniffing. This allowed browsers to improve the user experience by guessing the content type on
resources that had not specified the content type. For example, if a browser encountered a JavaScript
file that did not have the content type specified, it would be able to guess the content type and then
execute it.

Note

There are many additional things one should do (i.e. only display the document in a distinct
domain, ensure Content-Type header is set, sanitize the document, etc) when allowing content
to be uploaded. However, these measures are out of the scope of what Spring Security provides.
It is also important to point out when disabling content sniffing, you must specify the content type
in order for things to work properly.

The problem with content sniffing is that this allowed malicious users to use polyglots (i.e. a file that is
valid as multiple content types) to execute XSS attacks. For example, some sites may allow users to
submit a valid postscript document to a website and view it. A malicious user might create a postscript
document that is also a valid JavaScript file and execute a XSS attack with it.

Content sniffing can be disabled by adding the following header to our response:

X-Content-Type-Options: nosniff

Just as with the cache control element, the nosniff directive is added by default when using the
<headers> element with no child elements. However, if you want more control over which headers are
added you can use the <content-type-options> element and the headers@defaults-disabled attribute
as shown below:

<http>

 <!-- ... -->

 <headers defaults-disabled="true">

 <content-type-options />

 </headers>

</http>

http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletResponse.html#setHeader(java.lang.String,java.lang.String)
http://en.wikipedia.org/wiki/Content_sniffing
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf
http://webblaze.cs.berkeley.edu/papers/barth-caballero-song.pdf

Spring Security Reference

please define title in your docbook file! 104

The X-Content-Type-Options header is added by default with Spring Security Java configuration. If you
want more control over the headers, you can explicitly specify the content type options with the following:

@EnableWebSecurity

public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 // ...

 .headers()

 .defaultsDisabled()

 .contentTypeOptions();

}

}

HTTP Strict Transport Security (HSTS)

When you type in your bank’s website, do you enter mybank.example.com or do you enter https://
mybank.example.com? If you omit the https protocol, you are potentially vulnerable to Man in the
Middle attacks. Even if the website performs a redirect to https://mybank.example.com a malicious
user could intercept the initial HTTP request and manipulate the response (i.e. redirect to https://
mibank.example.com and steal their credentials).

Many users omit the https protocol and this is why HTTP Strict Transport Security (HSTS) was created.
Once mybank.example.com is added as a HSTS host, a browser can know ahead of time that any
request to mybank.example.com should be interpreted as https://mybank.example.com. This greatly
reduces the possibility of a Man in the Middle attack occurring.

Note

In accordance with RFC6797, the HSTS header is only injected into HTTPS responses. In order
for the browser to acknowledge the header, the browser must first trust the CA that signed the
SSL certificate used to make the connection (not just the SSL certificate).

One way for a site to be marked as a HSTS host is to have the host preloaded into the browser. Another
is to add the "Strict-Transport-Security" header to the response. For example the following would instruct
the browser to treat the domain as an HSTS host for a year (there are approximately 31536000 seconds
in a year):

Strict-Transport-Security: max-age=31536000 ; includeSubDomains

The optional includeSubDomains directive instructs Spring Security that subdomains (i.e.
secure.mybank.example.com) should also be treated as an HSTS domain.

As with the other headers, Spring Security adds HSTS by default. You can customize HSTS headers
with the <hsts> element as shown below:

<http>

 <!-- ... -->

 <headers>

 <hsts

 include-subdomains="true"

 max-age-seconds="31536000" />

 </headers>

</http>

https://mybank.example.com
https://mybank.example.com
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://mybank.example.com
https://mibank.example.com
https://mibank.example.com
http://tools.ietf.org/html/rfc6797
http://tools.ietf.org/html/rfc6797#section-5.1
https://mybank.example.com
http://tools.ietf.org/html/rfc6797#section-7.2

Spring Security Reference

please define title in your docbook file! 105

Similarly, you can enable only HSTS headers with Java Configuration:

@EnableWebSecurity

public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 // ...

 .headers()

 .httpStrictTransportSecurity()

 .includeSubdomains(true)

 .maxAgeSeconds(31536000);

}

}

X-Frame-Options

Allowing your website to be added to a frame can be a security issue. For example, using clever CSS
styling users could be tricked into clicking on something that they were not intending (video demo). For
example, a user that is logged into their bank might click a button that grants access to other users.
This sort of attack is known as Clickjacking.

Note

Another modern approach to dealing with clickjacking is using a Content Security Policy. Spring
Security does not provide support for this as the specification is not released and it is quite a
bit more complicated. However, you could use the static headers feature to implement this. To
stay up to date with this issue and to see how you can implement it with Spring Security refer
to SEC-2117

There are a number ways to mitigate clickjacking attacks. For example, to protect legacy browsers from
clickjacking attacks you can use frame breaking code. While not perfect, the frame breaking code is the
best you can do for the legacy browsers.

A more modern approach to address clickjacking is to use X-Frame-Options header:

X-Frame-Options: DENY

The X-Frame-Options response header instructs the browser to prevent any site with this header in the
response from being rendered within a frame. By default, Spring Security disables rendering within an
iframe.

You can customize X-Frame-Options with the frame-options element. For example, the following will
instruct Spring Security to use "X-Frame-Options: SAMEORIGIN" which allows iframes within the same
domain:

<http>

 <!-- ... -->

 <headers>

 <frame-options

 policy="SAMEORIGIN" />

 </headers>

</http>

Similarly, you can customize frame options to use the same origin within Java Configuration using the
following:

http://www.youtube.com/watch?v=3mk0RySeNsU
http://en.wikipedia.org/wiki/Clickjacking
http://www.w3.org/TR/CSP/
https://jira.springsource.org/browse/SEC-2117
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet#Best-for-now_Legacy_Browser_Frame_Breaking_Script
https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options

Spring Security Reference

please define title in your docbook file! 106

@EnableWebSecurity

public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 // ...

 .headers()

 .frameOptions()

 .sameOrigin();

}

}

X-XSS-Protection

Some browsers have built in support for filtering out reflected XSS attacks. This is by no means full
proof, but does assist in XSS protection.

The filtering is typically enabled by default, so adding the header typically just ensures it is enabled and
instructs the browser what to do when a XSS attack is detected. For example, the filter might try to
change the content in the least invasive way to still render everything. At times, this type of replacement
can become a XSS vulnerability in itself. Instead, it is best to block the content rather than attempt to
fix it. To do this we can add the following header:

X-XSS-Protection: 1; mode=block

This header is included by default. However, we can customize it if we wanted. For example:

<http>

 <!-- ... -->

 <headers>

 <xss-protection block="false"/>

 </headers>

</http>

Similarly, you can customize xss protection within Java Configuration with the following:

@EnableWebSecurity

public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 // ...

 .headers()

 .xssProtection()

 .block(false);

}

}

17.2 Custom Headers

Spring Security has mechanisms to make it convenient to add the more common security headers to
your application. However, it also provides hooks to enable adding custom headers.

Static Headers

There may be times you wish to inject custom security headers into your application that are not
supported out of the box. For example, perhaps you wish to have early support for Content Security

https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(OWASP-DV-001)
http://hackademix.net/2009/11/21/ies-xss-filter-creates-xss-vulnerabilities/
http://www.w3.org/TR/CSP/

Spring Security Reference

please define title in your docbook file! 107

Policy in order to ensure that resources are only loaded from the same origin. Since support for
Content Security Policy has not been finalized, browsers use one of two common extension headers to
implement the feature. This means we will need to inject the policy twice. An example of the headers
can be seen below:

X-Content-Security-Policy: default-src 'self'

X-WebKit-CSP: default-src 'self'

When using the XML namespace, these headers can be added to the response using the <header>
element as shown below:

<http>

 <!-- ... -->

 <headers>

 <header name="X-Content-Security-Policy" value="default-src 'self'"/>

 <header name="X-WebKit-CSP" value="default-src 'self'"/>

 </headers>

</http>

Similarly, the headers could be added to the response using Java Configuration as shown in the
following:

@EnableWebSecurity

public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 // ...

 .headers()

 .addHeaderWriter(new StaticHeadersWriter("X-Content-Security-Policy","default-src 'self'"))

 .addHeaderWriter(new StaticHeadersWriter("X-WebKit-CSP","default-src 'self'"));

}

}

Headers Writer

When the namespace or Java configuration does not support the headers you want, you can create a
custom HeadersWriter instance or even provide a custom implementation of the HeadersWriter.

Let’s take a look at an example of using an custom instance of XFrameOptionsHeaderWriter.
Perhaps you want to allow framing of content for the same origin. This is easily supported by setting the
policy attribute to "SAMEORIGIN", but let’s take a look at a more explicit example using the ref attribute.

<http>

 <!-- ... -->

 <headers>

 <header ref="frameOptionsWriter"/>

 </headers>

</http>

<!-- Requires the c-namespace.

See http://static.springsource.org/spring/docs/3.2.x/spring-framework-reference/html/beans.html#beans-c-

namespace

-->

<beans:bean id="frameOptionsWriter"

 class="org.springframework.security.web.header.writers.frameoptions.XFrameOptionsHeaderWriter"

 c:frameOptionsMode="SAMEORIGIN"/>

We could also restrict framing of content to the same origin with Java configuration:

http://www.w3.org/TR/CSP/

Spring Security Reference

please define title in your docbook file! 108

@EnableWebSecurity

public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 // ...

 .headers()

 .addHeaderWriter(new XFrameOptionsHeaderWriter(XFrameOptionsMode.SAMEORIGIN));

}

}

DelegatingRequestMatcherHeaderWriter

At times you may want to only write a header for certain requests. For example, perhaps
you want to only protect your log in page from being framed. You could use the
DelegatingRequestMatcherHeaderWriter to do so. When using the XML namespace
configuration, this can be done with the following:

<http>

 <!-- ... -->

 <headers>

 <frame-options disabled="true"/>

 <header ref="headerWriter"/>

 </headers>

</http>

<beans:bean id="headerWriter"

 class="org.springframework.security.web.header.writers.DelegatingRequestMatcherHeaderWriter">

 <beans:constructor-arg>

 <bean class="org.springframework.security.web.util.matcher.AntPathRequestMatcher"

 c:pattern="/login"/>

 </beans:constructor-arg>

 <beans:constructor-arg>

 <beans:bean

 class="org.springframework.security.web.header.writers.frameoptions.XFrameOptionsHeaderWriter"/>

 </beans:constructor-arg>

</beans:bean>

We could also prevent framing of content to the log in page using java configuration:

@EnableWebSecurity

public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

@Override

protected void configure(HttpSecurity http) throws Exception {

 RequestMatcher matcher = new AntPathRequestMatcher("/login");

 DelegatingRequestMatcherHeaderWriter headerWriter =

 new DelegatingRequestMatcherHeaderWriter(matcher,new XFrameOptionsHeaderWriter());

 http

 // ...

 .headers()

 .frameOptions().disabled()

 .addHeaderWriter(headerWriter);

}

}

Spring Security Reference

please define title in your docbook file! 109

18. Session Management
HTTP session related functonality is handled by a combination of the SessionManagementFilter
and the SessionAuthenticationStrategy interface, which the filter delegates to. Typical usage
includes session-fixation protection attack prevention, detection of session timeouts and restrictions on
how many sessions an authenticated user may have open concurrently.

18.1 SessionManagementFilter

The SessionManagementFilter checks the contents of the SecurityContextRepository
against the current contents of the SecurityContextHolder to determine whether a user has
been authenticated during the current request, typically by a non-interactive authentication mechanism,
such as pre-authentication or remember-me 1. If the repository contains a security context, the filter
does nothing. If it doesn’t, and the thread-local SecurityContext contains a (non-anonymous)
Authentication object, the filter assumes they have been authenticated by a previous filter in the
stack. It will then invoke the configured SessionAuthenticationStrategy.

If the user is not currently authenticated, the filter will check whether an invalid session ID has been
requested (because of a timeout, for example) and will invoke the configured`InvalidSessionStrategy`,
if one is set. The most common behaviour is just to redirect to a fixed URL and this is encapsulated
in the standard implementation`SimpleRedirectInvalidSessionStrategy`. The latter is also used when
configuring an invalid session URL through the namespace,as described earlier.

18.2 SessionAuthenticationStrategy

SessionAuthenticationStrategy is used by both SessionManagementFilter and
AbstractAuthenticationProcessingFilter, so if you are using a customized form-login class,
for example, you will need to inject it into both of these. In this case, a typical configuration, combining
the namespace and custom beans might look like this:

<http>

<custom-filter position="FORM_LOGIN_FILTER" ref="myAuthFilter" />

<session-management session-authentication-strategy-ref="sas"/>

</http>

<beans:bean id="myAuthFilter" class=

"org.springframework.security.web.authentication.UsernamePasswordAuthenticationFilter">

 <beans:property name="sessionAuthenticationStrategy" ref="sas" />

 ...

</beans:bean>

<beans:bean id="sas" class=

"org.springframework.security.web.authentication.session.SessionFixationProtectionStrategy" />

Note that the use of the default, SessionFixationProtectionStrategy may cause issues if you
are storing beans in the session which implement HttpSessionBindingListener, including Spring
session-scoped beans. See the Javadoc for this class for more information.

18.3 Concurrency Control

Spring Security is able to prevent a principal from concurrently authenticating to the same application
more than a specified number of times. Many ISVs take advantage of this to enforce licensing, whilst

1Authentication by mechanisms which perform a redirect after authenticating (such as form-login) will not be detected
by`SessionManagementFilter`, as the filter will not be invoked during the authenticating request. Session-management
functionality has to be handled separately in these cases.

Spring Security Reference

please define title in your docbook file! 110

network administrators like this feature because it helps prevent people from sharing login names. You
can, for example, stop user"Batman" from logging onto the web application from two different sessions.
You can either expire their previous login or you can report an error when they try to log in again,
preventing the second login. Note that if you are using the second approach, a user who has not explicitly
logged out (but who has just closed their browser, for example) will not be able to log in again until their
original session expires.

Concurrency control is supported by the namespace, so please check the earlier namespace chapter
for the simplest configuration. Sometimes you need to customize things though.

The implementation uses a specialized version of SessionAuthenticationStrategy, called
ConcurrentSessionControlAuthenticationStrategy.

Note

Previously the concurrent authentication check was made by the ProviderManager, which
could be injected with a ConcurrentSessionController. The latter would check if the user
was attempting to exceed the number of permitted sessions. However, this approach required that
an HTTP session be created in advance, which is undesirable. In Spring Security 3, the user is first
authenticated by the AuthenticationManager and once they are successfully authenticated, a
session is created and the check is made whether they are allowed to have another session open.

To use concurrent session support, you’ll need to add the following to web.xml:

<listener>

 <listener-class>

 org.springframework.security.web.session.HttpSessionEventPublisher

 </listener-class>

</listener>

In addition, you will need to add the ConcurrentSessionFilter to your FilterChainProxy. The
ConcurrentSessionFilter requires two properties, sessionRegistry, which generally points to
an instance of SessionRegistryImpl, and expiredUrl, which points to the page to display when
a session has expired. A configuration using the namespace to create the FilterChainProxy and
other default beans might look like this:

Spring Security Reference

please define title in your docbook file! 111

<http>

<custom-filter position="CONCURRENT_SESSION_FILTER" ref="concurrencyFilter" />

<custom-filter position="FORM_LOGIN_FILTER" ref="myAuthFilter" />

<session-management session-authentication-strategy-ref="sas"/>

</http>

<beans:bean id="concurrencyFilter"

class="org.springframework.security.web.session.ConcurrentSessionFilter">

<beans:property name="sessionRegistry" ref="sessionRegistry" />

<beans:property name="expiredUrl" value="/session-expired.htm" />

</beans:bean>

<beans:bean id="myAuthFilter" class=

"org.springframework.security.web.authentication.UsernamePasswordAuthenticationFilter">

<beans:property name="sessionAuthenticationStrategy" ref="sas" />

<beans:property name="authenticationManager" ref="authenticationManager" />

</beans:bean>

<beans:bean id="sas" class="org.springframework.security.web.authentication.session.CompositeSessionAuthenticationStrategy">

<beans:constructor-arg>

 <beans:list>

 <beans:bean class="org.springframework.security.web.authentication.session.ConcurrentSessionControlAuthenticationStrategy">

 <beans:constructor-arg ref="sessionRegistry"/>

 <beans:property name="maximumSessions" value="1" />

 <beans:property name="exceptionIfMaximumExceeded" value="true" />

 </beans:bean>

 <beans:bean class="org.springframework.security.web.authentication.session.SessionFixationProtectionStrategy">

 </beans:bean>

 <beans:bean class="org.springframework.security.web.authentication.session.RegisterSessionAuthenticationStrategy">

 <beans:constructor-arg ref="sessionRegistry"/>

 </beans:bean>

 </beans:list>

</beans:constructor-arg>

</beans:bean>

<beans:bean id="sessionRegistry"

 class="org.springframework.security.core.session.SessionRegistryImpl" />

Adding the listener to web.xml causes an ApplicationEvent to be published to the Spring
ApplicationContext every time a HttpSession commences or terminates. This is critical, as it
allows the SessionRegistryImpl to be notified when a session ends. Without it, a user will never
be able to log back in again once they have exceeded their session allowance, even if they log out of
another session or it times out.

Querying the SessionRegistry for currently authenticated users and their
sessions

Setting up concurrency-control, either through the namespace or using plain beans has the useful side
effect of providing you with a reference to the SessionRegistry which you can use directly within
your application, so even if you don’t want to restrict the number of sessions a user may have, it may
be worth setting up the infrastructure anyway. You can set the maximumSession property to -1 to
allow unlimited sessions. If you’re using the namespace, you can set an alias for the internally-created
SessionRegistry using the session-registry-alias attribute, providing a reference which you
can inject into your own beans.

The getAllPrincipals() method supplies you with a list of the currently authenticated users.
You can list a user’s sessions by calling the getAllSessions(Object principal, boolean
includeExpiredSessions) method, which returns a list of SessionInformation objects. You

Spring Security Reference

please define title in your docbook file! 112

can also expire a user’s session by calling expireNow() on a SessionInformation instance. When
the user returns to the application, they will be prevented from proceeding. You may find these methods
useful in an administration application, for example. Have a look at the Javadoc for more information.

Spring Security Reference

please define title in your docbook file! 113

19. Anonymous Authentication

19.1 Overview

It’s generally considered good security practice to adopt a "deny-by-default" where you explicitly specify
what is allowed and disallow everything else. Defining what is accessible to unauthenticated users is a
similar situation, particularly for web applications. Many sites require that users must be authenticated
for anything other than a few URLs (for example the home and login pages). In this case it is easiest
to define access configuration attributes for these specific URLs rather than have for every secured
resource. Put differently, sometimes it is nice to say ROLE_SOMETHING is required by default and only
allow certain exceptions to this rule, such as for login, logout and home pages of an application. You
could also omit these pages from the filter chain entirely, thus bypassing the access control checks, but
this may be undesirable for other reasons, particularly if the pages behave differently for authenticated
users.

This is what we mean by anonymous authentication. Note that there is no real conceptual difference
between a user who is "anonymously authenticated" and an unauthenticated user. Spring Security’s
anonymous authentication just gives you a more convenient way to configure your access-control
attributes. Calls to servlet API calls such as getCallerPrincipal, for example, will still return null
even though there is actually an anonymous authentication object in the SecurityContextHolder.

There are other situations where anonymous authentication is useful, such as when an auditing
interceptor queries the SecurityContextHolder to identify which principal was responsible for a
given operation. Classes can be authored more robustly if they know the SecurityContextHolder
always contains an Authentication object, and never null.

19.2 Configuration

Anonymous authentication support is provided automatically when using the HTTP configuration Spring
Security 3.0 and can be customized (or disabled) using the <anonymous> element. You don’t need to
configure the beans described here unless you are using traditional bean configuration.

Three classes that together provide the anonymous authentication feature.
AnonymousAuthenticationToken is an implementation of Authentication, and stores the
GrantedAuthority s which apply to the anonymous principal. There is a corresponding
AnonymousAuthenticationProvider, which is chained into the ProviderManager

so that AnonymousAuthenticationToken s are accepted. Finally, there is an
AnonymousAuthenticationFilter, which is chained after the normal authentication mechanisms
and automatically adds an AnonymousAuthenticationToken to the SecurityContextHolder if
there is no existing Authentication held there. The definition of the filter and authentication provider
appears as follows:

<bean id="anonymousAuthFilter"

 class="org.springframework.security.web.authentication.AnonymousAuthenticationFilter">

<property name="key" value="foobar"/>

<property name="userAttribute" value="anonymousUser,ROLE_ANONYMOUS"/>

</bean>

<bean id="anonymousAuthenticationProvider"

 class="org.springframework.security.authentication.AnonymousAuthenticationProvider">

<property name="key" value="foobar"/>

</bean>

Spring Security Reference

please define title in your docbook file! 114

The key is shared between the filter and authentication provider, so that tokens created by
the former are accepted by the latter 1. The userAttribute is expressed in the form of
usernameInTheAuthenticationToken,grantedAuthority[,grantedAuthority]. This is
the same syntax as used after the equals sign for`InMemoryDaoImpl’s userMap property.

As explained earlier, the benefit of anonymous authentication is that all URI patterns can have security
applied to them. For example:

<bean id="filterSecurityInterceptor"

 class="org.springframework.security.web.access.intercept.FilterSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>

<property name="accessDecisionManager" ref="httpRequestAccessDecisionManager"/>

<property name="securityMetadata">

 <security:filter-security-metadata-source>

 <security:intercept-url pattern='/index.jsp' access='ROLE_ANONYMOUS,ROLE_USER'/>

 <security:intercept-url pattern='/hello.htm' access='ROLE_ANONYMOUS,ROLE_USER'/>

 <security:intercept-url pattern='/logoff.jsp' access='ROLE_ANONYMOUS,ROLE_USER'/>

 <security:intercept-url pattern='/login.jsp' access='ROLE_ANONYMOUS,ROLE_USER'/>

 <security:intercept-url pattern='/**' access='ROLE_USER'/>

 </security:filter-security-metadata-source>" +

</property>

</bean>

19.3 AuthenticationTrustResolver

Rounding out the anonymous authentication discussion is the AuthenticationTrustResolver
interface, with its corresponding AuthenticationTrustResolverImpl implementation. This
interface provides an isAnonymous(Authentication) method, which allows interested classes to
take into account this special type of authentication status. The ExceptionTranslationFilter uses
this interface in processing AccessDeniedException s. If an AccessDeniedException is thrown,
and the authentication is of an anonymous type, instead of throwing a 403 (forbidden) response, the filter
will instead commence the AuthenticationEntryPoint so the principal can authenticate properly.
This is a necessary distinction, otherwise principals would always be deemed "authenticated" and never
be given an opportunity to login via form, basic, digest or some other normal authentication mechanism.

You will often see the ROLE_ANONYMOUS attribute in the above interceptor configuration replaced
with IS_AUTHENTICATED_ANONYMOUSLY, which is effectively the same thing when defining access
controls. This is an example of the use of the AuthenticatedVoter which we will see in
the authorization chapter. It uses an AuthenticationTrustResolver to process this particular
configuration attribute and grant access to anonymous users. the AuthenticatedVoter approach
is more powerful, since it allows you to differentiate between anonymous, remember-me and
fully-authenticated users. If you don’t need this functionality though, then you can stick with
ROLE_ANONYMOUS, which will be processed by Spring Security’s standard RoleVoter.

1The use of the key property should not be regarded as providing any real security here. It is merely a book-keeping exercise.
If you are sharing a ProviderManager which contains an AnonymousAuthenticationProvider in a scenario where it is
possible for an authenticating client to construct the Authentication object (such as with RMI invocations), then a malicious
client could submit an AnonymousAuthenticationToken which it had created itself (with chosen username and authority list).
If the key is guessable or can be found out, then the token would be accepted by the anonymous provider. This isn’t a problem with
normal usage but if you are using RMI you would be best to use a customized ProviderManager which omits the anonymous
provider rather than sharing the one you use for your HTTP authentication mechanisms.

Spring Security Reference

please define title in your docbook file! 115

20. WebSocket Security

Spring Security 4 added support for securing Spring’s WebSocket support. This section describes how
to use Spring Security’s WebSocket support.

Note

You can find a complete working sample of WebSocket security in samples/chat-jc.

Direct JSR-356 Support

Spring Security does not provide direct JSR-356 support because doing so would provide little
value. This is because the format is unknown, so there is little Spring can do to secure an unknown
format. Additionally, JSR-356 does not provide a way to intercept messages, so security would
be rather invasive.

20.1 WebSocket Configuration

Spring Security 4.0 has introduced authorization support for WebSockets through the
Spring Messaging abstraction. To configure authorization using Java Configuration, simply
extend the AbstractSecurityWebSocketMessageBrokerConfigurer and configure the
MessageSecurityMetadataSourceRegistry. For example:

@Configuration

public class WebSocketSecurityConfig

 extends AbstractSecurityWebSocketMessageBrokerConfigurer { ❶ ❷

 protected void configureInbound(MessageSecurityMetadataSourceRegistry messages) {

 messages

 .simpDestMatchers("/user/*").authenticated() ❸

 }

}

This will ensure that:

❶ Any inbound CONNECT message requires a valid CSRF token to enforce Same Origin Policy

❷ The SecurityContextHolder is populated with the user within the simpUser header attribute for any
inbound request.

❸ Our messages require the proper authorization. Specifically, any inbound message that starts with
"/user/" will require ROLE_USER. Additional details on authorization can be found in Section 20.3,
“WebSocket Authorization”

Spring Security also provides XML Namespace support for securing WebSockets. A comparable XML
based configuration looks like the following:

<websocket-message-broker> ❶ ❷

 ❸

 <intercept-message pattern="/user/**" access="hasRole('USER')" />

</websocket-message-broker>

This will ensure that:

❶ Any inbound CONNECT message requires a valid CSRF token to enforce Same Origin Policy

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-intro-sub-protocol
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-intro-sub-protocol

Spring Security Reference

please define title in your docbook file! 116

❷ The SecurityContextHolder is populated with the user within the simpUser header attribute for any
inbound request.

❸ Our messages require the proper authorization. Specifically, any inbound message that starts with
"/user/" will require ROLE_USER. Additional details on authorization can be found in Section 20.3,
“WebSocket Authorization”

20.2 WebSocket Authentication

WebSockets reuse the same authentication information that is found in the HTTP request when the
WebSocket connection was made. This means that the Principal on the HttpServletRequest
will be handed off to WebSockets. If you are using Spring Security, the Principal on the
HttpServletRequest is overridden automatically.

More concretely, to ensure a user has authenticated to your WebSocket application, all that is necessary
is to ensure that you setup Spring Security to authenticate your HTTP based web application.

20.3 WebSocket Authorization

Spring Security 4.0 has introduced authorization support for WebSockets through the
Spring Messaging abstraction. To configure authorization using Java Configuration, simply
extend the AbstractSecurityWebSocketMessageBrokerConfigurer and configure the
MessageSecurityMetadataSourceRegistry. For example:

@Configuration

public class WebSocketSecurityConfig extends AbstractSecurityWebSocketMessageBrokerConfigurer {

 @Override

 protected void configureInbound(MessageSecurityMetadataSourceRegistry messages) {

 messages

 .nullDestMatcher().authenticated() ❶

 .simpSubscribeDestMatchers("/user/queue/errors").permitAll() ❷

 .simpDestMatchers("/app/**").hasRole("USER") ❸

 .simpSubscribeDestMatchers("/user/**", "/topic/friends/*").hasRole("USER") ❹

 .simpTypeMatchers(MESSAGE, SUBSCRIBE).denyAll() ❺

 .anyMessage().denyAll(); ❻

 }

}

This will ensure that:

❶ Any message without a destination (i.e. anything other that Message type of MESSAGE or
SUBSCRIBE) will require the user to be authenticated

❷ Anyone can subscribe to /user/queue/errors

❸ Any message that has a destination starting with "/app/" will be require the user to have the role
ROLE_USER

❹ Any message that starts with "/user/" or "/topic/friends/" that is of type SUBSCRIBE will require
ROLE_USER

❺ Any other message of type MESSAGE or SUBSCRIBE is rejected. Due to 6 we do not need this
step, but it illustrates how one can match on specific message types.

❻ Any other Message is rejected. This is a good idea to ensure that you do not miss any messages.

Spring Security also provides XML Namespace support for securing WebSockets. A comparable XML
based configuration looks like the following:

Spring Security Reference

please define title in your docbook file! 117

<websocket-message-broker>

 ❶

 <intercept-message type="CONNECT" access="permitAll" />

 <intercept-message type="UNSUBSCRIBE" access="permitAll" />

 <intercept-message type="DISCONNECT" access="permitAll" />

 <intercept-message pattern="/user/queue/errors" type="SUBSCRIBE" access="permitAll" /> ❷

 <intercept-message pattern="/app/**" access="hasRole('USER')" /> ❸

 ❹

 <intercept-message pattern="/user/**" access="hasRole('USER')" />

 <intercept-message pattern="/topic/friends/*" access="hasRole('USER')" />

 ❺

 <intercept-message type="MESSAGE" access="denyAll" />

 <intercept-message type="SUBSCRIBE" access="denyAll" />

 <intercept-message pattern="/**" access="denyAll" /> ❻

</websocket-message-broker>

This will ensure that:

❶ Any message of type CONNECT, UNSUBSCRIBE, or DISCONNECT will require the user to be
authenticated

❷ Anyone can subscribe to /user/queue/errors

❸ Any message that has a destination starting with "/app/" will be require the user to have the role
ROLE_USER

❹ Any message that starts with "/user/" or "/topic/friends/" that is of type SUBSCRIBE will require
ROLE_USER

❺ Any other message of type MESSAGE or SUBSCRIBE is rejected. Due to 6 we do not need this
step, but it illustrates how one can match on specific message types.

❻ Any other message with a destination is rejected. This is a good idea to ensure that you do not
miss any messages.

WebSocket Authorization Notes

In order to properly secure your application it is important to understand Spring’s WebSocket support.

WebSocket Authorization on Message Types

It is important to understand the distinction between SUBSCRIBE and MESSAGE types of messages
and how it works within Spring.

Consider a chat application.

• The system can send notifications MESSAGE to all users through a destination of "/topic/system/
notifications"

• Clients can receive notifications by SUBSCRIBE to the "/topic/system/notifications".

While we want clients to be able to SUBSCRIBE to "/topic/system/notifications", we do not want to enable
them to send a MESSAGE to that destination. If we allowed sending a MESSAGE to "/topic/system/
notifications", then clients could send a message directly to that endpoint and impersonate the system.

In general, it is common for applications to deny any MESSAGE sent to a message that starts with the
broker prefix (i.e. "/topic/" or "/queue/").

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-stomp

Spring Security Reference

please define title in your docbook file! 118

WebSocket Authorization on Destinations

It is also is important to understand how destinations are transformed.

Consider a chat application.

• User’s can send messages to a specific user by sending a message to the destination of "/app/chat".

• The application sees the message, ensures that the "from" attribute is specified as the current user
(we cannot trust the client).

• The application then sends the message to the recipient using
SimpMessageSendingOperations.convertAndSendToUser("toUser", "/queue/

messages", message).

• The message gets turned into the destination of "/queue/user/messages-<sessionid>"

With the application above, we want to allow our client to listen to "/user/queue" which is transformed
into "/queue/user/messages-<sessionid>". However, we do not want the client to be able to listen to "/
queue/*" because that would allow the client to see messages for every user.

In general, it is common for applications to deny any SUBSCRIBE sent to a message that starts with the
broker prefix (i.e. "/topic/" or "/queue/"). Of course we may provide exceptions to account for things like

Outbound Messages

Spring contains a section titled Flow of Messages that describes how messages flow through the system.
It is important to note that Spring Security only secures the clientInboundChannel. Spring Security
does not attempt to secure the clientOutboundChannel.

The most important reason for this is performance. For every message that goes in, there are typically
many many more that go out. Instead of securing the outbound messages, we encourage securing the
subscription to the endpoints.

20.4 Enforcing Same Origin Policy

It is important to emphasize that the browser does not enforce the Same Origin Policy for WebSocket
connections. This is an extremely important consideration.

Why Same Origin?

Consider the following scenario. A user visits bank.com and authenticates to their account. The same
user opens another tab in their browser and visits evil.com. The Same Origin Policy ensures that evil.com
cannot read or write data to bank.com.

With WebSockets the Same Origin Policy does not apply. In fact, unless bank.com explicitly forbids it,
evil.com can read and write data on behalf of the user. This means that anything the user can do over
the websocket (i.e. transfer money), evil.com can do on that users behalf.

Since SockJS tries to emulate WebSockets it also bypasses the Same Origin Policy. This means
developers need to explicitly protect their applications from external domains when using SockJS.

Spring WebSocket Allowed Origin

Fortunately, since Spring 4.1.5 Spring’s WebSocket and SockJS support restricts access to the current
domain. Spring Security adds an additional layer of protection to provide defence in depth.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-stomp
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-stomp-message-flow
http://en.wikipedia.org/wiki/Same-origin_policy
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-server-allowed-origins
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-server-allowed-origins
http://en.wikipedia.org/wiki/Defense_in_depth_%28computing%29

Spring Security Reference

please define title in your docbook file! 119

Adding CSRF to Stomp Headers

By default Spring Security requires the CSRF token in any CONNECT message type. This ensures that
only a site that has access to the CSRF token can connect. Since only the Same Origin can access
the CSRF token, external domains are not allowed to make a connection.

Typically we need to include the CSRF token in an HTTP header or an HTTP parameter. However,
SockJS does not allow for these options. Instead, we must include the token in the Stomp headers

Applications can obtain a CSRF token by accessing the request attribute named _csrf. For example,
the following will allow accessing the CsrfToken in a JSP:

var headerName = "${_csrf.headerName}";

var token = "${_csrf.token}";

If you are using static HTML, you can expose the CsrfToken on a REST endpoint. For example, the
following would expose the CsrfToken on the URL /csrf

@RestController

public class CsrfController {

 @RequestMapping("/csrf")

 public CsrfToken csrf(CsrfToken token) {

 return token;

 }

}

The javascript can make a REST call to the endpoint and use the response to populate the headerName
and the token.

We can now include the token in our Stomp client. For example:

...

var headers = {};

headers[headerName] = token;

stompClient.connect(headers, function(frame) {

 ...

}

Disable CSRF within WebSockets

If you want to allow other domains to access your site, you can disable Spring Security’s protection. For
example, in Java Configuration you can use the following:

@Configuration

public class WebSocketSecurityConfig extends AbstractSecurityWebSocketMessageBrokerConfigurer {

 ...

 @Override

 protected boolean sameOriginDisabled() {

 return true;

 }

}

20.5 Working with SockJS

SockJS provides fallback transports to support older browsers. When using the fallback options we need
to relax a few security constraints to allow SockJS to work with Spring Security.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-fallback

Spring Security Reference

please define title in your docbook file! 120

SockJS & frame-options

SockJS may use an transport that leverages an iframe. By default Spring Security will deny the site
from being framed to prevent Clickjacking attacks. To allow SockJS frame based transports to work, we
need to configure Spring Security to allow the same origin to frame the content.

You can customize X-Frame-Options with the frame-options element. For example, the following will
instruct Spring Security to use "X-Frame-Options: SAMEORIGIN" which allows iframes within the same
domain:

<http>

 <!-- ... -->

 <headers>

 <frame-options

 policy="SAMEORIGIN" />

 </headers>

</http>

Similarly, you can customize frame options to use the same origin within Java Configuration using the
following:

@EnableWebSecurity

public class WebSecurityConfig extends

 WebSecurityConfigurerAdapter {

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http

 // ...

 .headers()

 .frameOptions()

 .sameOrigin();

 }

}

SockJS & Relaxing CSRF

SockJS uses a POST on the CONNECT messages for any HTTP based transport. Typically we need
to include the CSRF token in an HTTP header or an HTTP parameter. However, SockJS does not allow
for these options. Instead, we must include the token in the Stomp headers as described in the section
called “Adding CSRF to Stomp Headers”.

It also means we need to relax our CSRF protection with the web layer. Specifically, we want to disable
CSRF protection for our connect URLs. We do NOT want to disable CSRF protection for every URL.
Otherwise our site will be vulnerable to CSRF attacks.

We can easily achieve this by providing a CSRF RequestMatcher. Our Java Configuration makes this
extremely easy. For example, if our stomp endpoint is "/chat" we can disable CSRF protection for only
URLs that start with "/chat/" using the following configuration:

https://github.com/sockjs/sockjs-client/tree/v0.3.4

Spring Security Reference

please define title in your docbook file! 121

@Configuration

@EnableWebSecurity

public class WebSecurityConfig

 extends WebSecurityConfigurerAdapter {

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http

 .csrf()

 // ignore our stomp endpoints since they are protected using Stomp headers

 .ignoringAntMatchers("/chat/**")

 .and()

 .headers()

 // allow same origin to frame our site to support iframe SockJS

 .frameOptions().sameOrigin()

 .and()

 .authorizeRequests()

 ...

If we are using XML based configuration, we can use the csrf@request-matcher-ref. For example:

<http ...>

 <csrf request-matcher-ref="csrfMatcher"/>

 <headers>

 <frame-options policy="SAMEORIGIN"/>

 </headers>

 ...

</http>

<b:bean id="csrfMatcher"

 class="AndRequestMatcher">

 <b:constructor-arg value="#{T(org.springframework.security.web.csrf.CsrfFilter).DEFAULT_MATCHER}"/>

 <b:constructor-arg>

 <b:bean class="org.springframework.security.web.util.matcher.NegatedRequestMatcher">

 <b:bean class="org.springframework.security.web.util.matcher.AntPathRequestMatcher">

 <b:constructor-arg value="/chat/**"/>

 </b:bean>

 </b:bean>

 </b:constructor-arg>

</b:bean>

Part VI. Authorization
The advanced authorization capabilities within Spring Security represent one of the most compelling
reasons for its popularity. Irrespective of how you choose to authenticate - whether using a Spring
Security-provided mechanism and provider, or integrating with a container or other non-Spring Security
authentication authority - you will find the authorization services can be used within your application in
a consistent and simple way.

In this part we’ll explore the different AbstractSecurityInterceptor implementations, which were
introduced in Part I. We then move on to explore how to fine-tune authorization through use of domain
access control lists.

Spring Security Reference

please define title in your docbook file! 123

21. Authorization Architecture

21.1 Authorities

As we saw in the technical overview, all Authentication implementations store a list of
GrantedAuthority objects. These represent the authorities that have been granted to the
principal. the GrantedAuthority objects are inserted into the Authentication object by the
AuthenticationManager and are later read by AccessDecisionManager s when making
authorization decisions.

GrantedAuthority is an interface with only one method:

String getAuthority();

This method allows AccessDecisionManager s to obtain a precise String representation of the
GrantedAuthority. By returning a representation as a String, a GrantedAuthority can be
easily "read" by most AccessDecisionManager s. If a GrantedAuthority cannot be precisely
represented as a String, the GrantedAuthority is considered "complex" and getAuthority()
must return null.

An example of a "complex" GrantedAuthority would be an implementation that stores a list of
operations and authority thresholds that apply to different customer account numbers. Representing
this complex GrantedAuthority as a String would be quite difficult, and as a result the
getAuthority() method should return null. This will indicate to any AccessDecisionManager
that it will need to specifically support the GrantedAuthority implementation in order to understand
its contents.

Spring Security includes one concrete GrantedAuthority implementation,
GrantedAuthorityImpl. This allows any user-specified String to be converted into a
GrantedAuthority. All AuthenticationProvider s included with the security architecture use
GrantedAuthorityImpl to populate the Authentication object.

21.2 Pre-Invocation Handling

As we’ve also seen in the Technical Overview chapter, Spring Security provides interceptors which
control access to secure objects such as method invocations or web requests. A pre-invocation decision
on whether the invocation is allowed to proceed is made by the AccessDecisionManager.

The AccessDecisionManager

The AccessDecisionManager is called by the AbstractSecurityInterceptor and is
responsible for making final access control decisions. the AccessDecisionManager interface
contains three methods:

void decide(Authentication authentication, Object secureObject,

 Collection<ConfigAttribute> attrs) throws AccessDeniedException;

boolean supports(ConfigAttribute attribute);

boolean supports(Class clazz);

The AccessDecisionManager’s `decide method is passed all the relevant information it needs
in order to make an authorization decision. In particular, passing the secure Object enables those

Spring Security Reference

please define title in your docbook file! 124

arguments contained in the actual secure object invocation to be inspected. For example, let’s assume
the secure object was a`MethodInvocation`. It would be easy to query the MethodInvocation for any
Customer argument, and then implement some sort of security logic in the AccessDecisionManager
to ensure the principal is permitted to operate on that customer. Implementations are expected to throw
an AccessDeniedException if access is denied.

The supports(ConfigAttribute) method is called by the AbstractSecurityInterceptor
at startup time to determine if the AccessDecisionManager can process the passed
ConfigAttribute. The supports(Class) method is called by a security interceptor implementation
to ensure the configured AccessDecisionManager supports the type of secure object that the security
interceptor will present.

Voting-Based AccessDecisionManager Implementations

Whilst users can implement their own AccessDecisionManager to control all aspects of authorization,
Spring Security includes several AccessDecisionManager implementations that are based on voting.
Figure 21.1, “Voting Decision Manager” illustrates the relevant classes.

Figure 21.1. Voting Decision Manager

Using this approach, a series of AccessDecisionVoter implementations are polled on an
authorization decision. The AccessDecisionManager then decides whether or not to throw an
AccessDeniedException based on its assessment of the votes.

The AccessDecisionVoter interface has three methods:

Spring Security Reference

please define title in your docbook file! 125

int vote(Authentication authentication, Object object, Collection<ConfigAttribute> attrs);

boolean supports(ConfigAttribute attribute);

boolean supports(Class clazz);

Concrete implementations return an int, with possible values being reflected in the
AccessDecisionVoter static fields ACCESS_ABSTAIN, ACCESS_DENIED and ACCESS_GRANTED. A
voting implementation will return ACCESS_ABSTAIN if it has no opinion on an authorization decision. If
it does have an opinion, it must return either ACCESS_DENIED or ACCESS_GRANTED.

There are three concrete AccessDecisionManager s provided with Spring Security that tally the
votes. the ConsensusBased implementation will grant or deny access based on the consensus of
non-abstain votes. Properties are provided to control behavior in the event of an equality of votes
or if all votes are abstain. The AffirmativeBased implementation will grant access if one or more
ACCESS_GRANTED votes were received (i.e. a deny vote will be ignored, provided there was at least one
grant vote). Like the ConsensusBased implementation, there is a parameter that controls the behavior
if all voters abstain. The UnanimousBased provider expects unanimous ACCESS_GRANTED votes in
order to grant access, ignoring abstains. It will deny access if there is any ACCESS_DENIED vote. Like
the other implementations, there is a parameter that controls the behaviour if all voters abstain.

It is possible to implement a custom AccessDecisionManager that tallies votes differently. For
example, votes from a particular AccessDecisionVoter might receive additional weighting, whilst a
deny vote from a particular voter may have a veto effect.

RoleVoter

The most commonly used AccessDecisionVoter provided with Spring Security is the simple
RoleVoter, which treats configuration attributes as simple role names and votes to grant access if the
user has been assigned that role.

It will vote if any ConfigAttribute begins with the prefix ROLE_. It will vote to grant access if there
is a GrantedAuthority which returns a String representation (via the getAuthority() method)
exactly equal to one or more ConfigAttributes starting with the prefix ROLE_. If there is no exact
match of any ConfigAttribute starting with ROLE_, the RoleVoter will vote to deny access. If no
ConfigAttribute begins with ROLE_, the voter will abstain.

AuthenticatedVoter

Another voter which we’ve implicitly seen is the AuthenticatedVoter, which can be used to
differentiate between anonymous, fully-authenticated and remember-me authenticated users. Many
sites allow certain limited access under remember-me authentication, but require a user to confirm their
identity by logging in for full access.

When we’ve used the attribute IS_AUTHENTICATED_ANONYMOUSLY to grant anonymous access, this
attribute was being processed by the AuthenticatedVoter. See the Javadoc for this class for more
information.

Custom Voters

Obviously, you can also implement a custom AccessDecisionVoter and you can put just about any
access-control logic you want in it. It might be specific to your application (business-logic related) or
it might implement some security administration logic. For example, you’ll find a blog article on the
SpringSource web site which describes how to use a voter to deny access in real-time to users whose
accounts have been suspended.

http://blog.springsource.com/2009/01/02/spring-security-customization-part-2-adjusting-secured-session-in-real-time/

Spring Security Reference

please define title in your docbook file! 126

21.3 After Invocation Handling

Whilst the AccessDecisionManager is called by the AbstractSecurityInterceptor before
proceeding with the secure object invocation, some applications need a way of modifying the object
actually returned by the secure object invocation. Whilst you could easily implement your own AOP
concern to achieve this, Spring Security provides a convenient hook that has several concrete
implementations that integrate with its ACL capabilities.

Figure 21.2, “After Invocation Implementation” illustrates Spring Security’s
AfterInvocationManager and its concrete implementations.

Figure 21.2. After Invocation Implementation

Like many other parts of Spring Security, AfterInvocationManager has a single
concrete implementation, AfterInvocationProviderManager, which polls a list of
AfterInvocationProvider s. Each AfterInvocationProvider is allowed to modify the return
object or throw an AccessDeniedException. Indeed multiple providers can modify the object, as the
result of the previous provider is passed to the next in the list.

Please be aware that if you’re using AfterInvocationManager, you will still need configuration
attributes that allow the MethodSecurityInterceptor’s `AccessDecisionManager to allow
an operation. If you’re using the typical Spring Security included AccessDecisionManager
implementations, having no configuration attributes defined for a particular secure method invocation will
cause each AccessDecisionVoter to abstain from voting. In turn, if the AccessDecisionManager
property “allowIfAllAbstainDecisions” is false, an AccessDeniedException will be thrown. You
may avoid this potential issue by either (i) setting “allowIfAllAbstainDecisions” to true (although this is
generally not recommended) or (ii) simply ensure that there is at least one configuration attribute that an
AccessDecisionVoter will vote to grant access for. This latter (recommended) approach is usually
achieved through a ROLE_USER or ROLE_AUTHENTICATED configuration attribute.

21.4 Hierarchical Roles

It is a common requirement that a particular role in an application should automatically "include" other
roles. For example, in an application which has the concept of an "admin" and a "user" role, you may

Spring Security Reference

please define title in your docbook file! 127

want an admin to be able to do everything a normal user can. To achieve this, you can either make
sure that all admin users are also assigned the "user" role. Alternatively, you can modify every access
constraint which requires the "user" role to also include the "admin" role. This can get quite complicated
if you have a lot of different roles in your application.

The use of a role-hierarchy allows you to configure which roles (or authorities) should include others.
An extended version of Spring Security’s RoleVoter, RoleHierarchyVoter, is configured with a
RoleHierarchy, from which it obtains all the "reachable authorities" which the user is assigned. A
typical configuration might look like this:

<bean id="roleVoter" class="org.springframework.security.access.vote.RoleHierarchyVoter">

 <constructor-arg ref="roleHierarchy" />

</bean>

<bean id="roleHierarchy"

 class="org.springframework.security.access.hierarchicalroles.RoleHierarchyImpl">

 <property name="hierarchy">

 <value>

 ROLE_ADMIN > ROLE_STAFF

 ROLE_STAFF > ROLE_USER

 ROLE_USER > ROLE_GUEST

 </value>

 </property>

</bean>

Here we have four roles in a hierarchy ROLE_ADMIN # ROLE_STAFF # ROLE_USER # ROLE_GUEST.
A user who is authenticated with ROLE_ADMIN, will behave as if they have all four roles when
security contraints are evaluated against an AccessDecisionManager cconfigured with the above
RoleHierarchyVoter. The > symbol can be thought of as meaning "includes".

Role hierarchies offer a convenient means of simplifying the access-control configuration data for your
application and/or reducing the number of authorities which you need to assign to a user. For more
complex requirements you may wish to define a logical mapping between the specific access-rights
your application requires and the roles that are assigned to users, translating between the two when
loading the user information.

Spring Security Reference

please define title in your docbook file! 128

22. Secure Object Implementations

22.1 AOP Alliance (MethodInvocation) Security Interceptor

Prior to Spring Security 2.0, securing MethodInvocation s needed quite a lot of boiler plate
configuration. Now the recommended approach for method security is to use namespace configuration.
This way the method security infrastructure beans are configured automatically for you so you don’t
really need to know about the implementation classes. We’ll just provide a quick overview of the classes
that are involved here.

Method security in enforced using a MethodSecurityInterceptor, which secures
MethodInvocation s. Depending on the configuration approach, an interceptor may be
specific to a single bean or shared between multiple beans. The interceptor uses a
MethodSecurityMetadataSource instance to obtain the configuration attributes that apply to
a particular method invocation. MapBasedMethodSecurityMetadataSource is used to store
configuration attributes keyed by method names (which can be wildcarded) and will be used
internally when the attributes are defined in the application context using the <intercept-methods>
or <protect-point> elements. Other implementations will be used to handle annotation-based
configuration.

Explicit MethodSecurityInterceptor Configuration

You can of course configure a MethodSecurityIterceptor directly in your application context for
use with one of Spring AOP’s proxying mechanisms:

<bean id="bankManagerSecurity" class=

 "org.springframework.security.access.intercept.aopalliance.MethodSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>

<property name="accessDecisionManager" ref="accessDecisionManager"/>

<property name="afterInvocationManager" ref="afterInvocationManager"/>

<property name="securityMetadataSource">

 <sec:method-security-metadata-source>

 <sec:protect method="com.mycompany.BankManager.delete*" access="ROLE_SUPERVISOR"/>

 <sec:protect method="com.mycompany.BankManager.getBalance" access="ROLE_TELLER,ROLE_SUPERVISOR"/>

 </sec:method-security-metadata-source>

</property>

</bean>

22.2 AspectJ (JoinPoint) Security Interceptor

The AspectJ security interceptor is very similar to the AOP Alliance security interceptor discussed in the
previous section. Indeed we will only discuss the differences in this section.

The AspectJ interceptor is named AspectJSecurityInterceptor. Unlike the AOP Alliance security
interceptor, which relies on the Spring application context to weave in the security interceptor
via proxying, the AspectJSecurityInterceptor is weaved in via the AspectJ compiler. It
would not be uncommon to use both types of security interceptors in the same application, with
AspectJSecurityInterceptor being used for domain object instance security and the AOP
Alliance MethodSecurityInterceptor being used for services layer security.

Let’s first consider how the AspectJSecurityInterceptor is configured in the Spring application
context:

Spring Security Reference

please define title in your docbook file! 129

<bean id="bankManagerSecurity" class=

 "org.springframework.security.access.intercept.aspectj.AspectJMethodSecurityInterceptor">

<property name="authenticationManager" ref="authenticationManager"/>

<property name="accessDecisionManager" ref="accessDecisionManager"/>

<property name="afterInvocationManager" ref="afterInvocationManager"/>

<property name="securityMetadataSource">

 <sec:method-security-metadata-source>

 <sec:protect method="com.mycompany.BankManager.delete*" access="ROLE_SUPERVISOR"/>

 <sec:protect method="com.mycompany.BankManager.getBalance" access="ROLE_TELLER,ROLE_SUPERVISOR"/>

 </sec:method-security-metadata-source>

</property>

</bean>

As you can see, aside from the class name, the AspectJSecurityInterceptor is
exactly the same as the AOP Alliance security interceptor. Indeed the two interceptors
can share the same`securityMetadataSource`, as the SecurityMetadataSource works with
java.lang.reflect.Method s rather than an AOP library-specific class. Of course, your access
decisions have access to the relevant AOP library-specific invocation (ie MethodInvocation or
JoinPoint) and as such can consider a range of addition criteria when making access decisions (such
as method arguments).

Next you’ll need to define an AspectJ aspect. For example:

package org.springframework.security.samples.aspectj;

import org.springframework.security.access.intercept.aspectj.AspectJSecurityInterceptor;

import org.springframework.security.access.intercept.aspectj.AspectJCallback;

import org.springframework.beans.factory.InitializingBean;

public aspect DomainObjectInstanceSecurityAspect implements InitializingBean {

 private AspectJSecurityInterceptor securityInterceptor;

 pointcut domainObjectInstanceExecution(): target(PersistableEntity)

 && execution(public * *(..)) && !within(DomainObjectInstanceSecurityAspect);

 Object around(): domainObjectInstanceExecution() {

 if (this.securityInterceptor == null) {

 return proceed();

 }

 AspectJCallback callback = new AspectJCallback() {

 public Object proceedWithObject() {

 return proceed();

 }

 };

 return this.securityInterceptor.invoke(thisJoinPoint, callback);

 }

 public AspectJSecurityInterceptor getSecurityInterceptor() {

 return securityInterceptor;

 }

 public void setSecurityInterceptor(AspectJSecurityInterceptor securityInterceptor) {

 this.securityInterceptor = securityInterceptor;

 }

 public void afterPropertiesSet() throws Exception {

 if (this.securityInterceptor == null)

 throw new IllegalArgumentException("securityInterceptor required");

 }

 }

}

Spring Security Reference

please define title in your docbook file! 130

In the above example, the security interceptor will be applied to every instance of
PersistableEntity, which is an abstract class not shown (you can use any other class or pointcut
expression you like). For those curious, AspectJCallback is needed because the proceed();
statement has special meaning only within an around() body. The AspectJSecurityInterceptor
calls this anonymous AspectJCallback class when it wants the target object to continue.

You will need to configure Spring to load the aspect and wire it with the
AspectJSecurityInterceptor. A bean declaration which achieves this is shown below:

<bean id="domainObjectInstanceSecurityAspect"

 class="security.samples.aspectj.DomainObjectInstanceSecurityAspect"

 factory-method="aspectOf">

<property name="securityInterceptor" ref="bankManagerSecurity"/>

</bean>

That’s it! Now you can create your beans from anywhere within your application, using whatever means
you think fit (eg new Person();) and they will have the security interceptor applied.

Spring Security Reference

please define title in your docbook file! 131

23. Expression-Based Access Control

Spring Security 3.0 introduced the ability to use Spring EL expressions as an authorization mechanism in
addition to the simple use of configuration attributes and access-decision voters which have seen before.
Expression-based access control is built on the same architecture but allows complicated boolean logic
to be encapsulated in a single expression.

23.1 Overview

Spring Security uses Spring EL for expression support and you should look at how that works if you are
interested in understanding the topic in more depth. Expressions are evaluated with a "root object" as
part of the evaluation context. Spring Security uses specific classes for web and method security as the
root object, in order to provide built-in expressions and access to values such as the current principal.

Common Built-In Expressions

The base class for expression root objects is SecurityExpressionRoot. This provides some
common expressions which are available in both web and method security.

Table 23.1. Common built-in expressions

Expression Description

hasRole([role]) Returns true if the current principal has
the specified role. By default if the supplied
role does not start with 'ROLE_' it will
be added. This can be customized by
modifying the defaultRolePrefix on
DefaultWebSecurityExpressionHandler.

hasAnyRole([role1,role2]) Returns true if the current principal has any
of the supplied roles (given as a comma-
separated list of strings). By default if the
supplied role does not start with 'ROLE_' it
will be added. This can be customized by
modifying the defaultRolePrefix on
DefaultWebSecurityExpressionHandler.

hasAuthority([authority]) Returns true if the current principal has the
specified authority.

hasAnyAuthority([authority1,authority2])Returns true if the current principal has any of
the supplied roles (given as a comma-separated
list of strings)

principal Allows direct access to the principal object
representing the current user

authentication Allows direct access to the current
Authentication object obtained from the
SecurityContext

permitAll Always evaluates to true

Spring Security Reference

please define title in your docbook file! 132

Expression Description

denyAll Always evaluates to false

isAnonymous() Returns true if the current principal is an
anonymous user

isRememberMe() Returns true if the current principal is a
remember-me user

isAuthenticated() Returns true if the user is not anonymous

isFullyAuthenticated() Returns true if the user is not an anonymous or
a remember-me user

hasPermission(Object target, Object

permission)

Returns true if the user has access to the
provided target for the given permission. For
example, hasPermission(domainObject,
'read')

hasPermission(Object targetId,

String targetType, Object

permission)

Returns true if the user has access to the
provided target for the given permission.
For example, hasPermission(1,
'com.example.domain.Message',

'read')

23.2 Web Security Expressions

To use expressions to secure individual URLs, you would first need to set the use-expressions
attribute in the <http> element to true. Spring Security will then expect the access attributes of the
<intercept-url> elements to contain Spring EL expressions. The expressions should evaluate to a
boolean, defining whether access should be allowed or not. For example:

<http>

 <intercept-url pattern="/admin*"

 access="hasRole('admin') and hasIpAddress('192.168.1.0/24')"/>

 ...

</http>

Here we have defined that the "admin" area of an application (defined by the URL pattern) should
only be available to users who have the granted authority "admin" and whose IP address matches
a local subnet. We’ve already seen the built-in hasRole expression in the previous section. The
expression hasIpAddress is an additional built-in expression which is specific to web security.
It is defined by the WebSecurityExpressionRoot class, an instance of which is used as the
expression root object when evaluation web-access expressions. This object also directly exposed
the HttpServletRequest object under the name request so you can invoke the request directly
in an expressio If expressions are being used, a WebExpressionVoter will be added to the
AccessDecisionManager which is used by the namespace. So if you aren’t using the namespace
and want to use expressions, you will have to add one of these to your configuration.

23.3 Method Security Expressions

Method security is a bit more complicated than a simple allow or deny rule. Spring Security 3.0 introduced
some new annotations in order to allow comprehensive support for the use of expressions.

Spring Security Reference

please define title in your docbook file! 133

@Pre and @Post Annotations

There are four annotations which support expression attributes to allow pre and post-invocation
authorization checks and also to support filtering of submitted collection arguments or return values.
They are @PreAuthorize, @PreFilter, @PostAuthorize and @PostFilter. Their use is enabled
through the global-method-security namespace element:

<global-method-security pre-post-annotations="enabled"/>

Access Control using @PreAuthorize and @PostAuthorize

The most obviously useful annotation is @PreAuthorize which decides whether a method can actually
be invoked or not. For example (from the"Contacts" sample application)

@PreAuthorize("hasRole('USER')")

public void create(Contact contact);

which means that access will only be allowed for users with the role "ROLE_USER". Obviously the same
thing could easily be achieved using a traditional configuration and a simple configuration attribute for
the required role. But what about:

@PreAuthorize("hasPermission(#contact, 'admin')")

public void deletePermission(Contact contact, Sid recipient, Permission permission);

Here we’re actually using a method argument as part of the expression to decide whether the current
user has the "admin"permission for the given contact. The built-in hasPermission() expression is
linked into the Spring Security ACL module through the application context, as we’llsee below. You can
access any of the method arguments by name as expression variables.

There are a number of ways in which Spring Security can resolve the method arguments. Spring Security
uses DefaultSecurityParameterNameDiscoverer to discover the parameter names. By default,
the following options are tried for a method as a whole.

• If Spring Security’s @P annotation is present on a single argument to the method, the value will be used.
This is useful for interfaces compiled with a JDK prior to JDK 8 which do not contain any information
about the parameter names. For example:

import org.springframework.security.access.method.P;

...

@PreAuthorize("#c.name == authentication.name")

public void doSomething(@P("c") Contact contact);

Behind the scenes this use implemented using AnnotationParameterNameDiscoverer which
can be customized to support the value attribute of any specified annotation.

• If Spring Data’s @Param annotation is present on at least one parameter for the method, the value
will be used. This is useful for interfaces compiled with a JDK prior to JDK 8 which do not contain any
information about the parameter names. For example:

import org.springframework.data.repository.query.Param;

...

@PreAuthorize("#n == authentication.name")

Contact findContactByName(@Param("n") String name);

Spring Security Reference

please define title in your docbook file! 134

Behind the scenes this use implemented using AnnotationParameterNameDiscoverer which
can be customized to support the value attribute of any specified annotation.

• If JDK 8 was used to compile the source with the -parameters argument and Spring 4+ is being used,
then the standard JDK reflection API is used to discover the parameter names. This works on both
classes and interfaces.

• Last, if the code was compiled with the debug symbols, the parameter names will be discovered using
the debug symbols. This will not work for interfaces since they do not have debug information about
the parameter names. For interfaces, annotations or the JDK 8 approach must be used.

Any Spring-EL functionality is available within the expression, so you can also access properties on
the arguments. For example, if you wanted a particular method to only allow access to a user whose
username matched that of the contact, you could write

@PreAuthorize("#contact.name == authentication.name")

public void doSomething(Contact contact);

Here we are accessing another built-in expression, authentication, which is the Authentication
stored in the security context. You can also access its "principal" property directly, using the expression
principal. The value will often be a UserDetails instance, so you might use an expression like
principal.username or principal.enabled.

Less commonly, you may wish to perform an access-control check after the method has been invoked.
This can be achieved using the @PostAuthorize annotation. To access the return value from a
method, use the built-in name returnObject in the expression.

Filtering using @PreFilter and @PostFilter

As you may already be aware, Spring Security supports filtering of collections and arrays and this can
now be achieved using expressions. This is most commonly performed on the return value of a method.
For example:

@PreAuthorize("hasRole('USER')")

@PostFilter("hasPermission(filterObject, 'read') or hasPermission(filterObject, 'admin')")

public List<Contact> getAll();

When using the @PostFilter annotation, Spring Security iterates through the returned collection and
removes any elements for which the supplied expression is false. The name filterObject refers
to the current object in the collection. You can also filter before the method call, using @PreFilter,
though this is a less common requirement. The syntax is just the same, but if there is more than one
argument which is a collection type then you have to select one by name using the filterTarget
property of this annotation.

Note that filtering is obviously not a substitute for tuning your data retrieval queries. If you are filtering
large collections and removing many of the entries then this is likely to be inefficient.

Built-In Expressions

There are some built-in expressions which are specific to method security, which we have already seen
in use above. The filterTarget and returnValue values are simple enough, but the use of the
hasPermission() expression warrants a closer look.

Spring Security Reference

please define title in your docbook file! 135

The PermissionEvaluator interface

hasPermission() expressions are delegated to an instance of PermissionEvaluator. It is
intended to bridge between the expression system and Spring Security’s ACL system, allowing you to
specify authorization constraints on domain objects, based on abstract permissions. It has no explicit
dependencies on the ACL module, so you could swap that out for an alternative implementation if
required. The interface has two methods:

boolean hasPermission(Authentication authentication, Object targetDomainObject,

 Object permission);

boolean hasPermission(Authentication authentication, Serializable targetId,

 String targetType, Object permission);

which map directly to the available versions of the expression, with the exception that the first argument
(the Authentication object) is not supplied. The first is used in situations where the domain object,
to which access is being controlled, is already loaded. Then expression will return true if the current
user has the given permission for that object. The second version is used in cases where the object is
not loaded, but its identifier is known. An abstract "type" specifier for the domain object is also required,
allowing the correct ACL permissions to be loaded. This has traditionally been the Java class of the
object, but does not have to be as long as it is consistent with how the permissions are loaded.

To use hasPermission() expressions, you have to explicitly configure a PermissionEvaluator
in your application context. This would look something like this:

<security:global-method-security pre-post-annotations="enabled">

<security:expression-handler ref="expressionHandler"/>

</security:global-method-security>

<bean id="expressionHandler" class=

"org.springframework.security.access.expression.method.DefaultMethodSecurityExpressionHandler">

 <property name="permissionEvaluator" ref="myPermissionEvaluator"/>

</bean>

Where myPermissionEvaluator is the bean which implements PermissionEvaluator. Usually
this will be the implementation from the ACL module which is called`AclPermissionEvaluator`. See the
"Contacts" sample application configuration for more details.

Part VII. Additional Topics
In this part we cover features which require a knowledge of previous chapters as well as some of the
more advanced and less-commonly used features of the framework.

Spring Security Reference

please define title in your docbook file! 137

24. Domain Object Security (ACLs)

24.1 Overview

Complex applications often will find the need to define access permissions not simply at a web request
or method invocation level. Instead, security decisions need to comprise both who (Authentication),
where (MethodInvocation) and what (SomeDomainObject). In other words, authorization decisions
also need to consider the actual domain object instance subject of a method invocation.

Imagine you’re designing an application for a pet clinic. There will be two main groups of users of your
Spring-based application: staff of the pet clinic, as well as the pet clinic’s customers. The staff will have
access to all of the data, whilst your customers will only be able to see their own customer records. To
make it a little more interesting, your customers can allow other users to see their customer records,
such as their "puppy preschool" mentor or president of their local "Pony Club". Using Spring Security
as the foundation, you have several approaches that can be used:

• Write your business methods to enforce the security. You could consult a collection within
the Customer domain object instance to determine which users have access. By using the
SecurityContextHolder.getContext().getAuthentication(), you’ll be able to access
the Authentication object.

• Write an AccessDecisionVoter to enforce the security from the GrantedAuthority[] s stored
in the Authentication object. This would mean your AuthenticationManager would need
to populate the Authentication with custom GrantedAuthority[]s representing each of the
Customer domain object instances the principal has access to.

• Write an AccessDecisionVoter to enforce the security and open the target Customer domain
object directly. This would mean your voter needs access to a DAO that allows it to retrieve the
Customer object. It would then access the Customer object’s collection of approved users and make
the appropriate decision.

Each one of these approaches is perfectly legitimate. However, the first couples your authorization
checking to your business code. The main problems with this include the enhanced difficulty of unit
testing and the fact it would be more difficult to reuse the Customer authorization logic elsewhere.
Obtaining the GrantedAuthority[] s from the Authentication object is also fine, but will not
scale to large numbers of Customer s. If a user might be able to access 5,000 Customer s (unlikely in
this case, but imagine if it were a popular vet for a large Pony Club!) the amount of memory consumed
and time required to construct the Authentication object would be undesirable. The final method,
opening the Customer directly from external code, is probably the best of the three. It achieves
separation of concerns, and doesn’t misuse memory or CPU cycles, but it is still inefficient in that
both the AccessDecisionVoter and the eventual business method itself will perform a call to the
DAO responsible for retrieving the Customer object. Two accesses per method invocation is clearly
undesirable. In addition, with every approach listed you’ll need to write your own access control list
(ACL) persistence and business logic from scratch.

Fortunately, there is another alternative, which we’ll talk about below.

24.2 Key Concepts

Spring Security’s ACL services are shipped in the spring-security-acl-xxx.jar. You will need
to add this JAR to your classpath to use Spring Security’s domain object instance security capabilities.

Spring Security Reference

please define title in your docbook file! 138

Spring Security’s domain object instance security capabilities centre on the concept of an access control
list (ACL). Every domain object instance in your system has its own ACL, and the ACL records details of
who can and can’t work with that domain object. With this in mind, Spring Security delivers three main
ACL-related capabilities to your application:

• A way of efficiently retrieving ACL entries for all of your domain objects (and modifying those ACLs)

• A way of ensuring a given principal is permitted to work with your objects, before methods are called

• A way of ensuring a given principal is permitted to work with your objects (or something they return),
after methods are called

As indicated by the first bullet point, one of the main capabilities of the Spring Security ACL module
is providing a high-performance way of retrieving ACLs. This ACL repository capability is extremely
important, because every domain object instance in your system might have several access control
entries, and each ACL might inherit from other ACLs in a tree-like structure (this is supported out-of-the-
box by Spring Security, and is very commonly used). Spring Security’s ACL capability has been carefully
designed to provide high performance retrieval of ACLs, together with pluggable caching, deadlock-
minimizing database updates, independence from ORM frameworks (we use JDBC directly), proper
encapsulation, and transparent database updating.

Given databases are central to the operation of the ACL module, let’s explore the four main tables used
by default in the implementation. The tables are presented below in order of size in a typical Spring
Security ACL deployment, with the table with the most rows listed last:

• ACL_SID allows us to uniquely identify any principal or authority in the system ("SID" stands for
"security identity"). The only columns are the ID, a textual representation of the SID, and a flag to
indicate whether the textual representation refers to a principal name or a GrantedAuthority.
Thus, there is a single row for each unique principal or GrantedAuthority. When used in the
context of receiving a permission, a SID is generally called a "recipient".

• ACL_CLASS allows us to uniquely identify any domain object class in the system. The only columns
are the ID and the Java class name. Thus, there is a single row for each unique Class we wish to
store ACL permissions for.

• ACL_OBJECT_IDENTITY stores information for each unique domain object instance in the system.
Columns include the ID, a foreign key to the ACL_CLASS table, a unique identifier so we know which
ACL_CLASS instance we’re providing information for, the parent, a foreign key to the ACL_SID table
to represent the owner of the domain object instance, and whether we allow ACL entries to inherit
from any parent ACL. We have a single row for every domain object instance we’re storing ACL
permissions for.

• Finally, ACL_ENTRY stores the individual permissions assigned to each recipient. Columns include
a foreign key to the ACL_OBJECT_IDENTITY, the recipient (ie a foreign key to ACL_SID), whether
we’ll be auditing or not, and the integer bit mask that represents the actual permission being granted
or denied. We have a single row for every recipient that receives a permission to work with a domain
object.

As mentioned in the last paragraph, the ACL system uses integer bit masking. Don’t worry, you need
not be aware of the finer points of bit shifting to use the ACL system, but suffice to say that we have 32
bits we can switch on or off. Each of these bits represents a permission, and by default the permissions
are read (bit 0), write (bit 1), create (bit 2), delete (bit 3) and administer (bit 4). It’s easy to implement
your own Permission instance if you wish to use other permissions, and the remainder of the ACL
framework will operate without knowledge of your extensions.

Spring Security Reference

please define title in your docbook file! 139

It is important to understand that the number of domain objects in your system has absolutely no
bearing on the fact we’ve chosen to use integer bit masking. Whilst you have 32 bits available for
permissions, you could have billions of domain object instances (which will mean billions of rows in
ACL_OBJECT_IDENTITY and quite probably ACL_ENTRY). We make this point because we’ve found
sometimes people mistakenly believe they need a bit for each potential domain object, which is not
the case.

Now that we’ve provided a basic overview of what the ACL system does, and what it looks like at a table
structure, let’s explore the key interfaces. The key interfaces are:

• Acl: Every domain object has one and only one Acl object, which internally holds the
AccessControlEntry s as well as knows the owner of the Acl. An Acl does not refer
directly to the domain object, but instead to an ObjectIdentity. The Acl is stored in the
ACL_OBJECT_IDENTITY table.

• AccessControlEntry: An Acl holds multiple AccessControlEntry s, which are often
abbreviated as ACEs in the framework. Each ACE refers to a specific tuple of`Permission`, Sid and
Acl. An ACE can also be granting or non-granting and contain audit settings. The ACE is stored in
the ACL_ENTRY table.

• Permission: A permission represents a particular immutable bit mask, and offers convenience
functions for bit masking and outputting information. The basic permissions presented above (bits 0
through 4) are contained in the BasePermission class.

• Sid: The ACL module needs to refer to principals and GrantedAuthority[] s. A level of
indirection is provided by the Sid interface, which is an abbreviation of "security identity". Common
classes include PrincipalSid (to represent the principal inside an Authentication object) and
GrantedAuthoritySid. The security identity information is stored in the ACL_SID table.

• ObjectIdentity: Each domain object is represented internally within the ACL module by an
ObjectIdentity. The default implementation is called ObjectIdentityImpl.

• AclService: Retrieves the Acl applicable for a given ObjectIdentity. In the included
implementation (JdbcAclService), retrieval operations are delegated to a LookupStrategy.
The LookupStrategy provides a highly optimized strategy for retrieving ACL information, using
batched retrievals (BasicLookupStrategy) and supporting custom implementations that leverage
materialized views, hierarchical queries and similar performance-centric, non-ANSI SQL capabilities.

• MutableAclService: Allows a modified Acl to be presented for persistence. It is not essential to
use this interface if you do not wish.

Please note that our out-of-the-box AclService and related database classes all use ANSI SQL. This
should therefore work with all major databases. At the time of writing, the system had been successfully
tested using Hypersonic SQL, PostgreSQL, Microsoft SQL Server and Oracle.

Two samples ship with Spring Security that demonstrate the ACL module. The first is the Contacts
Sample, and the other is the Document Management System (DMS) Sample. We suggest taking a look
over these for examples.

24.3 Getting Started

To get starting using Spring Security’s ACL capability, you will need to store your ACL information
somewhere. This necessitates the instantiation of a DataSource using Spring. The DataSource is

Spring Security Reference

please define title in your docbook file! 140

then injected into a JdbcMutableAclService and BasicLookupStrategy instance. The latter
provides high-performance ACL retrieval capabilities, and the former provides mutator capabilities.
Refer to one of the samples that ship with Spring Security for an example configuration. You’ll also need
to populate the database with the four ACL-specific tables listed in the last section (refer to the ACL
samples for the appropriate SQL statements).

Once you’ve created the required schema and instantiated JdbcMutableAclService, you’ll next
need to ensure your domain model supports interoperability with the Spring Security ACL package.
Hopefully ObjectIdentityImpl will prove sufficient, as it provides a large number of ways in which it
can be used. Most people will have domain objects that contain a public Serializable getId()
method. If the return type is long, or compatible with long (eg an int), you will find you need not give
further consideration to ObjectIdentity issues. Many parts of the ACL module rely on long identifiers.
If you’re not using long (or an int, byte etc), there is a very good chance you’ll need to reimplement a
number of classes. We do not intend to support non-long identifiers in Spring Security’s ACL module,
as longs are already compatible with all database sequences, the most common identifier data type,
and are of sufficient length to accommodate all common usage scenarios.

The following fragment of code shows how to create an Acl, or modify an existing`Acl`:

// Prepare the information we'd like in our access control entry (ACE)

ObjectIdentity oi = new ObjectIdentityImpl(Foo.class, new Long(44));

Sid sid = new PrincipalSid("Samantha");

Permission p = BasePermission.ADMINISTRATION;

// Create or update the relevant ACL

MutableAcl acl = null;

try {

acl = (MutableAcl) aclService.readAclById(oi);

} catch (NotFoundException nfe) {

acl = aclService.createAcl(oi);

}

// Now grant some permissions via an access control entry (ACE)

acl.insertAce(acl.getEntries().length, p, sid, true);

aclService.updateAcl(acl);

In the example above, we’re retrieving the ACL associated with the "Foo" domain object with identifier
number 44. We’re then adding an ACE so that a principal named "Samantha" can "administer" the
object. The code fragment is relatively self-explanatory, except the insertAce method. The first argument
to the insertAce method is determining at what position in the Acl the new entry will be inserted. In the
example above, we’re just putting the new ACE at the end of the existing ACEs. The final argument is
a boolean indicating whether the ACE is granting or denying. Most of the time it will be granting (true),
but if it is denying (false), the permissions are effectively being blocked.

Spring Security does not provide any special integration to automatically create, update or delete ACLs
as part of your DAO or repository operations. Instead, you will need to write code like shown above for
your individual domain objects. It’s worth considering using AOP on your services layer to automatically
integrate the ACL information with your services layer operations. We’ve found this quite an effective
approach in the past.

Once you’ve used the above techniques to store some ACL information in the database, the next step
is to actually use the ACL information as part of authorization decision logic. You have a number of
choices here. You could write your own AccessDecisionVoter or AfterInvocationProvider
that respectively fires before or after a method invocation. Such classes would use AclService
to retrieve the relevant ACL and then call Acl.isGranted(Permission[] permission,

Sid[] sids, boolean administrativeMode) to decide whether permission is granted or

Spring Security Reference

please define title in your docbook file! 141

denied. Alternately, you could use our AclEntryVoter, AclEntryAfterInvocationProvider
or AclEntryAfterInvocationCollectionFilteringProvider classes. All of these classes
provide a declarative-based approach to evaluating ACL information at runtime, freeing you from
needing to write any code. Please refer to the sample applications to learn how to use these classes.

Spring Security Reference

please define title in your docbook file! 142

25. Pre-Authentication Scenarios

There are situations where you want to use Spring Security for authorization, but the user has already
been reliably authenticated by some external system prior to accessing the application. We refer to these
situations as "pre-authenticated" scenarios. Examples include X.509, Siteminder and authentication
by the Java EE container in which the application is running. When using pre-authentication, Spring
Security has to

• Identify the user making the request.

• Obtain the authorities for the user.

The details will depend on the external authentication mechanism. A user might be identified by their
certificate information in the case of X.509, or by an HTTP request header in the case of Siteminder.
If relying on container authentication, the user will be identified by calling the getUserPrincipal()
method on the incoming HTTP request. In some cases, the external mechanism may supply role/
authority information for the user but in others the authorities must be obtained from a separate source,
such as a UserDetailsService.

25.1 Pre-Authentication Framework Classes

Because most pre-authentication mechanisms follow the same pattern, Spring Security has a set
of classes which provide an internal framework for implementing pre-authenticated authentication
providers. This removes duplication and allows new implementations to be added in a structured
fashion, without having to write everything from scratch. You don’t need to know about these
classes if you want to use something like X.509 authentication, as it already has a namespace
configuration option which is simpler to use and get started with. If you need to use explicit
bean configuration or are planning on writing your own implementation then an understanding
of how the provided implementations work will be useful. You will find classes under the
org.springframework.security.web.authentication.preauth. We just provide an outline
here so you should consult the Javadoc and source where appropriate.

AbstractPreAuthenticatedProcessingFilter

This class will check the current contents of the security context and, if empty, it will attempt to extract
user information from the HTTP request and submit it to the AuthenticationManager. Subclasses
override the following methods to obtain this information:

protected abstract Object getPreAuthenticatedPrincipal(HttpServletRequest request);

protected abstract Object getPreAuthenticatedCredentials(HttpServletRequest request);

After calling these, the filter will create a PreAuthenticatedAuthenticationToken containing the
returned data and submit it for authentication. By "authentication" here, we really just mean further
processing to perhaps load the user’s authorities, but the standard Spring Security authentication
architecture is followed.

Like other Spring Security authentication filters, the pre-authentication filter has
an authenticationDetailsSource property which by default will create a
WebAuthenticationDetails object to store additional information such as the session-identifier and
originating IP address in the details property of the Authentication object. In cases where user
role information can be obtained from the pre-authentication mechanism, the data is also stored in this

Spring Security Reference

please define title in your docbook file! 143

property, with the details implementing the GrantedAuthoritiesContainer interface. This enables
the authentication provider to read the authorities which were externally allocated to the user. We’ll look
at a concrete example next.

J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

If the filter is configured with an authenticationDetailsSource which is an instance of this
class, the authority information is obtained by calling the isUserInRole(String role) method
for each of a pre-determined set of "mappable roles". The class gets these from a configured
MappableAttributesRetriever. Possible implementations include hard-coding a list in the
application context and reading the role information from the <security-role> information in a
web.xml file. The pre-authentication sample application uses the latter approach.

There is an additional stage where the roles (or attributes) are mapped to Spring Security
GrantedAuthority objects using a configured Attributes2GrantedAuthoritiesMapper. The
default will just add the usual ROLE_ prefix to the names, but it gives you full control over the behaviour.

PreAuthenticatedAuthenticationProvider

The pre-authenticated provider has little more to do than load the UserDetails object for the user.
It does this by delegating to a AuthenticationUserDetailsService. The latter is similar to the
standard UserDetailsService but takes an Authentication object rather than just user name:

public interface AuthenticationUserDetailsService {

UserDetails loadUserDetails(Authentication token) throws UsernameNotFoundException;

}

This interface may have also other uses but with pre-authentication it allows access to the authorities
which were packaged in the Authentication object, as we saw in the previous section. the
PreAuthenticatedGrantedAuthoritiesUserDetailsService class does this. Alternatively, it
may delegate to a standard UserDetailsService via the UserDetailsByNameServiceWrapper
implementation.

Http403ForbiddenEntryPoint

The AuthenticationEntryPoint was discussed in the technical overview chapter. Normally it is
responsible for kick-starting the authentication process for an unauthenticated user (when they try to
access a protected resource), but in the pre-authenticated case this doesn’t apply. You would only
configure the ExceptionTranslationFilter with an instance of this class if you aren’t using pre-
authentication in combination with other authentication mechanisms. It will be called if the user is
rejected by the AbstractPreAuthenticatedProcessingFilter resulting in a null authentication.
It always returns a 403-forbidden response code if called.

25.2 Concrete Implementations

X.509 authentication is covered in its own chapter. Here we’ll look at some classes which provide support
for other pre-authenticated scenarios.

Request-Header Authentication (Siteminder)

An external authentication system may supply information to the application by setting specific
headers on the HTTP request. A well known example of this is Siteminder, which passes
the username in a header called SM_USER. This mechanism is supported by the class

Spring Security Reference

please define title in your docbook file! 144

RequestHeaderAuthenticationFilter which simply extracts the username from the header. It
defaults to using the name SM_USER as the header name. See the Javadoc for more details.

Tip

Note that when using a system like this, the framework performs no authentication checks at all
and it is extremely important that the external system is configured properly and protects all access
to the application. If an attacker is able to forge the headers in their original request without this
being detected then they could potentially choose any username they wished.

Siteminder Example Configuration

A typical configuration using this filter would look like this:

<security:http>

<!-- Additional http configuration omitted -->

<security:custom-filter position="PRE_AUTH_FILTER" ref="siteminderFilter" />

</security:http>

<bean id="siteminderFilter" class="org.springframework.security.web.authentication.preauth.RequestHeaderAuthenticationFilter">

<property name="principalRequestHeader" value="SM_USER"/>

<property name="authenticationManager" ref="authenticationManager" />

</bean>

<bean id="preauthAuthProvider" class="org.springframework.security.web.authentication.preauth.PreAuthenticatedAuthenticationProvider">

<property name="preAuthenticatedUserDetailsService">

 <bean id="userDetailsServiceWrapper"

 class="org.springframework.security.core.userdetails.UserDetailsByNameServiceWrapper">

 <property name="userDetailsService" ref="userDetailsService"/>

 </bean>

</property>

</bean>

<security:authentication-manager alias="authenticationManager">

<security:authentication-provider ref="preauthAuthProvider" />

</security:authentication-manager>

We’ve assumed here that the security namespace is being used for configuration. It’s also assumed
that you have added a UserDetailsService (called "userDetailsService") to your configuration to
load the user’s roles.

Java EE Container Authentication

The class J2eePreAuthenticatedProcessingFilter will extract the username from the
userPrincipal property of the HttpServletRequest. Use of this filter would usually
be combined with the use of Java EE roles as described above in the section called
“J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource”.

There is a sample application in the codebase which uses this approach, so get hold of the code from
subversion and have a look at the application context file if you are interested. The code is in the
samples/preauth directory.

Spring Security Reference

please define title in your docbook file! 145

26. LDAP Authentication

26.1 Overview

LDAP is often used by organizations as a central repository for user information and as an authentication
service. It can also be used to store the role information for application users.

There are many different scenarios for how an LDAP server may be configured so Spring Security’s
LDAP provider is fully configurable. It uses separate strategy interfaces for authentication and role
retrieval and provides default implementations which can be configured to handle a wide range of
situations.

You should be familiar with LDAP before trying to use it with Spring Security. The following link provides
a good introduction to the concepts involved and a guide to setting up a directory using the free LDAP
server OpenLDAP: http://www.zytrax.com/books/ldap/. Some familiarity with the JNDI APIs used to
access LDAP from Java may also be useful. We don’t use any third-party LDAP libraries (Mozilla, JLDAP
etc.) in the LDAP provider, but extensive use is made of Spring LDAP, so some familiarity with that
project may be useful if you plan on adding your own customizations.

When using LDAP authentication, it is important to ensure that you configure LDAP connection pooling
properly. If you are unfamiliar with how to do this, you can refer to the Java LDAP documentation.

26.2 Using LDAP with Spring Security

LDAP authentication in Spring Security can be roughly divided into the following stages.

• Obtaining the unique LDAP "Distinguished Name", or DN, from the login name. This will often mean
performing a search in the directory, unless the exact mapping of usernames to DNs is known
in advance. So a user might enter the name "joe" when logging in, but the actual name used to
authenticate to LDAP will be the full DN, such as`uid=joe,ou=users,dc=springsource,dc=com`.

• Authenticating the user, either by "binding" as that user or by performing a remote "compare" operation
of the user’s password against the password attribute in the directory entry for the DN.

• Loading the list of authorities for the user.

The exception is when the LDAP directory is just being used to retrieve user information and authenticate
against it locally. This may not be possible as directories are often set up with limited read access for
attributes such as user passwords.

We will look at some configuration scenarios below. For full information on available configuration
options, please consult the security namespace schema (information from which should be available
in your XML editor).

26.3 Configuring an LDAP Server

The first thing you need to do is configure the server against which authentication should take place.
This is done using the <ldap-server> element from the security namespace. This can be configured
to point at an external LDAP server, using the url attribute:

<ldap-server url="ldap://springframework.org:389/dc=springframework,dc=org" />

http://www.zytrax.com/books/ldap/
http://docs.oracle.com/javase/jndi/tutorial/ldap/connect/config.html

Spring Security Reference

please define title in your docbook file! 146

Using an Embedded Test Server

The <ldap-server> element can also be used to create an embedded server, which can be very
useful for testing and demonstrations. In this case you use it without the url attribute:

<ldap-server root="dc=springframework,dc=org"/>

Here we’ve specified that the root DIT of the directory should be "dc=springframework,dc=org", which
is the default. Used this way, the namespace parser will create an embedded Apache Directory server
and scan the classpath for any LDIF files, which it will attempt to load into the server. You can customize
this behaviour using the ldif attribute, which defines an LDIF resource to be loaded:

<ldap-server ldif="classpath:users.ldif" />

This makes it a lot easier to get up and running with LDAP, since it can be inconvenient to work all the
time with an external server. It also insulates the user from the complex bean configuration needed to
wire up an Apache Directory server. Using plain Spring Beans the configuration would be much more
cluttered. You must have the necessary Apache Directory dependency jars available for your application
to use. These can be obtained from the LDAP sample application.

Using Bind Authentication

This is the most common LDAP authentication scenario.

<ldap-authentication-provider user-dn-pattern="uid={0},ou=people"/>

This simple example would obtain the DN for the user by substituting the user login name in the supplied
pattern and attempting to bind as that user with the login password. This is OK if all your users are
stored under a single node in the directory. If instead you wished to configure an LDAP search filter to
locate the user, you could use the following:

<ldap-authentication-provider user-search-filter="(uid={0})"

 user-search-base="ou=people"/>

If used with the server definition above, this would perform a search under the DN
ou=people,dc=springframework,dc=org using the value of the user-search-filter attribute
as a filter. Again the user login name is substituted for the parameter in the filter name, so it will search
for an entry with the uid attribute equal to the user name. If user-search-base isn’t supplied, the
search will be performed from the root.

Loading Authorities

How authorities are loaded from groups in the LDAP directory is controlled by the following attributes.

• group-search-base. Defines the part of the directory tree under which group searches should be
performed.

• group-role-attribute. The attribute which contains the name of the authority defined by the
group entry. Defaults to`cn`

• group-search-filter. The filter which is used to search for group membership. The default
is`uniqueMember={0}`, corresponding to the groupOfUniqueNames LDAP class 2. In this case, the
substituted parameter is the full distinguished name of the user. The parameter {1} can be used if
you want to filter on the login name.

Spring Security Reference

please define title in your docbook file! 147

So if we used the following configuration

<ldap-authentication-provider user-dn-pattern="uid={0},ou=people"

 group-search-base="ou=groups" />

and authenticated successfully as user "ben", the subsequent loading of authorities
would perform a search under the directory entry`ou=groups,dc=springframework,dc=org`,
looking for entries which contain the attribute uniqueMember with value
uid=ben,ou=people,dc=springframework,dc=org. By default the authority names will have the
prefix ROLE_ prepended. You can change this using the role-prefix attribute. If you don’t want any
prefix, use role-prefix="none". For more information on loading authorities, see the Javadoc for
the DefaultLdapAuthoritiesPopulator class.

26.4 Implementation Classes

The namespace configuration options we’ve used above are simple to use and much more concise
than using Spring beans explicitly. There are situations when you may need to know how to configure
Spring Security LDAP directly in your application context. You may wish to customize the behaviour of
some of the classes, for example. If you’re happy using namespace configuration then you can skip
this section and the next one.

The main LDAP provider class, LdapAuthenticationProvider, doesn’t actually do much
itself but delegates the work to two other beans, an LdapAuthenticator and an
LdapAuthoritiesPopulator which are responsible for authenticating the user and retrieving the
user’s set of GrantedAuthority s respectively.

LdapAuthenticator Implementations

The authenticator is also responsible for retrieving any required user attributes. This is because the
permissions on the attributes may depend on the type of authentication being used. For example, if
binding as the user, it may be necessary to read them with the user’s own permissions.

There are currently two authentication strategies supplied with Spring Security:

• Authentication directly to the LDAP server ("bind" authentication).

• Password comparison, where the password supplied by the user is compared with the one stored in
the repository. This can either be done by retrieving the value of the password attribute and checking
it locally or by performing an LDAP "compare" operation, where the supplied password is passed to
the server for comparison and the real password value is never retrieved.

Common Functionality

Before it is possible to authenticate a user (by either strategy), the distinguished name (DN) has to be
obtained from the login name supplied to the application. This can be done either by simple pattern-
matching (by setting the setUserDnPatterns array property) or by setting the userSearch property.
For the DN pattern-matching approach, a standard Java pattern format is used, and the login name
will be substituted for the parameter {0}. The pattern should be relative to the DN that the configured
SpringSecurityContextSource will bind to (see the section on connecting to the LDAP server
for more information on this). For example, if you are using an LDAP server with the URL`ldap://
monkeymachine.co.uk/dc=springframework,dc=org`, and have a pattern uid={0},ou=greatapes,
then a login name of "gorilla" will map to a DN`uid=gorilla,ou=greatapes,dc=springframework,dc=org`.
Each configured DN pattern will be tried in turn until a match is found. For information on using a search,

Spring Security Reference

please define title in your docbook file! 148

see the section on search objects below. A combination of the two approaches can also be used - the
patterns will be checked first and if no matching DN is found, the search will be used.

BindAuthenticator

The class BindAuthenticator in the package
org.springframework.security.ldap.authentication implements the bind authentication
strategy. It simply attempts to bind as the user.

PasswordComparisonAuthenticator

The class PasswordComparisonAuthenticator implements the password comparison
authentication strategy.

Connecting to the LDAP Server

The beans discussed above have to be able to connect to the server. They both have
to be supplied with a SpringSecurityContextSource which is an extension of Spring
LDAP’s ContextSource. Unless you have special requirements, you will usually configure a
DefaultSpringSecurityContextSource bean, which can be configured with the URL of your
LDAP server and optionally with the username and password of a "manager" user which will be used
by default when binding to the server (instead of binding anonymously). For more information read the
Javadoc for this class and for Spring LDAP’s AbstractContextSource.

LDAP Search Objects

Often a more complicated strategy than simple DN-matching is required to locate a user entry in the
directory. This can be encapsulated in an LdapUserSearch instance which can be supplied to the
authenticator implementations, for example, to allow them to locate a user. The supplied implementation
is FilterBasedLdapUserSearch.

FilterBasedLdapUserSearch

This bean uses an LDAP filter to match the user object in
the directory. The process is explained in the Javadoc for the
corresponding search method on thehttp://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/
DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],
%20javax.naming.directory.SearchControls)[JDK DirContext class]. As explained there, the search filter
can be supplied with parameters. For this class, the only valid parameter is {0} which will be replaced
with the user’s login name.

LdapAuthoritiesPopulator

After authenticating the user successfully, the LdapAuthenticationProvider will attempt to load
a set of authorities for the user by calling the configured LdapAuthoritiesPopulator bean.
The DefaultLdapAuthoritiesPopulator is an implementation which will load the authorities by
searching the directory for groups of which the user is a member (typically these will be groupOfNames
or groupOfUniqueNames entries in the directory). Consult the Javadoc for this class for more details
on how it works.

If you want to use LDAP only for authentication, but load the authorities from a difference source (such
as a database) then you can provide your own implementation of this interface and inject that instead.

Spring Security Reference

please define title in your docbook file! 149

Spring Bean Configuration

A typical configuration, using some of the beans we’ve discussed here, might look like this:

<bean id="contextSource"

 class="org.springframework.security.ldap.DefaultSpringSecurityContextSource">

<constructor-arg value="ldap://monkeymachine:389/dc=springframework,dc=org"/>

<property name="userDn" value="cn=manager,dc=springframework,dc=org"/>

<property name="password" value="password"/>

</bean>

<bean id="ldapAuthProvider"

 class="org.springframework.security.ldap.authentication.LdapAuthenticationProvider">

<constructor-arg>

<bean class="org.springframework.security.ldap.authentication.BindAuthenticator">

 <constructor-arg ref="contextSource"/>

 <property name="userDnPatterns">

 <list><value>uid={0},ou=people</value></list>

 </property>

</bean>

</constructor-arg>

<constructor-arg>

<bean

 class="org.springframework.security.ldap.userdetails.DefaultLdapAuthoritiesPopulator">

 <constructor-arg ref="contextSource"/>

 <constructor-arg value="ou=groups"/>

 <property name="groupRoleAttribute" value="ou"/>

</bean>

</constructor-arg>

</bean>

This would set up the provider to access an LDAP server with URL ldap://

monkeymachine:389/dc=springframework,dc=org. Authentication will be performed by
attempting to bind with the DN`uid=<user-login-name>,ou=people,dc=springframework,dc=org`. After
successful authentication, roles will be assigned to the user by searching under the DN
ou=groups,dc=springframework,dc=org with the default filter (member=<user’s-DN>). The
role name will be taken from the "ou" attribute of each match.

To configure a user search object, which uses the filter (uid=<user-login-name>) for use instead
of the DN-pattern (or in addition to it), you would configure the following bean

<bean id="userSearch"

 class="org.springframework.security.ldap.search.FilterBasedLdapUserSearch">

<constructor-arg index="0" value=""/>

<constructor-arg index="1" value="(uid={0})"/>

<constructor-arg index="2" ref="contextSource" />

</bean>

and use it by setting the BindAuthenticator bean’s userSearch property. The authenticator would
then call the search object to obtain the correct user’s DN before attempting to bind as this user.

LDAP Attributes and Customized UserDetails

The net result of an authentication using LdapAuthenticationProvider is the same as a
normal Spring Security authentication using the standard UserDetailsService interface. A
UserDetails object is created and stored in the returned Authentication object. As with using a
UserDetailsService, a common requirement is to be able to customize this implementation and add
extra properties. When using LDAP, these will normally be attributes from the user entry. The creation
of the UserDetails object is controlled by the provider’s UserDetailsContextMapper strategy,
which is responsible for mapping user objects to and from LDAP context data:

Spring Security Reference

please define title in your docbook file! 150

public interface UserDetailsContextMapper {

UserDetails mapUserFromContext(DirContextOperations ctx, String username,

 Collection<GrantedAuthority> authorities);

void mapUserToContext(UserDetails user, DirContextAdapter ctx);

}

Only the first method is relevant for authentication. If you provide an implementation of this interface and
inject it into the LdapAuthenticationProvider, you have control over exactly how the UserDetails
object is created. The first parameter is an instance of Spring LDAP’s DirContextOperations which
gives you access to the LDAP attributes which were loaded during authentication. the username
parameter is the name used to authenticate and the final parameter is the collection of authorities loaded
for the user by the configured`LdapAuthoritiesPopulator`.

The way the context data is loaded varies slightly depending on the type of authentication you are
using. With the BindAuthenticator, the context returned from the bind operation will be used to read
the attributes, otherwise the data will be read using the standard context obtained from the configured
ContextSource (when a search is configured to locate the user, this will be the data returned by the
search object).

26.5 Active Directory Authentication

Active Directory supports its own non-standard authentication options, and the normal usage pattern
doesn’t fit too cleanly with the standard LdapAuthenticationProvider. Typically authentication
is performed using the domain username (in the form user@domain), rather than using an LDAP
distinguished name. To make this easier, Spring Security 3.1 has an authentication provider which is
customized for a typical Active Directory setup.

ActiveDirectoryLdapAuthenticationProvider

Configuring ActiveDirectoryLdapAuthenticationProvider is quite straightforward. You just
need to supply the domain name and an LDAP URL supplying the address of the server 3. An example
configuration would then look like this:

<bean id="adAuthenticationProvider"

class="org.springframework.security.ldap.authentication.ad.ActiveDirectoryLdapAuthenticationProvider">

 <constructor-arg value="mydomain.com" />

 <constructor-arg value="ldap://adserver.mydomain.com/" />

</bean>

}

Note that there is no need to specify a separate ContextSource in order to define the server
location - the bean is completely self-contained. A user named "Sharon", for example, would
then be able to authenticate by entering either the username sharon or the full Active Directory
userPrincipalName, namely sharon@mydomain.com. The user’s directory entry will then be
located, and the attributes returned for possible use in customizing the created UserDetails object (a
UserDetailsContextMapper can be injected for this purpose, as described above). All interaction
with the directory takes place with the identity of the user themselves. There is no concept of a "manager"
user.

By default, the user authorities are obtained from the memberOf attribute values of the user entry. The
authorities allocated to the user can again be customized using a UserDetailsContextMapper. You

3It is also possible to obtain the server’s IP address using a DNS lookup. This is not currently supported, but hopefully will be
in a future version.

Spring Security Reference

please define title in your docbook file! 151

can also inject a GrantedAuthoritiesMapper into the provider instance to control the authorities
which end up in the Authentication object.

Active Directory Error Codes

By default, a failed result will cause a standard Spring Security BadCredentialsException. If you
set the property convertSubErrorCodesToExceptions to true, the exception messages will be
parsed to attempt to extract the Active Directory-specific error code and raise a more specific exception.
Check the class Javadoc for more information.

Spring Security Reference

please define title in your docbook file! 152

27. JSP Tag Libraries

Spring Security has its own taglib which provides basic support for accessing security information and
applying security constraints in JSPs.

27.1 Declaring the Taglib

To use any of the tags, you must have the security taglib declared in your JSP:

<%@ taglib prefix="sec" uri="http://www.springframework.org/security/tags" %>

27.2 The authorize Tag

This tag is used to determine whether its contents should be evaluated or not. In Spring
Security 3.0, it can be used in two ways 1. The first approach uses a web-security expression,
specified in the access attribute of the tag. The expression evaluation will be delegated to
the SecurityExpressionHandler<FilterInvocation> defined in the application context (you
should have web expressions enabled in your <http> namespace configuration to make sure this
service is available). So, for example, you might have

<sec:authorize access="hasRole('supervisor')">

This content will only be visible to users who have the "supervisor" authority in their list

 of <tt>GrantedAuthority</tt>s.

</sec:authorize>

When used in conjuction with Spring Security’s PermissionEvaluator, the tag can also be used to check
permissions. For example:

<sec:authorize access="hasPermission(#domain,'read') or hasPermission(#domain,'write')">

This content will only be visible to users who have read or write permission to the Object found as a

 request attribute named "domain".

</sec:authorize>

A common requirement is to only show a particular link, if the user is actually allowed to click it. How can
we determine in advance whether something will be allowed? This tag can also operate in an alternative
mode which allows you to define a particular URL as an attribute. If the user is allowed to invoke that
URL, then the tag body will be evaluated, otherwise it will be skipped. So you might have something like

<sec:authorize url="/admin">

This content will only be visible to users who are authorized to send requests to the "/admin" URL.

</sec:authorize>

To use this tag there must also be an instance of WebInvocationPrivilegeEvaluator in your
application context. If you are using the namespace, one will automatically be registered. This is an
instance of DefaultWebInvocationPrivilegeEvaluator, which creates a dummy web request
for the supplied URL and invokes the security interceptor to see whether the request would succeed
or fail. This allows you to delegate to the access-control setup you defined using intercept-url
declarations within the <http> namespace configuration and saves having to duplicate the information

1The legacy options from Spring Security 2.0 are also supported, but discouraged.

Spring Security Reference

please define title in your docbook file! 153

(such as the required roles) within your JSPs. This approach can also be combined with a method
attribute, supplying the HTTP method, for a more specific match.

The boolean result of evaluating the tag (whether it grants or denies access) can be stored in a page
context scope variable by setting the var attribute to the variable name, avoiding the need for duplicating
and re-evaluating the condition at other points in the page.

Disabling Tag Authorization for Testing

Hiding a link in a page for unauthorized users doesn’t prevent them from accessing the URL. They
could just type it into their browser directly, for example. As part of your testing process, you may
want to reveal the hidden areas in order to check that links really are secured at the back end. If
you set the system property spring.security.disableUISecurity to true, the authorize
tag will still run but will not hide its contents. By default it will also surround the content with … tags. This allows you to display "hidden" content with a
particular CSS style such as a different background colour. Try running the "tutorial" sample application
with this property enabled, for example.

You can also set the properties spring.security.securedUIPrefix and
spring.security.securedUISuffix if you want to change surrounding text from the default span
tags (or use empty strings to remove it completely).

27.3 The authentication Tag

This tag allows access to the current Authentication object stored in the security context. It
renders a property of the object directly in the JSP. So, for example, if the principal property
of the Authentication is an instance of Spring Security’s UserDetails object, then using
<sec:authentication property="principal.username" /> will render the name of the
current user.

Of course, it isn’t necessary to use JSP tags for this kind of thing and some people prefer to keep as
little logic as possible in the view. You can access the Authentication object in your MVC controller
(by calling SecurityContextHolder.getContext().getAuthentication()) and add the data
directly to your model for rendering by the view.

27.4 The accesscontrollist Tag

This tag is only valid when used with Spring Security’s ACL module. It checks a comma-separated list
of required permissions for a specified domain object. If the current user has all of those permissions,
then the tag body will be evaluated. If they don’t, it will be skipped. An example might be

Caution

In general this tag should be considered deprecated. Instead use the Section 27.2, “The authorize
Tag”.

<sec:accesscontrollist hasPermission="1,2" domainObject="${someObject}">

This will be shown if the user has all of the permissions represented by the values "1" or "2" on the

 given object.

</sec:accesscontrollist>

Spring Security Reference

please define title in your docbook file! 154

The permissions are passed to the PermissionFactory defined in the application context, converting
them to ACL Permission instances, so they may be any format which is supported by the factory - they
don’t have to be integers, they could be strings like READ or WRITE. If no PermissionFactory is found,
an instance of DefaultPermissionFactory will be used. The AclService from the application
context will be used to load the Acl instance for the supplied object. The Acl will be invoked with the
required permissions to check if all of them are granted.

This tag also supports the var attribute, in the same way as the authorize tag.

27.5 The csrfInput Tag

If CSRF protection is enabled, this tag inserts a hidden form field with the correct name and value for
the CSRF protection token. If CSRF protection is not enabled, this tag outputs nothing.

Normally Spring Security automatically inserts a CSRF form field for any <form:form> tags you use,
but if for some reason you cannot use <form:form>, csrfInput is a handy replacement.

You should place this tag within an HTML <form></form> block, where you would normally place
other input fields. Do NOT place this tag within a Spring <form:form></form:form> block—Spring
Security handles Spring forms automatically.

 <form method="post" action="/do/something">

 <sec:csrfInput />

 Name:

 <input type="text" name="name" />

 ...

 </form>

27.6 The csrfMetaTags Tag

If CSRF protection is enabled, this tag inserts meta tags containing the CSRF protection token form
field and header names and CSRF protection token value. These meta tags are useful for employing
CSRF protection within JavaScript in your applications.

You should place csrfMetaTags within an HTML <head></head> block, where you would normally
place other meta tags. Once you use this tag, you can access the form field name, header name, and
token value easily using JavaScript. JQuery is used in this example to make the task easier.

Spring Security Reference

please define title in your docbook file! 155

<!DOCTYPE html>

<html>

 <head>

 <title>CSRF Protected JavaScript Page</title>

 <meta name="description" content="This is the description for this page" />

 <sec:csrfMetaTags />

 <script type="text/javascript" language="javascript">

 var csrfParameter = $("meta[name='_csrf_parameter']").attr("content");

 var csrfHeader = $("meta[name='_csrf_header']").attr("content");

 var csrfToken = $("meta[name='_csrf']").attr("content");

 // using XMLHttpRequest directly to send an x-www-form-urlencoded request

 var ajax = new XMLHttpRequest();

 ajax.open("POST", "http://www.example.org/do/something", true);

 ajax.setRequestHeader("Content-Type", "application/x-www-form-urlencoded data");

 ajax.send(csrfParameter + "=" + csrfToken + "&name=John&...");

 // using XMLHttpRequest directly to send a non-x-www-form-urlencoded request

 var ajax = new XMLHttpRequest();

 ajax.open("POST", "http://www.example.org/do/something", true);

 ajax.setRequestHeader(csrfHeader, csrfToken);

 ajax.send("...");

 // using JQuery to send an x-www-form-urlencoded request

 var data = {};

 data[csrfParameter] = csrfToken;

 data["name"] = "John";

 ...

 $.ajax({

 url: "http://www.example.org/do/something",

 type: "POST",

 data: data,

 ...

 });

 // using JQuery to send a non-x-www-form-urlencoded request

 var headers = {};

 headers[csrfHeader] = csrfToken;

 $.ajax({

 url: "http://www.example.org/do/something",

 type: "POST",

 headers: headers,

 ...

 });

 <script>

 </head>

 <body>

 ...

 </body>

</html>

If CSRF protection is not enabled, csrfMetaTags outputs nothing.

Spring Security Reference

please define title in your docbook file! 156

28. Java Authentication and Authorization Service
(JAAS) Provider

28.1 Overview

Spring Security provides a package able to delegate authentication requests to the Java Authentication
and Authorization Service (JAAS). This package is discussed in detail below.

28.2 AbstractJaasAuthenticationProvider

The AbstractJaasAuthenticationProvider is the basis for the provided JAAS
AuthenticationProvider implementations. Subclasses must implement a method that creates the
LoginContext. The AbstractJaasAuthenticationProvider has a number of dependencies
that can be injected into it that are discussed below.

JAAS CallbackHandler

Most JAAS LoginModule s require a callback of some sort. These callbacks are usually used to obtain
the username and password from the user.

In a Spring Security deployment, Spring Security is responsible for this user interaction (via the
authentication mechanism). Thus, by the time the authentication request is delegated through to JAAS,
Spring Security’s authentication mechanism will already have fully-populated an Authentication
object containing all the information required by the JAAS LoginModule.

Therefore, the JAAS package for Spring Security provides two default callback handlers,
JaasNameCallbackHandler and JaasPasswordCallbackHandler. Each of these callback
handlers implement JaasAuthenticationCallbackHandler. In most cases these callback
handlers can simply be used without understanding the internal mechanics.

For those needing full control over the callback behavior, internally
AbstractJaasAuthenticationProvider wraps these
JaasAuthenticationCallbackHandler s with an InternalCallbackHandler. The
InternalCallbackHandler is the class that actually implements JAAS normal CallbackHandler
interface. Any time that the JAAS LoginModule is used, it is passed a list of
application context configured InternalCallbackHandler s. If the LoginModule requests
a callback against the InternalCallbackHandler s, the callback is in-turn passed to the
JaasAuthenticationCallbackHandler s being wrapped.

JAAS AuthorityGranter

JAAS works with principals. Even "roles" are represented as principals in JAAS. Spring Security, on the
other hand, works with Authentication objects. Each Authentication object contains a single
principal, and multiple GrantedAuthority s. To facilitate mapping between these different concepts,
Spring Security’s JAAS package includes an AuthorityGranter interface.

An AuthorityGranter is responsible for inspecting a JAAS principal and returning
a set of String s, representing the authorities assigned to the principal. For
each returned authority string, the AbstractJaasAuthenticationProvider creates a

Spring Security Reference

please define title in your docbook file! 157

JaasGrantedAuthority (which implements Spring Security’s GrantedAuthority interface)
containing the authority string and the JAAS principal that the AuthorityGranter was passed.
The AbstractJaasAuthenticationProvider obtains the JAAS principals by firstly successfully
authenticating the user’s credentials using the JAAS LoginModule, and then accessing the
LoginContext it returns. A call to LoginContext.getSubject().getPrincipals() is
made, with each resulting principal passed to each AuthorityGranter defined against the
AbstractJaasAuthenticationProvider.setAuthorityGranters(List) property.

Spring Security does not include any production AuthorityGranter s given that every JAAS principal
has an implementation-specific meaning. However, there is a TestAuthorityGranter in the unit
tests that demonstrates a simple AuthorityGranter implementation.

28.3 DefaultJaasAuthenticationProvider

The DefaultJaasAuthenticationProvider allows a JAAS Configuration object to be
injected into it as a dependency. It then creates a LoginContext using the injected JAAS
Configuration. This means that DefaultJaasAuthenticationProvider is not bound any
particular implementation of Configuration as JaasAuthenticationProvider is.

InMemoryConfiguration

In order to make it easy to inject a Configuration into DefaultJaasAuthenticationProvider, a
default in memory implementation named InMemoryConfiguration is provided. The implementation
constructor accepts a Map where each key represents a login configuration name and the value
represents an Array of AppConfigurationEntry s. InMemoryConfiguration also supports a
default Array of AppConfigurationEntry objects that will be used if no mapping is found within the
provided Map. For details, refer to the class level javadoc of InMemoryConfiguration.

DefaultJaasAuthenticationProvider Example Configuration

While the Spring configuration for InMemoryConfiguration can be more verbose than the standarad
JAAS configuration files, using it in conjuction with DefaultJaasAuthenticationProvider is more
flexible than JaasAuthenticationProvider since it not dependant on the default Configuration
implementation.

An example configuration of DefaultJaasAuthenticationProvider using
InMemoryConfiguration is provided below. Note that custom implementations of Configuration
can easily be injected into DefaultJaasAuthenticationProvider as well.

Spring Security Reference

please define title in your docbook file! 158

<bean id="jaasAuthProvider"

class="org.springframework.security.authentication.jaas.DefaultJaasAuthenticationProvider">

<property name="configuration">

<bean class="org.springframework.security.authentication.jaas.memory.InMemoryConfiguration">

<constructor-arg>

 <map>

 <!--

 SPRINGSECURITY is the default loginContextName

 for AbstractJaasAuthenticationProvider

 -->

 <entry key="SPRINGSECURITY">

 <array>

 <bean class="javax.security.auth.login.AppConfigurationEntry">

 <constructor-arg value="sample.SampleLoginModule" />

 <constructor-arg>

 <util:constant static-field=

 "javax.security.auth.login.AppConfigurationEntry$LoginModuleControlFlag.REQUIRED"/>

 </constructor-arg>

 <constructor-arg>

 <map></map>

 </constructor-arg>

 </bean>

 </array>

 </entry>

 </map>

 </constructor-arg>

</bean>

</property>

<property name="authorityGranters">

<list>

 <!-- You will need to write your own implementation of AuthorityGranter -->

 <bean class="org.springframework.security.authentication.jaas.TestAuthorityGranter"/>

</list>

</property>

</bean>

28.4 JaasAuthenticationProvider

The JaasAuthenticationProvider assumes the default Configuration is an instance
of ConfigFile. This assumption is made in order to attempt to update the Configuration.
The JaasAuthenticationProvider then uses the default Configuration to create the
LoginContext.

Let’s assume we have a JAAS login configuration file, /WEB-INF/login.conf, with the following
contents:

JAASTest {

 sample.SampleLoginModule required;

};

Like all Spring Security beans, the JaasAuthenticationProvider is configured via the application
context. The following definitions would correspond to the above JAAS login configuration file:

http://download.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/sun/security/auth/login/ConfigFile.html

Spring Security Reference

please define title in your docbook file! 159

<bean id="jaasAuthenticationProvider"

class="org.springframework.security.authentication.jaas.JaasAuthenticationProvider">

<property name="loginConfig" value="/WEB-INF/login.conf"/>

<property name="loginContextName" value="JAASTest"/>

<property name="callbackHandlers">

<list>

<bean

 class="org.springframework.security.authentication.jaas.JaasNameCallbackHandler"/>

<bean

 class="org.springframework.security.authentication.jaas.JaasPasswordCallbackHandler"/>

</list>

</property>

<property name="authorityGranters">

 <list>

 <bean class="org.springframework.security.authentication.jaas.TestAuthorityGranter"/>

 </list>

</property>

</bean>

28.5 Running as a Subject

If configured, the JaasApiIntegrationFilter will attempt to run as the Subject on the
JaasAuthenticationToken. This means that the Subject can be accessed using:

Subject subject = Subject.getSubject(AccessController.getContext());

This integration can easily be configured using the jaas-api-provision attribute. This feature is useful
when integrating with legacy or external API’s that rely on the JAAS Subject being populated.

Spring Security Reference

please define title in your docbook file! 160

29. CAS Authentication

29.1 Overview

JA-SIG produces an enterprise-wide single sign on system known as CAS. Unlike other initiatives,
JA-SIG’s Central Authentication Service is open source, widely used, simple to understand, platform
independent, and supports proxy capabilities. Spring Security fully supports CAS, and provides an easy
migration path from single-application deployments of Spring Security through to multiple-application
deployments secured by an enterprise-wide CAS server.

You can learn more about CAS at http://www.ja-sig.org/cas. You will also need to visit this site to
download the CAS Server files.

29.2 How CAS Works

Whilst the CAS web site contains documents that detail the architecture of CAS, we present the general
overview again here within the context of Spring Security. Spring Security 3.x supports CAS 3. At the
time of writing, the CAS server was at version 3.4.

Somewhere in your enterprise you will need to setup a CAS server. The CAS server is simply a standard
WAR file, so there isn’t anything difficult about setting up your server. Inside the WAR file you will
customise the login and other single sign on pages displayed to users.

When deploying a CAS 3.4 server, you will also need to specify an AuthenticationHandler
in the deployerConfigContext.xml included with CAS. The AuthenticationHandler has
a simple method that returns a boolean as to whether a given set of Credentials is valid.
Your AuthenticationHandler implementation will need to link into some type of backend
authentication repository, such as an LDAP server or database. CAS itself includes numerous
AuthenticationHandler s out of the box to assist with this. When you download and deploy the
server war file, it is set up to successfully authenticate users who enter a password matching their
username, which is useful for testing.

Apart from the CAS server itself, the other key players are of course the secure web applications
deployed throughout your enterprise. These web applications are known as "services". There are three
types of services. Those that authenticate service tickets, those that can obtain proxy tickets, and those
that authenticate proxy tickets. Authenticating a proxy ticket differs because the list of proxies must be
validated and often times a proxy ticket can be reused.

Spring Security and CAS Interaction Sequence

The basic interaction between a web browser, CAS server and a Spring Security-secured service is
as follows:

• The web user is browsing the service’s public pages. CAS or Spring Security is not involved.

• The user eventually requests a page that is either secure or one of the beans it uses is secure.
Spring Security’s ExceptionTranslationFilter will detect the AccessDeniedException or
AuthenticationException.

• Because the user’s Authentication object (or lack thereof) caused an
AuthenticationException, the ExceptionTranslationFilter will call the configured

http://www.ja-sig.org/cas

Spring Security Reference

please define title in your docbook file! 161

AuthenticationEntryPoint. If using CAS, this will be the CasAuthenticationEntryPoint
class.

• The CasAuthenticationEntryPoint will redirect the user’s browser to the CAS
server. It will also indicate a service parameter, which is the callback URL
for the Spring Security service (your application). For example, the URL to which
the browser is redirected might be https://my.company.com/cas/login?service=https%3A%2F
%2Fserver3.company.com%2Fwebapp%2Flogin/cas.

• After the user’s browser redirects to CAS, they will be prompted for their username and password.
If the user presents a session cookie which indicates they’ve previously logged on, they will not be
prompted to login again (there is an exception to this procedure, which we’ll cover later). CAS will
use the PasswordHandler (or AuthenticationHandler if using CAS 3.0) discussed above to
decide whether the username and password is valid.

• Upon successful login, CAS will redirect the user’s browser back to the original service. It will also
include a ticket parameter, which is an opaque string representing the "service ticket". Continuing
our earlier example, the URL the browser is redirected to might be https://server3.company.com/
webapp/login/cas?ticket=ST-0-ER94xMJmn6pha35CQRoZ.

• Back in the service web application, the CasAuthenticationFilter is always
listening for requests to /login/cas (this is configurable, but we’ll use
the defaults in this introduction). The processing filter will construct a
UsernamePasswordAuthenticationToken representing the service ticket. The principal will be
equal to CasAuthenticationFilter.CAS_STATEFUL_IDENTIFIER, whilst the credentials will
be the service ticket opaque value. This authentication request will then be handed to the configured
AuthenticationManager.

• The AuthenticationManager implementation will be the ProviderManager, which is in
turn configured with the CasAuthenticationProvider. The CasAuthenticationProvider
only responds to UsernamePasswordAuthenticationToken s containing the CAS-
specific principal (such as CasAuthenticationFilter.CAS_STATEFUL_IDENTIFIER) and
CasAuthenticationToken s (discussed later).

• CasAuthenticationProvider will validate the service ticket using a TicketValidator
implementation. This will typically be a Cas20ServiceTicketValidator which is one of the
classes included in the CAS client library. In the event the application needs to validate proxy tickets,
the Cas20ProxyTicketValidator is used. The TicketValidator makes an HTTPS request to
the CAS server in order to validate the service ticket. It may also include a proxy callback URL, which
is included in this example: https://my.company.com/cas/proxyValidate?service=https%3A%2F
%2Fserver3.company.com%2Fwebapp%2Flogin/cas&ticket=ST-0-
ER94xMJmn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/login/cas/proxyreceptor.

• Back on the CAS server, the validation request will be received. If the presented service ticket matches
the service URL the ticket was issued to, CAS will provide an affirmative response in XML indicating
the username. If any proxy was involved in the authentication (discussed below), the list of proxies
is also included in the XML response.

• [OPTIONAL] If the request to the CAS validation service included the proxy callback URL (in the
pgtUrl parameter), CAS will include a pgtIou string in the XML response. This pgtIou represents
a proxy-granting ticket IOU. The CAS server will then create its own HTTPS connection back to
the pgtUrl. This is to mutually authenticate the CAS server and the claimed service URL. The

https://my.company.com/cas/login?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas
https://my.company.com/cas/login?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas
https://server3.company.com/webapp/login/cas?ticket=ST-0-ER94xMJmn6pha35CQRoZ
https://server3.company.com/webapp/login/cas?ticket=ST-0-ER94xMJmn6pha35CQRoZ
https://my.company.com/cas/proxyValidate?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas&ticket=ST-0-ER94xMJmn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/login/cas/proxyreceptor
https://my.company.com/cas/proxyValidate?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas&ticket=ST-0-ER94xMJmn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/login/cas/proxyreceptor
https://my.company.com/cas/proxyValidate?service=https%3A%2F%2Fserver3.company.com%2Fwebapp%2Flogin/cas&ticket=ST-0-ER94xMJmn6pha35CQRoZ&pgtUrl=https://server3.company.com/webapp/login/cas/proxyreceptor

Spring Security Reference

please define title in your docbook file! 162

HTTPS connection will be used to send a proxy granting ticket to the original web application.
For example, https://server3.company.com/webapp/login/cas/proxyreceptor?pgtIou=PGTIOU-0-
R0zlgrl4pdAQwBvJWO3vnNpevwqStbSGcq3vKB2SqSFFRnjPHt&pgtId=PGT-1-
si9YkkHLrtACBo64rmsi3v2nf7cpCResXg5MpESZFArbaZiOKH.

• The Cas20TicketValidator will parse the XML received from the CAS server. It will return to the
CasAuthenticationProvider a TicketResponse, which includes the username (mandatory),
proxy list (if any were involved), and proxy-granting ticket IOU (if the proxy callback was requested).

• Next CasAuthenticationProvider will call a configured CasProxyDecider. The
CasProxyDecider indicates whether the proxy list in the TicketResponse is acceptable to
the service. Several implementations are provided with Spring Security: RejectProxyTickets,
AcceptAnyCasProxy and NamedCasProxyDecider. These names are largely self-explanatory,
except NamedCasProxyDecider which allows a List of trusted proxies to be provided.

• CasAuthenticationProvider will next request a AuthenticationUserDetailsService to
load the GrantedAuthority objects that apply to the user contained in the Assertion.

• If there were no problems, CasAuthenticationProvider constructs a
CasAuthenticationToken including the details contained in the TicketResponse and the
`GrantedAuthority`s.

• Control then returns to CasAuthenticationFilter, which places the created
CasAuthenticationToken in the security context.

• The user’s browser is redirected to the original page that caused the AuthenticationException
(or a custom destination depending on the configuration).

It’s good that you’re still here! Let’s now look at how this is configured

29.3 Configuration of CAS Client

The web application side of CAS is made easy due to Spring Security. It is assumed you already know
the basics of using Spring Security, so these are not covered again below. We’ll assume a namespace
based configuration is being used and add in the CAS beans as required. Each section builds upon the
previous section. A fullCAS sample application can be found in the Spring Security Samples.

Service Ticket Authentication

This section describes how to setup Spring Security to authenticate Service Tickets. Often times this is
all a web application requires. You will need to add a ServiceProperties bean to your application
context. This represents your CAS service:

<bean id="serviceProperties"

 class="org.springframework.security.cas.ServiceProperties">

<property name="service"

 value="https://localhost:8443/cas-sample/login/cas"/>

<property name="sendRenew" value="false"/>

</bean>

The service must equal a URL that will be monitored by the CasAuthenticationFilter. The
sendRenew defaults to false, but should be set to true if your application is particularly sensitive. What
this parameter does is tell the CAS login service that a single sign on login is unacceptable. Instead, the
user will need to re-enter their username and password in order to gain access to the service.

https://server3.company.com/webapp/login/cas/proxyreceptor?pgtIou=PGTIOU-0-R0zlgrl4pdAQwBvJWO3vnNpevwqStbSGcq3vKB2SqSFFRnjPHt&pgtId=PGT-1-si9YkkHLrtACBo64rmsi3v2nf7cpCResXg5MpESZFArbaZiOKH
https://server3.company.com/webapp/login/cas/proxyreceptor?pgtIou=PGTIOU-0-R0zlgrl4pdAQwBvJWO3vnNpevwqStbSGcq3vKB2SqSFFRnjPHt&pgtId=PGT-1-si9YkkHLrtACBo64rmsi3v2nf7cpCResXg5MpESZFArbaZiOKH
https://server3.company.com/webapp/login/cas/proxyreceptor?pgtIou=PGTIOU-0-R0zlgrl4pdAQwBvJWO3vnNpevwqStbSGcq3vKB2SqSFFRnjPHt&pgtId=PGT-1-si9YkkHLrtACBo64rmsi3v2nf7cpCResXg5MpESZFArbaZiOKH

Spring Security Reference

please define title in your docbook file! 163

The following beans should be configured to commence the CAS authentication process (assuming
you’re using a namespace configuration):

<security:http entry-point-ref="casEntryPoint">

...

<security:custom-filter position="CAS_FILTER" ref="casFilter" />

</security:http>

<bean id="casFilter"

 class="org.springframework.security.cas.web.CasAuthenticationFilter">

<property name="authenticationManager" ref="authenticationManager"/>

</bean>

<bean id="casEntryPoint"

 class="org.springframework.security.cas.web.CasAuthenticationEntryPoint">

<property name="loginUrl" value="https://localhost:9443/cas/login"/>

<property name="serviceProperties" ref="serviceProperties"/>

</bean>

For CAS to operate, the ExceptionTranslationFilter must have its
authenticationEntryPoint property set to the CasAuthenticationEntryPoint bean.
This can easily be done using entry-point-ref as is done in the example above. The
CasAuthenticationEntryPoint must refer to the ServiceProperties bean (discussed above),
which provides the URL to the enterprise’s CAS login server. This is where the user’s browser will be
redirected.

The CasAuthenticationFilter has very similar properties to the
UsernamePasswordAuthenticationFilter (used for form-based logins). You can use these
properties to customize things like behavior for authentication success and failure.

Next you need to add a CasAuthenticationProvider and its collaborators:

<security:authentication-manager alias="authenticationManager">

<security:authentication-provider ref="casAuthenticationProvider" />

</security:authentication-manager>

<bean id="casAuthenticationProvider"

 class="org.springframework.security.cas.authentication.CasAuthenticationProvider">

<property name="authenticationUserDetailsService">

 <bean class="org.springframework.security.core.userdetails.UserDetailsByNameServiceWrapper">

 <constructor-arg ref="userService" />

 </bean>

</property>

<property name="serviceProperties" ref="serviceProperties" />

<property name="ticketValidator">

 <bean class="org.jasig.cas.client.validation.Cas20ServiceTicketValidator">

 <constructor-arg index="0" value="https://localhost:9443/cas" />

 </bean>

</property>

<property name="key" value="an_id_for_this_auth_provider_only"/>

</bean>

<security:user-service id="userService">

<security:user name="joe" password="joe" authorities="ROLE_USER" />

...

</security:user-service>

The CasAuthenticationProvider uses a UserDetailsService instance to load the authorities
for a user, once they have been authenticated by CAS. We’ve shown a simple in-memory setup here.
Note that the CasAuthenticationProvider does not actually use the password for authentication,
but it does use the authorities.

The beans are all reasonably self-explanatory if you refer back to the How CAS Works section.

Spring Security Reference

please define title in your docbook file! 164

This completes the most basic configuration for CAS. If you haven’t made any mistakes, your web
application should happily work within the framework of CAS single sign on. No other parts of Spring
Security need to be concerned about the fact CAS handled authentication. In the following sections we
will discuss some (optional) more advanced configurations.

Single Logout

The CAS protocol supports Single Logout and can be easily added to your Spring Security configuration.
Below are updates to the Spring Security configuration that handle Single Logout

<security:http entry-point-ref="casEntryPoint">

...

<security:logout logout-success-url="/cas-logout.jsp"/>

<security:custom-filter ref="requestSingleLogoutFilter" before="LOGOUT_FILTER"/>

<security:custom-filter ref="singleLogoutFilter" before="CAS_FILTER"/>

</security:http>

<!-- This filter handles a Single Logout Request from the CAS Server -->

<bean id="singleLogoutFilter" class="org.jasig.cas.client.session.SingleSignOutFilter"/>

<!-- This filter redirects to the CAS Server to signal Single Logout should be performed -->

<bean id="requestSingleLogoutFilter"

 class="org.springframework.security.web.authentication.logout.LogoutFilter">

<constructor-arg value="https://localhost:9443/cas/logout"/>

<constructor-arg>

 <bean class=

 "org.springframework.security.web.authentication.logout.SecurityContextLogoutHandler"/>

</constructor-arg>

<property name="filterProcessesUrl" value="/logout/cas"/>

</bean>

The logout element logs the user out of the local application, but does not terminate the
session with the CAS server or any other applications that have been logged into. The
requestSingleLogoutFilter filter will allow the url of /spring_security_cas_logout to be
requested to redirect the application to the configured CAS Server logout url. Then the CAS Server will
send a Single Logout request to all the services that were signed into. The singleLogoutFilter
handles the Single Logout request by looking up the HttpSession in a static Map and then invalidating
it.

It might be confusing why both the logout element and the singleLogoutFilter are needed. It
is considered best practice to logout locally first since the SingleSignOutFilter just stores the
HttpSession in a static Map in order to call invalidate on it. With the configuration above, the flow of
logout would be:

• The user requests /logout which would log the user out of the local application and send the user
to the logout success page.

• The logout success page, /cas-logout.jsp, should instruct the user to click a link pointing to /
logout/cas in order to logout out of all applications.

• When the user clicks the link, the user is redirected to the CAS single logout URL (https://
localhost:9443/cas/logout).

• On the CAS Server side, the CAS single logout URL then submits single logout requests to all the
CAS Services. On the CAS Service side, JASIG’s SingleSignOutFilter processes the logout
request by invaliditing the original session.

The next step is to add the following to your web.xml

https://localhost:9443/cas/logout
https://localhost:9443/cas/logout

Spring Security Reference

please define title in your docbook file! 165

<filter>

<filter-name>characterEncodingFilter</filter-name>

<filter-class>

 org.springframework.web.filter.CharacterEncodingFilter

</filter-class>

<init-param>

 <param-name>encoding</param-name>

 <param-value>UTF-8</param-value>

</init-param>

</filter>

<filter-mapping>

<filter-name>characterEncodingFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

<listener>

<listener-class>

 org.jasig.cas.client.session.SingleSignOutHttpSessionListener

</listener-class>

</listener>

When using the SingleSignOutFilter you might encounter some encoding issues. Therefore it is
recommended to add the CharacterEncodingFilter to ensure that the character encoding is
correct when using the SingleSignOutFilter. Again, refer to JASIG’s documentation for details. The
SingleSignOutHttpSessionListener ensures that when an HttpSession expires, the mapping
used for single logout is removed.

Authenticating to a Stateless Service with CAS

This section describes how to authenticate to a service using CAS. In other words, this section discusses
how to setup a client that uses a service that authenticates with CAS. The next section describes how
to setup a stateless service to Authenticate using CAS.

Configuring CAS to Obtain Proxy Granting Tickets

In order to authenticate to a stateless service, the application needs to obtain a proxy granting ticket
(PGT). This section describes how to configure Spring Security to obtain a PGT building upon thencas-
st[Service Ticket Authentication] configuration.

The first step is to include a ProxyGrantingTicketStorage in your Spring Security configuration.
This is used to store PGT’s that are obtained by the CasAuthenticationFilter so that they can be
used to obtain proxy tickets. An example configuration is shown below

<!--

NOTE: In a real application you should not use an in

 memory implementation. You will also want to ensure

 to clean up expired tickets by calling ProxyGrantingTicketStorage.cleanup()

-->

<bean id="pgtStorage" class="org.jasig.cas.client.proxy.ProxyGrantingTicketStorageImpl"/>

The next step is to update the CasAuthenticationProvider to be able to obtain proxy tickets.
To do this replace the Cas20ServiceTicketValidator with a Cas20ProxyTicketValidator.
The proxyCallbackUrl should be set to a URL that the application will receive PGT’s at. Last, the
configuration should also reference the ProxyGrantingTicketStorage so it can use a PGT to obtain
proxy tickets. You can find an example of the configuration changes that should be made below.

Spring Security Reference

please define title in your docbook file! 166

<bean id="casAuthenticationProvider"

 class="org.springframework.security.cas.authentication.CasAuthenticationProvider">

...

<property name="ticketValidator">

 <bean class="org.jasig.cas.client.validation.Cas20ProxyTicketValidator">

 <constructor-arg value="https://localhost:9443/cas"/>

 <property name="proxyCallbackUrl"

 value="https://localhost:8443/cas-sample/login/cas/proxyreceptor"/>

 <property name="proxyGrantingTicketStorage" ref="pgtStorage"/>

 </bean>

</property>

</bean>

The last step is to update the CasAuthenticationFilter to accept PGT and to store them
in the ProxyGrantingTicketStorage. It is important the the proxyReceptorUrl matches the
proxyCallbackUrl of the Cas20ProxyTicketValidator. An example configuration is shown
below.

<bean id="casFilter"

 class="org.springframework.security.cas.web.CasAuthenticationFilter">

 ...

 <property name="proxyGrantingTicketStorage" ref="pgtStorage"/>

 <property name="proxyReceptorUrl" value="/login/cas/proxyreceptor"/>

</bean>

Calling a Stateless Service Using a Proxy Ticket

Now that Spring Security obtains PGTs, you can use them to create proxy tickets which can be used
to authenticate to a stateless service. The CAS sample application contains a working example in the
ProxyTicketSampleServlet. Example code can be found below:

protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

// NOTE: The CasAuthenticationToken can also be obtained using

// SecurityContextHolder.getContext().getAuthentication()

final CasAuthenticationToken token = (CasAuthenticationToken) request.getUserPrincipal();

// proxyTicket could be reused to make calls to the CAS service even if the

// target url differs

final String proxyTicket = token.getAssertion().getPrincipal().getProxyTicketFor(targetUrl);

// Make a remote call using the proxy ticket

final String serviceUrl = targetUrl+"?ticket="+URLEncoder.encode(proxyTicket, "UTF-8");

String proxyResponse = CommonUtils.getResponseFromServer(serviceUrl, "UTF-8");

...

}

Proxy Ticket Authentication

The CasAuthenticationProvider distinguishes between stateful and stateless clients. A stateful
client is considered any that submits to the filterProcessUrl of the CasAuthenticationFilter.
A stateless client is any that presents an authentication request to CasAuthenticationFilter on
a URL other than the filterProcessUrl.

Because remoting protocols have no way of presenting themselves within the context of an
HttpSession, it isn’t possible to rely on the default practice of storing the security context in the session
between requests. Furthermore, because the CAS server invalidates a ticket after it has been validated
by the TicketValidator, presenting the same proxy ticket on subsequent requests will not work.

One obvious option is to not use CAS at all for remoting protocol clients. However, this would eliminate
many of the desirable features of CAS. As a middle-ground, the CasAuthenticationProvider

Spring Security Reference

please define title in your docbook file! 167

uses a StatelessTicketCache. This is used solely for stateless clients which use a
principal equal to CasAuthenticationFilter.CAS_STATELESS_IDENTIFIER. What happens is
the CasAuthenticationProvider will store the resulting CasAuthenticationToken in the
StatelessTicketCache, keyed on the proxy ticket. Accordingly, remoting protocol clients can
present the same proxy ticket and the CasAuthenticationProvider will not need to contact the
CAS server for validation (aside from the first request). Once authenticated, the proxy ticket could be
used for URLs other than the original target service.

This section builds upon the previous sections to accomodate proxy ticket authentication. The first step
is to specify to authenticate all artifacts as shown below.

<bean id="serviceProperties"

 class="org.springframework.security.cas.ServiceProperties">

...

<property name="authenticateAllArtifacts" value="true"/>

</bean>

The next step is to specify serviceProperties and the authenticationDetailsSource
for the CasAuthenticationFilter. The serviceProperties property instructs the
CasAuthenticationFilter to attempt to authenticate all artifacts instead of only ones
present on the filterProcessUrl. The ServiceAuthenticationDetailsSource creates
a ServiceAuthenticationDetails that ensures the current URL, based upon the
HttpServletRequest, is used as the service URL when validating the ticket. The
method for generating the service URL can be customized by injecting a custom
AuthenticationDetailsSource that returns a custom ServiceAuthenticationDetails.

<bean id="casFilter"

 class="org.springframework.security.cas.web.CasAuthenticationFilter">

...

<property name="serviceProperties" ref="serviceProperties"/>

<property name="authenticationDetailsSource">

 <bean class=

 "org.springframework.security.cas.web.authentication.ServiceAuthenticationDetailsSource">

 <constructor-arg ref="serviceProperties"/>

 </bean>

</property>

</bean>

You will also need to update the CasAuthenticationProvider to handle proxy tickets. To do
this replace the Cas20ServiceTicketValidator with a Cas20ProxyTicketValidator. You will
need to configure the statelessTicketCache and which proxies you want to accept. You can find
an example of the updates required to accept all proxies below.

Spring Security Reference

please define title in your docbook file! 168

<bean id="casAuthenticationProvider"

 class="org.springframework.security.cas.authentication.CasAuthenticationProvider">

...

<property name="ticketValidator">

 <bean class="org.jasig.cas.client.validation.Cas20ProxyTicketValidator">

 <constructor-arg value="https://localhost:9443/cas"/>

 <property name="acceptAnyProxy" value="true"/>

 </bean>

</property>

<property name="statelessTicketCache">

 <bean class="org.springframework.security.cas.authentication.EhCacheBasedTicketCache">

 <property name="cache">

 <bean class="net.sf.ehcache.Cache"

 init-method="initialise" destroy-method="dispose">

 <constructor-arg value="casTickets"/>

 <constructor-arg value="50"/>

 <constructor-arg value="true"/>

 <constructor-arg value="false"/>

 <constructor-arg value="3600"/>

 <constructor-arg value="900"/>

 </bean>

 </property>

 </bean>

</property>

</bean>

Spring Security Reference

please define title in your docbook file! 169

30. X.509 Authentication

30.1 Overview

The most common use of X.509 certificate authentication is in verifying the identity of a server when
using SSL, most commonly when using HTTPS from a browser. The browser will automatically check
that the certificate presented by a server has been issued (ie digitally signed) by one of a list of trusted
certificate authorities which it maintains.

You can also use SSL with "mutual authentication"; the server will then request a valid certificate from
the client as part of the SSL handshake. The server will authenticate the client by checking that its
certificate is signed by an acceptable authority. If a valid certificate has been provided, it can be obtained
through the servlet API in an application. Spring Security X.509 module extracts the certificate using a
filter. It maps the certificate to an application user and loads that user’s set of granted authorities for
use with the standard Spring Security infrastructure.

You should be familiar with using certificates and setting up client authentication for your servlet
container before attempting to use it with Spring Security. Most of the work is in creating and installing
suitable certificates and keys. For example, if you’re using Tomcat then read the instructions here http://
tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html. It’s important that you get this working before trying
it out with Spring Security

30.2 Adding X.509 Authentication to Your Web Application

Enabling X.509 client authentication is very straightforward. Just add the <x509/> element to your http
security namespace configuration.

<http>

...

 <x509 subject-principal-regex="CN=(.*?)," user-service-ref="userService"/>;

</http>

The element has two optional attributes:

• subject-principal-regex. The regular expression used to extract a username from the
certificate’s subject name. The default value is shown above. This is the username which will be
passed to the UserDetailsService to load the authorities for the user.

• user-service-ref. This is the bean Id of the UserDetailsService to be used with X.509. It
isn’t needed if there is only one defined in your application context.

The subject-principal-regex should contain a single group. For example the default expression
"CN=(.*?)," matches the common name field. So if the subject name in the certificate is "CN=Jimi
Hendrix, OU=…", this will give a user name of "Jimi Hendrix". The matches are case insensitive.
So "emailAddress=(.?)," will match "EMAILADDRESS=jimi@hendrix.org,CN=…" giving a user name
"jimi@hendrix.org". If the client presents a certificate and a valid username is successfully extracted,
then there should be a valid Authentication object in the security context. If no certificate is found,
or no corresponding user could be found then the security context will remain empty. This means that
you can easily use X.509 authentication with other options such as a form-based login.

30.3 Setting up SSL in Tomcat

There are some pre-generated certificates in the samples/certificate directory in the Spring
Security project. You can use these to enable SSL for testing if you don’t want to generate your own.

http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html
mailto:jimi@hendrix.org
mailto:jimi@hendrix.org

Spring Security Reference

please define title in your docbook file! 170

The file server.jks contains the server certificate, private key and the issuing certificate authority
certificate. There are also some client certificate files for the users from the sample applications. You
can install these in your browser to enable SSL client authentication.

To run tomcat with SSL support, drop the server.jks file into the tomcat conf directory and add the
following connector to the server.xml file

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" scheme="https" secure="true"

 clientAuth="true" sslProtocol="TLS"

 keystoreFile="${catalina.home}/conf/server.jks"

 keystoreType="JKS" keystorePass="password"

 truststoreFile="${catalina.home}/conf/server.jks"

 truststoreType="JKS" truststorePass="password"

/>

clientAuth can also be set to want if you still want SSL connections to succeed even if the client
doesn’t provide a certificate. Clients which don’t present a certificate won’t be able to access any
objects secured by Spring Security unless you use a non-X.509 authentication mechanism, such as
form authentication.

Spring Security Reference

please define title in your docbook file! 171

31. Run-As Authentication Replacement

31.1 Overview

The AbstractSecurityInterceptor is able to temporarily replace the Authentication object
in the SecurityContext and SecurityContextHolder during the secure object callback
phase. This only occurs if the original Authentication object was successfully processed
by the AuthenticationManager and AccessDecisionManager. The RunAsManager will
indicate the replacement Authentication object, if any, that should be used during the
SecurityInterceptorCallback.

By temporarily replacing the Authentication object during the secure object callback phase,
the secured invocation will be able to call other objects which require different authentication and
authorization credentials. It will also be able to perform any internal security checks for specific
GrantedAuthority objects. Because Spring Security provides a number of helper classes that
automatically configure remoting protocols based on the contents of the SecurityContextHolder,
these run-as replacements are particularly useful when calling remote web services

31.2 Configuration

A RunAsManager interface is provided by Spring Security:

Authentication buildRunAs(Authentication authentication, Object object,

 List<ConfigAttribute> config);

boolean supports(ConfigAttribute attribute);

boolean supports(Class clazz);

The first method returns the Authentication object that should replace the existing
Authentication object for the duration of the method invocation. If the method returns
null, it indicates no replacement should be made. The second method is used by the
AbstractSecurityInterceptor as part of its startup validation of configuration attributes. The
supports(Class) method is called by a security interceptor implementation to ensure the configured
RunAsManager supports the type of secure object that the security interceptor will present.

One concrete implementation of a RunAsManager is provided with Spring Security. The
RunAsManagerImpl class returns a replacement RunAsUserToken if any ConfigAttribute starts
with RUN_AS_. If any such ConfigAttribute is found, the replacement RunAsUserToken will
contain the same principal, credentials and granted authorities as the original Authentication
object, along with a new GrantedAuthorityImpl for each RUN_AS_ ConfigAttribute. Each new
GrantedAuthorityImpl will be prefixed with ROLE_, followed by the RUN_AS ConfigAttribute.
For example, a RUN_AS_SERVER will result in the replacement RunAsUserToken containing a
ROLE_RUN_AS_SERVER granted authority.

The replacement RunAsUserToken is just like any other Authentication object. It
needs to be authenticated by the AuthenticationManager, probably via delegation to a
suitable AuthenticationProvider. The RunAsImplAuthenticationProvider performs such
authentication. It simply accepts as valid any RunAsUserToken presented.

To ensure malicious code does not create a RunAsUserToken and present it for guaranteed
acceptance by the RunAsImplAuthenticationProvider, the hash of a key is stored in all

Spring Security Reference

please define title in your docbook file! 172

generated tokens. The RunAsManagerImpl and RunAsImplAuthenticationProvider is created
in the bean context with the same key:

<bean id="runAsManager"

 class="org.springframework.security.access.intercept.RunAsManagerImpl">

<property name="key" value="my_run_as_password"/>

</bean>

<bean id="runAsAuthenticationProvider"

 class="org.springframework.security.access.intercept.RunAsImplAuthenticationProvider">

<property name="key" value="my_run_as_password"/>

</bean>

By using the same key, each RunAsUserToken can be validated it was created by an approved
RunAsManagerImpl. The RunAsUserToken is immutable after creation for security reasons

Spring Security Reference

please define title in your docbook file! 173

32. Spring Security Crypto Module

32.1 Introduction

The Spring Security Crypto module provides support for symmetric encryption, key generation, and
password encoding. The code is distributed as part of the core module but has no dependencies on
any other Spring Security (or Spring) code.

32.2 Encryptors

The Encryptors class provides factory methods for constructing symmetric encryptors. Using this class,
you can create ByteEncryptors to encrypt data in raw byte[] form. You can also construct TextEncryptors
to encrypt text strings. Encryptors are thread safe.

BytesEncryptor

Use the Encryptors.standard factory method to construct a "standard" BytesEncryptor:

Encryptors.standard("password", "salt");

The "standard" encryption method is 256-bit AES using PKCS #5’s PBKDF2 (Password-Based Key
Derivation Function #2). This method requires Java 6. The password used to generate the SecretKey
should be kept in a secure place and not be shared. The salt is used to prevent dictionary attacks against
the key in the event your encrypted data is compromised. A 16-byte random initialization vector is also
applied so each encrypted message is unique.

The provided salt should be in hex-encoded String form, be random, and be at least 8 bytes in length.
Such a salt may be generated using a KeyGenerator:

String salt = KeyGenerators.string().generateKey(); // generates a random 8-byte salt that is then hex-

encoded

TextEncryptor

Use the Encryptors.text factory method to construct a standard TextEncryptor:

Encryptors.text("password", "salt");

A TextEncryptor uses a standard BytesEncryptor to encrypt text data. Encrypted results are returned
as hex-encoded strings for easy storage on the filesystem or in the database.

Use the Encryptors.queryableText factory method to construct a "queryable" TextEncryptor:

Encryptors.queryableText("password", "salt");

The difference between a queryable TextEncryptor and a standard TextEncryptor has to do with
initialization vector (iv) handling. The iv used in a queryable TextEncryptor#encrypt operation is shared,
or constant, and is not randomly generated. This means the same text encrypted multiple times will
always produce the same encryption result. This is less secure, but necessary for encrypted data that
needs to be queried against. An example of queryable encrypted text would be an OAuth apiKey.

Spring Security Reference

please define title in your docbook file! 174

32.3 Key Generators

The KeyGenerators class provides a number of convenience factory methods for constructing different
types of key generators. Using this class, you can create a BytesKeyGenerator to generate byte[] keys.
You can also construct a StringKeyGenerator to generate string keys. KeyGenerators are thread safe.

BytesKeyGenerator

Use the KeyGenerators.secureRandom factory methods to generate a BytesKeyGenerator backed by
a SecureRandom instance:

KeyGenerator generator = KeyGenerators.secureRandom();

byte[] key = generator.generateKey();

The default key length is 8 bytes. There is also a KeyGenerators.secureRandom variant that provides
control over the key length:

KeyGenerators.secureRandom(16);

Use the KeyGenerators.shared factory method to construct a BytesKeyGenerator that always returns
the same key on every invocation:

KeyGenerators.shared(16);

StringKeyGenerator

Use the KeyGenerators.string factory method to construct a 8-byte, SecureRandom KeyGenerator that
hex-encodes each key as a String:

KeyGenerators.string();

32.4 Password Encoding

The password package of the spring-security-crypto module provides support for encoding passwords.
PasswordEncoder is the central service interface and has the following signature:

public interface PasswordEncoder {

String encode(String rawPassword);

boolean matches(String rawPassword, String encodedPassword);

}

The matches method returns true if the rawPassword, once encoded, equals the encodedPassword.
This method is designed to support password-based authentication schemes.

The BCryptPasswordEncoder implementation uses the widely supported "bcrypt" algorithm to hash
the passwords. Bcrypt uses a random 16 byte salt value and is a deliberately slow algorithm, in order
to hinder password crackers. The amount of work it does can be tuned using the "strength" parameter
which takes values from 4 to 31. The higher the value, the more work has to be done to calculate the
hash. The default value is 10. You can change this value in your deployed system without affecting
existing passwords, as the value is also stored in the encoded hash.

// Create an encoder with strength 16

BCryptPasswordEncoder encoder = new BCryptPasswordEncoder(16);

String result = encoder.encode("myPassword");

assertTrue(encoder.matches("myPassword", result));

Spring Security Reference

please define title in your docbook file! 175

33. Concurrency Support
In most environments, Security is stored on a per Thread basis. This means that when work is done
on a new Thread, the SecurityContext is lost. Spring Security provides some infrastructure to help
make this much easier for users. Spring Security provides low level abstractions for working with Spring
Security in multi threaded environments. In fact, this is what Spring Security builds on to integration with
the section called “AsyncContext.start(Runnable)” and Section 34.3, “Spring MVC Async Integration”.

33.1 DelegatingSecurityContextRunnable

One of the most fundamental building blocks within Spring Security’s concurrency support is the
DelegatingSecurityContextRunnable. It wraps a delegate Runnable in order to initialize
the SecurityContextHolder with a specified SecurityContext for the delegate. It then
invokes the delegate Runnable ensuring to clear the SecurityContextHolder afterwards. The
DelegatingSecurityContextRunnable looks something like this:

public void run() {

try {

 SecurityContextHolder.setContext(securityContext);

 delegate.run();

} finally {

 SecurityContextHolder.clearContext();

}

}

While very simple, it makes it seamless to transfer the SecurityContext from one Thread to another. This
is important since, in most cases, the SecurityContextHolder acts on a per Thread basis. For example,
you might have used Spring Security’s the section called “<global-method-security>” support to secure
one of your services. You can now easily transfer the SecurityContext of the current Thread to the
Thread that invokes the secured service. An example of how you might do this can be found below:

Runnable originalRunnable = new Runnable() {

public void run() {

 // invoke secured service

}

};

SecurityContext context = SecurityContextHolder.getContext();

DelegatingSecurityContextRunnable wrappedRunnable =

 new DelegatingSecurityContextRunnable(originalRunnable, context);

new Thread(wrappedRunnable).start();

The code above performs the following steps:

• Creates a Runnable that will be invoking our secured service. Notice that it is not aware of Spring
Security

• Obtains the SecurityContext that we wish to use from the SecurityContextHolder and
initializes the DelegatingSecurityContextRunnable

• Use the DelegatingSecurityContextRunnable to create a Thread

• Start the Thread we created

Since it is quite common to create a DelegatingSecurityContextRunnable with the
SecurityContext from the SecurityContextHolder there is a shortcut constructor for it. The
following code is the same as the code above:

Spring Security Reference

please define title in your docbook file! 176

Runnable originalRunnable = new Runnable() {

public void run() {

 // invoke secured service

}

};

DelegatingSecurityContextRunnable wrappedRunnable =

 new DelegatingSecurityContextRunnable(originalRunnable);

new Thread(wrappedRunnable).start();

The code we have is simple to use, but it still requires knowledge that we are using Spring Security. In
the next section we will take a look at how we can utilize DelegatingSecurityContextExecutor
to hide the fact that we are using Spring Security.

33.2 DelegatingSecurityContextExecutor

In the previous section we found that it was easy to use the
DelegatingSecurityContextRunnable, but it was not ideal since we had to be aware of Spring
Security in order to use it. Let’s take a look at how DelegatingSecurityContextExecutor can
shield our code from any knowledge that we are using Spring Security.

The design of DelegatingSecurityContextExecutor is very similar to that of
DelegatingSecurityContextRunnable except it accepts a delegate Executor instead of a
delegate Runnable. You can see an example of how it might be used below:

SecurityContext context = SecurityContextHolder.createEmptyContext();

Authentication authentication =

 new UsernamePasswordAuthenticationToken("user","doesnotmatter",

 AuthorityUtils.createAuthorityList("ROLE_USER"));

context.setAuthentication(authentication);

SimpleAsyncTaskExecutor delegateExecutor =

 new SimpleAsyncTaskExecutor();

DelegatingSecurityContextExecutor executor =

 new DelegatingSecurityContextExecutor(delegateExecutor, context);

Runnable originalRunnable = new Runnable() {

public void run() {

 // invoke secured service

}

};

executor.execute(originalRunnable);

The code performs the following steps:

• Creates the SecurityContext to be used for our DelegatingSecurityContextExecutor.
Note that in this example we simply create the SecurityContext by hand. However, it does
not matter where or how we get the SecurityContext (i.e. we could obtain it from the
SecurityContextHolder if we wanted).

• Creates a delegateExecutor that is in charge of executing submitted `Runnable`s

• Finally we create a DelegatingSecurityContextExecutor which is in charge of wrapping any
Runnable that is passed into the execute method with a DelegatingSecurityContextRunnable.
It then passes the wrapped Runnable to the delegateExecutor. In this instance,
the same SecurityContext will be used for every Runnable submitted to our
DelegatingSecurityContextExecutor. This is nice if we are running background tasks that
need to be run by a user with elevated privileges.

Spring Security Reference

please define title in your docbook file! 177

• At this point you may be asking yourself "How does this shield my code of any
knowledge of Spring Security?" Instead of creating the SecurityContext and the
DelegatingSecurityContextExecutor in our own code, we can inject an already initialized
instance of DelegatingSecurityContextExecutor.

@Autowired

private Executor executor; // becomes an instance of our DelegatingSecurityContextExecutor

public void submitRunnable() {

Runnable originalRunnable = new Runnable() {

 public void run() {

 // invoke secured service

 }

};

executor.execute(originalRunnable);

}

Now our code is unaware that the SecurityContext is being propagated to the Thread, then
the originalRunnable is executed, and then the SecurityContextHolder is cleared out. In
this example, the same user is being used to execute each Thread. What if we wanted to use the
user from SecurityContextHolder at the time we invoked executor.execute(Runnable) (i.e.
the currently logged in user) to process originalRunnable? This can be done by removing the
SecurityContext argument from our DelegatingSecurityContextExecutor constructor. For
example:

SimpleAsyncTaskExecutor delegateExecutor = new SimpleAsyncTaskExecutor();

DelegatingSecurityContextExecutor executor =

 new DelegatingSecurityContextExecutor(delegateExecutor);

Now anytime executor.execute(Runnable) is executed the SecurityContext is first obtained
by the SecurityContextHolder and then that SecurityContext is used to create our
DelegatingSecurityContextRunnable. This means that we are executing our Runnable with the
same user that was used to invoke the executor.execute(Runnable) code.

33.3 Spring Security Concurrency Classes

Refer to the Javadoc for additional integrations with both the Java concurrent APIs and the Spring Task
abstractions. They are quite self explanatory once you understand the previous code.

• DelegatingSecurityContextCallable

• DelegatingSecurityContextExecutor

• DelegatingSecurityContextExecutorService

• DelegatingSecurityContextRunnable

• DelegatingSecurityContextScheduledExecutorService

• DelegatingSecurityContextSchedulingTaskExecutor

• DelegatingSecurityContextAsyncTaskExecutor

• DelegatingSecurityContextTaskExecutor

Spring Security Reference

please define title in your docbook file! 178

34. Spring MVC Integration

Spring Security provides a number of optional integrations with Spring MVC. This section covers the
integration in further detail.

34.1 @EnableWebMvcSecurity

WARN: As of Spring Security 4.0, @EnableWebMvcSecurity is deprecated. The replacement
is @EnableWebSecurity which will determine adding the Spring MVC features based upon the
classpath.

To enable Spring Security integration with Spring MVC add the @EnableWebSecurity annotation to
your configuration.

34.2 @AuthenticationPrincipal

Spring Security provides AuthenticationPrincipalArgumentResolver which can automatically
resolve the current Authentication.getPrincipal() for Spring MVC arguments. By using
Section 34.1, “@EnableWebMvcSecurity” you will automatically have this added to your Spring MVC
configuration. If you use XML based configuraiton, you must add this yourself.

Once AuthenticationPrincipalArgumentResolver is properly configured, you can be entirely
decoupled from Spring Security in your Spring MVC layer.

Consider a situation where a custom UserDetailsService that returns an Object that implements
UserDetails and your own CustomUser Object. The CustomUser of the currently authenticated
user could be accessed using the following code:

import org.springframework.security.web.bind.annotation.AuthenticationPrincipal;

// ...

@RequestMapping("/messages/inbox")

public ModelAndView findMessagesForUser() {

 Authentication authentication =

 SecurityContextHolder.getContext().getAuthentication();

 CustomUser custom = (CustomUser) authentication == null ? null : authentication.getPrincipal();

 // .. find messags for this user and return them ...

}

As of Spring Security 3.2 we can resolve the argument more directly by adding an annotation. For
example:

@RequestMapping("/messages/inbox")

public ModelAndView findMessagesForUser(@AuthenticationPrincipal CustomUser customUser) {

 // .. find messags for this user and return them ...

}

We can further remove our dependency on Spring Security by making @AuthenticationPrincipal
a meta annotation on our own annotation. Below we demonstrate how we could do this on an annotation
named @CurrentUser.

Spring Security Reference

please define title in your docbook file! 179

Note

It is important to realize that in order to remove the dependency on Spring Security, it is the
consuming application that would create @CurrentUser. This step is not strictly required, but
assists in isolating your dependency to Spring Security to a more central location.

@Target({ElementType.PARAMETER, ElementType.TYPE})

@Retention(RetentionPolicy.RUNTIME)

@Documented

@AuthenticationPrincipal

public @interface CurrentUser {}

Now that @CurrentUser has been specified, we can use it to signal to resolve our CustomUser of the
currently authenticated user. We have also isolated our dependency on Spring Security to a single file.

@RequestMapping("/messages/inbox")

public ModelAndView findMessagesForUser(@CurrentUser CustomUser customUser) {

 // .. find messags for this user and return them ...

}

34.3 Spring MVC Async Integration

Spring Web MVC 3.2+ has excellent support for Asynchronous Request Processing. With no additional
configuration, Spring Security will automatically setup the SecurityContext to the Thread that
executes a Callable returned by your controllers. For example, the following method will automatically
have its Callable executed with the SecurityContext that was available when the Callable was
created:

@RequestMapping(method=RequestMethod.POST)

public Callable<String> processUpload(final MultipartFile file) {

return new Callable<String>() {

 public Object call() throws Exception {

 // ...

 return "someView";

 }

};

}

Associating SecurityContext to Callable’s

More technically speaking, Spring Security integrates with WebAsyncManager. The
SecurityContext that is used to process the Callable is the SecurityContext that exists
on the SecurityContextHolder at the time startCallableProcessing is invoked.

There is no automatic integration with a DeferredResult that is returned by controllers. This is
because DeferredResult is processed by the users and thus there is no way of automatically
integrating with it. However, you can still use ??? to provide transparent integration with Spring Security.

34.4 Spring MVC and CSRF Integration

Automatic Token Inclusion

Spring Security will automatically include the CSRF Token within forms that use the Spring MVC form
tag. For example, the following JSP:

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html#mvc-ann-async
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/view.html#view-jsp-formtaglib-formtag
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/view.html#view-jsp-formtaglib-formtag

Spring Security Reference

please define title in your docbook file! 180

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"

 xmlns:c="http://java.sun.com/jsp/jstl/core"

 xmlns:form="http://www.springframework.org/tags/form" version="2.0">

 <jsp:directive.page language="java" contentType="text/html" />

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <!-- ... -->

 <c:url var="logoutUrl" value="/logout"/>

 <form:form action="${logoutUrl}"

 method="post">

 <input type="submit"

 value="Log out" />

 <input type="hidden"

 name="${_csrf.parameterName}"

 value="${_csrf.token}"/>

 </form:form>

 <!-- ... -->

</html>

</jsp:root>

Will output HTML that is similar to the following:

<!-- ... -->

<form action="/context/logout" method="post">

<input type="submit" value="Log out"/>

<input type="hidden" name="_csrf" value="f81d4fae-7dec-11d0-a765-00a0c91e6bf6"/>

</form>

<!-- ... -->

Resolving the CsrfToken

Spring Security provides CsrfTokenResolver which can automatically resolve the current
CsrfToken for Spring MVC arguments. By using ??? you will automatically have this added to your
Spring MVC configuration. If you use XML based configuraiton, you must add this yourself.

Once CsrfTokenResolver is properly configured, you can expose the CsrfToken to your static
HTML based application.

@RestController

public class CsrfController {

 @RequestMapping("/csrf")

 public CsrfToken csrf(CsrfToken token) {

 return token;

 }

}

It is important to keep the CsrfToken a secret from other domains. This means if you are using Cross
Origin Sharing (CORS), you should NOT expose the CsrfToken to any external domains.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Part VIII. Spring Data Integration
Spring Security provides Spring Data integration that allows referring to the current user within your
queries. It is not only useful but necessary to include the user in the queries to support paged results
since filtering the results afterwards would not scale.

Spring Security Reference

please define title in your docbook file! 182

35. Spring Data & Spring Security Configuration

To use this support, provide a bean of type SecurityEvaluationContextExtension. In Java
Configuration, this would look like:

@Bean

public SecurityEvaluationContextExtension securityEvaluationContextExtension() {

 return new SecurityEvaluationContextExtension();

}

In XML Configuration, this would look like:

<bean class="org.springframework.security.data.repository.query.SecurityEvaluationContextExtension"/>

Spring Security Reference

please define title in your docbook file! 183

36. Security Expressions within @Query

Now Spring Security can be used within your queries. For example:

@Repository

public interface MessageRepository extends PagingAndSortingRepository<Message,Long> {

 @Query("select m from Message m where m.to.id = ?#{ principal?.id }")

 Page<Message> findInbox(Pageable pageable);

}

This checks to see if the Authentication.getPrincipal().getId() is equal to the recipient
of the Message. Note that this example assumes you have customized the principal to be an Object
that has an id property. By exposing the SecurityEvaluationContextExtension bean, all of the
Common Security Expressions are available within the Query.

Part IX. Appendix

Spring Security Reference

please define title in your docbook file! 185

37. Security Database Schema

There are various database schema used by the framework and this appendix provides a single
reference point to them all. You only need to provide the tables for the areas of functonality you require.

DDL statements are given for the HSQLDB database. You can use these as a guideline for defining the
schema for the database you are using.

37.1 User Schema

The standard JDBC implementation of the UserDetailsService (JdbcDaoImpl) requires tables to
load the password, account status (enabled or disabled) and a list of authorities (roles) for the user. You
will need to adjust this schema to match the database dialect you are using.

create table users(

 username varchar_ignorecase(50) not null primary key,

 password varchar_ignorecase(50) not null,

 enabled boolean not null

);

create table authorities (

 username varchar_ignorecase(50) not null,

 authority varchar_ignorecase(50) not null,

 constraint fk_authorities_users foreign key(username) references users(username)

);

create unique index ix_auth_username on authorities (username,authority);

Group Authorities

Spring Security 2.0 introduced support for group authorities in JdbcDaoImpl. The table structure if
groups are enabled is as follows. You will need to adjust this schema to match the database dialect
you are using.

create table groups (

 id bigint generated by default as identity(start with 0) primary key,

 group_name varchar_ignorecase(50) not null

);

create table group_authorities (

 group_id bigint not null,

 authority varchar(50) not null,

 constraint fk_group_authorities_group foreign key(group_id) references groups(id)

);

create table group_members (

 id bigint generated by default as identity(start with 0) primary key,

 username varchar(50) not null,

 group_id bigint not null,

 constraint fk_group_members_group foreign key(group_id) references groups(id)

);

Remember that these tables are only required if you are using the provided JDBC
UserDetailsService implementation. If you write your own or choose to implement
AuthenticationProvider without a UserDetailsService, then you have complete freedom over
how you store the data, as long as the interface contract is satisfied.

Spring Security Reference

please define title in your docbook file! 186

37.2 Persistent Login (Remember-Me) Schema

This table is used to store data used by the more secure persistent token remember-me implementation.
If you are using JdbcTokenRepositoryImpl either directly or through the namespace, then you will
need this table. Remember to adjust this schema to match the database dialect you are using.

create table persistent_logins (

 username varchar(64) not null,

 series varchar(64) primary key,

 token varchar(64) not null,

 last_used timestamp not null

);

37.3 ACL Schema

There are four tables used by the Spring Security ACL implementation.

1. acl_sid stores the security identities recognised by the ACL system. These can be unique principals
or authorities which may apply to multiple principals.

2. acl_class defines the domain object types to which ACLs apply. The class column stores the
Java class name of the object.

3. acl_object_identity stores the object identity definitions of specific domai objects.

4. acl_entry stores the ACL permissions which apply to a specific object identity and security identity.

It is assumed that the database will auto-generate the primary keys for each of the identities. The
JdbcMutableAclService has to be able to retrieve these when it has created a new row in the
acl_sid or acl_class tables. It has two properties which define the SQL needed to retrieve these
values classIdentityQuery and sidIdentityQuery. Both of these default to call identity()

The ACL artifact JAR contains files for creating the ACL schema in HyperSQL (HSQLDB), PostgreSQL,
MySQL/MariaDB, Microsoft SQL Server, and Oracle Database. These schemas are also demonstrated
in the following sections.

HyperSQL

The default schema works with the embedded HSQLDB database that is used in unit tests within the
framework.

Spring Security Reference

please define title in your docbook file! 187

create table acl_sid(

 id bigint generated by default as identity(start with 100) not null primary key,

 principal boolean not null,

 sid varchar_ignorecase(100) not null,

 constraint unique_uk_1 unique(sid,principal)

);

create table acl_class(

 id bigint generated by default as identity(start with 100) not null primary key,

 class varchar_ignorecase(100) not null,

 constraint unique_uk_2 unique(class)

);

create table acl_object_identity(

 id bigint generated by default as identity(start with 100) not null primary key,

 object_id_class bigint not null,

 object_id_identity bigint not null,

 parent_object bigint,

 owner_sid bigint,

 entries_inheriting boolean not null,

 constraint unique_uk_3 unique(object_id_class,object_id_identity),

 constraint foreign_fk_1 foreign key(parent_object)references acl_object_identity(id),

 constraint foreign_fk_2 foreign key(object_id_class)references acl_class(id),

 constraint foreign_fk_3 foreign key(owner_sid)references acl_sid(id)

);

create table acl_entry(

 id bigint generated by default as identity(start with 100) not null primary key,

 acl_object_identity bigint not null,

 ace_order int not null,

 sid bigint not null,

 mask integer not null,

 granting boolean not null,

 audit_success boolean not null,

 audit_failure boolean not null,

 constraint unique_uk_4 unique(acl_object_identity,ace_order),

 constraint foreign_fk_4 foreign key(acl_object_identity) references acl_object_identity(id),

 constraint foreign_fk_5 foreign key(sid) references acl_sid(id)

);

Spring Security Reference

please define title in your docbook file! 188

PostgreSQL

create table acl_sid(

 id bigserial not null primary key,

 principal boolean not null,

 sid varchar(100) not null,

 constraint unique_uk_1 unique(sid,principal)

);

create table acl_class(

 id bigserial not null primary key,

 class varchar(100) not null,

 constraint unique_uk_2 unique(class)

);

create table acl_object_identity(

 id bigserial primary key,

 object_id_class bigint not null,

 object_id_identity bigint not null,

 parent_object bigint,

 owner_sid bigint,

 entries_inheriting boolean not null,

 constraint unique_uk_3 unique(object_id_class,object_id_identity),

 constraint foreign_fk_1 foreign key(parent_object)references acl_object_identity(id),

 constraint foreign_fk_2 foreign key(object_id_class)references acl_class(id),

 constraint foreign_fk_3 foreign key(owner_sid)references acl_sid(id)

);

create table acl_entry(

 id bigserial primary key,

 acl_object_identity bigint not null,

 ace_order int not null,

 sid bigint not null,

 mask integer not null,

 granting boolean not null,

 audit_success boolean not null,

 audit_failure boolean not null,

 constraint unique_uk_4 unique(acl_object_identity,ace_order),

 constraint foreign_fk_4 foreign key(acl_object_identity) references acl_object_identity(id),

 constraint foreign_fk_5 foreign key(sid) references acl_sid(id)

);

You will have to set the classIdentityQuery and sidIdentityQuery properties of
JdbcMutableAclService to the following values, respectively:

• select currval(pg_get_serial_sequence('acl_class', 'id'))

• select currval(pg_get_serial_sequence('acl_sid', 'id'))

Spring Security Reference

please define title in your docbook file! 189

MySQL and MariaDB

CREATE TABLE acl_sid (

 id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

 principal BOOLEAN NOT NULL,

 sid VARCHAR(100) NOT NULL,

 UNIQUE KEY unique_acl_sid (sid, principal)

) ENGINE=InnoDB;

CREATE TABLE acl_class (

 id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

 class VARCHAR(100) NOT NULL,

 UNIQUE KEY uk_acl_class (class)

) ENGINE=InnoDB;

CREATE TABLE acl_object_identity (

 id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

 object_id_class BIGINT UNSIGNED NOT NULL,

 object_id_identity BIGINT NOT NULL,

 parent_object BIGINT UNSIGNED,

 owner_sid BIGINT UNSIGNED,

 entries_inheriting BOOLEAN NOT NULL,

 UNIQUE KEY uk_acl_object_identity (object_id_class, object_id_identity),

 CONSTRAINT fk_acl_object_identity_parent FOREIGN KEY (parent_object) REFERENCES acl_object_identity

 (id),

 CONSTRAINT fk_acl_object_identity_class FOREIGN KEY (object_id_class) REFERENCES acl_class (id),

 CONSTRAINT fk_acl_object_identity_owner FOREIGN KEY (owner_sid) REFERENCES acl_sid (id)

) ENGINE=InnoDB;

CREATE TABLE acl_entry (

 id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

 acl_object_identity BIGINT UNSIGNED NOT NULL,

 ace_order INTEGER NOT NULL,

 sid BIGINT UNSIGNED NOT NULL,

 mask INTEGER UNSIGNED NOT NULL,

 granting BOOLEAN NOT NULL,

 audit_success BOOLEAN NOT NULL,

 audit_failure BOOLEAN NOT NULL,

 UNIQUE KEY unique_acl_entry (acl_object_identity, ace_order),

 CONSTRAINT fk_acl_entry_object FOREIGN KEY (acl_object_identity) REFERENCES acl_object_identity (id),

 CONSTRAINT fk_acl_entry_acl FOREIGN KEY (sid) REFERENCES acl_sid (id)

) ENGINE=InnoDB;

Spring Security Reference

please define title in your docbook file! 190

Microsoft SQL Server

CREATE TABLE acl_sid (

 id BIGINT NOT NULL IDENTITY PRIMARY KEY,

 principal BIT NOT NULL,

 sid VARCHAR(100) NOT NULL,

 CONSTRAINT unique_acl_sid UNIQUE (sid, principal)

);

CREATE TABLE acl_class (

 id BIGINT NOT NULL IDENTITY PRIMARY KEY,

 class VARCHAR(100) NOT NULL,

 CONSTRAINT uk_acl_class UNIQUE (class)

);

CREATE TABLE acl_object_identity (

 id BIGINT NOT NULL IDENTITY PRIMARY KEY,

 object_id_class BIGINT NOT NULL,

 object_id_identity BIGINT NOT NULL,

 parent_object BIGINT,

 owner_sid BIGINT,

 entries_inheriting BIT NOT NULL,

 CONSTRAINT uk_acl_object_identity UNIQUE (object_id_class, object_id_identity),

 CONSTRAINT fk_acl_object_identity_parent FOREIGN KEY (parent_object) REFERENCES acl_object_identity

 (id),

 CONSTRAINT fk_acl_object_identity_class FOREIGN KEY (object_id_class) REFERENCES acl_class (id),

 CONSTRAINT fk_acl_object_identity_owner FOREIGN KEY (owner_sid) REFERENCES acl_sid (id)

);

CREATE TABLE acl_entry (

 id BIGINT NOT NULL IDENTITY PRIMARY KEY,

 acl_object_identity BIGINT NOT NULL,

 ace_order INTEGER NOT NULL,

 sid BIGINT NOT NULL,

 mask INTEGER NOT NULL,

 granting BIT NOT NULL,

 audit_success BIT NOT NULL,

 audit_failure BIT NOT NULL,

 CONSTRAINT unique_acl_entry UNIQUE (acl_object_identity, ace_order),

 CONSTRAINT fk_acl_entry_object FOREIGN KEY (acl_object_identity) REFERENCES acl_object_identity (id),

 CONSTRAINT fk_acl_entry_acl FOREIGN KEY (sid) REFERENCES acl_sid (id)

);

Spring Security Reference

please define title in your docbook file! 191

Oracle Database

CREATE TABLE acl_sid (

 id NUMBER(38) NOT NULL PRIMARY KEY,

 principal NUMBER(1) NOT NULL CHECK (principal in (0, 1)),

 sid NVARCHAR2(100) NOT NULL,

 CONSTRAINT unique_acl_sid UNIQUE (sid, principal)

);

CREATE SEQUENCE acl_sid_sequence START WITH 1 INCREMENT BY 1 NOMAXVALUE;

CREATE OR REPLACE TRIGGER acl_sid_id_trigger

 BEFORE INSERT ON acl_sid

 FOR EACH ROW

BEGIN

 SELECT acl_sid_sequence.nextval INTO :new.id FROM dual;

END;

CREATE TABLE acl_class (

 id NUMBER(38) NOT NULL PRIMARY KEY,

 class NVARCHAR2(100) NOT NULL,

 CONSTRAINT uk_acl_class UNIQUE (class)

);

CREATE SEQUENCE acl_class_sequence START WITH 1 INCREMENT BY 1 NOMAXVALUE;

CREATE OR REPLACE TRIGGER acl_class_id_trigger

 BEFORE INSERT ON acl_class

 FOR EACH ROW

BEGIN

 SELECT acl_class_sequence.nextval INTO :new.id FROM dual;

END;

CREATE TABLE acl_object_identity (

 id NUMBER(38) NOT NULL PRIMARY KEY,

 object_id_class NUMBER(38) NOT NULL,

 object_id_identity NUMBER(38) NOT NULL,

 parent_object NUMBER(38),

 owner_sid NUMBER(38),

 entries_inheriting NUMBER(1) NOT NULL CHECK (entries_inheriting in (0, 1)),

 CONSTRAINT uk_acl_object_identity UNIQUE (object_id_class, object_id_identity),

 CONSTRAINT fk_acl_object_identity_parent FOREIGN KEY (parent_object) REFERENCES acl_object_identity

 (id),

 CONSTRAINT fk_acl_object_identity_class FOREIGN KEY (object_id_class) REFERENCES acl_class (id),

 CONSTRAINT fk_acl_object_identity_owner FOREIGN KEY (owner_sid) REFERENCES acl_sid (id)

);

CREATE SEQUENCE acl_object_identity_sequence START WITH 1 INCREMENT BY 1 NOMAXVALUE;

CREATE OR REPLACE TRIGGER acl_object_identity_id_trigger

 BEFORE INSERT ON acl_object_identity

 FOR EACH ROW

BEGIN

 SELECT acl_object_identity_sequence.nextval INTO :new.id FROM dual;

END;

CREATE TABLE acl_entry (

 id NUMBER(38) NOT NULL PRIMARY KEY,

 acl_object_identity NUMBER(38) NOT NULL,

 ace_order INTEGER NOT NULL,

 sid NUMBER(38) NOT NULL,

 mask INTEGER NOT NULL,

 granting NUMBER(1) NOT NULL CHECK (granting in (0, 1)),

 audit_success NUMBER(1) NOT NULL CHECK (audit_success in (0, 1)),

 audit_failure NUMBER(1) NOT NULL CHECK (audit_failure in (0, 1)),

 CONSTRAINT unique_acl_entry UNIQUE (acl_object_identity, ace_order),

 CONSTRAINT fk_acl_entry_object FOREIGN KEY (acl_object_identity) REFERENCES acl_object_identity (id),

 CONSTRAINT fk_acl_entry_acl FOREIGN KEY (sid) REFERENCES acl_sid (id)

);

CREATE SEQUENCE acl_entry_sequence START WITH 1 INCREMENT BY 1 NOMAXVALUE;

CREATE OR REPLACE TRIGGER acl_entry_id_trigger

 BEFORE INSERT ON acl_entry

 FOR EACH ROW

BEGIN

 SELECT acl_entry_sequence.nextval INTO :new.id FROM dual;

END;

Spring Security Reference

please define title in your docbook file! 192

38. The Security Namespace

This appendix provides a reference to the elements available in the security namespace and information
on the underlying beans they create (a knowledge of the individual classes and how they work together is
assumed - you can find more information in the project Javadoc and elsewhere in this document). If you
haven’t used the namespace before, please read the introductory chapter on namespace configuration,
as this is intended as a supplement to the information there. Using a good quality XML editor while
editing a configuration based on the schema is recommended as this will provide contextual information
on which elements and attributes are available as well as comments explaining their purpose. The
namespace is written in RELAX NG Compact format and later converted into an XSD schema. If you
are familiar with this format, you may wish to examine the schema file directly.

38.1 Web Application Security

<debug>

Enables Spring Security debugging infrastructure. This will provide human-readable (multi-line)
debugging information to monitor requests coming into the security filters. This may include sensitive
information, such as request parameters or headers, and should only be used in a development
environment.

<http>

If you use an <http> element within your application, a FilterChainProxy bean named
"springSecurityFilterChain" is created and the configuration within the element is used to build a filter
chain within FilterChainProxy. As of Spring Security 3.1, additional http elements can be used to
add extra filter chains 3. Some core filters are always created in a filter chain and others will be added
to the stack depending on the attributes and child elements which are present. The positions of the
standard filters are fixed (see the filter order table in the namespace introduction), removing a common
source of errors with previous versions of the framework when users had to configure the filter chain
explicitly in the FilterChainProxy bean. You can, of course, still do this if you need full control of
the configuration.

All filters which require a reference to the AuthenticationManager will be automatically injected with
the internal instance created by the namespace configuration (see the introductory chapter for more on
the AuthenticationManager).

Each <http> namespace block always creates an SecurityContextPersistenceFilter, an
ExceptionTranslationFilter and a FilterSecurityInterceptor. These are fixed and
cannot be replaced with alternatives.

<http> Attributes

The attributes on the <http> element control some of the properties on the core filters.

• access-decision-manager-ref Optional attribute specifying the ID of the
AccessDecisionManager implementation which should be used for authorizing HTTP requests.
By default an AffirmativeBased implementation is used for with a RoleVoter and an
AuthenticatedVoter.

3See the introductory chapter for how to set up the mapping from your web.xml

http://www.relaxng.org/
https://fisheye.springsource.org/browse/spring-security/config/src/main/resources/org/springframework/security/config/spring-security-3.2.rnc

Spring Security Reference

please define title in your docbook file! 193

• authentication-manager-ref A reference to the AuthenticationManager used for the
FilterChain created by this http element.

• auto-config Automatically registers a login form, BASIC authentication, logout services. If set to
"true", all of these capabilities are added (although you can still customize the configuration of each
by providing the respective element). If unspecified, defaults to "false". Use of this attribute is not
recommended. Use explicit configuration elements instead to avoid confusion.

• create-session Controls the eagerness with which an HTTP session is created by Spring Security
classes. Options include:

• always - Spring Security will proactively create a session if one does not exist.

• ifRequired - Spring Security will only create a session only if one is required (default value).

• never - Spring Security will never create a session, but will make use of one if the application does.

• stateless - Spring Security will not create a session and ignore the session for obtaining a Spring
Authentication.

• disable-url-rewriting Prevents session IDs from being appended to URLs in the application. Clients
must use cookies if this attribute is set to true. The default is true.

• entry-point-ref Normally the AuthenticationEntryPoint used will be set depending on which
authentication mechanisms have been configured. This attribute allows this behaviour to be
overridden by defining a customized AuthenticationEntryPoint bean which will start the
authentication process.

• jaas-api-provision If available, runs the request as the Subject acquired from the
JaasAuthenticationToken which is implemented by adding a JaasApiIntegrationFilter
bean to the stack. Defaults to false.

• name A bean identifier, used for referring to the bean elsewhere in the context.

• once-per-request Corresponds to the observeOncePerRequest property of
FilterSecurityInterceptor. Defaults to true.

• pattern Defining a pattern for the http element controls the requests which will be filtered through the
list of filters which it defines. The interpretation is dependent on the configured request-matcher. If no
pattern is defined, all requests will be matched, so the most specific patterns should be declared first.

• realm Sets the realm name used for basic authentication (if enabled). Corresponds to the realmName
property on BasicAuthenticationEntryPoint.

• request-matcher Defines the RequestMatcher strategy used in the FilterChainProxy and
the beans created by the intercept-url to match incoming requests. Options are currently
ant, regex and ciRegex, for ant, regular-expression and case-insensitive regular-expression
repsectively. A separate instance is created for eachintercept-url element using its pattern and method
attributes. Ant paths are matched using an AntPathRequestMatcher and regular expressions are
matched using a RegexRequestMatcher. See the Javadoc for these classes for more details on
exactly how the matching is preformed. Ant paths are the default strategy.

• request-matcher-ref A referenece to a bean that implements RequestMatcher that will determine
if this FilterChain should be used. This is a more powerful alternative to pattern.

Spring Security Reference

please define title in your docbook file! 194

• security A request pattern can be mapped to an empty filter chain, by setting this attribute to none.
No security will be applied and none of Spring Security’s features will be available.

• security-context-repository-ref Allows injection of a custom SecurityContextRepository into
the SecurityContextPersistenceFilter.

• servlet-api-provision Provides versions of HttpServletRequest security methods such
as isUserInRole() and getPrincipal() which are implemented by adding a
SecurityContextHolderAwareRequestFilter bean to the stack. Defaults to true.

• use-expressions Enables EL-expressions in the access attribute, as described in the chapter on
expression-based access-control. The default value is true.

Child Elements of <http>

• access-denied-handler

• anonymous

• csrf

• custom-filter

• expression-handler

• form-login

• headers

• http-basic

• intercept-url

• jee

• logout

• openid-login

• port-mappings

• remember-me

• request-cache

• session-management

• x509

<access-denied-handler>

This element allows you to set the errorPage property for the default AccessDeniedHandler
used by the ExceptionTranslationFilter, using the error-page attribute, or to supply your
own implementation using theref attribute. This is discussed in more detail in the section on the
ExceptionTranslationFilter.

Parent Elements of <access-denied-handler>

• http

Spring Security Reference

please define title in your docbook file! 195

<access-denied-handler> Attributes

• error-page The access denied page that an authenticated user will be redirected to if they request
a page which they don’t have the authority to access.

• ref Defines a reference to a Spring bean of type `AccessDeniedHandler `.

<headers>

This element allows for configuring additional (security) headers to be send with the response. It enables
easy configuration for several headers and also allows for setting custom headers through the header
element. Additional information, can be found in the Security Headers section of the reference.

• Cache-Control, Pragma, and Expires - Can be set using the cache-control element. This ensures
that the browser does not cache your secured pages.

• Strict-Transport-Security - Can be set using the hsts element. This ensures that the browser
automatically requests HTTPS for future requests.

• X-Frame-Options - Can be set using the frame-options element. The X-Frame-Options header
can be used to prevent clickjacking attacks.

• X-XSS-Protection - Can be set using the xss-protection element. The X-XSS-Protection header
can be used by browser to do basic control.

• X-Content-Type-Options - Can be set using the content-type-options element. The X-Content-
Type-Options header prevents Internet Explorer from MIME-sniffing a response away from the
declared content-type. This also applies to Google Chrome, when downloading extensions.

<headers> Attributes

The attributes on the <headers> element control the headers element.

• defaults-disabled Optional attribute that specifies to disable the default Spring Security’s HTTP
response headers. The default is false (the default headers are included).

• disabled Optional attribute that specifies to disable Spring Security’s HTTP response headers. The
default is false (the headers are enabled).

Parent Elements of <headers>

• http

Child Elements of <headers>

• cache-control

• content-type-options

• frame-options

• header

• hsts

• xss-protection

http://en.wikipedia.org/wiki/Clickjacking#X-Frame-Options
http://en.wikipedia.org/wiki/Cross-site_scripting
http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx
http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx

Spring Security Reference

please define title in your docbook file! 196

<cache-control>

Adds Cache-Control, Pragma, and Expires headers to ensure that the browser does not cache
your secured pages.

<cache-control> Attributes

• disabled Specifies if Cache Control should be disabled. Default false.

Parent Elements of <cache-control>

• headers

<hsts>

When enabled adds the Strict-Transport-Security header to the response for any secure request. This
allows the server to instruct browsers to automatically use HTTPS for future requests.

<hsts> Attributes

• disabled Specifies if Strict-Transport-Security should be disabled. Default false.

• include-sub-domains Specifies if subdomains should be included. Default true.

• max-age-seconds Specifies the maximum ammount of time the host should be considered a Known
HSTS Host. Default one year.

• request-matcher-ref The RequestMatcher instance to be used to determine if the header should be
set. Default is if HttpServletRequest.isSecure() is true.

Parent Elements of <hsts>

• headers

<frame-options>

When enabled adds the X-Frame-Options header to the response, this allows newer browsers to do
some security checks and prevent clickjacking attacks.

<frame-options> Attributes

• disabled If disabled, the X-Frame-Options header will not be included. Default false.

• policy

• DENY The page cannot be displayed in a frame, regardless of the site attempting to do so. This is
the default when frame-options-policy is specified.

• SAMEORIGIN The page can only be displayed in a frame on the same origin as the page itself

• ALLOW-FROM origin The page can only be displayed in a frame on the specified origin.

In other words, if you specify DENY, not only will attempts to load the page in a frame fail when loaded
from other sites, attempts to do so will fail when loaded from the same site. On the other hand, if you
specify SAMEORIGIN, you can still use the page in a frame as long as the site including it in a frame
it is the same as the one serving the page.

http://tools.ietf.org/html/rfc6797
http://tools.ietf.org/html/draft-ietf-websec-x-frame-options
http://en.wikipedia.org/wiki/Clickjacking

Spring Security Reference

please define title in your docbook file! 197

• strategy Select the AllowFromStrategy to use when using the ALLOW-FROM policy.

• static Use a single static ALLOW-FROM value. The value can be set through the value attribute.

• regexp Use a regelur expression to validate incoming requests and if they are allowed. The regular
expression can be set through the value attribute. The request parameter used to retrieve the value
to validate can be specified using the from-parameter.

• whitelist A comma-seperated list containing the allowed domains. The comma-seperated list
can be set through the value attribute. The request parameter used to retrieve the value to validate
can be specified using the from-parameter.

• ref Instead of using one of the predefined strategies it is also possible to use a custom
AllowFromStrategy. The reference to this bean can be specified through this ref attribute.

• value The value to use when ALLOW-FROM is used a strategy.

• from-parameter Specify the name of the request parameter to use when using regexp or whitelist
for the ALLOW-FROM strategy.

Parent Elements of <frame-options>

• headers

<xss-protection>

Adds the X-XSS-Protection header to the response to assist in protecting against reflected / Type-1
Cross-Site Scripting (XSS) attacks. This is in no-way a full protection to XSS attacks!

<xss-protection> Attributes

• xss-protection-disabled Do not include the header for reflected / Type-1 Cross-Site Scripting (XSS)
protection.

• xss-protection-enabled Explicitly enable or eisable reflected / Type-1 Cross-Site Scripting (XSS)
protection.

• xss-protection-block When true and xss-protection-enabled is true, adds mode=block to the header.
This indicates to the browser that the page should not be loaded at all. When false and xss-protection-
enabled is true, the page will still be rendered when an reflected attack is detected but the response
will be modified to protect against the attack. Note that there are sometimes ways of bypassing this
mode which can often times make blocking the page more desirable.

Parent Elements of <xss-protection>

• headers

<content-type-options>

Add the X-Content-Type-Options header with the value of nosniff to the response. This disables MIME-
sniffing for IE8+ and Chrome extensions.

<content-type-options> Attributes

• disabled Specifies if Content Type Options should be disabled. Default false.

http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-filter.aspx
http://en.wikipedia.org/wiki/Cross-site_scripting#Non-Persistent
http://en.wikipedia.org/wiki/Cross-site_scripting#Non-Persistent
http://en.wikipedia.org/wiki/Cross-site_scripting#Non-Persistent
http://en.wikipedia.org/wiki/Cross-site_scripting#Non-Persistent
http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx
http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx

Spring Security Reference

please define title in your docbook file! 198

Parent Elements of <content-type-options>

• headers

<header>

Add additional headers to the response, both the name and value need to be specified.

<header-attributes> Attributes

• header-name The name of the header.

• value The value of the header to add.

• ref Reference to a custom implementation of the HeaderWriter interface.

Parent Elements of <header>

• headers

<anonymous>

Adds an AnonymousAuthenticationFilter to the stack and an
AnonymousAuthenticationProvider. Required if you are using the
IS_AUTHENTICATED_ANONYMOUSLY attribute.

Parent Elements of <anonymous>

• http

<anonymous> Attributes

• enabled With the default namespace setup, the anonymous "authentication" facility is automatically
enabled. You can disable it using this property.

• granted-authority The granted authority that should be assigned to the anonymous request.
Commonly this is used to assign the anonymous request particular roles, which can subsequently be
used in authorization decisions. If unset, defaults to ROLE_ANONYMOUS.

• key The key shared between the provider and filter. This generally does not need to be set. If unset, it
will default to a secure randomly generated value. This means setting this value can improve startup
time when using the anonymous functionality since secure random values can take a while to be
generated.

• username The username that should be assigned to the anonymous request. This allows the
principal to be identified, which may be important for logging and auditing. if unset, defaults to
anonymousUser.

<csrf>

This element will add Cross Site Request Forger (CSRF) protection to the application. It also updates
the default RequestCache to only replay "GET" requests upon successful authentication. Additional
information can be found in the Cross Site Request Forgery (CSRF) section of the reference.

Parent Elements of <csrf>

• http

http://en.wikipedia.org/wiki/Cross-site_request_forgery

Spring Security Reference

please define title in your docbook file! 199

<csrf> Attributes

• disabled Optional attribute that specifies to disable Spring Security’s CSRF protection. The default
is false (CSRF protection is enabled). It is highly recommended to leave CSRF protection enabled.

• token-repository-ref The CsrfTokenRepository to use. The default is
HttpSessionCsrfTokenRepository.

• request-matcher-ref The RequestMatcher instance to be used to determine if CSRF should be
applied. Default is any HTTP method except "GET", "TRACE", "HEAD", "OPTIONS".

<custom-filter>

This element is used to add a filter to the filter chain. It doesn’t create any additional beans but is used
to select a bean of type javax.servlet.Filter which is already defined in the application context
and add that at a particular position in the filter chain maintained by Spring Security. Full details can
be found in the namespace chapter.

Parent Elements of <custom-filter>

• http

<custom-filter> Attributes

• after The filter immediately after which the custom-filter should be placed in the chain. This feature
will only be needed by advanced users who wish to mix their own filters into the security filter chain
and have some knowledge of the standard Spring Security filters. The filter names map to specific
Spring Security implementation filters.

• before The filter immediately before which the custom-filter should be placed in the chain

• position The explicit position at which the custom-filter should be placed in the chain. Use if you are
replacing a standard filter.

• ref Defines a reference to a Spring bean that implements Filter.

<expression-handler>

Defines the SecurityExpressionHandler instance which will be used if expression-based access-
control is enabled. A default implementation (with no ACL support) will be used if not supplied.

Parent Elements of <expression-handler>

• global-method-security

• http

<expression-handler> Attributes

• ref Defines a reference to a Spring bean that implements SecurityExpressionHandler.

<form-login>

Used to add an UsernamePasswordAuthenticationFilter to the filter stack and an
LoginUrlAuthenticationEntryPoint to the application context to provide authentication on

Spring Security Reference

please define title in your docbook file! 200

demand. This will always take precedence over other namespace-created entry points. If no attributes
are supplied, a login page will be generated automatically at the URL "/login" 16 The behaviour can be
customized using the <form-login> Attributes.

Parent Elements of <form-login>

• http

<form-login> Attributes

• always-use-default-target If set to true, the user will always start at the value given
by default-target-url, regardless of how they arrived at the login page. Maps to the
alwaysUseDefaultTargetUrl property of UsernamePasswordAuthenticationFilter.
Default value is false.

• authentication-details-source-ref Reference to an AuthenticationDetailsSource which will
be used by the authentication filter

• authentication-failure-handler-ref Can be used as an alternative to authentication-failure-url, giving
you full control over the navigation flow after an authentication failure. The value should be he name
of an AuthenticationFailureHandler bean in the application context.

• authentication-failure-url Maps to the authenticationFailureUrl property of
UsernamePasswordAuthenticationFilter. Defines the URL the browser will be redirected to
on login failure. Defaults to /login?error, which will be automatically handled by the automatic
login page generator, re-rendering the login page with an error message.

• authentication-success-handler-ref This can be used as an alternative to default-
target-url and always-use-default-target, giving you full control over the navigation
flow after a successful authentication. The value should be the name of an
AuthenticationSuccessHandler bean in the application context. By default, an implementation
of SavedRequestAwareAuthenticationSuccessHandler is used and injected with the default-
target-url.

• default-target-url Maps to the defaultTargetUrl property of
UsernamePasswordAuthenticationFilter. If not set, the default value is "/" (the application
root). A user will be taken to this URL after logging in, provided they were not asked to login while
attempting to access a secured resource, when they will be taken to the originally requested URL.

• login-page The URL that should be used to render the login page. Maps to the loginFormUrl
property of the LoginUrlAuthenticationEntryPoint. Defaults to "/login".

• login-processing-url Maps to the filterProcessesUrl property of
UsernamePasswordAuthenticationFilter. The default value is "/login".

• password-parameter The name of the request parameter which contains the password. Defaults
to "password".

• username-parameter The name of the request parameter which contains the username. Defaults
to "username".

16This feature is really just provided for convenience and is not intended for production (where a view technology will have been
chosen and can be used to render a customized login page). The class DefaultLoginPageGeneratingFilter is responsible
for rendering the login page and will provide login forms for both normal form login and/or OpenID if required.

Spring Security Reference

please define title in your docbook file! 201

<http-basic>

Adds a BasicAuthenticationFilter and BasicAuthenticationEntryPoint to the
configuration. The latter will only be used as the configuration entry point if form-based login is not
enabled.

Parent Elements of <http-basic>

• http

<http-basic> Attributes

• authentication-details-source-ref Reference to an AuthenticationDetailsSource which will
be used by the authentication filter

• entry-point-ref Sets the AuthenticationEntryPoint which is used by the
BasicAuthenticationFilter.

<http-firewall> Element

This is a top-level element which can be used to inject a custom implementation of HttpFirewall into
the FilterChainProxy created by the namespace. The default implementation should be suitable
for most applications.

<http-firewall> Attributes

• ref Defines a reference to a Spring bean that implements HttpFirewall.

<intercept-url>

This element is used to define the set of URL patterns that the application is
interested in and to configure how they should be handled. It is used to construct the
FilterInvocationSecurityMetadataSource used by the FilterSecurityInterceptor. It
is also responsible for configuring a ChannelProcessingFilter if particular URLs need to be
accessed by HTTPS, for example. When matching the specified patterns against an incoming request,
the matching is done in the order in which the elements are declared. So the most specific matches
patterns should come first and the most general should come last.

Parent Elements of <intercept-url>

• filter-security-metadata-source

• http

<intercept-url> Attributes

• access Lists the access attributes which will be stored in the
FilterInvocationSecurityMetadataSource for the defined URL pattern/method
combination. This should be a comma-separated list of the security configuration attributes (such as
role names).

• filters Can only take the value "none". This will cause any matching request to bypass the Spring
Security filter chain entirely. None of the rest of the <http> configuration will have any effect on the
request and there will be no security context available for its duration. Access to secured methods
during the request will fail.

Spring Security Reference

please define title in your docbook file! 202

• method The HTTP Method which will be used in combination with the pattern to match an incoming
request. If omitted, any method will match. If an identical pattern is specified with and without a method,
the method-specific match will take precedence.

• pattern The pattern which defines the URL path. The content will depend on the request-matcher
attribute from the containing http element, so will default to ant path syntax.

• requires-channel Can be "http" or "https" depending on whether a particular URL pattern should
be accessed over HTTP or HTTPS respectively. Alternatively the value "any" can be used when
there is no preference. If this attribute is present on any <intercept-url> element, then a
ChannelProcessingFilter will be added to the filter stack and its additional dependencies added
to the application context.

If a <port-mappings> configuration is added, this will be used to by the SecureChannelProcessor
and InsecureChannelProcessor beans to determine the ports used for redirecting to HTTP/HTTPS.

<jee>

Adds a J2eePreAuthenticatedProcessingFilter to the filter chain to provide integration with container
authentication.

Parent Elements of <jee>

• http

<jee> Attributes

• mappable-roles A comma-separate list of roles to look for in the incoming HttpServletRequest.

• user-service-ref A reference to a user-service (or UserDetailsService bean) Id

<logout>

Adds a LogoutFilter to the filter stack. This is configured with a
SecurityContextLogoutHandler.

Parent Elements of <logout>

• http

<logout> Attributes

• delete-cookies A comma-separated list of the names of cookies which should be deleted when the
user logs out.

• invalidate-session Maps to the invalidateHttpSession of the
SecurityContextLogoutHandler. Defaults to "true", so the session will be invalidated on logout.

• logout-success-url The destination URL which the user will be taken to after logging out. Defaults
to "/".

Setting this attribute will inject the SessionManagementFilter with a
SimpleRedirectInvalidSessionStrategy configured with the attribute value. When an invalid
session ID is submitted, the strategy will be invoked, redirecting to the configured URL.

Spring Security Reference

please define title in your docbook file! 203

• logout-url The URL which will cause a logout (i.e. which will be processed by the filter). Defaults
to "/logout".

• success-handler-ref May be used to supply an instance of LogoutSuccessHandler which will be
invoked to control the navigation after logging out.

<openid-login>

Similar to <form-login> and has the same attributes. The default value for login-processing-url
is "/login/openid". An OpenIDAuthenticationFilter and OpenIDAuthenticationProvider
will be registered. The latter requires a reference to a UserDetailsService. Again, this can be
specified by id, using the user-service-ref attribute, or will be located automatically in the
application context.

Parent Elements of <openid-login>

• http

<openid-login> Attributes

• always-use-default-target Whether the user should always be redirected to the default-target-url
after login.

• authentication-details-source-ref Reference to an AuthenticationDetailsSource which will be used
by the authentication filter

• authentication-failure-handler-ref Reference to an AuthenticationFailureHandler bean which
should be used to handle a failed authentication request. Should not be used in combination with
authentication-failure-url as the implementation should always deal with navigation to the subsequent
destination

• authentication-failure-url The URL for the login failure page. If no login failure URL is specified,
Spring Security will automatically create a failure login URL at /login?login_error and a corresponding
filter to render that login failure URL when requested.

• authentication-success-handler-ref Reference to an AuthenticationSuccessHandler bean which
should be used to handle a successful authentication request. Should not be used in combination
with default-target-url (or always-use-default-target) as the implementation should always deal with
navigation to the subsequent destination

• default-target-url The URL that will be redirected to after successful authentication, if the user’s
previous action could not be resumed. This generally happens if the user visits a login page without
having first requested a secured operation that triggers authentication. If unspecified, defaults to the
root of the application.

• login-page The URL for the login page. If no login URL is specified, Spring Security will automatically
create a login URL at /login and a corresponding filter to render that login URL when requested.

• login-processing-url The URL that the login form is posted to. If unspecified, it defaults to /login.

• password-parameter The name of the request parameter which contains the password. Defaults
to "password".

• user-service-ref A reference to a user-service (or UserDetailsService bean) Id

Spring Security Reference

please define title in your docbook file! 204

• username-parameter The name of the request parameter which contains the username. Defaults
to "username".

Child Elements of <openid-login>

• attribute-exchange

<attribute-exchange>

The attribute-exchange element defines the list of attributes which should be requested from
the identity provider. An example can be found in the OpenID Support section of the namespace
configuration chapter. More than one can be used, in which case each must have an identifier-
match attribute, containing a regular expression which is matched against the supplied OpenID
identifier. This allows different attribute lists to be fetched from different providers (Google, Yahoo etc).

Parent Elements of <attribute-exchange>

• openid-login

<attribute-exchange> Attributes

• identifier-match A regular expression which will be compared against the claimed identity, when
deciding which attribute-exchange configuration to use during authentication.

Child Elements of <attribute-exchange>

• openid-attribute

<openid-attribute>

Attributes used when making an OpenID AX Fetch Request

Parent Elements of <openid-attribute>

• attribute-exchange

<openid-attribute> Attributes

• count Specifies the number of attributes that you wish to get back. For example, return 3 emails.
The default value is 1.

• name Specifies the name of the attribute that you wish to get back. For example, email.

• required Specifies if this attribute is required to the OP, but does not error out if the OP does not
return the attribute. Default is false.

• type Specifies the attribute type. For example, http://axschema.org/contact/email. See your OP’s
documentation for valid attribute types.

<port-mappings>

By default, an instance of PortMapperImpl will be added to the configuration for use in redirecting
to secure and insecure URLs. This element can optionally be used to override the default mappings
which that class defines. Each child <port-mapping> element defines a pair of HTTP:HTTPS ports.

http://openid.net/specs/openid-attribute-exchange-1_0.html#fetch_request
http://axschema.org/contact/email

Spring Security Reference

please define title in your docbook file! 205

The default mappings are 80:443 and 8080:8443. An example of overriding these can be found in the
namespace introduction.

Parent Elements of <port-mappings>

• http

Child Elements of <port-mappings>

• port-mapping

<port-mapping>

Provides a method to map http ports to https ports when forcing a redirect.

Parent Elements of <port-mapping>

• port-mappings

<port-mapping> Attributes

• http The http port to use.

• https The https port to use.

<remember-me>

Adds the RememberMeAuthenticationFilter to the stack. This in turn will be configured with
either a TokenBasedRememberMeServices, a PersistentTokenBasedRememberMeServices
or a user-specified bean implementing RememberMeServices depending on the attribute settings.

Parent Elements of <remember-me>

• http

<remember-me> Attributes

• authentication-success-handler-ref Sets the authenticationSuccessHandler property on
the RememberMeAuthenticationFilter if custom navigation is required. The value should be
the name of a AuthenticationSuccessHandler bean in the application context.

• data-source-ref A reference to a DataSource bean. If this is set,
PersistentTokenBasedRememberMeServices will be used and configured with a
JdbcTokenRepositoryImpl instance.

• remember-me-parameter The name of the request parameter which toggles remember-
me authentication. Defaults to "remember-me". Maps to the "parameter" property of
AbstractRememberMeServices.

• remember-me-cookie The name of cookie which store the token for remember-
me authentication. Defaults to "remember-me". Maps to the "cookieName" property of
AbstractRememberMeServices.

• key Maps to the "key" property of AbstractRememberMeServices. Should be set to a unique value
to ensure that remember-me cookies are only valid within the one application 18. If this is not set a

Spring Security Reference

please define title in your docbook file! 206

secure random value will be generated. Since generating secure random values can take a while,
setting this value explicitly can help improve startup times when using the remember me functionality.

• services-alias Exports the internally defined RememberMeServices as a bean alias, allowing it to
be used by other beans in the application context.

• services-ref Allows complete control of the RememberMeServices implementation that will be used
by the filter. The value should be the id of a bean in the application context which implements this
interface. Should also implement LogoutHandler if a logout filter is in use.

• token-repository-ref Configures a PersistentTokenBasedRememberMeServices but allows
the use of a custom PersistentTokenRepository bean.

• token-validity-seconds Maps to the tokenValiditySeconds property of
AbstractRememberMeServices. Specifies the period in seconds for which the remember-me
cookie should be valid. By default it will be valid for 14 days.

• use-secure-cookie It is recommended that remember-me cookies are only submitted over HTTPS
and thus should be flagged as "secure". By default, a secure cookie will be used if the connection
over which the login request is made is secure (as it should be). If you set this property to false,
secure cookies will not be used. Setting it to true will always set the secure flag on the cookie. This
attribute maps to the useSecureCookie property of AbstractRememberMeServices.

• user-service-ref The remember-me services implementations require access to a
UserDetailsService, so there has to be one defined in the application context. If there is only
one, it will be selected and used automatically by the namespace configuration. If there are multiple
instances, you can specify a bean id explicitly using this attribute.

<request-cache> Element

Sets the RequestCache instance which will be used by the ExceptionTranslationFilter to store
request information before invoking an AuthenticationEntryPoint.

Parent Elements of <request-cache>

• http

<request-cache> Attributes

• ref Defines a reference to a Spring bean that is a RequestCache.

<session-management>

Session-management related functionality is implemented by the addition of a
SessionManagementFilter to the filter stack.

Parent Elements of <session-management>

• http

<session-management> Attributes

• invalid-session-url Setting this attribute will inject the SessionManagementFilter with a
SimpleRedirectInvalidSessionStrategy configured with the attribute value. When an invalid
session ID is submitted, the strategy will be invoked, redirecting to the configured URL.

Spring Security Reference

please define title in your docbook file! 207

• session-authentication-error-url Defines the URL of the error page which should be shown when
the SessionAuthenticationStrategy raises an exception. If not set, an unauthorized (401) error code
will be returned to the client. Note that this attribute doesn’t apply if the error occurs during a form-
based login, where the URL for authentication failure will take precedence.

• session-authentication-strategy-ref Allows injection of the SessionAuthenticationStrategy instance
used by the SessionManagementFilter

• session-fixation-protection Indicates how session fixation protection will be applied when a user
authenticates. If set to "none", no protection will be applied. "newSession" will create a new
empty session, with only Spring Security-related attributes migrated. "migrateSession" will create
a new session and copy all session attributes to the new session. In Servlet 3.1 (Java EE 7)
and newer containers, specifying "changeSessionId" will keep the existing session and use the
container-supplied session fixation protection (HttpServletRequest#changeSessionId()). Defaults to
"changeSessionId" in Servlet 3.1 and newer containers, "migrateSession" in older containers. Throws
an exception if "changeSessionId" is used in older containers.

If session fixation protection is enabled, the SessionManagementFilter is injected with an
appropriately configured DefaultSessionAuthenticationStrategy. See the Javadoc for this
class for more details.

Child Elements of <session-management>

• concurrency-control

<concurrency-control>

Adds support for concurrent session control, allowing limits to be placed on the number
of active sessions a user can have. A ConcurrentSessionFilter will be created,
and a ConcurrentSessionControlAuthenticationStrategy will be used with the
SessionManagementFilter. If a form-login element has been declared, the strategy object
will also be injected into the created authentication filter. An instance of SessionRegistry (a
SessionRegistryImpl instance unless the user wishes to use a custom bean) will be created for
use by the strategy.

Parent Elements of <concurrency-control>

• session-management

<concurrency-control> Attributes

• error-if-maximum-exceeded If set to "true" a SessionAuthenticationException will be raised
when a user attempts to exceed the maximum allowed number of sessions. The default behaviour
is to expire the original session.

• expired-url The URL a user will be redirected to if they attempt to use a session which has been
"expired" by the concurrent session controller because the user has exceeded the number of allowed
sessions and has logged in again elsewhere. Should be set unless exception-if-maximum-
exceeded is set. If no value is supplied, an expiry message will just be written directly back to the
response.

• max-sessions Maps to the maximumSessions property of
ConcurrentSessionControlAuthenticationStrategy.

Spring Security Reference

please define title in your docbook file! 208

• session-registry-alias It can also be useful to have a reference to the internal session registry for
use in your own beans or an admin interface. You can expose the internal bean using the session-
registry-alias attribute, giving it a name that you can use elsewhere in your configuration.

• session-registry-ref The user can supply their own SessionRegistry implementation using the
session-registry-ref attribute. The other concurrent session control beans will be wired up to
use it.

<x509>

Adds support for X.509 authentication. An X509AuthenticationFilter will be added to the stack
and an Http403ForbiddenEntryPoint bean will be created. The latter will only be used if no other
authentication mechanisms are in use (its only functionality is to return an HTTP 403 error code). A
PreAuthenticatedAuthenticationProvider will also be created which delegates the loading of
user authorities to a UserDetailsService.

Parent Elements of <x509>

• http

<x509> Attributes

• authentication-details-source-ref A reference to an AuthenticationDetailsSource

• subject-principal-regex Defines a regular expression which will be used to extract the username
from the certificate (for use with the UserDetailsService).

• user-service-ref Allows a specific UserDetailsService to be used with X.509 in the case where
multiple instances are configured. If not set, an attempt will be made to locate a suitable instance
automatically and use that.

<filter-chain-map>

Used to explicitly configure a FilterChainProxy instance with a FilterChainMap

<filter-chain-map> Attributes

• request-matcher Defines the strategy use for matching incoming requests. Currently the options are
'ant' (for ant path patterns), 'regex' for regular expressions and 'ciRegex' for case-insensitive regular
expressions.

Child Elements of <filter-chain-map>

• filter-chain

<filter-chain>

Used within to define a specific URL pattern and the list of filters which apply to the URLs matching
that pattern. When multiple filter-chain elements are assembled in a list in order to configure a
FilterChainProxy, the most specific patterns must be placed at the top of the list, with most general ones
at the bottom.

Parent Elements of <filter-chain>

• filter-chain-map

Spring Security Reference

please define title in your docbook file! 209

<filter-chain> Attributes

• filters A comma separated list of references to Spring beans that implement Filter. The value
"none" means that no Filter’s should be used for this `FilterChain.

• pattern A-pattern that creates RequestMatcher in combination with the request-matcher

• request-matcher-ref A reference to a RequestMatcher that will be used to determine if the
Filter’s from the `filters attribute should be invoked.

<filter-security-metadata-source>

Used to explicitly configure a FilterSecurityMetadataSource bean for use with a FilterSecurityInterceptor.
Usually only needed if you are configuring a FilterChainProxy explicitly, rather than using the<http>
element. The intercept-url elements used should only contain pattern, method and access attributes.
Any others will result in a configuration error.

<filter-security-metadata-source> Attributes

• id A bean identifier, used for referring to the bean elsewhere in the context.

• lowercase-comparisons Compare after forcing to lower case

• request-matcher Defines the strategy use for matching incoming requests. Currently the options are
'ant' (for ant path patterns), 'regex' for regular expressions and 'ciRegex' for case-insensitive regular
expressions.

• use-expressions Enables the use of expressions in the 'access' attributes in <intercept-url> elements
rather than the traditional list of configuration attributes. Defaults to 'true'. If enabled, each attribute
should contain a single boolean expression. If the expression evaluates to 'true', access will be
granted.

Child Elements of <filter-security-metadata-source>

• intercept-url

38.2 WebSocket Security

Spring Security 4.0+ provides support for authorizing messages. One concrete example of where this
is useful is to provide authorization in WebSocket based applications.

<websocket-message-broker>

The websocket-message-broker element has two different modes. If the ??? is not specified, then it will
do the following things:

• Ensure that any SimpAnnotationMethodMessageHandler has the
AuthenticationPrincipalArgumentResolver registered as a custom argument resolver. This allows the
use of @AuthenticationPrincipal to resolve the principal of the current Authentication

• Ensures that the SecurityContextChannelInterceptor is automatically registered for the
clientInboundChannel. This populates the SecurityContextHolder with the user that is found in the
Message

• Ensures that a ChannelSecurityInterceptor is registered with the clientInboundChannel. This allows
authorization rules to be specified for a message.

Spring Security Reference

please define title in your docbook file! 210

• Ensures that a CsrfChannelInterceptor is registered with the clientInboundChannel. This ensures that
only requests from the original domain are enabled.

• Ensures that a CsrfTokenHandshakeInterceptor is registered with WebSocketHttpRequestHandler,
TransportHandlingSockJsService, or DefaultSockJsService. This ensures that the expected
CsrfToken from the HttpServletRequest is copied into the WebSocket Session attributes.

If additional control is necessary, the id can be specified and a ChannelSecurityInterceptor will be
assigned to the specified id. All the wiring with Spring’s messaging infrastructure can then be done
manually. This is more cumbersome, but provides greater control over the configuration.

<websocket-message-broker> Attributes

• id A bean identifier, used for referring to the ChannelSecurityInterceptor bean elsewhere in the
context. If specified, Spring Security requires explicit configuration within Spring Messaging. If not
specified, Spring Security will automatically integrate with the messaging infrastructure as described
in the section called “<websocket-message-broker>”

• same-origin-disabled Disables the requirement for CSRF token to be present in the Stomp headers
(default false). Changing the default is useful if it is necessary to allow other origins to make SockJS
connections.

Child Elements of <websocket-message-broker>

• intercept-message

<intercept-message>

Defines an authorization rule for a message.

Parent Elements of <intercept-message>

• websocket-message-broker

<intercept-message> Attributes

• pattern An ant based pattern that matches on the Message destination. For example, "/" matches
any Message with a destination; "/admin/" matches any Message that has a destination that starts
with "/admin/**".

• type The type of message to match on. Valid values are defined in SimpMessageType
(i.e. CONNECT, CONNECT_ACK, HEARTBEAT, MESSAGE, SUBSCRIBE, UNSUBSCRIBE,
DISCONNECT, DISCONNECT_ACK, OTHER).

• access The expression used to secure the Message. For example, "denyAll" will deny access
to all of the matching Messages; "permitAll" will grant access to all of the matching Messages;
"hasRole('ADMIN') requires the current user to have the role 'ROLE_ADMIN' for the matching
Messages.

38.3 Authentication Services

Before Spring Security 3.0, an AuthenticationManager was automatically registered internally. Now
you must register one explicitly using the <authentication-manager> element. This creates an
instance of Spring Security’s ProviderManager class, which needs to be configured with a list of one
or more AuthenticationProvider instances. These can either be created using syntax elements

Spring Security Reference

please define title in your docbook file! 211

provided by the namespace, or they can be standard bean definitions, marked for addition to the list
using the authentication-provider element.

<authentication-manager>

Every Spring Security application which uses the namespace must have include this element
somewhere. It is responsible for registering the AuthenticationManager which provides
authentication services to the application. All elements which create AuthenticationProvider
instances should be children of this element.

<authentication-manager> Attributes

• alias This attribute allows you to define an alias name for the internal instance for use in your own
configuration. Its use is described in thenamespace introduction.

• erase-credentials If set to true, the AuthenticationManger will attempt to clear any credentials
data in the returned Authentication object, once the user has been authenticated. Literally it maps
to the eraseCredentialsAfterAuthentication property of the ProviderManager. This is
discussed in the Core Services chapter.

• id This attribute allows you to define an id for the internal instance for use in your own configuration.
It is the same a the alias element, but provides a more consistent experience with elements that use
the id attribute.

Child Elements of <authentication-manager>

• authentication-provider

• ldap-authentication-provider

<authentication-provider>

Unless used with a ref attribute, this element is shorthand for configuring a DaoAuthenticationProvider.
DaoAuthenticationProvider loads user information from a UserDetailsService and
compares the username/password combination with the values supplied at login. The
UserDetailsService instance can be defined either by using an available namespace element
(jdbc-user-service or by using the user-service-ref attribute to point to a bean defined
elsewhere in the application context). You can find examples of these variations in the namespace
introduction.

Parent Elements of <authentication-provider>

• authentication-manager

<authentication-provider> Attributes

• ref Defines a reference to a Spring bean that implements `AuthenticationProvider `.

If you have written your own AuthenticationProvider implementation (or want to configure one
of Spring Security’s own implementations as a traditional bean for some reason, then you can use the
following syntax to add it to the internal `ProviderManager’s list:

<security:authentication-manager>

<security:authentication-provider ref="myAuthenticationProvider" />

</security:authentication-manager>

<bean id="myAuthenticationProvider" class="com.something.MyAuthenticationProvider"/>

Spring Security Reference

please define title in your docbook file! 212

• user-service-ref A reference to a bean that implements UserDetailsService that may be created
using the standard bean element or the custom user-service element.

Child Elements of <authentication-provider>

• jdbc-user-service

• ldap-user-service

• password-encoder

• user-service

<jdbc-user-service>

Causes creation of a JDBC-based UserDetailsService.

<jdbc-user-service> Attributes

• authorities-by-username-query An SQL statement to query for a user’s granted authorities given
a username.

The default is

select username, authority from authorities where username = ?

• cache-ref Defines a reference to a cache for use with a UserDetailsService.

• data-source-ref The bean ID of the DataSource which provides the required tables.

• group-authorities-by-username-query An SQL statement to query user’s group authorities given
a username. The default is

select

g.id, g.group_name, ga.authority

from

groups g, group_members gm, group_authorities ga

where

gm.username = ? and g.id = ga.group_id and g.id = gm.group_id

• id A bean identifier, used for referring to the bean elsewhere in the context.

• role-prefix A non-empty string prefix that will be added to role strings loaded from persistent storage
(default is "ROLE_"). Use the value "none" for no prefix in cases where the default is non-empty.

• users-by-username-query An SQL statement to query a username, password, and enabled status
given a username. The default is

select username, password, enabled from users where username = ?

<password-encoder>

Authentication providers can optionally be configured to use a password encoder as described
in the namespace introduction. This will result in the bean being injected with the appropriate
PasswordEncoder instance, potentially with an accompanying SaltSource bean to provide salt
values for hashing.

Spring Security Reference

please define title in your docbook file! 213

Parent Elements of <password-encoder>

• authentication-provider

• password-compare

<password-encoder> Attributes

• base64 Whether a string should be base64 encoded

• hash Defines the hashing algorithm used on user passwords. We recommend strongly against using
MD4, as it is a very weak hashing algorithm.

• ref Defines a reference to a Spring bean that implements `PasswordEncoder `.

Child Elements of <password-encoder>

• salt-source

<salt-source>

Password salting strategy. A system-wide constant or a property from the UserDetails object can be
used.

Parent Elements of <salt-source>

• password-encoder

<salt-source> Attributes

• ref Defines a reference to a Spring bean Id.

• system-wide A single value that will be used as the salt for a password encoder.

• user-property A property of the UserDetails object which will be used as salt by a password encoder.
Typically something like "username" might be used.

<user-service>

Creates an in-memory UserDetailsService from a properties file or a list of "user" child elements.
Usernames are converted to lower-case internally to allow for case-insensitive lookups, so this should
not be used if case-sensitivity is required.

<user-service> Attributes

• id A bean identifier, used for referring to the bean elsewhere in the context.

• properties The location of a Properties file where each line is in the format of

username=password,grantedAuthority[,grantedAuthority][,enabled|disabled]

Child Elements of <user-service>

• user

<user>

Represents a user in the application.

Spring Security Reference

please define title in your docbook file! 214

Parent Elements of <user>

• user-service

<user> Attributes

• authorities One of more authorities granted to the user. Separate authorities with a comma (but no
space). For example, "ROLE_USER,ROLE_ADMINISTRATOR"

• disabled Can be set to "true" to mark an account as disabled and unusable.

• locked Can be set to "true" to mark an account as locked and unusable.

• name The username assigned to the user.

• password The password assigned to the user. This may be hashed if the corresponding
authentication provider supports hashing (remember to set the "hash" attribute of the "user-service"
element). This attribute be omitted in the case where the data will not be used for authentication, but
only for accessing authorities. If omitted, the namespace will generate a random value, preventing its
accidental use for authentication. Cannot be empty.

38.4 Method Security

<global-method-security>

This element is the primary means of adding support for securing methods on Spring Security beans.
Methods can be secured by the use of annotations (defined at the interface or class level) or by defining
a set of pointcuts as child elements, using AspectJ syntax.

<global-method-security> Attributes

• access-decision-manager-ref Method security uses the same AccessDecisionManager

configuration as web security, but this can be overridden using this attribute. By default an
AffirmativeBased implementation is used for with a RoleVoter and an AuthenticatedVoter.

• authentication-manager-ref A reference to an AuthenticationManager that should be used for
method security.

• jsr250-annotations Specifies whether JSR-250 style attributes are to be used (for example
"RolesAllowed"). This will require the javax.annotation.security classes on the classpath. Setting this
to true also adds a Jsr250Voter to the AccessDecisionManager, so you need to make sure you
do this if you are using a custom implementation and want to use these annotations.

• metadata-source-ref An external MethodSecurityMetadataSource instance can be supplied
which will take priority over other sources (such as the default annotations).

• mode This attribute can be set to "aspectj" to specify that AspectJ should be used instead of the
default Spring AOP. Secured methods must be woven with the AnnotationSecurityAspect from
the spring-security-aspects module.

It is important to note that AspectJ follows Java’s rule that annotations on interfaces are not inherited.
This means that methods that define the Security annotaitons on the interface will not be secured.
Instead, you must place the Security annotation on the class when using AspectJ.

Spring Security Reference

please define title in your docbook file! 215

• order Allows the advice "order" to be set for the method security interceptor.

• pre-post-annotations Specifies whether the use of Spring Security’s pre and post invocation
annotations (@PreFilter, @PreAuthorize, @PostFilter, @PostAuthorize) should be enabled for this
application context. Defaults to "disabled".

• proxy-target-class If true, class based proxying will be used instead of interface based proxying.

• run-as-manager-ref A reference to an optional RunAsManager implementation which will be used
by the configured MethodSecurityInterceptor

• secured-annotations Specifies whether the use of Spring Security’s @Secured annotations should
be enabled for this application context. Defaults to "disabled".

Child Elements of <global-method-security>

• after-invocation-provider

• expression-handler

• pre-post-annotation-handling

• protect-pointcut

<after-invocation-provider>

This element can be used to decorate an AfterInvocationProvider for use by the security
interceptor maintained by the <global-method-security> namespace. You can define zero or
more of these within the global-method-security element, each with a ref attribute pointing to
an AfterInvocationProvider bean instance within your application context.

Parent Elements of <after-invocation-provider>

• global-method-security

<after-invocation-provider> Attributes

• ref Defines a reference to a Spring bean that implements ` AfterInvocationProvider`.

<pre-post-annotation-handling>

Allows the default expression-based mechanism for handling Spring Security’s pre and post invocation
annotations (@PreFilter, @PreAuthorize, @PostFilter, @PostAuthorize) to be replace entirely. Only
applies if these annotations are enabled.

Parent Elements of <pre-post-annotation-handling>

• global-method-security

Child Elements of <pre-post-annotation-handling>

• invocation-attribute-factory

• post-invocation-advice

• pre-invocation-advice

Spring Security Reference

please define title in your docbook file! 216

<invocation-attribute-factory>

Defines the PrePostInvocationAttributeFactory instance which is used to generate pre and post
invocation metadata from the annotated methods.

Parent Elements of <invocation-attribute-factory>

• pre-post-annotation-handling

<invocation-attribute-factory> Attributes

• ref Defines a reference to a Spring bean Id.

<post-invocation-advice>

Customizes the PostInvocationAdviceProvider with the ref as the
PostInvocationAuthorizationAdvice for the <pre-post-annotation-handling> element.

Parent Elements of <post-invocation-advice>

• pre-post-annotation-handling

<post-invocation-advice> Attributes

• ref Defines a reference to a Spring bean Id.

<pre-invocation-advice>

Customizes the PreInvocationAuthorizationAdviceVoter with the ref as the
PreInvocationAuthorizationAdviceVoter for the <pre-post-annotation-handling> element.

Parent Elements of <pre-invocation-advice>

• pre-post-annotation-handling

<pre-invocation-advice> Attributes

• ref Defines a reference to a Spring bean Id.

Securing Methods using

<protect-pointcut> Rather than defining security attributes on an individual method or class basis
using the @Secured annotation, you can define cross-cutting security constraints across whole sets of
methods and interfaces in your service layer using the <protect-pointcut> element. You can find
an example in the namespace introduction.

Parent Elements of <protect-pointcut>

• global-method-security

<protect-pointcut> Attributes

• access Access configuration attributes list that applies to all methods matching the pointcut, e.g.
"ROLE_A,ROLE_B"

Spring Security Reference

please define title in your docbook file! 217

• expression An AspectJ expression, including the 'execution' keyword. For example, 'execution(int
com.foo.TargetObject.countLength(String))' (without the quotes).

<intercept-methods>

Can be used inside a bean definition to add a security interceptor to the bean and set up access
configuration attributes for the bean’s methods

<intercept-methods> Attributes

• access-decision-manager-ref Optional AccessDecisionManager bean ID to be used by the created
method security interceptor.

Child Elements of <intercept-methods>

• protect

<method-security-metadata-source>

Creates a MethodSecurityMetadataSource instance

<method-security-metadata-source> Attributes

• id A bean identifier, used for referring to the bean elsewhere in the context.

• use-expressions Enables the use of expressions in the 'access' attributes in <intercept-url> elements
rather than the traditional list of configuration attributes. Defaults to 'false'. If enabled, each attribute
should contain a single boolean expression. If the expression evaluates to 'true', access will be
granted.

Child Elements of <method-security-metadata-source>

• protect

<protect>

Defines a protected method and the access control configuration attributes that apply to it. We strongly
advise you NOT to mix "protect" declarations with any services provided "global-method-security".

Parent Elements of <protect>

• intercept-methods

• method-security-metadata-source

<protect> Attributes

• access Access configuration attributes list that applies to the method, e.g. "ROLE_A,ROLE_B".

• method A method name

38.5 LDAP Namespace Options

LDAP is covered in some details in its own chapter. We will expand on that here with some explanation
of how the namespace options map to Spring beans. The LDAP implementation uses Spring LDAP
extensively, so some familiarity with that project’s API may be useful.

Spring Security Reference

please define title in your docbook file! 218

Defining the LDAP Server using the

<ldap-server> Element This element sets up a Spring LDAP ContextSource for use by the other
LDAP beans, defining the location of the LDAP server and other information (such as a username and
password, if it doesn’t allow anonymous access) for connecting to it. It can also be used to create an
embedded server for testing. Details of the syntax for both options are covered in the LDAP chapter.
The actual ContextSource implementation is DefaultSpringSecurityContextSource which
extends Spring LDAP’s LdapContextSource class. The manager-dn and manager-password
attributes map to the latter’s userDn and password properties respectively.

If you only have one server defined in your application context, the other LDAP namespace-defined
beans will use it automatically. Otherwise, you can give the element an "id" attribute and refer to it
from other namespace beans using the server-ref attribute. This is actually the bean id of the
ContextSource instance, if you want to use it in other traditional Spring beans.

<ldap-server> Attributes

• id A bean identifier, used for referring to the bean elsewhere in the context.

• ldif Explicitly specifies an ldif file resource to load into an embedded LDAP server. The ldiff is should
be a Spring resource pattern (i.e. classpath:init.ldiff). The default is classpath*:*.ldiff

• manager-dn Username (DN) of the "manager" user identity which will be used to authenticate to a
(non-embedded) LDAP server. If omitted, anonymous access will be used.

• manager-password The password for the manager DN. This is required if the manager-dn is
specified.

• port Specifies an IP port number. Used to configure an embedded LDAP server, for example. The
default value is 33389.

• root Optional root suffix for the embedded LDAP server. Default is "dc=springframework,dc=org"

• url Specifies the ldap server URL when not using the embedded LDAP server.

<ldap-authentication-provider>

This element is shorthand for the creation of an LdapAuthenticationProvider

instance. By default this will be configured with a BindAuthenticator instance and a
DefaultAuthoritiesPopulator. As with all namespace authentication providers, it must be
included as a child of the authentication-provider element.

Parent Elements of <ldap-authentication-provider>

• authentication-manager

<ldap-authentication-provider> Attributes

• group-role-attribute The LDAP attribute name which contains the role name which will be used within
Spring Security. Maps to the DefaultLdapAuthoritiesPopulator’s ̀ groupRoleAttribute

property. Defaults to "cn".

• group-search-base Search base for group membership searches. Maps to the
DefaultLdapAuthoritiesPopulator’s `groupSearchBase constructor argument. Defaults
to "" (searching from the root).

Spring Security Reference

please define title in your docbook file! 219

• group-search-filter Group search filter. Maps to the DefaultLdapAuthoritiesPopulator’s
`groupSearchFilter property. Defaults to (uniqueMember={0}). The substituted parameter is the
DN of the user.

• role-prefix A non-empty string prefix that will be added to role strings loaded from persistent. Maps
to the DefaultLdapAuthoritiesPopulator’s `rolePrefix property. Defaults to "ROLE_".
Use the value "none" for no prefix in cases where the default is non-empty.

• server-ref The optional server to use. If omitted, and a default LDAP server is registered (using <ldap-
server> with no Id), that server will be used.

• user-context-mapper-ref Allows explicit customization of the loaded user object by specifying a
UserDetailsContextMapper bean which will be called with the context information from the user’s
directory entry

• user-details-class Allows the objectClass of the user entry to be specified. If set, the framework will
attempt to load standard attributes for the defined class into the returned UserDetails object

• user-dn-pattern If your users are at a fixed location in the directory (i.e. you can work out the DN
directly from the username without doing a directory search), you can use this attribute to map directly
to the DN. It maps directly to the userDnPatterns property of AbstractLdapAuthenticator.
The value is a specific pattern used to build the user’s DN, for example "uid={0},ou=people". The key
"{0}" must be present and will be substituted with the username.

• user-search-base Search base for user searches. Defaults to "". Only used with a 'user-search-filter'.

If you need to perform a search to locate the user in the directory, then you can set
these attributes to control the search. The BindAuthenticator will be configured with a
FilterBasedLdapUserSearch and the attribute values map directly to the first two arguments of
that bean’s constructor. If these attributes aren’t set and no user-dn-pattern has been supplied as
an alternative, then the default search values of user-search-filter="(uid={0})" and user-
search-base="" will be used.

• user-search-filter The LDAP filter used to search for users (optional). For example "(uid={0})". The
substituted parameter is the user’s login name.

If you need to perform a search to locate the user in the directory, then you can set
these attributes to control the search. The BindAuthenticator will be configured with a
FilterBasedLdapUserSearch and the attribute values map directly to the first two arguments of
that bean’s constructor. If these attributes aren’t set and no user-dn-pattern has been supplied as
an alternative, then the default search values of user-search-filter="(uid={0})" and user-
search-base="" will be used.

Child Elements of <ldap-authentication-provider>

• password-compare

<password-compare>

This is used as child element to <ldap-provider> and switches the authentication strategy from
BindAuthenticator to PasswordComparisonAuthenticator.

Parent Elements of <password-compare>

• ldap-authentication-provider

Spring Security Reference

please define title in your docbook file! 220

<password-compare> Attributes

• hash Defines the hashing algorithm used on user passwords. We recommend strongly against using
MD4, as it is a very weak hashing algorithm.

• password-attribute The attribute in the directory which contains the user password. Defaults to
"userPassword".

Child Elements of <password-compare>

• password-encoder

<ldap-user-service>

This element configures an LDAP UserDetailsService. The class used is
LdapUserDetailsService which is a combination of a FilterBasedLdapUserSearch and a
DefaultLdapAuthoritiesPopulator. The attributes it supports have the same usage as in
<ldap-provider>.

<ldap-user-service> Attributes

• cache-ref Defines a reference to a cache for use with a UserDetailsService.

• group-role-attribute The LDAP attribute name which contains the role name which will be used within
Spring Security. Defaults to "cn".

• group-search-base Search base for group membership searches. Defaults to "" (searching from the
root).

• group-search-filter Group search filter. Defaults to (uniqueMember={0}). The substituted parameter
is the DN of the user.

• id A bean identifier, used for referring to the bean elsewhere in the context.

• role-prefix A non-empty string prefix that will be added to role strings loaded from persistent storage
(e.g. "ROLE_"). Use the value "none" for no prefix in cases where the default is non-empty.

• server-ref The optional server to use. If omitted, and a default LDAP server is registered (using <ldap-
server> with no Id), that server will be used.

• user-context-mapper-ref Allows explicit customization of the loaded user object by specifying a
UserDetailsContextMapper bean which will be called with the context information from the user’s
directory entry

• user-details-class Allows the objectClass of the user entry to be specified. If set, the framework will
attempt to load standard attributes for the defined class into the returned UserDetails object

• user-search-base Search base for user searches. Defaults to "". Only used with a 'user-search-filter'.

• user-search-filter The LDAP filter used to search for users (optional). For example "(uid={0})". The
substituted parameter is the user’s login name.

Spring Security Reference

please define title in your docbook file! 221

39. Spring Security Dependencies

This appendix provides a reference of the modules in Spring Security and the additional dependencies
that they require in order to function in a running application. We don’t include dependenices that are
only used when building or testing Spring Security itself. Nor do we include transitive dependencies
which are required by external dependencies.

The version of Spring required is listed on the project website, so the specific versions are omitted
for Spring dependencies below. Note that some of the dependencies listed as"optional" below may
still be required for other non-security functionality in a Spring application. Also dependencies listed as
"optional" may not actually be marked as such in the project’s Maven pom files if they are used in most
applications. They are"optional" only in the sense that you don’t need them unless you are using the
specified functionality.

Where a module depends on another Spring Security module, the non-optional dependencies of the
module it depends on are also assumed to be required and are not listed separately.

39.1 spring-security-core

The core module must be included in any project using Spring Security.

Table 39.1. Core Depenendencies

Dependency Version Description

aopalliance 1.0 Required for method security
implementation.

ehcache 1.6.2 Required if the ehcache-based
user cache implementation is
used (optional).

spring-aop Method security is based on
Spring AOP

spring-beans Required for Spring
configuration

spring-expression Required for expression-based
method security (optional)

spring-jdbc Required if using a database to
store user data (optional).

spring-tx Required if using a database to
store user data (optional).

aspectjrt 1.6.10 Required if using AspectJ
support (optional).

jsr250-api 1.0 Required if you are using
JSR-250 method-security
annotations (optional).

Spring Security Reference

please define title in your docbook file! 222

39.2 spring-security-remoting

This module is typically required in web applications which use the Servlet API.

Table 39.2. Remoting Dependencies

Dependency Version Description

spring-security-core

spring-web Required for clients which use
HTTP remoting support.

39.3 spring-security-web

This module is typically required in web applications which use the Servlet API.

Table 39.3. Web Dependencies

Dependency Version Description

spring-security-core

spring-web Spring web support classes are
used extensively.

spring-jdbc Required for JDBC-based
persistent remember-me token
repository (optional).

spring-tx Required by remember-me
persistent token repository
implementations (optional).

39.4 spring-security-ldap

This module is only required if you are using LDAP authentication.

Table 39.4. LDAP Dependencies

Dependency Version Description

spring-security-core

spring-ldap-core 1.3.0 LDAP support is based on
Spring LDAP.

spring-tx Data exception classes are
required.

apache-ds 1 1.5.5 Required if you are using
an embedded LDAP server
(optional).

Spring Security Reference

please define title in your docbook file! 223

Dependency Version Description

shared-ldap 0.9.15 Required if you are using
an embedded LDAP server
(optional).

ldapsdk 4.1 Mozilla LdapSDK. Used for
decoding LDAP password
policy controls if you are using
password-policy functionality
with OpenLDAP, for example.

1The modules apacheds-core, apacheds-core-entry, apacheds-protocol-shared, apacheds-protocol-ldap and
apacheds-server-jndi are required.

39.5 spring-security-config

This module is required if you are using Spring Security namespace configuration.

Table 39.5. Config Dependencies

Dependency Version Description

spring-security-core

spring-security-web Required if you are using
any web-related namespace
configuration (optional).

spring-security-ldap Required if you are using the
LDAP namespace options
(optional).

spring-security-openid Required if you are using
OpenID authentication
(optional).

aspectjweaver 1.6.10 Required if using the protect-
pointcut namespace syntax
(optional).

39.6 spring-security-acl

The ACL module.

Table 39.6. ACL Dependencies

Dependency Version Description

spring-security-core

ehcache 1.6.2 Required if the ehcache-based
ACL cache implementation is
used (optional if you are using
your own implementation).

Spring Security Reference

please define title in your docbook file! 224

Dependency Version Description

spring-jdbc Required if you are using the
default JDBC-based AclService
(optional if you implement your
own).

spring-tx Required if you are using the
default JDBC-based AclService
(optional if you implement your
own).

39.7 spring-security-cas

The CAS module provides integration with JA-SIG CAS.

Table 39.7. CAS Dependencies

Dependency Version Description

spring-security-core

spring-security-web

cas-client-core 3.1.12 The JA-SIG CAS Client. This is
the basis of the Spring Security
integration.

ehcache 1.6.2 Required if you are using the
ehcache-based ticket cache
(optional).

39.8 spring-security-openid

The OpenID module.

Table 39.8. OpenID Dependencies

Dependency Version Description

spring-security-core

spring-security-web

openid4java-nodeps 0.9.6 Spring Security’s OpenID
integration uses OpenID4Java.

httpclient 4.1.1 openid4java-nodeps depends
on HttpClient 4.

guice 2.0 openid4java-nodeps depends
on Guice 2.

39.9 spring-security-taglibs

Provides Spring Security’s JSP tag implementations.

Spring Security Reference

please define title in your docbook file! 225

Table 39.9. Taglib Dependencies

Dependency Version Description

spring-security-core

spring-security-web

spring-security-acl Required if you are using
the accesscontrollist
tag or hasPermission()
expressions with ACLs
(optional).

spring-expression Required if you are using SPEL
expressions in your tag access
constraints.

	Spring Security Reference
	Table of Contents
	
	Part I. Preface
	Part II. Getting Started
	1. Introduction
	1.1 What is Spring Security?
	1.2 History
	1.3 Release Numbering
	1.4 Getting Spring Security
	Usage with Maven
	Maven Repositories
	Spring Framework Bom

	Gradle
	Gradle Repositories
	Using Spring 4.0.x and Gradle

	Project Modules
	Core - spring-security-core.jar
	Remoting - spring-security-remoting.jar
	Web - spring-security-web.jar
	Config - spring-security-config.jar
	LDAP - spring-security-ldap.jar
	ACL - spring-security-acl.jar
	CAS - spring-security-cas.jar
	OpenID - spring-security-openid.jar

	Checking out the Source

	2. What’s new in Spring Security 4.0
	2.1 Features
	2.2 Migrating from 3.x to 4.x

	3. Java Configuration
	3.1 Hello Web Security Java Configuration
	AbstractSecurityWebApplicationInitializer
	AbstractSecurityWebApplicationInitializer without Existing Spring
	AbstractSecurityWebApplicationInitializer with Spring MVC

	3.2 HttpSecurity
	3.3 Java Configuration and Form Login
	3.4 Authorize Requests
	3.5 Authentication
	In Memory Authentication
	JDBC Authentication
	LDAP Authentication

	3.6 Multiple HttpSecurity
	3.7 Method Security
	EnableGlobalMethodSecurity
	GlobalMethodSecurityConfiguration

	3.8 Post Processing Configured Objects

	4. Security Namespace Configuration
	4.1 Introduction
	Design of the Namespace

	4.2 Getting Started with Security Namespace Configuration
	web.xml Configuration
	A Minimal <http> Configuration
	Form and Basic Login Options
	Setting a Default Post-Login Destination

	Logout Handling
	Using other Authentication Providers
	Adding a Password Encoder

	4.3 Advanced Web Features
	Remember-Me Authentication
	Adding HTTP/HTTPS Channel Security
	Session Management
	Detecting Timeouts
	Concurrent Session Control
	Session Fixation Attack Protection

	OpenID Support
	Attribute Exchange

	Response Headers
	Adding in Your Own Filters
	Setting a Custom AuthenticationEntryPoint

	4.4 Method Security
	The <global-method-security> Element
	Adding Security Pointcuts using protect-pointcut

	4.5 The Default AccessDecisionManager
	Customizing the AccessDecisionManager

	4.6 The Authentication Manager and the Namespace

	5. Sample Applications
	5.1 Tutorial Sample
	5.2 Contacts
	5.3 LDAP Sample
	5.4 OpenID Sample
	5.5 CAS Sample
	5.6 JAAS Sample
	5.7 Pre-Authentication Sample

	6. Spring Security Community
	6.1 Issue Tracking
	6.2 Becoming Involved
	6.3 Further Information

	Part III. Architecture and Implementation
	7. Technical Overview
	7.1 Runtime Environment
	7.2 Core Components
	SecurityContextHolder, SecurityContext and Authentication Objects
	Obtaining information about the current user

	The UserDetailsService
	GrantedAuthority
	Summary

	7.3 Authentication
	What is authentication in Spring Security?
	Setting the SecurityContextHolder Contents Directly

	7.4 Authentication in a Web Application
	ExceptionTranslationFilter
	AuthenticationEntryPoint
	Authentication Mechanism
	Storing the SecurityContext between requests

	7.5 Access-Control (Authorization) in Spring Security
	Security and AOP Advice
	Secure Objects and the AbstractSecurityInterceptor
	What are Configuration Attributes?
	RunAsManager
	AfterInvocationManager
	Extending the Secure Object Model

	7.6 Localization

	8. Core Services
	8.1 The AuthenticationManager, ProviderManager and AuthenticationProvider
	Erasing Credentials on Successful Authentication
	DaoAuthenticationProvider

	8.2 UserDetailsService Implementations
	In-Memory Authentication
	JdbcDaoImpl
	Authority Groups

	8.3 Password Encoding
	What is a hash?
	Adding Salt to a Hash
	Hashing and Authentication

	Part IV. Testing
	9. Testing Method Security
	9.1 Security Test Setup
	9.2 @WithMockUser
	9.3 @WithUserDetails
	9.4 @WithSecurityContext

	10. Spring MVC Test Integration
	10.1 Setting Up MockMvc and Spring Security
	10.2 SecurityMockMvcRequestPostProcessors
	Testing with CSRF Protection
	Running a Test as a User in Spring MVC Test
	Running as a User in Spring MVC Test with RequestPostProcessor
	Running as a User in Spring MVC Test with Annotations

	Testing HTTP Basic Authentication

	10.3 SecurityMockMvcRequestBuilders
	Testing Form Based Authentication
	Testing Logout

	10.4 SecurityMockMvcResultMatchers
	Unauthenticated Assertion
	Authenticated Assertion

	Part V. Web Application Security
	11. The Security Filter Chain
	11.1 DelegatingFilterProxy
	11.2 FilterChainProxy
	Bypassing the Filter Chain

	11.3 Filter Ordering
	11.4 Request Matching and HttpFirewall
	11.5 Use with other Filter-Based Frameworks
	11.6 Advanced Namespace Configuration

	12. Core Security Filters
	12.1 FilterSecurityInterceptor
	12.2 ExceptionTranslationFilter
	AuthenticationEntryPoint
	AccessDeniedHandler
	SavedRequest s and the RequestCache Interface

	12.3 SecurityContextPersistenceFilter
	SecurityContextRepository

	12.4 UsernamePasswordAuthenticationFilter
	Application Flow on Authentication Success and Failure

	13. Servlet API integration
	13.1 Servlet 2.5+ Integration
	HttpServletRequest.getRemoteUser()
	HttpServletRequest.getUserPrincipal()
	HttpServletRequest.isUserInRole(String)

	13.2 Servlet 3+ Integration
	HttpServletRequest.authenticate(HttpServletRequest,HttpServletResponse)
	HttpServletRequest.login(String,String)
	HttpServletRequest.logout()
	AsyncContext.start(Runnable)
	Async Servlet Support

	13.3 Servlet 3.1+ Integration
	HttpServletRequest#changeSessionId()

	14. Basic and Digest Authentication
	14.1 BasicAuthenticationFilter
	Configuration

	14.2 DigestAuthenticationFilter
	Configuration

	15. Remember-Me Authentication
	15.1 Overview
	15.2 Simple Hash-Based Token Approach
	15.3 Persistent Token Approach
	15.4 Remember-Me Interfaces and Implementations
	TokenBasedRememberMeServices
	PersistentTokenBasedRememberMeServices

	16. Cross Site Request Forgery (CSRF)
	16.1 CSRF Attacks
	16.2 Synchronizer Token Pattern
	16.3 When to use CSRF protection
	CSRF protection and JSON
	CSRF and Stateless Browser Applications

	16.4 Using Spring Security CSRF Protection
	Use proper HTTP verbs
	Configure CSRF Protection
	Include the CSRF Token
	Form Submissions
	Ajax and JSON Requests

	16.5 CSRF Caveats
	Timeouts
	Logging In
	Logging Out
	Multipart (file upload)
	Placing MultipartFilter before Spring Security
	Include CSRF token in action

	HiddenHttpMethodFilter

	16.6 Overriding Defaults

	17. Security HTTP Response Headers
	17.1 Default Security Headers
	Cache Control
	Content Type Options
	HTTP Strict Transport Security (HSTS)
	X-Frame-Options
	X-XSS-Protection

	17.2 Custom Headers
	Static Headers
	Headers Writer
	DelegatingRequestMatcherHeaderWriter

	18. Session Management
	18.1 SessionManagementFilter
	18.2 SessionAuthenticationStrategy
	18.3 Concurrency Control
	Querying the SessionRegistry for currently authenticated users and their sessions

	19. Anonymous Authentication
	19.1 Overview
	19.2 Configuration
	19.3 AuthenticationTrustResolver

	20. WebSocket Security
	20.1 WebSocket Configuration
	20.2 WebSocket Authentication
	20.3 WebSocket Authorization
	WebSocket Authorization Notes
	WebSocket Authorization on Message Types
	WebSocket Authorization on Destinations

	Outbound Messages

	20.4 Enforcing Same Origin Policy
	Why Same Origin?
	Spring WebSocket Allowed Origin
	Adding CSRF to Stomp Headers
	Disable CSRF within WebSockets

	20.5 Working with SockJS
	SockJS & frame-options
	SockJS & Relaxing CSRF

	Part VI. Authorization
	21. Authorization Architecture
	21.1 Authorities
	21.2 Pre-Invocation Handling
	The AccessDecisionManager
	Voting-Based AccessDecisionManager Implementations
	RoleVoter
	AuthenticatedVoter
	Custom Voters

	21.3 After Invocation Handling
	21.4 Hierarchical Roles

	22. Secure Object Implementations
	22.1 AOP Alliance (MethodInvocation) Security Interceptor
	Explicit MethodSecurityInterceptor Configuration

	22.2 AspectJ (JoinPoint) Security Interceptor

	23. Expression-Based Access Control
	23.1 Overview
	Common Built-In Expressions

	23.2 Web Security Expressions
	23.3 Method Security Expressions
	@Pre and @Post Annotations
	Access Control using @PreAuthorize and @PostAuthorize
	Filtering using @PreFilter and @PostFilter

	Built-In Expressions
	The PermissionEvaluator interface

	Part VII. Additional Topics
	24. Domain Object Security (ACLs)
	24.1 Overview
	24.2 Key Concepts
	24.3 Getting Started

	25. Pre-Authentication Scenarios
	25.1 Pre-Authentication Framework Classes
	AbstractPreAuthenticatedProcessingFilter
	J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

	PreAuthenticatedAuthenticationProvider
	Http403ForbiddenEntryPoint

	25.2 Concrete Implementations
	Request-Header Authentication (Siteminder)
	Siteminder Example Configuration

	Java EE Container Authentication

	26. LDAP Authentication
	26.1 Overview
	26.2 Using LDAP with Spring Security
	26.3 Configuring an LDAP Server
	Using an Embedded Test Server
	Using Bind Authentication
	Loading Authorities

	26.4 Implementation Classes
	LdapAuthenticator Implementations
	Common Functionality
	BindAuthenticator
	PasswordComparisonAuthenticator

	Connecting to the LDAP Server
	LDAP Search Objects
	FilterBasedLdapUserSearch

	LdapAuthoritiesPopulator
	Spring Bean Configuration
	LDAP Attributes and Customized UserDetails

	26.5 Active Directory Authentication
	ActiveDirectoryLdapAuthenticationProvider
	Active Directory Error Codes

	27. JSP Tag Libraries
	27.1 Declaring the Taglib
	27.2 The authorize Tag
	Disabling Tag Authorization for Testing

	27.3 The authentication Tag
	27.4 The accesscontrollist Tag
	27.5 The csrfInput Tag
	27.6 The csrfMetaTags Tag

	28. Java Authentication and Authorization Service (JAAS) Provider
	28.1 Overview
	28.2 AbstractJaasAuthenticationProvider
	JAAS CallbackHandler
	JAAS AuthorityGranter

	28.3 DefaultJaasAuthenticationProvider
	InMemoryConfiguration
	DefaultJaasAuthenticationProvider Example Configuration

	28.4 JaasAuthenticationProvider
	28.5 Running as a Subject

	29. CAS Authentication
	29.1 Overview
	29.2 How CAS Works
	Spring Security and CAS Interaction Sequence

	29.3 Configuration of CAS Client
	Service Ticket Authentication
	Single Logout
	Authenticating to a Stateless Service with CAS
	Configuring CAS to Obtain Proxy Granting Tickets
	Calling a Stateless Service Using a Proxy Ticket

	Proxy Ticket Authentication

	30. X.509 Authentication
	30.1 Overview
	30.2 Adding X.509 Authentication to Your Web Application
	30.3 Setting up SSL in Tomcat

	31. Run-As Authentication Replacement
	31.1 Overview
	31.2 Configuration

	32. Spring Security Crypto Module
	32.1 Introduction
	32.2 Encryptors
	BytesEncryptor
	TextEncryptor

	32.3 Key Generators
	BytesKeyGenerator
	StringKeyGenerator

	32.4 Password Encoding

	33. Concurrency Support
	33.1 DelegatingSecurityContextRunnable
	33.2 DelegatingSecurityContextExecutor
	33.3 Spring Security Concurrency Classes

	34. Spring MVC Integration
	34.1 @EnableWebMvcSecurity
	34.2 @AuthenticationPrincipal
	34.3 Spring MVC Async Integration
	34.4 Spring MVC and CSRF Integration
	Automatic Token Inclusion
	Resolving the CsrfToken

	Part VIII. Spring Data Integration
	35. Spring Data & Spring Security Configuration
	36. Security Expressions within @Query

	Part IX. Appendix
	37. Security Database Schema
	37.1 User Schema
	Group Authorities

	37.2 Persistent Login (Remember-Me) Schema
	37.3 ACL Schema
	HyperSQL
	PostgreSQL
	MySQL and MariaDB
	Microsoft SQL Server
	Oracle Database

	38. The Security Namespace
	38.1 Web Application Security
	<debug>
	<http>
	<http> Attributes
	Child Elements of <http>

	<access-denied-handler>
	Parent Elements of <access-denied-handler>
	<access-denied-handler> Attributes

	<headers>
	<headers> Attributes
	Parent Elements of <headers>
	Child Elements of <headers>

	<cache-control>
	<cache-control> Attributes
	Parent Elements of <cache-control>

	<hsts>
	<hsts> Attributes
	Parent Elements of <hsts>

	<frame-options>
	<frame-options> Attributes
	Parent Elements of <frame-options>

	<xss-protection>
	<xss-protection> Attributes
	Parent Elements of <xss-protection>

	<content-type-options>
	<content-type-options> Attributes
	Parent Elements of <content-type-options>

	<header>
	<header-attributes> Attributes
	Parent Elements of <header>

	<anonymous>
	Parent Elements of <anonymous>
	<anonymous> Attributes

	<csrf>
	Parent Elements of <csrf>
	<csrf> Attributes

	<custom-filter>
	Parent Elements of <custom-filter>
	<custom-filter> Attributes

	<expression-handler>
	Parent Elements of <expression-handler>
	<expression-handler> Attributes

	<form-login>
	Parent Elements of <form-login>
	<form-login> Attributes

	<http-basic>
	Parent Elements of <http-basic>
	<http-basic> Attributes

	<http-firewall> Element
	<http-firewall> Attributes

	<intercept-url>
	Parent Elements of <intercept-url>
	<intercept-url> Attributes

	<jee>
	Parent Elements of <jee>
	<jee> Attributes

	<logout>
	Parent Elements of <logout>
	<logout> Attributes

	<openid-login>
	Parent Elements of <openid-login>
	<openid-login> Attributes
	Child Elements of <openid-login>

	<attribute-exchange>
	Parent Elements of <attribute-exchange>
	<attribute-exchange> Attributes
	Child Elements of <attribute-exchange>

	<openid-attribute>
	Parent Elements of <openid-attribute>
	<openid-attribute> Attributes

	<port-mappings>
	Parent Elements of <port-mappings>
	Child Elements of <port-mappings>

	<port-mapping>
	Parent Elements of <port-mapping>
	<port-mapping> Attributes

	<remember-me>
	Parent Elements of <remember-me>
	<remember-me> Attributes

	<request-cache> Element
	Parent Elements of <request-cache>
	<request-cache> Attributes

	<session-management>
	Parent Elements of <session-management>
	<session-management> Attributes
	Child Elements of <session-management>

	<concurrency-control>
	Parent Elements of <concurrency-control>
	<concurrency-control> Attributes

	<x509>
	Parent Elements of <x509>
	<x509> Attributes

	<filter-chain-map>
	<filter-chain-map> Attributes
	Child Elements of <filter-chain-map>

	<filter-chain>
	Parent Elements of <filter-chain>
	<filter-chain> Attributes

	<filter-security-metadata-source>
	<filter-security-metadata-source> Attributes
	Child Elements of <filter-security-metadata-source>

	38.2 WebSocket Security
	<websocket-message-broker>
	<websocket-message-broker> Attributes
	Child Elements of <websocket-message-broker>

	<intercept-message>
	Parent Elements of <intercept-message>
	<intercept-message> Attributes

	38.3 Authentication Services
	<authentication-manager>
	<authentication-manager> Attributes
	Child Elements of <authentication-manager>

	<authentication-provider>
	Parent Elements of <authentication-provider>
	<authentication-provider> Attributes
	Child Elements of <authentication-provider>

	<jdbc-user-service>
	<jdbc-user-service> Attributes

	<password-encoder>
	Parent Elements of <password-encoder>
	<password-encoder> Attributes
	Child Elements of <password-encoder>

	<salt-source>
	Parent Elements of <salt-source>
	<salt-source> Attributes

	<user-service>
	<user-service> Attributes
	Child Elements of <user-service>

	<user>
	Parent Elements of <user>
	<user> Attributes

	38.4 Method Security
	<global-method-security>
	<global-method-security> Attributes
	Child Elements of <global-method-security>

	<after-invocation-provider>
	Parent Elements of <after-invocation-provider>
	<after-invocation-provider> Attributes

	<pre-post-annotation-handling>
	Parent Elements of <pre-post-annotation-handling>
	Child Elements of <pre-post-annotation-handling>

	<invocation-attribute-factory>
	Parent Elements of <invocation-attribute-factory>
	<invocation-attribute-factory> Attributes

	<post-invocation-advice>
	Parent Elements of <post-invocation-advice>
	<post-invocation-advice> Attributes

	<pre-invocation-advice>
	Parent Elements of <pre-invocation-advice>
	<pre-invocation-advice> Attributes

	Securing Methods using
	Parent Elements of <protect-pointcut>
	<protect-pointcut> Attributes

	<intercept-methods>
	<intercept-methods> Attributes
	Child Elements of <intercept-methods>

	<method-security-metadata-source>
	<method-security-metadata-source> Attributes
	Child Elements of <method-security-metadata-source>

	<protect>
	Parent Elements of <protect>
	<protect> Attributes

	38.5 LDAP Namespace Options
	Defining the LDAP Server using the
	<ldap-server> Attributes

	<ldap-authentication-provider>
	Parent Elements of <ldap-authentication-provider>
	<ldap-authentication-provider> Attributes
	Child Elements of <ldap-authentication-provider>

	<password-compare>
	Parent Elements of <password-compare>
	<password-compare> Attributes
	Child Elements of <password-compare>

	<ldap-user-service>
	<ldap-user-service> Attributes

	39. Spring Security Dependencies
	39.1 spring-security-core
	39.2 spring-security-remoting
	39.3 spring-security-web
	39.4 spring-security-ldap
	39.5 spring-security-config
	39.6 spring-security-acl
	39.7 spring-security-cas
	39.8 spring-security-openid
	39.9 spring-security-taglibs

