
Spring Session

Copyright ©

Spring Session

please define title in your docbook file! ii

Table of Contents

... v
1. Introduction .. 1
2. What’s New in 2.0 ... 2
3. Samples and Guides (Start Here) ... 3
4. Spring Session Modules ... 5
5. HttpSession Integration .. 6

5.1. Why Spring Session & HttpSession? .. 6
5.2. HttpSession with Redis .. 6

Redis Java Based Configuration ... 6
Spring Java Configuration ... 6
Java Servlet Container Initialization ... 7

Redis XML Based Configuration ... 7
Spring XML Configuration ... 7
XML Servlet Container Initialization ... 8

5.3. HttpSession with JDBC .. 9
JDBC Java Based Configuration ... 9

Spring Java Configuration ... 9
Java Servlet Container Initialization ... 10

JDBC XML Based Configuration ... 10
Spring XML Configuration ... 10
XML Servlet Container Initialization ... 11

JDBC Spring Boot Based Configuration ... 12
Spring Boot Configuration ... 12
Configuring the DataSource .. 13
Servlet Container Initialization ... 13

5.4. HttpSession with Hazelcast .. 13
Spring Configuration ... 13
Servlet Container Initialization ... 14

5.5. How HttpSession Integration Works .. 15
5.6. HttpSession & RESTful APIs .. 16

Spring Configuration ... 16
Servlet Container Initialization ... 17

5.7. HttpSessionListener ... 17
6. WebSocket Integration .. 19

6.1. Why Spring Session & WebSockets? ... 19
6.2. WebSocket Usage ... 19

HttpSession Integration ... 19
Spring Configuration ... 19

7. WebSession Integration .. 21
7.1. Why Spring Session & WebSession? ... 21
7.2. WebSession with Redis ... 21
7.3. How WebSession Integration Works ... 21

8. Spring Security Integration .. 23
8.1. Spring Security Remember-Me Support .. 23
8.2. Spring Security Concurrent Session Control .. 23
8.3. Limitations ... 24

9. API Documentation ... 25

Spring Session

please define title in your docbook file! iii

9.1. Session ... 25
9.2. SessionRepository ... 26
9.3. FindByIndexNameSessionRepository .. 26
9.4. ReactiveSessionRepository .. 27
9.5. EnableSpringHttpSession ... 27
9.6. EnableSpringWebSession .. 27
9.7. RedisOperationsSessionRepository .. 28

Instantiating a RedisOperationsSessionRepository ... 28
EnableRedisHttpSession ... 28

Custom RedisSerializer ... 28
Redis TaskExecutor ... 28
Storage Details .. 28

Saving a Session ... 29
Optimized Writes .. 29
Session Expiration .. 29

SessionDeletedEvent and SessionExpiredEvent ... 30
SessionCreatedEvent ... 31
Viewing the Session in Redis .. 31

9.8. ReactiveRedisOperationsSessionRepository .. 32
Instantiating a ReactiveRedisOperationsSessionRepository ... 32
EnableRedisWebSession .. 32

Optimized Writes .. 32
Viewing the Session in Redis .. 32

9.9. MapSessionRepository ... 33
Instantiating MapSessionRepository .. 33
Using Spring Session and Hazlecast ... 33

9.10. ReactiveMapSessionRepository .. 33
9.11. JdbcOperationsSessionRepository .. 33

Instantiating a JdbcOperationsSessionRepository ... 34
EnableJdbcHttpSession .. 34

Custom LobHandler .. 34
Custom ConversionService ... 34

Storage Details .. 34
Transaction management .. 35

9.12. HazelcastSessionRepository ... 35
Instantiating a HazelcastSessionRepository ... 36
EnableHazelcastHttpSession ... 36
Basic Customization ... 36
Session Events .. 36
Storage Details .. 36

10. Custom SessionRepository ... 38
11. Upgrading to 2.x ... 39

11.1. Baseline update ... 39
11.2. Replaced and Removed Modules ... 39
11.3. Replaced and Removed Packages, Classes and Methods .. 39
11.4. Dropped Support ... 40

12. Spring Session Community ... 41
12.1. Support ... 41
12.2. Source Code ... 41
12.3. Issue Tracking ... 41

Spring Session

please define title in your docbook file! iv

12.4. Contributing ... 41
12.5. License ... 41
12.6. Community Extensions ... 41

13. Minimum Requirements .. 42

Spring Session

please define title in your docbook file! v

Spring Session provides an API and implementations for managing a user’s session information.

Spring Session

please define title in your docbook file! 1

1. Introduction

Spring Session provides an API and implementations for managing a user’s session information, while
also making it trivial to support clustered sessions without being tied to an application container specific
solution. It also provides transparent integration with:

• HttpSession - allows replacing the HttpSession in an application container (i.e. Tomcat) neutral
way, with support for providing session IDs in headers to work with RESTful APIs.

• WebSocket - provides the ability to keep the HttpSession alive when receiving WebSocket
messages

• WebSession - allows replacing the Spring WebFlux’s WebSession in an application container neutral
way.

Spring Session

please define title in your docbook file! 2

2. What’s New in 2.0

Below are the highlights of what is new in Spring Session 2.0. You can find a complete list of what’s
new by referring to the changelogs of 2.0.0.M1, 2.0.0.M2, 2.0.0.M3, 2.0.0.M4, 2.0.0.M5, 2.0.0.RC1,
2.0.0.RC2, and 2.0.0.RELEASE.

• Upgraded to Java 8 and Spring Framework 5 as baseline

• Added support for managing Spring WebFlux’s WebSession with Redis
ReactiveSessionRepository

• Extracted SessionRepository implementations to separate modules

• Improved Session and SessionRepository APIs

• Improved and harmonized configuration support for all supported session stores

• Added support for configuring default CookieSerializer using SessionCookieConfig

• Lots of performance improvements and bug fixes

https://github.com/spring-projects/spring-session/milestone/17?closed=1
https://github.com/spring-projects/spring-session/milestone/22?closed=1
https://github.com/spring-projects/spring-session/milestone/23?closed=1
https://github.com/spring-projects/spring-session/milestone/24?closed=1
https://github.com/spring-projects/spring-session/milestone/25?closed=1
https://github.com/spring-projects/spring-session/milestone/26?closed=1
https://github.com/spring-projects/spring-session/milestone/27?closed=1
https://github.com/spring-projects/spring-session/milestone/30?closed=1
https://github.com/spring-projects/spring-session/issues/683
https://github.com/spring-projects/spring-session/issues/816
https://github.com/spring-projects/spring-session/issues/816
https://github.com/spring-projects/spring-session/issues/768
https://github.com/spring-projects/spring-session/issues/682
https://github.com/spring-projects/spring-session/issues/809
https://github.com/spring-projects/spring-session/pull/713

Spring Session

please define title in your docbook file! 3

3. Samples and Guides (Start Here)
If you are looking to get started with Spring Session, the best place to start is our Sample Applications.

Table 3.1. Sample Applications using Spring Boot

Source Description Guide

HttpSession with Redis Demonstrates how to use
Spring Session to replace the
HttpSession with Redis.

HttpSession with Redis Guide

HttpSession with JDBC Demonstrates how to use
Spring Session to replace the
HttpSession with a relational
database store.

HttpSession with JDBC Guide

Find by Username Demonstrates how to use
Spring Session to find sessions
by username.

Find by Username Guide

WebSockets Demonstrates how to
use Spring Session with
WebSockets.

WebSockets Guide

WebFlux Demonstrates how to use
Spring Session to replace the
Spring WebFlux’s WebSession
with Redis.

TBD

HttpSession with Redis JSON
serialization

Demonstrates how to use
Spring Session to replace the
HttpSession with Redis using
JSON serialization.

TBD

Table 3.2. Sample Applications using Spring Java based configuration

Source Description Guide

HttpSession with Redis Demonstrates how to use
Spring Session to replace the
HttpSession with Redis.

HttpSession with Redis Guide

HttpSession with JDBC Demonstrates how to use
Spring Session to replace the
HttpSession with a relational
database store.

HttpSession with JDBC Guide

HttpSession with Hazelcast Demonstrates how to use
Spring Session to replace the
HttpSession with Hazelcast.

HttpSession with Hazelcast
Guide

Custom Cookie Demonstrates how to use
Spring Session and customize
the cookie.

Custom Cookie Guide

https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/boot/redis
guides/boot-redis.html
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/boot/jdbc
guides/boot-jdbc.html
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/boot/findbyusername
guides/boot-findbyusername.html
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/boot/websocket
guides/boot-websocket.html
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/boot/webflux
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/boot/redis-json
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/boot/redis-json
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/javaconfig/redis
guides/java-redis.html
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/javaconfig/jdbc
guides/java-jdbc.html
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/javaconfig/hazelcast
guides/java-hazelcast.html
guides/java-hazelcast.html
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/javaconfig/custom-cookie
guides/java-custom-cookie.html

Spring Session

please define title in your docbook file! 4

Source Description Guide

Spring Security Demonstrates how to use
Spring Session with an existing
Spring Security application.

Spring Security Guide

REST Demonstrates how to use
Spring Session in a REST
application to support
authenticating with a header.

REST Guide

Table 3.3. Sample Applications using Spring XML based configuration

Source Description Guide

HttpSession with Redis Demonstrates how to use
Spring Session to replace the
HttpSession with a Redis
store.

HttpSession with Redis Guide

HttpSession with JDBC Demonstrates how to use
Spring Session to replace the
HttpSession with a relational
database store.

HttpSession with JDBC Guide

Table 3.4. Misc sample Applications

Source Description Guide

Grails 3 Demonstrates how to use
Spring Session with Grails 3.

Grails 3 Guide

Hazelcast Demonstrates how to use
Spring Session with Hazelcast
in a Java EE application.

TBD

https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/javaconfig/security
guides/java-security.html
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/javaconfig/rest
guides/java-rest.html
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/xml/redis
guides/xml-redis.html
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/xml/jdbc
guides/xml-jdbc.html
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/misc/grails3
guides/grails3.html
https://github.com/spring-projects/spring-session/tree/2.0.5.RELEASE/samples/misc/hazelcast

Spring Session

please define title in your docbook file! 5

4. Spring Session Modules

In Spring Session 1.x all of the Spring Session’s SessionRepository implementations were available
within the spring-session artifact. While convenient, this approach wasn’t sustainable long-term as
more features and SessionRepository implementations were added to the project.

Starting with Spring Session 2.0, the project has been split up to Spring Session Core module, and
several other modules that carry SessionRepository implementations and functionality related to
the specific data store. The users of Spring Data will find this arrangement familiar, with Spring Session
Core module taking a role equivalent to Spring Data Commons and providing core functionalities and
APIs with other modules containing data store specific implementations. As a part of this split, the
Spring Session Data MongoDB and Spring Session Data GemFire modules were moved to separate
repositories so the situation with project’s repositories/modules is a follows:

• spring-session repository

• Hosts Spring Session Core, Spring Session Data Redis, Spring Session JDBC and Spring Session
Hazelcast modules

• spring-session-data-mongodb repository

• Hosts Spring Session Data MongoDB module

• spring-session-data-geode repository

• Hosts Spring Session Data Geode and Spring Session Data Geode modules

Finally, Spring Session now also provides a Maven BOM (as in "bill of materials") module in order to
help users with version management concerns:

• spring-session-bom repository

• Hosts Spring Session BOM module

https://github.com/spring-projects/spring-session
https://github.com/spring-projects/spring-session-data-mongodb
https://github.com/spring-projects/spring-session-data-geode
https://github.com/spring-projects/spring-session-bom

Spring Session

please define title in your docbook file! 6

5. HttpSession Integration

Spring Session provides transparent integration with HttpSession. This means that developers can
switch the HttpSession implementation out with an implementation that is backed by Spring Session.

5.1 Why Spring Session & HttpSession?

We have already mentioned that Spring Session provides transparent integration with HttpSession,
but what benefits do we get out of this?

• Clustered Sessions - Spring Session makes it trivial to support clustered sessions without being tied
to an application container specific solution.

• RESTful APIs - Spring Session allows providing session IDs in headers to work with RESTful APIs

5.2 HttpSession with Redis

Using Spring Session with HttpSession is enabled by adding a Servlet Filter before anything that
uses the HttpSession. You can choose from enabling this using either:

• Java Based Configuration

• XML Based Configuration

Redis Java Based Configuration

This section describes how to use Redis to back HttpSession using Java based configuration.

Note

The HttpSession Sample provides a working sample on how to integrate Spring Session and
HttpSession using Java configuration. You can read the basic steps for integration below, but
you are encouraged to follow along with the detailed HttpSession Guide when integrating with
your own application.

Spring Java Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation
with an implementation backed by Spring Session. Add the following Spring Configuration:

@EnableRedisHttpSession ❶

public class Config {

 @Bean

 public LettuceConnectionFactory connectionFactory() {

 return new LettuceConnectionFactory(); ❷

 }

}

❶ The @EnableRedisHttpSession annotation creates a Spring Bean with the name of
springSessionRepositoryFilter that implements Filter. The filter is what is in charge of
replacing the HttpSession implementation to be backed by Spring Session. In this instance
Spring Session is backed by Redis.

Spring Session

please define title in your docbook file! 7

❷ We create a RedisConnectionFactory that connects Spring Session to the Redis Server. We
configure the connection to connect to localhost on the default port (6379) For more information
on configuring Spring Data Redis, refer to the reference documentation.

Java Servlet Container Initialization

Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that
implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the
HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config

class. Last we need to ensure that our Servlet Container (i.e. Tomcat) uses our
springSessionRepositoryFilter for every request. Fortunately, Spring Session provides a utility
class named AbstractHttpSessionApplicationInitializer both of these steps extremely
easy. You can find an example below:

src/main/java/sample/Initializer.java.

public class Initializer extends AbstractHttpSessionApplicationInitializer { ❶

 public Initializer() {

 super(Config.class); ❷

 }

}

Note

The name of our class (Initializer) does not matter. What is important is that we extend
AbstractHttpSessionApplicationInitializer.

❶ The first step is to extend AbstractHttpSessionApplicationInitializer. This ensures
that the Spring Bean by the name springSessionRepositoryFilter is registered with our
Servlet Container for every request.

❷ AbstractHttpSessionApplicationInitializer also provides a mechanism to easily
ensure Spring loads our Config.

Redis XML Based Configuration

This section describes how to use Redis to back HttpSession using XML based configuration.

Note

The HttpSession XML Sample provides a working sample on how to integrate Spring Session and
HttpSession using XML configuration. You can read the basic steps for integration below, but
you are encouraged to follow along with the detailed HttpSession XML Guide when integrating
with your own application.

Spring XML Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation
with an implementation backed by Spring Session. Add the following Spring Configuration:

src/main/webapp/WEB-INF/spring/session.xml.

https://docs.spring.io/spring-data/data-redis/docs/2.0.9.RELEASE/reference/html/

Spring Session

please define title in your docbook file! 8

❶

<context:annotation-config/>

<bean class="org.springframework.session.data.redis.config.annotation.web.http.RedisHttpSessionConfiguration"/

>

❷

<bean class="org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory"/>

❶ We use the combination of <context:annotation-config/> and
RedisHttpSessionConfiguration because Spring Session does not yet provide XML
Namespace support (see gh-104). This creates a Spring Bean with the name of
springSessionRepositoryFilter that implements Filter. The filter is what is in charge of
replacing the HttpSession implementation to be backed by Spring Session. In this instance
Spring Session is backed by Redis.

❷ We create a RedisConnectionFactory that connects Spring Session to the Redis Server. We
configure the connection to connect to localhost on the default port (6379) For more information
on configuring Spring Data Redis, refer to the reference documentation.

XML Servlet Container Initialization

Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that
implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the
HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, we need to instruct Spring to load our session.xml
configuration. We do this with the following configuration:

src/main/webapp/WEB-INF/web.xml.

<context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/spring/*.xml

 </param-value>

</context-param>

<listener>

 <listener-class>

 org.springframework.web.context.ContextLoaderListener

 </listener-class>

</listener>

The ContextLoaderListener reads the contextConfigLocation and picks up our session.xml
configuration.

Last we need to ensure that our Servlet Container (i.e. Tomcat) uses our
springSessionRepositoryFilter for every request. The following snippet performs this last step
for us:

src/main/webapp/WEB-INF/web.xml.

<filter>

 <filter-name>springSessionRepositoryFilter</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

 <filter-name>springSessionRepositoryFilter</filter-name>

 <url-pattern>/*</url-pattern>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>ERROR</dispatcher>

</filter-mapping>

https://github.com/spring-projects/spring-session/issues/104
https://docs.spring.io/spring-data/data-redis/docs/2.0.9.RELEASE/reference/html/
https://docs.spring.io/spring/docs/5.0.8.RELEASE/spring-framework-reference/core.html#context-create

Spring Session

please define title in your docbook file! 9

The DelegatingFilterProxy will look up a Bean by the name of springSessionRepositoryFilter
and cast it to a Filter. For every request that DelegatingFilterProxy is invoked, the
springSessionRepositoryFilter will be invoked.

5.3 HttpSession with JDBC

Using Spring Session with HttpSession is enabled by adding a Servlet Filter before anything that
uses the HttpSession. You can choose from enabling this using either:

• Java Based Configuration

• XML Based Configuration

• Spring Boot Based Configuration

JDBC Java Based Configuration

This section describes how to use a relational database to back HttpSession using Java based
configuration.

Note

The HttpSession JDBC Sample provides a working sample on how to integrate Spring Session
and HttpSession using Java configuration. You can read the basic steps for integration
below, but you are encouraged to follow along with the detailed HttpSession JDBC Guide when
integrating with your own application.

Spring Java Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation
with an implementation backed by Spring Session. Add the following Spring Configuration:

@EnableJdbcHttpSession ❶

public class Config {

 @Bean

 public EmbeddedDatabase dataSource() {

 return new EmbeddedDatabaseBuilder() ❷

 .setType(EmbeddedDatabaseType.H2)

 .addScript("org/springframework/session/jdbc/schema-h2.sql").build();

 }

 @Bean

 public PlatformTransactionManager transactionManager(DataSource dataSource) {

 return new DataSourceTransactionManager(dataSource); ❸

 }

}

❶ The @EnableJdbcHttpSession annotation creates a Spring Bean with the name of
springSessionRepositoryFilter that implements Filter. The filter is what is in charge of
replacing the HttpSession implementation to be backed by Spring Session. In this instance
Spring Session is backed by a relational database.

❷ We create a dataSource that connects Spring Session to an embedded instance of H2 database.
We configure the H2 database to create database tables using the SQL script which is included
in Spring Session.

https://docs.spring.io/spring-framework/docs/5.0.8.RELEASE/javadoc-api/org/springframework/web/filter/DelegatingFilterProxy.html

Spring Session

please define title in your docbook file! 10

❸ We create a transactionManager that manages transactions for previously configured
dataSource.

For additional information on how to configure data access related concerns, please refer to the Spring
Framework Reference Documentation.

Java Servlet Container Initialization

Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that
implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the
HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config

class. Last we need to ensure that our Servlet Container (i.e. Tomcat) uses our
springSessionRepositoryFilter for every request. Fortunately, Spring Session provides a utility
class named AbstractHttpSessionApplicationInitializer both of these steps extremely
easy. You can find an example below:

src/main/java/sample/Initializer.java.

public class Initializer extends AbstractHttpSessionApplicationInitializer { ❶

 public Initializer() {

 super(Config.class); ❷

 }

}

Note

The name of our class (Initializer) does not matter. What is important is that we extend
AbstractHttpSessionApplicationInitializer.

❶ The first step is to extend AbstractHttpSessionApplicationInitializer. This ensures
that the Spring Bean by the name springSessionRepositoryFilter is registered with our
Servlet Container for every request.

❷ AbstractHttpSessionApplicationInitializer also provides a mechanism to easily
ensure Spring loads our Config.

JDBC XML Based Configuration

This section describes how to use a relational database to back HttpSession using XML based
configuration.

Note

The HttpSession JDBC XML Sample provides a working sample on how to integrate Spring
Session and HttpSession using XML configuration. You can read the basic steps for integration
below, but you are encouraged to follow along with the detailed HttpSession JDBC XML Guide
when integrating with your own application.

Spring XML Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation
with an implementation backed by Spring Session. Add the following Spring Configuration:

https://docs.spring.io/spring/docs/5.0.8.RELEASE/spring-framework-reference/data-access.html
https://docs.spring.io/spring/docs/5.0.8.RELEASE/spring-framework-reference/data-access.html

Spring Session

please define title in your docbook file! 11

src/main/webapp/WEB-INF/spring/session.xml.

❶

<context:annotation-config/>

<bean class="org.springframework.session.jdbc.config.annotation.web.http.JdbcHttpSessionConfiguration"/>

❷

<jdbc:embedded-database id="dataSource" database-name="testdb" type="H2">

 <jdbc:script location="classpath:org/springframework/session/jdbc/schema-h2.sql"/>

</jdbc:embedded-database>

❸

<bean class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

 <constructor-arg ref="dataSource"/>

</bean>

❶ We use the combination of <context:annotation-config/> and
JdbcHttpSessionConfiguration because Spring Session does not yet provide XML
Namespace support (see gh-104). This creates a Spring Bean with the name of
springSessionRepositoryFilter that implements Filter. The filter is what is in charge of
replacing the HttpSession implementation to be backed by Spring Session. In this instance
Spring Session is backed by a relational database.

❷ We create a dataSource that connects Spring Session to an embedded instance of H2 database.
We configure the H2 database to create database tables using the SQL script which is included
in Spring Session.

❸ We create a transactionManager that manages transactions for previously configured
dataSource.

For additional information on how to configure data access related concerns, please refer to the Spring
Framework Reference Documentation.

XML Servlet Container Initialization

Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that
implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the
HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, we need to instruct Spring to load our session.xml
configuration. We do this with the following configuration:

src/main/webapp/WEB-INF/web.xml.

<context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/spring/*.xml

 </param-value>

</context-param>

<listener>

 <listener-class>

 org.springframework.web.context.ContextLoaderListener

 </listener-class>

</listener>

The ContextLoaderListener reads the contextConfigLocation and picks up our session.xml
configuration.

Last we need to ensure that our Servlet Container (i.e. Tomcat) uses our
springSessionRepositoryFilter for every request. The following snippet performs this last step
for us:

https://github.com/spring-projects/spring-session/issues/104
https://docs.spring.io/spring/docs/5.0.8.RELEASE/spring-framework-reference/data-access.html
https://docs.spring.io/spring/docs/5.0.8.RELEASE/spring-framework-reference/data-access.html
https://docs.spring.io/spring/docs/5.0.8.RELEASE/spring-framework-reference/core.html#context-create

Spring Session

please define title in your docbook file! 12

src/main/webapp/WEB-INF/web.xml.

<filter>

 <filter-name>springSessionRepositoryFilter</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

 <filter-name>springSessionRepositoryFilter</filter-name>

 <url-pattern>/*</url-pattern>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>ERROR</dispatcher>

</filter-mapping>

The DelegatingFilterProxy will look up a Bean by the name of springSessionRepositoryFilter
and cast it to a Filter. For every request that DelegatingFilterProxy is invoked, the
springSessionRepositoryFilter will be invoked.

JDBC Spring Boot Based Configuration

This section describes how to use a relational database to back HttpSession when using Spring Boot.

Note

The HttpSession JDBC Spring Boot Sample provides a working sample on how to integrate Spring
Session and HttpSession using Spring Boot. You can read the basic steps for integration below,
but you are encouraged to follow along with the detailed HttpSession JDBC Spring Boot Guide
when integrating with your own application.

Spring Boot Configuration

After adding the required dependencies, we can create our Spring Boot configuration. Thanks to first-
class auto configuration support, setting up Spring Session backed by a relational database is as simple
as adding a single configuration property to your application.properties:

src/main/resources/application.properties.

spring.session.store-type=jdbc # Session store type.

Under the hood, Spring Boot will apply configuration that is equivalent to manually adding
@EnableJdbcHttpSession annotation. This creates a Spring Bean with the name of
springSessionRepositoryFilter that implements Filter. The filter is what is in charge of replacing
the HttpSession implementation to be backed by Spring Session.

Further customization is possible using application.properties:

src/main/resources/application.properties.

server.servlet.session.timeout= # Session timeout. If a duration suffix is not specified, seconds will

 be used.

spring.session.jdbc.initialize-schema=embedded # Database schema initialization mode.

spring.session.jdbc.schema=classpath:org/springframework/session/jdbc/schema-@@platform@@.sql # Path to

 the SQL file to use to initialize the database schema.

spring.session.jdbc.table-name=SPRING_SESSION # Name of the database table used to store sessions.

For more information, refer to Spring Session portion of the Spring Boot documentation.

https://docs.spring.io/spring-framework/docs/5.0.8.RELEASE/javadoc-api/org/springframework/web/filter/DelegatingFilterProxy.html
https://docs.spring.io/spring-boot/docs/2.0.3.RELEASE/reference/htmlsingle/#boot-features-session

Spring Session

please define title in your docbook file! 13

Configuring the DataSource

Spring Boot automatically creates a DataSource that connects Spring Session to an embedded
instance of H2 database. In a production environment you need to ensure to update your
configuration to point to your relational database. For example, you can include the following in your
application.properties

src/main/resources/application.properties.

spring.datasource.url= # JDBC URL of the database.

spring.datasource.username= # Login username of the database.

spring.datasource.password= # Login password of the database.

For more information, refer to Configure a DataSource portion of the Spring Boot documentation.

Servlet Container Initialization

Our Spring Boot Configuration created a Spring Bean named springSessionRepositoryFilter
that implements Filter. The springSessionRepositoryFilter bean is responsible for replacing
the HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config class. Last we need to
ensure that our Servlet Container (i.e. Tomcat) uses our springSessionRepositoryFilter for
every request. Fortunately, Spring Boot takes care of both of these steps for us.

5.4 HttpSession with Hazelcast

Using Spring Session with HttpSession is enabled by adding a Servlet Filter before anything that
uses the HttpSession.

This section describes how to use Hazelcast to back HttpSession using Java based configuration.

Note

The Hazelcast Spring Sample provides a working sample on how to integrate Spring Session and
HttpSession using Java configuration. You can read the basic steps for integration below, but
you are encouraged to follow along with the detailed Hazelcast Spring Guide when integrating
with your own application.

Spring Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation
with an implementation backed by Spring Session. Add the following Spring Configuration:

https://docs.spring.io/spring-boot/docs/2.0.3.RELEASE/reference/htmlsingle/#boot-features-configure-datasource

Spring Session

please define title in your docbook file! 14

@EnableHazelcastHttpSession ❶

@Configuration

public class HazelcastHttpSessionConfig {

 @Bean

 public HazelcastInstance hazelcastInstance() {

 MapAttributeConfig attributeConfig = new MapAttributeConfig()

 .setName(HazelcastSessionRepository.PRINCIPAL_NAME_ATTRIBUTE)

 .setExtractor(PrincipalNameExtractor.class.getName());

 Config config = new Config();

 config.getMapConfig(HazelcastSessionRepository.DEFAULT_SESSION_MAP_NAME) ❷

 .addMapAttributeConfig(attributeConfig)

 .addMapIndexConfig(new MapIndexConfig(

 HazelcastSessionRepository.PRINCIPAL_NAME_ATTRIBUTE, false));

 return Hazelcast.newHazelcastInstance(config); ❸

 }

}

❶ The @EnableHazelcastHttpSession annotation creates a Spring Bean with the name of
springSessionRepositoryFilter that implements Filter. The filter is what is in charge of
replacing the HttpSession implementation to be backed by Spring Session. In this instance
Spring Session is backed by Hazelcast.

❷ In order to support retrieval of sessions by principal name index, appropriate ValueExtractor
needs to be registered. Spring Session provides PrincipalNameExtractor for this purpose.

❸ We create a HazelcastInstance that connects Spring Session to Hazelcast. By default,
an embedded instance of Hazelcast is started and connected to by the application. For more
information on configuring Hazelcast, refer to the reference documentation.

Servlet Container Initialization

Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that
implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the
HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our SessionConfig class. Since our
application is already loading Spring configuration using our SecurityInitializer class, we can
simply add our SessionConfig class to it.

src/main/java/sample/SecurityInitializer.java.

public class SecurityInitializer extends AbstractSecurityWebApplicationInitializer {

 public SecurityInitializer() {

 super(SecurityConfig.class, SessionConfig.class);

 }

}

Last we need to ensure that our Servlet Container (i.e. Tomcat) uses our
springSessionRepositoryFilter for every request. It is extremely important that
Spring Session’s springSessionRepositoryFilter is invoked before Spring Security’s
springSecurityFilterChain. This ensures that the HttpSession that Spring Security uses
is backed by Spring Session. Fortunately, Spring Session provides a utility class named
AbstractHttpSessionApplicationInitializer that makes this extremely easy. You can find
an example below:

http://docs.hazelcast.org/docs/3.9.4/manual/html-single/index.html#hazelcast-configuration

Spring Session

please define title in your docbook file! 15

src/main/java/sample/Initializer.java.

public class Initializer extends AbstractHttpSessionApplicationInitializer {

}

Note

The name of our class (Initializer) does not matter. What is important is that we extend
AbstractHttpSessionApplicationInitializer.

By extending AbstractHttpSessionApplicationInitializer we ensure that the Spring Bean
by the name springSessionRepositoryFilter is registered with our Servlet Container for every
request before Spring Security’s springSecurityFilterChain.

5.5 How HttpSession Integration Works

Fortunately both HttpSession and HttpServletRequest (the API for obtaining an HttpSession)
are both interfaces. This means that we can provide our own implementations for each of these APIs.

Note

This section describes how Spring Session provides transparent integration with HttpSession.
The intent is so that user’s can understand what is happening under the covers. This functionality
is already integrated and you do NOT need to implement this logic yourself.

First we create a custom HttpServletRequest that returns a custom implementation of
HttpSession. It looks something like the following:

public class SessionRepositoryRequestWrapper extends HttpServletRequestWrapper {

 public SessionRepositoryRequestWrapper(HttpServletRequest original) {

 super(original);

 }

 public HttpSession getSession() {

 return getSession(true);

 }

 public HttpSession getSession(boolean createNew) {

 // create an HttpSession implementation from Spring Session

 }

 // ... other methods delegate to the original HttpServletRequest ...

}

Any method that returns an HttpSession is overridden. All other methods are implemented
by HttpServletRequestWrapper and simply delegate to the original HttpServletRequest
implementation.

We replace the HttpServletRequest implementation using a servlet Filter called
SessionRepositoryFilter. The pseudocode can be found below:

Spring Session

please define title in your docbook file! 16

public class SessionRepositoryFilter implements Filter {

 public doFilter(ServletRequest request, ServletResponse response, FilterChain chain) {

 HttpServletRequest httpRequest = (HttpServletRequest) request;

 SessionRepositoryRequestWrapper customRequest =

 new SessionRepositoryRequestWrapper(httpRequest);

 chain.doFilter(customRequest, response, chain);

 }

 // ...

}

By passing in a custom HttpServletRequest implementation into the FilterChain we ensure that
anything invoked after our Filter uses the custom HttpSession implementation. This highlights why
it is important that Spring Session’s SessionRepositoryFilter must be placed before anything that
interacts with the HttpSession.

5.6 HttpSession & RESTful APIs

Spring Session can work with RESTful APIs by allowing the session to be provided in a header.

Note

The REST Sample provides a working sample on how to use Spring Session in a REST application
to support authenticating with a header. You can follow the basic steps for integration below, but
you are encouraged to follow along with the detailed REST Guide when integrating with your own
application.

Spring Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation
with an implementation backed by Spring Session. Add the following Spring Configuration:

@Configuration

@EnableRedisHttpSession ❶

public class HttpSessionConfig {

 @Bean

 public LettuceConnectionFactory connectionFactory() {

 return new LettuceConnectionFactory(); ❷

 }

 @Bean

 public HttpSessionIdResolver httpSessionIdResolver() {

 return HeaderHttpSessionIdResolver.xAuthToken(); ❸

 }

}

❶ The @EnableRedisHttpSession annotation creates a Spring Bean with the name of
springSessionRepositoryFilter that implements Filter. The filter is what is in charge
of replacing the HttpSession implementation to be backed by Spring Session. In this instance
Spring Session is backed by Redis.

❷ We create a RedisConnectionFactory that connects Spring Session to the Redis Server. We
configure the connection to connect to localhost on the default port (6379) For more information
on configuring Spring Data Redis, refer to the reference documentation.

https://docs.spring.io/spring-data/data-redis/docs/2.0.9.RELEASE/reference/html/

Spring Session

please define title in your docbook file! 17

❸ We customize Spring Session’s HttpSession integration to use HTTP headers to convey the current
session information instead of cookies.

Servlet Container Initialization

Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that
implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the
HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config class. We provide the
configuration in our Spring MvcInitializer as shown below:

src/main/java/sample/mvc/MvcInitializer.java.

@Override

protected Class<?>[] getRootConfigClasses() {

 return new Class[] { SecurityConfig.class, HttpSessionConfig.class };

}

Last we need to ensure that our Servlet Container (i.e. Tomcat) uses our
springSessionRepositoryFilter for every request. Fortunately, Spring Session provides a utility
class named AbstractHttpSessionApplicationInitializer that makes this extremely easy.
Simply extend the class with the default constructor as shown below:

src/main/java/sample/Initializer.java.

public class Initializer extends AbstractHttpSessionApplicationInitializer {

}

Note

The name of our class (Initializer) does not matter. What is important is that we extend
AbstractHttpSessionApplicationInitializer.

5.7 HttpSessionListener

Spring Session supports HttpSessionListener by translating SessionDestroyedEvent and
SessionCreatedEvent into HttpSessionEvent by declaring
SessionEventHttpSessionListenerAdapter. To use this support, you need to:

• Ensure your SessionRepository implementation supports and is configured to fire
SessionDestroyedEvent and SessionCreatedEvent.

• Configure SessionEventHttpSessionListenerAdapter as a Spring bean.

• Inject every HttpSessionListener into the SessionEventHttpSessionListenerAdapter

If you are using the configuration support documented in HttpSession with Redis, then all you need to do
is register every HttpSessionListener as a bean. For example, assume you want to support Spring
Security’s concurrency control and need to use HttpSessionEventPublisher you can simply add
HttpSessionEventPublisher as a bean. In Java configuration, this might look like:

Spring Session

please define title in your docbook file! 18

@Configuration

@EnableRedisHttpSession

public class RedisHttpSessionConfig {

 @Bean

 public HttpSessionEventPublisher httpSessionEventPublisher() {

 return new HttpSessionEventPublisher();

 }

 // ...

}

In XML configuration, this might look like:

<bean class="org.springframework.security.web.session.HttpSessionEventPublisher"/>

Spring Session

please define title in your docbook file! 19

6. WebSocket Integration
Spring Session provides transparent integration with Spring’s WebSocket support.

Note

Spring Session’s WebSocket support only works with Spring’s WebSocket support. Specifically it
does not work with using JSR-356 directly. This is due to the fact that JSR-356 does not have a
mechanism for intercepting incoming WebSocket messages.

6.1 Why Spring Session & WebSockets?

So why do we need Spring Session when using WebSockets?

Consider an email application that does much of its work through HTTP requests. However, there is also
a chat application embedded within it that works over WebSocket APIs. If a user is actively chatting with
someone, we should not timeout the HttpSession since this would be pretty poor user experience.
However, this is exactly what JSR-356 does.

Another issue is that according to JSR-356 if the HttpSession times out any WebSocket that was
created with that HttpSession and an authenticated user should be forcibly closed. This means that if we
are actively chatting in our application and are not using the HttpSession, then we will also disconnect
from our conversation!

6.2 WebSocket Usage

The WebSocket Sample provides a working sample on how to integrate Spring Session with
WebSockets. You can follow the basic steps for integration below, but you are encouraged to follow
along with the detailed WebSocket Guide when integrating with your own application:

HttpSession Integration

Before using WebSocket integration, you should be sure that you have Chapter 5, HttpSession
Integration working first.

Spring Configuration

In a typical Spring WebSocket application users would implement
WebSocketMessageBrokerConfigurer. For example, the configuration might look something like
the following:

@Configuration

@EnableScheduling

@EnableWebSocketMessageBroker

public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

 @Override

 public void registerStompEndpoints(StompEndpointRegistry registry) {

 registry.addEndpoint("/messages").withSockJS();

 }

 @Override

 public void configureMessageBroker(MessageBrokerRegistry registry) {

 registry.enableSimpleBroker("/queue/", "/topic/");

 registry.setApplicationDestinationPrefixes("/app");

 }

}

https://www.jcp.org/en/jsr/detail?id=356
https://java.net/jira/browse/WEBSOCKET_SPEC-175

Spring Session

please define title in your docbook file! 20

We can easily update our configuration to use Spring Session’s WebSocket support. For example:

src/main/java/samples/config/WebSocketConfig.java.

@Configuration

@EnableScheduling

@EnableWebSocketMessageBroker

public class WebSocketConfig

 extends AbstractSessionWebSocketMessageBrokerConfigurer<Session> { ❶

 @Override

 protected void configureStompEndpoints(StompEndpointRegistry registry) { ❷

 registry.addEndpoint("/messages").withSockJS();

 }

 @Override

 public void configureMessageBroker(MessageBrokerRegistry registry) {

 registry.enableSimpleBroker("/queue/", "/topic/");

 registry.setApplicationDestinationPrefixes("/app");

 }

}

To hook in the Spring Session support we only need to change two things:

❶ Instead of implementing WebSocketMessageBrokerConfigurer we extend
AbstractSessionWebSocketMessageBrokerConfigurer

❷ We rename the registerStompEndpoints method to configureStompEndpoints

What does AbstractSessionWebSocketMessageBrokerConfigurer do behind the scenes?

• WebSocketConnectHandlerDecoratorFactory is added as a
WebSocketHandlerDecoratorFactory to WebSocketTransportRegistration. This
ensures a custom SessionConnectEvent is fired that contains the WebSocketSession. The
WebSocketSession is necessary to terminate any WebSocket connections that are still open when
a Spring Session is terminated.

• SessionRepositoryMessageInterceptor is added as a HandshakeInterceptor to every
StompWebSocketEndpointRegistration. This ensures that the Session is added to the
WebSocket properties to enable updating the last accessed time.

• SessionRepositoryMessageInterceptor is added as a ChannelInterceptor to our
inbound ChannelRegistration. This ensures that every time an inbound message is received,
that the last accessed time of our Spring Session is updated.

• WebSocketRegistryListener is created as a Spring Bean. This ensures that we have a mapping
of all of the Session id to the corresponding WebSocket connections. By maintaining this mapping,
we can close all the WebSocket connections when a Spring Session (HttpSession) is terminated.

Spring Session

please define title in your docbook file! 21

7. WebSession Integration

Spring Session provides transparent integration with Spring WebFlux’s WebSession. This means that
developers can switch the WebSession implementation out with an implementation that is backed by
Spring Session.

7.1 Why Spring Session & WebSession?

We have already mentioned that Spring Session provides transparent integration with Spring WebFlux’s
WebSession, but what benefits do we get out of this? As with HttpSession, Spring Session makes
it trivial to support clustered sessions without being tied to an application container specific solution.

7.2 WebSession with Redis

Using Spring Session with WebSession is enabled by simply registering a WebSessionManager
implementation backed by Spring Session’s ReactiveSessionRepository. The Spring
configuration is responsible for creating a WebSessionManager that replaces the WebSession
implementation with an implementation backed by Spring Session. Add the following Spring
Configuration:

@EnableRedisWebSession ❶

public class SessionConfiguration {

 @Bean

 public LettuceConnectionFactory redisConnectionFactory() {

 return new LettuceConnectionFactory(); ❷

 }

}

❶ The @EnableRedisWebSession annotation creates a Spring Bean with the name of
webSessionManager that implements the WebSessionManager. This is what is in charge of
replacing the WebSession implementation to be backed by Spring Session. In this instance Spring
Session is backed by Redis.

❷ We create a RedisConnectionFactory that connects Spring Session to the Redis Server. We
configure the connection to connect to localhost on the default port (6379) For more information
on configuring Spring Data Redis, refer to the reference documentation.

7.3 How WebSession Integration Works

With Spring WebFlux and it’s WebSession things are considerably simpler for Spring Session
to integrate with, compared to Servlet API and it’s HttpSession. Spring WebFlux provides
WebSessionStore API which presents a strategy for persisting WebSession.

Note

This section describes how Spring Session provides transparent integration with WebSession.
The intent is so that user’s can understand what is happening under the covers. This functionality
is already integrated and you do NOT need to implement this logic yourself.

First we create a custom SpringSessionWebSession that delegates to Spring Session’s Session.
It looks something like the following:

https://docs.spring.io/spring-data/data-redis/docs/2.0.9.RELEASE/reference/html/

Spring Session

please define title in your docbook file! 22

public class SpringSessionWebSession implements WebSession {

 enum State {

 NEW, STARTED

 }

 private final S session;

 private AtomicReference<State> state = new AtomicReference<>();

 SpringSessionWebSession(S session, State state) {

 this.session = session;

 this.state.set(state);

 }

 @Override

 public void start() {

 this.state.compareAndSet(State.NEW, State.STARTED);

 }

 @Override

 public boolean isStarted() {

 State value = this.state.get();

 return (State.STARTED.equals(value)

 || (State.NEW.equals(value) && !this.session.getAttributes().isEmpty()));

 }

 @Override

 public Mono<Void> changeSessionId() {

 return Mono.defer(() -> {

 this.session.changeSessionId();

 return save();

 });

 }

 // ... other methods delegate to the original Session

}

Next, we create a custom WebSessionStore that delegates to the ReactiveSessionRepository
and wraps Session into custom WebSession implementation:

public class SpringSessionWebSessionStore<S extends Session> implements WebSessionStore {

 private final ReactiveSessionRepository<S> sessions;

 public SpringSessionWebSessionStore(ReactiveSessionRepository<S> reactiveSessionRepository) {

 this.sessions = reactiveSessionRepository;

 }

 // ...

}

In order to be detected by Spring WebFlux, this custom WebSessionStore needs to be registered with
ApplicationContext as bean named webSessionManager. For additional information on Spring
WebFlux, refer to the Spring Framework Reference Documentation.

https://docs.spring.io/spring/docs/5.0.8.RELEASE/spring-framework-reference/web-reactive.html

Spring Session

please define title in your docbook file! 23

8. Spring Security Integration

Spring Session provides integration with Spring Security.

8.1 Spring Security Remember-Me Support

Spring Session provides integration with Spring Security’s Remember-Me Authentication. The support
will:

• Change the session expiration length

• Ensure the session cookie expires at Integer.MAX_VALUE. The cookie expiration is set to the
largest possible value because the cookie is only set when the session is created. If it were set to the
same value as the session expiration, then the session would get renewed when the user used it but
the cookie expiration would not be updated causing the expiration to be fixed.

To configure Spring Session with Spring Security in Java Configuration use the following as a guide:

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 // ... additional configuration ...

 .rememberMe()

 .rememberMeServices(rememberMeServices());

}

@Bean

RememberMeServices rememberMeServices() {

 SpringSessionRememberMeServices rememberMeServices =

 new SpringSessionRememberMeServices();

 // optionally customize

 rememberMeServices.setAlwaysRemember(true);

 return rememberMeServices;

}

An XML based configuration would look something like this:

<security:http>

 <!-- ... -->

 <security:form-login />

 <security:remember-me services-ref="rememberMeServices"/>

</security:http>

<bean id="rememberMeServices"

 class="org.springframework.session.security.web.authentication.SpringSessionRememberMeServices"

 p:alwaysRemember="true"/>

8.2 Spring Security Concurrent Session Control

Spring Session provides integration with Spring Security to support its concurrent session control. This
allows limiting the number of active sessions that a single user can have concurrently, but unlike the
default Spring Security support this will also work in a clustered environment. This is done by providing
a custom implementation of Spring Security’s SessionRegistry interface.

When using Spring Security’s Java config DSL, you can configure the custom SessionRegistry
through the SessionManagementConfigurer like this:

https://docs.spring.io/spring-security/site/docs/5.0.7.RELEASE/reference/htmlsingle/#remember-me

Spring Session

please define title in your docbook file! 24

@Configuration

public class SecurityConfiguration extends WebSecurityConfigurerAdapter {

 @Autowired

 private FindByIndexNameSessionRepository<Session> sessionRepository;

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 // @formatter:off

 http

 // other config goes here...

 .sessionManagement()

 .maximumSessions(2)

 .sessionRegistry(sessionRegistry());

 // @formatter:on

 }

 @Bean

 SpringSessionBackedSessionRegistry sessionRegistry() {

 return new SpringSessionBackedSessionRegistry<>(this.sessionRepository);

 }

}

This assumes that you’ve also configured Spring Session to provide a
FindByIndexNameSessionRepository that returns Session instances.

When using XML configuration, it would look something like this:

<security:http>

 <!-- other config goes here... -->

 <security:session-management>

 <security:concurrency-control max-sessions="2" session-registry-ref="sessionRegistry"/>

 </security:session-management>

</security:http>

<bean id="sessionRegistry"

 class="org.springframework.session.security.SpringSessionBackedSessionRegistry">

 <constructor-arg ref="sessionRepository"/>

</bean>

This assumes that your Spring Session SessionRegistry bean is called sessionRegistry, which
is the name used by all SpringHttpSessionConfiguration subclasses.

8.3 Limitations

Spring Session’s implementation of Spring Security’s SessionRegistry interface does not support
the getAllPrincipals method, as this information cannot be retrieved using Spring Session.
This method is never called by Spring Security, so this only affects applications that access the
SessionRegistry themselves.

Spring Session

please define title in your docbook file! 25

9. API Documentation

You can browse the complete Javadoc online. The key APIs are described below:

9.1 Session

A Session is a simplified Map of name value pairs.

Typical usage might look like the following:

public class RepositoryDemo<S extends Session> {

 private SessionRepository<S> repository; ❶

 public void demo() {

 S toSave = this.repository.createSession(); ❷

 ❸

 User rwinch = new User("rwinch");

 toSave.setAttribute(ATTR_USER, rwinch);

 this.repository.save(toSave); ❹

 S session = this.repository.findById(toSave.getId()); ❺

 ❻

 User user = session.getAttribute(ATTR_USER);

 assertThat(user).isEqualTo(rwinch);

 }

 // ... setter methods ...

}

❶ We create a SessionRepository instance with a generic type, S, that extends Session. The
generic type is defined in our class.

❷ We create a new Session using our SessionRepository and assign it to a variable of type S.

❸ We interact with the Session. In our example, we demonstrate saving a User to the Session.

❹ We now save the Session. This is why we needed the generic type S. The SessionRepository
only allows saving Session instances that were created or retrieved using the same
SessionRepository. This allows for the SessionRepository to make implementation
specific optimizations (i.e. only writing attributes that have changed).

❺ We retrieve the Session from the SessionRepository.

❻ We obtain the persisted User from our Session without the need for explicitly casting our attribute.

Session API also provides attributes related to the Session instance’s expiration.

Typical usage might look like the following:

../../api/

Spring Session

please define title in your docbook file! 26

public class ExpiringRepositoryDemo<S extends Session> {

 private SessionRepository<S> repository; ❶

 public void demo() {

 S toSave = this.repository.createSession(); ❷

 // ...

 toSave.setMaxInactiveInterval(Duration.ofSeconds(30)); ❸

 this.repository.save(toSave); ❹

 S session = this.repository.findById(toSave.getId()); ❺

 // ...

 }

 // ... setter methods ...

}

❶ We create a SessionRepository instance with a generic type, S, that extends Session. The
generic type is defined in our class.

❷ We create a new Session using our SessionRepository and assign it to a variable of type S.

❸ We interact with the Session. In our example, we demonstrate updating the amount of time the
Session can be inactive before it expires.

❹ We now save the Session. This is why we needed the generic type S. The SessionRepository
only allows saving Session instances that were created or retrieved using the same
SessionRepository. This allows for the SessionRepository to make implementation
specific optimizations (i.e. only writing attributes that have changed). The last accessed time is
automatically updated when the Session is saved.

❺ We retrieve the Session from the SessionRepository. If the Session were expired, the result
would be null.

9.2 SessionRepository

A SessionRepository is in charge of creating, retrieving, and persisting Session instances.

If possible, developers should not interact directly with a SessionRepository or a Session. Instead,
developers should prefer interacting with SessionRepository and Session indirectly through the
HttpSession and WebSocket integration.

9.3 FindByIndexNameSessionRepository

Spring Session’s most basic API for using a Session is the SessionRepository. This API is
intentionally very simple, so that it is easy to provide additional implementations with basic functionality.

Some SessionRepository implementations may choose to implement
FindByIndexNameSessionRepository also. For example, Spring’s Redis support implements
FindByIndexNameSessionRepository.

The FindByIndexNameSessionRepository adds a single method to look up all the sessions
for a particular user. This is done by ensuring that the session attribute with the name
FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME is populated with the
username. It is the responsibility of the developer to ensure the attribute is populated since Spring
Session is not aware of the authentication mechanism being used. An example of how this might be
used can be seen below:

String username = "username";

this.session.setAttribute(

 FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME, username);

Spring Session

please define title in your docbook file! 27

Note

Some implementations of FindByIndexNameSessionRepository will provide hooks to
automatically index other session attributes. For example, many implementations will
automatically ensure the current Spring Security user name is indexed with the index name
FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME.

Once the session is indexed, it can be found using the following:

String username = "username";

Map<String, Session> sessionIdToSession = this.sessionRepository

 .findByIndexNameAndIndexValue(

 FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME,

 username);

9.4 ReactiveSessionRepository

A ReactiveSessionRepository is in charge of creating, retrieving, and persisting Session
instances in a non-blocking and reactive manner.

If possible, developers should not interact directly with a ReactiveSessionRepository or a
Session. Instead, developers should prefer interacting with ReactiveSessionRepository and
Session indirectly through the WebSession integration.

9.5 EnableSpringHttpSession

The @EnableSpringHttpSession annotation can be added to an @Configuration class to expose
the SessionRepositoryFilter as a bean named "springSessionRepositoryFilter". In order to
leverage the annotation, a single SessionRepository bean must be provided. For example:

@EnableSpringHttpSession

@Configuration

public class SpringHttpSessionConfig {

 @Bean

 public MapSessionRepository sessionRepository() {

 return new MapSessionRepository(new ConcurrentHashMap<>());

 }

}

It is important to note that no infrastructure for session expirations is configured for you out of the box.
This is because things like session expiration are highly implementation dependent. This means if you
require cleaning up expired sessions, you are responsible for cleaning up the expired sessions.

9.6 EnableSpringWebSession

The @EnableSpringWebSession annotation can be added to an @Configuration class to
expose the WebSessionManager as a bean named "webSessionManager". In order to leverage the
annotation, a single ReactiveSessionRepository bean must be provided. For example:

@EnableSpringWebSession

public class SpringWebSessionConfig {

 @Bean

 public ReactiveSessionRepository reactiveSessionRepository() {

 return new ReactiveMapSessionRepository(new ConcurrentHashMap<>());

 }

}

Spring Session

please define title in your docbook file! 28

It is important to note that no infrastructure for session expirations is configured for you out of the box.
This is because things like session expiration are highly implementation dependent. This means if you
require cleaning up expired sessions, you are responsible for cleaning up the expired sessions.

9.7 RedisOperationsSessionRepository

RedisOperationsSessionRepository is a SessionRepository that is implemented using
Spring Data’s RedisOperations. In a web environment, this is typically used in combination
with SessionRepositoryFilter. The implementation supports SessionDestroyedEvent and
SessionCreatedEvent through SessionMessageListener.

Instantiating a RedisOperationsSessionRepository

A typical example of how to create a new instance can be seen below:

RedisTemplate<Object, Object> redisTemplate = new RedisTemplate<>();

// ... configure redisTemplate ...

SessionRepository<? extends Session> repository =

 new RedisOperationsSessionRepository(redisTemplate);

For additional information on how to create a RedisConnectionFactory, refer to the Spring Data
Redis Reference.

EnableRedisHttpSession

In a web environment, the simplest way to create a new RedisOperationsSessionRepository is to
use @EnableRedisHttpSession. Complete example usage can be found in the Chapter 3, Samples
and Guides (Start Here) You can use the following attributes to customize the configuration:

• maxInactiveIntervalInSeconds - the amount of time before the session will expire in seconds

• redisNamespace - allows configuring an application specific namespace for the sessions. Redis keys
and channel IDs will start with the prefix of <redisNamespace>:.

• redisFlushMode - allows specifying when data will be written to Redis. The default is only when
save is invoked on SessionRepository. A value of RedisFlushMode.IMMEDIATE will write to
Redis as soon as possible.

Custom RedisSerializer

You can customize the serialization by creating a Bean named
springSessionDefaultRedisSerializer that implements RedisSerializer<Object>.

Redis TaskExecutor

RedisOperationsSessionRepository is subscribed to receive events from redis using
a RedisMessageListenerContainer. You can customize the way those events are
dispatched, by creating a Bean named springSessionRedisTaskExecutor and/or a Bean
springSessionRedisSubscriptionExecutor. More details on configuring redis task executors
can be found here.

Storage Details

The sections below outline how Redis is updated for each operation. An example of creating a new
session can be found below. The subsequent sections describe the details.

https://docs.spring.io/spring-data-redis/docs/2.0.9.RELEASE/reference/html/#redis:pubsub:subscribe:containers

Spring Session

please define title in your docbook file! 29

HMSET spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe creationTime 1404360000000 \

 maxInactiveInterval 1800 \

 lastAccessedTime 1404360000000 \

 sessionAttr:attrName someAttrValue \

 sessionAttr2:attrName someAttrValue2

EXPIRE spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe 2100

APPEND spring:session:sessions:expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe ""

EXPIRE spring:session:sessions:expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe 1800

SADD spring:session:expirations:1439245080000 expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe

EXPIRE spring:session:expirations1439245080000 2100

Saving a Session

Each session is stored in Redis as a Hash. Each session is set and updated using the HMSET command.
An example of how each session is stored can be seen below.

HMSET spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe creationTime 1404360000000 \

 maxInactiveInterval 1800 \

 lastAccessedTime 1404360000000 \

 sessionAttr:attrName someAttrValue \

 sessionAttr2:attrName someAttrValue2

In this example, the session following statements are true about the session:

• The session ID is 33fdd1b6-b496-4b33-9f7d-df96679d32fe

• The session was created at 1404360000000 in milliseconds since midnight of 1/1/1970 GMT.

• The session expires in 1800 seconds (30 minutes).

• The session was last accessed at 1404360000000 in milliseconds since midnight of 1/1/1970 GMT.

• The session has two attributes. The first is "attrName" with the value of "someAttrValue". The second
session attribute is named "attrName2" with the value of "someAttrValue2".

Optimized Writes

The Session instances managed by RedisOperationsSessionRepository keeps track of the
properties that have changed and only updates those. This means if an attribute is written once and
read many times we only need to write that attribute once. For example, assume the session attribute
"sessionAttr2" from earlier was updated. The following would be executed upon saving:

HMSET spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe sessionAttr:attrName2 newValue

Session Expiration

An expiration is associated to each session using the EXPIRE command based upon the
Session.getMaxInactiveInterval(). For example:

EXPIRE spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe 2100

You will note that the expiration that is set is 5 minutes after the session actually expires. This is
necessary so that the value of the session can be accessed when the session expires. An expiration
is set on the session itself five minutes after it actually expires to ensure it is cleaned up, but only after
we perform any necessary processing.

Note

The SessionRepository.findById(String) method ensures that no expired sessions will
be returned. This means there is no need to check the expiration before using a session.

Spring Session

please define title in your docbook file! 30

Spring Session relies on the delete and expired keyspace notifications from Redis to fire a
SessionDeletedEvent and SessionExpiredEvent respectively. It is the SessionDeletedEvent or
SessionExpiredEvent that ensures resources associated with the Session are cleaned up. For
example, when using Spring Session’s WebSocket support the Redis expired or delete event is what
triggers any WebSocket connections associated with the session to be closed.

Expiration is not tracked directly on the session key itself since this would mean the session data would
no longer be available. Instead a special session expires key is used. In our example the expires key is:

APPEND spring:session:sessions:expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe ""

EXPIRE spring:session:sessions:expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe 1800

When a session expires key is deleted or expires, the keyspace notification triggers a lookup of the
actual session and a SessionDestroyedEvent is fired.

One problem with relying on Redis expiration exclusively is that Redis makes no guarantee of when the
expired event will be fired if the key has not been accessed. Specifically the background task that Redis
uses to clean up expired keys is a low priority task and may not trigger the key expiration. For additional
details see Timing of expired events section in the Redis documentation.

To circumvent the fact that expired events are not guaranteed to happen we can ensure that each key
is accessed when it is expected to expire. This means that if the TTL is expired on the key, Redis will
remove the key and fire the expired event when we try to access the key.

For this reason, each session expiration is also tracked to the nearest minute. This allows a background
task to access the potentially expired sessions to ensure that Redis expired events are fired in a more
deterministic fashion. For example:

SADD spring:session:expirations:1439245080000 expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe

EXPIRE spring:session:expirations1439245080000 2100

The background task will then use these mappings to explicitly request each key. By accessing the key,
rather than deleting it, we ensure that Redis deletes the key for us only if the TTL is expired.

Note

We do not explicitly delete the keys since in some instances there may be a race condition that
incorrectly identifies a key as expired when it is not. Short of using distributed locks (which would
kill our performance) there is no way to ensure the consistency of the expiration mapping. By
simply accessing the key, we ensure that the key is only removed if the TTL on that key is expired.

SessionDeletedEvent and SessionExpiredEvent

SessionDeletedEvent and SessionExpiredEvent are both types of
SessionDestroyedEvent.

RedisOperationsSessionRepository supports firing a SessionDeletedEvent whenever a
Session is deleted or a SessionExpiredEvent when it expires. This is necessary to ensure
resources associated with the Session are properly cleaned up.

For example, when integrating with WebSockets the SessionDestroyedEvent is in charge of closing
any active WebSocket connections.

https://redis.io/topics/notifications
https://redis.io/topics/notifications

Spring Session

please define title in your docbook file! 31

Firing SessionDeletedEvent or SessionExpiredEvent is made available through the
SessionMessageListener which listens to Redis Keyspace events. In order for this to work, Redis
Keyspace events for Generic commands and Expired events needs to be enabled. For example:

redis-cli config set notify-keyspace-events Egx

If you are using @EnableRedisHttpSession the SessionMessageListener and enabling the
necessary Redis Keyspace events is done automatically. However, in a secured Redis enviornment the
config command is disabled. This means that Spring Session cannot configure Redis Keyspace events
for you. To disable the automatic configuration add ConfigureRedisAction.NO_OP as a bean.

For example, Java Configuration can use the following:

@Bean

public static ConfigureRedisAction configureRedisAction() {

 return ConfigureRedisAction.NO_OP;

}

XML Configuration can use the following:

<util:constant

 static-field="org.springframework.session.data.redis.config.ConfigureRedisAction.NO_OP"/>

SessionCreatedEvent

When a session is created an event is sent to Redis with the channel of
spring:session:channel:created:33fdd1b6-b496-4b33-9f7d-df96679d32fe such that
33fdd1b6-b496-4b33-9f7d-df96679d32fe is the session ID. The body of the event will be the
session that was created.

If registered as a MessageListener (default), then RedisOperationsSessionRepository will then
translate the Redis message into a SessionCreatedEvent.

Viewing the Session in Redis

After installing redis-cli, you can inspect the values in Redis using the redis-cli. For example, enter the
following into a terminal:

$ redis-cli

redis 127.0.0.1:6379> keys *

1) "spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021" ❶

2) "spring:session:expirations:1418772300000" ❷

❶ The suffix of this key is the session identifier of the Spring Session.

❷ This key contains all the session IDs that should be deleted at the time 1418772300000.

You can also view the attributes of each session.

redis 127.0.0.1:6379> hkeys spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021

1) "lastAccessedTime"

2) "creationTime"

3) "maxInactiveInterval"

4) "sessionAttr:username"

redis 127.0.0.1:6379> hget spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021

 sessionAttr:username

"\xac\xed\x00\x05t\x00\x03rob"

https://redis.io/topics/notifications
https://redis.io/topics/quickstart
https://redis.io/commands#hash

Spring Session

please define title in your docbook file! 32

9.8 ReactiveRedisOperationsSessionRepository

ReactiveRedisOperationsSessionRepository is a ReactiveSessionRepository that is
implemented using Spring Data’s ReactiveRedisOperations. In a web environment, this is typically
used in combination with WebSessionStore.

Instantiating a ReactiveRedisOperationsSessionRepository

A typical example of how to create a new instance can be seen below:

// ... create and configure connectionFactory and serializationContext ...

ReactiveRedisTemplate<String, Object> redisTemplate = new ReactiveRedisTemplate<>(

 connectionFactory, serializationContext);

ReactiveSessionRepository<? extends Session> repository =

 new ReactiveRedisOperationsSessionRepository(redisTemplate);

For additional information on how to create a ReactiveRedisConnectionFactory, refer to the
Spring Data Redis Reference.

EnableRedisWebSession

In a web environment, the simplest way to create a new
ReactiveRedisOperationsSessionRepository is to use @EnableRedisWebSession. You
can use the following attributes to customize the configuration:

• maxInactiveIntervalInSeconds - the amount of time before the session will expire in seconds

• redisNamespace - allows configuring an application specific namespace for the sessions. Redis keys
and channel IDs will start with the prefix of <redisNamespace>:.

• redisFlushMode - allows specifying when data will be written to Redis. The default is only when
save is invoked on ReactiveSessionRepository. A value of RedisFlushMode.IMMEDIATE
will write to Redis as soon as possible.

Optimized Writes

The Session instances managed by ReactiveRedisOperationsSessionRepository keeps
track of the properties that have changed and only updates those. This means if an attribute is written
once and read many times we only need to write that attribute once.

Viewing the Session in Redis

After installing redis-cli, you can inspect the values in Redis using the redis-cli. For example, enter the
following into a terminal:

$ redis-cli

redis 127.0.0.1:6379> keys *

1) "spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021" ❶

❶ The suffix of this key is the session identifier of the Spring Session.

You can also view the attributes of each session.

https://redis.io/topics/quickstart
https://redis.io/commands#hash

Spring Session

please define title in your docbook file! 33

redis 127.0.0.1:6379> hkeys spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021

1) "lastAccessedTime"

2) "creationTime"

3) "maxInactiveInterval"

4) "sessionAttr:username"

redis 127.0.0.1:6379> hget spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021

 sessionAttr:username

"\xac\xed\x00\x05t\x00\x03rob"

9.9 MapSessionRepository

The MapSessionRepository allows for persisting Session in a Map with the key being the Session
ID and the value being the Session. The implementation can be used with a ConcurrentHashMap as
a testing or convenience mechanism. Alternatively, it can be used with distributed Map implementations.
For example, it can be used with Hazelcast.

Instantiating MapSessionRepository

Creating a new instance is as simple as:

SessionRepository<? extends Session> repository = new MapSessionRepository(

 new ConcurrentHashMap<>());

Using Spring Session and Hazlecast

The Hazelcast Sample is a complete application demonstrating using Spring Session with Hazelcast.

To run it use the following:

./gradlew :samples:hazelcast:tomcatRun

The Hazelcast Spring Sample is a complete application demonstrating using Spring Session with
Hazelcast and Spring Security.

It includes example Hazelcast MapListener implementations that support firing
SessionCreatedEvent, SessionDeletedEvent and SessionExpiredEvent.

To run it use the following:

./gradlew :samples:hazelcast-spring:tomcatRun

9.10 ReactiveMapSessionRepository

The ReactiveMapSessionRepository allows for persisting Session in a Map with the key
being the Session ID and the value being the Session. The implementation can be used with a
ConcurrentHashMap as a testing or convenience mechanism. Alternatively, it can be used with
distributed Map implementations with the requirement that the supplied Map must be a non-blocking.

9.11 JdbcOperationsSessionRepository

JdbcOperationsSessionRepository is a SessionRepository implementation that uses
Spring’s JdbcOperations to store sessions in a relational database. In a web environment, this is
typically used in combination with SessionRepositoryFilter. Please note that this implementation
does not support publishing of session events.

Spring Session

please define title in your docbook file! 34

Instantiating a JdbcOperationsSessionRepository

A typical example of how to create a new instance can be seen below:

JdbcTemplate jdbcTemplate = new JdbcTemplate();

// ... configure JdbcTemplate ...

PlatformTransactionManager transactionManager = new DataSourceTransactionManager();

// ... configure transactionManager ...

SessionRepository<? extends Session> repository =

 new JdbcOperationsSessionRepository(jdbcTemplate, transactionManager);

For additional information on how to create and configure JdbcTemplate and
PlatformTransactionManager, refer to the Spring Framework Reference Documentation.

EnableJdbcHttpSession

In a web environment, the simplest way to create a new JdbcOperationsSessionRepository is to
use @EnableJdbcHttpSession. Complete example usage can be found in the Chapter 3, Samples
and Guides (Start Here) You can use the following attributes to customize the configuration:

• tableName - the name of database table used by Spring Session to store sessions

• maxInactiveIntervalInSeconds - the amount of time before the session will expire in seconds

Custom LobHandler

You can customize the BLOB handling by creating a Bean named springSessionLobHandler that
implements LobHandler.

Custom ConversionService

You can customize the default serialization and deserialization of the session by providing
a ConversionService instance. When working in a typical Spring environment, the default
ConversionService Bean (named conversionService) will be automatically picked up and used
for serialization and deserialization. However, you can override the default ConversionService by
providing a Bean named springSessionConversionService.

Storage Details

By default, this implementation uses SPRING_SESSION and SPRING_SESSION_ATTRIBUTES tables
to store sessions. Note that the table name can be easily customized as already described. In
that case the table used to store attributes will be named using the provided table name, suffixed
with _ATTRIBUTES. If further customizations are needed, SQL queries used by the repository can
be customized using set*Query setter methods. In this case you need to manually configure the
sessionRepository bean.

Due to the differences between the various database vendors, especially when it comes to storing binary
data, make sure to use SQL script specific to your database. Scripts for most major database vendors
are packaged as org/springframework/session/jdbc/schema-*.sql, where * is the target
database type.

For example, with PostgreSQL database you would use the following schema script:

https://docs.spring.io/spring/docs/5.0.8.RELEASE/spring-framework-reference/data-access.html

Spring Session

please define title in your docbook file! 35

CREATE TABLE SPRING_SESSION (

 PRIMARY_ID CHAR(36) NOT NULL,

 SESSION_ID CHAR(36) NOT NULL,

 CREATION_TIME BIGINT NOT NULL,

 LAST_ACCESS_TIME BIGINT NOT NULL,

 MAX_INACTIVE_INTERVAL INT NOT NULL,

 EXPIRY_TIME BIGINT NOT NULL,

 PRINCIPAL_NAME VARCHAR(100),

 CONSTRAINT SPRING_SESSION_PK PRIMARY KEY (PRIMARY_ID)

);

CREATE UNIQUE INDEX SPRING_SESSION_IX1 ON SPRING_SESSION (SESSION_ID);

CREATE INDEX SPRING_SESSION_IX2 ON SPRING_SESSION (EXPIRY_TIME);

CREATE INDEX SPRING_SESSION_IX3 ON SPRING_SESSION (PRINCIPAL_NAME);

CREATE TABLE SPRING_SESSION_ATTRIBUTES (

 SESSION_PRIMARY_ID CHAR(36) NOT NULL,

 ATTRIBUTE_NAME VARCHAR(200) NOT NULL,

 ATTRIBUTE_BYTES BYTEA NOT NULL,

 CONSTRAINT SPRING_SESSION_ATTRIBUTES_PK PRIMARY KEY (SESSION_PRIMARY_ID, ATTRIBUTE_NAME),

 CONSTRAINT SPRING_SESSION_ATTRIBUTES_FK FOREIGN KEY (SESSION_PRIMARY_ID) REFERENCES

 SPRING_SESSION(PRIMARY_ID) ON DELETE CASCADE

);

And with MySQL database:

CREATE TABLE SPRING_SESSION (

 PRIMARY_ID CHAR(36) NOT NULL,

 SESSION_ID CHAR(36) NOT NULL,

 CREATION_TIME BIGINT NOT NULL,

 LAST_ACCESS_TIME BIGINT NOT NULL,

 MAX_INACTIVE_INTERVAL INT NOT NULL,

 EXPIRY_TIME BIGINT NOT NULL,

 PRINCIPAL_NAME VARCHAR(100),

 CONSTRAINT SPRING_SESSION_PK PRIMARY KEY (PRIMARY_ID)

) ENGINE=InnoDB ROW_FORMAT=DYNAMIC;

CREATE UNIQUE INDEX SPRING_SESSION_IX1 ON SPRING_SESSION (SESSION_ID);

CREATE INDEX SPRING_SESSION_IX2 ON SPRING_SESSION (EXPIRY_TIME);

CREATE INDEX SPRING_SESSION_IX3 ON SPRING_SESSION (PRINCIPAL_NAME);

CREATE TABLE SPRING_SESSION_ATTRIBUTES (

 SESSION_PRIMARY_ID CHAR(36) NOT NULL,

 ATTRIBUTE_NAME VARCHAR(200) NOT NULL,

 ATTRIBUTE_BYTES BLOB NOT NULL,

 CONSTRAINT SPRING_SESSION_ATTRIBUTES_PK PRIMARY KEY (SESSION_PRIMARY_ID, ATTRIBUTE_NAME),

 CONSTRAINT SPRING_SESSION_ATTRIBUTES_FK FOREIGN KEY (SESSION_PRIMARY_ID) REFERENCES

 SPRING_SESSION(PRIMARY_ID) ON DELETE CASCADE

) ENGINE=InnoDB ROW_FORMAT=DYNAMIC;

Transaction management

All JDBC operations in JdbcOperationsSessionRepository are executed in a transactional
manner. Transactions are executed with propagation set to REQUIRES_NEW in order to avoid
unexpected behavior due to interference with existing transactions (for example, executing save
operation in a thread that already participates in a read-only transaction).

9.12 HazelcastSessionRepository

HazelcastSessionRepository is a SessionRepository implementation that stores sessions
in Hazelcast’s distributed IMap. In a web environment, this is typically used in combination with
SessionRepositoryFilter.

Spring Session

please define title in your docbook file! 36

Instantiating a HazelcastSessionRepository

A typical example of how to create a new instance can be seen below:

Config config = new Config();

// ... configure Hazelcast ...

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);

HazelcastSessionRepository repository =

 new HazelcastSessionRepository(hazelcastInstance);

For additional information on how to create and configure Hazelcast instance, refer to the Hazelcast
documentation.

EnableHazelcastHttpSession

If you wish to use Hazelcast as your backing source for the SessionRepository, then the
@EnableHazelcastHttpSession annotation can be added to an @Configuration class. This
extends the functionality provided by the @EnableSpringHttpSession annotation but makes the
SessionRepository for you in Hazelcast. You must provide a single HazelcastInstance bean
for the configuration to work. Complete configuration example can be found in the Chapter 3, Samples
and Guides (Start Here)

Basic Customization

You can use the following attributes on @EnableHazelcastHttpSession to customize the
configuration:

• maxInactiveIntervalInSeconds - the amount of time before the session will expire in seconds.
Default is 1800 seconds (30 minutes)

• sessionMapName - the name of the distributed Map that will be used in Hazelcast to store the session
data.

Session Events

Using a MapListener to respond to entries being added, evicted, and removed from the distributed
Map, these events will trigger publishing SessionCreatedEvent, SessionExpiredEvent, and
SessionDeletedEvent events respectively using the ApplicationEventPublisher.

Storage Details

Sessions will be stored in a distributed IMap in Hazelcast. The IMap interface methods will
be used to get() and put() Sessions. Additionally, values() method is used to support
FindByIndexNameSessionRepository#findByIndexNameAndIndexValue operation, together
with appropriate ValueExtractor that needs to be registered with Hazelcast. Refer to Hazelcast
Spring Sample for more details on this configuration. The expiration of a session in the IMap is handled
by Hazelcast’s support for setting the time to live on an entry when it is put() into the IMap. Entries
(sessions) that have been idle longer than the time to live will be automatically removed from the IMap.

You shouldn’t need to configure any settings such as max-idle-seconds or time-to-live-
seconds for the IMap within the Hazelcast configuration.

http://docs.hazelcast.org/docs/3.9.4/manual/html-single/index.html#hazelcast-configuration
http://docs.hazelcast.org/docs/3.9.4/manual/html-single/index.html#hazelcast-configuration
https://hazelcast.org/

Spring Session

please define title in your docbook file! 37

Note that if you use Hazelcast’s MapStore to persist your sessions IMap there are some limitations
when reloading the sessions from MapStore:

• reload triggers EntryAddedListener which results in SessionCreatedEvent being re-published

• reload uses default TTL for a given IMap which results in sessions losing their original TTL

Spring Session

please define title in your docbook file! 38

10. Custom SessionRepository

Implementing a custom SessionRepository API should be a fairly straightforward task. Coupling
the custom implementation with @EnableSpringHttpSession support allow to easily reuse existing
Spring Session configuration facilities and infrastructure. There are however a couple of aspects that
deserve a closer consideration.

During a lifecycle of an HTTP request, the HttpSession is typically is persisted to
SessionRepository twice. First to ensure that the session is available to the clients as soon as the
client has access to the session ID, and it is also necessary to write after the session is committed
because further modifications to the session might be made. Having this in mind, it is generally
recommended for a SessionRepository implementation to keep track of changes to ensure that only
deltas are saved. This is in particular very important in highly concurrent environments, where multiple
requests operate on the same HttpSession and therefore cause race conditions, with requests
overriding each others changes to session attributes. All of the SessionRepository implementations
provided by Spring Session use the described approach to persisting session changes and can be used
for guidance while implementing custom SessionRepository.

Note that the same recommendations apply for implementing a custom
ReactiveSessionRepository as well. Of course, in this case the @EnableSpringWebSession
should be used.

Spring Session

please define title in your docbook file! 39

11. Upgrading to 2.x

With the new major release version, the Spring Session team took the opportunity to make some non-
passive changes. The focus of these changes is to improve and harmonize Spring Session’s APIs, as
well as remove the deprecated components.

11.1 Baseline update

Spring Session 2.0 requires Java 8 and Spring Framework 5.0 as a baseline, since its entire codebase is
now based on Java 8 source code. Refer to guide for Upgrading to Spring Framework 5.x for reference
on upgrading Spring Framework.

11.2 Replaced and Removed Modules

As a part of the project’s split the modules, the existing spring-session has been replaced with
spring-session-core module. The spring-session-core module holds only the common
set of APIs and components while other modules contain the implementation of appropriate
SessionRepository and functionality related to that data store. This applies to several existing that
were previously a simple dependency aggregator helper modules but with new module arrangement
actually carry the implementation:

• Spring Session Data Redis

• Spring Session JDBC

• Spring Session Hazelcast

Also the following modules were removed from the main project repository:

• Spring Session Data MongoDB

• Spring Session Data GemFire

Note that these two have moved to separate repositories, and will continue to be available albeit under
a changed artifact names:

• spring-session-data-mongodb

• spring-session-data-geode

11.3 Replaced and Removed Packages, Classes and Methods

• ExpiringSession API has been merged into Session API

• Session API has been enhanced to make full use of Java 8

• Session API has been extended with changeSessionId support

• SessionRepository API has been updated to better align with Spring Data method naming
conventions

• AbstractSessionEvent and its subclasses are no longer constructable without an underlying
Session object

https://github.com/spring-projects/spring-framework/wiki/Upgrading-to-Spring-Framework-5.x
https://github.com/spring-projects/spring-session-data-mongodb
https://github.com/spring-projects/spring-session-data-geode

Spring Session

please define title in your docbook file! 40

• Redis namespace used by RedisOperationsSessionRepository is now fully configurable,
instead of being partial configurable

• Redis configuration support has been updated to avoid registering a Spring Session specific
RedisTemplate bean

• JDBC configuration support has been updated to avoid registering a Spring Session specific
JdbcTemplate bean

• Previously deprecated classes and methods have been removed across the codebase

11.4 Dropped Support

As a part of the changes to HttpSessionStrategy and it’s alignment to the counterpart from the
reactive world, the support for managing multiple users' sessions in a single browser instance has been
removed. The introduction of a new API to replace this functionality is under consideration for future
releases.

Spring Session

please define title in your docbook file! 41

12. Spring Session Community

We are glad to consider you a part of our community. Please find additional information below.

12.1 Support

You can get help by asking questions on StackOverflow with the tag spring-session. Similarly we
encourage helping others by answering questions on StackOverflow.

12.2 Source Code

Our source code can be found on GitHub at https://github.com/spring-projects/spring-session/

12.3 Issue Tracking

We track issues in GitHub issues at https://github.com/spring-projects/spring-session/issues

12.4 Contributing

We appreciate Pull Requests.

12.5 License

Spring Session is Open Source software released under the Apache 2.0 license.

12.6 Community Extensions

Name Location

Spring Session OrientDB https://github.com/maseev/spring-session-
orientdb

Spring Session Infinispan http://infinispan.org/docs/dev/user_guide/
user_guide.html#externalizing_session_using_spring_session

https://stackoverflow.com/questions/tagged/spring-session
https://github.com/spring-projects/spring-session/
https://github.com/spring-projects/spring-session/issues
https://help.github.com/articles/using-pull-requests/
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/maseev/spring-session-orientdb
https://github.com/maseev/spring-session-orientdb
http://infinispan.org/docs/dev/user_guide/user_guide.html#externalizing_session_using_spring_session
http://infinispan.org/docs/dev/user_guide/user_guide.html#externalizing_session_using_spring_session

Spring Session

please define title in your docbook file! 42

13. Minimum Requirements

The minimum requirements for Spring Session are:

• Java 8+

• If you are running in a Servlet Container (not required), Servlet 3.1+

• If you are using other Spring libraries (not required), the minimum required version is Spring 5.0.x.

• @EnableRedisHttpSession requires Redis 2.8+. This is necessary to support Session Expiration

• @EnableHazelcastHttpSession requires Hazelcast 3.6+. This is necessary to support
FindByIndexNameSessionRepository

Note

At its core Spring Session only has a required dependency on spring-jcl. For an example
of using Spring Session without any other Spring dependencies, refer to the hazelcast sample
application.

	Spring Session
	Table of Contents
	
	1. Introduction
	2. What’s New in 2.0
	3. Samples and Guides (Start Here)
	4. Spring Session Modules
	5. HttpSession Integration
	5.1 Why Spring Session & HttpSession?
	5.2 HttpSession with Redis
	Redis Java Based Configuration
	Spring Java Configuration
	Java Servlet Container Initialization

	Redis XML Based Configuration
	Spring XML Configuration
	XML Servlet Container Initialization

	5.3 HttpSession with JDBC
	JDBC Java Based Configuration
	Spring Java Configuration
	Java Servlet Container Initialization

	JDBC XML Based Configuration
	Spring XML Configuration
	XML Servlet Container Initialization

	JDBC Spring Boot Based Configuration
	Spring Boot Configuration
	Configuring the DataSource
	Servlet Container Initialization

	5.4 HttpSession with Hazelcast
	Spring Configuration
	Servlet Container Initialization

	5.5 How HttpSession Integration Works
	5.6 HttpSession & RESTful APIs
	Spring Configuration
	Servlet Container Initialization

	5.7 HttpSessionListener

	6. WebSocket Integration
	6.1 Why Spring Session & WebSockets?
	6.2 WebSocket Usage
	HttpSession Integration
	Spring Configuration

	7. WebSession Integration
	7.1 Why Spring Session & WebSession?
	7.2 WebSession with Redis
	7.3 How WebSession Integration Works

	8. Spring Security Integration
	8.1 Spring Security Remember-Me Support
	8.2 Spring Security Concurrent Session Control
	8.3 Limitations

	9. API Documentation
	9.1 Session
	9.2 SessionRepository
	9.3 FindByIndexNameSessionRepository
	9.4 ReactiveSessionRepository
	9.5 EnableSpringHttpSession
	9.6 EnableSpringWebSession
	9.7 RedisOperationsSessionRepository
	Instantiating a RedisOperationsSessionRepository
	EnableRedisHttpSession
	Custom RedisSerializer

	Redis TaskExecutor
	Storage Details
	Saving a Session
	Optimized Writes
	Session Expiration

	SessionDeletedEvent and SessionExpiredEvent
	SessionCreatedEvent
	Viewing the Session in Redis

	9.8 ReactiveRedisOperationsSessionRepository
	Instantiating a ReactiveRedisOperationsSessionRepository
	EnableRedisWebSession
	Optimized Writes

	Viewing the Session in Redis

	9.9 MapSessionRepository
	Instantiating MapSessionRepository
	Using Spring Session and Hazlecast

	9.10 ReactiveMapSessionRepository
	9.11 JdbcOperationsSessionRepository
	Instantiating a JdbcOperationsSessionRepository
	EnableJdbcHttpSession
	Custom LobHandler
	Custom ConversionService

	Storage Details
	Transaction management

	9.12 HazelcastSessionRepository
	Instantiating a HazelcastSessionRepository
	EnableHazelcastHttpSession
	Basic Customization
	Session Events
	Storage Details

	10. Custom SessionRepository
	11. Upgrading to 2.x
	11.1 Baseline update
	11.2 Replaced and Removed Modules
	11.3 Replaced and Removed Packages, Classes and Methods
	11.4 Dropped Support

	12. Spring Session Community
	12.1 Support
	12.2 Source Code
	12.3 Issue Tracking
	12.4 Contributing
	12.5 License
	12.6 Community Extensions

	13. Minimum Requirements

