
Spring Session

Rob Winch , Vedran Pavi# , Jay Bryant

Copyright ©

Spring Session

please define title in your docbook file! ii

Table of Contents

... v
1. Introduction .. 1
2. What’s New in 2.0 ... 2
3. Samples and Guides (Start Here) ... 3
4. Spring Session Modules ... 5
5. HttpSession Integration ... 6

5.1. Why Spring Session and HttpSession? ... 6
5.2. HttpSession with Redis .. 6

Redis Java-based Configuration .. 6
Spring Java Configuration ... 6
Java Servlet Container Initialization ... 7

Redis XML-based Configuration .. 7
Spring XML Configuration ... 7
XML Servlet Container Initialization ... 8

5.3. HttpSession with JDBC .. 9
JDBC Java-based Configuration ... 9

Spring Java Configuration ... 9
Java Servlet Container Initialization ... 10

JDBC XML-based Configuration .. 10
Spring XML Configuration ... 10
XML Servlet Container Initialization ... 11

JDBC Spring Boot-based Configuration ... 12
Spring Boot Configuration ... 12
Configuring the DataSource .. 13
Servlet Container Initialization ... 13

5.4. HttpSession with Hazelcast .. 13
Spring Configuration ... 13
Servlet Container Initialization ... 14

5.5. How HttpSession Integration Works .. 15
5.6. HttpSession and RESTful APIs .. 16

Spring Configuration ... 16
Servlet Container Initialization ... 17

5.7. Using HttpSessionListener ... 17
6. WebSocket Integration .. 19

6.1. Why Spring Session and WebSockets? .. 19
6.2. WebSocket Usage ... 19

HttpSession Integration ... 19
Spring Configuration ... 19

7. WebSession Integration .. 22
7.1. Why Spring Session and WebSession? .. 22
7.2. WebSession with Redis ... 22
7.3. How WebSession Integration Works ... 22

8. Spring Security Integration .. 24
8.1. Spring Security Remember-me Support .. 24
8.2. Spring Security Concurrent Session Control .. 24
8.3. Limitations ... 25

9. API Documentation ... 26

Spring Session

please define title in your docbook file! iii

9.1. Using Session ... 26
9.2. Using SessionRepository ... 27
9.3. Using FindByIndexNameSessionRepository .. 27
9.4. Using ReactiveSessionRepository ... 28
9.5. Using @EnableSpringHttpSession ... 28
9.6. Using @EnableSpringWebSession ... 29
9.7. Using RedisOperationsSessionRepository .. 29

Instantiating a RedisOperationsSessionRepository .. 29
Using @EnableRedisHttpSession .. 29

Custom RedisSerializer ... 30
Redis TaskExecutor .. 30
Storage Details .. 30

Saving a Session ... 30
Optimized Writes .. 31
Session Expiration .. 31

SessionDeletedEvent and SessionExpiredEvent .. 32
Using SessionCreatedEvent .. 33
Viewing the Session in Redis .. 33

9.8. Using ReactiveRedisOperationsSessionRepository .. 33
Instantiating a ReactiveRedisOperationsSessionRepository 33
Using @EnableRedisWebSession .. 34

Optimized Writes .. 34
Viewing the Session in Redis .. 34

9.9. Using MapSessionRepository ... 34
Instantiating MapSessionRepository ... 34
Using Spring Session and Hazlecast ... 35

9.10. Using ReactiveMapSessionRepository .. 35
9.11. Using JdbcOperationsSessionRepository .. 35

Instantiating a JdbcOperationsSessionRepository .. 35
Using @EnableJdbcHttpSession .. 35

Customizing LobHandler .. 36
Customizing ConversionService .. 36

Storage Details .. 36
Transaction Management .. 37

9.12. Using HazelcastSessionRepository .. 37
Instantiating a HazelcastSessionRepository .. 37
Using @EnableHazelcastHttpSession .. 37
Basic Customization ... 38
Session Events .. 38
Storage Details .. 38

10. Customing SessionRepository ... 39
11. Upgrading to 2.x ... 40

11.1. Baseline Update .. 40
11.2. Replaced and Removed Modules ... 40
11.3. Replaced and Removed Packages, Classes, and Methods ... 40
11.4. Dropped Support ... 41

12. Spring Session Community ... 42
12.1. Support ... 42
12.2. Source Code ... 42
12.3. Issue Tracking ... 42

Spring Session

please define title in your docbook file! iv

12.4. Contributing ... 42
12.5. License ... 42
12.6. Community Extensions ... 42

13. Minimum Requirements .. 43

Spring Session

please define title in your docbook file! v

Spring Session provides an API and implementations for managing a user’s session information.

Spring Session

please define title in your docbook file! 1

1. Introduction

Spring Session provides an API and implementations for managing a user’s session information while
also making it trivial to support clustered sessions without being tied to an application container-specific
solution. It also provides transparent integration with:

• HttpSession: Allows replacing the HttpSession in an application container-neutral way, with support
for providing session IDs in headers to work with RESTful APIs.

• WebSocket: Provides the ability to keep the HttpSession alive when receiving WebSocket
messages

• WebSession: Allows replacing the Spring WebFlux’s WebSession in an application container-neutral
way.

Spring Session

please define title in your docbook file! 2

2. What’s New in 2.0

The following list highlights what is new in Spring Session 2.0:

• Upgraded to Java 8 and Spring Framework 5 as baseline

• Added support for managing Spring WebFlux’s WebSession with Redis
ReactiveSessionRepository

• Extracted SessionRepository implementations to separate modules

• Improved Session and SessionRepository APIs

• Improved and harmonized configuration support for all supported session stores

• Added support for configuring default CookieSerializer using SessionCookieConfig

• Lots of performance improvements and bug fixes

You can find a complete list of what is new by referring to the changelogs of

• 2.0.0.M1

• 2.0.0.M2

• 2.0.0.M3

• 2.0.0.M4

• 2.0.0.M5

• 2.0.0.RC1

• 2.0.0.RC2

• 2.0.0.RELEASE

https://github.com/spring-projects/spring-session/issues/683
https://github.com/spring-projects/spring-session/issues/816
https://github.com/spring-projects/spring-session/issues/816
https://github.com/spring-projects/spring-session/issues/768
https://github.com/spring-projects/spring-session/issues/682
https://github.com/spring-projects/spring-session/issues/809
https://github.com/spring-projects/spring-session/pull/713
https://github.com/spring-projects/spring-session/milestone/17?closed=1
https://github.com/spring-projects/spring-session/milestone/22?closed=1
https://github.com/spring-projects/spring-session/milestone/23?closed=1
https://github.com/spring-projects/spring-session/milestone/24?closed=1
https://github.com/spring-projects/spring-session/milestone/25?closed=1
https://github.com/spring-projects/spring-session/milestone/26?closed=1
https://github.com/spring-projects/spring-session/milestone/27?closed=1
https://github.com/spring-projects/spring-session/milestone/30?closed=1

Spring Session

please define title in your docbook file! 3

3. Samples and Guides (Start Here)
To get started with Spring Session, the best place to start is our Sample Applications.

Table 3.1. Sample Applications that use Spring Boot

Source Description Guide

HttpSession with Redis Demonstrates how to use
Spring Session to replace the
HttpSession with Redis.

HttpSession with Redis Guide

HttpSession with JDBC Demonstrates how to use
Spring Session to replace the
HttpSession with a relational
database store.

HttpSession with JDBC Guide

Find by Username Demonstrates how to use
Spring Session to find sessions
by username.

Find by Username Guide

WebSockets Demonstrates how to
use Spring Session with
WebSockets.

WebSockets Guide

WebFlux Demonstrates how to use
Spring Session to replace the
Spring WebFlux’s WebSession
with Redis.

HttpSession with Redis JSON
serialization

Demonstrates how to use
Spring Session to replace the
HttpSession with Redis using
JSON serialization.

Table 3.2. Sample Applications that use Spring Java-based configuration

Source Description Guide

HttpSession with Redis Demonstrates how to use
Spring Session to replace the
HttpSession with Redis.

HttpSession with Redis Guide

HttpSession with JDBC Demonstrates how to use
Spring Session to replace the
HttpSession with a relational
database store.

HttpSession with JDBC Guide

HttpSession with Hazelcast Demonstrates how to use
Spring Session to replace the
HttpSession with Hazelcast.

HttpSession with Hazelcast
Guide

Custom Cookie Demonstrates how to use
Spring Session and customize
the cookie.

Custom Cookie Guide

https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/redis
guides/boot-redis.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/jdbc
guides/boot-jdbc.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/findbyusername
guides/boot-findbyusername.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/websocket
guides/boot-websocket.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/webflux
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/redis-json
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/redis-json
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/javaconfig/redis
guides/java-redis.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/javaconfig/jdbc
guides/java-jdbc.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/javaconfig/hazelcast
guides/java-hazelcast.html
guides/java-hazelcast.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/javaconfig/custom-cookie
guides/java-custom-cookie.html

Spring Session

please define title in your docbook file! 4

Source Description Guide

Spring Security Demonstrates how to use
Spring Session with an existing
Spring Security application.

Spring Security Guide

REST Demonstrates how to use
Spring Session in a REST
application to support
authenticating with a header.

REST Guide

Table 3.3. Sample Applications that use Spring XML-based configuration

Source Description Guide

HttpSession with Redis Demonstrates how to use
Spring Session to replace the
HttpSession with a Redis
store.

HttpSession with Redis Guide

HttpSession with JDBC Demonstrates how to use
Spring Session to replace the
HttpSession with a relational
database store.

HttpSession with JDBC Guide

Table 3.4. Miscellaneous sample Applications

Source Description Guide

Grails 3 Demonstrates how to use
Spring Session with Grails 3.

Grails 3 Guide

Hazelcast Demonstrates how to use
Spring Session with Hazelcast
in a Java EE application.

TBD

https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/javaconfig/security
guides/java-security.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/javaconfig/rest
guides/java-rest.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/xml/redis
guides/xml-redis.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/xml/jdbc
guides/xml-jdbc.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/misc/grails3
guides/grails3.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/misc/hazelcast

Spring Session

please define title in your docbook file! 5

4. Spring Session Modules

In Spring Session 1.x, all of the Spring Session’s SessionRepository implementations were available
within the spring-session artifact. While convenient, this approach was not sustainable long-term
as more features and SessionRepository implementations were added to the project.

Starting with Spring Session 2.0, the project has been split into Spring Session Core module and several
other modules that carry SessionRepository implementations and functionality related to the specific
data store. Users of Spring Data should find this arrangement familiar, with Spring Session Core module
taking a role equivalent to Spring Data Commons and providing core functionalities and APIs, with other
modules containing data store specific implementations. As part of this split, the Spring Session Data
MongoDB and Spring Session Data GemFire modules were moved to separate repositories. Now the
situation with project’s repositories/modules is as follows:

• spring-session repository

• Hosts the Spring Session Core, Spring Session Data Redis, Spring Session JDBC, and Spring
Session Hazelcast modules

• spring-session-data-mongodb repository

• Hosts the Spring Session Data MongoDB module

• spring-session-data-geode repository

• Hosts the Spring Session Data Geode and Spring Session Data Geode modules

Finally, Spring Session now also provides a Maven BOM (“bill of materials”) module in order to help
users with version management concerns:

• spring-session-bom repository

• Hosts the Spring Session BOM module

https://github.com/spring-projects/spring-session
https://github.com/spring-projects/spring-session-data-mongodb
https://github.com/spring-projects/spring-session-data-geode
https://github.com/spring-projects/spring-session-bom

Spring Session

please define title in your docbook file! 6

5. HttpSession Integration

Spring Session provides transparent integration with HttpSession. This means that developers can
switch the HttpSession implementation out with an implementation that is backed by Spring Session.

5.1 Why Spring Session and HttpSession?

We have already mentioned that Spring Session provides transparent integration with HttpSession,
but what benefits do we get out of this?

• Clustered Sessions: Spring Session makes it trivial to support clustered sessions without being tied
to an application container specific solution.

• RESTful APIs: Spring Session lets providing session IDs in headers work with RESTful APIs

5.2 HttpSession with Redis

Using Spring Session with HttpSession is enabled by adding a Servlet Filter before anything that
uses the HttpSession. You can choose from enabling this by using either:

• Java-based Configuration

• XML-based Configuration

Redis Java-based Configuration

This section describes how to use Redis to back HttpSession by using Java based configuration.

Note

The HttpSession Sample provides a working sample of how to integrate Spring Session and
HttpSession by using Java configuration. You can read the basic steps for integration in the
next few sections, but we encourage you to follow along with the detailed HttpSession Guide when
integrating with your own application.

Spring Java Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a servlet filter that replaces the HttpSession implementation
with an implementation backed by Spring Session. To do so, add the following Spring Configuration:

@EnableRedisHttpSession ❶

public class Config {

 @Bean

 public LettuceConnectionFactory connectionFactory() {

 return new LettuceConnectionFactory(); ❷

 }

}

❶ The @EnableRedisHttpSession annotation creates a Spring Bean with the name of
springSessionRepositoryFilter that implements Filter. The filter is in charge of
replacing the HttpSession implementation to be backed by Spring Session. In this instance,
Spring Session is backed by Redis.

Spring Session

please define title in your docbook file! 7

❷ We create a RedisConnectionFactory that connects Spring Session to the Redis Server. We
configure the connection to connect to localhost on the default port (6379). For more information
on configuring Spring Data Redis, see the reference documentation.

Java Servlet Container Initialization

Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that
implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the
HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config class.
Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our
springSessionRepositoryFilter for every request. Fortunately, Spring Session provides a utility
class named AbstractHttpSessionApplicationInitializer to make both of these steps easy.
The following shows an example:

src/main/java/sample/Initializer.java.

public class Initializer extends AbstractHttpSessionApplicationInitializer { ❶

 public Initializer() {

 super(Config.class); ❷

 }

}

Note

The name of our class (Initializer) does not matter. What is important is that we extend
AbstractHttpSessionApplicationInitializer.

❶ The first step is to extend AbstractHttpSessionApplicationInitializer. Doing so
ensures that the Spring Bean by the name of springSessionRepositoryFilter is registered
with our Servlet Container for every request.

❷ AbstractHttpSessionApplicationInitializer also provides a mechanism to ensure
Spring loads our Config.

Redis XML-based Configuration

This section describes how to use Redis to back HttpSession by using XML based configuration.

Note

The HttpSession XML Sample provides a working sample of how to integrate Spring Session and
HttpSession using XML configuration. You can read the basic steps for integration in the next
few sections, but we encourage you to follow along with the detailed HttpSession XML Guide
when integrating with your own application.

Spring XML Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a servlet filter that replaces the HttpSession implementation
with an implementation backed by Spring Session. To do so, add the following Spring Configuration:

src/main/webapp/WEB-INF/spring/session.xml.

https://docs.spring.io/spring-data/data-redis/docs/2.1.17.RELEASE/reference/html/

Spring Session

please define title in your docbook file! 8

❶

<context:annotation-config/>

<bean class="org.springframework.session.data.redis.config.annotation.web.http.RedisHttpSessionConfiguration"/

>

❷

<bean class="org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory"/>

❶ We use the combination of <context:annotation-config/> and
RedisHttpSessionConfiguration because Spring Session does not yet provide XML
Namespace support (see gh-104). This creates a Spring Bean with the name of
springSessionRepositoryFilter that implements Filter. The filter is in charge of
replacing the HttpSession implementation to be backed by Spring Session. In this instance,
Spring Session is backed by Redis.

❷ We create a RedisConnectionFactory that connects Spring Session to the Redis Server. We
configure the connection to connect to localhost on the default port (6379) For more information
on configuring Spring Data Redis, see the reference documentation.

XML Servlet Container Initialization

Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that
implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the
HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, we need to instruct Spring to load our session.xml
configuration. We can do so with the following configuration:

src/main/webapp/WEB-INF/web.xml.

<context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/spring/*.xml

 </param-value>

</context-param>

<listener>

 <listener-class>

 org.springframework.web.context.ContextLoaderListener

 </listener-class>

</listener>

The ContextLoaderListener reads the contextConfigLocation and picks up our session.xml
configuration.

Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our
springSessionRepositoryFilter for every request. The following snippet performs this last step
for us:

src/main/webapp/WEB-INF/web.xml.

<filter>

 <filter-name>springSessionRepositoryFilter</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

 <filter-name>springSessionRepositoryFilter</filter-name>

 <url-pattern>/*</url-pattern>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>ERROR</dispatcher>

</filter-mapping>

https://github.com/spring-projects/spring-session/issues/104
https://docs.spring.io/spring-data/data-redis/docs/2.1.17.RELEASE/reference/html/
https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/core.html#context-create

Spring Session

please define title in your docbook file! 9

The DelegatingFilterProxy looks up a Bean by the name of
springSessionRepositoryFilter and cast it to a Filter. For every request that
DelegatingFilterProxy is invoked, the springSessionRepositoryFilter is invoked.

5.3 HttpSession with JDBC

You can use Spring Session with HttpSession by adding a servlet filter before anything that uses the
HttpSession. You can choose to do in any of the following ways:

• Java-based Configuration

• XML-based Configuration

• Spring Boot-based Configuration

JDBC Java-based Configuration

This section describes how to use a relational database to back HttpSession when you use Java-
based configuration.

Note

The HttpSession JDBC Sample provides a working sample of how to integrate Spring Session
and HttpSession by using Java configuration. You can read the basic steps for integration in
the next few sections, but we encouraged you to follow along with the detailed HttpSession JDBC
Guide when integrating with your own application.

Spring Java Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation
with an implementation backed by Spring Session. To do so, add the following Spring Configuration:

@EnableJdbcHttpSession ❶

public class Config {

 @Bean

 public EmbeddedDatabase dataSource() {

 return new EmbeddedDatabaseBuilder() ❷

 .setType(EmbeddedDatabaseType.H2)

 .addScript("org/springframework/session/jdbc/schema-h2.sql").build();

 }

 @Bean

 public PlatformTransactionManager transactionManager(DataSource dataSource) {

 return new DataSourceTransactionManager(dataSource); ❸

 }

}

❶ The @EnableJdbcHttpSession annotation creates a Spring Bean with the name of
springSessionRepositoryFilter. That bean implements Filter. The filter is in charge of
replacing the HttpSession implementation to be backed by Spring Session. In this instance,
Spring Session is backed by a relational database.

❷ We create a dataSource that connects Spring Session to an embedded instance of an H2
database. We configure the H2 database to create database tables by using the SQL script that
is included in Spring Session.

https://docs.spring.io/spring-framework/docs/5.1.15.RELEASE/javadoc-api/org/springframework/web/filter/DelegatingFilterProxy.html

Spring Session

please define title in your docbook file! 10

❸ We create a transactionManager that manages transactions for previously configured
dataSource.

For additional information on how to configure data access related concerns, see the Spring Framework
Reference Documentation.

Java Servlet Container Initialization

Our Spring Configuration created a Spring bean named springSessionRepositoryFilter that
implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the
HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config class.
Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our
springSessionRepositoryFilter for every request. Fortunately, Spring Session provides a utility
class named AbstractHttpSessionApplicationInitializer to make both of these steps easy.
The following example shows how to do so:

src/main/java/sample/Initializer.java.

public class Initializer extends AbstractHttpSessionApplicationInitializer { ❶

 public Initializer() {

 super(Config.class); ❷

 }

}

Note

The name of our class (Initializer) does not matter. What is important is that we extend
AbstractHttpSessionApplicationInitializer.

❶ The first step is to extend AbstractHttpSessionApplicationInitializer. Doing so
ensures that the Spring bean named springSessionRepositoryFilter is registered with our
Servlet Container for every request.

❷ AbstractHttpSessionApplicationInitializer also provides a mechanism to ensure
Spring loads our Config.

JDBC XML-based Configuration

This section describes how to use a relational database to back HttpSession when you use XML
based configuration.

Note

The HttpSession JDBC XML Sample provides a working sample of how to integrate Spring
Session and HttpSession by using XML configuration. You can read the basic steps for
integration in the next few sections, but we encourage you to follow along with the detailed
HttpSession JDBC XML Guide when integrating with your own application.

Spring XML Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a servlet filter that replaces the HttpSession implementation

https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/data-access.html
https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/data-access.html

Spring Session

please define title in your docbook file! 11

with an implementation backed by Spring Session. The following listing shows how to add the following
Spring Configuration:

src/main/webapp/WEB-INF/spring/session.xml.

❶

<context:annotation-config/>

<bean class="org.springframework.session.jdbc.config.annotation.web.http.JdbcHttpSessionConfiguration"/>

❷

<jdbc:embedded-database id="dataSource" database-name="testdb" type="H2">

 <jdbc:script location="classpath:org/springframework/session/jdbc/schema-h2.sql"/>

</jdbc:embedded-database>

❸

<bean class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

 <constructor-arg ref="dataSource"/>

</bean>

❶ We use the combination of <context:annotation-config/> and
JdbcHttpSessionConfiguration because Spring Session does not yet provide XML
Namespace support (see gh-104). This creates a Spring bean with the name of
springSessionRepositoryFilter. That bean implements Filter. The filter is in charge of
replacing the HttpSession implementation to be backed by Spring Session. In this instance,
Spring Session is backed by a relational database.

❷ We create a dataSource that connects Spring Session to an embedded instance of an H2
database. We configure the H2 database to create database tables by using the SQL script that
is included in Spring Session.

❸ We create a transactionManager that manages transactions for previously configured
dataSource.

For additional information on how to configure data access-related concerns, see the Spring Framework
Reference Documentation.

XML Servlet Container Initialization

Our Spring Configuration created a Spring bean named springSessionRepositoryFilter that
implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the
HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, we need to instruct Spring to load our session.xml
configuration. We do so with the following configuration:

src/main/webapp/WEB-INF/web.xml.

<context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/spring/*.xml

 </param-value>

</context-param>

<listener>

 <listener-class>

 org.springframework.web.context.ContextLoaderListener

 </listener-class>

</listener>

The ContextLoaderListener reads the contextConfigLocation and picks up our session.xml
configuration.

https://github.com/spring-projects/spring-session/issues/104
https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/data-access.html
https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/data-access.html
https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/core.html#context-create

Spring Session

please define title in your docbook file! 12

Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our
springSessionRepositoryFilter for every request. The following snippet performs this last step
for us:

src/main/webapp/WEB-INF/web.xml.

<filter>

 <filter-name>springSessionRepositoryFilter</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

 <filter-name>springSessionRepositoryFilter</filter-name>

 <url-pattern>/*</url-pattern>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>ERROR</dispatcher>

</filter-mapping>

The DelegatingFilterProxy looks up a bean named springSessionRepositoryFilter and
casts it to a Filter. For every request on which DelegatingFilterProxy is invoked, the
springSessionRepositoryFilter is invoked.

JDBC Spring Boot-based Configuration

This section describes how to use a relational database to back HttpSession when you use Spring
Boot.

Note

The HttpSession JDBC Spring Boot Sample provides a working sample of how to integrate Spring
Session and HttpSession by using Spring Boot. You can read the basic steps for integration in
the next few sections, but we encourage you to follow along with the detailed HttpSession JDBC
Spring Boot Guide when integrating with your own application.

Spring Boot Configuration

After adding the required dependencies, we can create our Spring Boot configuration. Thanks to first-
class auto configuration support, setting up Spring Session backed by a relational database is as simple
as adding a single configuration property to your application.properties. The following listing
shows how to do so:

src/main/resources/application.properties.

spring.session.store-type=jdbc # Session store type.

Under the hood, Spring Boot applies configuration that is equivalent to manually adding
the @EnableJdbcHttpSession annotation. This creates a Spring bean with the name of
springSessionRepositoryFilter. That bean implements Filter. The filter is in charge of
replacing the HttpSession implementation to be backed by Spring Session.

You can further customize by using application.properties. The following listing shows how to
do so:

src/main/resources/application.properties.

https://docs.spring.io/spring-framework/docs/5.1.15.RELEASE/javadoc-api/org/springframework/web/filter/DelegatingFilterProxy.html

Spring Session

please define title in your docbook file! 13

server.servlet.session.timeout= # Session timeout. If a duration suffix is not specified, seconds are

 used.

spring.session.jdbc.initialize-schema=embedded # Database schema initialization mode.

spring.session.jdbc.schema=classpath:org/springframework/session/jdbc/schema-@@platform@@.sql # Path to

 the SQL file to use to initialize the database schema.

spring.session.jdbc.table-name=SPRING_SESSION # Name of the database table used to store sessions.

For more information, see the Spring Session portion of the Spring Boot documentation.

Configuring the DataSource

Spring Boot automatically creates a DataSource that connects Spring Session to an embedded
instance of an H2 database. In a production environment, you need to update your configuration to point
to your relational database. For example, you can include the following in your application.properties:

src/main/resources/application.properties.

spring.datasource.url= # JDBC URL of the database.

spring.datasource.username= # Login username of the database.

spring.datasource.password= # Login password of the database.

For more information, see the Configure a DataSource portion of the Spring Boot documentation.

Servlet Container Initialization

Our Spring Boot Configuration created a Spring bean named springSessionRepositoryFilter
that implements Filter. The springSessionRepositoryFilter bean is responsible for replacing
the HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config class. Last, we need to ensure
that our Servlet Container (that is, Tomcat) uses our springSessionRepositoryFilter for every
request. Fortunately, Spring Boot takes care of both of these steps for us.

5.4 HttpSession with Hazelcast

Using Spring Session with HttpSession is enabled by adding a Servlet Filter before anything that
uses the HttpSession.

This section describes how to use Hazelcast to back HttpSession by using Java-based configuration.

Note

The Hazelcast Spring Sample provides a working sample of how to integrate Spring Session and
HttpSession by using Java configuration. You can read the basic steps for integration in the
next few sections, but we encourage you to follow along with the detailed Hazelcast Spring Guide
when integrating with your own application.

Spring Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a servlet filter that replaces the HttpSession implementation
with an implementation backed by Spring Session. To do so, add the following Spring Configuration:

https://docs.spring.io/spring-boot/docs/2.1.14.RELEASE/reference/htmlsingle/#boot-features-session
https://docs.spring.io/spring-boot/docs/2.1.14.RELEASE/reference/htmlsingle/#boot-features-configure-datasource

Spring Session

please define title in your docbook file! 14

@EnableHazelcastHttpSession ❶

@Configuration

public class HazelcastHttpSessionConfig {

 @Bean

 public HazelcastInstance hazelcastInstance() {

 MapAttributeConfig attributeConfig = new MapAttributeConfig()

 .setName(HazelcastSessionRepository.PRINCIPAL_NAME_ATTRIBUTE)

 .setExtractor(PrincipalNameExtractor.class.getName());

 Config config = new Config();

 config.getMapConfig(HazelcastSessionRepository.DEFAULT_SESSION_MAP_NAME) ❷

 .addMapAttributeConfig(attributeConfig)

 .addMapIndexConfig(new MapIndexConfig(

 HazelcastSessionRepository.PRINCIPAL_NAME_ATTRIBUTE, false));

 return Hazelcast.newHazelcastInstance(config); ❸

 }

}

❶ The @EnableHazelcastHttpSession annotation creates a Spring bean named
springSessionRepositoryFilter that implements Filter. The filter is in charge of
replacing the HttpSession implementation to be backed by Spring Session. In this instance,
Spring Session is backed by Hazelcast.

❷ In order to support retrieval of sessions by principal name index, an appropriate ValueExtractor
needs to be registered. Spring Session provides PrincipalNameExtractor for this purpose.

❸ We create a HazelcastInstance that connects Spring Session to Hazelcast. By default, the
application starts and connects to an embedded instance of Hazelcast. For more information on
configuring Hazelcast, see the reference documentation.

Servlet Container Initialization

Our Spring Configuration created a Spring bean named springSessionRepositoryFilter that
implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the
HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our SessionConfig class. Since our
application is already loading Spring configuration by using our SecurityInitializer class, we can
add our SessionConfig class to it. The following listing shows how to do so:

src/main/java/sample/SecurityInitializer.java.

public class SecurityInitializer extends AbstractSecurityWebApplicationInitializer {

 public SecurityInitializer() {

 super(SecurityConfig.class, SessionConfig.class);

 }

}

Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our
springSessionRepositoryFilter for every request. It is extremely important that
Spring Session’s springSessionRepositoryFilter is invoked before Spring Security’s
springSecurityFilterChain. Doing so ensures that the HttpSession that Spring Security
uses is backed by Spring Session. Fortunately, Spring Session provides a utility class named
AbstractHttpSessionApplicationInitializer that makes this doing so easy. The following
example shows how to do so:

https://docs.hazelcast.org/docs/3.11.4/manual/html-single/index.html#hazelcast-configuration

Spring Session

please define title in your docbook file! 15

src/main/java/sample/Initializer.java.

public class Initializer extends AbstractHttpSessionApplicationInitializer {

}

Note

The name of our class (Initializer) does not matter. What is important is that we extend
AbstractHttpSessionApplicationInitializer.

By extending AbstractHttpSessionApplicationInitializer, we ensure that the Spring Bean
named springSessionRepositoryFilter is registered with our servlet container for every request
before Spring Security’s springSecurityFilterChain.

5.5 How HttpSession Integration Works

Fortunately, both HttpSession and HttpServletRequest (the API for obtaining an HttpSession)
are both interfaces. This means that we can provide our own implementations for each of these APIs.

Note

This section describes how Spring Session provides transparent integration with HttpSession.
We offer this content so that you can understand what is happening under the covers. This
functionality is already integrated and you do NOT need to implement this logic yourself.

First, we create a custom HttpServletRequest that returns a custom implementation of
HttpSession. It looks something like the following:

public class SessionRepositoryRequestWrapper extends HttpServletRequestWrapper {

 public SessionRepositoryRequestWrapper(HttpServletRequest original) {

 super(original);

 }

 public HttpSession getSession() {

 return getSession(true);

 }

 public HttpSession getSession(boolean createNew) {

 // create an HttpSession implementation from Spring Session

 }

 // ... other methods delegate to the original HttpServletRequest ...

}

Any method that returns an HttpSession is overridden. All other methods are implemented by
HttpServletRequestWrapper and delegate to the original HttpServletRequest implementation.

We replace the HttpServletRequest implementation by using a servlet Filter called
SessionRepositoryFilter. The pseudocode belows:

Spring Session

please define title in your docbook file! 16

public class SessionRepositoryFilter implements Filter {

 public doFilter(ServletRequest request, ServletResponse response, FilterChain chain) {

 HttpServletRequest httpRequest = (HttpServletRequest) request;

 SessionRepositoryRequestWrapper customRequest =

 new SessionRepositoryRequestWrapper(httpRequest);

 chain.doFilter(customRequest, response, chain);

 }

 // ...

}

By passing a custom HttpServletRequest implementation into the FilterChain, we ensure that
anything invoked after our Filter uses the custom HttpSession implementation. This highlights
why it is important that Spring Session’s SessionRepositoryFilter be placed before anything that
interacts with the HttpSession.

5.6 HttpSession and RESTful APIs

Spring Session can work with RESTful APIs by letting the session be provided in a header.

Note

The REST Sample provides a working sample of how to use Spring Session in a REST application
to support authenticating with a header. You can follow the basic steps for integration described in
the next few sections, but we encourage you to follow along with the detailed REST Guide when
integrating with your own application.

Spring Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a servlet filter that replaces the HttpSession implementation
with an implementation backed by Spring Session. To do so, add the following Spring Configuration:

@Configuration

@EnableRedisHttpSession ❶

public class HttpSessionConfig {

 @Bean

 public LettuceConnectionFactory connectionFactory() {

 return new LettuceConnectionFactory(); ❷

 }

 @Bean

 public HttpSessionIdResolver httpSessionIdResolver() {

 return HeaderHttpSessionIdResolver.xAuthToken(); ❸

 }

}

❶ The @EnableRedisHttpSession annotation creates a Spring bean named
springSessionRepositoryFilter that implements Filter. The filter is in charge of
replacing the HttpSession implementation to be backed by Spring Session. In this instance,
Spring Session is backed by Redis.

❷ We create a RedisConnectionFactory that connects Spring Session to the Redis Server. We
configure the connection to connect to localhost on the default port (6379). For more information
on configuring Spring Data Redis, see the reference documentation.

https://docs.spring.io/spring-data/data-redis/docs/2.1.17.RELEASE/reference/html/

Spring Session

please define title in your docbook file! 17

❸ We customize Spring Session’s HttpSession integration to use HTTP headers to convey the current
session information instead of cookies.

Servlet Container Initialization

Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that
implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the
HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config class. We provide the
configuration in our Spring MvcInitializer, as the following example shows:

src/main/java/sample/mvc/MvcInitializer.java.

@Override

protected Class<?>[] getRootConfigClasses() {

 return new Class[] { SecurityConfig.class, HttpSessionConfig.class };

}

Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our
springSessionRepositoryFilter for every request. Fortunately, Spring Session provides a utility
class named AbstractHttpSessionApplicationInitializer that makes doing so easy. To do
so, extend the class with the default constructor, as the following example shows:

src/main/java/sample/Initializer.java.

public class Initializer extends AbstractHttpSessionApplicationInitializer {

}

Note

The name of our class (Initializer) does not matter. What is important is that we extend
AbstractHttpSessionApplicationInitializer.

5.7 Using HttpSessionListener

Spring Session supports HttpSessionListener by translating SessionDestroyedEvent and
SessionCreatedEvent into HttpSessionEvent by declaring
SessionEventHttpSessionListenerAdapter. To use this support, you need to:

• Ensure your SessionRepository implementation supports and is configured to fire
SessionDestroyedEvent and SessionCreatedEvent.

• Configure SessionEventHttpSessionListenerAdapter as a Spring bean.

• Inject every HttpSessionListener into the SessionEventHttpSessionListenerAdapter

If you use the configuration support documented in HttpSession with Redis, all you need to do is
register every HttpSessionListener as a bean. For example, assume you want to support Spring
Security’s concurrency control and need to use HttpSessionEventPublisher. In that case, you can
add HttpSessionEventPublisher as a bean. In Java configuration, this might look like the following:

Spring Session

please define title in your docbook file! 18

@Configuration

@EnableRedisHttpSession

public class RedisHttpSessionConfig {

 @Bean

 public HttpSessionEventPublisher httpSessionEventPublisher() {

 return new HttpSessionEventPublisher();

 }

 // ...

}

In XML configuration, this might look like the following:

<bean class="org.springframework.security.web.session.HttpSessionEventPublisher"/>

Spring Session

please define title in your docbook file! 19

6. WebSocket Integration

Spring Session provides transparent integration with Spring’s WebSocket support.

Note

Spring Session’s WebSocket support works only with Spring’s WebSocket support. Specifically,it
does not work with using JSR-356 directly, because JSR-356 does not have a mechanism for
intercepting incoming WebSocket messages.

6.1 Why Spring Session and WebSockets?

So why do we need Spring Session when we use WebSockets?

Consider an email application that does much of its work through HTTP requests. However, there is also
a chat application embedded within it that works over WebSocket APIs. If a user is actively chatting with
someone, we should not timeout the HttpSession, since this would be a pretty poor user experience.
However, this is exactly what JSR-356 does.

Another issue is that, according to JSR-356, if the HttpSession times out, any WebSocket that was
created with that HttpSession and an authenticated user should be forcibly closed. This means that,
if we are actively chatting in our application and are not using the HttpSession, we also do disconnect
from our conversation.

6.2 WebSocket Usage

The WebSocket Sample provides a working sample of how to integrate Spring Session with
WebSockets. You can follow the basic steps for integration described in the next few headings, but
we encourage you to follow along with the detailed WebSocket Guide when integrating with your own
application.

HttpSession Integration

Before using WebSocket integration, you should be sure that you have Chapter 5, HttpSession
Integration working first.

Spring Configuration

In a typical Spring WebSocket application, you would implement
WebSocketMessageBrokerConfigurer. For example, the configuration might look something like
the following:

https://www.jcp.org/en/jsr/detail?id=356
https://java.net/jira/browse/WEBSOCKET_SPEC-175

Spring Session

please define title in your docbook file! 20

@Configuration

@EnableScheduling

@EnableWebSocketMessageBroker

public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

 @Override

 public void registerStompEndpoints(StompEndpointRegistry registry) {

 registry.addEndpoint("/messages").withSockJS();

 }

 @Override

 public void configureMessageBroker(MessageBrokerRegistry registry) {

 registry.enableSimpleBroker("/queue/", "/topic/");

 registry.setApplicationDestinationPrefixes("/app");

 }

}

We can update our configuration to use Spring Session’s WebSocket support. The following example
shows how to do so:

src/main/java/samples/config/WebSocketConfig.java.

@Configuration

@EnableScheduling

@EnableWebSocketMessageBroker

public class WebSocketConfig

 extends AbstractSessionWebSocketMessageBrokerConfigurer<Session> { ❶

 @Override

 protected void configureStompEndpoints(StompEndpointRegistry registry) { ❷

 registry.addEndpoint("/messages").withSockJS();

 }

 @Override

 public void configureMessageBroker(MessageBrokerRegistry registry) {

 registry.enableSimpleBroker("/queue/", "/topic/");

 registry.setApplicationDestinationPrefixes("/app");

 }

}

To hook in the Spring Session support we only need to change two things:

❶ Instead of implementing WebSocketMessageBrokerConfigurer, we extend
AbstractSessionWebSocketMessageBrokerConfigurer

❷ We rename the registerStompEndpoints method to configureStompEndpoints

What does AbstractSessionWebSocketMessageBrokerConfigurer do behind the scenes?

• WebSocketConnectHandlerDecoratorFactory is added as a
WebSocketHandlerDecoratorFactory to WebSocketTransportRegistration. This
ensures a custom SessionConnectEvent is fired that contains the WebSocketSession. The
WebSocketSession is necessary to terminate any WebSocket connections that are still open when
a Spring Session is terminated.

• SessionRepositoryMessageInterceptor is added as a HandshakeInterceptor to every
StompWebSocketEndpointRegistration. This ensures that the Session is added to the
WebSocket properties to enable updating the last accessed time.

• SessionRepositoryMessageInterceptor is added as a ChannelInterceptor to our
inbound ChannelRegistration. This ensures that every time an inbound message is received,
that the last accessed time of our Spring Session is updated.

Spring Session

please define title in your docbook file! 21

• WebSocketRegistryListener is created as a Spring bean. This ensures that we have a mapping
of all of the Session IDs to the corresponding WebSocket connections. By maintaining this mapping,
we can close all the WebSocket connections when a Spring Session (HttpSession) is terminated.

Spring Session

please define title in your docbook file! 22

7. WebSession Integration

Spring Session provides transparent integration with Spring WebFlux’s WebSession. This means that
you can switch the WebSession implementation out with an implementation that is backed by Spring
Session.

7.1 Why Spring Session and WebSession?

We have already mentioned that Spring Session provides transparent integration with Spring WebFlux’s
WebSession, but what benefits do we get out of this? As with HttpSession, Spring Session makes
it trivial to support clustered sessions without being tied to an application container specific solution.

7.2 WebSession with Redis

Using Spring Session with WebSession is enabled by registering a WebSessionManager
implementation backed by Spring Session’s ReactiveSessionRepository. The Spring
configuration is responsible for creating a WebSessionManager that replaces the WebSession
implementation with an implementation backed by Spring Session. To do so, add the following Spring
Configuration:

@EnableRedisWebSession ❶

public class SessionConfiguration {

 @Bean

 public LettuceConnectionFactory redisConnectionFactory() {

 return new LettuceConnectionFactory(); ❷

 }

}

❶ The @EnableRedisWebSession annotation creates a Spring bean with the name of
webSessionManager. That bean implements the WebSessionManager. This is what is in
charge of replacing the WebSession implementation to be backed by Spring Session. In this
instance, Spring Session is backed by Redis.

❷ We create a RedisConnectionFactory that connects Spring Session to the Redis Server. We
configure the connection to connect to localhost on the default port (6379) For more information
on configuring Spring Data Redis, see the reference documentation.

7.3 How WebSession Integration Works

It is considerably easier for Spring Session to integrate with Spring WebFlux and its WebSession,
compared to Servlet API and its HttpSession. Spring WebFlux provides the WebSessionStore API,
which presents a strategy for persisting WebSession.

Note

This section describes how Spring Session provides transparent integration with WebSession.
We offer this content so that you can understand what is happening under the covers. This
functionality is already integrated and you do NOT need to implement this logic yourself.

First, we create a custom SpringSessionWebSession that delegates to Spring Session’s Session.
It looks something like the following:

https://docs.spring.io/spring-data/data-redis/docs/2.1.17.RELEASE/reference/html/

Spring Session

please define title in your docbook file! 23

public class SpringSessionWebSession implements WebSession {

 enum State {

 NEW, STARTED

 }

 private final S session;

 private AtomicReference<State> state = new AtomicReference<>();

 SpringSessionWebSession(S session, State state) {

 this.session = session;

 this.state.set(state);

 }

 @Override

 public void start() {

 this.state.compareAndSet(State.NEW, State.STARTED);

 }

 @Override

 public boolean isStarted() {

 State value = this.state.get();

 return (State.STARTED.equals(value)

 || (State.NEW.equals(value) && !this.session.getAttributes().isEmpty()));

 }

 @Override

 public Mono<Void> changeSessionId() {

 return Mono.defer(() -> {

 this.session.changeSessionId();

 return save();

 });

 }

 // ... other methods delegate to the original Session

}

Next, we create a custom WebSessionStore that delegates to the ReactiveSessionRepository
and wraps Session into custom WebSession implementation, as the following listing shows:

public class SpringSessionWebSessionStore<S extends Session> implements WebSessionStore {

 private final ReactiveSessionRepository<S> sessions;

 public SpringSessionWebSessionStore(ReactiveSessionRepository<S> reactiveSessionRepository) {

 this.sessions = reactiveSessionRepository;

 }

 // ...

}

To be detected by Spring WebFlux, this custom WebSessionStore needs to be registered with
ApplicationContext as a bean named webSessionManager. For additional information on Spring
WebFlux, see the Spring Framework Reference Documentation.

https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/web-reactive.html

Spring Session

please define title in your docbook file! 24

8. Spring Security Integration

Spring Session provides integration with Spring Security.

8.1 Spring Security Remember-me Support

Spring Session provides integration with Spring Security’s Remember-me Authentication. The support:

• Changes the session expiration length

• Ensures that the session cookie expires at Integer.MAX_VALUE. The cookie expiration is set to the
largest possible value, because the cookie is set only when the session is created. If it were set to
the same value as the session expiration, the session would get renewed when the user used it but
the cookie expiration would not be updated (causing the expiration to be fixed).

To configure Spring Session with Spring Security in Java Configuration, you can use the following listing
as a guide:

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 // ... additional configuration ...

 .rememberMe()

 .rememberMeServices(rememberMeServices());

}

@Bean

public SpringSessionRememberMeServices rememberMeServices() {

 SpringSessionRememberMeServices rememberMeServices =

 new SpringSessionRememberMeServices();

 // optionally customize

 rememberMeServices.setAlwaysRemember(true);

 return rememberMeServices;

}

An XML-based configuration would look something like the following:

<security:http>

 <!-- ... -->

 <security:form-login />

 <security:remember-me services-ref="rememberMeServices"/>

</security:http>

<bean id="rememberMeServices"

 class="org.springframework.session.security.web.authentication.SpringSessionRememberMeServices"

 p:alwaysRemember="true"/>

8.2 Spring Security Concurrent Session Control

Spring Session provides integration with Spring Security to support its concurrent session control. This
allows limiting the number of active sessions that a single user can have concurrently, but, unlike the
default Spring Security support, this also works in a clustered environment. This is done by providing a
custom implementation of Spring Security’s SessionRegistry interface.

When using Spring Security’s Java config DSL, you can configure the custom SessionRegistry
through the SessionManagementConfigurer, as the following listing shows:

https://docs.spring.io/spring-security/site/docs/5.1.10.RELEASE/reference/htmlsingle/#remember-me

Spring Session

please define title in your docbook file! 25

@Configuration

public class SecurityConfiguration<S extends Session>

 extends WebSecurityConfigurerAdapter {

 @Autowired

 private FindByIndexNameSessionRepository<S> sessionRepository;

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 // @formatter:off

 http

 // other config goes here...

 .sessionManagement()

 .maximumSessions(2)

 .sessionRegistry(sessionRegistry());

 // @formatter:on

 }

 @Bean

 public SpringSessionBackedSessionRegistry<S> sessionRegistry() {

 return new SpringSessionBackedSessionRegistry<>(this.sessionRepository);

 }

}

This assumes that you have also configured Spring Session to provide a
FindByIndexNameSessionRepository that returns Session instances.

When using XML configuration, it would look something like the following listing:

<security:http>

 <!-- other config goes here... -->

 <security:session-management>

 <security:concurrency-control max-sessions="2" session-registry-ref="sessionRegistry"/>

 </security:session-management>

</security:http>

<bean id="sessionRegistry"

 class="org.springframework.session.security.SpringSessionBackedSessionRegistry">

 <constructor-arg ref="sessionRepository"/>

</bean>

This assumes that your Spring Session SessionRegistry bean is called sessionRegistry, which
is the name used by all SpringHttpSessionConfiguration subclasses.

8.3 Limitations

Spring Session’s implementation of Spring Security’s SessionRegistry interface does not support
the getAllPrincipals method, as this information cannot be retrieved by using Spring Session.
This method is never called by Spring Security, so this affects only applications that access the
SessionRegistry themselves.

Spring Session

please define title in your docbook file! 26

9. API Documentation

You can browse the complete Javadoc online. The key APIs are described in the following sections:

• Section 9.1, “Using Session”

• Section 9.2, “Using SessionRepository”

• Section 9.3, “Using FindByIndexNameSessionRepository”

• Section 9.4, “Using ReactiveSessionRepository”

• Section 9.5, “Using @EnableSpringHttpSession”

• Section 9.6, “Using @EnableSpringWebSession”

• Section 9.7, “Using RedisOperationsSessionRepository”

• Section 9.8, “Using ReactiveRedisOperationsSessionRepository”

• Section 9.9, “Using MapSessionRepository”

• Section 9.10, “Using ReactiveMapSessionRepository”

• Section 9.11, “Using JdbcOperationsSessionRepository”

• Section 9.12, “Using HazelcastSessionRepository”

9.1 Using Session

A Session is a simplified Map of name value pairs.

Typical usage might look like the following listing:

public class RepositoryDemo<S extends Session> {

 private SessionRepository<S> repository; ❶

 public void demo() {

 S toSave = this.repository.createSession(); ❷

 ❸

 User rwinch = new User("rwinch");

 toSave.setAttribute(ATTR_USER, rwinch);

 this.repository.save(toSave); ❹

 S session = this.repository.findById(toSave.getId()); ❺

 ❻

 User user = session.getAttribute(ATTR_USER);

 assertThat(user).isEqualTo(rwinch);

 }

 // ... setter methods ...

}

❶ We create a SessionRepository instance with a generic type, S, that extends Session. The
generic type is defined in our class.

❷ We create a new Session by using our SessionRepository and assign it to a variable of type S.

../../api/

Spring Session

please define title in your docbook file! 27

❸ We interact with the Session. In our example, we demonstrate saving a User to the Session.

❹ We now save the Session. This is why we needed the generic type S. The SessionRepository
only allows saving Session instances that were created or retrieved by using the same
SessionRepository. This allows for the SessionRepository to make implementation
specific optimizations (that is, writing only attributes that have changed).

❺ We retrieve the Session from the SessionRepository.

❻ We obtain the persisted User from our Session without the need for explicitly casting our attribute.

The Session API also provides attributes related to the Session instance’s expiration.

Typical usage might look like the following listing:

public class ExpiringRepositoryDemo<S extends Session> {

 private SessionRepository<S> repository; ❶

 public void demo() {

 S toSave = this.repository.createSession(); ❷

 // ...

 toSave.setMaxInactiveInterval(Duration.ofSeconds(30)); ❸

 this.repository.save(toSave); ❹

 S session = this.repository.findById(toSave.getId()); ❺

 // ...

 }

 // ... setter methods ...

}

❶ We create a SessionRepository instance with a generic type, S, that extends Session. The
generic type is defined in our class.

❷ We create a new Session by using our SessionRepository and assign it to a variable of type S.

❸ We interact with the Session. In our example, we demonstrate updating the amount of time the
Session can be inactive before it expires.

❹ We now save the Session. This is why we needed the generic type, S. The SessionRepository
allows saving only Session instances that were created or retrieved using the same
SessionRepository. This allows for the SessionRepository to make implementation
specific optimizations (that is, writing only attributes that have changed). The last accessed time
is automatically updated when the Session is saved.

❺ We retrieve the Session from the SessionRepository. If the Session were expired, the result
would be null.

9.2 Using SessionRepository

A SessionRepository is in charge of creating, retrieving, and persisting Session instances.

If possible, you should not interact directly with a SessionRepository or a Session. Instead,
developers should prefer interacting with SessionRepository and Session indirectly through the
HttpSession and WebSocket integration.

9.3 Using FindByIndexNameSessionRepository

Spring Session’s most basic API for using a Session is the SessionRepository. This API
is intentionally very simple, so that you can easily provide additional implementations with basic
functionality.

Spring Session

please define title in your docbook file! 28

Some SessionRepository implementations may also choose to implement
FindByIndexNameSessionRepository. For example, Spring’s Redis, JDBC, and Hazelcast
support libraries all implement FindByIndexNameSessionRepository.

The FindByIndexNameSessionRepository provides a method to look up all the sessions with
a given index name and index value. As a common use case that is supported by all provided
FindByIndexNameSessionRepository implementations, you can use a convenient method to look
up all the sessions for a particular user. This is done by ensuring that the session attribute with the name
of FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME is populated with the
username. It is your responsibility to ensure that the attribute is populated, since Spring Session is not
aware of the authentication mechanism being used. An example of how to use this can be seen in the
following listing:

String username = "username";

this.session.setAttribute(

 FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME, username);

Note

Some implementations of FindByIndexNameSessionRepository provide hooks to
automatically index other session attributes. For example, many implementations automatically
ensure that the current Spring Security user name is indexed with the index name of
FindByIndexNameSessionRepository.PRINCIPAL_NAME_INDEX_NAME.

Once the session is indexed, you can find by using code similar to the following:

String username = "username";

Map<String, Session> sessionIdToSession = this.sessionRepository

 .findByPrincipalName(username);

9.4 Using ReactiveSessionRepository

A ReactiveSessionRepository is in charge of creating, retrieving, and persisting Session
instances in a non-blocking and reactive manner.

If possible, you should not interact directly with a ReactiveSessionRepository or a Session.
Instead, you should prefer interacting with ReactiveSessionRepository and Session indirectly
through the WebSession integration.

9.5 Using @EnableSpringHttpSession

You can add the @EnableSpringHttpSession annotation to a @Configuration class to expose
the SessionRepositoryFilter as a bean named springSessionRepositoryFilter. In order
to use the annotation, you must provide a single SessionRepository bean. The following example
shows how to do so:

@EnableSpringHttpSession

@Configuration

public class SpringHttpSessionConfig {

 @Bean

 public MapSessionRepository sessionRepository() {

 return new MapSessionRepository(new ConcurrentHashMap<>());

 }

}

Spring Session

please define title in your docbook file! 29

Note that no infrastructure for session expirations is configured for you. This is because things such
as session expiration are highly implementation-dependent. This means that, if you need to clean up
expired sessions, you are responsible for cleaning up the expired sessions.

9.6 Using @EnableSpringWebSession

You can add the @EnableSpringWebSession annotation to a @Configuration class to expose
the WebSessionManager as a bean named webSessionManager. To use the annotation, you must
provide a single ReactiveSessionRepository bean. The following example shows how to do so:

@EnableSpringWebSession

public class SpringWebSessionConfig {

 @Bean

 public ReactiveSessionRepository reactiveSessionRepository() {

 return new ReactiveMapSessionRepository(new ConcurrentHashMap<>());

 }

}

Note that no infrastructure for session expirations is configured for you. This is because things such
as session expiration are highly implementation-dependent. This means that, if you require cleaning up
expired sessions, you are responsible for cleaning up the expired sessions.

9.7 Using RedisOperationsSessionRepository

RedisOperationsSessionRepository is a SessionRepository that is implemented by using
Spring Data’s RedisOperations. In a web environment, this is typically used in combination
with SessionRepositoryFilter. The implementation supports SessionDestroyedEvent and
SessionCreatedEvent through SessionMessageListener.

Instantiating a RedisOperationsSessionRepository

You can see a typical example of how to create a new instance in the following listing:

RedisTemplate<Object, Object> redisTemplate = new RedisTemplate<>();

// ... configure redisTemplate ...

SessionRepository<? extends Session> repository =

 new RedisOperationsSessionRepository(redisTemplate);

For additional information on how to create a RedisConnectionFactory, see the Spring Data Redis
Reference.

Using @EnableRedisHttpSession

In a web environment, the simplest way to create a new RedisOperationsSessionRepository is
to use @EnableRedisHttpSession. You can find complete example usage in the Chapter 3, Samples
and Guides (Start Here). You can use the following attributes to customize the configuration:

• maxInactiveIntervalInSeconds: The amount of time before the session expires, in seconds.

• redisNamespace: Allows configuring an application specific namespace for the sessions. Redis keys
and channel IDs start with the prefix of <redisNamespace>:.

Spring Session

please define title in your docbook file! 30

• redisFlushMode: Allows specifying when data is written to Redis. The default is only when save
is invoked on SessionRepository. A value of RedisFlushMode.IMMEDIATE writes to Redis as
soon as possible.

Custom RedisSerializer

You can customize the serialization by creating a bean named
springSessionDefaultRedisSerializer that implements RedisSerializer<Object>.

Redis TaskExecutor

RedisOperationsSessionRepository is subscribed to receive events from Redis by
using a RedisMessageListenerContainer. You can customize the way those events
are dispatched by creating a bean named springSessionRedisTaskExecutor, a bean
springSessionRedisSubscriptionExecutor, or both. You can find more details on configuring
Redis task executors here.

Storage Details

The following sections outline how Redis is updated for each operation. The following example shows
an example of creating a new session:

HMSET spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe creationTime 1404360000000 \

 maxInactiveInterval 1800 \

 lastAccessedTime 1404360000000 \

 sessionAttr:attrName someAttrValue \

 sessionAttr2:attrName someAttrValue2

EXPIRE spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe 2100

APPEND spring:session:sessions:expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe ""

EXPIRE spring:session:sessions:expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe 1800

SADD spring:session:expirations:1439245080000 expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe

EXPIRE spring:session:expirations1439245080000 2100

The subsequent sections describe the details.

Saving a Session

Each session is stored in Redis as a Hash. Each session is set and updated by using the HMSET
command. The following example shows how each session is stored:

HMSET spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe creationTime 1404360000000 \

 maxInactiveInterval 1800 \

 lastAccessedTime 1404360000000 \

 sessionAttr:attrName someAttrValue \

 sessionAttr2:attrName someAttrValue2

In the preceding example, the following statements are true about the session:

• The session ID is 33fdd1b6-b496-4b33-9f7d-df96679d32fe.

• The session was created at 1404360000000 (in milliseconds since midnight of 1/1/1970 GMT).

• The session expires in 1800 seconds (30 minutes).

• The session was last accessed at 1404360000000 (in milliseconds since midnight of 1/1/1970 GMT).

• The session has two attributes. The first is attrName, with a value of someAttrValue. The second
session attribute is named attrName2, with a value of someAttrValue2.

https://docs.spring.io/spring-data-redis/docs/2.1.17.RELEASE/reference/html/#redis:pubsub:subscribe:containers

Spring Session

please define title in your docbook file! 31

Optimized Writes

The Session instances managed by RedisOperationsSessionRepository keeps track of the
properties that have changed and updates only those. This means that, if an attribute is written once and
read many times, we need to write that attribute only once. For example, assume the sessionAttr2
session attribute from the lsiting in the preceding section was updated. The following command would
be run upon saving:

HMSET spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe sessionAttr:attrName2 newValue

Session Expiration

An expiration is associated with each session by using the EXPIRE command, based upon the
Session.getMaxInactiveInterval(). The following example shows a typical EXPIRE command:

EXPIRE spring:session:sessions:33fdd1b6-b496-4b33-9f7d-df96679d32fe 2100

Note that the expiration that is set to five minutes after the session actually expires. This is necessary
so that the value of the session can be accessed when the session expires. An expiration is set on
the session itself five minutes after it actually expires to ensure that it is cleaned up, but only after we
perform any necessary processing.

Note

The SessionRepository.findById(String) method ensures that no expired sessions are
returned. This means that you need not check the expiration before using a session.

Spring Session relies on the delete and expired keyspace notifications from Redis to fire a
SessionDeletedEvent and a SessionExpiredEvent, respectively. SessionDeletedEvent or
SessionExpiredEvent ensure that resources associated with the Session are cleaned up. For
example, when you use Spring Session’s WebSocket support, the Redis expired or delete event triggers
any WebSocket connections associated with the session to be closed.

Expiration is not tracked directly on the session key itself, since this would mean the session data would
no longer be available. Instead, a special session expires key is used. In the preceding example, the
expires key is as follows:

APPEND spring:session:sessions:expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe ""

EXPIRE spring:session:sessions:expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe 1800

When a session expires key is deleted or expires, the keyspace notification triggers a lookup of the
actual session, and a SessionDestroyedEvent is fired.

One problem with relying on Redis expiration exclusively is that, if the key has not been accessed, Redis
makes no guarantee of when the expired event is fired. Specifically, the background task that Redis
uses to clean up expired keys is a low-priority task and may not trigger the key expiration. For additional
details, see the Timing of Expired Events section in the Redis documentation.

To circumvent the fact that expired events are not guaranteed to happen, we can ensure that each
key is accessed when it is expected to expire. This means that, if the TTL is expired on the key, Redis
removes the key and fires the expired event when we try to access the key.

https://redis.io/topics/notifications
https://redis.io/topics/notifications

Spring Session

please define title in your docbook file! 32

For this reason, each session expiration is also tracked to the nearest minute. This lets a background
task access the potentially expired sessions to ensure that Redis expired events are fired in a more
deterministic fashion. The following example shows these events:

SADD spring:session:expirations:1439245080000 expires:33fdd1b6-b496-4b33-9f7d-df96679d32fe

EXPIRE spring:session:expirations1439245080000 2100

The background task then uses these mappings to explicitly request each key. By accessing the key,
rather than deleting it, we ensure that Redis deletes the key for us only if the TTL is expired.

Note

We do not explicitly delete the keys, since, in some instances, there may be a race condition that
incorrectly identifies a key as expired when it is not. Short of using distributed locks (which would
kill our performance), there is no way to ensure the consistency of the expiration mapping. By
simply accessing the key, we ensure that the key is only removed if the TTL on that key is expired.

SessionDeletedEvent and SessionExpiredEvent

SessionDeletedEvent and SessionExpiredEvent are both types of
SessionDestroyedEvent.

RedisOperationsSessionRepository supports firing a SessionDeletedEvent when a
Session is deleted or a SessionExpiredEvent when a Session expires. This is necessary to
ensure resources associated with the Session are properly cleaned up.

For example, when integrating with WebSockets, the SessionDestroyedEvent is in charge of closing
any active WebSocket connections.

Firing SessionDeletedEvent or SessionExpiredEvent is made available through the
SessionMessageListener, which listens to Redis Keyspace events. In order for this to work, Redis
Keyspace events for Generic commands and Expired events needs to be enabled. The following
example shows how to do so:

redis-cli config set notify-keyspace-events Egx

If you use @EnableRedisHttpSession, managing the SessionMessageListener and enabling
the necessary Redis Keyspace events is done automatically. However, in a secured Redis enviornment,
the config command is disabled. This means that Spring Session cannot configure Redis Keyspace
events for you. To disable the automatic configuration, add ConfigureRedisAction.NO_OP as a
bean.

For example, with Java configuration, you can use the following:

@Bean

public static ConfigureRedisAction configureRedisAction() {

 return ConfigureRedisAction.NO_OP;

}

In XML configuration, you can use the following:

<util:constant

 static-field="org.springframework.session.data.redis.config.ConfigureRedisAction.NO_OP"/>

https://redis.io/topics/notifications

Spring Session

please define title in your docbook file! 33

Using SessionCreatedEvent

When a session is created, an event is sent to Redis with a channel ID
of spring:session:channel:created:33fdd1b6-b496-4b33-9f7d-df96679d32fe, where
33fdd1b6-b496-4b33-9f7d-df96679d32fe is the session ID. The body of the event is the session
that was created.

If registered as a MessageListener (the default), RedisOperationsSessionRepository then
translates the Redis message into a SessionCreatedEvent.

Viewing the Session in Redis

After installing redis-cli, you can inspect the values in Redis using the redis-cli. For example, you can
enter the following into a terminal:

$ redis-cli

redis 127.0.0.1:6379> keys *

1) "spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021" ❶

2) "spring:session:expirations:1418772300000" ❷

❶ The suffix of this key is the session identifier of the Spring Session.

❷ This key contains all the session IDs that should be deleted at the time 1418772300000.

You can also view the attributes of each session. The following example shows how to do so:

redis 127.0.0.1:6379> hkeys spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021

1) "lastAccessedTime"

2) "creationTime"

3) "maxInactiveInterval"

4) "sessionAttr:username"

redis 127.0.0.1:6379> hget spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021

 sessionAttr:username

"\xac\xed\x00\x05t\x00\x03rob"

9.8 Using ReactiveRedisOperationsSessionRepository

ReactiveRedisOperationsSessionRepository is a ReactiveSessionRepository that is
implemented by using Spring Data’s ReactiveRedisOperations. In a web environment, this is
typically used in combination with WebSessionStore.

Instantiating a ReactiveRedisOperationsSessionRepository

The following example shows how to create a new instance:

// ... create and configure connectionFactory and serializationContext ...

ReactiveRedisTemplate<String, Object> redisTemplate = new ReactiveRedisTemplate<>(

 connectionFactory, serializationContext);

ReactiveSessionRepository<? extends Session> repository =

 new ReactiveRedisOperationsSessionRepository(redisTemplate);

For additional information on how to create a ReactiveRedisConnectionFactory, see the Spring
Data Redis Reference.

https://redis.io/topics/quickstart
https://redis.io/commands#hash

Spring Session

please define title in your docbook file! 34

Using @EnableRedisWebSession

In a web environment, the simplest way to create a new
ReactiveRedisOperationsSessionRepository is to use @EnableRedisWebSession. You
can use the following attributes to customize the configuration:

• maxInactiveIntervalInSeconds: The amount of time before the session expires, in seconds

• redisNamespace: Allows configuring an application specific namespace for the sessions. Redis keys
and channel IDs start with q prefix of <redisNamespace>:.

• redisFlushMode: Allows specifying when data is written to Redis. The default is only when save is
invoked on ReactiveSessionRepository. A value of RedisFlushMode.IMMEDIATE writes to
Redis as soon as possible.

Optimized Writes

The Session instances managed by ReactiveRedisOperationsSessionRepository keep track
of the properties that have changed and updates only those. This means that, if an attribute is written
once and read many times, we need to write that attribute only once.

Viewing the Session in Redis

After installing redis-cli, you can inspect the values in Redis using the redis-cli. For example, you can
enter the following command into a terminal window:

$ redis-cli

redis 127.0.0.1:6379> keys *

1) "spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021" ❶

❶ The suffix of this key is the session identifier of the Spring Session.

You can also view the attributes of each session by using the hkeys command. The following example
shows how to do so:

redis 127.0.0.1:6379> hkeys spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021

1) "lastAccessedTime"

2) "creationTime"

3) "maxInactiveInterval"

4) "sessionAttr:username"

redis 127.0.0.1:6379> hget spring:session:sessions:4fc39ce3-63b3-4e17-b1c4-5e1ed96fb021

 sessionAttr:username

"\xac\xed\x00\x05t\x00\x03rob"

9.9 Using MapSessionRepository

The MapSessionRepository allows for persisting Session in a Map, with the key being the Session
ID and the value being the Session. You can use the implementation with a ConcurrentHashMap as
a testing or convenience mechanism. Alternatively, you can use it with distributed Map implementations.
For example, it can be used with Hazelcast.

Instantiating MapSessionRepository

The following example shows how to create a new instance:

SessionRepository<? extends Session> repository = new MapSessionRepository(

 new ConcurrentHashMap<>());

https://redis.io/topics/quickstart
https://redis.io/commands#hash

Spring Session

please define title in your docbook file! 35

Using Spring Session and Hazlecast

The Hazelcast Sample is a complete application that demonstrates how to use Spring Session with
Hazelcast.

To run it, use the following command:

 ./gradlew :samples:hazelcast:tomcatRun

The Hazelcast Spring Sample is a complete application that demonstrates how to use Spring Session
with Hazelcast and Spring Security.

It includes example Hazelcast MapListener implementations that support firing
SessionCreatedEvent, SessionDeletedEvent, and SessionExpiredEvent.

To run it, use the following command:

 ./gradlew :samples:hazelcast-spring:tomcatRun

9.10 Using ReactiveMapSessionRepository

The ReactiveMapSessionRepository allows for persisting Session in a Map, with the key
being the Session ID and the value being the Session. You can use the implementation with a
ConcurrentHashMap as a testing or convenience mechanism. Alternatively, you can use it with
distributed Map implementations, with the requirement that the supplied Map must be non-blocking.

9.11 Using JdbcOperationsSessionRepository

JdbcOperationsSessionRepository is a SessionRepository implementation that uses
Spring’s JdbcOperations to store sessions in a relational database. In a web environment, this is
typically used in combination with SessionRepositoryFilter. Note that this implementation does
not support publishing of session events.

Instantiating a JdbcOperationsSessionRepository

The following example shows how to create a new instance:

JdbcTemplate jdbcTemplate = new JdbcTemplate();

// ... configure JdbcTemplate ...

PlatformTransactionManager transactionManager = new DataSourceTransactionManager();

// ... configure transactionManager ...

SessionRepository<? extends Session> repository =

 new JdbcOperationsSessionRepository(jdbcTemplate, transactionManager);

For additional information on how to create and configure JdbcTemplate and
PlatformTransactionManager, see the Spring Framework Reference Documentation.

Using @EnableJdbcHttpSession

In a web environment, the simplest way to create a new JdbcOperationsSessionRepository is
to use @EnableJdbcHttpSession. You can find complete example usage in the Chapter 3, Samples
and Guides (Start Here) You can use the following attributes to customize the configuration:

https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/data-access.html

Spring Session

please define title in your docbook file! 36

• tableName: The name of database table used by Spring Session to store sessions

• maxInactiveIntervalInSeconds: The amount of time before the session will expire in seconds

Customizing LobHandler

You can customize BLOB handling by creating a bean named springSessionLobHandler that
implements LobHandler.

Customizing ConversionService

You can customize the default serialization and deserialization of the session by providing
a ConversionService instance. When working in a typical Spring environment, the default
ConversionService bean (named conversionService) is automatically picked up and used for
serialization and deserialization. However, you can override the default ConversionService by
providing a bean named springSessionConversionService.

Storage Details

By default, this implementation uses SPRING_SESSION and SPRING_SESSION_ATTRIBUTES tables
to store sessions. Note that you can customize the table name, as already described. In that case, the
table used to store attributes is named by using the provided table name suffixed with _ATTRIBUTES. If
further customizations are needed, you can customize the SQL queries used by the repository by using
set*Query setter methods. In this case, you need to manually configure the sessionRepository
bean.

Due to the differences between the various database vendors, especially when it comes to storing binary
data, make sure to use SQL scripts specific to your database. Scripts for most major database vendors
are packaged as org/springframework/session/jdbc/schema-*.sql, where * is the target
database type.

For example, with PostgreSQL, you can use the following schema script:

CREATE TABLE SPRING_SESSION (

 PRIMARY_ID CHAR(36) NOT NULL,

 SESSION_ID CHAR(36) NOT NULL,

 CREATION_TIME BIGINT NOT NULL,

 LAST_ACCESS_TIME BIGINT NOT NULL,

 MAX_INACTIVE_INTERVAL INT NOT NULL,

 EXPIRY_TIME BIGINT NOT NULL,

 PRINCIPAL_NAME VARCHAR(100),

 CONSTRAINT SPRING_SESSION_PK PRIMARY KEY (PRIMARY_ID)

);

CREATE UNIQUE INDEX SPRING_SESSION_IX1 ON SPRING_SESSION (SESSION_ID);

CREATE INDEX SPRING_SESSION_IX2 ON SPRING_SESSION (EXPIRY_TIME);

CREATE INDEX SPRING_SESSION_IX3 ON SPRING_SESSION (PRINCIPAL_NAME);

CREATE TABLE SPRING_SESSION_ATTRIBUTES (

 SESSION_PRIMARY_ID CHAR(36) NOT NULL,

 ATTRIBUTE_NAME VARCHAR(200) NOT NULL,

 ATTRIBUTE_BYTES BYTEA NOT NULL,

 CONSTRAINT SPRING_SESSION_ATTRIBUTES_PK PRIMARY KEY (SESSION_PRIMARY_ID, ATTRIBUTE_NAME),

 CONSTRAINT SPRING_SESSION_ATTRIBUTES_FK FOREIGN KEY (SESSION_PRIMARY_ID) REFERENCES

 SPRING_SESSION(PRIMARY_ID) ON DELETE CASCADE

);

With MySQL database, you can use the following script:

Spring Session

please define title in your docbook file! 37

CREATE TABLE SPRING_SESSION (

 PRIMARY_ID CHAR(36) NOT NULL,

 SESSION_ID CHAR(36) NOT NULL,

 CREATION_TIME BIGINT NOT NULL,

 LAST_ACCESS_TIME BIGINT NOT NULL,

 MAX_INACTIVE_INTERVAL INT NOT NULL,

 EXPIRY_TIME BIGINT NOT NULL,

 PRINCIPAL_NAME VARCHAR(100),

 CONSTRAINT SPRING_SESSION_PK PRIMARY KEY (PRIMARY_ID)

) ENGINE=InnoDB ROW_FORMAT=DYNAMIC;

CREATE UNIQUE INDEX SPRING_SESSION_IX1 ON SPRING_SESSION (SESSION_ID);

CREATE INDEX SPRING_SESSION_IX2 ON SPRING_SESSION (EXPIRY_TIME);

CREATE INDEX SPRING_SESSION_IX3 ON SPRING_SESSION (PRINCIPAL_NAME);

CREATE TABLE SPRING_SESSION_ATTRIBUTES (

 SESSION_PRIMARY_ID CHAR(36) NOT NULL,

 ATTRIBUTE_NAME VARCHAR(200) NOT NULL,

 ATTRIBUTE_BYTES BLOB NOT NULL,

 CONSTRAINT SPRING_SESSION_ATTRIBUTES_PK PRIMARY KEY (SESSION_PRIMARY_ID, ATTRIBUTE_NAME),

 CONSTRAINT SPRING_SESSION_ATTRIBUTES_FK FOREIGN KEY (SESSION_PRIMARY_ID) REFERENCES

 SPRING_SESSION(PRIMARY_ID) ON DELETE CASCADE

) ENGINE=InnoDB ROW_FORMAT=DYNAMIC;

Transaction Management

All JDBC operations in JdbcOperationsSessionRepository are executed in a transactional
manner. Transactions are executed with propagation set to REQUIRES_NEW in order to avoid
unexpected behavior due to interference with existing transactions (for example, running a save
operation in a thread that already participates in a read-only transaction).

9.12 Using HazelcastSessionRepository

HazelcastSessionRepository is a SessionRepository implementation that stores sessions
in Hazelcast’s distributed IMap. In a web environment, this is typically used in combination with
SessionRepositoryFilter.

Instantiating a HazelcastSessionRepository

The following example shows how to create a new instance:

Config config = new Config();

// ... configure Hazelcast ...

HazelcastInstance hazelcastInstance = Hazelcast.newHazelcastInstance(config);

HazelcastSessionRepository repository =

 new HazelcastSessionRepository(hazelcastInstance);

For additional information on how to create and configure Hazelcast instance, see the Hazelcast
documentation.

Using @EnableHazelcastHttpSession

To use Hazelcast as your backing source for the SessionRepository, you can add the
@EnableHazelcastHttpSession annotation to a @Configuration class. Doing so extends
the functionality provided by the @EnableSpringHttpSession annotation but makes the
SessionRepository for you in Hazelcast. You must provide a single HazelcastInstance bean

https://docs.hazelcast.org/docs/3.11.4/manual/html-single/index.html#hazelcast-configuration
https://docs.hazelcast.org/docs/3.11.4/manual/html-single/index.html#hazelcast-configuration
https://hazelcast.org/

Spring Session

please define title in your docbook file! 38

for the configuration to work. You can find a complete configuration example in the Chapter 3, Samples
and Guides (Start Here).

Basic Customization

You can use the following attributes on @EnableHazelcastHttpSession to customize the
configuration:

• maxInactiveIntervalInSeconds: The amount of time before the session expires, in seconds. The
default is 1800 seconds (30 minutes)

• sessionMapName: The name of the distributed Map that is used in Hazelcast to store the session
data.

Session Events

Using a MapListener to respond to entries being added, evicted, and removed from the distributed
Map causes these events to trigger publishing of SessionCreatedEvent, SessionExpiredEvent,
and SessionDeletedEvent events (respectively) through the ApplicationEventPublisher.

Storage Details

Sessions are stored in a distributed IMap in Hazelcast. The IMap interface methods
are used to get() and put() Sessions. Additionally, the values() method supports a
FindByIndexNameSessionRepository#findByIndexNameAndIndexValue operation, together
with appropriate ValueExtractor (which needs to be registered with Hazelcast). See the Hazelcast
Spring Sample for more details on this configuration. The expiration of a session in the IMap is handled
by Hazelcast’s support for setting the time to live on an entry when it is put() into the IMap. Entries
(sessions) that have been idle longer than the time to live are automatically removed from the IMap.

You should not need to configure any settings such as max-idle-seconds or time-to-live-
seconds for the IMap within the Hazelcast configuration.

Note that if you use Hazelcast’s MapStore to persist your sessions IMap, the following limitations apply
when reloading the sessions from MapStore:

• Reloading triggers EntryAddedListener results in SessionCreatedEvent being re-published

• Reloading uses default TTL for a given IMap results in sessions losing their original TTL

Spring Session

please define title in your docbook file! 39

10. Customing SessionRepository

Implementing a custom SessionRepository API should be a fairly straightforward task. Coupling
the custom implementation with @EnableSpringHttpSession support lets you reuse existing Spring
Session configuration facilities and infrastructure. There are, however, a couple of aspects that deserve
closer consideration.

During the lifecycle of an HTTP request, the HttpSession is typically persisted to
SessionRepository twice. The first persist operation is to ensure that the session is available to
the client as soon as the client has access to the session ID, and it is also necessary to write after
the session is committed because further modifications to the session might be made. Having this in
mind, we generally recommend that a SessionRepository implementation keep track of changes
to ensure that only deltas are saved. This is particularly important in highly concurrent environments,
where multiple requests operate on the same HttpSession and, therefore, cause race conditions,
with requests overriding each other’s changes to session attributes. All of the SessionRepository
implementations provided by Spring Session use the described approach to persist session changes
and can be used for guidance when you implement custom SessionRepository.

Note that the same recommendations apply for implementing a custom
ReactiveSessionRepository as well. In this case, you should use the
@EnableSpringWebSession.

Spring Session

please define title in your docbook file! 40

11. Upgrading to 2.x
With the new major release version, the Spring Session team took the opportunity to make some non-
passive changes. The focus of these changes is to improve and harmonize Spring Session’s APIs as
well as remove the deprecated components.

11.1 Baseline Update

Spring Session 2.0 requires Java 8 and Spring Framework 5.0 as a baseline, since its entire codebase
is now based on Java 8 source code. See Upgrading to Spring Framework 5.x for more on upgrading
Spring Framework.

11.2 Replaced and Removed Modules

As a part of the project’s splitting of the modules, the existing spring-session has been replaced with
the spring-session-core module. The spring-session-core module holds only the common
set of APIs and components, while other modules contain the implementation of the appropriate
SessionRepository and functionality related to that data store. This applies to several existing
modules that were previously a simple dependency aggregator helper module. With new module
arrangement, the following modules actually carry the implementation:

• Spring Session Data Redis

• Spring Session JDBC

• Spring Session Hazelcast

Also, the following modules were removed from the main project repository:

• Spring Session Data MongoDB

• Spring Session Data GemFire

Note that these two have moved to separate repositories and continue to be available under new artifact
names:

• spring-session-data-mongodb

• spring-session-data-geode

11.3 Replaced and Removed Packages, Classes, and Methods

The following changes were made to packages, classes, and methods:

• ExpiringSession API has been merged into the Session API.

• The Session API has been enhanced to make full use of Java 8.

• The Session API has been extended with changeSessionId support.

• The SessionRepository API has been updated to better align with Spring Data method naming
conventions.

• AbstractSessionEvent and its subclasses are no longer constructable without an underlying
Session object.

https://github.com/spring-projects/spring-framework/wiki/Upgrading-to-Spring-Framework-5.x
https://github.com/spring-projects/spring-session-data-mongodb
https://github.com/spring-projects/spring-session-data-geode

Spring Session

please define title in your docbook file! 41

• The Redis namespace used by RedisOperationsSessionRepository is now fully configurable,
instead of being partially configurable.

• Redis configuration support has been updated to avoid registering a Spring Session-specific
RedisTemplate bean.

• JDBC configuration support has been updated to avoid registering a Spring Session-specific
JdbcTemplate bean.

• Previously deprecated classes and methods have been removed across the codebase

11.4 Dropped Support

As a part of the changes to HttpSessionStrategy and its alignment to the counterpart from the
reactive world, the support for managing multiple users' sessions in a single browser instance has been
removed. The introduction of a new API to replace this functionality is under consideration for future
releases.

Spring Session

please define title in your docbook file! 42

12. Spring Session Community

We are glad to consider you a part of our community. The following sections provide additional about
how to interact with the Spring Session community.

12.1 Support

You can get help by asking questions on Stack Overflow with the spring-session tag. Similarly, we
encourage helping others by answering questions on Stack Overflow.

12.2 Source Code

You can find the source code on GitHub at https://github.com/spring-projects/spring-session/

12.3 Issue Tracking

We track issues in GitHub issues at https://github.com/spring-projects/spring-session/issues

12.4 Contributing

We appreciate pull requests.

12.5 License

Spring Session is Open Source software released under the Apache 2.0 license.

12.6 Community Extensions

Name Location

Spring Session OrientDB https://github.com/maseev/spring-session-
orientdb

Spring Session Infinispan https://infinispan.org/docs/dev/user_guide/
user_guide.html#externalizing_session_using_spring_session

https://stackoverflow.com/questions/tagged/spring-session
https://github.com/spring-projects/spring-session/
https://github.com/spring-projects/spring-session/issues
https://help.github.com/articles/using-pull-requests/
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/maseev/spring-session-orientdb
https://github.com/maseev/spring-session-orientdb
https://infinispan.org/docs/dev/user_guide/user_guide.html#externalizing_session_using_spring_session
https://infinispan.org/docs/dev/user_guide/user_guide.html#externalizing_session_using_spring_session

Spring Session

please define title in your docbook file! 43

13. Minimum Requirements

The minimum requirements for Spring Session are:

• Java 8+.

• If you run in a Servlet Container (not required), Servlet 3.1+.

• If you use other Spring libraries (not required), the minimum required version is Spring 5.0.x.

• @EnableRedisHttpSession requires Redis 2.8+. This is necessary to support Session Expiration

• @EnableHazelcastHttpSession requires Hazelcast 3.6+. This is necessary to support
FindByIndexNameSessionRepository

Note

At its core, Spring Session has a required dependency only on spring-jcl. For an example
of using Spring Session without any other Spring dependencies, see the hazelcast sample
application.

	Spring Session
	Table of Contents
	
	1. Introduction
	2. What’s New in 2.0
	3. Samples and Guides (Start Here)
	4. Spring Session Modules
	5. HttpSession Integration
	5.1 Why Spring Session and HttpSession?
	5.2 HttpSession with Redis
	Redis Java-based Configuration
	Spring Java Configuration
	Java Servlet Container Initialization

	Redis XML-based Configuration
	Spring XML Configuration
	XML Servlet Container Initialization

	5.3 HttpSession with JDBC
	JDBC Java-based Configuration
	Spring Java Configuration
	Java Servlet Container Initialization

	JDBC XML-based Configuration
	Spring XML Configuration
	XML Servlet Container Initialization

	JDBC Spring Boot-based Configuration
	Spring Boot Configuration
	Configuring the DataSource
	Servlet Container Initialization

	5.4 HttpSession with Hazelcast
	Spring Configuration
	Servlet Container Initialization

	5.5 How HttpSession Integration Works
	5.6 HttpSession and RESTful APIs
	Spring Configuration
	Servlet Container Initialization

	5.7 Using HttpSessionListener

	6. WebSocket Integration
	6.1 Why Spring Session and WebSockets?
	6.2 WebSocket Usage
	HttpSession Integration
	Spring Configuration

	7. WebSession Integration
	7.1 Why Spring Session and WebSession?
	7.2 WebSession with Redis
	7.3 How WebSession Integration Works

	8. Spring Security Integration
	8.1 Spring Security Remember-me Support
	8.2 Spring Security Concurrent Session Control
	8.3 Limitations

	9. API Documentation
	9.1 Using Session
	9.2 Using SessionRepository
	9.3 Using FindByIndexNameSessionRepository
	9.4 Using ReactiveSessionRepository
	9.5 Using @EnableSpringHttpSession
	9.6 Using @EnableSpringWebSession
	9.7 Using RedisOperationsSessionRepository
	Instantiating a RedisOperationsSessionRepository
	Using @EnableRedisHttpSession
	Custom RedisSerializer

	Redis TaskExecutor
	Storage Details
	Saving a Session
	Optimized Writes
	Session Expiration

	SessionDeletedEvent and SessionExpiredEvent
	Using SessionCreatedEvent
	Viewing the Session in Redis

	9.8 Using ReactiveRedisOperationsSessionRepository
	Instantiating a ReactiveRedisOperationsSessionRepository
	Using @EnableRedisWebSession
	Optimized Writes

	Viewing the Session in Redis

	9.9 Using MapSessionRepository
	Instantiating MapSessionRepository
	Using Spring Session and Hazlecast

	9.10 Using ReactiveMapSessionRepository
	9.11 Using JdbcOperationsSessionRepository
	Instantiating a JdbcOperationsSessionRepository
	Using @EnableJdbcHttpSession
	Customizing LobHandler
	Customizing ConversionService

	Storage Details
	Transaction Management

	9.12 Using HazelcastSessionRepository
	Instantiating a HazelcastSessionRepository
	Using @EnableHazelcastHttpSession
	Basic Customization
	Session Events
	Storage Details

	10. Customing SessionRepository
	11. Upgrading to 2.x
	11.1 Baseline Update
	11.2 Replaced and Removed Modules
	11.3 Replaced and Removed Packages, Classes, and Methods
	11.4 Dropped Support

	12. Spring Session Community
	12.1 Support
	12.2 Source Code
	12.3 Issue Tracking
	12.4 Contributing
	12.5 License
	12.6 Community Extensions

	13. Minimum Requirements

