Spring Security Reference

Ben Alex, Luke Taylor, Rob Winch, Gunnar Hillert, Joe Grandja, Jay Bryant, Eddu
Meléndez, Josh Cummings, Dave Syer

Version 5.3.8.RELEASE

Table of Contents

Preface
1. Prerequisites

2. Spring Security Community

2.1. Getting Help

2.2. Becoming Involved
2.3. Source Code

2.4. Apache 2 License
2.5. Social Media

3. What’s New in Spring Security 5.3

3.1. Documentation Updates
3.2. Servlet

3.3. WebFlux

3.4. RSocket

3.5. Additional Updates

3.6. Build Changes

4. Getting Spring Security

4.1. Release Numbering
4.2. Usage with Maven
4.3. Gradle

5. Features

5.1. Authentication
5.2. Protection Against Exploits

6. Project Modules

6.1. Core —spring-security-core.jar

6.2. Remoting — spring-security-remoting.jar

6.3. Web — spring-security-web.jar

6.4. Config — spring-security-config.jar

6.5. LDAP —spring-security-1ldap.jar

6.6. OAuth 2.0 Core — spring-security-oauth2-core.jar
6.7. OAuth 2.0 Client — spring-security-oauth2-client.jar
6.8. OAuth 2.0 JOSE — spring-security-oauth2-jose.jar
6.9. OAuth 2.0 Resource Server — spring-security-oauth2-resource-server.jar
6.10. ACL —spring-security-acl.jar

6.11. CAS—spring-security-cas.jar

6.12. OpenlID — spring-security-openid.jar

6.13. Test—spring-security-test.jar

7. Samples
Servlet Applications

GG NG Y. e e < NS BRNS » TN & R T NG Y U U O SR \C)

B b R R R R R R W W W W W W N R
W N R R P O O O O O © © © © © © NN b b O

8. Hello Spring Security 44

8.1. Updating Dependencies 44
8.2. Starting Hello Spring Security Boot 44
8.3. Spring Boot Auto Configuration 44
9. Servlet Security: The Big Picture 46
9.1. A Review of Filters 46
9.2. DelegatingFilterProxy 47
9.3. FilterChainProxy 49
9.4. SecurityFilterChain 49
9.5. Security Filters 51
9.6. Handling Security Exceptions 52
10. Authentication 55
10.1. SecurityContextHolder 56
10.2. SecurityContext 57
10.3. Authentication 57
10.4. GrantedAuthority 58
10.5. AuthenticationManager 58
10.6. ProviderManager 58
10.7. AuthenticationProvider 60
10.8. Request Credentials with AuthenticationEntryPoint 60
10.9. AbstractAuthenticationProcessingFilter 61
10.10. Username/Password Authentication 62
10.11. Session Management 98
10.12. Remember-Me Authentication 104
10.13. OpenlID Support 107
10.14. Anonymous Authentication 108
10.15. Pre-Authentication Scenarios 111
10.16. Java Authentication and Authorization Service (JAAS) Provider 114
10.17. CAS Authentication 118
10.18. X.509 Authentication 129
10.19. Run-As Authentication Replacement 131
10.20. Handling Logouts 132
10.21. Authentication Events 135
11. Authorization 137
11.1. Authorization Architecture 137
11.2. Authorize HttpServletRequest with FilterSecurityInterceptor 142
11.3. Expression-Based Access Control 145
11.4. Secure Object Implementations 153
11.5. Method Security 156
11.6. Domain Object Security (ACLS) 160

12. OAuth2 165

12.1. OAuth 2.0 Login 165

12.2. OAuth 2.0 Client 198
12.3. OAuth 2.0 Resource Server 232
13. SAML2 283
13.1. SAML 2.0 Login 283
14. Protection Against Exploits 293
14.1. Cross Site Request Forgery (CSRF) for Servlet Environments 293
14.2. Security HTTP Response Headers 301
14.3. HTTP 318
14.4. HttpFirewall 319
15. Integrations 323
15.1. Servlet API integration 323
15.2. Spring Data Integration 327
15.3. Concurrency Support 328
15.4. Jackson Support 332
15.5. Localization 332
15.6. Spring MVC Integration 333
15.7. WebSocket Security 341
15.8. CORS 350
15.9. JSP Tag Libraries 352
16. Java Configuration 357
16.1. Hello Web Security Java Configuration 357
16.2. HttpSecurity 360
16.3. Multiple HttpSecurity 360
16.4. Custom DSLs 362
16.5. Post Processing Configured Objects 363
17. Kotlin Configuration 365
17.1. HttpSecurity 365
17.2. Multiple HttpSecurity 365
18. Security Namespace Configuration 368
18.1. Introduction 368
18.2. Getting Started with Security Namespace Configuration 369
18.3. Advanced Web Features 373
18.4. Method Security 375
18.5. The Default AccessDecisionManager 375
19. Testing 377
19.1. Testing Method Security 377
19.2. Spring MVC Test Integration 384
20. Spring Security Crypto Module 404
20.1. Introduction 404

20.2. Encryptors 404

20.3. Key Generators 405

20.4. Password Encoding 406
21. Appendix 407
21.1. Security Database Schema 407
21.2. The Security Namespace 415
21.3. Spring Security Dependencies 453
21.4. Spring Security FAQ 458
Reactive Applications 473
22. WebFlux Security 474
22.1. Minimal WebFlux Security Configuration 474
22.2. Explicit WebFlux Security Configuration 474
23. Protection Against Exploits 476
23.1. Cross Site Request Forgery (CSRF) for WebFlux Environments 476
23.2. Security HTTP Response Headers 482
23.3. HTTP 489
24. OAuth2 WebFlux 491
24.1. OAuth 2.0 Login 491
24.2. OAuth2 Client 494
24.3. OAuth 2.0 Resource Server 495
25. @RegisteredOAuth2AuthorizedClient 521
26. Reactive X.509 Authentication 522
27. WebClient 524
27.1. WebClient OAuth2 Setup 524
27.2. Implicit OAuth2AuthorizedClient 525
27.3. Explicit OAuth2AuthorizedClient 525
27.4. clientRegistrationId 525
28. EnableReactiveMethodSecurity 526
29. Reactive Test Support 529
29.1. Testing Reactive Method Security 529
29.2. WebTestClientSupport 529
30. RSocket Security 544
30.1. Minimal RSocket Security Configuration 544
30.2. Adding SecuritySocketAcceptorInterceptor 544
30.3. RSocket Authentication 545

30.4. RSocket Authorization 548

Spring Security is a framework that provides authentication, authorization, and
protection against common attacks. With first class support for both imperative
and reactive applications, it is the de-facto standard for securing Spring-based
applications.

Preface

This section discusses the logistics of Spring Security.

Chapter 1. Prerequisites

Spring Security requires a Java 8 or higher Runtime Environment.

As Spring Security aims to operate in a self-contained manner, you do not need to place any special
configuration files in your Java Runtime Environment. In particular, you need not configure a
special Java Authentication and Authorization Service (JAAS) policy file or place Spring Security
into common classpath locations.

Similarly, if you use an EJB Container or Servlet Container, you need not put any special
configuration files anywhere nor include Spring Security in a server classloader. All the required
files are contained within your application.

This design offers maximum deployment time flexibility, as you can copy your target artifact (be it a
JAR, WAR, or EAR) from one system to another and it immediately works.

Chapter 2. Spring Security Community

Welcome to the Spring Security Community! This section discusses how you can make the most of
our vast community.

2.1. Getting Help

If you need help with Spring Security, we are here to help. The following are some of the best ways
to get help:

* Read through this documentation.
* Try one of our many sample applications.
» Ask a question on https://stackoverflow.com with the spring-security tag.

* Report bugs and enhancement requests at https://github.com/spring-projects/spring-security/
issues

2.2. Becoming Involved

We welcome your involvement in the Spring Security project. There are many ways to contribute,
including answering questions on StackOverflow, writing new code, improving existing code,
assisting with documentation, developing samples or tutorials, reporting bugs, or simply making
suggestions. For more information, see our Contributing documentation.

2.3. Source Code

You can find Spring Security’s source code on GitHub at https://github.com/spring-projects/spring-
security/

2.4. Apache 2 License

Spring Security is Open Source software released under the Apache 2.0 license.

2.5. Social Media

You can follow @SpringSecurity and the Spring Security team on Twitter to stay up to date with the
latest news. You can also follow @SpringCentral to keep up to date with the entire Spring portfolio.

https://stackoverflow.com/questions/tagged/spring-security
https://github.com/spring-projects/spring-security/issues
https://github.com/spring-projects/spring-security/issues
https://github.com/spring-projects/spring-security/blob/master/CONTRIBUTING.md
https://github.com/spring-projects/spring-security/
https://github.com/spring-projects/spring-security/
https://www.apache.org/licenses/LICENSE-2.0.html
https://twitter.com/SpringSecurity
https://twitter.com/SpringSecurity/lists/team
https://twitter.com/SpringCentral

Chapter 3. What’s New in Spring Security 5.3

Spring Security 5.3 provides a number of new features. Below are the highlights of the release.

3.1. Documentation Updates

We will continue our effort to rewrite the documentation.

Here’s what you’ll see in this release:

Added Servlet Security: The Big Picture

Updated Servlet Authentication
- Rewrote

o Added how things work, including diagrams

Added Kotlin samples

* Reskinned

o Added scrolling menu
o Added toggle

o Updated styles

3.2. Servlet

* Added Kotlin DSL
* OAuth 2.0 Client
o Added Test support for OAuth 2.0 Client, OAuth 2.0 Login, and OIDC Login
o Improved customizing the OAuth 2.0 Authorization Request
o Enhanced OIDC logout success handler to support {baseUr1}
o Added OAuth2Authorization success and failure handlers
o Added XML support
o Added JDBC support for storing OAuth 2.0 tokens
o Added JSON serialization support for OAuth 2.0 tokens
* OAuth 2.0 Resource Server
o Added support for multiple issuers
- Added test support for Opaque Tokens
o Added generic claim validator
o Added XML support
o Improved bearer token error handling for JWT and Opaque Token

* SAML 2.0

https://github.com/spring-projects/spring-security/tree/5.3.8.RELEASE/samples/boot/kotlin
https://github.com/spring-projects/spring-security/pull/7748
https://github.com/spring-projects/spring-security/issues/7842
https://github.com/spring-projects/spring-security/issues/7842
https://github.com/spring-projects/spring-security/issues/7840
https://github.com/spring-projects/spring-security/issues/5184
https://github.com/spring-projects/spring-security/issues/4886
https://github.com/spring-projects/spring-security/issues/5185
https://github.com/spring-projects/spring-security/pull/7826

o Added AuthenticationManager configuration
o Added support for AuthNRequest signatures
o Added support for AuthNRequest POST binding

3.3. WebFlux

* Added DSL support for custom header writers
* OAuth 2.0 Client

o Added Test support for OAuth 2.0 Client, OAuth 2.0 Login, and OIDC Login

o Enhanced OIDC logout success handler to support {baseUr1}

o Added OAuth2Authorization success and failure handlers

> Added JSON serialization support for OAuth 2.0 tokens

o Added ReactiveOAuth2AuthorizedClientManager integration with AuthorizedClientService
* OAuth 2.0 Resource Server

o Added support for multiple issuers

- Added test support for Opaque Tokens

o Improved bearer token error handling for JWT and Opaque Token

3.4. RSocket

* Added support for RSocket Authentication extension

3.5. Additional Updates

* Enhanced Authentication Event Publisher support

o Updated configuration support

o Added default event and Map-based exception mapping
» Improved integration with Spring Data

* Added support to BCrypt to hash byte arrays

3.6. Build Changes

* Changed build to use version ranges

* Removed dependency on Groovy

https://github.com/spring-projects/spring-security/issues/7711
https://github.com/spring-projects/spring-security/pull/7759
https://github.com/spring-projects/spring-security/issues/7636
https://github.com/spring-projects/spring-security/issues/7910
https://github.com/spring-projects/spring-security/issues/7828
https://github.com/spring-projects/spring-security/issues/7680
https://github.com/spring-projects/spring-security/issues/7842
https://github.com/spring-projects/spring-security/issues/7842
https://github.com/spring-projects/spring-security/issues/7699
https://github.com/spring-projects/spring-security/issues/4886
https://github.com/spring-projects/spring-security/issues/7569
https://github.com/spring-projects/spring-security/issues/7827
https://github.com/spring-projects/spring-security/pull/7826
https://github.com/spring-projects/spring-security/issues/7935
https://github.com/spring-projects/spring-security/pull/7802
https://github.com/spring-projects/spring-security/issues/7825
https://github.com/spring-projects/spring-security/issues/7824
https://github.com/spring-projects/spring-security/issues/7824
https://github.com/spring-projects/spring-security/issues/7891
https://github.com/spring-projects/spring-security/issues/7661
https://github.com/spring-projects/spring-security/issues/7788
https://github.com/spring-projects/spring-security/issues/4939

Chapter 4. Getting Spring Security

This section discusses all you need to know about getting the Spring Security binaries. See Source
Code for how to obtain the source code.

4.1. Release Numbering
Spring Security versions are formatted as MAJOR.MINOR.PATCH such that:

* MAJOR versions may contain breaking changes. Typically, these are done to provide improved
security to match modern security practices.

* MINOR versions contain enhancements but are considered passive updates

* PATCH level should be perfectly compatible, forwards and backwards, with the possible
exception of changes that fix bugs.

4.2. Usage with Maven

As most open source projects, Spring Security deploys its dependencies as Maven artifacts. The
topics in this section provide detail on how to consume Spring Security when using Maven.

4.2.1. Spring Boot with Maven

Spring Boot provides a spring-boot-starter-security starter that aggregates Spring Security-related
dependencies together. The simplest and preferred way to use the starter is to use Spring Initializr
by using an IDE integration (Eclipse, Intelli], NetBeans) or through https://start.spring.io.

Alternatively, you can manually add the starter, as the following example shows:

Example 1. pom.xml

<dependencies>
<!-- ... other dependency elements ... -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>
</dependency>
</dependencies>

Since Spring Boot provides a Maven BOM to manage dependency versions, you do not need to
specify a version. If you wish to override the Spring Security version, you may do so by providing a
Maven property, as the following example shows:

https://docs.spring.io/initializr/docs/current/reference/htmlsingle/
https://joshlong.com/jl/blogPost/tech_tip_geting_started_with_spring_boot.html
https://www.jetbrains.com/help/idea/spring-boot.html#d1489567e2
https://github.com/AlexFalappa/nb-springboot/wiki/Quick-Tour
https://start.spring.io

Example 2. pom.xml

<properties>
== =20
<spring-security.version>5.3.8.RELEASE</spring-security.version>
</dependencies>

Since Spring Security makes breaking changes only in major releases, it is safe to use a newer
version of Spring Security with Spring Boot. However, at times, you may need to update the version
of Spring Framework as well. You can do so by adding a Maven property, as the following example
shows:

Example 3. pom.xml

<properties>
Qe oo oo
<spring.version>5.2.12.RELEASE</spring.version>
</dependencies>

If you use additional features (such as LDAP, OpenID, and others), you need to also include the
appropriate Project Modules.

4.2.2. Maven Without Spring Boot

When you use Spring Security without Spring Boot, the preferred way is to use Spring Security’s
BOM to ensure a consistent version of Spring Security is used throughout the entire project. The
following example shows how to do so:

Example 4. pom.xml

<dependencyManagement>
<dependencies>
<!-- ... other dependency elements ... -->
<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-bom</artifactId>
<version>{spring-security-version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

A minimal Spring Security Maven set of dependencies typically looks like the following:

Example 5. pom.xml

<dependencies>
<!-- ... other dependency elements ... -->
<dependency>
<groupId>org.springframework.security</groupld>
<artifactId>spring-security-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-config</artifactId>
</dependency>
</dependencies>

If you use additional features (such as LDAP, OpenID, and others), you need to also include the
appropriate Project Modules.

Spring Security builds against Spring Framework 5.2.12.RELEASE but should generally work with
any newer version of Spring Framework 5.x. Many users are likely to run afoul of the fact that
Spring Security’s transitive dependencies resolve Spring Framework 5.2.12.RELEASE, which can
cause strange classpath problems. The easiest way to resolve this is to use the spring-framework-bom
within the <dependencyManagement> section of your pom.xml as the following example shows:

Example 6. pom.xml

<dependencyManagement>
<dependencies>
<!-- ... other dependency elements ... -->
<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring-framework-bom</artifactId>
<version>5.2.12.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

The preceding example ensures that all the transitive dependencies of Spring Security use the
Spring 5.2.12.RELEASE modules.

This approach uses Maven’s “bill of materials” (BOM) concept and is only available
o in Maven 2.0.9+. For additional details about how dependencies are resolved, see
Maven’s Introduction to the Dependency Mechanism documentation.

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

4.2.3. Maven Repositories

All GA releases (that is, versions ending in .RELEASE) are deployed to Maven Central, so no
additional Maven repositories need to be declared in your pom.

If you use a SNAPSHOT version, you need to ensure that you have the Spring Snapshot repository
defined, as the following example shows:

Example 7. pom.xml

<repositories>
<!-- ... possibly other repository elements ... -->
<repository>
<id>spring-snapshot</id>
<name>Spring Snapshot Repository</name>
<url>https://repo.spring.io/snapshot</url>
</repository>
</repositories>

If you use a milestone or release candidate version, you need to ensure that you have the Spring
Milestone repository defined, as the following example shows:

Example 8. pom.xml

<repositories>
<!-- ... possibly other repository elements ... -->
<repository>
<id>spring-milestone</id>
<name>Spring Milestone Repository</name>
<url>https://repo.spring.io/milestone</url>
</repository>
</repositories>

4.3. Gradle

As most open source projects, Spring Security deploys its dependencies as Maven artifacts, which
allows for first-class Gradle support. The following topics provide detail on how to consume Spring
Security when using Gradle.

4.3.1. Spring Boot with Gradle

Spring Boot provides a spring-boot-starter-security starter that aggregates Spring Security related
dependencies together. The simplest and preferred method to use the starter is to use Spring
Initializr by using an IDE integration (Eclipse, Intelli], NetBeans) or through https://start.spring.io.

Alternatively, you can manually add the starter, as the following example shows:

10

https://docs.spring.io/initializr/docs/current/reference/htmlsingle/
https://docs.spring.io/initializr/docs/current/reference/htmlsingle/
https://joshlong.com/jl/blogPost/tech_tip_geting_started_with_spring_boot.html
https://www.jetbrains.com/help/idea/spring-boot.html#d1489567e2
https://github.com/AlexFalappa/nb-springboot/wiki/Quick-Tour
https://start.spring.io

Example 9. build.gradle

dependencies {
compile "org.springframework.boot:spring-boot-starter-security"

}

Since Spring Boot provides a Maven BOM to manage dependency versions, you need not specify a
version. If you wish to override the Spring Security version, you may do so by providing a Gradle
property, as the following example shows:

Example 10. build.gradle

ext['spring-security.version']="'5.3.8.RELEASE"

Since Spring Security makes breaking changes only in major releases, it is safe to use a newer
version of Spring Security with Spring Boot. However, at times, you may need to update the version
of Spring Framework as well. You can do so by adding a Gradle property, as the following example
shows:

Example 11. build.gradle

ext['spring.version']='5.2.12.RELEASE'

If you use additional features (such as LDAP, OpenID, and others), you need to also include the
appropriate Project Modules.

4.3.2. Gradle Without Spring Boot

When you use Spring Security without Spring Boot, the preferred way is to use Spring Security’s
BOM to ensure a consistent version of Spring Security is used throughout the entire project. You can
do so by using the Dependency Management Plugin, as the following example shows:

11

https://github.com/spring-gradle-plugins/dependency-management-plugin

Example 12. build.gradle

plugins {
id "io.spring.dependency-management"” version "1.0.6.RELEASE"

}

dependencyManagement {
imports {
mavenBom 'org.springframework.security:spring-security-bom:5.3.8.RELEASE'

}

A minimal Spring Security Maven set of dependencies typically looks like the following:

Example 13. build.gradle

dependencies {
compile "org.springframework.security:spring-security-web"
compile "org.springframework.security:spring-security-config"

If you use additional features (such as LDAP, OpenID, and others), you need to also include the
appropriate Project Modules.

Spring Security builds against Spring Framework 5.2.12.RELEASE but should generally work with
any newer version of Spring Framework 5.x. Many users are likely to run afoul of the fact that
Spring Security’s transitive dependencies resolve Spring Framework 5.2.12.RELEASE, which can
cause strange classpath problems. The easiest way to resolve this is to use the spring-framework-bom
within your <dependencyManagement> section of your pom.xml. You can do so by using the Dependency
Management Plugin, as the following example shows:

Example 14. build.gradle
plugins {

id "io.spring.dependency-management" version "1.0.6.RELEASE"

}

dependencyManagement {
imports {
mavenBom 'org.springframework:spring-framework-bom:5.2.12.RELEASE'

}

The preceding example ensures that all the transitive dependencies of Spring Security use the

12

https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-gradle-plugins/dependency-management-plugin

Spring 5.2.12.RELEASE modules.

4.3.3. Gradle Repositories

All GA releases (that is, versions ending in .RELEASE) are deployed to Maven Central, so using the
mavenCentral() repository is sufficient for GA releases. The following example shows how to do so:

Example 15. build.gradle
repositories {

mavenCentral()

}

If you use a SNAPSHOT version, you need to ensure you have the Spring Snapshot repository
defined, as the following example shows:

Example 16. build.gradle

repositories {
maven { url 'https://repo.spring.io/snapshot’ }

}

If you use a milestone or release candidate version, you need to ensure that you have the Spring
Milestone repository defined, as the following example shows:

Example 17. build.gradle

repositories {
maven { url 'https://repo.spring.io/milestone’ }

}

13

Chapter 5. Features

Spring Security provides comprehensive support for authentication, authorization, and protection
against common exploits. It also provides integration with other libraries to simplify its usage.

5.1. Authentication

Spring Security provides comprehensive support for authentication. Authentication is how we
verify the identity of who is trying to access a particular resource. A common way to authenticate
users is by requiring the user to enter a username and password. Once authentication is performed
we know the identity and can perform authorization.

5.1.1. Authentication Support

Spring Security provides built in support for authenticating users. Refer to the sections on
authentication for Servlet and WebFlux for details on what is supported for each stack.

5.1.2. Password Storage

Spring Security’s PasswordEncoder interface is used to perform a one way transformation of a
password to allow the password to be stored securely. Given PasswordEncoder is a one way
transformation, it is not intended when the password transformation needs to be two way (i.e.
storing credentials used to authenticate to a database). Typically PasswordEncoder is used for storing
a password that needs to be compared to a user provided password at the time of authentication.

Password Storage History

Throughout the years the standard mechanism for storing passwords has evolved. In the beginning
passwords were stored in plain text. The passwords were assumed to be safe because the data store
the passwords were saved in required credentials to access it. However, malicious users were able
to find ways to get large "data dumps" of usernames and passwords using attacks like SQL Injection.
As more and more user credentials became public security experts realized we needed to do more
to protect users' passwords.

Developers were then encouraged to store passwords after running them through a one way hash
such as SHA-256. When a user tried to authenticate, the hashed password would be compared to
the hash of the password that they typed. This meant that the system only needed to store the one
way hash of the password. If a breach occurred, then only the one way hashes of the passwords
were exposed. Since the hashes were one way and it was computationally difficult to guess the
passwords given the hash, it would not be worth the effort to figure out each password in the
system. To defeat this new system malicious users decided to create lookup tables known as
Rainbow Tables. Rather than doing the work of guessing each password every time, they computed
the password once and stored it in a lookup table.

To mitigate the effectiveness of Rainbow Tables, developers were encouraged to use salted
passwords. Instead of using just the password as input to the hash function, random bytes (known
as salt) would be generated for every users' password. The salt and the user’s password would be
ran through the hash function which produced a unique hash. The salt would be stored alongside

14

https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Rainbow_table

the user’s password in clear text. Then when a user tried to authenticate, the hashed password
would be compared to the hash of the stored salt and the password that they typed. The unique salt
meant that Rainbow Tables were no longer effective because the hash was different for every salt
and password combination.

In modern times we realize that cryptographic hashes (like SHA-256) are no longer secure. The
reason is that with modern hardware we can perform billions of hash calculations a second. This
means that we can crack each password individually with ease.

Developers are now encouraged to leverage adaptive one-way functions to store a password.
Validation of passwords with adaptive one-way functions are intentionally resource (i.e. CPU,
memory, etc) intensive. An adaptive one-way function allows configuring a "work factor" which can
grow as hardware gets better. It is recommended that the "work factor" be tuned to take about 1
second to verify a password on your system. This trade off is to make it difficult for attackers to
crack the password, but not so costly it puts excessive burden on your own system. Spring Security
has attempted to provide a good starting point for the "work factor", but users are encouraged to
customize the "work factor" for their own system since the performance will vary drastically from
system to system. Examples of adaptive one-way functions that should be used include bcrypt,
PBKDF2, scrypt, and argon2.

Because adaptive one-way functions are intentionally resource intensive, validating a username
and password for every request will degrade performance of an application significantly. There is
nothing Spring Security (or any other library) can do to speed up the validation of the password
since security is gained by making the validation resource intensive. Users are encouraged to
exchange the long term credentials (i.e. username and password) for a short term credential (i.e.
session, OAuth Token, etc). The short term credential can be validated quickly without any loss in
security.

DelegatingPasswordEncoder

Prior to Spring Security 5.0 the default PasswordEncoder was NoOpPasswordEncoder which required
plain text passwords. Based upon the Password History section you might expect that the default
PasswordEncoder is now something like BCryptPasswordEncoder. However, this ignores three real
world problems:

» There are many applications using old password encodings that cannot easily migrate

» The best practice for password storage will change again.

* As a framework Spring Security cannot make breaking changes frequently
Instead Spring Security introduces DelegatingPasswordEncoder which solves all of the problems by:

* Ensuring that passwords are encoded using the current password storage recommendations
» Allowing for validating passwords in modern and legacy formats

» Allowing for upgrading the encoding in the future

You can easily construct an instance of DelegatingPasswordEncoder using PasswordEncoderFactories.

15

Example 18. Create Default DelegatingPasswordEncoder

PasswordEncoder passwordEncoder =
PasswordEncoderFactories.createDelegatingPasswordEncoder();

Alternatively, you may create your own custom instance. For example:

Example 19. Create Custom DelegatingPasswordEncoder

String idForEncode = "berypt";

Map encoders = new HashMap<>();
encoders.put(idForEncode, new BCryptPasswordEncoder());
encoders.put("noop", NoOpPasswordEncoder.getInstance());
encoders.put("pbkdf2", new Pbkdf2PasswordEncoder());
encoders.put("scrypt", new SCryptPasswordEncoder());
encoders.put("sha256", new StandardPasswordEncoder());

PasswordEncoder passwordEncoder =
new DelegatingPasswordEncoder(idForEncode, encoders);

Password Storage Format

The general format for a password is:

Example 20. DelegatingPasswordEncoder Storage Format

{id}encodedPassword

Such that id is an identifier used to look up which PasswordEncoder should be used and
encodedPassword is the original encoded password for the selected PasswordEncoder. The id must be at
the beginning of the password, start with { and end with }. If the id cannot be found, the id will be
null. For example, the following might be a list of passwords encoded using different id. All of the
original passwords are "password".

16

Example 21. DelegatingPasswordEncoder Encoded Passwords Example

{berypt}$2a$10$dXI3SW6G7P501GmMkkmwe . 20cQQubK3 . HZWzG3YB1t 1Ry . fquM/BG @
{noop}password @
{pbkdf2}5d923b4436d129f3ddf3e3c8d29412723dcbde72445e8efobf3b508fbf17faded4d6b99ca7
63d8dc ®
{scrypt}$e0801$8bWIaSu2IKSn979kM+TPXf0c/9bdYSrN10D9qfVThWEWdRTnO7re7Ei+fUZRI68KITT
yuTeUp4of4g24hHnazw==$0A0ec@5+bXxvuu/1qZ6NUR+xQYvYv7BeL1QxwRpY5Pc= @
{sha256}97cde38028ad898ebc02e690819fa220e88c62e0699403e94fff291cfffaf8410849127605
abcbcd ®

® The first password would have a PasswordEncoder id of berypt and encodedPassword of
$2a$10$dXJ13SW6G7P5016GmMkkmwe . 20cQQubK3.HZWzG3YBTt1Ry.fquM/BG. When matching it would
delegate to BCryptPasswordEncoder

@ The second password would have a PasswordEncoder id of noop and encodedPassword of password.
When matching it would delegate to NoOpPasswordEncoder

® The third password would have a PasswordEncoder id of pbkdf2 and encodedPassword of
5d923b4436d129f3ddf3e3c8d29412723dcbde72445e8efobf3b508fbf17faded4d6b99ca763d8dc. When
matching it would delegate to Pbkdf2PasswordEncoder

@ The fourth password would have a PasswordEncoder id of scrypt and encodedPassword of
$e0801$8bWIaSu2IKSn9Z9kM+TPXf0c/9bdYSrN10D9qfVThWEwdRTnO07re7Ei+fUZRI68k91TyuTeUpdof4g24hHnaz

w==$0A0ec@5+bXxvuu/1qZ6NUR+xQYvYv7BeL1QxwRpY5Pc= When matching it would delegate to
SCryptPasswordEncoder

® The final password would have a PasswordEncoder id of sha256 and encodedPassword of
97cde38028ad898ebc02e690819fa220e88c620699403e94fff291cfffaf8410849f27605abcbcd. When
matching it would delegate to StandardPasswordEncoder

Some users might be concerned that the storage format is provided for a potential
o hacker. This is not a concern because the storage of the password does not rely on
the algorithm being a secret. Additionally, most formats are easy for an attacker to
figure out without the prefix. For example, BCrypt passwords often start with $2a$.

Password Encoding

The idForEncode passed into the constructor determines which PasswordEncoder will be used for
encoding passwords. In the DelegatingPasswordEncoder we constructed above, that means that the
result of encoding password would be delegated to BCryptPasswordEncoder and be prefixed with
{bcrypt}. The end result would look like:

Example 22. DelegatingPasswordEncoder Encode Example

{bcrypt}$2a$10$dX13SW6G7P501GmMkkmwe . 20cQQubK3.HZWzG3YB1t1Ry. fquM/BG

17

Password Matching

Matching is done based upon the {id} and the mapping of the id to the PasswordEncoder provided in
the constructor. Our example in Password Storage Format provides a working example of how this
is done. By default, the result of invoking matches(CharSequence, String) with a password and an id
that is not mapped (including a null id) will result in an I1legalArgumentException. This behavior
can be customized using
DelegatingPasswordEncoder.setDefaultPasswordEncoderForMatches(PasswordEncoder).

By using the id we can match on any password encoding, but encode passwords using the most
modern password encoding. This is important, because unlike encryption, password hashes are
designed so that there is no simple way to recover the plaintext. Since there is no way to recover
the plaintext, it makes it difficult to migrate the passwords. While it is simple for users to migrate
NoOpPasswordEncoder, we chose to include it by default to make it simple for the getting started
experience.

Getting Started Experience

If you are putting together a demo or a sample, it is a bit cumbersome to take time to hash the
passwords of your users. There are convenience mechanisms to make this easier, but this is still not
intended for production.

Example 23. withDefaultPasswordEncoder Example

User user = User.withDefaultPasswordEncoder()
.username("user")
.password("password")
.roles("user")
.build();
System.out.println(user.getPassword());
// {bcrypt}$2a$10$dX13SW6G7P501GmMkkmwe . 20cQQubK3.HZWzG3YB1t1Ry. fquM/BG

If you are creating multiple users, you can also reuse the builder.

18

Example 24. withDefaultPasswordEncoder Reusing the Builder

UserBuilder users = User.withDefaultPasswordEncoder();

User user = users
.username("user")
.password("password")
.roles("USER")
.build();

User admin = users
.username("admin")
.password("password")
.roles("USER","ADMIN")
.build();

This does hash the password that is stored, but the passwords are still exposed in memory and in
the compiled source code. Therefore, it is still not considered secure for a production environment.
For production, you should hash your passwords externally

Encode with Spring Boot CLI

The easiest way to properly encode your password is to use the Spring Boot CLI.

For example, the following will encode the password of password for wuse with
DelegatingPasswordEncoder:

Example 25. Spring Boot CLI encodepassword Example

spring encodepassword password
{bcrypt}$2a$10$X5wFBtLrL/kHemr06GTrGufsBX8CIOWpQpF3pgeuxBB/H73BK1DW6

Troubleshooting

The following error occurs when one of the passwords that are stored has no id as described in
Password Storage Format.

java.lang.IllegalArqumentException: There is no PasswordEncoder mapped for the id
"null”

at
org.springframework.security.crypto.password.DelegatingPasswordEncoder$UnmappedIdPassw
ordEncoder .matches(DelegatingPasswordEncoder.java:233)

at
org.springframework.security.crypto.password.DelegatingPasswordEncoder.matches(Delegat
ingPasswordEncoder.java:196)

The easiest way to resolve the error is to switch to explicitly provide the PasswordEncoder that you

19

https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-cli.html

passwords are encoded with. The easiest way to resolve it is to figure out how your passwords are
currently being stored and explicitly provide the correct PasswordEncoder.

If you are migrating from Spring Security 4.2.X you can revert to the previous behavior by exposing
a NoOpPasswordEncoder bean.

Alternatively, you can prefix all of your passwords with the correct id and continue to use
DelegatingPasswordEncoder. For example, if you are using BCrypt, you would migrate your password
from something like:

$2a$10$dX13SW66G7P5016mMkkmwe . 20cQQubK3.HZWzG3YB1t1Ry. fquM/BG

to

{berypt}$2a$10$dXI3SW667P501GmMkkmwe . 20cQQubK3 . HZWzG3YB1t1Ry. fquM/BG

For a complete listing of the mappings refer to the Javadoc on PasswordEncoderFactories.

BCryptPasswordEncoder

The BCryptPasswordEncoder implementation uses the widely supported bcrypt algorithm to hash the
passwords. In order to make it more resistent to password cracking, berypt is deliberately slow.
Like other adaptive one-way functions, it should be tuned to take about 1 second to verify a
password on your system. The default implementation of BCryptPasswordEncoder uses strength 10 as
mentioned in the Javadoc of BCryptPasswordEncoder. You are encouraged to tune and test the
strength parameter on your own system so that it takes roughly 1 second to verify a password.

// Create an encoder with strength 16

BCryptPasswordEncoder encoder = new BCryptPasswordEncoder(16);
String result = encoder.encode("myPassword");
assertTrue(encoder.matches("myPassword", result));

Argon2PasswordEncoder

The Argon2PasswordEncoder implementation uses the Argon2 algorithm to hash the passwords.
Argon2 is the winner of the Password Hashing Competition. In order to defeat password cracking
on custom hardware, Argon2 is a deliberately slow algorithm that requires large amounts of
memory. Like other adaptive one-way functions, it should be tuned to take about 1 second to verify
a password on your system. The current implementation if the Argon2PasswordEncoder requires
BouncyCastle.

// Create an encoder with all the defaults
Argon2PasswordEncoder encoder = new Argon2PasswordEncoder();
String result = encoder.encode("myPassword");
assertTrue(encoder.matches("myPassword", result));

20

https://docs.spring.io/spring-security/site/docs/5.0.x/api/org/springframework/security/crypto/factory/PasswordEncoderFactories.html
https://en.wikipedia.org/wiki/Bcrypt
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/Password_Hashing_Competition

Pbkdf2PasswordEncoder

The Pbkdf2PasswordEncoder implementation uses the PBKDF2 algorithm to hash the passwords. In
order to defeat password cracking PBKDF2 is a deliberately slow algorithm. Like other adaptive
one-way functions, it should be tuned to take about 1 second to verify a password on your system.
This algorithm is a good choice when FIPS certification is required.

// Create an encoder with all the defaults
Pbkdf2PasswordEncoder encoder = new Pbkdf2PasswordEncoder();
String result = encoder.encode("myPassword");
assertTrue(encoder.matches("myPassword", result));

SCryptPasswordEncoder

The SCryptPasswordEncoder implementation uses scrypt algorithm to hash the passwords. In order to
defeat password cracking on custom hardware scrypt is a deliberately slow algorithm that requires
large amounts of memory. Like other adaptive one-way functions, it should be tuned to take about 1
second to verify a password on your system.

// Create an encoder with all the defaults
SCryptPasswordEncoder encoder = new SCryptPasswordEncoder();
String result = encoder.encode("myPassword");
assertTrue(encoder.matches("myPassword", result));

Other PasswordEncoders

There are a significant number of other PasswordEncoder implementations that exist entirely for
backward compatibility. They are all deprecated to indicate that they are no longer considered
secure. However, there are no plans to remove them since it is difficult to migrate existing legacy
systems.

Password Storage Configuration

Spring Security uses DelegatingPasswordEncoder by default. However, this can be customized by
exposing a PasswordEncoder as a Spring bean.

If you are migrating from Spring Security 4.2.X you can revert to the previous behavior by exposing
a NoOpPasswordEncoder bean.

ﬁ Reverting to NoOpPasswordEncoder is not considered to be secure. You should instead
migrate to using DelegatingPasswordEncoder to support secure password encoding.

21

https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Scrypt

Example 26. NoOpPasswordEncoder
Java

@Bean
public static NoOpPasswordEncoder passwordEncoder() {
return NoOpPasswordEncoder.getInstance();

}

XML

<b:bean id="passwordEncoder"
class="org.springframework.security.crypto.password.NoOpPasswordEncoder"
factory-method="getInstance"/>

Kotlin

@Bean
fun passwordEncoder(): PasswordEncoder {
return NoOpPasswordEncoder.getInstance();

}

o XML Configuration requires the NoOpPasswordEncoder bean name to be
passwordEncoder.

5.2. Protection Against Exploits

Spring Security provides protection against common exploits. Whenever possible, the protection is
enabled by default. Below you will find high level description of the various exploits that Spring
Security protects against.

5.2.1. Cross Site Request Forgery (CSRF)

Spring provides comprehensive support for protecting against Cross Site Request Forgery (CSRF)
attacks. In the following sections we will explore:

* What is a CSRF Attack?
* Protecting Against CSRF Attacks

* CSRF Considerations
This portion of the documentation discusses the general topic of CSRF protection.

0 Refer to the relevant sections for specific information on CSRF protection for
servlet and WebFlux based applications.

22

https://en.wikipedia.org/wiki/Cross-site_request_forgery

What is a CSRF Attack?

The best way to understand a CSRF attack is by taking a look at a concrete example.

Assume that your bank’s website provides a form that allows transferring money from the
currently logged in user to another bank account. For example, the transfer form might look like:

Example 27. Transfer form

<form method="post"
action="/transfer">
<input type="text"
name="amount"/>
<input type="text"
name="routingNumber"/>
<input type="text"
name="account"/>
<input type="submit"
value="Transfer"/>
</form>

The corresponding HTTP request might look like:
Example 28. Transfer HTTP request

POST /transfer HTTP/1.1

Host: bank.example.com

Cookie: JSESSIONID=randomid

Content-Type: application/x-www-form-urlencoded

amount=100.00&routingNumber=1234&account=9876

Now pretend you authenticate to your bank’s website and then, without logging out, visit an evil
website. The evil website contains an HTML page with the following form:

23

Example 29. Evil transfer form

<form method="post"
action="https://bank.example.com/transfer">

<input type="hidden"
name="amount"
value="100.00"/>

<input type="hidden"
name="routingNumber"
value="evilsRoutingNumber"/>

<input type="hidden"
name="account"
value="evilsAccountNumber"/>

<input type="submit"
value="Win Money!"/>

</form>

You like to win money, so you click on the submit button. In the process, you have unintentionally
transferred $100 to a malicious user. This happens because, while the evil website cannot see your
cookies, the cookies associated with your bank are still sent along with the request.

Worst yet, this whole process could have been automated using JavaScript. This means you didn’t
even need to click on the button. Furthermore, it could just as easily happen when visiting an
honest site that is a victim of a XSS attack. So how do we protect our users from such attacks?

Protecting Against CSRF Attacks

The reason that a CSRF attack is possible is that the HTTP request from the victim’s website and the
request from the attacker’s website are exactly the same. This means there is no way to reject
requests coming from the evil website and allow requests coming from the bank’s website. To
protect against CSRF attacks we need to ensure there is something in the request that the evil site is
unable to provide so we can differentiate the two requests.

Spring provides two mechanisms to protect against CSRF attacks:

* The Synchronizer Token Pattern

» Specifying the SameSite Attribute on your session cookie

0 Both protections require that Safe Methods Must be Idempotent

Safe Methods Must be Idempotent

In order for either protection against CSRF to work, the application must ensure that "safe" HTTP
methods are idempotent. This means that requests with the HTTP method GET, HEAD, OPTIONS, and
TRACE should not change the state of the application.

24

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://tools.ietf.org/html/rfc7231#section-4.2.1
https://tools.ietf.org/html/rfc7231#section-4.2.1

Synchronizer Token Pattern

The predominant and most comprehensive way to protect against CSRF attacks is to use the
Synchronizer Token Pattern. This solution is to ensure that each HTTP request requires, in addition
to our session cookie, a secure random generated value called a CSRF token must be present in the
HTTP request.

When an HTTP request is submitted, the server must look up the expected CSRF token and compare
it against the actual CSRF token in the HTTP request. If the values do not match, the HTTP request
should be rejected.

The key to this working is that the actual CSRF token should be in a part of the HTTP request that is
not automatically included by the browser. For example, requiring the actual CSRF token in an
HTTP parameter or an HTTP header will protect against CSRF attacks. Requiring the actual CSRF
token in a cookie does not work because cookies are automatically included in the HTTP request by
the browser.

We can relax the expectations to only require the actual CSRF token for each HTTP request that
updates state of the application. For that to work, our application must ensure that safe HTTP
methods are idempotent. This improves usability since we want to allow linking to our website
using links from external sites. Additionally, we do not want to include the random token in HTTP
GET as this can cause the tokens to be leaked.

Let’s take a look at how our example would change when using the Synchronizer Token Pattern.
Assume the actual CSRF token is required to be in an HTTP parameter named _csrf. Our
application’s transfer form would look like:

Example 30. Synchronizer Token Form

<form method="post"
action="/transfer">
<input type="hidden"
name="_csrf"
value="4bfd1575-3ad1-4d21-96¢7-4ef2d9f86721"/>
<input type="text"
name="amount"/>
<input type="text"
name="routingNumber"/>
<input type="hidden"
name="account"/>
<input type="submit"
value="Transfer"/>
</form>

The form now contains a hidden input with the value of the CSRF token. External sites cannot read
the CSRF token since the same origin policy ensures the evil site cannot read the response.

The corresponding HTTP request to transfer money would look like this:

25

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern

Example 31. Synchronizer Token request

POST /transfer HTTP/1.1

Host: bank.example.com

Cookie: JSESSIONID=randomid

Content-Type: application/x-www-form-urlencoded

amount=100.00&routingNumber=1234&account=9876&_csrf=4bfd1575-3ad1-4d21-96¢7-
4et2d9f86721

You will notice that the HTTP request now contains the _csrf parameter with a secure random
value. The evil website will not be able to provide the correct value for the _csrf parameter (which
must be explicitly provided on the evil website) and the transfer will fail when the server compares
the actual CSRF token to the expected CSRF token.

SameSite Attribute

An emerging way to protect against CSRF Attacks is to specify the SameSite Attribute on cookies. A
server can specify the SameSite attribute when setting a cookie to indicate that the cookie should
not be sent when coming from external sites.

Spring Security does not directly control the creation of the session cookie, so it
does not provide support for the SameSite attribute. Spring Session provides

o support for the SameSite attribute in servlet based applications. Spring
Framework’s CookieWebSessionIldResolver provides out of the box support for the
SameSite attribute in WebFlux based applications.

An example, HTTP response header with the SameSite attribute might look like:

Example 32. SameSite HTTP response

Set-Cookie: JSESSIONID=randomid; Domain=bank.example.com; Secure; HttpOnly;
SameSite=Lax

Valid values for the SameSite attribute are:
» Strict - when specified any request coming from the same-site will include the cookie.
Otherwise, the cookie will not be included in the HTTP request.

* Lax - when specified cookies will be sent when coming from the same-site or when the request
comes from top-level navigations and the method is idempotent. Otherwise, the cookie will not
be included in the HTTP request.

Let’s take a look at how our example could be protected using the SameSite attribute. The bank
application can protect against CSRF by specifying the SameSite attribute on the session cookie.

26

https://tools.ietf.org/html/draft-west-first-party-cookies
https://spring.io/projects/spring-session
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/server/session/CookieWebSessionIdResolver.html
https://tools.ietf.org/html/draft-west-first-party-cookies-07#section-2.1
https://tools.ietf.org/html/draft-west-first-party-cookies-07#section-2.1

With the SameSite attribute set on our session cookie, the browser will continue to send the
JSESSIONID cookie with requests coming from the banking website. However, the browser will no
longer send the JSESSIONID cookie with a transfer request coming from the evil website. Since the
session is no longer present in the transfer request coming from the evil website, the application is
protected from the CSRF attack.

There are some important considerations that one should be aware about when using SameSite
attribute to protect against CSRF attacks.

Setting the SameSite attribute to Strict provides a stronger defense but can confuse users. Consider
a user that stays logged into a social media site hosted at https://social.example.com. The user
receives an email at https://email.example.org that includes a link to the social media site. If the
user clicks on the link, they would rightfully expect to be authenticated to the social media site.
However, if the SameSite attribute is Strict the cookie would not be sent and so the user would not
be authenticated.

o We could improve the protection and usability of SameSite protection against CSRF
attacks by implementing gh-7537.

Another obvious consideration is that in order for the SameSite attribute to protect users, the
browser must support the SameSite attribute. Most modern browsers do support the SameSite
attribute. However, older browsers that are still in use may not.

For this reason, it is generally recommended to use the SameSite attribute as a defense in depth
rather than the sole protection against CSRF attacks.

When to use CSRF protection

When should you use CSRF protection? Our recommendation is to use CSRF protection for any
request that could be processed by a browser by normal users. If you are only creating a service
that is used by non-browser clients, you will likely want to disable CSRF protection.

CSRF protection and JSON

A common question is "do I need to protect JSON requests made by javascript?” The short answer is,
it depends. However, you must be very careful as there are CSRF exploits that can impact JSON
requests. For example, a malicious user can create a CSRF with JSON using the following form:

Example 33. CSRF with JSON form

<form action="https://bank.example.com/transfer" method="post"
enctype="text/plain">

<input
name="{"amount":100, "routingNumber":"evilsRoutingNumber","account":"evilsAccountNu
mber", "ignore_me":"' value='test"}' type='hidden'>

<input type="submit"
value="Win Money!"/>
</form>

27

https://tools.ietf.org/html/draft-west-first-party-cookies-07#section-5
https://social.example.com
https://email.example.org
https://github.com/spring-projects/spring-security/issues/7537
https://developer.mozilla.org/en-US/docs/Web/HTTP/headers/Set-Cookie#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/headers/Set-Cookie#Browser_compatibility
http://blog.opensecurityresearch.com/2012/02/json-csrf-with-parameter-padding.html

This will produce the following JSON structure

Example 34. CSRF with JSON request

{ "amount": 100,

"routingNumber": "evilsRoutingNumber",
"account": "evilsAccountNumber",
“ignore_me": "=test"

}

If an application were not validating the Content-Type, then it would be exposed to this exploit.
Depending on the setup, a Spring MVC application that validates the Content-Type could still be
exploited by updating the URL suffix to end with . json as shown below:

Example 35. CSRF with JSON Spring MVC form

<form action="https://bank.example.com/transfer.json" method="post"
enctype="text/plain">

<input
name="'{"amount":100, "routingNumber":"evilsRoutingNumber","account":"evilsAccountNu
mber", "ignore_me":"' value='test"}"' type='hidden'>

<input type="submit"
value="Win Money!"/>
</form>

CSRF and Stateless Browser Applications

What if my application is stateless? That doesn’t necessarily mean you are protected. In fact, if a
user does not need to perform any actions in the web browser for a given request, they are likely
still vulnerable to CSRF attacks.

For example, consider an application that uses a custom cookie that contains all the state within it
for authentication instead of the JSESSIONID. When the CSRF attack is made the custom cookie will
be sent with the request in the same manner that the JSESSIONID cookie was sent in our previous
example. This application will be vulnerable to CSRF attacks.

Applications that use basic authentication are also vulnerable to CSRF attacks. The application is
vulnerable since the browser will automatically include the username and password in any
requests in the same manner that the JSESSIONID cookie was sent in our previous example.

CSRF Considerations

There are a few special considerations to consider when implementing protection against CSRF
attacks.

28

Logging In

In order to protect against forging log in requests the log in HTTP request should be protected
against CSRF attacks. Protecting against forging log in requests is necessary so that a malicious user
cannot read a victim’s sensitive information. The attack is executed by:

* A malicious user performs a CSRF log in using the malicious user’s credentials. The victim