Spring Session
John Blum

Version 2.5.4

Table of Contents

1. Introduction
2. Samples and Guides (Start Here)
3. HttpSession Integration

3.1. Why Spring Session & HttpSession?

3.2. HttpSession Management with Apache Geode
3.3. Configuring HttpSession Management using Apache Geode with Properties
3.4. Configuring HttpSession Management using Apache Geode with a Configurer

3.5. Apache Geode Expiration

3.6. Apache Geode Serialization

3.7. How HttpSession Integration Works
3.8. HttpSessionListener

3.9. Session

3.10. SessionRepository

3.11. FindByIndexNameSessionRepository
3.12. EnableSpringHttpSession

3.13. EnableGemFireHttpSession

3.14. GemFireOperationsSessionRepository

4. Spring Session Community

4.1. Support

4.2. Source Code
4.3. Issue Tracking
4.4. Contributing
4.5. License

5. Minimum Requirements

g1 U1 U1 W N

17
19
23
28
43
45
45
45
45
46
46
46
49
49
49
49
49
49
50

Spring Session provides an API and implementations for managing a user’s
session information.

0 This documentation is also available as HTML.

https://docs.spring.io/spring-session-data-geode/docs/2.5.4/reference/html5/index.html

Chapter 1. Introduction

Spring Session provides an API and implementations for managing a user’s session information. It
also provides transparent integration with:

» HttpSession - enables the HttpSession to be clustered (i.e. replicated for highly availability)
without being tied to an application container specific solution.

* REST API - allows the session ID to be provided in the protocol header to work with RESTful
APIs.

* WebSocket - provides the ability to keep the HttpSession alive when receiving WebSocket
messages.

* WebSession - allows replacing the Spring WebFlux’s WebSession in an application container
neutral way.

In a nutshell, Spring Session replaces the javax.servlet.http.HttpSession in an application
container neutral way by supplying a more common and robust session implementation backing
the HttpSession.

Chapter 2. Samples and Guides (Start Here)

If you are looking to get started with Spring Session right of way, the best place to start is with our

Sample Applications.

Table 1. Sample Application using Spring Boot

Source

HttpSession with Spring Boot
and Apache Geode

HttpSession with Spring Boot
and Apache Geode using Gfsh

HttpSession with Spring Boot
and Apache Geode using Scoped
Proxies

Description

Demonstrates how to use
Spring Session to manage the
HttpSession with Apache Geode
in a Spring Boot application
using a Client/Server topology.

Demonstrates how to use
Spring Session to manage the
HttpSession with Apache Geode
in a Spring Boot application
using a Client/Server topology.
Additionally configures and
uses Apache Geode’s
DataSerialization framework.

Demonstrates how to use
Spring Session to manage the
HttpSession with Apache Geode
in a Spring Boot application
using a Client/Server topology.
The application also makes use
of Spring Request and Session
Scoped Proxy beans.

Table 2. Sample Applications using Spring’s Java-based configuration

Source

HttpSession with Apache Geode
(Client/Server)

HttpSession with Apache Geode
(P2P)

Description

Demonstrates how to use
Spring Session to manage the
HttpSession with Apache Geode
using a Client/Server topology.

Demonstrates how to use
Spring Session to manage the
HttpSession with Apache Geode
using a P2P topology.

Table 3. Sample Applications using Spring’s XML-based configuration

Guide

HttpSession with Spring Boot
and Apache Geode Guide

HttpSession with Spring Boot
and Apache Geode using Gfsh
Guide

HttpSession with Spring Boot
and Apache Geode using Scoped
Proxies Guide

Guide

HttpSession with Apache Geode
(Client/Server) Guide

HttpSession with Apache Geode
(P2P) Guide

https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/boot/gemfire
https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/boot/gemfire
guides/boot-gemfire.html
guides/boot-gemfire.html
https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/boot/gemfire-with-gfsh-servers
https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/boot/gemfire-with-gfsh-servers
guides/boot-gemfire-with-gfsh-servers.html
guides/boot-gemfire-with-gfsh-servers.html
guides/boot-gemfire-with-gfsh-servers.html
https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/boot/gemfire-with-scoped-proxies
https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/boot/gemfire-with-scoped-proxies
https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/boot/gemfire-with-scoped-proxies
guides/boot-gemfire-with-scoped-proxies.html
guides/boot-gemfire-with-scoped-proxies.html
guides/boot-gemfire-with-scoped-proxies.html
https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/javaconfig/gemfire-clientserver
https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/javaconfig/gemfire-clientserver
guides/java-gemfire-clientserver.html
guides/java-gemfire-clientserver.html
https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/javaconfig/gemfire-p2p
https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/javaconfig/gemfire-p2p
guides/java-gemfire-p2p.html
guides/java-gemfire-p2p.html

Source

HttpSession with Apache Geode
(Client/Server)

HttpSession with Apache Geode
(P2P)

Description

Demonstrates how to use
Spring Session to manage the
HttpSession with Apache Geode
using a Client/Server topology.

Demonstrates how to use
Spring Session to manage the
HttpSession with Apache Geode
using a P2P topology.

Guide

HttpSession with Apache Geode
(Client/Server) Guide

HttpSession with Apache Geode
(P2P) Guide

https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/xml/gemfire-clientserver
https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/xml/gemfire-clientserver
guides/xml-gemfire-clientserver.html
guides/xml-gemfire-clientserver.html
https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/xml/gemfire-p2p
https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/xml/gemfire-p2p
guides/xml-gemfire-p2p.html
guides/xml-gemfire-p2p.html

Chapter 3. HttpSession Integration

Spring Session provides transparent integration with javax.servlet.http.HttpSession. This means
that developers can replace the HttpSession implementation with an implementation that is backed
by Spring Session.

Spring Session enables multiple different data store providers (e.g. like Apache Geode) to be
plugged in in order to manage the HttpSession state.

3.1. Why Spring Session & HttpSession?

We already mentioned that Spring Session provides transparent integration with HttpSession, but
what benefits do we get out of this?

» HttpSession - enables the HttpSession to be clustered (i.e. replicated for highly availability)
without being tied to an application container specific solution.

* REST API - allows the session ID to be provided in the protocol header to work with RESTful
APIs.

* WebSocket - provides the ability to keep the HttpSession alive when receiving WebSocket
messages.

* WebSession - allows replacing the Spring WebFlux’s WebSession in an application container
neutral way.

3.2. HttpSession Management with Apache Geode

When Apache Geode is used with Spring Session, a web application’s
javax.servlet.http.HttpSession can be replaced with a clustered implementation managed by
Apache Geode and conveniently accessed using Spring Session’s API.

The two most common topologies for managing session state using Apache Geode include:

* Client-Server
» Peer-To-Peer (P2P)
Additionally, Apache Geode supports site-to-site replication using the WAN topology. The ability to

configure and use Apache Geode’s WAN functionality is independent of Spring Session, and beyond
the scope of this document.

More details on configuring Apache Geode WAN functionality using Spring Data for Apache Geode
can be found here.

3.2.1. Apache Geode Client-Server

The Client-Server topology will likely be the most common configuration choice among users when
using Apache Geode as a provider in Spring Session since a Apache Geode server has significantly
different and unique JVM heap requirements than compared to the application. Using a Client-

https://geode.apache.org
https://geode.apache.org/docs/guide/112/topologies_and_comm/multi_site_configuration/chapter_overview.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html/#bootstrap:gateway
https://geode.apache.org/docs/guide/112/topologies_and_comm/cs_configuration/chapter_overview.html

Server topology enables an application to manage (e.g. replicate) application state independently
from other application processes.

In a Client-Server topology, an application using Spring Session will open 1 or more connections to
a remote cluster of Apache Geode servers that will manage access to all HttpSession state.

You can configure a Client-Server topology with either:

* Java-based Configuration

* XML-based Configuration

Apache Geode Client-Server Java-based Configuration

This section describes how to configure Apache Geode’s Client-Server topology to manage
HttpSession state with Java-based configuration.

The HttpSession with Apache Geode (Client-Server) provides a working sample
demonstrating how to integrate Spring Session with Apache Geode to manage

o HttpSession state using Java configuration. You can read through the basic steps of
integration below, but you are encouraged to follow along in the detailed
"HttpSession * with Apache Geode (Client-Server) Guide when integrating with your
own application.

Spring Java Configuration

After adding the required dependencies and repository declarations, we can create the Spring
configuration. The Spring configuration is responsible for creating a Servlet Filter that replaces the
HttpSession with an implementation backed by Spring Session and Apache Geode.

Client Configuration

Add the following Spring configuration:

@ClientCacheApplication(name = "SpringSessionDataGeodeJavaConfigSampleClient",
logLevel = "error",

readTimeout = 15000, retryAttempts = 1, subscriptionEnabled = true) @
@EnableGemFireHttpSession(poolName = "DEFAULT") @
public class ClientConfig extends ClientServerIntegrationTestsSupport {

@Bean
ClientCacheConfigurer gemfireServerReadyConfigurer(@
@Value("${spring.data.gemfire.cache.server.port:40404}") int
cacheServerPort) {

return (beanName, clientCacheFactoryBean) -> waitForServerToStart("localhost",
cacheServerPort);
}
}

@ First, we declare our Web application to be an Apache Geode cache client by annotating our
ClientConfig class with @ClientCacheApplication. Additionally, we adjust a few basic, "DEFAULT"
Pool settings (e.g. readTimeout).

@ @EnableGemFireHttpSession creates a Spring bean named springSessionRepositoryFilter that
implements javax.servlet.Filter. The filter replaces the HttpSession with an implementation
provided by Spring Session and backed by Apache Geode. Additionally, the configuration will
also create the necessary client-side Region (by default, "ClusteredSpringSessions ', which is a
PROXY Region) corresponding to the same server-side Region by name. All session state is sent
from the client to the server through Region data access operations. The client-side Region use the
"DEFAULT" Pool.

® Then, we wait to ensure the Apache Geode Server is up and running before we proceed. This is
only really useful for automated (integration) testing purposes.

In typical Apache Geode production deployments, where the cluster includes
potentially hundreds or thousands of servers (a.k.a. data nodes), it is more
common for clients to connect to 1 or more Apache Geode Locators running in the

@ same cluster. A Locator passes meta-data to clients about the servers available in

- the cluster, the individual server load and which servers have the client’s data of
interest, which is particularly important for direct, single-hop data access and
latency-sensitive applications. See more details about the Client/Server
Deployment in the Apache Geode User Guide.

o For more information on configuring Spring Data Geode, refer to the Reference
Guide.

The @eEnableGemFireHttpSession annotation enables developers to configure certain aspects of both
Spring Session and Apache Geode out-of-the-box using the following attributes:

» clientRegionShortcut - specifies Apache Geode data management policy on the client with the
ClientRegionShortcut (default is PROXY). This attribute is only used when configuring the client
Region.

 indexableSessionAttributes - Identifies the Session attributes by name that should be indexed
for querying purposes. Only Session attributes explicitly identified by name will be indexed.

* maxInactivelntervalInSeconds - controls HttpSession idle-timeout expiration (defaults to 30
minutes).

* poolName - name of the dedicated Apache Geode Pool used to connect a client to the cluster of
servers. This attribute is only used when the application is a cache client. Defaults to
gemfirePool.

* regionName - specifies the name of the Apache Geode Region used to store and manage
HttpSession state (default is "ClusteredSpringSessions").

» serverRegionShortcut - specifies Apache Geode data management policy on the server with the
RegionShortcut (default is PARTITION). This attribute is only used when configuring server
Regions, or when a P2P topology is employed.

https://geode.apache.org/docs/guide/112/topologies_and_comm/cs_configuration/standard_client_server_deployment.html
https://geode.apache.org/docs/guide/112/topologies_and_comm/cs_configuration/standard_client_server_deployment.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html
https://docs.spring.io/spring-data/geode/docs/current/reference/html
https://geode.apache.org/docs/guide/112/developing/region_options/region_types.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html
https://geode.apache.org/docs/guide/112/developing/region_options/region_types.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html

It is important to remember that the Apache Geode client Region name must match
a server Region by the same name if the client Region is a PROXY or CACHING_PROXY.
Client and server Region names are not required to match if the client Region used

o to store session state is LOCAL. However, keep in mind that Session state will not be
propagated to the server and you lose all the benefits of using Apache Geode to
store and manage distributed, replicated session state information on the servers
in a distributed, replicated manner.

Server Configuration

So far, we only covered one side of the equation. We also need an Apache Geode Server for our
cache client to talk to and send session state to the server to manage.

In this sample, we will use the following Java configuration to configure and run an Apache Geode
Server:

@CacheServerApplication(name = "SpringSessionDataGeodeJavaConfigSampleServer",
logLevel = "error") @

@EnableGemFireHttpSession(maxInactiveIntervalInSeconds = 30) @

public class GemFireServer {

@SuppressWarnings("resource")
public static void main(String[] args) {
new
AnnotationConfigApplicationContext(GemFireServer.class).registerShutdownHook();
}
}

@ First, we use the @CacheServerApplication annotation to simplify the creation of a peer cache
instance containing with a CacheServer for cache clients to connect.

@ (Optional) Then, the GemFireServer class is annotated with @EnableGemFireHttpSession to create
the necessary server-side Region (by default, "ClusteredSpringSessions") used to store HttpSession
state. This step is optional since the Session Region could be created manually, perhaps using
external means. Using @EnableGemFireHttpSession is convenient and quick.

Apache Geode Client-Server XML-based Configuration

This section describes how to configure Apache Geode’s Client-Server topology to manage
HttpSession state with XML-based configuration.

The HttpSession with Apache Geode (Client-Server) using XML provides a working
sample demonstrating how to integrate Spring Session with Apache Geode to

o manage HttpSession state using XML configuration. You can read through the basic
steps of integration below, but you are encouraged to follow along in the detailed
"HttpSession * with Apache Geode (Client-Server) using XML Guide when integrating
with your own application.

Spring XML Configuration

After adding the required dependencies and repository declarations, we can create the Spring
configuration. The Spring configuration is responsible for creating a Servlet Filter that replaces
the javax.servlet.http.HttpSession with an implementation backed by Spring Session and Apache
Geode.

Client Configuration

Add the following Spring configuration:

<context:annotation-config/>
<context:property-placeholder/>

<bean class="sample.client.ClientServerReadyBeanPostProcessor"/>

0]
<util:properties id="gemfireProperties">

<prop key="log-level">${spring.data.gemfire.cache.log-level:error}</prop>
</util:properties>

@

<gfe:client-cache properties-ref="gemfireProperties" pool-name="gemfirePool"/>

©)
<gfe:pool read-timeout="15000" retry-attempts="1" subscription-enabled="true">
<gfe:server host="localhost"
port="${spring.data.gemfire.cache.server.port:40404}"/>
</gfe:pool>

@
<bean
class="org.springframework.session.data.gemfire.config.annotation.web.http.GemFireHttp
SessionConfiguration”
p:poolName="DEFAULT"/>

@ (Optional) First, we can include a Properties bean to configure certain aspects of the Apache
Geode (lientCache using VMware Tanzu GemFire Properties. In this case, we are just setting
Apache Geode’s “log-level” using an application-specific System property, defaulting to
“warning” if unspecified.

@ We must create an instance of an Apache Geode ClientCache. We initialize it with our
gemfireProperties.

® Then we configure a Pool of connections to talk to the Apache Geode Server in our Client/Server
topology. In our configuration, we use sensible settings for timeouts, number of connections and
so on. Also, our Pool has been configured to connect directly to the server (using the nested
gfe:server element).

@ Finally, a GemFireHttpSessionConfiguration bean is registered to enable Spring Session

https://geode.apache.org/docs/guide/112/reference/topics/gemfire_properties.html

functionality.

In typical Apache Geode production deployments, where the cluster includes
potentially hundreds or thousands of servers (a.k.a. data nodes), it is more
common for clients to connect to 1 or more Apache Geode Locators running in the

(r') same cluster. A Locator passes meta-data to clients about the servers available in

- the cluster, the individual server load and which servers have the client’s data of
interest, which is particularly important for direct, single-hop data access and
latency-sensitive applications. See more details about the Client/Server
Deployment in the Apache Geode User Guide.

o For more information on configuring Spring Data for Apache Geode, refer to the
Reference Guide.

Server Configuration

So far, we only covered one side of the equation. We also need an Apache Geode Server for our
cache client to talk to and send session state to the server to manage.

In this sample, we will use the following XML configuration to spin up an Apache Geode Server:

<context:annotation-config/>
<context:property-placeholder/>

0]
<util:properties id="gemfireProperties">

<prop key="name">SpringSessionDataGeodeSampleXmlServer</prop>

<prop key="log-level">${spring.data.gemfire.cache.log-level:error}</prop>
</util:properties>

@

<gfe:cache properties-ref="gemfireProperties"/>

®

<gfe:cache-server port="${spring.data.gemfire.cache.server.port:40404}"/>

@
<bean
class="org.springframework.session.data.gemfire.config.annotation.web.http.GemFireHttp
SessionConfiguration”
p:maxInactiveIntervalInSeconds="30"/>

@ (Optional) First, we can include a Properties bean to configure certain aspects of the Apache
Geode peer Cache using VMware Tanzu GemkFire Properties. In this case, we are just setting
Apache Geode’s “log-level” using an application-specific System property, defaulting to
“warning” if unspecified.

@ We must configure an Apache Geode peer Cache instance. We initialize it with the Apache Geode

10

https://geode.apache.org/docs/guide/112/topologies_and_comm/cs_configuration/standard_client_server_deployment.html
https://geode.apache.org/docs/guide/112/topologies_and_comm/cs_configuration/standard_client_server_deployment.html
https://docs.spring.io/spring-data/geode/docs/current/reference/html
https://geode.apache.org/docs/guide/112/reference/topics/gemfire_properties.html

properties.

® Next, we define a CacheServer with sensible configuration for bind-address and port used by our
cache client application to connect to the server and send session state.

@ Finally, we enable the same Spring Session functionality we declared in the client XML
configuration by registering an instance of GemFireHttpSessionConfiguration, except we set the
session expiration timeout to 30 seconds. We explain what this means later.

The Apache Geode Server gets bootstrapped with the following:

@Configuration @
@ImportResource("META-INF/spring/session-server.xml") @
public class GemFireServer {

public static void main(String[] args) {

new
AnnotationConfigApplicationContext(GemFireServer.class).registerShutdownHook();
}
}
7 Rather than defining a simple Java class with a main method, you might consider
- using Spring Boot instead.

® The @Configuration annotation designates this Java class as a source of Spring configuration
meta-data using 7.9. Annotation-based container configuration[Spring’s annotation
configuration support].

@ Primarily, the configuration comes from the META-INF/spring/session-server.xml file.
XML Servlet Container Initialization

Our Spring XML Configuration created a Spring bean named springSessionRepositoryFilter that
implements javax.servlet.Filter interface. The springSessionRepositoryFilter bean is responsible
for replacing the javax.servlet.http.HttpSession with a custom implementation that is provided by
Spring Session and Apache Geode.

In order for our Filter to do its magic, we need to instruct Spring to load our session-client.xml
configuration file.

We do this with the following configuration:

11

sr¢/main/webapp/WEB-INF/web.xml

<context-param>
<param-name>contextConfiglocation</param-name>
<param-value>/WEB-INF/spring/session-client.xml</param-value>

</context-param>

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-

class>

</listener>

The ContextLoaderListener reads the contextConfiglLocation context parameter value and picks up
our session-client.xml configuration file.

Finallyy, we need to ensure that our Servlet container (i.e. Tomcat) uses our
springSessionRepositoryFilter for every request.

The following snippet performs this last step for us:

sr¢/main/webapp/WEB-INF/web.xml

<filter>
<filter-name>springSessionRepositoryFilter</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>
</filter>
<filter-mapping>
<filter-name>springSessionRepositoryFilter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>ERROR</dispatcher>
</filter-mapping>

The DelegatingFilterProxy will look up a bean by the name of springSessionRepositoryFilter and
castitto a Filter. For every HTTP request, the DelegatingFilterProxy is invoked, which delegates to
the springSessionRepositoryFilter.

3.2.2. Apache Geode Peer-To-Peer (P2P)

A less common approach is to configure your Spring Session application as a peer member in the
Apache Geode cluster using the Peer-To-Peer (P2P) topology. In this configuration, the Spring
Session application would be an actual server (or data node) in the Apache Geode cluster, and not
just a cache client as before.

One advantage to this approach is the proximity of the application to the application’s state (i.e. its
data), and in particular the HttpSession state. However, there are other effective means of
accomplishing similar data dependent computations, such as using Apache Geode’s Function
Execution. Any of Apache Geode’s other features can be used when Apache Geode is serving as a
provider in Spring Session.

12

https://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#context-create
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/filter/DelegatingFilterProxy.html
https://geode.apache.org/docs/guide/112/topologies_and_comm/p2p_configuration/chapter_overview.html
https://geode.apache.org/docs/guide/112/developing/function_exec/chapter_overview.html
https://geode.apache.org/docs/guide/112/developing/function_exec/chapter_overview.html
https://geode.apache.org/docs/guide/112/getting_started/product_intro.html

The P2P topology is very useful for testing purposes and for smaller, more focused and self-
contained applications, such as those found in a microservices architecture, and will most certainly
improve on your application’s perceived latency and throughput needs.

You can configure a Peer-To-Peer (P2P) topology with either:

* Java-based Configuration

* XML-based Configuration

Apache Geode Peer-To-Peer (P2P) Java-based Configuration

This section describes how to configure Apache Geode’s Peer-To-Peer (P2P) topology to manage
HttpSession state using Java-based configuration.

The HttpSession with Apache Geode (P2P) provides a working sample
demonstrating how to integrate Spring Session with Apache Geode to manage

o HttpSession state using Java configuration. You can read through the basic steps of
integration below, but you are encouraged to follow along in the detailed
"HttpSession ~ with Apache Geode (P2P) Guide when integrating with your own
application.

Spring Java Configuration

After adding the required dependencies and repository declarations, we can create the Spring
configuration.

The Spring configuration is responsible for creating a Servlet Filter that replaces the
javax.servlet.http.HttpSession with an implementation backed by Spring Session and Apache
Geode.

Add the following Spring configuration:

@PeerCacheApplication(name = "SpringSessionDataGeodelavaConfigP2pSample”, loglLevel =
"error") @

@EnableGemFireHttpSession(maxInactiveIntervalInSeconds = 30) @

public class Config {

}

@ First, we use the @PeerCacheApplication annotation to simplify the creation of a peer cache
instance.

@ Then, the Config class is annotated with @EnableGemFireHttpSession to create the necessary
server-side Region (by default, "ClusteredSpringSessions") used to store HttpSession state.

o For more information on configuring Spring Data for Apache Geode, refer to the
Reference Guide.

The @eEnableGemFireHttpSession annotation enables developers to configure certain aspects of both

13

https://docs.spring.io/spring-data/geode/docs/current/reference/html

Spring Session and Apache Geode out-of-the-box using the following attributes:

» clientRegionShortcut - specifies Apache Geode data management policy on the client with the
ClientRegionShortcut (default is PROXY). This attribute is only used when configuring the client
Region.

* indexableSessionAttributes - Identifies the Session attributes by name that should be indexed
for querying purposes. Only Session attributes explicitly identified by name will be indexed.

» maxInactivelntervalInSeconds - controls HttpSession idle-timeout expiration (defaults to 30
minutes).

* poolName - name of the dedicated Apache Geode Pool used to connect a client to the cluster of
servers. This attribute is only used when the application is a cache client. Defaults to
gemfirePool.

* regionName - specifies the name of the Apache Geode Region used to store and manage
HttpSession state (default is "ClusteredSpringSessions").

» serverRegionShortcut - specifies Apache Geode data management policy on the server with the
RegionShortcut (default is PARTITION). This attribute is only used when configuring server
Regions, or when a P2P topology is employed.

Java Servlet Container Initialization

Our <<[httpsession-spring-java-configuration-p2p,Spring Java Configuration>> created a Spring
bean named springSessionRepositoryFilter that implements javax.servlet.Filter. The
springSessionRepositoryFilter bean is responsible for replacing the javax.servlet.http.HttpSession
with a custom implementation backed by Spring Session and Apache Geode.

In order for our Filter to do its magic, Spring needs to load our Config class. We also need to ensure
our Servlet container (i.e. Tomcat) uses our springSessionRepositoryFilter on every HTTP request.

Fortunately, Spring Session provides a utility class named
AbstractHttpSessionApplicationInitializer to make both steps extremely easy.

You can find an example below:
sr¢/main/java/sample/Initializer.java
public class Initializer extends AbstractHttpSessionApplicationInitializer { @

public Initializer() {
super(Config.class); @
}

o The name of our class (Initializer) does not matter. What is important is that we
extend AbstractHttpSessionApplicationInitializer.

@ The first step is to extend AbstractHttpSessionApplicationInitializer. This ensures that a Spring
bean named springSessionRepositoryFilter is registered with our Servlet container and used on

14

https://geode.apache.org/docs/guide/112/developing/region_options/region_types.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html
https://geode.apache.org/docs/guide/112/developing/region_options/region_types.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html

every HTTP request.

@ AbstractHttpSessionApplicationInitializer also provides a mechanism to easily allow Spring to
load our Config class.

Apache Geode Peer-To-Peer (P2P) XML-based Configuration

This section describes how to configure Apache Geode’s Peer-To-Peer (P2P) topology to manage
HttpSession state using XML-based configuration.

The HttpSession with Apache Geode (P2P) using XML provides a working sample
demonstrating how to integrate Spring Session with Apache Geode to manage

o HttpSession state using XML configuration. You can read through the basic steps of
integration below, but you are encouraged to follow along in the detailed
"HttpSession * with Apache Geode (P2P) using XML Guide when integrating with
your own application.

Spring XML Configuration

After adding the required dependencies and repository declarations, we can create the Spring
configuration.

The Spring configuration is responsible for creating a Servlet Filter that replaces the
javax.servlet.http.HttpSession with an implementation backed by Spring Session and Apache
Geode.

Add the following Spring configuration:

src¢/main/webapp/WEB-INF/spring/session.xml
<context:annotation-config/>

<context:property-placeholder/>

@
<util:properties id="gemfireProperties">

<prop key="name">SpringSessionDataGeodeXm1P2pSample</prop>

<prop key="log-level">${spring.data.gemfire.cache.log-level:error}</prop>
</util:properties>

@

<gfe:cache properties-ref="gemfireProperties"/>

®
<bean
class="org.springframework.session.data.gemfire.config.annotation.web.http.GemFireHttp
SessionConfiguration”

p:maxInactivelntervallnSeconds="30"/>

@ (Optional) First, we can include a Properties bean to configure certain aspects of the Apache
Geode peer Cache using VMware Tanzu GemFire Properties. In this case, we are just setting

15

https://geode.apache.org/docs/guide/112/reference/topics/gemfire_properties.html

Apache Geode’s “log-level” using an application-specific System property, defaulting to
“warning” if unspecified.

@ We must configure an Apache Geode peer Cache instance. We initialize it with the Apache Geode
properties.

® Finally, we enable Spring Session functionality by registering an instance of
GemFireHttpSessionConfiguration.

o For more information on configuring Spring Data for Apache Geode, refer to the
Reference Guide.

XML Servlet Container Initialization

The Spring XML Configuration created a Spring bean named springSessionRepositoryFilter that
implements javax.servlet.Filter. The springSessionRepositoryFilter bean is responsible for
replacing the javax.servlet.http.HttpSession with a custom implementation that is backed by
Spring Session and Apache Geode.

In order for our Filter to do its magic, we need to instruct Spring to load our session.xml
configuration file.

We do this with the following configuration:

sr¢/main/webapp/WEB-INF/web.xml

<context-param>
<param-name>contextConfiglocation</param-name>
<param-value>
/WEB-INF/spring/*.xml
</param-value>
</context-param>
<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener
</listener-class>
</listener>

The ContextLoaderListener reads the contextConfiglocation context parameter value and picks up
our session.xml configuration file.

Finallyy, we need to ensure that our Servlet container (i.e. Tomcat) uses our
springSessionRepositoryFilter for every HTTP request.

The following snippet performs this last step for us:

16

https://docs.spring.io/spring-data/geode/docs/current/reference/html
https://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#context-create

sr¢/main/webapp/WEB-INF/web.xml

<filter>
<filter-name>springSessionRepositoryFilter</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>
</filter>
<filter-mapping>
<filter-name>springSessionRepositoryFilter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>ERROR</dispatcher>
</filter-mapping>

The DelegatingFilterProxy will look up a bean by the name of springSessionRepositoryFilter and
cast it to a Filter. For every HTTP request the DelegatingFilterProxy is invoked, delegating to the
springSessionRepositoryFilter.

3.3. Configuring HttpSession Management using Apache
Geode with Properties

While the @EnableGemFireHttpSession annotation is easy to use and convenient when getting started
with Spring Session and Apache Geode in your Spring Boot applications, you quickly run into
limitations when migrating from one environment to another, for example, like when moving from
DEV to QA to PROD.

With the @EnableGemFireHttpSession annotation attributes, it is not possible to vary the
configuration from one environment to another. Therefore, Spring Session for Apache Geode
introduces well-known, documented properties for all the @EnableGemFireHttpSession annotation
attributes.

Table 4. Well-known, documented properties for the @EnableGemFireHttpSession annotation attributes.
Property Annotation attribute Description Default

spring.session.data.gemfire EnableGemFireHttpSession.p Name of the dedicated Pool gemfirePool
cache.clientpoolname C0LName used by the client Region
storing/accessing Session
state.

spring.session.data.gemfire EnableGemFirefittpSession.c Sets the client Region data ClientRegion
.cache.client.region.shortcu -'€ntRegionshorteut management policy in the Shortcut.PRO
t client-server topology. XY

spring.session.data.gemfire EnableGemFireHttpSession.s Sets the peer Region data RegionShort
.cache.server.region.shortc erverRegionShortcut management policy in the cut.PARTITI
ut peer-to-peer (P2P) ON

topology.

17

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/filter/DelegatingFilterProxy.html

Property

spring.session.data.gemfire
.session.attributes.indexabl
e

spring.session.data.gemfire
.session.expiration.bean-
name

spring.session.data.gemfire
.session.expiration.max-
inactive-interval-seconds

spring.session.data.gemfire
.session.region.name

spring.session.data.gemfire
.session.serializer.bean-
name

Q

Annotation attribute

EnableGemFireHttpSession.i
ndexableSessionAttributes

EnableGemFireHttpSession.s
essionExpirationPolicyBean
Name

EnableGemFireHttpSession.m
axInactiveIntervalInSecond
S

EnableGemFireHttpSession.r
egionName

EnableGemFireHttpSession.s
essionSerializerBeanName

Description Default

Comma-delimited list of
Session attributes to
indexed in the Session
Region.

Name of the bean in the
Spring container
implementing the
expiration strategy

Session expiration timeout 1800

in seconds

Name of the client or peer
Region used to store and
access Session state.

ClusteredSpr
ingSessions

Name of the bean in the
Spring container
implementing the
serialization strategy

SessionPdxS
erializer

All the properties are documented in the @EnableGemFireHttpSession annotation
attribute Javadoc as well.

Therefore, it is very simple to adjust the configuration of Spring Session when using Apache Geode
as your provider by using properties, as follows:

@SpringBootApplication
@ClientCacheApplication

@EnableGemFireHttpSession(maxInactiveIntervalInSeconds = 900)
class MySpringSessionApplication {

/] ...
}

And then, in application.properties:

#application.properties

spring.session.data.gemfire.cache.client.region.shortcut=CACHING_PROXY
spring.session.data.gemfire.session.expiration.max-inactive-internval-seconds=3600

Any properties explicitly defined override the corresponding @EnableGemFireHttpSession annotation

attribute.

In the example

above,

even though the

EnableGemFireHttpSession annotation

maxInactiveIntervalInSeconds attribute was set to 900 seconds, or 15 minutes, the corresponding

18

attribute property (i.e. spring.session.data.gemfire.session.expiration.max-inactive-interval-
seconds) overrides the value and sets the expiration to 3600 seconds, or 60 minutes.

o Keep in mind, properties override the annotation attribute values at runtime.

3.3.1. Properties of Properties

You can even get more sophisticated and configure your properties with other properties, as
follows:

#application.properties
spring.session.data.gemfire.session.expiration.max-inactive-internval-
seconds=${app.geode.region.expiration.timeout:3600}

Additionally, you could use Spring profiles to vary the expiration timeout (or other properties)
based on environment or your application, or whatever criteria your application requirements
dictate.

o Property placeholders and nesting is a feature of the core Spring Framework and
not specific to Spring Session or Spring Session for Apache Geode.

3.4. Configuring HttpSession Management using Apache
Geode with a Configurer

In addition to properties, Spring Session for Apache Geode also allows you to adjust the
configuration of Spring Session with Apache Geode using the SpringSessionGemFireConfigurer
interface. The interface defines a contract containing default methods for each
@EnableGemFireHttpSession annotation attribute that can be overridden to adjust the configuration.

The SpringSessionGemFireConfigurer is similar in concept to Spring Web MVC’s Configurer interfaces
(e.g. o.s.web.servlet.config.annotation.WebMvcConfigurer), which adjusts various aspects of your
Web application’s configuration on startup, such as configuring async support. The advantage of
declaring and implementing a Confiqurer is that it gives you programmatical control over your
configuration. This is useful in situations where you need to easily express complex, conditional
logic that determines whether the configuration should be applied or not.

For example, to adjust the client Region data management policy and Session expiration timeout as
we did previously, use the following:

19

@Configuration
class MySpringSessionConfiguration {

@Bean
SpringSessionGemFireConfigurer exampleSpringSessionGemFireConfigurer() {

return new SpringSessionGemFireConfigurer() {

@0verride

public ClientRegionShortcut getClientRegionShortcut() {
return ClientRegionShortcut.CACHING_PROXY;

}

@0verride
public int getMaxInactivelntervalInSeconds() {
return 3600;

Of course, this example is not very creative. You could most certainly use more complex logic to
determine the configuration of each configuration attribute.

You can be as sophisticated as you like, such as by implementing your Configurer in terms of other
properties using Spring’s @Value annotation, as follows:

20

@Configuration
class MySpringSessionConfiguration {

@Bean
@Primary
@Profile("production™)
SpringSessionGemFireConfigurer exampleSpringSessionGemFireConfigurer(
@Value("${app.geode.region.data-management-policy:CACHING_PROXY}")
ClientRegionShortcut shortcut,
@Value("${app.geode.region.expiration.timeout:3600}") int timeout) {

return new SpringSessionGemFireConfigurer() {

@0verride
public ClientRegionShortcut getClientRegionShortcut() {
return shortcut;

}

@0verride
public int getMaxInactiveIntervalInSeconds() {
return timeout;

}
¥
}
}
Spring Boot will resolve @Value annotation property placeholder values or SpEL
O Expressions automatically. However, if you are not using Spring Boot, then you
- must explicitly register a static PropertySourcesPlaceholderConfigurer bean

definition.

However, you can only declare 1 SpringSessionGemFireConfigurer bean in the Spring container at a
time, unless you are also using Spring profiles or have marked 1 of the multiple
SpringSessionGemFireConfigurer beans as primary by using Spring’s @Primary context annotation.

3.4.1. Configuration Precedence

A SpringSessionGemFireConfigurer takes precedence over either the @EnableGemFireHttpSession
annotation attributes or any of the well-known and documented Spring Session for Apache Geode
properties (e.g. spring.session.data.gemfire.session.expiration.max-inactive-interval-seconds)
defined in Spring Boot application.properties.

If more than 1 configuration approach is employed by your Web application, the following
precedence will apply:

1. SpringSessionGemFireConfigurer "implemented" callback methods

2. Documented Spring Session for Apache Geode properties (See corresponding
@EnableGemFireHttpSession annotation attribute Javadoc; e.g.

21

spring.session.data.gemfire.session.region.name)

3. @EnableGemFireHttpSession annotation attributes

Spring Session for Apache Geode is careful to only apply -configuration from a
SpringSessionGemFireConfigurer bean declared in the Spring container for the methods you have
actually implemented.

In our example above, since you did not implement the getRegionName() method, the name of the
Apache Geode Region managing the HttpSession state will not be determined by the Configurer.

Example
By way of example, consider the following configuration:

Example Spring Session for Apache Geode Configuration

@ClientCacheApplication

@EnableGemFireHttpSession(
maxInactiveIntervalInSeconds = 3600,
poolName = "DEFAULT"

)

class MySpringSessionConfiguration {

@Bean
SpringSessionGemFireConfigurer sessionExpirationTimeoutConfigurer() {

return new SpringSessionGemFireConfigurer() {
@0verride

public int getMaxInactiveIntervalInSeconds() {
return 300;

In addition, consider the following Spring Boot application.properties file:

1. Spring Boot application.properties

spring.session.data.gemfire.session.expiration.max-inactive-interval-seconds = 900
spring.session.data.gemfire.session.region.name = Sessions

The Session expiration timeout will be 300 seconds, or 5 minutes, overriding both the property (i.e.
spring.session.data.gemfire.session.expiration.max-inactive-interval-seconds) of 900 seconds, or
15 minutes, as well as the explicit @EnableGemFireHttpSession.maxInactiveIntervalInSeconds
annotation attribute value of 3600 seconds, or 1 hour.

Since the "sessionExpirationTimeoutConfigurer" bean does not override the getRegionName()

22

method, the Session Region name will be determined by the property (ie.
spring.session.data.gemfire.session.region.name), set to "Sessions", which overrides the implicit
@EnableGemFireHttpSession.regionName annotation attribute’s default value of
"ClusteredSpringSessions".

The @EnableGemFireHttpSession.poolName annotation attribute’s value of "DEFAULT" will determine
the name of the Pool used when sending Region operations between the client and server to
manage Session state on the server(s) since neither the corresponding property (i.e.
spring.session.data.gemfire.cache.client.pool.name *) was set nor was the
SpringSessionGemFireConfigurer.getPoolName() method overridden by the
"sessionExpirationTimeoutConfigurer" bean.

And finally, the client Region used to manage Session state will have a data management policy of
PROXY, the default value for the @EnableGemFireHttpSession.clientRegionShortcut annotation
attribute, which was not explicitly set, nor was the corresponding property (.e.
spring.session.data.gemfire.cache.client.region.shortcut) for this attribute. And, because the
SpringSessionConfigurer.getClientRegionShortcut() method was not overridden, the default value
is used.

3.5. Apache Geode Expiration

By default, Apache Geode is configured with a Region Entry, Idle Timeout (TTI) Expiration Policy,
using an expiration timeout of 30 minutes and INVALIDATE entry as the action. This means when a
user’s Session remains inactive (i.e. idle) for more than 30 minutes, the Session will expire and is
invalidated, and the user must begin a new Session in order to continue to use the application.

However, what if you have application specific requirements around Session state management
and expiration, and using the default, Idle Timeout (TTI) Expiration Policy is insufficient for your
Use Case (UC)?

Now, Spring Session for Apache Geode supports application specific, custom expiration policies. As
an application developer, you may specify custom rules governing the expiration of a Session
managed by Spring Session, backed by Apache Geode.

Spring Session for Apache Geode provides the new SessionExpirationPolicy Strategy interface.

23

https://en.wikipedia.org/wiki/Strategy_pattern

SessionExpirationPolicy interface

@Functionallnterface
interface SessionExpirationPolicy {

// determine timeout for expiration of individual Session
Optional<Duration> determineExpirationTimeout(Session session);

// define the action taken on expiration

default ExpirationAction getExpirationAction() {
return ExpirationAction.INVALIDATE;

}

enum ExpirationAction {

DESTROY,
INVALIDATE

You implement this interface to specify the Session expiration policies required by your application
and then register the instance as a bean in the Spring application context.

Use the @EnableGemFireHttpSession annotation, sessionExpirationPolicyBeanName attribute to
configure the name of the SessionExpirationPolicy bean implementing your custom application
policies and rules for Session expiration.

For example:

Custom SessionExpirationPolicy
class MySessionExpirationPolicy implements SessionExpirationPolicy {
public Duration determineExpirationTimeout(Session session) {

// return a java.time.Duration specifying the length of time until the Session
should expire

}
}

Then, in your application class, simple declare the following:

24

Custom SessionExpirationPolicy configuration

@SpringBootApplication

@EnableGemFireHttpSession(
maxInactiveIntervalInSeconds = 600,
sessionExpirationPolicyBeanName = "expirationPolicy"

)
class MySpringSessionApplication {

@Bean
SessionExpirationPolicy expirationPolicy() {
return new MySessionExpirationPolicy();

}
}
Alternatively, the name of the SessionExpirationPolicy bean can be configured
(r) using the spring.session.data.gemfire.session.expiration.bean-name property, or
- by declaring a SpringSessionGemFireConfigurer bean in the Spring container and

overriding the getSessionExpirationPolicyBeanName() method.

You are only required to implement the determineExpirationTimeout(:Session):0ptional<Duration>
method, which encapsulates the rules to determine when the Session should expire. The expiration
timeout for a Session is expressed as an Optional of java.time.Duration, which specifies the length
of time until the Session expires.

The determineExpirationTimeout method can be Session specific and may change with each
invocation.

Optionally, you may implement the getAction method to specify the action taken when the Session
expires. By default, the Region Entry (i.e. Session) is invalidated. Another option is to destroy the
Region Entry on expiration, which removes both the key (Session ID) and value (Session). Invalidate
only removes the value.

Under-the-hood, the SessionExpirationPolicy is adapted into an instance of the
0 Apache Geode CustomExpiry interface. This Spring Session CustomExpiry object is
then set as the Session Region’s custom entry idle timeout expiration policy.

During expiration determination, the
CustomExpiry.getExpiry(:Region.Entry<String, Session>):ExpirationAttributes
method is invoked for each entry (i.e. Session) in the Region every time the

o expiration thread(s) run, which in turn calls our
SessionExpirationPolicy.determineExpirationTimout(:Session):0ptional<Duration>
method. The returned java.time.Duration is converted to seconds and used as the
expiration timeout in the ExpirationAttributes returned from the
CustomExpiry.getExpiry(..) method invocation.

25

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CustomExpiry.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionFactory.html#setCustomEntryIdleTimeout-org.apache.geode.cache.CustomExpiry-
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/ExpirationAttributes.html
https://geode.apache.org/releases/latest/javadocorg/apache/geode/cache/CustomExpiry.html#getExpiry-org.apache.geode.cache.Region.Entry-

Apache Geode’s expiration thread(s) run once every second, evaluating each entry
@ (i.e. Session) in the Region to determine if the entry has expired. You can control
- the number of expiration threads with the gemfire.EXPIRY_THREADS property. See
the Apache Geode docs for more details.

3.5.1. Expiration Timeout Configuration

If you would like to base the expiration timeout for your custom SessionExpirationPolicy on the
@EnableGemFireHttpSession annotation, maxInactiveIntervalInSeconds attribute, or alternatively, the
corresponding spring.session.data.gemfire.session.expiration.max-inactive-interval-seconds
property, then your custom SessionExpirationPolicy implementation may also implement the
SessionExpirationTimeoutAware interface.

The SessionExpirationTimeoutAware interface is defined as:

SessionExpirationTimeoutAware interface
interface SessionExpirationTimeoutAware {

void setExpirationTimeout(Duration expirationTimeout);

When your custom SessionExpirationPolicy implementation also implements the
SessionExpirationTimeoutAware interface, then Spring Session for Apache Geode will supply your
implementation with the value from the @EnableGemFireHttpSession annotation,
maxInactiveIntervalInSeconds attribute, or from the
spring.session.data.gemfire.session.expiration.max-inactive-interval-seconds property if set, or
from any SpringSessionGemFireConfigurer bean declared in the Spring application context, as an
instance of java.time.Duration.

If more than 1 configuration option is used, the following order takes precedence:

1. SpringSessionGemFireConfigurer.getMaxInactiveIntervalInSeconds()
2. spring.session.data.gemfire.session.expiration.max-inactive-interval-seconds property

3. @EnableGemFireHttpSession annotation, maxInactivelntervallnSeconds attribute

3.5.2. Fixed Timeout Expiration

For added convenience, Spring Session for Apache Geode provides an implementation of the
SessionExpirationPolicy interface for fixed duration expiration (or "Absolute session timeouts" as
described in core Spring Session Issue #922).

It is perhaps necessary, in certain cases, such as for security reasons, to expire the user’s Session
after a fixed length of time (e.g. every hour), regardless if the user’s Session is still active.

Spring Session for Apache Geode provides the FixedTimeoutSessionExpirationPolicy implementation
out-of-the-box for this exact Use Case (UC). In addition to handling fixed duration expiration, it is

26

https://geode.apache.org/docs/guide/112/developing/expiration/chapter_overview.html
https://github.com/spring-projects/spring-session/issues/922

also careful to still consider and apply the default, idle expiration timeout.

For instance, consider a scenario where a user logs in, beginning a Session, is active for 10 minutes
and then leaves letting the Session sit idle. If the fixed duration expiration timeout is set for 60
minutes, but the idle expiration timeout is only set for 30 minutes, and the user does not return,
then the Session should expire in 40 minutes and not 60 minutes when the fixed duration
expiration would occur.

Conversely, if the user is busy for a full 40 minutes, thereby keeping the Session active, thus
avoiding the 30 minute idle expiration timeout, and then leaves, then our fixed duration expiration
timeout should kick in and expire the user’s Session right at 60 minutes, even though the user’s idle
expiration timeout would not occur until 70 minutes in (40 min (active) + 30 min (idle) = 70
minutes).

Well, this is exactly what the FixedTimeoutSessionExpirationPolicy does.
To configure the FixedTimeoutSessionExpirationPolicy, do the following:

Fixed Duration Expiraton Configuration

@SpringBootApplication
@EnableGemFireHttpSession(sessionExpirationPolicyBeanName =
"fixedTimeoutExpirationPolicy")

class MySpringSessionApplication {

@Bean
SessionExpirationPolicy fixedTimeoutExpirationPolicy() {
return new FixedTimeoutSessionExpirationPolicy(Duration.ofMinutes(60L));

In the example above, the FixedTimeoutSessionExpirationPolicy was declared as a bean in the
Spring application context and initialized with a fixed duration expiration timeout of 60 minutes.
As a result, the users Session will either expire after the idle timeout (Which defaults to 30 minutes)
or after the fixed timeout (configured to 60 minutes), which ever occurs first.

It is also possible to implement lazy, fixed duration expiration timeout on Session
access by using the Spring Session for Apache Geode
FixedDurationExpirationSessionRepositoryBeanPostProcessor. This BPP wraps any
data store specific SessionRepository in a
O FixedDurationExpirationSessionRepository implementation that evaluates a
Sessions expiration on access, only. This approach is agnostic to the underlying
data store and therefore can be used with any Spring Session provider. The
expiration determination is based solely on the Session creationTime property and
the required java.time.Duration specifying the fixed duration expiration timeout.

27

The FixedDurationExpirationSessionRepository should not be used in strict
expiration timeout cases, such as when the Session must expire immediately after
the fixed duration expiration timeout has elapsed. Additionally, unlike the

o FixedTimeoutSessionExpirationPolicy, the
FixedDurationExpirationSessionRepository does not take idle expiration timeout
into consideration. That is, it only uses the fixed duration when determining the
expiration timeout for a given Session.

3.5.3. SessionExpirationPolicy Chaining

Using the Composite software design pattern, you can treat a group of SessionExpirationPolicy
instances as a single instance, functioning as if in a chain much like the chain of Servlet Filters
themselves.

The Composite software design pattern is a powerful pattern and is supported by the
SessionExpirationPolicy, @Functionallnterface, simply by returning an Optional of
java.time.Duration from the determineExpirationTimeout method.

This allows each composed SessionExpirationPolicy to "optionally" return a Duration only if the
expiration could be determined by this instance. Alternatively, this instance may punt to the next
SessionExpirationPolicy in the composition, or chain until either a non-empty expiration timeout is
returned, or ultimately no expiration timeout is returned.

In fact, this very policy is used internally by the FixedTimeoutSessionExpirationPolicy, which will
return Optional.empty() in the case where the idle timeout will occur before the fixed timeout. By
returning no expiration timeout, Apache Geode will defer to the default, configured entry idle
timeout expiration policy on the Region managing Session state.

This exact behavior is also documented in the
o org.apache.geode.cache.CustomExpiry.getExpiry(:Region.Entry<String,

Session>):ExpirationAttributes method.

3.6. Apache Geode Serialization

In order to transfer data between clients and servers, or when data is distributed and replicated
between peer nodes in a cluster, the data must be serialized. In this case, the data in question is the
Session’s state.

Anytime a Session is persisted or accessed in a client/server topology, the Session’s state is sent
over-the-wire. Typically, a Spring Boot application with Spring Session enabled will be a client to
the server(s) in a cluster of Apache Geode nodes.

On the server-side, Session state maybe distributed across several servers (data nodes) in the
cluster to replicate the data and guarantee a high availability of the Session state. When using
Apache Geode, data can be partitioned, or sharded, and a redundancy-level can be specified. When
the data is distributed for replication, it must also be serialized to transfer the Session state among
the peer nodes in the cluster.

28

https://en.wikipedia.org/wiki/Composite_pattern
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CustomExpiry.html#getExpiry-org.apache.geode.cache.Region.Entry-
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CustomExpiry.html#getExpiry-org.apache.geode.cache.Region.Entry-

Out-of-the-box, Apache Geode supports Java Serialization. There are many advantages to Java
Serialization, such as handling cycles in the object graph, or being universally supported by any
application written in Java. However, Java Serialization is very verbose and is not the most efficient
over-the-wire format.

As such, Apache Geode provides its own serialization frameworks to serialize Java types:

1. Data Serialization

2. PDX Serialization

3.6.1. Apache Geode Serialization Background

As mentioned above, Apache Geode provide 2 additional serialization frameworks: Data
Serialization and PDX Serialization.

Data Serialization

Data Serialization is a very efficient format (i.e. fast and compact), with little overhead when
compared to Java Serialization.

It supports Delta Propagation by sending only the bits of data that actually changed as opposed to
sending the entire object, which certainly cuts down on the amount of data sent over the network
in addition to reducing the amount of IO when data is persisted or overflowed to disk.

However, Data Serialization incurs a CPU penalty anytime data is transferred over-the-wire, or
persisted/overflowed to and accessed from disk, since the receiving end performs a deserialization.
In fact, anytime Delta Propagation is used, the object must be deserialized on the receiving end in
order to apply the "delta". Apache Geode applies deltas by invoking a method on the object that
implements the org.apache.geode.Delta interface. Clearly, you cannot invoke a method on a
serialized object.

PDX

PDX, on the other hand, which stands for Portable Data Exchange, retains the form in which the
data was sent. For example, if a client sends data to a server in PDX format, the server will retain
the data as PDX serialized bytes and store them in the cache Region for which the data access
operation was targeted.

Additionally, PDX, as the name implies, is "portable", meaning it enables both Java and Native
Language Clients, such as C, C++ and C# clients, to inter-operate on the same data set.

PDX even allows OQL queries to be performed on the serialized bytes without causing the objects to
be deserialized first in order to evaluate the query predicate and execute the query. This can be
accomplished since Apache Geode maintains a "Type Registry" containing type meta-data for the
objects that get serialized and stored in Apache Geode using PDX.

However, portability does come with a cost, having slightly more overhead than Data Serialization.
Still, PDX is far more efficient and flexible than Java Serialization, which stores type meta-data in
the serialized bytes of the object rather than in a separate Type Registry as in Apache Geode’s case
when using PDX.

29

https://geode.apache.org/docs/guide/112/developing/data_serialization/gemfire_data_serialization.html
https://geode.apache.org/docs/guide/112/developing/data_serialization/gemfire_pdx_serialization.html
https://geode.apache.org/docs/guide/112/developing/delta_propagation/chapter_overview.html

PDX does not support Deltas. Technically, a PDX serializable object can be used in Delta Propagation
by implementing the org.apache.geode.Delta interface, and only the "delta" will be sent, even in the
context of PDX. But then, the PDX serialized object must be deserialized to apply the delta.
Remember, a method is invoked to apply the delta, which defeats the purpose of using PDX in the
first place.

When developing Native Clients (e.g. C) that manage data in a {data-store-name} cluster, or even
when mixing Native Clients with Java clients, typically there will not be any associated Java types
provided on the classpath of the servers in the cluster. With PDX, it is not necessary to provide the
Java types on the classpath, and many users who only develop and use Native Clients to access data
stored in {data-store-name} will not provide any Java types for their corresponding C/C/C# types.

Apache Geode also support JSON serialized to/from PDX. In this case, it is very likely that Java types
will not be provided on the servers classpath since many different languages (e.g. JavaScript,
Python, Ruby) supporting JSON can be used with Apache Geode.

Still, even with PDX in play, users must take care not to cause a PDX serialized object on the servers
in the cluster to be deserialized.

For example, consider an OQL query on an object of the following Java type serialized as PDX...

@Region("People")
class Person {

private LocalDate birthDate;
private String name;

public int getAge() {
// no explicit 'age' field/property in Person
// age is just implemented in terms of the 'birthDate' field
}
}

Subsequently, if the OQL query invokes a method on a Person object, such as:
SELECT * FROM /People p WHERE p.age >= 21

Then, this is going to cause a PDX serialized Person object to be deserialized since age is not a field of
Person, but rather a method containing a computation based on another field of Person (i.e.
birthDate). Likewise, calling any java.lang.Object method in a OQL query, like Object.toString(), is
going to cause a deserialization to happen as well.

Apache Geode does provide the read-serialized configuration setting so that any cache
Region.get(key) operations that are potentially invoked inside a Function does not cause PDX
serialized objects to be deserialized. But, nothing will prevent an ill-conceived OQL query from
causing a deserialization, so be careful.

30

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/Delta.html
https://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientCacheFactory.html#setPdxReadSerialized-boolean-

Data Serialization + PDX + Java Serialization

It is possible for Apache Geode to support all 3 serialization formats simultaneously.

For instance, your application domain model might contain objects that implement the
java.io.Serialiable interface, and you may be using a combination of the Data Serialization
framework along with PDX.

(r) While using Java Serialization with Data Serialization and PDX is possible, it is
- generally preferable and recommended to use 1 serialization strategy.
o Unlike Java Serialization, Data Serialization and PDX Serialization do not handle
object graph cycles.

More background on Apache Geode’s serialization mechanics can be found here.

3.6.2. Serialization with Spring Session

Previously, Spring Session for Apache Geode only supported Apache Geode Data Serialization
format. The main motivation behind this was to take advantage of Apache Geode’s Delta
Propagation functionality since a Session’s state can be arbitrarily large.

However, as of Spring Session for Apache Geode 2.0, PDX is also supported and is now the new,
default serialization option. The default was changed to PDX in Spring Session for Apache Geode 2.0
primarily because PDX is the most widely used and requested format by users.

PDX is certainly the most flexible format, so much so that you do not even need Spring Session for
Apache Geode or any of its transitive dependencies on the classpath of the servers in the cluster to
use Spring Session with Apache Geode. In fact, with PDX, you do not even need to put your
application domain object types stored in the (HTTP) Session on the servers' classpath either.

Essentially, when using PDX serialization, Apache Geode does not require the associated Java types
to be present on the servers' classpath. So long as no deserialization happens on the servers in the
cluster, you are safe.

The @EnableGemFireHttpSession annotation introduces the new sessionSerializerBeanName attribute
that a user can use to configure the name of a bean declared and registered in the Spring container
implementing the desired serialization strategy. The serialization strategy is used by Spring Session
for Apache Geode to serialize the Session state.

Out-of-the-box, Spring Session for Apache Geode provides 2 serialization strategies: 1 for PDX and 1
for Data Serialization. It automatically registers both serialization strategy beans in the Spring
container. However, only 1 of those strategies is actually used at runtime, PDX!

The 2 beans registered in the Spring container implementing Data Serialization and PDX are named
SessionDataSerializer and SessionPdxSerializer, respectively. By default, the
sessionSerializerBeanName attribute is set to SessionPdxSerializer, as if the user annotated his/her
Spring Boot, Spring Session enabled application configuration class with:

31

https://geode.apache.org/docs/guide/112/developing/data_serialization/data_serialization_options.html

@SpringBootApplication
@EnableGemFireHttpSession(sessionSerializerBeanName = "SessionPdxSerializer")
class MySpringSessionApplication { }

It is a simple matter to change the serialization strategy to Data Serialization instead by setting the
sessionSerializerBeanName attribute to SessionDataSerializer, as follows:

@SpringBootApplication
@EnableGemFireHttpSession(sessionSerializerBeanName = "SessionDataSerializer")
class MySpringSessionApplication { }

Since these 2 values are so common, Spring Session for Apache Geode provides constants for each
value in the GemFireHttpSessionConfiguration class:
GemFireHttpSessionConfiguration.SESSION_PDX_SERIALIZER_BEAN_NAME and
GemFireHttpSessionConfiguration.SESSION_DATA_SERIALIZER_BEAN_NAME. So, you could explicitly
configure PDX, as follows:

import
org.springframework.session.data.geode.config.annotation.web.http.GemFireHttpSessionCo
nfiguration;

@SpringBootApplication
@EnableGemFireHttpSession(sessionSerializerBeanName =
GemFireHttpSessionConfiguration.SESSION_PDX_SERIALIZER_BEAN_NAME)
class MySpringSessionApplication { }

With 1 attribute and 2 provided bean definitions out-of-the-box, you can specify which Serialization
framework you wish to use with your Spring Boot, Spring Session enabled application backed by
Apache Geode.

3.6.3. Spring Session for Apache Geode Serialization Framework

To abstract away the details of Apache Geode’s Data Serialization and PDX Serialization
frameworks, Spring Session for Apache Geode provides its own Serialization framework (facade)
wrapping Apache Geode’s Serialization frameworks.

The Serialization API exists under the org.springframework.session.data.gemfire.serialization
package. The primary interface in this API is the
org.springframework.session.data.gemfire.serialization.SessionSerializer.

The interface is defined as:

32

Spring Session SessionSerializer interface
interface SessionSerializer<T, IN, OUT> {
void serialize(T session, OUT out);
T deserialize(IN in);
boolean canSerialize(Class<?> type);

boolean canSerialize(Object obj) {
// calls Object.getClass() in a null-safe way and then calls and returns
canSerialize(:Class)
}
}

Basically, the interface allows you to serialize and deserialize a Spring Session object.

The IN and OUT type parameters and corresponding method arguments of those types provide
reference to the objects responsible for writing the Session to a stream of bytes or reading the
Session from a stream of bytes. The actual arguments will be type specific, based on the underlying
Apache Geode Serialization strategy configured.

For instance, when using Apache Geode’s PDX Serialization framework, IN and OUT will be instances
of org.apache.geode.pdx.PdxReader and org.apache.geode.pdx.PdxWriter, respectively. When Apache
Geode’s Data Serialization framework has been configured, then IN and OUT will be instances of
java.io.Datalnput and java.io.DataOutput, respectively.

These arguments are provided to the SessionSerializer implementation by the framework
automatically, and as previously mentioned, is based on the underlying Apache Geode Serialization
strategy configured.

Essentially, even though Spring Session for Apache Geode provides a facade around Apache Geode’s
Serialization frameworks, under-the-hood Apache Geode still expects one of these Serialization
frameworks is being used to serialize data to/from Apache Geode.

So what purpose does the SessionSerializer interface really serve then?

Effectively, it allows a user to customize what aspects of the Session’s state actually gets serialized
and stored in Apache Geode. Application developers can provide their own custom, application-
specific SessionSerializer implementation, register it as a bean in the Spring container, and then
configure it to be used by Spring Session for Apache Geode to serialize the Session state, as follows:

33

@EnableGemFireHttpSession(sessionSerializerBeanName = "MyCustomSessionSerializer")
class MySpringSessionDataGemFireApplication {

@Bean("MyCustomSessionSerializer")
SessionSerializer<Session, ?, 7> myCustomSessionSerializer() {
/] ...
by
+

Implementing a SessionSerializer

Spring Session for Apache Geode provides assistance when a user wants to implement a custom
SessionSerializer that fits into one of Apache Geode’s Serialization frameworks.

If the user just implements the
org.springframework.session.data.gemfire.serialization.SessionSerializer interface directly
without extending from one of Spring Session for Apache Geode’s provided abstract base classes,
related to 1 of Apache Geode’s Serialization frameworks , then Spring Session for Apache Geode

will wrap the wuser’s custom SessionSerializer implementation in an instance of
org.springframework.session.data.gemfire.serialization.pdx.support.PdxSerializerSessionSerializ

erAdapter and register it with Apache Geode as a org.apache.geode.pdx.PdxSerializer.

Spring Session for Apache Geode is careful not to stomp on any existing PdxSerializer
implementation that a user may have already registered with Apache Geode by some other means.
Indeed, several different, provided implementations of Apache Geode’s
org.apache.geode.pdx.PdxSerializer interface exists:

» Apache Geode itself provides the org.apache.geode.pdx.ReflectionBasedAutoSerializer.

* Spring Data for Apache Geode (SDG) provides the
org.springframework.data.gemfire.mapping.MappingPdxSerializer, which is used in the SD
Repository abstraction and SDG’s extension to handle mapping PDX serialized types to the
application domain object types defined in the application Repository interfaces.

This is accomplished by obtaining any currently registered PdxSerializer instance on the cache and
composing it with the PdxSerializerSessionSerializerAdapter wrapping the user’s custom
application SessionSerializer implementation and re-registering this "composite" PdxSerializer on
the Apache Geode cache. The "composite" PdxSerializer implementation is provided by Spring
Session for Apache Geode’s
org.springframework.session.data.gemfire.pdx.support.ComposablePdxSerializer class when entities
are stored in Apache Geode as PDX.

If no other PdxSerializer was currently registered with the Apache Geode cache, then the adapter is
simply registered.

Of course, you are allowed to force the underlying Apache Geode Serialization strategy used with a
custom SessionSerializer implementation by doing 1 of the following:

1. The custom SessionSerializer implementation can implement Apache Geode’s
org.apache.geode.pdx.PdxSerializer interface, or for convenience, extend Spring Session for

34

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/ReflectionBasedAutoSerializer.html
https://docs.spring.io/spring-data/geode/docs/current/api/org/springframework/data/gemfire/mapping/MappingPdxSerializer.html

Apache Geode’s
org.springframework.session.data.gemfire.serialization.pdx.AbstractPdxSerializableSessionSe

rializer class and Spring Session for Apache Geode will register the custom SessionSerializer
as a PdxSerializer with Apache Geode.

2. The custom SessionSerializer implementation can extend the Apache Geode’s
org.apache.geode.DataSerializer class, or for convenience, extend Spring Session for Apache

Geode’s
org.springframework.session.data.gemfire.serialization.data.AbstractDataSerializableSession

Serializer class and Spring Session for Apache Geode will register the custom SessionSerializer
as a DataSerializer with Apache Geode.

3. Finally, a user can create a custom SessionSerializer implementation as before, not specifying
which Apache Geode Serialization framework to use because the custom SessionSeriaizer
implementation does not implement any Apache Geode serialization interfaces or extend from
any of Spring Session for Apache Geode’s provided abstract base classes, and still have it
registered in Apache Geode as a DataSerializer by declaring an additional Spring Session for

Apache Geode bean in the Spring container of type
org.springframework.session.data.gemfire.serialization.data.support.DataSerializerSessionSe

rializerAdapter, like so...

Forcing the registration of a custom SessionSerializer as a DataSerializer in Apache Geode

@EnableGemFireHttpSession(sessionSerializerBeanName = "customSessionSerializer")
class Application {

@Bean
DataSerializerSessionSerializerAdapter dataSerializerSessionSerializer() {
return new DataSerializerSessionSerializerAdapter();

}

@Bean
SessionSerializer<Session, ?, ?> customSessionSerializer() {
/] ...

Just by the very presence of the DataSerializerSessionSerializerAdapter registered as a bean in the
Spring container, any neutral custom SessionSerializer implementation will be treated and
registered as a DataSerializer in Apache Geode.

Additional Support for Data Serialization

Please feel free to skip this section if you are configuring and bootstraping Apache
Geode servers in your cluster using Spring (Boot) since generally, the information

o that follows will not apply. Of course, it all depends on your declared dependencies
and your Spring configuration. However, if you are using Gfsh to start the servers
in your cluster, then definitely read on.

35

Background

When using Apache Geode’s DataSerialization framework, especially from the client when
serializing (HTTP) Session state to the servers in the cluster, you must take care to configure the
Apache Geode servers in your cluster with the appropriate dependencies. This is especially true
when leveraging deltas as explained in the earlier section on Data Serialization.

When using the DataSerialization framework as your serialization strategy to serialize (HTTP)
Session state from your Web application clients to the servers, then the servers must be properly
configured with the Spring Session for Apache Geode class types used to represent the (HTTP)
Session and its contents. This means including the Spring JARs on the servers classpath.

Additionally, using DataSerialization may also require you to include the JARS containing your
application domain classes that are used by your Web application and put into the (HTTP) Session
as Session Attribute values, particularly if:

1. Your types implement the org.apache.geode.DataSerializable interface.

2. Your types implement the org.apache.geode.Delta interface.

3. You have registered a org.apache.geode.DataSerializer that identifies and serializes the types.

4. Your types implement the java.io.Serializable interface.
Of course, you must ensure your application domain object types put in the (HTTP) Session are
serializable in some form or another. However, you are not strictly required to use
DataSerialization nor are you necessarily required to have your application domain object types on
the servers classpath if:

1. Your types implement the org.apache.geode.pdx.PdxSerializable interface.

2. Or, you have registered an org.apache.geode.pdx.PdxSerializer that properly identifies and

serializes your application domain object types.

Apache Geode will apply the following order of precedence when determining the serialization
strategy to use to serialize an object graph:

1. First, DataSerializable objects and/or any registered DataSerializers identifying the objects to
serialize.

2. Then PdxSerializable objects and/or any registered PdxSerializer identifying the objects to
serialize.

3. And finally, all java.io.Serializable types.

This also means that if a particular application domain object type (e.g. A) implements
java.io.Serializable, however, a (custom) PdxSerializer has been registered with Apache Geode
identifying the same application domain object type (i.e. A), then Apache Geode will use PDX to
serialize "A" and not Java Serialization, in this case.

This is especially useful since then you can use DataSerialization to serialize the (HTTP) Session
object, leveraging Deltas and all the powerful features of DataSerialization, but then use PDX to
serialize your application domain object types, which greatly simplifies the configuration and/or
effort involved.

36

Now that we have a general understanding of why this support exists, how do you enable it?

Configuration

First, create an Apache Geode cache.xml, as follows:

Apache Geode cache.xml configuration

<?xml version="1.0" encoding="UTF-8"7>

<cache xmlns="http://geode.apache.org/schema/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://geode.apache.org/schema/cache

https://geode.apache.org/schema/cache/cache-1.0.xsd"
version="1.0">

<initializer>
<class-name>
org.springframework.session.data.gemfire.serialization.data.support.DataSerializableSe
ssionSerializerInitializer
</class-name>

</initializer>

</cache>

Then, start your servers in *Gfsh* using:

Starting Server with Gfsh

gfsh> start server --name=InitializedServer --cache-xml-file=/path/to/cache.xml
--classpath=...

Configuring the Apache Geode server classpath with the appropriate dependencies is the tricky
part, but generally, the following should work:

37

CLASSPATH configuration
gfsh> set variable --name=REPO_HOME --value=${USER_HOME}/.m2/repository

gfsh> start server ... --classpath=\
${REPO_HOME}/org/springframework/spring-core/{spring-version}/spring-core-{spring-
version}.jar\
:${REPO_HOME}/org/springframework/spring-aop/{spring-version}/spring-aop-{spring-
version}.jar\
:${REPO_HOME}/org/springframework/spring-beans/{spring-version}/spring-beans-{spring-
version}.jar\
:${REPO_HOME}/org/springframework/spring-context/{spring-version}/spring-context-
{spring-version}.jar\
:${REPO_HOME}/org/springframework/spring-context-support/{spring-version}/spring-
context-support-{spring-version}.jar\
:${REPO_HOME}/org/springframework/spring-expression/{spring-version}/spring-
expression-{spring-version}.jar\
:${REPO_HOME}/org/springframework/spring-jcl/{spring-version}/spring-jcl-{spring-
version}.jar\
:${REPO_HOME}/org/springframework/spring-tx/{spring-version}/spring-tx-{spring-
version}.jar\
:${REPO_HOME}/org/springframework/data/spring-data-commons/{spring-data-commons-
version}/spring-data-commons-{spring-data-commons-version}.jar\
:${REPO_HOME}/org/springframework/data/spring-data-geode/{spring-data-geode-
version}/spring-data-geode-{spring-data-geode-version}.jar\
:${REPO_HOME}/org/springframework/session/spring-session-core/{spring-session-core-
version}/spring-session-core-{spring-session-core-version}.jar\
:${REPO_HOME}/org/springframework/session/spring-session-data-geode/{spring-session-
data-geode-version}/spring-session-data-geode-{spring-session-data-geode-version}.jar\
:${REPO_HOME}/org/s1f4j/s1f4j-api/1.7.25/s1f4j-api-1.7.25.jar

Keep in mind, you may need to add your application domain object JAR files to the server classpath
as well.

To get a complete picture of how this works, see the sample.

Customizing Change Detection

By default, anytime the Session is modified (e.g. the lastAccessedTime is updated to the current
time), the Session is considered dirty by Spring Session for Apache Geode (SSDG). When using
Apache Geode Data Serialization framework, it is extremely useful and valuable to take advantage
of Apache Geode’s Delta Propagation capabilities as well.

When using Data Serialization, SSDG also uses Delta Propagation to send only changes to the
Session state between the client and server. This includes any Session attributes that may have
been added, removed or updated.

By default, anytime Session.setAttribute(name, value) is called, the Session attribute is considered
"dirty" and will be sent in the delta between the client and server. This is true even if your
application domain object has not been changed.

38

https://github.com/spring-projects/spring-session-data-geode/tree/2.5.4/samples/boot/gemfire-with-gfsh-servers
https://geode.apache.org/docs/guide/112/developing/delta_propagation/chapter_overview.html

Typically, there is never a reason to call Session.setAttribute(..) unless your object has been
changed. However, if this can occur, and your objects are relatively large (with a complex object
hierarchy), then you may want to consider either:

1. Implementing the Delta interface in your application domain object model, while useful, is very
invasive, or...

2. Provide a custom implementation of SSDG’s
org.springframework.session.data.gemfire.support.IsDirtyPredicate strategy interface.

Out of the box, SSDG provides 5 implementations of the IsDirtyPredicate strategy interface:

Table 5. IsDirtyPredicate implementations
Class Description Default

IsDirtyPredicate.ALWAYS_DI New Session attribute values are always considered
RTY dirty.

IsDirtyPredicate.NEVER_DIR New Session attribute values are never considered
TY dirty.

DeltaAwareDirtyPredicate New Session attribute values are considered dirty when Yes
the old value and new value are different, if the new
value’s type does not implement Delta or the new
value’s Delta.hasDelta() method returns true.

EqualsDirtyPredicate New Session attribute values are considered dirty iff
the old value is not equal to the new value as
determined by Object.equals(:0bject) method.

IdentityEqualsPredicate New Session attributes values are considered dirty iff
the old value is not the same as the new value using the
identity equals operator (i.e. oldValue != newValue).

As shown in the table above, the DeltaAwareDirtyPredicate is the default implementation used by
SSDG. The DeltaAwareDirtyPredicate automatically takes into consideration application domain
objects that implement the Apache Geode Delta interface. However, DeltaAwareDirtyPredicate
works even when your application domain objects do not implement the Delta interface. SSDG will
consider your application domain object to be dirty anytime the Session.setAttribute(name,
newValue) is called providing the new value is not the same as old value, or the new value does not
implement the Delta interface.

You can change SSDG’s dirty implementation, determination strategy simply by declaring a bean in
the Spring container of the IsDirtyPredicate interface type:

39

https://geode.apache.org/releases/latest/javadoc/org/apache/geode/Delta.html

Overriding SSDG’s default 1sDirtyPredicate strategy

@EnableGemFireHttpSession
class ApplicationConfiguration {

@Bean
IsDirtyPredicate equalsDirtyPredicate() {
return EqualsDirtyPredicate.INSTANCE;
}
}

Composition

The IsDirtyPredicate interface also provides the andThen(:IsDirtyPredicate) and
orThen(:IsDirtyPredicate) methods to compose 2 or more IsDirtyPredicate implementations in a
composition in order to organize complex logic and rules for determining whether an application
domain object is dirty or not.

For instance, you could compose both EqualsDirtyPredicate and DeltaAwareDirtyPredicate using the
OR operator:

Composing EqualsDirtyPredicate with DeltaAwareDirtyPredicate using the logical OR operator

@EnableGemFireHttpSession
class ApplicationConfiguration {

@Bean
IsDirtyPredicate equalsOrThenDeltaDirtyPredicate() {

return EqualsDirtyPredicate.INSTANCE
.orThen(DeltaAwareDirtyPredicate.INSTANCE);

You may even implement your own, custom IsDirtyPredicates based on specific application
domain object types:

40

Application Domain Object Type-specific IsDirtyPredicate implementations
class CustomerDirtyPredicate implements IsDirtyPredicate {
public boolean isDirty(Object oldCustomer, Object newCustomer) {

if (newCustomer instanceof Customer) {
// custom logic to determine if a new Customer is dirty

}

return true;
}
}

class AccountDirtyPredicate implements IsDirtyPredicate {
public boolean isDirty(Object oldAccount, Object newAccount) {

if (newAccount instanceof Account) {
// custom logic to determine if a new Account is dirty

}

return true;

Then combine CustomerDirtyPredicate with the AccountDirtyPredicate and a default predicate for
fallback, as follows:

Composed and configured type-specific IsDirtyPredicates

@EnableGemFireHttpSession
class ApplicationConfiguration {

@Bean
IsDirtyPredicate typeSpecificDirtyPredicate() {

return new CustomerDirtyPredicate()

.andThen(new AccountDirtyPredicate())
.andThen(IsDirtyPredicate.ALWAYS_DIRTY);

The combinations and possibilities are endless.
Use caution when implementing custom IsDirtyPredicate strategies. If you

incorrectly determine that your application domain object is not dirty when it
actually is, then it will not be sent in the Session delta from the client to the server.

41

Changing the Session Representation

Internally, Spring Session for Apache Geode maintains 2 representations of the (HTTP) Session and
the Session’s attributes. Each representation is based on whether Apache Geode "Deltas" are
supported or not.

Apache Geode Delta Propagation is only enabled by Spring Session for Apache Geode when using
Data Serialization for reasons that were discussed earlier.

Effectively, the strategy is:
1. If Apache Geode Data Serialization is configured, then Deltas are supported and the
DeltaCapableGemFireSession and DeltaCapableGemFireSessionAttributes representations are used.
2. If Apache Geode PDX Serialization is configured, then Delta Propagation will be disabled and the

GemFireSession and GemFireSessionAttributes representations are used.

It is possible to override these internal representations used by Spring Session for Apache Geode,
and for users to provide their own Session related types. The only strict requirement is that the
Session implementation must implement the core Spring Session
org.springframework.session.Session interface.

By way of example, let’s say you want to define your own Session implementation.

First, you define the Session type. Perhaps your custom Session type even encapsulates and handles
the Session attributes without having to define a separate type.

User-defined Session interface implementation

class MySession implements org.springframework.session.Session {
/] ...
}

Then, you would need to extend the
org.springframework.session.data.gemfire.GemFireOperationsSessionRepository class and override
the createSession() method to create instances of your custom Session implementation class.

Custom SessionRepository implementation creating and returning instances of the custom Session type
class MySessionRepository extends GemFireOperationsSessionRepository {

@0verride
public Session createSession() {
return new MySession();

}
}

If you provide your own custom SessionSerializer implementation and Apache Geode PDX
Serialization is configured, then you done.

However, if you configured Apache Geode Data Serialization then you must additionally provide a

42

custom implementation of the SessionSerializer interface and either have it directly extend
Apache Geode’s org.apache.geode.DataSerializer class, or extend Spring Session for Apache Geode’s
org.springframework.session.data.gemfire.serialization.data.AbstractDataSerializableSessionSeri
alizer class and override the getSupportedClasses():(lass<?>[] method.

For example:

Custom SessionSerializer for custom Session type
class MySessionSerializer extends AbstractDataSerializableSessionSerializer {

@0verride
public Class<?>[] getSupportedClasses() {
return new Class[] { MySession.class };
}
}

Unfortunately, getSupportedClasses() cannot return the generic Spring Session
org.springframework.session.Session interface type. If it could then we could avoid the explicit need
to override the getSupportedClasses() method on the custom DataSerializer implementation. But,
Apache Geode’s Data Serialization framework can only match on exact class types since it
incorrectly and internally stores and refers to the class type by name, which then requires the user
to override and implement the getSupportedClasses() method.

3.7. How HttpSession Integration Works

Fortunately, both javax.servlet.http.HttpSession and javax.servlet.http.HttpServletRequest (the
API for obtaining an HttpSession) are interfaces. This means we can provide our own
implementations for each of these APIs.

This section describes how Spring Session provides transparent integration with

o javax.servlet.http.HttpSession. The intent is so users understand what is
happening under-the-hood. This functionality is already implemented and
integrated so you do not need to implement this logic yourself.

First, we create a custom javax.servlet.http.HttpServletRequest that returns a custom
implementation of javax.servlet.http.HttpSession. It looks something like the following:

43

public class SessionRepositoryRequestWrapper extends HttpServletRequestWrapper {
public SessionRepositoryRequestWrapper(HttpServletRequest original) {

super(original);

}

public HttpSession getSession() {
return getSession(true);

}

public HttpSession getSession(boolean createNew) {
// create an HttpSession implementation from Spring Session

}

// ... other methods delegate to the original HttpServletRequest ...

Any method that returns an javax.servlet.http.HttpSession is overridden. All other methods are
implemented by javax.servlet.http.HttpServletRequestWrapper and simply delegate to the original
javax.servlet.http.HttpServletRequest implementation.

We replace the javax.servlet.http.HttpServletRequest implementation using a Servlet Filter called
SessionRepositoryFilter. The pseudocode can be found below:

public class SessionRepositoryFilter implements Filter {

public doFilter(ServletRequest request, ServletResponse response, FilterChain
chain) {

HttpServletRequest httpRequest = (HttpServletRequest) request;

SessionRepositoryRequestWrapper customRequest = new
SessionRepositoryRequestWrapper (httpRequest);

chain.doFilter(customRequest, response, chain);

/] ...

By passing in a custom javax.servlet.http.HttpServletRequest implementation into the FilterChain
we ensure that anything invoked after our Filter uses the custom javax.servlet.http.HttpSession
implementation.

This highlights why it is important that Spring Session’s SessionRepositoryFilter must be placed
before anything that interacts with the javax.servlet.http.HttpSession.

44

3.8. HttpSessionListener

Spring Session supports HttpSessionlListener by translating SessionCreatedEvent and
SessionDestroyedEvent into HttpSessionEvent by declaring SessionEventHttpSessionListenerAdapter.

To use this support, you need to:

* Ensure your SessionRepository implementation supports and is configured to fire
SessionCreatedEvent and " SessionDestroyedEvent .

* Configure SessionEventHttpSessionListenerAdapter as a Spring bean.

* Inject every HttpSessionListener into the SessionEventHttpSessionListenerAdapter

If you are using the configuration support documented in HttpSession with Apache Geode, then all
you need to do is register every HttpSessionListener as a bean.

For example, assume you want to support Spring Security’s concurrency control and need to use
HttpSessionEventPublisher, then you can simply add HttpSessionEventPublisher as a bean.

3.9. Session

A Session is a simplified Map of key/value pairs with support for expiration.

3.10. SessionRepository

A SessionRepository is in charge of creating, persisting and accessing Session instances and state.

If possible, developers should not interact directly with a SessionRepository or a Session. Instead,
developers should prefer to interact with SessionRepository and Session indirectly through the
javax.servlet.http.HttpSession, WebSocket and WebSession integration.

3.11. FindByIndexNameSessionRepository

Spring Session’s most basic API for using a Session is the SessionRepository. The API is intentionally
very simple so that it is easy to provide additional implementations with basic functionality.

Some SessionRepository implementations may choose to implement
FindByIndexNameSessionRepository also. For example, Spring Session’s for Apache Geode support
implements FindByIndexNameSessionRepository.

The FindByIndexNameSessionRepository adds a single method to look up all the sessions for a
particular user. This is done by ensuring that the session attribute with the name
FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME is populated with the username. It is
the responsibility of the developer to ensure the attribute is populated since Spring Session is not
aware of the authentication mechanism being used.

45

Some implementations of FindByIndexNameSessionRepository will provide hooks to

o automatically index other session attributes. For example, many implementations
will automatically ensure the current Spring Security user name is indexed with
the index name FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME.

3.12. EnableSpringHttpSession

The @EnableSpringHttpSession annotation can be added to any @Configuration class to expose the
SessionRepositoryFilter as a bean in the Spring container named, "springSessionRepositoryFilter".

In order to leverage the annotation, a single SessionRepository bean must be provided.

3.13. EnableGemFireHttpSession

The @EnableGemFireHttpSession annotation can be added to any @Configuration class in place of the
@EnableSpringHttpSession annotation to expose the SessionRepositoryFilter as a bean in the Spring
container named, "springSessionRepositoryFilter" and to position Apache Geode as a provider
managing javax.servlet.http.HttpSession state.

When using the @EnableGemFireHttpSession annotation, additional configuration is imported out-of-
the-box that also provides a Apache Geode specific implementation of the SessionRepository
interface named, GemFireOperationsSessionRepository.

3.14. GemFireOperationsSessionRepository

GemFireOperationsSessionRepository is a SessionRepository implementation that is implemented
using Spring Session for Apache Geode’s_ GemFireOperationsSessionRepository.

In a web environment, this repository is used in conjunction with the SessionRepositoryFilter.

This implementation supports SessionCreatedEvents, SessionDeletedEvents and
SessionDestroyedEvents through SessionEventHttpSessionListenerAdapter.

3.14.1. Using Indexes with Apache Geode

While best practices concerning the proper definition of Indexes that positively impact Apache
Geode’s performance is beyond the scope of this document, it is important to realize that Spring
Session for Apache Geode creates and uses Indexes to query and find Sessions efficiently.

Out-of-the-box, Spring Session for Apache Geode creates 1 Hash-typed Index on the principal name.
There are two different built-in strategies for finding the principal name. The first strategy is that
the value of the Session attribute with the name
FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME will be Indexed to the same index
name.

For example:

46

String indexName = FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME;

session.setAttribute(indexName, username);
Map<String, Session> idToSessions =
this.sessionRepository.findByIndexNameAndIndexValue(indexName, username);

3.14.2. Using Indexes with Apache Geode & Spring Security

Alternatively, Spring Session for Apache Geode will map Spring Security’s current
Authentication#igetName() to the Index FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME.

For example, if you are using Spring Security you can find the current user’s sessions using:

SecurityContext securityContext = SecurityContextHolder.getContext();
Authentication authentication = securityContext.getAuthentication();
String indexName = FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME;

Map<String, Session> idToSessions =
this.sessionRepository.findByIndexNameAndIndexValue(indexName,
authentication.getName());

3.14.3. Using Custom Indexes with Apache Geode

This enables developers using the GemFireOperationsSessionRepository programmatically to query
and find all Sessions with a given principal name efficiently.

Additionally, Spring Session for Apache Geode will create a Range-based Index on the implementing
Session’s Map-type attributes property (i.e. on any arbitrary Session attribute) when a developer
identifies 1 or more named Session attributes that should be indexed by Apache Geode.

Sessions attributes to index can be specified with the indexableSessionAttributes attribute on the
@EnableGemFireHttpSession annotation. A developer adds this annotation to their Spring application
@Configuration class when s/he wishes to enable Spring Session’s support for HttpSession backed by
Apache Geode.

String indexName = "namel";
session.setAttribute(indexName, indexValue);

Map<String, Session> idToSessions =
this.sessionRepository.findByIndexNameAndIndexValue(indexName, indexValue);

Only Session attribute names identified in the @EnableGemFireHttpSession
o annotation’s indexableSessionAttributes attribute will have an Index defined. All
other Session attributes will not be indexed.

However, there is one catch. Any values stored in an indexable Session attributes must implement

47

the java.lang.Comparable<T> interface. If those object values do not implement Comparable, then
Apache Geode will throw an error on startup when the Index is defined for Regions with persistent
Session data, or when an attempt is made at runtime to assign the indexable Session attribute a
value that is not Comparable and the Session is saved to Apache Geode.

0 Any Session attribute that is not indexed may store non-Comparable values.

To learn more about Apache Geode’s Range-based Indexes, see Creating Indexes on Map Fields.

To learn more about Apache Geode Indexing in general, see Working with Indexes.

48

https://geode.apache.org/docs/guide/112/developing/query_index/creating_map_indexes.html
https://geode.apache.org/docs/guide/112/developing/query_index/query_index.html

Chapter 4. Spring Session Community

We are glad to consider you a part of our community. Please find additional information below.

4.1. Support

You can get help by asking questions on StackOverflow with the tag spring-session. Similarly we
encourage helping others by answering questions on StackOverflow.

4.2. Source Code

The source code can be found on GitHub at https://github.com/spring-projects/spring-session-data-
geode

4.3. Issue Tracking

We track issues in GitHub Issues at https://github.com/spring-projects/spring-session-data-geode/
issues

4.4. Contributing

We appreciate Pull Requests.

4.5. License

Spring Session for Apache Geode and Spring Session for Pivotal GemFire are Open Source Software
released under the Apache 2.0 license.

49

https://stackoverflow.com/questions/tagged/spring-session
https://stackoverflow.com/questions/tagged/spring-session
https://github.com/spring-projects/spring-session-data-geode
https://github.com/spring-projects/spring-session-data-geode
https://github.com/spring-projects/spring-session-data-geode/issues
https://github.com/spring-projects/spring-session-data-geode/issues
https://help.github.com/articles/using-pull-requests/
https://www.apache.org/licenses/LICENSE-2.0.html

Chapter 5. Minimum Requirements

The minimum requirements for Spring Session are:

* Java 8+
 If you are running in a Servlet container (not required), Servlet 2.5+

 If you are using other Spring libraries (not required), the minimum required version is Spring
Framework 5.0.x.

@EnableGemFireHttpSession requires Spring Data for Apache Geode 2.0.x and Spring Data for
Pivotal GemFire 2.0.x.

* @EnableGemFireHttpSession requires Apache Geode 1.2.x or Pivotal GemFire 9.1.x.

0 At its core Spring Session only has a required dependency on spring-jcl.

50

	Spring Session
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Samples and Guides (Start Here)
	Chapter 3. HttpSession Integration
	3.1. Why Spring Session & HttpSession?
	3.2. HttpSession Management with Apache Geode
	3.3. Configuring HttpSession Management using Apache Geode with Properties
	3.4. Configuring HttpSession Management using Apache Geode with a Configurer
	3.5. Apache Geode Expiration
	3.6. Apache Geode Serialization
	3.7. How HttpSession Integration Works
	3.8. HttpSessionListener
	3.9. Session
	3.10. SessionRepository
	3.11. FindByIndexNameSessionRepository
	3.12. EnableSpringHttpSession
	3.13. EnableGemFireHttpSession
	3.14. GemFireOperationsSessionRepository

	Chapter 4. Spring Session Community
	4.1. Support
	4.2. Source Code
	4.3. Issue Tracking
	4.4. Contributing
	4.5. License

	Chapter 5. Minimum Requirements

