Spring Session
Table of Contents
	 
	1. Introduction
	2. What’s New in 2.0
	3. Samples and Guides (Start Here)
	4. Spring Session Modules
	5. HttpSession Integration	Why Spring Session & HttpSession?
	HttpSession with Redis	Redis Java Based Configuration	Spring Java Configuration
	Java Servlet Container Initialization


	Redis XML Based Configuration	Spring XML Configuration
	XML Servlet Container Initialization




	HttpSession with JDBC	JDBC Java Based Configuration	Spring Java Configuration
	Java Servlet Container Initialization


	JDBC XML Based Configuration	Spring XML Configuration
	XML Servlet Container Initialization


	JDBC Spring Boot Based Configuration	Spring Boot Configuration
	Configuring the DataSource
	Servlet Container Initialization




	HttpSession with Hazelcast	Spring Configuration
	Servlet Container Initialization


	How HttpSession Integration Works
	HttpSession & RESTful APIs	Spring Configuration
	Servlet Container Initialization


	HttpSessionListener


	6. WebSocket Integration	Why Spring Session & WebSockets?
	WebSocket Usage	HttpSession Integration
	Spring Configuration




	7. WebSession Integration	Why Spring Session & WebSession?
	WebSession with Redis
	How WebSession Integration Works


	8. Spring Security Integration	Spring Security Remember-Me Support
	Spring Security Concurrent Session Control
	Limitations


	9. API Documentation	Session
	SessionRepository
	FindByIndexNameSessionRepository
	ReactiveSessionRepository
	EnableSpringHttpSession
	EnableSpringWebSession
	RedisOperationsSessionRepository	Instantiating a RedisOperationsSessionRepository
	EnableRedisHttpSession	Custom RedisSerializer


	Redis TaskExecutor
	Storage Details	Saving a Session
	Optimized Writes
	Session Expiration


	SessionDeletedEvent and SessionExpiredEvent
	SessionCreatedEvent
	Viewing the Session in Redis


	ReactiveRedisOperationsSessionRepository	Instantiating a ReactiveRedisOperationsSessionRepository
	EnableRedisWebSession	Optimized Writes


	Viewing the Session in Redis


	MapSessionRepository	Instantiating MapSessionRepository
	Using Spring Session and Hazlecast


	ReactiveMapSessionRepository
	JdbcOperationsSessionRepository	Instantiating a JdbcOperationsSessionRepository
	EnableJdbcHttpSession	Custom LobHandler
	Custom ConversionService


	Storage Details
	Transaction management


	HazelcastSessionRepository	Instantiating a HazelcastSessionRepository
	EnableHazelcastHttpSession
	Basic Customization
	Session Events
	Storage Details




	10. Custom SessionRepository
	11. Upgrading to 2.x	Baseline update
	Replaced and Removed Modules
	Replaced and Removed Packages, Classes and Methods
	Dropped Support


	12. Spring Session Community	Support
	Source Code
	Issue Tracking
	Contributing
	License
	Community Extensions


	13. Minimum Requirements


Spring Session

Rob Winch, Vedran Pavić




























Spring Session provides an API and implementations for managing a user’s session information.

Chapter 1. Introduction





Spring Session provides an API and implementations for managing a user’s session information, while also making it trivial to support clustered sessions without being tied to an application container specific solution.
It also provides transparent integration with:

	
HttpSession - allows replacing the HttpSession in an application container (i.e. Tomcat) neutral way, with support for providing session IDs in headers to work with RESTful APIs.

	
WebSocket - provides the ability to keep the HttpSession alive when receiving WebSocket messages

	
WebSession - allows replacing the Spring WebFlux’s WebSession in an application container neutral way.




Chapter 2. What’s New in 2.0





Below are the highlights of what is new in Spring Session 2.0. You can find a complete list of what’s new by referring to the changelogs of
2.0.0.M1,
2.0.0.M2,
2.0.0.M3,
2.0.0.M4,
2.0.0.M5,
2.0.0.RC1,
2.0.0.RC2, and
2.0.0.RELEASE.

	
Upgraded to Java 8 and Spring Framework 5 as baseline

	
Added support for managing Spring WebFlux’s WebSession with Redis ReactiveSessionRepository

	
Extracted SessionRepository implementations to separate modules

	
Improved Session and SessionRepository APIs

	
Improved and harmonized configuration support for all supported session stores

	
Added support for configuring default CookieSerializer using SessionCookieConfig

	
Lots of performance improvements and bug fixes




Chapter 3. Samples and Guides (Start Here)





If you are looking to get started with Spring Session, the best place to start is our Sample Applications.

Table 3.1. Sample Applications using Spring Boot


	Source	Description	Guide
	HttpSession with Redis
	Demonstrates how to use Spring Session to replace the HttpSession with Redis.
	HttpSession with Redis Guide

	HttpSession with JDBC
	Demonstrates how to use Spring Session to replace the HttpSession with a relational database store.
	HttpSession with JDBC Guide

	Find by Username
	Demonstrates how to use Spring Session to find sessions by username.
	Find by Username Guide

	WebSockets
	Demonstrates how to use Spring Session with WebSockets.
	WebSockets Guide

	WebFlux
	Demonstrates how to use Spring Session to replace the Spring WebFlux’s WebSession with Redis.
	TBD

	HttpSession with Redis JSON serialization
	Demonstrates how to use Spring Session to replace the HttpSession with Redis using JSON serialization.
	TBD






Table 3.2. Sample Applications using Spring Java based configuration


	Source	Description	Guide
	HttpSession with Redis
	Demonstrates how to use Spring Session to replace the HttpSession with Redis.
	HttpSession with Redis Guide

	HttpSession with JDBC
	Demonstrates how to use Spring Session to replace the HttpSession with a relational database store.
	HttpSession with JDBC Guide

	HttpSession with Hazelcast
	Demonstrates how to use Spring Session to replace the HttpSession with Hazelcast.
	HttpSession with Hazelcast Guide

	Custom Cookie
	Demonstrates how to use Spring Session and customize the cookie.
	Custom Cookie Guide

	Spring Security
	Demonstrates how to use Spring Session with an existing Spring Security application.
	Spring Security Guide

	REST
	Demonstrates how to use Spring Session in a REST application to support authenticating with a header.
	REST Guide






Table 3.3. Sample Applications using Spring XML based configuration


	Source	Description	Guide
	HttpSession with Redis
	Demonstrates how to use Spring Session to replace the HttpSession with a Redis store.
	HttpSession with Redis Guide

	HttpSession with JDBC
	Demonstrates how to use Spring Session to replace the HttpSession with a relational database store.
	HttpSession with JDBC Guide






Table 3.4. Misc sample Applications


	Source	Description	Guide
	Grails 3
	Demonstrates how to use Spring Session with Grails 3.
	Grails 3 Guide

	Hazelcast
	Demonstrates how to use Spring Session with Hazelcast in a Java EE application.
	TBD






Chapter 4. Spring Session Modules





In Spring Session 1.x all of the Spring Session’s SessionRepository implementations were available within the spring-session artifact.
While convenient, this approach wasn’t sustainable long-term as more features and SessionRepository implementations were added to the project.

Starting with Spring Session 2.0, the project has been split up to Spring Session Core module, and several other modules that carry SessionRepository implementations and functionality related to the specific data store.
The users of Spring Data will find this arrangement familiar, with Spring Session Core module taking a role equivalent to Spring Data Commons and providing core functionalities and APIs with other modules containing data store specific implementations.
As a part of this split, the Spring Session Data MongoDB and Spring Session Data GemFire modules were moved to separate repositories so the situation with project’s repositories/modules is a follows:

	
spring-session repository

	
Hosts Spring Session Core, Spring Session Data Redis, Spring Session JDBC and Spring Session Hazelcast modules





	
spring-session-data-mongodb repository

	
Hosts Spring Session Data MongoDB module





	
spring-session-data-geode repository

	
Hosts Spring Session Data Geode and Spring Session Data Geode modules








Finally, Spring Session now also provides a Maven BOM (as in "bill of materials") module in order to help users with version management concerns:

	
spring-session-bom repository

	
Hosts Spring Session BOM module








Chapter 5. HttpSession Integration





Spring Session provides transparent integration with HttpSession.
This means that developers can switch the HttpSession implementation out with an implementation that is backed by Spring Session.

Why Spring Session & HttpSession?





We have already mentioned that Spring Session provides transparent integration with HttpSession, but what benefits do we get out of this?

	
Clustered Sessions - Spring Session makes it trivial to support clustered sessions without being tied to an application container specific solution.

	
RESTful APIs - Spring Session allows providing session IDs in headers to work with RESTful APIs











HttpSession with Redis





Using Spring Session with HttpSession is enabled by adding a Servlet Filter before anything that uses the HttpSession.
You can choose from enabling this using either:

	
Java Based Configuration

	
XML Based Configuration




Redis Java Based Configuration





This section describes how to use Redis to back HttpSession using Java based configuration.

	[image: [Note]]	Note
	
The HttpSession Sample provides a working sample on how to integrate Spring Session and HttpSession using Java configuration.
You can read the basic steps for integration below, but you are encouraged to follow along with the detailed HttpSession Guide when integrating with your own application.





Spring Java Configuration





After adding the required dependencies, we can create our Spring configuration.
The Spring configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation with an implementation backed by Spring Session.
Add the following Spring Configuration:

@EnableRedisHttpSession [image: 1]
public class Config {

	@Bean
	public LettuceConnectionFactory connectionFactory() {
		return new LettuceConnectionFactory(); [image: 2]
	}
}

	[image: 1] 
	
The @EnableRedisHttpSession annotation creates a Spring Bean with the name of springSessionRepositoryFilter that implements Filter.
The filter is what is in charge of replacing the HttpSession implementation to be backed by Spring Session.
In this instance Spring Session is backed by Redis.


	[image: 2] 
	
We create a RedisConnectionFactory that connects Spring Session to the Redis Server.
We configure the connection to connect to localhost on the default port (6379)
For more information on configuring Spring Data Redis, refer to the reference documentation.






Java Servlet Container Initialization





Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that implements Filter.
The springSessionRepositoryFilter bean is responsible for replacing the HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config class.
Last we need to ensure that our Servlet Container (i.e. Tomcat) uses our springSessionRepositoryFilter for every request.
Fortunately, Spring Session provides a utility class named AbstractHttpSessionApplicationInitializer both of these steps extremely easy.
You can find an example below:


src/main/java/sample/Initializer.java. 


public class Initializer extends AbstractHttpSessionApplicationInitializer { [image: 1]

	public Initializer() {
		super(Config.class); [image: 2]
	}
}




	[image: [Note]]	Note
	
The name of our class (Initializer) does not matter. What is important is that we extend AbstractHttpSessionApplicationInitializer.





	[image: 1] 
	
The first step is to extend AbstractHttpSessionApplicationInitializer.
This ensures that the Spring Bean by the name springSessionRepositoryFilter is registered with our Servlet Container for every request.


	[image: 2] 
	
AbstractHttpSessionApplicationInitializer also provides a mechanism to easily ensure Spring loads our Config.







Redis XML Based Configuration





This section describes how to use Redis to back HttpSession using XML based configuration.

	[image: [Note]]	Note
	
The HttpSession XML Sample provides a working sample on how to integrate Spring Session and HttpSession using XML configuration.
You can read the basic steps for integration below, but you are encouraged to follow along with the detailed HttpSession XML Guide when integrating with your own application.





Spring XML Configuration





After adding the required dependencies, we can create our Spring configuration.
The Spring configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation with an implementation backed by Spring Session.
Add the following Spring Configuration:


src/main/webapp/WEB-INF/spring/session.xml. 


[image: 1]
<context:annotation-config/>
<bean class="org.springframework.session.data.redis.config.annotation.web.http.RedisHttpSessionConfiguration"/>

[image: 2]
<bean class="org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory"/>




	[image: 1] 
	
We use the combination of <context:annotation-config/> and RedisHttpSessionConfiguration because Spring Session does not yet provide XML Namespace support (see gh-104).
This creates a Spring Bean with the name of springSessionRepositoryFilter that implements Filter.
The filter is what is in charge of replacing the HttpSession implementation to be backed by Spring Session.
In this instance Spring Session is backed by Redis.


	[image: 2] 
	
We create a RedisConnectionFactory that connects Spring Session to the Redis Server.
We configure the connection to connect to localhost on the default port (6379)
For more information on configuring Spring Data Redis, refer to the reference documentation.






XML Servlet Container Initialization





Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that implements Filter.
The springSessionRepositoryFilter bean is responsible for replacing the HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, we need to instruct Spring to load our session.xml configuration.
We do this with the following configuration:


src/main/webapp/WEB-INF/web.xml. 


<context-param>
	<param-name>contextConfigLocation</param-name>
	<param-value>
		/WEB-INF/spring/*.xml
	</param-value>
</context-param>
<listener>
	<listener-class>
		org.springframework.web.context.ContextLoaderListener
	</listener-class>
</listener>




The ContextLoaderListener reads the contextConfigLocation and picks up our session.xml configuration.

Last we need to ensure that our Servlet Container (i.e. Tomcat) uses our springSessionRepositoryFilter for every request.
The following snippet performs this last step for us:


src/main/webapp/WEB-INF/web.xml. 


<filter>
	<filter-name>springSessionRepositoryFilter</filter-name>
	<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>
</filter>
<filter-mapping>
	<filter-name>springSessionRepositoryFilter</filter-name>
	<url-pattern>/*</url-pattern>
	<dispatcher>REQUEST</dispatcher>
	<dispatcher>ERROR</dispatcher>
</filter-mapping>




The DelegatingFilterProxy will look up a Bean by the name of springSessionRepositoryFilter and cast it to a Filter.
For every request that DelegatingFilterProxy is invoked, the springSessionRepositoryFilter will be invoked.



HttpSession with JDBC





Using Spring Session with HttpSession is enabled by adding a Servlet Filter before anything that uses the HttpSession.
You can choose from enabling this using either:

	
Java Based Configuration

	
XML Based Configuration

	
Spring Boot Based Configuration




JDBC Java Based Configuration





This section describes how to use a relational database to back HttpSession using Java based configuration.

	[image: [Note]]	Note
	
The HttpSession JDBC Sample provides a working sample on how to integrate Spring Session and HttpSession using Java configuration.
You can read the basic steps for integration below, but you are encouraged to follow along with the detailed HttpSession JDBC Guide when integrating with your own application.





Spring Java Configuration





After adding the required dependencies, we can create our Spring configuration.
The Spring configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation with an implementation backed by Spring Session.
Add the following Spring Configuration:

@EnableJdbcHttpSession [image: 1]
public class Config {

	@Bean
	public EmbeddedDatabase dataSource() {
		return new EmbeddedDatabaseBuilder() [image: 2]
				.setType(EmbeddedDatabaseType.H2)
				.addScript("org/springframework/session/jdbc/schema-h2.sql").build();
	}

	@Bean
	public PlatformTransactionManager transactionManager(DataSource dataSource) {
		return new DataSourceTransactionManager(dataSource); [image: 3]
	}

}

	[image: 1] 
	
The @EnableJdbcHttpSession annotation creates a Spring Bean with the name of springSessionRepositoryFilter that implements Filter.
The filter is what is in charge of replacing the HttpSession implementation to be backed by Spring Session.
In this instance Spring Session is backed by a relational database.


	[image: 2] 
	
We create a dataSource that connects Spring Session to an embedded instance of H2 database.
We configure the H2 database to create database tables using the SQL script which is included in Spring Session.


	[image: 3] 
	
We create a transactionManager that manages transactions for previously configured dataSource.





For additional information on how to configure data access related concerns, please refer to the Spring Framework Reference Documentation.


Java Servlet Container Initialization





Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that implements Filter.
The springSessionRepositoryFilter bean is responsible for replacing the HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config class.
Last we need to ensure that our Servlet Container (i.e. Tomcat) uses our springSessionRepositoryFilter for every request.
Fortunately, Spring Session provides a utility class named AbstractHttpSessionApplicationInitializer both of these steps extremely easy.
You can find an example below:


src/main/java/sample/Initializer.java. 


public class Initializer extends AbstractHttpSessionApplicationInitializer { [image: 1]

	public Initializer() {
		super(Config.class); [image: 2]
	}
}




	[image: [Note]]	Note
	
The name of our class (Initializer) does not matter. What is important is that we extend AbstractHttpSessionApplicationInitializer.





	[image: 1] 
	
The first step is to extend AbstractHttpSessionApplicationInitializer.
This ensures that the Spring Bean by the name springSessionRepositoryFilter is registered with our Servlet Container for every request.


	[image: 2] 
	
AbstractHttpSessionApplicationInitializer also provides a mechanism to easily ensure Spring loads our Config.







JDBC XML Based Configuration





This section describes how to use a relational database to back HttpSession using XML based configuration.

	[image: [Note]]	Note
	
The HttpSession JDBC XML Sample provides a working sample on how to integrate Spring Session and HttpSession using XML configuration.
You can read the basic steps for integration below, but you are encouraged to follow along with the detailed HttpSession JDBC XML Guide when integrating with your own application.





Spring XML Configuration





After adding the required dependencies, we can create our Spring configuration.
The Spring configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation with an implementation backed by Spring Session.
Add the following Spring Configuration:


src/main/webapp/WEB-INF/spring/session.xml. 


[image: 1]
<context:annotation-config/>
<bean class="org.springframework.session.jdbc.config.annotation.web.http.JdbcHttpSessionConfiguration"/>

[image: 2]
<jdbc:embedded-database id="dataSource" database-name="testdb" type="H2">
	<jdbc:script location="classpath:org/springframework/session/jdbc/schema-h2.sql"/>
</jdbc:embedded-database>

[image: 3]
<bean class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
	<constructor-arg ref="dataSource"/>
</bean>




	[image: 1] 
	
We use the combination of <context:annotation-config/> and JdbcHttpSessionConfiguration because Spring Session does not yet provide XML Namespace support (see gh-104).
This creates a Spring Bean with the name of springSessionRepositoryFilter that implements Filter.
The filter is what is in charge of replacing the HttpSession implementation to be backed by Spring Session.
In this instance Spring Session is backed by a relational database.


	[image: 2] 
	
We create a dataSource that connects Spring Session to an embedded instance of H2 database.
We configure the H2 database to create database tables using the SQL script which is included in Spring Session.


	[image: 3] 
	
We create a transactionManager that manages transactions for previously configured dataSource.





For additional information on how to configure data access related concerns, please refer to the Spring Framework Reference Documentation.


XML Servlet Container Initialization





Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that implements Filter.
The springSessionRepositoryFilter bean is responsible for replacing the HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, we need to instruct Spring to load our session.xml configuration.
We do this with the following configuration:


src/main/webapp/WEB-INF/web.xml. 


<context-param>
	<param-name>contextConfigLocation</param-name>
	<param-value>
		/WEB-INF/spring/*.xml
	</param-value>
</context-param>
<listener>
	<listener-class>
		org.springframework.web.context.ContextLoaderListener
	</listener-class>
</listener>




The ContextLoaderListener reads the contextConfigLocation and picks up our session.xml configuration.

Last we need to ensure that our Servlet Container (i.e. Tomcat) uses our springSessionRepositoryFilter for every request.
The following snippet performs this last step for us:


src/main/webapp/WEB-INF/web.xml. 


<filter>
	<filter-name>springSessionRepositoryFilter</filter-name>
	<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>
</filter>
<filter-mapping>
	<filter-name>springSessionRepositoryFilter</filter-name>
	<url-pattern>/*</url-pattern>
	<dispatcher>REQUEST</dispatcher>
	<dispatcher>ERROR</dispatcher>
</filter-mapping>




The DelegatingFilterProxy will look up a Bean by the name of springSessionRepositoryFilter and cast it to a Filter.
For every request that DelegatingFilterProxy is invoked, the springSessionRepositoryFilter will be invoked.



JDBC Spring Boot Based Configuration





This section describes how to use a relational database to back HttpSession when using Spring Boot.

	[image: [Note]]	Note
	
The HttpSession JDBC Spring Boot Sample provides a working sample on how to integrate Spring Session and HttpSession using Spring Boot.
You can read the basic steps for integration below, but you are encouraged to follow along with the detailed HttpSession JDBC Spring Boot Guide when integrating with your own application.





Spring Boot Configuration





After adding the required dependencies, we can create our Spring Boot configuration.
Thanks to first-class auto configuration support, setting up Spring Session backed by a relational database is as simple as adding a single configuration property to your application.properties:


src/main/resources/application.properties. 


spring.session.store-type=jdbc # Session store type.




Under the hood, Spring Boot will apply configuration that is equivalent to manually adding @EnableJdbcHttpSession annotation.
This creates a Spring Bean with the name of springSessionRepositoryFilter that implements Filter.
The filter is what is in charge of replacing the HttpSession implementation to be backed by Spring Session.

Further customization is possible using application.properties:


src/main/resources/application.properties. 


server.servlet.session.timeout= # Session timeout. If a duration suffix is not specified, seconds will be used.
spring.session.jdbc.initialize-schema=embedded # Database schema initialization mode.
spring.session.jdbc.schema=classpath:org/springframework/session/jdbc/schema-@@platform@@.sql # Path to the SQL file to use to initialize the database schema.
spring.session.jdbc.table-name=SPRING_SESSION # Name of the database table used to store sessions.




For more information, refer to Spring Session portion of the Spring Boot documentation.


Configuring the DataSource





Spring Boot automatically creates a DataSource that connects Spring Session to an embedded instance of H2 database.
In a production environment you need to ensure to update your configuration to point to your relational database.
For example, you can include the following in your application.properties


src/main/resources/application.properties. 


spring.datasource.url= # JDBC URL of the database.
spring.datasource.username= # Login username of the database.
spring.datasource.password= # Login password of the database.




For more information, refer to Configure a DataSource portion of the Spring Boot documentation.


Servlet Container Initialization





Our Spring Boot Configuration created a Spring Bean named springSessionRepositoryFilter that implements Filter.
The springSessionRepositoryFilter bean is responsible for replacing the HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config class.
Last we need to ensure that our Servlet Container (i.e. Tomcat) uses our springSessionRepositoryFilter for every request.
Fortunately, Spring Boot takes care of both of these steps for us.



HttpSession with Hazelcast





Using Spring Session with HttpSession is enabled by adding a Servlet Filter before anything that uses the HttpSession.

This section describes how to use Hazelcast to back HttpSession using Java based configuration.

	[image: [Note]]	Note
	
The Hazelcast Spring Sample provides a working sample on how to integrate Spring Session and HttpSession using Java configuration.
You can read the basic steps for integration below, but you are encouraged to follow along with the detailed Hazelcast Spring Guide when integrating with your own application.





Spring Configuration





After adding the required dependencies, we can create our Spring configuration.
The Spring configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation with an implementation backed by Spring Session.
Add the following Spring Configuration:

@EnableHazelcastHttpSession [image: 1]
@Configuration
public class HazelcastHttpSessionConfig {

	@Bean
	public HazelcastInstance hazelcastInstance() {
		MapAttributeConfig attributeConfig = new MapAttributeConfig()
				.setName(HazelcastSessionRepository.PRINCIPAL_NAME_ATTRIBUTE)
				.setExtractor(PrincipalNameExtractor.class.getName());

		Config config = new Config();

		config.getMapConfig(HazelcastSessionRepository.DEFAULT_SESSION_MAP_NAME) [image: 2]
				.addMapAttributeConfig(attributeConfig)
				.addMapIndexConfig(new MapIndexConfig(
						HazelcastSessionRepository.PRINCIPAL_NAME_ATTRIBUTE, false));

		return Hazelcast.newHazelcastInstance(config); [image: 3]
	}

}

	[image: 1] 
	
The @EnableHazelcastHttpSession annotation creates a Spring Bean with the name of springSessionRepositoryFilter that implements Filter.
The filter is what is in charge of replacing the HttpSession implementation to be backed by Spring Session.
In this instance Spring Session is backed by Hazelcast.


	[image: 2] 
	
In order to support retrieval of sessions by principal name index, appropriate ValueExtractor needs to be registered.
Spring Session provides PrincipalNameExtractor for this purpose.


	[image: 3] 
	
We create a HazelcastInstance that connects Spring Session to Hazelcast.
By default, an embedded instance of Hazelcast is started and connected to by the application.
For more information on configuring Hazelcast, refer to the reference documentation.






Servlet Container Initialization





Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that implements Filter.
The springSessionRepositoryFilter bean is responsible for replacing the HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our SessionConfig class.
Since our application is already loading Spring configuration using our SecurityInitializer class, we can simply add our SessionConfig class to it.


src/main/java/sample/SecurityInitializer.java. 


public class SecurityInitializer extends AbstractSecurityWebApplicationInitializer {

	public SecurityInitializer() {
		super(SecurityConfig.class, SessionConfig.class);
	}
}




Last we need to ensure that our Servlet Container (i.e. Tomcat) uses our springSessionRepositoryFilter for every request.
It is extremely important that Spring Session’s springSessionRepositoryFilter is invoked before Spring Security’s springSecurityFilterChain.
This ensures that the HttpSession that Spring Security uses is backed by Spring Session.
Fortunately, Spring Session provides a utility class named AbstractHttpSessionApplicationInitializer that makes this extremely easy.
You can find an example below:


src/main/java/sample/Initializer.java. 


public class Initializer extends AbstractHttpSessionApplicationInitializer {

}




	[image: [Note]]	Note
	
The name of our class (Initializer) does not matter. What is important is that we extend AbstractHttpSessionApplicationInitializer.





By extending AbstractHttpSessionApplicationInitializer we ensure that the Spring Bean by the name springSessionRepositoryFilter is registered with our Servlet Container for every request before Spring Security’s springSecurityFilterChain.


How HttpSession Integration Works





Fortunately both HttpSession and HttpServletRequest (the API for obtaining an HttpSession) are both interfaces.
This means that we can provide our own implementations for each of these APIs.

	[image: [Note]]	Note
	
This section describes how Spring Session provides transparent integration with HttpSession. The intent is so that user’s can understand what is happening under the covers. This functionality is already integrated and you do NOT need to implement this logic yourself.





First we create a custom HttpServletRequest that returns a custom implementation of HttpSession.
It looks something like the following:

public class SessionRepositoryRequestWrapper extends HttpServletRequestWrapper {

	public SessionRepositoryRequestWrapper(HttpServletRequest original) {
		super(original);
	}

	public HttpSession getSession() {
		return getSession(true);
	}

	public HttpSession getSession(boolean createNew) {
		// create an HttpSession implementation from Spring Session
	}

	// ... other methods delegate to the original HttpServletRequest ...
}

Any method that returns an HttpSession is overridden.
All other methods are implemented by HttpServletRequestWrapper and simply delegate to the original HttpServletRequest implementation.

We replace the HttpServletRequest implementation using a servlet Filter called SessionRepositoryFilter.
The pseudocode can be found below:

public class SessionRepositoryFilter implements Filter {

	public doFilter(ServletRequest request, ServletResponse response, FilterChain chain) {
		HttpServletRequest httpRequest = (HttpServletRequest) request;
		SessionRepositoryRequestWrapper customRequest =
			new SessionRepositoryRequestWrapper(httpRequest);

		chain.doFilter(customRequest, response, chain);
	}

	// ...
}

By passing in a custom HttpServletRequest implementation into the FilterChain we ensure that anything invoked after our Filter uses the custom HttpSession implementation.
This highlights why it is important that Spring Session’s SessionRepositoryFilter must be placed before anything that interacts with the HttpSession.

HttpSession & RESTful APIs





Spring Session can work with RESTful APIs by allowing the session to be provided in a header.

	[image: [Note]]	Note
	
The REST Sample provides a working sample on how to use Spring Session in a REST application to support authenticating with a header.
You can follow the basic steps for integration below, but you are encouraged to follow along with the detailed REST Guide when integrating with your own application.





Spring Configuration





After adding the required dependencies, we can create our Spring configuration.
The Spring configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation with an implementation backed by Spring Session.
Add the following Spring Configuration:

@Configuration
@EnableRedisHttpSession [image: 1]
public class HttpSessionConfig {

	@Bean
	public LettuceConnectionFactory connectionFactory() {
		return new LettuceConnectionFactory(); [image: 2]
	}

	@Bean
	public HttpSessionIdResolver httpSessionIdResolver() {
		return HeaderHttpSessionIdResolver.xAuthToken(); [image: 3]
	}
}

	[image: 1] 
	
The @EnableRedisHttpSession annotation creates a Spring Bean with the name of springSessionRepositoryFilter that implements Filter.
The filter is what is in charge of replacing the HttpSession implementation to be backed by Spring Session.
In this instance Spring Session is backed by Redis.


	[image: 2] 
	
We create a RedisConnectionFactory that connects Spring Session to the Redis Server.
We configure the connection to connect to localhost on the default port (6379)
For more information on configuring Spring Data Redis, refer to the reference documentation.


	[image: 3] 
	
We customize Spring Session’s HttpSession integration to use HTTP headers to convey the current session information instead of cookies.






Servlet Container Initialization





Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that implements Filter.
The springSessionRepositoryFilter bean is responsible for replacing the HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config class. We provide the configuration in our Spring MvcInitializer as shown below:


src/main/java/sample/mvc/MvcInitializer.java. 


@Override
protected Class<?>[] getRootConfigClasses() {
	return new Class[] { SecurityConfig.class, HttpSessionConfig.class };
}




Last we need to ensure that our Servlet Container (i.e. Tomcat) uses our springSessionRepositoryFilter for every request.
Fortunately, Spring Session provides a utility class named AbstractHttpSessionApplicationInitializer that makes this extremely easy. Simply extend the class with the default constructor as shown below:


src/main/java/sample/Initializer.java. 


public class Initializer extends AbstractHttpSessionApplicationInitializer {

}




	[image: [Note]]	Note
	
The name of our class (Initializer) does not matter. What is important is that we extend AbstractHttpSessionApplicationInitializer.






HttpSessionListener





Spring Session supports HttpSessionListener by translating SessionDestroyedEvent and SessionCreatedEvent into HttpSessionEvent by declaring SessionEventHttpSessionListenerAdapter.
To use this support, you need to:

	
Ensure your SessionRepository implementation supports and is configured to fire SessionDestroyedEvent and SessionCreatedEvent.

	
Configure SessionEventHttpSessionListenerAdapter as a Spring bean.

	
Inject every HttpSessionListener into the SessionEventHttpSessionListenerAdapter




If you are using the configuration support documented in HttpSession with Redis, then all you need to do is register every HttpSessionListener as a bean.
For example, assume you want to support Spring Security’s concurrency control and need to use HttpSessionEventPublisher you can simply add HttpSessionEventPublisher as a bean.
In Java configuration, this might look like:

@Configuration
@EnableRedisHttpSession
public class RedisHttpSessionConfig {

	@Bean
	public HttpSessionEventPublisher httpSessionEventPublisher() {
		return new HttpSessionEventPublisher();
	}

	// ...
}

In XML configuration, this might look like:

<bean class="org.springframework.security.web.session.HttpSessionEventPublisher"/>

Chapter 6. WebSocket Integration





Spring Session provides transparent integration with Spring’s WebSocket support.

	[image: [Note]]	Note
	
Spring Session’s WebSocket support only works with Spring’s WebSocket support.
Specifically it does not work with using JSR-356 directly.
This is due to the fact that JSR-356 does not have a mechanism for intercepting incoming WebSocket messages.





Why Spring Session & WebSockets?





So why do we need Spring Session when using WebSockets?

Consider an email application that does much of its work through HTTP requests.
However, there is also a chat application embedded within it that works over WebSocket APIs.
If a user is actively chatting with someone, we should not timeout the HttpSession since this would be pretty poor user experience.
However, this is exactly what JSR-356 does.

Another issue is that according to JSR-356 if the HttpSession times out any WebSocket that was created with that HttpSession and an authenticated user should be forcibly closed.
This means that if we are actively chatting in our application and are not using the HttpSession, then we will also disconnect from our conversation!



WebSocket Usage





The WebSocket Sample provides a working sample on how to integrate Spring Session with WebSockets.
You can follow the basic steps for integration below, but you are encouraged to follow along with the detailed WebSocket Guide when integrating with your own application:

HttpSession Integration





Before using WebSocket integration, you should be sure that you have Chapter 5, HttpSession Integration working first.


Spring Configuration





In a typical Spring WebSocket application users would implement WebSocketMessageBrokerConfigurer.
For example, the configuration might look something like the following:

@Configuration
@EnableScheduling
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

	@Override
	public void registerStompEndpoints(StompEndpointRegistry registry) {
		registry.addEndpoint("/messages").withSockJS();
	}

	@Override
	public void configureMessageBroker(MessageBrokerRegistry registry) {
		registry.enableSimpleBroker("/queue/", "/topic/");
		registry.setApplicationDestinationPrefixes("/app");
	}
}

We can easily update our configuration to use Spring Session’s WebSocket support.
For example:


src/main/java/samples/config/WebSocketConfig.java. 


@Configuration
@EnableScheduling
@EnableWebSocketMessageBroker
public class WebSocketConfig
		extends AbstractSessionWebSocketMessageBrokerConfigurer<Session> { [image: 1]

	@Override
	protected void configureStompEndpoints(StompEndpointRegistry registry) { [image: 2]
		registry.addEndpoint("/messages").withSockJS();
	}

	@Override
	public void configureMessageBroker(MessageBrokerRegistry registry) {
		registry.enableSimpleBroker("/queue/", "/topic/");
		registry.setApplicationDestinationPrefixes("/app");
	}
}




To hook in the Spring Session support we only need to change two things:

	[image: 1] 
	
Instead of implementing WebSocketMessageBrokerConfigurer we extend AbstractSessionWebSocketMessageBrokerConfigurer


	[image: 2] 
	
We rename the registerStompEndpoints method to configureStompEndpoints





What does AbstractSessionWebSocketMessageBrokerConfigurer do behind the scenes?

	
WebSocketConnectHandlerDecoratorFactory is added as a WebSocketHandlerDecoratorFactory to WebSocketTransportRegistration.
This ensures a custom SessionConnectEvent is fired that contains the WebSocketSession.
The WebSocketSession is necessary to terminate any WebSocket connections that are still open when a Spring Session is terminated.

	
SessionRepositoryMessageInterceptor is added as a HandshakeInterceptor to every StompWebSocketEndpointRegistration.
This ensures that the Session is added to the WebSocket properties to enable updating the last accessed time.

	
SessionRepositoryMessageInterceptor is added as a ChannelInterceptor to our inbound ChannelRegistration.
This ensures that every time an inbound message is received, that the last accessed time of our Spring Session is updated.

	
WebSocketRegistryListener is created as a Spring Bean.
This ensures that we have a mapping of all of the Session id to the corresponding WebSocket connections.
By maintaining this mapping, we can close all the WebSocket connections when a Spring Session (HttpSession) is terminated.





Chapter 7. WebSession Integration





Spring Session provides transparent integration with Spring WebFlux’s WebSession.
This means that developers can switch the WebSession implementation out with an implementation that is backed by Spring Session.

Why Spring Session & WebSession?





We have already mentioned that Spring Session provides transparent integration with Spring WebFlux’s WebSession, but what benefits do we get out of this?
As with HttpSession, Spring Session makes it trivial to support clustered sessions without being tied to an application container specific solution.




WebSession with Redis





Using Spring Session with WebSession is enabled by simply registering a WebSessionManager implementation backed by Spring Session’s ReactiveSessionRepository.
The Spring configuration is responsible for creating a WebSessionManager that replaces the WebSession implementation with an implementation backed by Spring Session.
Add the following Spring Configuration:

@EnableRedisWebSession [image: 1]
public class SessionConfiguration {

	@Bean
	public LettuceConnectionFactory redisConnectionFactory() {
		return new LettuceConnectionFactory(); [image: 2]
	}

}

	[image: 1] 
	
The @EnableRedisWebSession annotation creates a Spring Bean with the name of webSessionManager that implements the WebSessionManager.
This is what is in charge of replacing the WebSession implementation to be backed by Spring Session.
In this instance Spring Session is backed by Redis.


	[image: 2] 
	
We create a RedisConnectionFactory that connects Spring Session to the Redis Server.
We configure the connection to connect to localhost on the default port (6379)
For more information on configuring Spring Data Redis, refer to the reference documentation.





How WebSession Integration Works





With Spring WebFlux and it’s WebSession things are considerably simpler for Spring Session to integrate with, compared to Servlet API and it’s HttpSession.
Spring WebFlux provides WebSessionStore API which presents a strategy for persisting WebSession.

	[image: [Note]]	Note
	
This section describes how Spring Session provides transparent integration with WebSession. The intent is so that user’s can understand what is happening under the covers. This functionality is already integrated and you do NOT need to implement this logic yourself.





First we create a custom SpringSessionWebSession that delegates to Spring Session’s Session.
It looks something like the following:

public class SpringSessionWebSession implements WebSession {

	enum State {
		NEW, STARTED
	}

	private final S session;

	private AtomicReference<State> state = new AtomicReference<>();

	SpringSessionWebSession(S session, State state) {
		this.session = session;
		this.state.set(state);
	}

	@Override
	public void start() {
		this.state.compareAndSet(State.NEW, State.STARTED);
	}

	@Override
	public boolean isStarted() {
		State value = this.state.get();
		return (State.STARTED.equals(value)
				|| (State.NEW.equals(value) && !this.session.getAttributes().isEmpty()));
	}

	@Override
	public Mono<Void> changeSessionId() {
		return Mono.defer(() -> {
			this.session.changeSessionId();
			return save();
		});
	}

	// ... other methods delegate to the original Session
}

Next, we create a custom WebSessionStore that delegates to the ReactiveSessionRepository and wraps Session into custom WebSession implementation:

public class SpringSessionWebSessionStore<S extends Session> implements WebSessionStore {

	private final ReactiveSessionRepository<S> sessions;

	public SpringSessionWebSessionStore(ReactiveSessionRepository<S> reactiveSessionRepository) {
		this.sessions = reactiveSessionRepository;
	}

	// ...
}

In order to be detected by Spring WebFlux, this custom WebSessionStore needs to be registered with ApplicationContext as bean named webSessionManager.
For additional information on Spring WebFlux, refer to the Spring Framework Reference Documentation.

Chapter 8. Spring Security Integration





Spring Session provides integration with Spring Security.

Spring Security Remember-Me Support





Spring Session provides integration with Spring Security’s Remember-Me Authentication.
The support will:

	
Change the session expiration length

	
Ensure the session cookie expires at Integer.MAX_VALUE.
The cookie expiration is set to the largest possible value because the cookie is only set when the session is created.
If it were set to the same value as the session expiration, then the session would get renewed when the user used it but the cookie expiration would not be updated causing the expiration to be fixed.




To configure Spring Session with Spring Security in Java Configuration use the following as a guide:

@Override
protected void configure(HttpSecurity http) throws Exception {
	http
		// ... additional configuration ...
		.rememberMe()
			.rememberMeServices(rememberMeServices());
}

@Bean
public SpringSessionRememberMeServices rememberMeServices() {
	SpringSessionRememberMeServices rememberMeServices =
			new SpringSessionRememberMeServices();
	// optionally customize
	rememberMeServices.setAlwaysRemember(true);
	return rememberMeServices;
}

An XML based configuration would look something like this:

<security:http>
	<!-- ... -->
	<security:form-login />
	<security:remember-me services-ref="rememberMeServices"/>
</security:http>

<bean id="rememberMeServices"
	class="org.springframework.session.security.web.authentication.SpringSessionRememberMeServices"
	p:alwaysRemember="true"/>




Spring Security Concurrent Session Control





Spring Session provides integration with Spring Security to support its concurrent session control.
This allows limiting the number of active sessions that a single user can have concurrently, but unlike the default
Spring Security support this will also work in a clustered environment. This is done by providing a custom
implementation of Spring Security’s SessionRegistry interface.

When using Spring Security’s Java config DSL, you can configure the custom SessionRegistry through the
SessionManagementConfigurer like this:

@Configuration
public class SecurityConfiguration<S extends Session>
		extends WebSecurityConfigurerAdapter {

	@Autowired
	private FindByIndexNameSessionRepository<S> sessionRepository;

	@Override
	protected void configure(HttpSecurity http) throws Exception {
		// @formatter:off
		http
			// other config goes here...
			.sessionManagement()
				.maximumSessions(2)
				.sessionRegistry(sessionRegistry());
		// @formatter:on
	}

	@Bean
	public SpringSessionBackedSessionRegistry<S> sessionRegistry() {
		return new SpringSessionBackedSessionRegistry<>(this.sessionRepository);
	}
}

This assumes that you’ve also configured Spring Session to provide a FindByIndexNameSessionRepository that
returns Session instances.

When using XML configuration, it would look something like this:

<security:http>
	<!-- other config goes here... -->
	<security:session-management>
		<security:concurrency-control max-sessions="2" session-registry-ref="sessionRegistry"/>
	</security:session-management>
</security:http>

<bean id="sessionRegistry"
	  class="org.springframework.session.security.SpringSessionBackedSessionRegistry">
	<constructor-arg ref="sessionRepository"/>
</bean>

This assumes that your Spring Session SessionRegistry bean is called sessionRegistry, which is the name used by all
SpringHttpSessionConfiguration subclasses.

Limitations





Spring Session’s implementation of Spring Security’s SessionRegistry interface does not support the getAllPrincipals
method, as this information cannot be retrieved using Spring Session. This method is never called by Spring Security,
so this only affects applications that access the SessionRegistry themselves.

Chapter 9. API Documentation





You can browse the complete Javadoc online. The key APIs are described below:

Session





A Session is a simplified Map of name value pairs.

Typical usage might look like the following:

public class RepositoryDemo<S extends Session> {
	private SessionRepository<S> repository; [image: 1]

	public void demo() {
		S toSave = this.repository.createSession(); [image: 2]

		[image: 3]
		User rwinch = new User("rwinch");
		toSave.setAttribute(ATTR_USER, rwinch);

		this.repository.save(toSave); [image: 4]

		S session = this.repository.findById(toSave.getId()); [image: 5]

		[image: 6]
		User user = session.getAttribute(ATTR_USER);
		assertThat(user).isEqualTo(rwinch);
	}

	// ... setter methods ...
}

	[image: 1] 
	
We create a SessionRepository instance with a generic type, S, that extends Session. The generic type is defined in our class.


	[image: 2] 
	
We create a new Session using our SessionRepository and assign it to a variable of type S.


	[image: 3] 
	
We interact with the Session. In our example, we demonstrate saving a User to the Session.


	[image: 4] 
	
We now save the Session. This is why we needed the generic type S. The SessionRepository only allows saving Session instances that were created or retrieved using the same SessionRepository. This allows for the SessionRepository to make implementation specific optimizations (i.e. only writing attributes that have changed).


	[image: 5] 
	
We retrieve the Session from the SessionRepository.


	[image: 6] 
	
We obtain the persisted User from our Session without the need for explicitly casting our attribute.





Session API also provides attributes related to the Session instance’s expiration.

Typical usage might look like the following:

public class ExpiringRepositoryDemo<S extends Session> {
	private SessionRepository<S> repository; [image: 1]

	public void demo() {
		S toSave = this.repository.createSession(); [image: 2]
		// ...
		toSave.setMaxInactiveInterval(Duration.ofSeconds(30)); [image: 3]

		this.repository.save(toSave); [image: 4]

		S session = this.repository.findById(toSave.getId()); [image: 5]
		// ...
	}

	// ... setter methods ...
}

	[image: 1] 
	
We create a SessionRepository instance with a generic type, S, that extends Session. The generic type is defined in our class.


	[image: 2] 
	
We create a new Session using our SessionRepository and assign it to a variable of type S.


	[image: 3] 
	
We interact with the Session.
In our example, we demonstrate updating the amount of time the Session can be inactive before it expires.


	[image: 4] 
	
We now save the Session.
This is why we needed the generic type S.
The SessionRepository only allows saving Session instances that were created or retrieved using the same SessionRepository.
This allows for the SessionRepository to make implementation specific optimizations (i.e. only writing attributes that have changed).
The last accessed time is automatically updated when the Session is saved.


	[image: 5] 
	
We retrieve the Session from the SessionRepository.
If the Session were expired, the result would be null.

















SessionRepository





A SessionRepository is in charge of creating, retrieving, and persisting Session instances.

If possible, developers should not interact directly with a SessionRepository or a Session.
Instead, developers should prefer interacting with SessionRepository and Session indirectly through the HttpSession and WebSocket integration.

FindByIndexNameSessionRepository





Spring Session’s most basic API for using a Session is the SessionRepository.
This API is intentionally very simple, so that it is easy to provide additional implementations with basic functionality.

Some SessionRepository implementations may choose to implement FindByIndexNameSessionRepository also.
For example, Spring’s Redis support implements FindByIndexNameSessionRepository.

The FindByIndexNameSessionRepository adds a single method to look up all the sessions for a particular user.
This is done by ensuring that the session attribute with the name FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME is populated with the username.
It is the responsibility of the developer to ensure the attribute is populated since Spring Session is not aware of the authentication mechanism being used.
An example of how this might be used can be seen below:

String username = "username";
this.session.setAttribute(
		FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME, username);

	[image: [Note]]	Note
	
Some implementations of FindByIndexNameSessionRepository will provide hooks to automatically index other session attributes.
For example, many implementations will automatically ensure the current Spring Security user name is indexed with the index name FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME.





Once the session is indexed, it can be found using the following:

String username = "username";
Map<String, Session> sessionIdToSession = this.sessionRepository
		.findByIndexNameAndIndexValue(
				FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME,
				username);

ReactiveSessionRepository





A ReactiveSessionRepository is in charge of creating, retrieving, and persisting Session instances in a non-blocking and reactive manner.

If possible, developers should not interact directly with a ReactiveSessionRepository or a Session.
Instead, developers should prefer interacting with ReactiveSessionRepository and Session indirectly through the WebSession integration.

EnableSpringHttpSession





The @EnableSpringHttpSession annotation can be added to an @Configuration class to expose the SessionRepositoryFilter as a bean named "springSessionRepositoryFilter".
In order to leverage the annotation, a single SessionRepository bean must be provided.
For example:

@EnableSpringHttpSession
@Configuration
public class SpringHttpSessionConfig {
	@Bean
	public MapSessionRepository sessionRepository() {
		return new MapSessionRepository(new ConcurrentHashMap<>());
	}
}

It is important to note that no infrastructure for session expirations is configured for you out of the box.
This is because things like session expiration are highly implementation dependent.
This means if you require cleaning up expired sessions, you are responsible for cleaning up the expired sessions.

EnableSpringWebSession





The @EnableSpringWebSession annotation can be added to an @Configuration class to expose the WebSessionManager as a bean named "webSessionManager".
In order to leverage the annotation, a single ReactiveSessionRepository bean must be provided.
For example:

@EnableSpringWebSession
public class SpringWebSessionConfig {
	@Bean
	public ReactiveSessionRepository reactiveSessionRepository() {
		return new ReactiveMapSessionRepository(new ConcurrentHashMap<>());
	}
}

It is important to note that no infrastructure for session expirations is configured for you out of the box.
This is because things like session expiration are highly implementation dependent.
This means if you require cleaning up expired sessions, you are responsible for cleaning up the expired sessions.

RedisOperationsSessionRepository





RedisOperationsSessionRepository is a SessionRepository that is implemented using Spring Data’s RedisOperations.
In a web environment, this is typically used in combination with SessionRepositoryFilter.
The implementation supports SessionDestroyedEvent and SessionCreatedEvent through SessionMessageListener.

Instantiating a RedisOperationsSessionRepository





A typical example of how to create a new instance can be seen below:

RedisTemplate<Object, Object> redisTemplate = new RedisTemplate<>();

// ... configure redisTemplate ...

SessionRepository<? extends Session> repository =
		new RedisOperationsSessionRepository(redisTemplate);

For additional information on how to create a RedisConnectionFactory, refer to the Spring Data Redis Reference.


EnableRedisHttpSession





In a web environment, the simplest way to create a new RedisOperationsSessionRepository is to use @EnableRedisHttpSession.
Complete example usage can be found in the Chapter 3, Samples and Guides (Start Here)
You can use the following attributes to customize the configuration:

	
maxInactiveIntervalInSeconds - the amount of time before the session will expire in seconds

	
redisNamespace - allows configuring an application specific namespace for the sessions. Redis keys and channel IDs will start with the prefix of <redisNamespace>:.

	
redisFlushMode - allows specifying when data will be written to Redis. The default is only when save is invoked on SessionRepository.
A value of RedisFlushMode.IMMEDIATE will write to Redis as soon as possible.




Custom RedisSerializer





You can customize the serialization by creating a Bean named springSessionDefaultRedisSerializer that implements RedisSerializer<Object>.



Redis TaskExecutor





RedisOperationsSessionRepository is subscribed to receive events from redis using a RedisMessageListenerContainer.
You can customize the way those events are dispatched, by creating a Bean named springSessionRedisTaskExecutor and/or a Bean springSessionRedisSubscriptionExecutor.
More details on configuring redis task executors can be found here.


Storage Details





The sections below outline how Redis is updated for each operation.
An example of creating a new session can be found below.
The subsequent sections describe the details.

HMSET spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe creationTime 1404360000000 \
	maxInactiveInterval 1800 \
	lastAccessedTime 1404360000000 \
	sessionAttr:attrName someAttrValue \
	sessionAttr2:attrName someAttrValue2
EXPIRE spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe 2100
APPEND spring:session:sessions:expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe ""
EXPIRE spring:session:sessions:expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe 1800
SADD spring:session:expirations:1439245080000 expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe
EXPIRE spring:session:expirations1439245080000 2100

Saving a Session





Each session is stored in Redis as a Hash.
Each session is set and updated using the HMSET command.
An example of how each session is stored can be seen below.

HMSET spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe creationTime 1404360000000 \
	maxInactiveInterval 1800 \
	lastAccessedTime 1404360000000 \
	sessionAttr:attrName someAttrValue \
	sessionAttr2:attrName someAttrValue2

In this example, the session following statements are true about the session:

	
The session ID is 33fdd1b6-b496-4b33-9f7d-df96679d32fe

	
The session was created at 1404360000000 in milliseconds since midnight of 1/1/1970 GMT.

	
The session expires in 1800 seconds (30 minutes).

	
The session was last accessed at 1404360000000 in milliseconds since midnight of 1/1/1970 GMT.

	
The session has two attributes.
The first is "attrName" with the value of "someAttrValue".
The second session attribute is named "attrName2" with the value of "someAttrValue2".





Optimized Writes





The Session instances managed by RedisOperationsSessionRepository keeps track of the properties that have changed and only updates those.
This means if an attribute is written once and read many times we only need to write that attribute once.
For example, assume the session attribute "sessionAttr2" from earlier was updated.
The following would be executed upon saving:

HMSET spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe sessionAttr:attrName2 newValue


Session Expiration





An expiration is associated to each session using the EXPIRE command based upon the Session.getMaxInactiveInterval().
For example:

EXPIRE spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe 2100

You will note that the expiration that is set is 5 minutes after the session actually expires.
This is necessary so that the value of the session can be accessed when the session expires.
An expiration is set on the session itself five minutes after it actually expires to ensure it is cleaned up, but only after we perform any necessary processing.

	[image: [Note]]	Note
	
The SessionRepository.findById(String) method ensures that no expired sessions will be returned.
This means there is no need to check the expiration before using a session.





Spring Session relies on the delete and expired keyspace notifications from Redis to fire a SessionDeletedEvent and SessionExpiredEvent respectively.
It is the SessionDeletedEvent or SessionExpiredEvent that ensures resources associated with the Session are cleaned up.
For example, when using Spring Session’s WebSocket support the Redis expired or delete event is what triggers any WebSocket connections associated with the session to be closed.

Expiration is not tracked directly on the session key itself since this would mean the session data would no longer be available. Instead a special session expires key is used. In our example the expires key is:

APPEND spring:session:sessions:expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe ""
EXPIRE spring:session:sessions:expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe 1800

When a session expires key is deleted or expires, the keyspace notification triggers a lookup of the actual session and a SessionDestroyedEvent is fired.

One problem with relying on Redis expiration exclusively is that Redis makes no guarantee of when the expired event will be fired if the key has not been accessed.
Specifically the background task that Redis uses to clean up expired keys is a low priority task and may not trigger the key expiration.
For additional details see Timing of expired events section in the Redis documentation.

To circumvent the fact that expired events are not guaranteed to happen we can ensure that each key is accessed when it is expected to expire.
This means that if the TTL is expired on the key, Redis will remove the key and fire the expired event when we try to access the key.

For this reason, each session expiration is also tracked to the nearest minute.
This allows a background task to access the potentially expired sessions to ensure that Redis expired events are fired in a more deterministic fashion.
For example:

SADD spring:session:expirations:1439245080000 expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe
EXPIRE spring:session:expirations1439245080000 2100

The background task will then use these mappings to explicitly request each key.
By accessing the key, rather than deleting it, we ensure that Redis deletes the key for us only if the TTL is expired.

	[image: [Note]]	Note
	
We do not explicitly delete the keys since in some instances there may be a race condition that incorrectly identifies a key as expired when it is not.
Short of using distributed locks (which would kill our performance) there is no way to ensure the consistency of the expiration mapping.
By simply accessing the key, we ensure that the key is only removed if the TTL on that key is expired.







SessionDeletedEvent and SessionExpiredEvent





SessionDeletedEvent and SessionExpiredEvent are both types of SessionDestroyedEvent.

RedisOperationsSessionRepository supports firing a SessionDeletedEvent whenever a Session is deleted or a SessionExpiredEvent when it expires.
This is necessary to ensure resources associated with the Session are properly cleaned up.

For example, when integrating with WebSockets the SessionDestroyedEvent is in charge of closing any active WebSocket connections.

Firing SessionDeletedEvent or SessionExpiredEvent is made available through the SessionMessageListener which listens to Redis Keyspace events.
In order for this to work, Redis Keyspace events for Generic commands and Expired events needs to be enabled.
For example:

redis-cli config set notify-keyspace-events Egx

If you are using @EnableRedisHttpSession the SessionMessageListener and enabling the necessary Redis Keyspace events is done automatically.
However, in a secured Redis enviornment the config command is disabled.
This means that Spring Session cannot configure Redis Keyspace events for you.
To disable the automatic configuration add ConfigureRedisAction.NO_OP as a bean.

For example, Java Configuration can use the following:

@Bean
public static ConfigureRedisAction configureRedisAction() {
	return ConfigureRedisAction.NO_OP;
}

XML Configuration can use the following:

<util:constant
	static-field="org.springframework.session.data.redis.config.ConfigureRedisAction.NO_OP"/>


SessionCreatedEvent





When a session is created an event is sent to Redis with the channel of spring:session:channel:created:33fdd1b6-b496-4b33-9f7d-df96679d32fe
such that 33fdd1b6-b496-4b33-9f7d-df96679d32fe is the session ID. The body of the event will be the session that was created.

If registered as a MessageListener (default), then RedisOperationsSessionRepository will then translate the Redis message into a SessionCreatedEvent.


Viewing the Session in Redis





After installing redis-cli, you can inspect the values in Redis using the redis-cli.
For example, enter the following into a terminal:

$ redis-cli
redis 127.0.0.1:6379> keys *
1) "spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021" [image: 1]
2) "spring:session:expirations:1418772300000" [image: 2]

	[image: 1] 
	
The suffix of this key is the session identifier of the Spring Session.


	[image: 2] 
	
This key contains all the session IDs that should be deleted at the time 1418772300000.





You can also view the attributes of each session.

redis 127.0.0.1:6379> hkeys spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021
1) "lastAccessedTime"
2) "creationTime"
3) "maxInactiveInterval"
4) "sessionAttr:username"
redis 127.0.0.1:6379> hget spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021 sessionAttr:username
"\xac\xed\x00\x05t\x00\x03rob"


ReactiveRedisOperationsSessionRepository





ReactiveRedisOperationsSessionRepository is a ReactiveSessionRepository that is implemented using Spring Data’s ReactiveRedisOperations.
In a web environment, this is typically used in combination with WebSessionStore.

Instantiating a ReactiveRedisOperationsSessionRepository





A typical example of how to create a new instance can be seen below:

// ... create and configure connectionFactory and serializationContext ...

ReactiveRedisTemplate<String, Object> redisTemplate = new ReactiveRedisTemplate<>(
		connectionFactory, serializationContext);

ReactiveSessionRepository<? extends Session> repository =
		new ReactiveRedisOperationsSessionRepository(redisTemplate);

For additional information on how to create a ReactiveRedisConnectionFactory, refer to the Spring Data Redis Reference.


EnableRedisWebSession





In a web environment, the simplest way to create a new ReactiveRedisOperationsSessionRepository is to use @EnableRedisWebSession.
You can use the following attributes to customize the configuration:

	
maxInactiveIntervalInSeconds - the amount of time before the session will expire in seconds

	
redisNamespace - allows configuring an application specific namespace for the sessions. Redis keys and channel IDs will start with the prefix of <redisNamespace>:.

	
redisFlushMode - allows specifying when data will be written to Redis. The default is only when save is invoked on ReactiveSessionRepository.
A value of RedisFlushMode.IMMEDIATE will write to Redis as soon as possible.




Optimized Writes





The Session instances managed by ReactiveRedisOperationsSessionRepository keeps track of the properties that have changed and only updates those.
This means if an attribute is written once and read many times we only need to write that attribute once.



Viewing the Session in Redis





After installing redis-cli, you can inspect the values in Redis using the redis-cli.
For example, enter the following into a terminal:

$ redis-cli
redis 127.0.0.1:6379> keys *
1) "spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021" [image: 1]

	[image: 1] 
	
The suffix of this key is the session identifier of the Spring Session.





You can also view the attributes of each session.

redis 127.0.0.1:6379> hkeys spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021
1) "lastAccessedTime"
2) "creationTime"
3) "maxInactiveInterval"
4) "sessionAttr:username"
redis 127.0.0.1:6379> hget spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021 sessionAttr:username
"\xac\xed\x00\x05t\x00\x03rob"


MapSessionRepository





The MapSessionRepository allows for persisting Session in a Map with the key being the Session ID and the value being the Session.
The implementation can be used with a ConcurrentHashMap as a testing or convenience mechanism.
Alternatively, it can be used with distributed Map implementations. For example, it can be used with Hazelcast.

Instantiating MapSessionRepository





Creating a new instance is as simple as:

SessionRepository<? extends Session> repository = new MapSessionRepository(
		new ConcurrentHashMap<>());


Using Spring Session and Hazlecast





The Hazelcast Sample is a complete application demonstrating using Spring Session with Hazelcast.

To run it use the following:

./gradlew :samples:hazelcast:tomcatRun

The Hazelcast Spring Sample is a complete application demonstrating using Spring Session with Hazelcast and Spring Security.

It includes example Hazelcast MapListener implementations that support firing SessionCreatedEvent, SessionDeletedEvent and SessionExpiredEvent.

To run it use the following:

./gradlew :samples:hazelcast-spring:tomcatRun


ReactiveMapSessionRepository





The ReactiveMapSessionRepository allows for persisting Session in a Map with the key being the Session ID and the value being the Session.
The implementation can be used with a ConcurrentHashMap as a testing or convenience mechanism.
Alternatively, it can be used with distributed Map implementations with the requirement that the supplied Map must be a non-blocking.

JdbcOperationsSessionRepository





JdbcOperationsSessionRepository is a SessionRepository implementation that uses Spring’s JdbcOperations to store sessions in a relational database.
In a web environment, this is typically used in combination with SessionRepositoryFilter.
Please note that this implementation does not support publishing of session events.

Instantiating a JdbcOperationsSessionRepository





A typical example of how to create a new instance can be seen below:

JdbcTemplate jdbcTemplate = new JdbcTemplate();

// ... configure JdbcTemplate ...

PlatformTransactionManager transactionManager = new DataSourceTransactionManager();

// ... configure transactionManager ...

SessionRepository<? extends Session> repository =
		new JdbcOperationsSessionRepository(jdbcTemplate, transactionManager);

For additional information on how to create and configure JdbcTemplate and PlatformTransactionManager, refer to the Spring Framework Reference Documentation.


EnableJdbcHttpSession





In a web environment, the simplest way to create a new JdbcOperationsSessionRepository is to use @EnableJdbcHttpSession.
Complete example usage can be found in the Chapter 3, Samples and Guides (Start Here)
You can use the following attributes to customize the configuration:

	
tableName - the name of database table used by Spring Session to store sessions

	
maxInactiveIntervalInSeconds - the amount of time before the session will expire in seconds




Custom LobHandler





You can customize the BLOB handling by creating a Bean named springSessionLobHandler that implements LobHandler.


Custom ConversionService





You can customize the default serialization and deserialization of the session by providing a ConversionService instance.
When working in a typical Spring environment, the default ConversionService Bean (named conversionService) will be automatically picked up and used for serialization and deserialization.
However, you can override the default ConversionService by providing a Bean named springSessionConversionService.



Storage Details





By default, this implementation uses SPRING_SESSION and SPRING_SESSION_ATTRIBUTES tables to store sessions.
Note that the table name can be easily customized as already described. In that case the table used to store attributes will be named using the provided table name, suffixed with _ATTRIBUTES.
If further customizations are needed, SQL queries used by the repository can be customized using set*Query setter methods. In this case you need to manually configure the sessionRepository bean.

Due to the differences between the various database vendors, especially when it comes to storing binary data, make sure to use SQL script specific to your database.
Scripts for most major database vendors are packaged as org/springframework/session/jdbc/schema-*.sql, where * is the target database type.

For example, with PostgreSQL database you would use the following schema script:

CREATE TABLE SPRING_SESSION (
	PRIMARY_ID CHAR(36) NOT NULL,
	SESSION_ID CHAR(36) NOT NULL,
	CREATION_TIME BIGINT NOT NULL,
	LAST_ACCESS_TIME BIGINT NOT NULL,
	MAX_INACTIVE_INTERVAL INT NOT NULL,
	EXPIRY_TIME BIGINT NOT NULL,
	PRINCIPAL_NAME VARCHAR(100),
	CONSTRAINT SPRING_SESSION_PK PRIMARY KEY (PRIMARY_ID)
);

CREATE UNIQUE INDEX SPRING_SESSION_IX1 ON SPRING_SESSION (SESSION_ID);
CREATE INDEX SPRING_SESSION_IX2 ON SPRING_SESSION (EXPIRY_TIME);
CREATE INDEX SPRING_SESSION_IX3 ON SPRING_SESSION (PRINCIPAL_NAME);

CREATE TABLE SPRING_SESSION_ATTRIBUTES (
	SESSION_PRIMARY_ID CHAR(36) NOT NULL,
	ATTRIBUTE_NAME VARCHAR(200) NOT NULL,
	ATTRIBUTE_BYTES BYTEA NOT NULL,
	CONSTRAINT SPRING_SESSION_ATTRIBUTES_PK PRIMARY KEY (SESSION_PRIMARY_ID, ATTRIBUTE_NAME),
	CONSTRAINT SPRING_SESSION_ATTRIBUTES_FK FOREIGN KEY (SESSION_PRIMARY_ID) REFERENCES SPRING_SESSION(PRIMARY_ID) ON DELETE CASCADE
);

And with MySQL database:

CREATE TABLE SPRING_SESSION (
	PRIMARY_ID CHAR(36) NOT NULL,
	SESSION_ID CHAR(36) NOT NULL,
	CREATION_TIME BIGINT NOT NULL,
	LAST_ACCESS_TIME BIGINT NOT NULL,
	MAX_INACTIVE_INTERVAL INT NOT NULL,
	EXPIRY_TIME BIGINT NOT NULL,
	PRINCIPAL_NAME VARCHAR(100),
	CONSTRAINT SPRING_SESSION_PK PRIMARY KEY (PRIMARY_ID)
) ENGINE=InnoDB ROW_FORMAT=DYNAMIC;

CREATE UNIQUE INDEX SPRING_SESSION_IX1 ON SPRING_SESSION (SESSION_ID);
CREATE INDEX SPRING_SESSION_IX2 ON SPRING_SESSION (EXPIRY_TIME);
CREATE INDEX SPRING_SESSION_IX3 ON SPRING_SESSION (PRINCIPAL_NAME);

CREATE TABLE SPRING_SESSION_ATTRIBUTES (
	SESSION_PRIMARY_ID CHAR(36) NOT NULL,
	ATTRIBUTE_NAME VARCHAR(200) NOT NULL,
	ATTRIBUTE_BYTES BLOB NOT NULL,
	CONSTRAINT SPRING_SESSION_ATTRIBUTES_PK PRIMARY KEY (SESSION_PRIMARY_ID, ATTRIBUTE_NAME),
	CONSTRAINT SPRING_SESSION_ATTRIBUTES_FK FOREIGN KEY (SESSION_PRIMARY_ID) REFERENCES SPRING_SESSION(PRIMARY_ID) ON DELETE CASCADE
) ENGINE=InnoDB ROW_FORMAT=DYNAMIC;


Transaction management





All JDBC operations in JdbcOperationsSessionRepository are executed in a transactional manner.
Transactions are executed with propagation set to REQUIRES_NEW in order to avoid unexpected behavior due to interference with existing transactions (for example, executing save operation in a thread that already participates in a read-only transaction).


HazelcastSessionRepository





HazelcastSessionRepository is a SessionRepository implementation that stores sessions in Hazelcast’s distributed IMap.
In a web environment, this is typically used in combination with SessionRepositoryFilter.

Instantiating a HazelcastSessionRepository





A typical example of how to create a new instance can be seen below:

Config config = new Config();

// ... configure Hazelcast ...

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);

HazelcastSessionRepository repository =
		new HazelcastSessionRepository(hazelcastInstance);

For additional information on how to create and configure Hazelcast instance, refer to the Hazelcast documentation.


EnableHazelcastHttpSession





If you wish to use Hazelcast as your backing source for the SessionRepository, then the @EnableHazelcastHttpSession annotation
can be added to an @Configuration class. This extends the functionality provided by the @EnableSpringHttpSession annotation but makes the SessionRepository for you in Hazelcast.
You must provide a single HazelcastInstance bean for the configuration to work.
Complete configuration example can be found in the Chapter 3, Samples and Guides (Start Here)


Basic Customization





You can use the following attributes on @EnableHazelcastHttpSession to customize the configuration:

	
maxInactiveIntervalInSeconds - the amount of time before the session will expire in seconds. Default is 1800 seconds (30 minutes)

	
sessionMapName - the name of the distributed Map that will be used in Hazelcast to store the session data.





Session Events





Using a MapListener to respond to entries being added, evicted, and removed from the distributed Map, these events will trigger
publishing SessionCreatedEvent, SessionExpiredEvent, and SessionDeletedEvent events respectively using the ApplicationEventPublisher.


Storage Details





Sessions will be stored in a distributed IMap in Hazelcast.
The IMap interface methods will be used to get() and put() Sessions.
Additionally, values() method is used to support FindByIndexNameSessionRepository#findByIndexNameAndIndexValue operation, together with appropriate ValueExtractor that needs to be registered with Hazelcast. Refer to Hazelcast Spring Sample for more details on this configuration.
The expiration of a session in the IMap is handled by Hazelcast’s support for setting the time to live on an entry when it is put() into the IMap. Entries (sessions) that have been idle longer than the time to live will be automatically removed from the IMap.

You shouldn’t need to configure any settings such as max-idle-seconds or time-to-live-seconds for the IMap within the Hazelcast configuration.

Note that if you use Hazelcast’s MapStore to persist your sessions IMap there are some limitations when reloading the sessions from MapStore:

	
reload triggers EntryAddedListener which results in SessionCreatedEvent being re-published

	
reload uses default TTL for a given IMap which results in sessions losing their original TTL





Chapter 10. Custom SessionRepository





Implementing a custom SessionRepository API should be a fairly straightforward task.
Coupling the custom implementation with @EnableSpringHttpSession support allow to easily reuse existing Spring Session configuration facilities and infrastructure.
There are however a couple of aspects that deserve a closer consideration.

During a lifecycle of an HTTP request, the HttpSession is typically is persisted to SessionRepository twice.
First to ensure that the session is available to the clients as soon as the client has access to the session ID, and it is also necessary to write after the session is committed because further modifications to the session might be made.
Having this in mind, it is generally recommended for a SessionRepository implementation to keep track of changes to ensure that only deltas are saved.
This is in particular very important in highly concurrent environments, where multiple requests operate on the same HttpSession and therefore cause race conditions, with requests overriding each others changes to session attributes.
All of the SessionRepository implementations provided by Spring Session use the described approach to persisting session changes and can be used for guidance while implementing custom SessionRepository.

Note that the same recommendations apply for implementing a custom ReactiveSessionRepository as well.
Of course, in this case the @EnableSpringWebSession should be used.

Chapter 11. Upgrading to 2.x





With the new major release version, the Spring Session team took the opportunity to make some non-passive changes.
The focus of these changes is to improve and harmonize Spring Session’s APIs, as well as remove the deprecated components.

Baseline update





Spring Session 2.0 requires Java 8 and Spring Framework 5.0 as a baseline, since its entire codebase is now based on Java 8 source code.
Refer to guide for Upgrading to Spring Framework 5.x for reference on upgrading Spring Framework.





Replaced and Removed Modules





As a part of the project’s split the modules, the existing spring-session has been replaced with spring-session-core module.
The spring-session-core module holds only the common set of APIs and components while other modules contain the implementation of appropriate SessionRepository and functionality related to that data store.
This applies to several existing that were previously a simple dependency aggregator helper modules but with new module arrangement actually carry the implementation:

	
Spring Session Data Redis

	
Spring Session JDBC

	
Spring Session Hazelcast




Also the following modules were removed from the main project repository:

	
Spring Session Data MongoDB

	
Spring Session Data GemFire




Note that these two have moved to separate repositories, and will continue to be available albeit under a changed artifact names:

	
spring-session-data-mongodb

	
spring-session-data-geode




Replaced and Removed Packages, Classes and Methods





	
ExpiringSession API has been merged into Session API

	
Session API has been enhanced to make full use of Java 8

	
Session API has been extended with changeSessionId support

	
SessionRepository API has been updated to better align with Spring Data method naming conventions

	
AbstractSessionEvent and its subclasses are no longer constructable without an underlying Session object

	
Redis namespace used by RedisOperationsSessionRepository is now fully configurable, instead of being partial configurable

	
Redis configuration support has been updated to avoid registering a Spring Session specific RedisTemplate bean

	
JDBC configuration support has been updated to avoid registering a Spring Session specific JdbcTemplate bean

	
Previously deprecated classes and methods have been removed across the codebase




Dropped Support





As a part of the changes to HttpSessionStrategy and it’s alignment to the counterpart from the reactive world, the support for managing multiple users' sessions in a single browser instance has been removed.
The introduction of a new API to replace this functionality is under consideration for future releases.

Chapter 12. Spring Session Community





We are glad to consider you a part of our community.
Please find additional information below.

Support





You can get help by asking questions on StackOverflow with the tag spring-session.
Similarly we encourage helping others by answering questions on StackOverflow.







Source Code





Our source code can be found on GitHub at https://github.com/spring-projects/spring-session/

Issue Tracking





We track issues in GitHub issues at https://github.com/spring-projects/spring-session/issues

Contributing





We appreciate Pull Requests.

License





Spring Session is Open Source software released under the Apache 2.0 license.

Community Extensions






	Name	Location
	Spring Session OrientDB
	https://github.com/maseev/spring-session-orientdb

	Spring Session Infinispan
	http://infinispan.org/docs/dev/user_guide/user_guide.html#externalizing_session_using_spring_session





Chapter 13. Minimum Requirements





The minimum requirements for Spring Session are:

	
Java 8+

	
If you are running in a Servlet Container (not required), Servlet 3.1+

	
If you are using other Spring libraries (not required), the minimum required version is Spring 5.0.x.

	
@EnableRedisHttpSession requires Redis 2.8+. This is necessary to support Session Expiration

	
@EnableHazelcastHttpSession requires Hazelcast 3.6+. This is necessary to support FindByIndexNameSessionRepository




	[image: [Note]]	Note
	
At its core Spring Session only has a required dependency on spring-jcl.
For an example of using Spring Session without any other Spring dependencies, refer to the hazelcast sample application.





images/callouts/6.png


images/callouts/3.png


images/callouts/2.png


images/callouts/1.png


images/note.png


images/callouts/5.png


images/callouts/4.png


