Spring Session

Rob Winch , Vedran Pavi# , Jay Bryant

Copyright ©

Spring Session

Table of Contents

... v
I 191 (oo 18 ot o o KPP PSP PP PRPP 1
2. WHAE'S INEW TN 2.0 ettt et et e ettt et e et e e et e e et e e e ta e e e aa e e et e aetnaeeanaees 2
3. Samples and GUIAES (SEArt HEI)c..uuiiiiiiie e 3
4, SPring SESSION MOUUIEScovniiiiice e e e e e e e e e e e et e et r e et e e aaeeeens 5
5. HE t PSESSi ON INTEOIALIONceeiiieiei et e e e et e et e et e et e e eaeaeens 6
5.1. Why Spring Session and Ht t PSESSI ON? ..ovieiiiiiiii e 6

5.2. HHt pSessi 0N With REAISuuiiiiiiii e 6
Redis Java-based Configuration ... 6

Spring Java CONfIQUIALIONiiiiiiiieiii e 6

Java Servlet Container INtializationoouviiiiiiiiiiii e 7

Redis XML-based ConfigUrationooieuiieiiiiii e 7

Spring XML ConfiQUuIationccouuiiiiiiiiie e 7

XML Servlet Container INitialiZationeiviieiiiiiiiii e 8

5.3. HLt pSessi 0N With JDBCcuiiiiiiii e e e 9
JDBC Java-based Configurationcoouuiiiiiiiiiiiiii e 9

Spring Java Configurationiiiiiieiiiicii e e 9

Java Servlet Container INitialization ... 10

JDBC XML-based ConfigUuIationoieiiiuiieiiiiiei e 10

Spring XML Configurationcooiuiiiiieii e e e e 10

XML Servlet Container Initializationoooeeiiiiii e 11

JDBC Spring Boot-based Configurationcceuiiiiiiiniiiiiiiee e 12

Spring Boot Configurationcouiiiiiiiii e 12

Configuring the Dat @SOUF CE ...c..iiiiiiiii et eanns 13

Servlet Container INItIAliZAtIONc.oiiiiiiii e 13

5.4, HttpSession With HazelCastcoouiiiiiiiii e 13
SPring CONFIQUIATION ... ceiiii et e et e e et e e e e e e aean s 13

Servlet Container INItIAlZAtIONcc.viiiiii e 14

5.5. How Ht t pSessi on Integration WOrKScccooiiiiiiiiii e 15

5.6. Ht t pSessi on and RESTIUI APIS ... 16
SPriNG CONFIQUIALIONuuiiiiii et e e 16

Servlet Container INIANZALIONcooviiiii e 17

5.7. UsSiNg Ht t PSESSi ONLI ST ENEI .iiiiii e e 17

6. WEDSOCKEL INTEGIALIONuiiiiiii et e et e e et e e e b 19
6.1. Why Spring Session and WEDSOCKELS?cc.uiiiiiiiiii e a e 19

6.2. WEDSOCKEE USBQE ...t et 19

Ht t PSESSi 0N INtEGIAtIONcieiitci e e e e 19

Y o1 aTo B @] 01T [0] =1 i o] o RPN 19

7. WeDSeSSION INTEGIAtIONuiie ettt e e et e e et e e et e e et e e eaeeean s 22
7.1. Why Spring Session and WeDSESSION?cccuuuiiiiiiiiicii e 22

7.2. WebSession WIith REdISccovuiiiiiiiiieiiie e 22

7.3. How WebSession Integration WOIKSoiiuiiiiii e 22

8. SPring SECUNtY INTEGIAtIONiiiiii i e e et e e et e e e e b e e eeba e eaees 24
8.1. Spring Security REMEMDBEr-ME SUPPOIT .. .couuiiiiiiiii e ee e e e e e e e e eanaeees 24

8.2. Spring Security Concurrent SesSion CONLIOlcuiiiiiiiiiiii e 24

S TR T I o 71 7= 11T 1 25

9. AP| DOCUMENTALION ..evviiiieeeeeeeetitt ettt e ettt e e ettt e e et e e e e e e e e n bbb n e e e e e e e e nnneaeas 26

please define title in your docbook file! ii

Spring Session

LS 0 I I 1S T o ST T o T N 26
9.2. USING SESST ONREPOST T OF Y orniiiii it e eaa s 27
9.3. Using Fi ndByl ndexNanmeSessi ONREPOSI L OrY ... 27
9.4. Using React i veSEeSSi ONREPOST L OF Y .uiiiiiiiii i e e e e e 28
9.5. Using @Enabl eSpri NGHE t PSESST ON .uuiieiiiii e 28
9.6. Using @ENnabl eSpri NGWEDSESST ON ...coviiiiiiiiiiieece e e 29
9.7. Using Redi sQper ati onsSessi ONREPOSI L OFY ovvviviiiiiiiiiiii e 29
Instantiating a Redi sOper ati onsSessi ONREPOSI L Oy ...vvvviiiiiiiiiiiiiiice e 29
Using @Enabl eRedi SHE E PSESST ON .uuviiiiiiiieciii e 29
Custom Redi SSEri al i ZEr ...iiiiiiiiiii e 30

RediS TASKEXECUL OF ..t et e 30
StOrage DELalScoouuiiiiiii e 30
SAVING @ SESSION ..iitiiiiiiiii e e e e e e e 30
OPLMIZEA WILES ... et et e e 31

SESSION EXPIFALION ...ttt 31

Sessi onDel et edEvent and Sessi onExpi redEventccoovviiiiiiiiiiinie e, 32
Using Sessi 0nCreat @AEVENT ... 33
Viewing the Session iN REISoooviiiiiiiii e 33

9.8. Using React i veRedi sOper ati onsSessi ONREPOSI tOrY w.ovvvvviviiieii i 33
Instantiating a React i veRedi sOper ati onsSessi onRepoSi torycccovvveeeiennnees 33
Using @Enabl eRedi SWEDSESST ON oouuiiiiiiiiici e 34
(001104 17.4=To IRV) 1= 34

Viewing the Session IN REISc..iiuiiiiiiii e 34

9.9. Using MAPSESST ONREPOST L OF Y ovviiiiiiiiiiiei ittt et eaenns 34
Instantiating MaPSESSi ONREPOST L OFY ouvniiiii i 34
Using Spring Session and HAazIECASEoviuuiiiiiii e 35
9.10. Using React i veMapSessi ONREPOSI L OF Y ..uiiiiiiiiiiiii e 35
9.11. Using JdbcOper at i 0nsSSesSi ONREPOSI L OFY wuuiiiiiiiiiiiiii e e 35
Instantiating a JdbcOper ati onsSSesSi ONREPOSI t OFY oovviiiiiiiiiiiiiieei e 35
Using @Enabl eJdDCHE t PSESST ON cevvniiiiii e 35
Customizing LOBHANA] €5 ... 36
Customizing CONVETr ST ONSEI Vi CE ..oieuniiiiieiii et e e 36

StOrage DELalScooeuiiiiiiii e 36
Transaction ManagQEMENTco.u i e e e e e e e e et e e et e e e e e e eaens 37
9.12. Using Hazel cast SESSi ONREPOST L O Y oouiiiiiiiiiii e 37
Instantiating a Hazel cast Sessi ONREPOSI t OrY ...oviiiiiiiiiiiii e 37
Using @nabl eHazel cast HE t PSESSI ON .ovvniiiiiiii e 37
BasSiC CUSIOMUZALIONieeiiitiiii et et e et e e e e et eeeb e eaaaaees 38
Y STS (o] T Y =T o | £ PP 38

Y (o= Vo [T = - V1 38

10. CustomiNg SESSi ONREPOST T OF Y .eniiiiiieiii i e e e e eees 39
U oo = To [10To I (o T2 G PP PTT 40
O 2 7= 1YY 1 o T T U o - = 40
11.2. Replaced and Removed MOUIESoiiuiiiiiiii e 40
11.3. Replaced and Removed Packages, Classes, and Methodscocccoivviiiviiiiieiinneennn, 40
B B 0T o o 1= o [o] Lo o AN 41
12. Spring SeSSION COMMUINILY ...ieuuiiii ittt e et e ettt e e e e e et e e et e e e eeanns 42
D TS 1 U o o Lo AU PPP 42
S 1o T (o= I @ Lo = PP 42
12.3. ISSUE TFACKING .. ceuiitieei ettt ettt e et et e e et e et e e et e e e b e eanaeenes 42

please define title in your docbook file! iii

Spring Session

12.4. Contributing
12.5. Licenseccoeeuveennnns

12.6. Community Extensions

13. Minimum Requirements

please define title in your docbook file!

Spring Session

Spring Session provides an API and implementations for managing a user’s session information.

please define title in your docbook file!

Spring Session

1. Introduction

Spring Session provides an APl and implementations for managing a user’s session information while
also making it trivial to support clustered sessions without being tied to an application container-specific
solution. It also provides transparent integration with:

» HttpSession: Allows replacing the Ht t pSessi on in an application container-neutral way, with support
for providing session IDs in headers to work with RESTful APIs.

» WebSocket: Provides the ability to keep the Htt pSessi on alive when receiving WebSocket
messages

» WebSession: Allows replacing the Spring WebFlux’s WebSessi on in an application container-neutral
way.

please define title in your docbook file! 1

Spring Session

2. What's New in 2.0

The following list highlights what is new in Spring Session 2.0:

Upgraded to Java 8 and Spring Framework 5 as baseline

* Added support for managing Spring WebFlux's WebSession with Redis
React i veSessi onRepository
+ Extracted Sessi onReposi t ory implementations to separate modules
» Improved Sessi on and Sessi onReposi t ory APIs
» Improved and harmonized configuration support for all supported session stores
» Added support for configuring default Cooki eSeri al i zer using Sessi onCooki eConfi g
* Lots of performance improvements and bug fixes
You can find a complete list of what is new by referring to the changelogs of
» 2.0.0.M1
» 2.0.0.M2
» 2.0.0.M3
» 2.0.0.M4
» 2.0.0.M5
» 2.0.0.RC1
» 2.0.0.RC2
» 2.0.0.RELEASE
please define title in your docbook file! 2

https://github.com/spring-projects/spring-session/issues/683
https://github.com/spring-projects/spring-session/issues/816
https://github.com/spring-projects/spring-session/issues/816
https://github.com/spring-projects/spring-session/issues/768
https://github.com/spring-projects/spring-session/issues/682
https://github.com/spring-projects/spring-session/issues/809
https://github.com/spring-projects/spring-session/pull/713
https://github.com/spring-projects/spring-session/milestone/17?closed=1
https://github.com/spring-projects/spring-session/milestone/22?closed=1
https://github.com/spring-projects/spring-session/milestone/23?closed=1
https://github.com/spring-projects/spring-session/milestone/24?closed=1
https://github.com/spring-projects/spring-session/milestone/25?closed=1
https://github.com/spring-projects/spring-session/milestone/26?closed=1
https://github.com/spring-projects/spring-session/milestone/27?closed=1
https://github.com/spring-projects/spring-session/milestone/30?closed=1

Spring Session

3. Samples and Guides (Start Here)

To get started with Spring Session, the best place to start is our Sample Applications.

Table 3.1. Sample Applications that use Spring Boot

Source

Description

Guide

HttpSession with Redis

Demonstrates how to use
Spring Session to replace the
Ht t pSessi on with Redis.

HttpSession with Redis Guide

HttpSession with JDBC

Demonstrates how to use
Spring Session to replace the
Ht t pSessi on with a relational
database store.

HttpSession with JDBC Guide

Find by Username

WebSockets

WebFlux

HttpSession with Redis JSON

serialization

Demonstrates how to use
Spring Session to find sessions
by username.

Demonstrates how to
use Spring Session with
WebSockets.

Demonstrates how to use
Spring Session to replace the
Spring WebFlux's WebSessi on
with Redis.

Demonstrates how to use
Spring Session to replace the

Ht t pSessi on with Redis using

JSON serialization.

Find by Username Guide

WebSockets Guide

Table 3.2. Sample Applications that use Spring Java-based configuration

Source

Description

Guide

HttpSession with Redis

HttpSession with JDBC

Demonstrates how to use
Spring Session to replace the
Ht t pSessi on with Redis.

Demonstrates how to use
Spring Session to replace the
Ht t pSessi on with a relational
database store.

HttpSession with Redis Guide

HttpSession with JDBC Guide

HttpSession with Hazelcast

Custom Cookie

Demonstrates how to use
Spring Session to replace the
Ht t pSessi on with Hazelcast.

Demonstrates how to use
Spring Session and customize
the cookie.

HttpSession with Hazelcast
Guide

Custom Cookie Guide

please define title in your docbook file!

https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/redis
guides/boot-redis.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/jdbc
guides/boot-jdbc.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/findbyusername
guides/boot-findbyusername.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/websocket
guides/boot-websocket.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/webflux
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/redis-json
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/boot/redis-json
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/javaconfig/redis
guides/java-redis.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/javaconfig/jdbc
guides/java-jdbc.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/javaconfig/hazelcast
guides/java-hazelcast.html
guides/java-hazelcast.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/javaconfig/custom-cookie
guides/java-custom-cookie.html

Spring Session

Source

Description

Guide

Spring Security

Demonstrates how to use
Spring Session with an existing
Spring Security application.

Spring Security Guide

REST

Demonstrates how to use
Spring Session in a REST
application to support
authenticating with a header.

REST Guide

Table 3.3. Sample Applications that use Spring XML-based configuration

Source

Description

Guide

HttpSession with Redis

Demonstrates how to use
Spring Session to replace the
Ht t pSessi on with a Redis
store.

HttpSession with Redis Guide

HttpSession with JDBC

Demonstrates how to use
Spring Session to replace the
Ht t pSessi on with a relational
database store.

HttpSession with JDBC Guide

Table 3.4. Miscellaneous sample Applications

Source

Grails 3

Hazelcast

Description

Demonstrates how to use
Spring Session with Grails 3.

Demonstrates how to use
Spring Session with Hazelcast
in a Java EE application.

Guide

Gralls 3 Guide

TBD

please define title in your docbook file!

https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/javaconfig/security
guides/java-security.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/javaconfig/rest
guides/java-rest.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/xml/redis
guides/xml-redis.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/xml/jdbc
guides/xml-jdbc.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/misc/grails3
guides/grails3.html
https://github.com/spring-projects/spring-session/tree/2.1.12.RELEASE/samples/misc/hazelcast

Spring Session

4. Spring Session Modules

In Spring Session 1.x, all of the Spring Session’s Sessi onReposi t or y implementations were available
within the spri ng- sessi on artifact. While convenient, this approach was not sustainable long-term
as more features and Sessi onReposi t or y implementations were added to the project.

Starting with Spring Session 2.0, the project has been split into Spring Session Core module and several
other modules that carry Sessi onReposi t or y implementations and functionality related to the specific
data store. Users of Spring Data should find this arrangement familiar, with Spring Session Core module
taking a role equivalent to Spring Data Commons and providing core functionalities and APIs, with other
modules containing data store specific implementations. As part of this split, the Spring Session Data
MongoDB and Spring Session Data GemFire modules were moved to separate repositories. Now the
situation with project’s repositories/modules is as follows:

* Spring-sessi on repository

* Hosts the Spring Session Core, Spring Session Data Redis, Spring Session JDBC, and Spring
Session Hazelcast modules

e Spring-sessi on-dat a- nongodb repository

¢ Hosts the Spring Session Data MongoDB module

* Spring-sessi on-dat a- geode repository

« Hosts the Spring Session Data Geode and Spring Session Data Geode modules

Finally, Spring Session now also provides a Maven BOM (“bill of materials”) module in order to help
users with version management concerns:

e Spring-sessi on- bomrepository

« Hosts the Spring Session BOM module

please define title in your docbook file! 5

https://github.com/spring-projects/spring-session
https://github.com/spring-projects/spring-session-data-mongodb
https://github.com/spring-projects/spring-session-data-geode
https://github.com/spring-projects/spring-session-bom

Spring Session

5. Ht t pSessi on Integration

Spring Session provides transparent integration with Ht t pSessi on. This means that developers can
switch the Ht t pSessi on implementation out with an implementation that is backed by Spring Session.

5.1 Why Spring Session and Ht t pSessi on?

We have already mentioned that Spring Session provides transparent integration with Ht t pSessi on,
but what benefits do we get out of this?

» Clustered Sessions: Spring Session makes it trivial to support clustered sessions without being tied
to an application container specific solution.

» RESTful APIs: Spring Session lets providing session IDs in headers work with RESTful APIs

5.2 Ht t pSessi on with Redis

Using Spring Session with Ht t pSessi on is enabled by adding a Servlet Filter before anything that
uses the Ht t pSessi on. You can choose from enabling this by using either:

» Java-based Configuration

» XML-based Configuration

Redis Java-based Configuration

This section describes how to use Redis to back Ht t pSessi on by using Java based configuration.

Note

The HttpSession Sample provides a working sample of how to integrate Spring Session and
Ht t pSessi on by using Java configuration. You can read the basic steps for integration in the
next few sections, but we encourage you to follow along with the detailed HttpSession Guide when
integrating with your own application.

Spring Java Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a servlet filter that replaces the Ht t pSessi on implementation
with an implementation backed by Spring Session. To do so, add the following Spring Configuration:

@nabl eRedi sHt t pSessi on O
public class Config {

@Bean
public LettuceConnectionFactory connectionFactory() {

return new LettuceConnectionFactory(); O

}
}

0 The @nabl eRedi sHtt pSessi on annotation creates a Spring Bean with the name of
springSessi onReposi toryFilter that implements Filter. The filter is in charge of
replacing the Ht t pSessi on implementation to be backed by Spring Session. In this instance,
Spring Session is backed by Redis.

please define title in your docbook file! 6

Spring Session

0 We create a Redi sConnect i onFact ory that connects Spring Session to the Redis Server. We
configure the connection to connect to localhost on the default port (6379). For more information
on configuring Spring Data Redis, see the reference documentation.

Java Servlet Container Initialization

Our Spring Configuration created a Spring Bean named spri ngSessi onReposi toryFilter that
implements Fi | t er . The spri ngSessi onReposi toryFi | t er bean is responsible for replacing the
Ht t pSessi on with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config class.
Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our
springSessi onReposi toryFi | t er for every request. Fortunately, Spring Session provides a utility
class named Abstract Ht t pSessi onAppl i cationlnitiali zer to make both of these steps easy.
The following shows an example:

src/main/java/sample/lnitializer.java.

public class Initializer extends AbstractHttpSessionApplicationlnitializer { O

public Initializer() {
super (Config.class); O
}

}

Note

The name of our class (I niti al i zer) does not matter. What is important is that we extend
Abstract Ht t pSessi onApplicationlnitializer.

O The first step is to extend Abstract Htt pSessi onApplicationlnitializer. Doing so
ensures that the Spring Bean by the name of spri ngSessi onReposi t oryFi | t er is registered
with our Servlet Container for every request.

0 AbstractHtpSessionApplicationlnitializer also provides a mechanism to ensure
Spring loads our Confi g.

Redis XML-based Configuration

This section describes how to use Redis to back Ht t pSessi on by using XML based configuration.

Note

The HttpSession XML Sample provides a working sample of how to integrate Spring Session and
Ht t pSessi on using XML configuration. You can read the basic steps for integration in the next
few sections, but we encourage you to follow along with the detailed HttpSession XML Guide
when integrating with your own application.

Spring XML Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a servlet filter that replaces the Ht t pSessi on implementation
with an implementation backed by Spring Session. To do so, add the following Spring Configuration:

src/main/webapp/WEB-INF/spring/session.xml.

please define title in your docbook file! 7

https://docs.spring.io/spring-data/data-redis/docs/2.1.17.RELEASE/reference/html/

Spring Session

u]
<cont ext: annot ati on-confi g/ >

>

O
<bean cl ass="org. spri ngfranmework. dat a. redi s. connection. | ettuce. LettuceConnecti onFactory"/>

O We use the combination of <cont ext: annot ati on-confi g/ > and
Redi sHt t pSessi onConfi gurati on because Spring Session does not yet provide XML
Namespace support (see gh-104). This creates a Spring Bean with the name of
springSessi onReposi toryFilter that implements Filter. The filter is in charge of
replacing the Ht t pSessi on implementation to be backed by Spring Session. In this instance,
Spring Session is backed by Redis.

0 We create a Redi sConnect i onFact ory that connects Spring Session to the Redis Server. We
configure the connection to connect to localhost on the default port (6379) For more information
on configuring Spring Data Redis, see the reference documentation.

XML Servlet Container Initialization

Our Spring Configuration created a Spring Bean named spri ngSessi onReposi toryFi |l ter that
implements Fi | t er. The spri ngSessi onReposi t oryFi | t er bean is responsible for replacing the
Ht t pSessi on with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, we need to instruct Spring to load our sessi on. xni
configuration. We can do so with the following configuration:

src/main/webapp/WEB-INF/web.xml.

<cont ext - par an>
<par am name>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
/ WEB- | NF/ spring/*. xm
</ param val ue>
</ cont ext - par an>
<l i stener>
<l i stener-class>
or g. springfranmewor k. web. cont ext . Cont ext Loader Li st ener
</listener-class>
</listener>

The Cont ext Loader Li st ener reads the contextConfigLocation and picks up our session.xml
configuration.

Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our
springSessi onReposi toryFi |l t er for every request. The following snippet performs this last step
for us:

src/main/webapp/WEB-INF/web.xml.

<filter>
<filter-nanme>springSessi onRepositoryFilter</filter-nanme>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>
<filter-nmappi ng>
<filter-name>springSessi onRepositoryFilter</filter-nanme>
<url-pattern>/*</url-pattern>
<di spat cher >REQUEST</ di spat cher >
<di spat cher >ERROR</ di spat cher >
</filter-mappi ng>

please define title in your docbook file! 8

<bean cl ass="org. springfranework. sessi on. data.redi s. config.annotation.web. http. Redi sHt t pSessi onConfi guration"/

https://github.com/spring-projects/spring-session/issues/104
https://docs.spring.io/spring-data/data-redis/docs/2.1.17.RELEASE/reference/html/
https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/core.html#context-create

Spring Session

The Del egati ngFi | t er Pr oxy looks up a Bean by the name of
springSessi onRepositoryFilter and cast it to a Filter. For every request that
Del egati ngFi | t er Proxy is invoked, the spri ngSessi onReposi t oryFi | t er is invoked.

5.3Htt pSessi on with JIDBC

You can use Spring Session with Ht t pSessi on by adding a servlet filter before anything that uses the
Ht t pSessi on. You can choose to do in any of the following ways:

» Java-based Configuration

» XML-based Configuration

» Spring Boot-based Configuration

JDBC Java-based Configuration

This section describes how to use a relational database to back Ht t pSessi on when you use Java-
based configuration.

Note

The HttpSession JDBC Sample provides a working sample of how to integrate Spring Session
and Ht t pSessi on by using Java configuration. You can read the basic steps for integration in
the next few sections, but we encouraged you to follow along with the detailed HttpSession JDBC
Guide when integrating with your own application.

Spring Java Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a Servlet Filter that replaces the Ht t pSessi on implementation
with an implementation backed by Spring Session. To do so, add the following Spring Configuration:

@nabl eJdbcHt t pSessi on O
public class Config {

@Bean
publ i ¢ EnbeddedDat abase dat aSource() {
return new EnbeddedDat abaseBui | der () O
. set Type(EnbeddedDat abaseType. H2)
.addScri pt ("org/ springfranmework/ sessi on/ j dbc/ schema- h2. sql ") . bui I d();
}

@Bean
public Platfornilransacti onManager transacti onManager (Dat aSour ce dat aSource) {

return new Dat aSour ceTransacti onManager (dat aSource); 0O

}

0 The @nabl eJdbcHtt pSessi on annotation creates a Spring Bean with the name of
spri ngSessi onReposi toryFi |l t er. That bean implements Fi | t er . The filter is in charge of
replacing the Ht t pSessi on implementation to be backed by Spring Session. In this instance,
Spring Session is backed by a relational database.

0 We create a dat aSour ce that connects Spring Session to an embedded instance of an H2
database. We configure the H2 database to create database tables by using the SQL script that
is included in Spring Session.

please define title in your docbook file! 9

https://docs.spring.io/spring-framework/docs/5.1.15.RELEASE/javadoc-api/org/springframework/web/filter/DelegatingFilterProxy.html

Spring Session

0 We create a transacti onManager that manages transactions for previously configured
dat aSour ce.

For additional information on how to configure data access related concerns, see the Spring Framework
Reference Documentation.

Java Servlet Container Initialization

Our Spring Configuration created a Spring bean named spri ngSessi onReposi toryFil ter that
implements Fi | t er. The spri ngSessi onReposi toryFi | t er bean is responsible for replacing the
Ht t pSessi on with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config class.
Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our
spri ngSessi onReposi toryFi | t er for every request. Fortunately, Spring Session provides a utility
class named Abstract Ht t pSessi onAppl i cati onlnitializer to make both of these steps easy.
The following example shows how to do so:

src/main/java/sample/Initializer.java.

public class Initializer extends AbstractHttpSessionApplicationlnitializer { O

public Initializer() {
super (Config.class); O
}

}

Note

The name of our class (Initializer) does not matter. What is important is that we extend
Abst ract Ht t pSessi onApplicationlnitializer.

0 The first step is to extend AbstractHtt pSessi onApplicationlnitializer. Doing so
ensures that the Spring bean named spr i ngSessi onReposi t or yFi | t er is registered with our
Servlet Container for every request.

0 AbstractHtpSessionApplicationlnitializer also provides a mechanism to ensure
Spring loads our Confi g.

JDBC XML-based Configuration

This section describes how to use a relational database to back Ht t pSessi on when you use XML
based configuration.

Note

The HttpSession JDBC XML Sample provides a working sample of how to integrate Spring
Session and Htt pSessi on by using XML configuration. You can read the basic steps for
integration in the next few sections, but we encourage you to follow along with the detailed
HttpSession JDBC XML Guide when integrating with your own application.

Spring XML Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a servlet filter that replaces the Ht t pSessi on implementation

please define title in your docbook file! 10

https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/data-access.html
https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/data-access.html

Spring Session

with an implementation backed by Spring Session. The following listing shows how to add the following
Spring Configuration:

src/main/webapp/WEB-INF/spring/session.xml.

a
<cont ext : annot ati on-confi g/ >
<bean cl ass="org. spri ngfranmewor k. sessi on. j dbc. confi g.annotation.web. http. JdbcH t pSessi onConfi guration"/>

]

<j dbc: enbedded- dat abase i d="dat aSour ce" dat abase- nane="t estdb" type="H2">
<jdbc:script |ocation="classpath:org/springframework/session/jdbc/schema-h2.sqgl"/>

</ j dbc: enbedded- dat abase>

O

<bean cl ass="org. springfranework. j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >
<constructor-arg ref="dataSource"/>

</ bean>

O We use the combination of <cont ext: annot ati on-config/> and
JdbcHt t pSessi onConfi gurati on because Spring Session does not yet provide XML
Namespace support (see gh-104). This creates a Spring bean with the name of
spri ngSessi onReposi toryFil ter. That bean implements Fi | t er. The filter is in charge of
replacing the Ht t pSessi on implementation to be backed by Spring Session. In this instance,
Spring Session is backed by a relational database.

0 We create a dat aSour ce that connects Spring Session to an embedded instance of an H2
database. We configure the H2 database to create database tables by using the SQL script that
is included in Spring Session.

0 We create a transacti onManager that manages transactions for previously configured
dat aSour ce.

For additional information on how to configure data access-related concerns, see the Spring Framework
Reference Documentation.

XML Servlet Container Initialization

Our Spring Configuration created a Spring bean named spri ngSessi onReposi toryFil ter that
implements Fi | t er. The spri ngSessi onReposi t oryFi | t er bean is responsible for replacing the
Ht t pSessi on with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, we need to instruct Spring to load our sessi on. xni
configuration. We do so with the following configuration:

src/main/webapp/WEB-INF/web.xml.

<cont ext - par an>
<par am name>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
/ WEB- | NF/ spring/*. xm
</ param val ue>
</ cont ext - par an>
<l i stener>
<l i stener-class>
or g. springfranmewor k. web. cont ext . Cont ext Loader Li st ener
</listener-class>
</listener>

The Cont ext Loader Li st ener reads the cont ext Conf i gLocat i on and picks up our session.xml
configuration.

please define title in your docbook file! 11

https://github.com/spring-projects/spring-session/issues/104
https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/data-access.html
https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/data-access.html
https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/core.html#context-create

Spring Session

Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our
spri ngSessi onReposi toryFi |l t er for every request. The following snippet performs this last step
for us:

src/main/webapp/WEB-INF/web.xml.

<filter>
<filter-nanme>springSessi onRepositoryFilter</filter-nanme>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>
<filter-mppi ng>
<filter-nanme>springSessi onRepositoryFilter</filter-nanme>
<url-pattern>/*</url-pattern>
<di spat cher >REQUEST</ di spat cher >
<di spat cher >ERROR</ di spat cher >
</filter-mappi ng>

The Del egati ngFi | t er Proxy looks up a bean named spri ngSessi onRepositoryFilter and
casts it to a Filter. For every request on which Del egati ngFilterProxy is invoked, the
springSessi onReposi toryFilter isinvoked.

JDBC Spring Boot-based Configuration

This section describes how to use a relational database to back Ht t pSessi on when you use Spring
Boot.

Note

The HttpSession JDBC Spring Boot Sample provides a working sample of how to integrate Spring
Session and Ht t pSessi on by using Spring Boot. You can read the basic steps for integration in
the next few sections, but we encourage you to follow along with the detailed HttpSession JDBC
Spring Boot Guide when integrating with your own application.

Spring Boot Configuration

After adding the required dependencies, we can create our Spring Boot configuration. Thanks to first-
class auto configuration support, setting up Spring Session backed by a relational database is as simple
as adding a single configuration property to your appl i cati on. properti es. The following listing
shows how to do so:

src/main/resources/application.properties.

spring. session. store-type=jdbc # Session store type.

Under the hood, Spring Boot applies configuration that is equivalent to manually adding
the @nabl eJdbcHtt pSessi on annotation. This creates a Spring bean with the name of
springSessi onReposi toryFilter. That bean implements Fi |l ter. The filter is in charge of
replacing the Ht t pSessi on implementation to be backed by Spring Session.

You can further customize by using appl i cati on. properti es. The following listing shows how to
do so:

src/main/resources/application.properties.

please define title in your docbook file! 12

https://docs.spring.io/spring-framework/docs/5.1.15.RELEASE/javadoc-api/org/springframework/web/filter/DelegatingFilterProxy.html

Spring Session

server.servl et.session.tinmeout= # Session tinmeout. If a duration suffix is not specified, seconds are
used.

spring.session.jdbc.initialize-schema=enbedded # Dat abase schema initialization node.

spring. sessi on. j dbc. schema=cl asspat h: or g/ spri ngf ramewor k/ sessi on/ j dbc/ schena- @®l at f orm@@ sql # Path to
the SQL file to use to initialize the database schema.

spring. session. jdbc. tabl e-name=SPRI NG_SESSI ON # Nane of the database table used to store sessions.

For more information, see the Spring Session portion of the Spring Boot documentation.
Configuring the Dat aSour ce

Spring Boot automatically creates a Dat aSour ce that connects Spring Session to an embedded
instance of an H2 database. In a production environment, you need to update your configuration to point
to your relational database. For example, you can include the following in your application.properties:

src/main/resources/application.properties.

spring. datasource.url = # JDBC URL of the database.
spring. dat asour ce. usernane= # Logi n usernane of the database.
spring. dat asour ce. password= # Logi n password of the database.

For more information, see the Configure a DataSource portion of the Spring Boot documentation.

Servlet Container Initialization

Our Spring Boot Configuration created a Spring bean named spri ngSessi onReposi toryFil ter
that implements Fi | t er . The spri ngSessi onReposi t or yFi | t er bean is responsible for replacing
the Ht t pSessi on with a custom implementation that is backed by Spring Session.

In order for our Fi | t er to do its magic, Spring needs to load our Conf i g class. Last, we need to ensure
that our Servlet Container (that is, Tomcat) uses our spri ngSessi onReposi toryFi |l t er for every
request. Fortunately, Spring Boot takes care of both of these steps for us.

5.4 HttpSession with Hazelcast

Using Spring Session with Ht t pSessi on is enabled by adding a Servlet Filter before anything that
uses the Ht t pSessi on.

This section describes how to use Hazelcast to back Ht t pSessi on by using Java-based configuration.

Note

The Hazelcast Spring Sample provides a working sample of how to integrate Spring Session and
Ht t pSessi on by using Java configuration. You can read the basic steps for integration in the
next few sections, but we encourage you to follow along with the detailed Hazelcast Spring Guide
when integrating with your own application.

Spring Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a servlet filter that replaces the Ht t pSessi on implementation
with an implementation backed by Spring Session. To do so, add the following Spring Configuration:

please define title in your docbook file! 13

https://docs.spring.io/spring-boot/docs/2.1.14.RELEASE/reference/htmlsingle/#boot-features-session
https://docs.spring.io/spring-boot/docs/2.1.14.RELEASE/reference/htmlsingle/#boot-features-configure-datasource

Spring Session

@nabl eHazel cast Ht t pSessi on O

@onfiguration
public class Hazel castHtt pSessionConfig {

@Bean
publ i c Hazel castl nstance hazel castlnstance() {
MapAttri buteConfig attributeConfig = new MapAttri buteConfig()
. set Nane(Hazel cast Sessi onReposi t ory. PRI NCl PAL_NAME_ATTRI BUTE)
.set Extractor (Princi pal NaneExtractor. cl ass. get Nane());

Config config = new Config();

confi g. get MapConfi g(Hazel cast Sessi onReposi t ory. DEFAULT_SESSI ON_VAP_NAME) O
. addMvapAttri but eConfig(attributeConfi g)
. addMvapl ndexConf i g(new Mapl ndexConfi g(
Hazel cast Sessi onReposi tory. PRI NCI PAL_NAME_ATTRI BUTE, fal se));

return Hazel cast.newHazel cast | nstance(config); O

}

O The @knabl eHazel cast Ht pSessi on annotation creates a Spring bean named
springSessi onReposi toryFilter that implements Filter. The filter is in charge of
replacing the Ht t pSessi on implementation to be backed by Spring Session. In this instance,
Spring Session is backed by Hazelcast.

0 Inorderto support retrieval of sessions by principal name index, an appropriate Val ueExt r act or
needs to be registered. Spring Session provides Pri nci pal NaneExt r act or for this purpose.

O We create a Hazel cast | nst ance that connects Spring Session to Hazelcast. By default, the
application starts and connects to an embedded instance of Hazelcast. For more information on
configuring Hazelcast, see the reference documentation.

Servlet Container Initialization

Our Spring Configuration created a Spring bean named spri ngSessi onReposi toryFil ter that
implements Fi | t er. The spri ngSessi onReposi toryFi | t er bean is responsible for replacing the
Ht t pSessi on with a custom implementation that is backed by Spring Session.

In order for our Fi | t er to do its magic, Spring needs to load our Sessi onConf i g class. Since our
application is already loading Spring configuration by using our Securitylnitial i zer class, we can
add our Sessi onConfi g class to it. The following listing shows how to do so:

src/main/java/sample/Securitylnitializer.java.

public class Securitylnitializer extends AbstractSecurityWbApplicationlnitializer {

public Securitylnitializer() {
super (SecurityConfig.class, SessionConfig.class);
}
}

Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our
springSessi onRepositoryFilter for every request. It is extremely important that
Spring Session’s springSessi onRepositoryFilter is invoked before Spring Security's
springSecurityFilterChain. Doing so ensures that the Htt pSessi on that Spring Security
uses is backed by Spring Session. Fortunately, Spring Session provides a utility class named
Abstract Ht t pSessi onApplicationlnitializer that makes this doing so easy. The following
example shows how to do so:

please define title in your docbook file! 14

https://docs.hazelcast.org/docs/3.11.4/manual/html-single/index.html#hazelcast-configuration

Spring Session

src/main/java/sample/lnitializer.java.

public class Initializer extends AbstractHttpSessionApplicationlnitializer {

}

Note

The name of our class (I niti al i zer) does not matter. What is important is that we extend
Abst ract Ht t pSessi onApplicationlnitializer.

By extending Abstract Ht t pSessi onApplicationlnitializer,weensurethatthe Spring Bean
named spri ngSessi onReposi t or yFi | t er is registered with our servlet container for every request
before Spring Security’s spri ngSecuri tyFi |t er Chai n.

5.5 How Ht t pSessi on Integration Works

Fortunately, both Ht t pSessi on and Ht t pSer vl et Request (the API for obtaining an Ht t pSessi on)
are both interfaces. This means that we can provide our own implementations for each of these APIs.

Note

This section describes how Spring Session provides transparent integration with Ht t pSessi on.
We offer this content so that you can understand what is happening under the covers. This
functionality is already integrated and you do NOT need to implement this logic yourself.

First, we create a custom HttpServl et Request that returns a custom implementation of
Ht t pSessi on. It looks something like the following:

public class Sessi onRepositoryRequest Wapper extends HttpServl et Request W apper {

publ i c Sessi onRepositoryRequest W apper (Htt pServl et Request original) {
super (original);

}

public HttpSession getSession() {
return get Session(true);

}

public HttpSession get Sessi on(bool ean createNew) {
/] create an HttpSession inplenentation from Spring Session

}

/1 ... other nmethods del egate to the original HttpServletRequest ...

Any method that returns an Ht t pSessi on is overridden. All other methods are implemented by
Ht t pSer vl et Request W apper and delegate to the original Ht t pSer vl et Request implementation.

We replace the HttpServl et Request implementation by using a servlet Filter called
Sessi onReposi t oryFi | t er. The pseudocode belows:

please define title in your docbook file! 15

Spring Session

public class SessionRepositoryFilter inplenents Filter {

public doFilter(ServletRequest request, ServletResponse response, FilterChain chain) {
Ht t pSer vl et Request httpRequest = (HttpServl et Request) request;

Sessi onReposi t or yRequest W apper cust onRequest =
new Sessi onReposi t or yRequest W apper (ht t pRequest) ;

chai n. doFi | ter (cust onRequest, response, chain);

}

...

}

By passing a custom Ht t pSer vl et Request implementation into the Fi | t er Chai n, we ensure that
anything invoked after our Fi | t er uses the custom Htt pSessi on implementation. This highlights
why it is important that Spring Session’s Sessi onReposi t or yFi | t er be placed before anything that
interacts with the Ht t pSessi on.

5.6 Ht t pSessi on and RESTful APIs

Spring Session can work with RESTful APIs by letting the session be provided in a header.

Note

The REST Sample provides a working sample of how to use Spring Session in a REST application
to support authenticating with a header. You can follow the basic steps for integration described in
the next few sections, but we encourage you to follow along with the detailed REST Guide when
integrating with your own application.

Spring Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a servlet filter that replaces the Ht t pSessi on implementation
with an implementation backed by Spring Session. To do so, add the following Spring Configuration:

@onfiguration
@nabl eRedi sHt t pSessi on O
public class HttpSessionConfig {

@ean
public LettuceConnectionFactory connectionFactory() {

return new LettuceConnectionFactory(); O

}

@ean
public HttpSessionl dResol ver httpSessionl dResol ver () {

return Header Ht t pSessi onl dResol ver. xAut hToken(); O
}

}

0 The @nabl eRedi sHtt pSessi on annotation creates a Spring bean named
springSessi onReposi toryFilter that implements Filter. The filter is in charge of
replacing the Ht t pSessi on implementation to be backed by Spring Session. In this instance,
Spring Session is backed by Redis.

0 We create a Redi sConnect i onFact ory that connects Spring Session to the Redis Server. We
configure the connection to connect to localhost on the default port (6379). For more information
on configuring Spring Data Redis, see the reference documentation.

please define title in your docbook file! 16

https://docs.spring.io/spring-data/data-redis/docs/2.1.17.RELEASE/reference/html/

Spring Session

0 We customize Spring Session’s HttpSession integration to use HTTP headers to convey the current
session information instead of cookies.

Servlet Container Initialization

Our Spring Configuration created a Spring Bean named spri ngSessi onReposi toryFi |l ter that
implements Fi | t er. The spri ngSessi onReposi toryFi | t er bean is responsible for replacing the
Ht t pSessi on with a custom implementation that is backed by Spring Session.

In order for our Fil ter to do its magic, Spring needs to load our Confi g class. We provide the
configuration in our Spring Mvcl ni ti al i zer, as the following example shows:

src/main/java/sample/mvc/Mvcinitializer.java.

@verride
protected C ass<?>[] get Root Confi gCl asses() {

return new Cass[] { SecurityConfig.class, HttpSessionConfig.class };
}

Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our
springSessi onReposi toryFi | t er for every request. Fortunately, Spring Session provides a utility
class named Abst ract Ht t pSessi onAppl i cati onl niti alizer that makes doing so easy. To do
so, extend the class with the default constructor, as the following example shows:

src/main/java/sample/Initializer.java.

public class Initializer extends AbstractHttpSessionApplicationlnitializer {

}

Note

The name of our class (I niti al i zer) does not matter. What is important is that we extend
Abstract Ht t pSessi onApplicationlnitializer.

5.7 Using Ht t pSessi onLi st ener

Spring Session supports Ht t pSessi onLi st ener by translating Sessi onDest r oyedEvent and
Sessi onCr eat edEvent into Ht t pSessi onEvent by declaring
Sessi onEvent Ht t pSessi onLi st ener Adapt er . To use this support, you need to:

 Ensure your SessionRepository implementation supports and is configured to fire
Sessi onDestroyedEvent and Sessi onCr eat edEvent .

» Configure Sessi onEvent Ht t pSessi onlLi st ener Adapt er as a Spring bean.
 Inject every Ht t pSessi onLi st ener into the Sessi onEvent Ht t pSessi onLi st ener Adapt er

If you use the configuration support documented in Ht t pSessi on with Redis, all you need to do is
register every Ht t pSessi onLi st ener as a bean. For example, assume you want to support Spring
Security’s concurrency control and need to use Ht t pSessi onEvent Publ i sher . Inthat case, you can
add Ht t pSessi onEvent Publ i sher as abean. In Java configuration, this might look like the following:

please define title in your docbook file! 17

Spring Session

@onfi guration
@Enabl eRedi sHt t pSessi on
public class RedisHttpSessionConfig {

@Bean
public HttpSessi onEvent Publ i sher httpSessi onEvent Publisher() {
return new Htt pSessi onEvent Publ i sher () ;

}

11
}

In XML configuration, this might look like the following:

<bean cl ass="org. springframework. security.web. sessi on. H t pSessi onEvent Publ i sher"/ >

please define title in your docbook file!

18

Spring Session

6. WebSocket Integration

Spring Session provides transparent integration with Spring’s WebSocket support.

Note

Spring Session’s WebSocket support works only with Spring’s WebSocket support. Specifically,it
does not work with using JSR-356 directly, because JSR-356 does not have a mechanism for
intercepting incoming WebSocket messages.

6.1 Why Spring Session and WebSockets?

So why do we need Spring Session when we use WebSockets?

Consider an email application that does much of its work through HTTP requests. However, there is also
a chat application embedded within it that works over WebSocket APIs. If a user is actively chatting with
someone, we should not timeout the Ht t pSessi on, since this would be a pretty poor user experience.
However, this is exactly what JSR-356 does.

Another issue is that, according to JSR-356, if the Ht t pSessi on times out, any WebSocket that was
created with that Ht t pSessi on and an authenticated user should be forcibly closed. This means that,
if we are actively chatting in our application and are not using the HttpSession, we also do disconnect
from our conversation.

6.2 WebSocket Usage

The WebSocket Sample provides a working sample of how to integrate Spring Session with
WebSockets. You can follow the basic steps for integration described in the next few headings, but
we encourage you to follow along with the detailed WebSocket Guide when integrating with your own
application.

Ht t pSessi on Integration

Before using WebSocket integration, you should be sure that you have Chapter 5, Ht t pSessi on
Integration working first.

Spring Configuration

In a typical Spring WebSocket application, you would implement
WebSocket MessageBr oker Conf i gur er. For example, the configuration might look something like
the following:

please define title in your docbook file! 19

https://www.jcp.org/en/jsr/detail?id=356
https://java.net/jira/browse/WEBSOCKET_SPEC-175

Spring Session

@onfi guration

@Enabl eSchedul i ng

@nabl eWebSocket MessageBr oker

public class WebSocket Config inplements WebSocket MessageBr oker Confi gurer {

@verride

public void registerStonpEndpoi nt s(St onpEndpoi nt Regi stry registry) {
regi stry. addEndpoi nt ("/ nmessages").w t hSockJS() ;

}

@verride
public void configureMessageBr oker (MessageBroker Regi stry registry) {
regi stry. enabl eSi npl eBr oker ("/ queue/", "/topic/");
regi stry. set ApplicationDestinationPrefixes("/app");
}
}

We can update our configuration to use Spring Session’s WebSocket support. The following example
shows how to do so:

src/main/java/samples/config/WebSocketConfig.java.

@onfi guration

@nabl eSchedul i ng

@nabl eWebSocket MessageBr oker
public class WebSocket Confi g

extends Abstract Sessi onWWebSocket MessageBr oker Conf i gur er <Session> { 0O

@verride

protected void configureStonpEndpoi nt s(St onpEndpoi nt Regi stry registry) { O
regi stry. addEndpoi nt ("/ messages") . w t hSockJS() ;

}

@verride

public void configureMessageBr oker (MessageBr oker Regi stry registry) {
regi stry. enabl eSi npl eBr oker ("/ queue/", "/topic/");
regi stry. set ApplicationDestinationPrefixes("/app");

}

}

To hook in the Spring Session support we only need to change two things:

O Instead of implementing WebSocket MessageBr oker Configurer, we extend
Abst ract Sessi onWwebSocket MessageBr oker Confi gur er
O Werename the r egi st er St onpEndpoi nt s method to conf i gur eSt onpEndpoi nt s

What does Abstr act Sessi onWwbSocket MessageBr oker Conf i gur er do behind the scenes?

» WebSocket Connect Handl er Decor at or Fact ory is added as a
WebSocket Handl er Decorator Factory to WebSocket Transport Regi stration. This
ensures a custom Sessi onConnect Event is fired that contains the WebSocket Sessi on. The
WebSocket Sessi on is hecessary to terminate any WebSocket connections that are still open when
a Spring Session is terminated.

» Sessi onReposi t oryMessagel nt er cept or is added as a Handshakel nt er cept or to every
St onpWebSocket Endpoi nt Regi strati on. This ensures that the Sessi on is added to the
WebSocket properties to enable updating the last accessed time.

» Sessi onRepositoryMessagel nterceptor is added as a Channel I nterceptor to our
inbound Channel Regi strati on. This ensures that every time an inbound message is received,
that the last accessed time of our Spring Session is updated.

please define title in your docbook file! 20

Spring Session

» WebSocket Regi stryLi st ener is created as a Spring bean. This ensures that we have a mapping
of all of the Sessi on IDs to the corresponding WebSocket connections. By maintaining this mapping,
we can close all the WebSocket connections when a Spring Session (HttpSession) is terminated.

please define title in your docbook file! 21

Spring Session

7. WebSession Integration

Spring Session provides transparent integration with Spring WebFlux’s WebSessi on. This means that
you can switch the WebSessi on implementation out with an implementation that is backed by Spring
Session.

7.1 Why Spring Session and WebSession?

We have already mentioned that Spring Session provides transparent integration with Spring WebFlux's
WebSessi on, but what benefits do we get out of this? As with Ht t pSessi on, Spring Session makes
it trivial to support clustered sessions without being tied to an application container specific solution.

7.2 WebSession with Redis

Using Spring Session with WebSessi on is enabled by registering a WebSessi onManager
implementation backed by Spring Session’s ReactiveSessi onRepository. The Spring
configuration is responsible for creating a WebSessi onManager that replaces the WebSessi on
implementation with an implementation backed by Spring Session. To do so, add the following Spring
Configuration:

@Enabl eRedi s\WebSessi on O
public class SessionConfiguration {

@ean
public LettuceConnectionFactory redi sConnectionFactory() {

return new LettuceConnectionFactory(); O

}
}

O The @nabl eRedi sWebSessi on annotation creates a Spring bean with the name of
webSessi onManager . That bean implements the WebSessi onManager . This is what is in
charge of replacing the WebSessi on implementation to be backed by Spring Session. In this
instance, Spring Session is backed by Redis.

O We create a Redi sConnect i onFact ory that connects Spring Session to the Redis Server. We
configure the connection to connect to localhost on the default port (6379) For more information
on configuring Spring Data Redis, see the reference documentation.

7.3 How WebSession Integration Works

It is considerably easier for Spring Session to integrate with Spring WebFlux and its WebSessi on,
compared to Servlet APl and its Ht t pSessi on. Spring WebFlux provides the WebSessi onSt or e API,
which presents a strategy for persisting WebSessi on.

Note

This section describes how Spring Session provides transparent integration with WebSessi on.
We offer this content so that you can understand what is happening under the covers. This
functionality is already integrated and you do NOT need to implement this logic yourself.

First, we create a custom Spri ngSessi onWWbSessi on that delegates to Spring Session’s Sessi on.
It looks something like the following:

please define title in your docbook file! 22

https://docs.spring.io/spring-data/data-redis/docs/2.1.17.RELEASE/reference/html/

Spring Session

public class SpringSessi onWbSessi on i npl enents WebSessi on {

enum State {
NEW STARTED
}

private final S session;
private Atomi cReference<State> state = new At oni cRef erence<>();

Spri ngSessi onWebSessi on(S session, State state) {
this.session = session;
this.state.set(state);

}

@verride

public void start() {

this.state.conpareAndSet (State. NEW State. STARTED);
}

@verride
public bool ean isStarted() {
State value = this.state.get();
return (State. STARTED. equal s(val ue)
|| (State.NEW equal s(value) && !this.session.getAttributes().isEnpty()));
}

@verride
publ i ¢ Mono<Voi d> changeSessi onl d() {
return Mono.defer(() -> {
t hi s. sessi on. changeSessi onl d();
return save();
b
}

/1 ... other nethods del egate to the original Session

Next, we create a custom WebSessi onSt or e that delegates to the React i veSessi onRepository
and wraps Sessi on into custom WebSessi on implementation, as the following listing shows:

public class SpringSessi onWbSessi onSt or e<S ext ends Sessi on> inpl enents WebSessi onStore {
private final ReactiveSessi onRepository<S> sessions;
publ i c SpringSessi onWWebSessi onSt or e(Reacti veSessi onReposi t ory<S> reacti veSessi onRepository) {
this.sessions = reactiveSessi onRepository;

}

11
}

To be detected by Spring WebFlux, this custom WebSessi onSt or e needs to be registered with
Appl i cati onCont ext as a bean named webSessi onManager . For additional information on Spring
WebFlux, see the Spring Framework Reference Documentation.

please define title in your docbook file! 23

https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/web-reactive.html

Spring Session

8. Spring Security Integration
Spring Session provides integration with Spring Security.
8.1 Spring Security Remember-me Support

Spring Session provides integration with Spring Security’s Remember-me Authentication. The support:

» Changes the session expiration length

» Ensures that the session cookie expires at | nt eger . MAX_VALUE. The cookie expiration is set to the
largest possible value, because the cookie is set only when the session is created. If it were set to
the same value as the session expiration, the session would get renewed when the user used it but
the cookie expiration would not be updated (causing the expiration to be fixed).

To configure Spring Session with Spring Security in Java Configuration, you can use the following listing
as a guide:

@verride
protected void configure(HttpSecurity http) throws Exception {
http
/1 ... additional configuration ...
. renmenber Me()
. renmenber MeSer vi ces(renenber MeSer vi ces()) ;

}

@Bean
publ i c SpringSessi onRemenber MeServi ces renenber MeServi ces() {
Spri ngSessi onRenenber MeSer vi ces renmenber MeServi ces =
new SpringSessi onRenenber MeSer vi ces() ;
/1 optionally custom ze
remenber MeSer vi ces. set Al waysRenmenber (true);
return renember MeServi ces;

}

An XML-based configuration would look something like the following:

<security: http>

<l-- ... -->

<security:formlogin />

<security:renenber-ne services-ref="renenber MeServi ces"/>
</security: http>

<bean id="remenber MeServi ces"”
cl ass="org. springframewor k. sessi on. security.web. aut henti cati on. Spri ngSessi onRenenber MeSer vi ces"
p: al waysRenmenber ="true"/ >

8.2 Spring Security Concurrent Session Control

Spring Session provides integration with Spring Security to support its concurrent session control. This
allows limiting the number of active sessions that a single user can have concurrently, but, unlike the
default Spring Security support, this also works in a clustered environment. This is done by providing a
custom implementation of Spring Security’s Sessi onRegi st ry interface.

When using Spring Security’'s Java config DSL, you can configure the custom Sessi onRegi stry
through the Sessi onManagenent Conf i gur er, as the following listing shows:

please define title in your docbook file! 24

https://docs.spring.io/spring-security/site/docs/5.1.10.RELEASE/reference/htmlsingle/#remember-me

Spring Session

@onfi guration
public class SecurityConfiguration<S extends Session>
ext ends WebSecurityConfi gurerAdapter {

@\ut owi r ed
private Fi ndByl ndexNameSessi onRepository<S> sessi onRepository;

@verride
protected void configure(HttpSecurity http) throws Exception {
/1l @ormatter:of f
http
/'l other config goes here...
. sessi onvanagenent ()
. maxi munSessi ons(2)
. sessi onRegi stry(sessionRegistry());
/1 @ornatter:on

}

@Bean
public SpringSessi onBackedSessi onRegi stry<S> sessionRegistry() {
return new SpringSessi onBackedSessi onRegi stry<>(this. sessi onRepository);
}
}

This assumes that you have also configured Spring Session to provide a
Fi ndByl ndexNaneSessi onReposi t ory that returns Sessi on instances.

When using XML configuration, it would look something like the following listing:

<security:http>
<!-- other config goes here... -->
<security: sessi on- mranagenent >
<security:concurrency-control max-sessions="2" session-registry-ref="sessi onRegistry"/>
</ security: sessi on- managenent >
</security:http>

<bean i d="sessi onRegi stry"
cl ass="org. spri ngframewor k. sessi on. security. Spri ngSessi onBackedSessi onRegi stry">
<constructor-arg ref="sessi onRepository"/>
</ bean>

This assumes that your Spring Session Sessi onRegi st ry bean is called sessi onRegi st ry, which
is the name used by all Spri ngHt t pSessi onConfi gur ati on subclasses.

8.3 Limitations

Spring Session’s implementation of Spring Security’s Sessi onRegi stry interface does not support
the get Al | Pri nci pal s method, as this information cannot be retrieved by using Spring Session.
This method is never called by Spring Security, so this affects only applications that access the
Sessi onRegi st ry themselves.

please define title in your docbook file! 25

Spring Session

9. APl Documentation

You can browse the complete Javadoc online. The key APIs are described in the following sections:

» Section 9.1, “Using Sessi on”

Section 9.2, “Using Sessi onRepository”

» Section 9.3, “Using Fi ndByl ndexNaneSessi onRepository”

» Section 9.4, “Using React i veSessi onReposi t ory”

» Section 9.5, “Using @nabl eSpri ngHt t pSessi on”

» Section 9.6, “Using @nabl eSpri ng\WebSessi on”

» Section 9.7, “Using Redi sOper at i onsSessi onRepository”

» Section 9.8, “Using React i veRedi sOper at i onsSessi onRepository”
» Section 9.9, “Using MapSessi onReposi tory”

» Section 9.10, “Using React i veMapSessi onReposi tory”

» Section 9.11, “Using JdbcQper at i onsSessi onReposi tory”

» Section 9.12, “Using Hazel cast Sessi onReposi tory”

9.1 Using Sessi on

A Sessi on is a simplified Map of name value pairs.
Typical usage might look like the following listing:

public class RepositoryDenp<S extends Session> {
private Sessi onRepository<S> repository; 0O

public void denmo() {
S toSave = this.repository.createSession(); O

O

User rwi nch = new User ("rwi nch");

toSave. set Attri bute(ATTR_USER, rw nch);

this.repository. save(toSave); O

S session = this.repository.findByld(toSave.getld()); O
]

User user = session.getAttribute(ATTR USER);
assert That (user).i sEqual To(rw nch);

/Il ... setter nethods ...

0 We create a Sessi onReposi t ory instance with a generic type, S, that extends Sessi on. The
generic type is defined in our class.
0 Wecreate anew Sessi on by using our Sessi onReposi t or y and assign it to a variable of type S.

please define title in your docbook file! 26

../../api/

Spring Session

O We interact with the Sessi on. In our example, we demonstrate saving a User to the Sessi on.

0 Wenow save the Sessi on. This is why we needed the generic type S. The Sessi onReposi t ory
only allows saving Sessi on instances that were created or retrieved by using the same
Sessi onReposi tory. This allows for the Sessi onRepository to make implementation
specific optimizations (that is, writing only attributes that have changed).

O We retrieve the Sessi on from the Sessi onReposi tory.

O We obtainthe persisted User from our Sessi on without the need for explicitly casting our attribute.

The Sessi on API also provides attributes related to the Sessi on instance’s expiration.

Typical usage might look like the following listing:

public class ExpiringRepositoryDenp<S extends Session> {
private Sessi onRepository<S> repository; 0O

public void demo() {

S toSave = this.repository.createSession(); U
...

t oSave. set Maxl nacti vel nt erval (Dur ati on. of Seconds(30)); O

this.repository. save(toSave); O

S session = this.repository.findByld(toSave.getld()); O
...

/1 ... setter nmethods ...

0 We create a Sessi onReposi t ory instance with a generic type, S, that extends Sessi on. The
generic type is defined in our class.

0 Wecreate anew Sessi on by using our Sessi onReposi t or y and assign it to a variable of type S.

O We interact with the Sessi on. In our example, we demonstrate updating the amount of time the
Sessi on can be inactive before it expires.

O Wenow save the Sessi on. This is why we needed the generic type, S. The Sessi onReposi tory
allows saving only Sessi on instances that were created or retrieved using the same
Sessi onReposi tory. This allows for the Sessi onRepository to make implementation
specific optimizations (that is, writing only attributes that have changed). The last accessed time
is automatically updated when the Sessi on is saved.

0 Weretrieve the Sessi on from the Sessi onReposi t ory. Ifthe Sessi on were expired, the result
would be null.

9.2 Using Sessi onRepository

A Sessi onReposi t ory is in charge of creating, retrieving, and persisting Sessi on instances.

If possible, you should not interact directly with a Sessi onRepository or a Sessi on. Instead,
developers should prefer interacting with Sessi onReposi t ory and Sessi on indirectly through the
Ht t pSessi on and WebSocket integration.

9.3 Using Fi ndByl ndexNaneSessi onRepository

Spring Session’s most basic API for using a Sessi on is the Sessi onRepository. This API
is intentionally very simple, so that you can easily provide additional implementations with basic
functionality.

please define title in your docbook file! 27

Spring Session

Some Sessi onRepository implementations may also choose to implement
Fi ndByl ndexNaneSessi onReposi tory. For example, Spring’s Redis, JDBC, and Hazelcast
support libraries all implement Fi ndByl ndexNaneSessi onReposi tory.

The Fi ndByl ndexNanmeSessi onReposi t ory provides a method to look up all the sessions with
a given index name and index value. As a common use case that is supported by all provided
Fi ndByl ndexNaneSessi onReposi t or y implementations, you can use a convenient method to look
up all the sessions for a particular user. This is done by ensuring that the session attribute with the name
of Fi ndByl ndexNaneSessi onReposi t ory. PRI NCl PAL_NANME | NDEX_NAME is populated with the
username. It is your responsibility to ensure that the attribute is populated, since Spring Session is not
aware of the authentication mechanism being used. An example of how to use this can be seen in the
following listing:

String username = "usernane";
this.session.setAttribute(
Fi ndByl ndexNaneSessi onReposi t ory. PRI NCl PAL_NAME_| NDEX_NAME, user nane) ;

Note

Some implementations of Fi ndByl ndexNaneSessi onRepository provide hooks to
automatically index other session attributes. For example, many implementations automatically
ensure that the current Spring Security user name is indexed with the index name of
Fi ndByl ndexNaneSessi onReposi t ory. PRI NCl PAL_NAME | NDEX_NAME.

Once the session is indexed, you can find by using code similar to the following:

String username = "usernane”;
Map<String, Session> sessionldToSession = this.sessionRepository
. findByPrinci pal Nane(user nane) ;

9.4 Using React i veSessi onRepository

A ReactiveSessi onRepository is in charge of creating, retrieving, and persisting Sessi on
instances in a non-blocking and reactive manner.

If possible, you should not interact directly with a Reacti veSessi onRepository or a Sessi on.
Instead, you should prefer interacting with React i veSessi onReposi t ory and Sessi on indirectly
through the WebSession integration.

9.5 Using @nabl eSpri ngHt t pSessi on

You can add the @nabl eSpri ngHt t pSessi on annotation to a @onf i gur ati on class to expose
the Sessi onReposi toryFi | t er as a bean named spri ngSessi onReposi toryFilter.Inorder
to use the annotation, you must provide a single Sessi onReposi t ory bean. The following example
shows how to do so:

@nabl eSpri ngHt t pSessi on
@onfiguration
public class SpringHttpSessionConfig {
@Bean
publ i ¢ MapSessi onRepository sessionRepository() {
return new MapSessi onRepository(new Concurrent HashMap<>());
}
}

please define title in your docbook file! 28

Spring Session

Note that no infrastructure for session expirations is configured for you. This is because things such
as session expiration are highly implementation-dependent. This means that, if you need to clean up
expired sessions, you are responsible for cleaning up the expired sessions.

9.6 Using @tnabl eSpri ngWebSessi on

You can add the @nabl eSpri ngWebSessi on annotation to a @onfi gur ati on class to expose
the WebSessi onManager as a bean named webSessi onManager . To use the annotation, you must
provide a single React i veSessi onReposi t ory bean. The following example shows how to do so:

@Enabl eSpri ngWebSessi on
public class SpringWbSessionConfig {
@Bean
publ i c ReactiveSessi onRepository reactiveSessi onRepository() {
return new Reacti veMapSessi onReposi t ory(new Concurrent HashMap<>());
}
}

Note that no infrastructure for session expirations is configured for you. This is because things such
as session expiration are highly implementation-dependent. This means that, if you require cleaning up
expired sessions, you are responsible for cleaning up the expired sessions.

9.7 Using Redi sOper ati onsSessi onRepository

Redi sOper at i onsSessi onReposi tory is a Sessi onReposi t ory that is implemented by using
Spring Data’s Redi sOperati ons. In a web environment, this is typically used in combination
with Sessi onReposi toryFilter. The implementation supports Sessi onDest royedEvent and
Sessi onCr eat edEvent through Sessi onMessageli st ener.

Instantiating a Redi sOper ati onsSessi onRepository

You can see a typical example of how to create a new instance in the following listing:

Redi sTenpl at e<Cbj ect, Object> redi sTenpl ate = new Redi sTenpl ate<>();
/1 ... configure redisTenplate ...

Sessi onReposi tory<? extends Session> repository =
new Redi sOper at i onsSessi onReposi tory(redi sTenpl ate);

For additional information on how to create a Redi sConnect i onFact or y, see the Spring Data Redis
Reference.

Using @nabl eRedi sHt t pSessi on

In a web environment, the simplest way to create a new Redi sOper at i onsSessi onReposi tory is
to use @nabl eRedi sHt t pSessi on. You can find complete example usage in the Chapter 3, Samples
and Guides (Start Here). You can use the following attributes to customize the configuration:

* maxlInactivelntervallnSeconds: The amount of time before the session expires, in seconds.

» redisNamespace: Allows configuring an application specific namespace for the sessions. Redis keys
and channel IDs start with the prefix of <r edi sNanmespace>: .

please define title in your docbook file! 29

Spring Session

» redisFlushMode: Allows specifying when data is written to Redis. The default is only when save
is invoked on Sessi onReposi t ory. A value of Redi sFl ushMbde. | MMEDI ATE writes to Redis as
soon as possible.

Custom Redi sSeri al i zer

You can customize the serialization by creating a bean named
spri ngSessi onDef aul t Redi sSeri al i zer that implements Redi sSeri al i zer <Qhj ect >.

Redis TaskExecut or

Redi sOper at i onsSessi onRepository is subscribed to receive events from Redis by
using a Redi sMessagelLi st enerContai ner. You can customize the way those events
are dispatched by creating a bean named springSessi onRedi sTaskExecutor, a bean
spri ngSessi onRedi sSubscri pti onExecut or, or both. You can find more details on configuring
Redis task executors here.

Storage Details

The following sections outline how Redis is updated for each operation. The following example shows
an example of creating a new session:

HVBET spring: sessi on: sessi ons: 33f dd1b6- b496- 4b33- 9f 7d- df 96679d32f e creati onTi ne 1404360000000 \
max| nactivel nterval 1800 \
| ast AccessedTi me 1404360000000 \
sessionAttr:attrName sonmeAttrVal ue \
sessi onAttr2:attrNane someAttrVal ue2
EXPI RE spri ng: sessi on: sessi ons: 33f dd1b6- b496- 4b33- 9f 7d- df 96679d32f e 2100
APPEND spri ng: sessi on: sessi ons: expi res: 33f dd1b6- b496- 4b33- 9f 7d- df 96679d32fe ""
EXPI RE spring: sessi on: sessi ons: expi res: 33f dd1b6- b496- 4b33- 9f 7d- df 96679d32f e 1800
SADD spring: sessi on: expi rations: 1439245080000 expi res: 33f dd1b6- b496- 4b33- 9f 7d- df 96679d32f e
EXPI RE spring: sessi on: expi rati ons1439245080000 2100

The subsequent sections describe the details.
Saving a Session

Each session is stored in Redis as a Hash. Each session is set and updated by using the HVBET
command. The following example shows how each session is stored:

HMBET spring: sessi on: sessi ons: 33f dd1b6- b496- 4b33- 9f 7d- df 96679d32f e creati onTi ne 1404360000000 \
max| nactivel nterval 1800 \
| ast AccessedTi ne 1404360000000 \
sessionAttr:attrName sonmeAttrVal ue \
sessi onAttr2: attrName soneAttr Val ue2

In the preceding example, the following statements are true about the session:

* The session ID is 33fdd1b6-b496-4b33-9f7d-df96679d32fe.

e The session was created at 1404360000000 (in milliseconds since midnight of 1/1/1970 GMT).

» The session expires in 1800 seconds (30 minutes).

e The session was last accessed at 1404360000000 (in milliseconds since midnight of 1/1/1970 GMT).

* The session has two attributes. The first is at t r Name, with a value of soneAt t r Val ue. The second
session attribute is named at t r Nane2, with a value of soneAt t r Val ue2.

please define title in your docbook file! 30

https://docs.spring.io/spring-data-redis/docs/2.1.17.RELEASE/reference/html/#redis:pubsub:subscribe:containers

Spring Session

Optimized Writes

The Sessi on instances managed by Redi sOper at i onsSessi onReposi t ory keeps track of the
properties that have changed and updates only those. This means that, if an attribute is written once and
read many times, we need to write that attribute only once. For example, assume the sessi onAttr2
session attribute from the Isiting in the preceding section was updated. The following command would
be run upon saving:

HMBET spring: sessi on: sessi ons: 33f dd1b6- b496- 4b33- 9f 7d- df 96679d32f e sessi onAttr: attrName2 newval ue

Session Expiration

An expiration is associated with each session by using the EXPI RE command, based upon the
Sessi on. get MaxI| nacti vel nt erval (). The following example shows a typical EXPI RE command:

EXPI RE spri ng: sessi on: sessi ons: 33f dd1b6- b496- 4b33- 9f 7d- df 96679d32f e 2100

Note that the expiration that is set to five minutes after the session actually expires. This is necessary
so that the value of the session can be accessed when the session expires. An expiration is set on
the session itself five minutes after it actually expires to ensure that it is cleaned up, but only after we
perform any necessary processing.

Note

The Sessi onReposi tory. fi ndByl d(Stri ng) method ensures that no expired sessions are
returned. This means that you need not check the expiration before using a session.

Spring Session relies on the delete and expired keyspace notifications from Redis to fire a
Sessi onDel et edEvent and a Sessi onExpi r edEvent , respectively. Sessi onDel et edEvent or
Sessi onExpi r edEvent ensure that resources associated with the Sessi on are cleaned up. For
example, when you use Spring Session’s WebSocket support, the Redis expired or delete event triggers
any WebSocket connections associated with the session to be closed.

Expiration is not tracked directly on the session key itself, since this would mean the session data would
no longer be available. Instead, a special session expires key is used. In the preceding example, the
expires key is as follows:

APPEND spri ng: sessi on: sessi ons: expi res: 33f dd1b6- b496- 4b33- 9f 7d- df 96679d32fe ""
EXPI RE spring: sessi on: sessi ons: expi res: 33f dd1b6- b496- 4b33- 9f 7d- df 96679d32f e 1800

When a session expires key is deleted or expires, the keyspace notification triggers a lookup of the
actual session, and a Sessi onDest r oyedEvent is fired.

One problem with relying on Redis expiration exclusively is that, if the key has not been accessed, Redis
makes no guarantee of when the expired event is fired. Specifically, the background task that Redis
uses to clean up expired keys is a low-priority task and may not trigger the key expiration. For additional
details, see the Timing of Expired Events section in the Redis documentation.

To circumvent the fact that expired events are not guaranteed to happen, we can ensure that each
key is accessed when it is expected to expire. This means that, if the TTL is expired on the key, Redis
removes the key and fires the expired event when we try to access the key.

please define title in your docbook file! 31

https://redis.io/topics/notifications
https://redis.io/topics/notifications

Spring Session

For this reason, each session expiration is also tracked to the nearest minute. This lets a background
task access the potentially expired sessions to ensure that Redis expired events are fired in a more
deterministic fashion. The following example shows these events:

SADD spring: sessi on: expi rations: 1439245080000 expi res: 33f dd1b6- b496- 4b33- 9f 7d- df 96679d32f e
EXPI RE spring: sessi on: expi rati ons1439245080000 2100

The background task then uses these mappings to explicitly request each key. By accessing the key,
rather than deleting it, we ensure that Redis deletes the key for us only if the TTL is expired.

Note

We do not explicitly delete the keys, since, in some instances, there may be a race condition that
incorrectly identifies a key as expired when it is not. Short of using distributed locks (which would
kill our performance), there is no way to ensure the consistency of the expiration mapping. By
simply accessing the key, we ensure that the key is only removed if the TTL on that key is expired.

Sessi onDel et edEvent and Sessi onExpi r edEvent

Sessi onDel et edEvent and Sessi onExpi r edEvent are both types of
Sessi onDest royedEvent .

Redi sOper at i onsSessi onReposi tory supports firing a Sessi onDel et edEvent when a
Sessi on is deleted or a Sessi onExpi redEvent when a Sessi on expires. This is necessary to
ensure resources associated with the Sessi on are properly cleaned up.

For example, when integrating with WebSockets, the Sessi onDest r oyedEvent is in charge of closing
any active WebSocket connections.

Firing Sessi onDel et edEvent or Sessi onExpiredEvent is made available through the
Sessi onMessageli st ener, which listens to Redis Keyspace events. In order for this to work, Redis
Keyspace events for Generic commands and Expired events needs to be enabled. The following
example shows how to do so:

redis-cli config set notify-keyspace-events Egx

If you use @nabl eRedi sHt t pSessi on, managing the Sessi onMessageli st ener and enabling
the necessary Redis Keyspace events is done automatically. However, in a secured Redis enviornment,
the config command is disabled. This means that Spring Session cannot configure Redis Keyspace
events for you. To disable the automatic configuration, add Confi gur eRedi sActi on. NO COP as a
bean.

For example, with Java configuration, you can use the following:

@Bean
public static ConfigureRedi sAction confi gureRedi sAction() {
return ConfigureRedi sAction. NO_OP;

}

In XML configuration, you can use the following:

<util:constant
static-field="org.springfranmework. session. data.redis.config.ConfigureRedi sActi on. NO_OP"/>

please define title in your docbook file! 32

https://redis.io/topics/notifications

Spring Session

Using Sessi onCr eat edEvent

When a session is created, an event is sent to Redis with a channel ID
of spring: sessi on: channel : creat ed: 33f dd1b6- b496- 4b33- 9f 7d- df 96679d32f e, where
33f dd1b6- b496- 4b33- 9f 7d- df 96679d32f e is the session ID. The body of the event is the session
that was created.

If registered as a MessagelLi st ener (the default), Redi sOper ati onsSessi onReposi t ory then
translates the Redis message into a Sessi onCr eat edEvent .

Viewing the Session in Redis

After installing redis-cli, you can inspect the values in Redis using the redis-cli. For example, you can
enter the following into a terminal:

$ redis-cli

redis 127.0.0.1: 6379> keys *

1) "spring: session: sessions: 4f c39ce3- 63b3-4el7- blc4- 5eled96f b021" O
2) "spring:session: expirations: 1418772300000 O

O The suffix of this key is the session identifier of the Spring Session.
0 This key contains all the session IDs that should be deleted at the time 1418772300000.

You can also view the attributes of each session. The following example shows how to do so:

redis 127.0.0. 1: 6379> hkeys spring: sessi on: sessi ons: 4f c39ce3- 63b3- 4e17- blc4- 5eled96f b021

1) "l ast AccessedTi ne"

2) "creationTi me"

3) "maxlnactivelnterval"

4) "sessionAttr:usernane"

redis 127.0.0.1:6379> hget spring:session: sessions: 4f c39ce3- 63b3- 4e17- blc4- 5eled96f b021
sessi onAttr: user name

"\ xac\ xed\ x00\ x05t \ x00\ x03r ob"

9.8 Using React i veRedi sOper ati onsSessi onRepository

React i veRedi sOper at i onsSessi onRepository is a Reacti veSessi onReposi tory that is
implemented by using Spring Data’s React i veRedi sOper ati ons. In a web environment, this is
typically used in combination with WebSessi onSt or e.

Instantiating a React i veRedi sOper at i onsSessi onRepository

The following example shows how to create a new instance:

/1 ... create and configure connectionFactory and serializationContext ...

React i veRedi sTenpl at e<String, Object> redi sTenpl ate = new Reacti veRedi sTenpl at e<>(
connectionFactory, serializationContext);

React i veSessi onReposi t ory<? extends Session> repository =
new Reacti veRedi sOper ati onsSessi onReposi tory(redi sTenpl ate);

For additional information on how to create a React i veRedi sConnect i onFact ory, see the Spring
Data Redis Reference.

please define title in your docbook file! 33

https://redis.io/topics/quickstart
https://redis.io/commands#hash

Spring Session

Using @nabl eRedi sWebSessi on

In a web environment, the simplest way to create a new
React i veRedi sOper at i onsSessi onRepository is to use @nabl eRedi sWebSessi on. You
can use the following attributes to customize the configuration:

» maxlInactivelntervallnSeconds: The amount of time before the session expires, in seconds

» redisNamespace: Allows configuring an application specific namespace for the sessions. Redis keys
and channel IDs start with q prefix of <r edi sNanespace>: .

» redisFlushMode: Allows specifying when data is written to Redis. The default is only when save is
invoked on React i veSessi onReposi t ory. A value of Redi sFl ushibde. | MVEDI ATE writes to
Redis as soon as possible.

Optimized Writes

The Sessi on instances managed by React i veRedi sOper at i onsSessi onReposi t ory keep track
of the properties that have changed and updates only those. This means that, if an attribute is written
once and read many times, we need to write that attribute only once.

Viewing the Session in Redis

After installing redis-cli, you can inspect the values in Redis using the redis-cli. For example, you can
enter the following command into a terminal window:

$ redis-cli
redis 127.0.0.1: 6379> keys *
1) "spring: session: sessions: 4f c39ce3- 63b3-4el7- blc4- 5eled96f b021" O

O The suffix of this key is the session identifier of the Spring Session.

You can also view the attributes of each session by using the hkeys command. The following example
shows how to do so:

redis 127.0.0.1: 6379> hkeys spring: sessi on: sessi ons: 4f c39ce3- 63b3- 4e17- blc4- 5eled96f b021

1) "l ast AccessedTi ne"

2) "creationTi me"

3) "maxlnactivelnterval"

4) "sessionAttr:usernange"

redis 127.0.0.1: 6379> hget spring: session: sessi ons: 4f c39ce3- 63b3- 4el17- blc4- 5eled96f b021
sessi onAttr: user name

"\ xac\ xed\ x00\ x05t \ x00\ x03r ob"

9.9 Using MapSessi onReposi tory

The MapSessi onReposi t or y allows for persisting Sessi on ina Map, with the key being the Sessi on
ID and the value being the Sessi on. You can use the implementation with a Concur r ent HashMap as
a testing or convenience mechanism. Alternatively, you can use it with distributed Map implementations.
For example, it can be used with Hazelcast.

Instantiating MapSessi onRepository

The following example shows how to create a new instance:

Sessi onReposi t ory<? extends Session> repository = new MapSessi onRepository(
new Concurrent HashMap<>());

please define title in your docbook file! 34

https://redis.io/topics/quickstart
https://redis.io/commands#hash

Spring Session

Using Spring Session and Hazlecast

The Hazelcast Sample is a complete application that demonstrates how to use Spring Session with
Hazelcast.

To run it, use the following command:

./ gradl ew : sanpl es: hazel cast : t ontat Run

The Hazelcast Spring Sample is a complete application that demonstrates how to use Spring Session
with Hazelcast and Spring Security.

It includes example Hazelcast MapListener implementations that support firing
Sessi onCr eat edEvent, Sessi onDel et edEvent , and Sessi onExpi r edEvent .

To run it, use the following command:

‘ ./ gradl ew : sanpl es: hazel cast - spri ng: t ontat Run

9.10 Using React i veMapSessi onReposi tory

The Reacti veMapSessi onRepository allows for persisting Sessi on in a Map, with the key
being the Sessi on ID and the value being the Sessi on. You can use the implementation with a
Concurrent HashMap as a testing or convenience mechanism. Alternatively, you can use it with
distributed Map implementations, with the requirement that the supplied Map must be non-blocking.

9.11 Using JdbcOper ati onsSessi onRepository

JdbcOper at i onsSessi onRepository is a Sessi onRepository implementation that uses
Spring’s JdbcQOper at i ons to store sessions in a relational database. In a web environment, this is
typically used in combination with Sessi onReposi t or yFi | t er . Note that this implementation does
not support publishing of session events.

Instantiating a JdbcOper ati onsSessi onReposi tory

The following example shows how to create a new instance:

JdbcTenpl ate j dbcTenpl ate = new JdbcTenpl ate();

/1 ... configure JdbcTenplate ...

Pl at f or niTr ansact i onManager transacti onManager = new Dat aSour ceTr ansacti onManager () ;
/1 ... configure transacti onManager ...

Sessi onReposi t ory<? extends Session> repository =
new JdbcOper at i onsSessi onReposi tory(j dbcTenpl ate, transacti onManager);

For additional information on how to create and configure JdbcTenplate and
Pl at f or MTr ansact i onManager , see the Spring Framework Reference Documentation.

Using @nabl eJdbcHt t pSessi on

In a web environment, the simplest way to create a new JdbcQper ati onsSessi onRepository is
to use @nabl eJdbcHt t pSessi on. You can find complete example usage in the Chapter 3, Samples
and Guides (Start Here) You can use the following attributes to customize the configuration:

please define title in your docbook file! 35

https://docs.spring.io/spring/docs/5.1.15.RELEASE/spring-framework-reference/data-access.html

Spring Session

» tableName: The name of database table used by Spring Session to store sessions
« maxlInactivelntervallnSeconds: The amount of time before the session will expire in seconds
Customizing LobHandl er

You can customize BLOB handling by creating a bean named spri ngSessi onLobHandl er that
implements LobHandl er .

Customizing Conver si onSer vi ce

You can customize the default serialization and deserialization of the session by providing
a ConversionServi ce instance. When working in a typical Spring environment, the default
Conver si onSer vi ce bean (named conver si onSer vi ce) is automatically picked up and used for
serialization and deserialization. However, you can override the default Conver si onServi ce by
providing a bean named spri ngSessi onConver si onSer vi ce.

Storage Details

By default, this implementation uses SPRI NG_SESSI ON and SPRI NG_SESSI ON_ATTRI BUTES tables
to store sessions. Note that you can customize the table name, as already described. In that case, the
table used to store attributes is named by using the provided table name suffixed with _ATTRI BUTES. If
further customizations are needed, you can customize the SQL queries used by the repository by using
set *Query setter methods. In this case, you need to manually configure the sessi onReposi tory
bean.

Due to the differences between the various database vendors, especially when it comes to storing binary
data, make sure to use SQL scripts specific to your database. Scripts for most major database vendors
are packaged as or g/ spri ngf ramewor k/ sessi on/ j dbc/ schema- *. sql , where * is the target
database type.

For example, with PostgreSQL, you can use the following schema script:

CREATE TABLE SPRI NG SESSI ON (

PRI MARY_| D CHAR(36) NOT NULL,

SESSI ON_| D CHAR(36) NOT NULL,

CREATI ON_TI ME BI G NT NOT NULL,

LAST_ACCESS_TI ME BI G NT NOT NULL,

MAX_| NACTI VE_I NTERVAL | NT NOT NULL,

EXPI RY_TI ME Bl G NT NOT NULL,

PRI NCI PAL_NAVE VARCHAR(100) ,

CONSTRAI NT SPRI NG_SESSI ON_PK PRI MARY KEY (PRI MARY_| D)
DK

CREATE UNI QUE | NDEX SPRI NG_SESSI ON_| X1 ON SPRI NG_SESSI ON (SESSI ON_I D) ;
CREATE | NDEX SPRI NG_SESSI ON_I X2 ON SPRI NG_SESSI ON (EXPI RY_TI ME) ;
CREATE | NDEX SPRI NG_SESSI ON_| X3 ON SPRI NG_SESSI ON (PRI NCI PAL_NAME) ;

CREATE TABLE SPRI NG_SESSI ON_ATTRI BUTES (

SESSI ON_PRI MARY_| D CHAR(36) NOT NULL,

ATTRI BUTE_NAVE VARCHAR(200) NOT NULL,

ATTRI BUTE_BYTES BYTEA NOT NULL,

CONSTRAI NT SPRI NG_SESSI ON_ATTRI BUTES_PK PRI MARY KEY (SESSI ON_PRI MARY_I D, ATTRI BUTE_NANE)
CONSTRAI NT SPRI NG_SESSI ON_ATTRI BUTES_FK FOREI GN KEY (SESSI ON_PRI MARY_| D) REFERENCES

SPRI NG_SESSI ON(PRI MARY_| D) ON DELETE CASCADE

With MySQL database, you can use the following script:

please define title in your docbook file! 36

Spring Session

CREATE TABLE SPRI NG SESSI ON (

PRI MARY_| D CHAR(36) NOT NULL,

SESSI ON_I D CHAR(36) NOT NULL,

CREATI ON_TI ME BI G/ NT NOT NULL,

LAST_ACCESS TI ME BI G NT NOT NULL,

MAX_I NACTI VE_I NTERVAL | NT NOT NULL,

EXPI RY_TI ME BI G NT NOT NULL,

PRI NCl PAL_NAME VARCHAR(100) ,

CONSTRAI NT SPRI NG SESSI ON_PK PRI MARY KEY (PRI MARY_| D)
) ENG NE=I nnoDB ROW FORMAT=DYNAM G;

CREATE UNI QUE | NDEX SPRI NG SESSI ON_| X1 ON SPRI NG SESSI ON (SESSI ON_| D) ;
CREATE | NDEX SPRI NG SESSI ON_| X2 ON SPRI NG_SESSI ON (EXPI RY_TI ME) ;
CREATE | NDEX SPRI NG SESSI ON_| X3 ON SPRI NG_SESSI ON (PRI NCI PAL_NAME) ;

CREATE TABLE SPRI NG_SESSI ON_ATTRI BUTES (

SESSI ON_PRI MARY_| D CHAR(36) NOT NULL,

ATTRI BUTE_NAVE VARCHAR(200) NOT NULL,

ATTRI BUTE_BYTES BLOB NOT NULL,

CONSTRAI NT SPRI NG_SESSI ON_ATTRI BUTES_PK PRI MARY KEY (SESSI ON_PRI MARY_I D, ATTRI BUTE_NANE)
CONSTRAI NT SPRI NG_SESSI ON_ATTRI BUTES_FK FOREI GN KEY (SESSI ON_PRI MARY_| D) REFERENCES

SPRI NG_SESSI ON(PRI MARY_| D) ON DELETE CASCADE
) ENG NE=I nnoDB ROW FORMAT=DYNAM C;

Transaction Management

All JDBC operations in JdbcOper ati onsSessi onReposi tory are executed in a transactional
manner. Transactions are executed with propagation set to REQUI RES NEW in order to avoid
unexpected behavior due to interference with existing transactions (for example, running a save
operation in a thread that already participates in a read-only transaction).

9.12 Using Hazel cast Sessi onRepository

Hazel cast Sessi onRepository is a Sessi onReposi t ory implementation that stores sessions
in Hazelcast's distributed | Map. In a web environment, this is typically used in combination with
Sessi onRepositoryFilter.

Instantiating a Hazel cast Sessi onRepository

The following example shows how to create a new instance:

Config config = new Config();
/1 ... configure Hazel cast ...
Hazel cast | nst ance hazel cast|nstance = Hazel cast. newHazel cast | nst ance(confi g);

Hazel cast Sessi onReposi tory repository =
new Hazel cast Sessi onReposi t ory(hazel cast | nstance);

For additional information on how to create and configure Hazelcast instance, see the Hazelcast
documentation.

Using @nabl eHazel cast H t pSessi on

To use Hazelcast as your backing source for the Sessi onRepository, you can add the
@nabl eHazel cast H t pSessi on annotation to a @onfi gurati on class. Doing so extends
the functionality provided by the @Enabl eSpringHtt pSessi on annotation but makes the
Sessi onReposi t ory for you in Hazelcast. You must provide a single Hazel cast | nst ance bean

please define title in your docbook file! 37

https://docs.hazelcast.org/docs/3.11.4/manual/html-single/index.html#hazelcast-configuration
https://docs.hazelcast.org/docs/3.11.4/manual/html-single/index.html#hazelcast-configuration
https://hazelcast.org/

Spring Session

for the configuration to work. You can find a complete configuration example in the Chapter 3, Samples
and Guides (Start Here).

Basic Customization

You can use the following attributes on @nabl eHazel cast Htt pSessi on to customize the
configuration:

* maxlInactivelntervallnSeconds: The amount of time before the session expires, in seconds. The
default is 1800 seconds (30 minutes)

» sessionMapName: The name of the distributed Map that is used in Hazelcast to store the session
data.

Session Events

Using a MapLi st ener to respond to entries being added, evicted, and removed from the distributed
Map causes these events to trigger publishing of Sessi onCr eat edEvent , Sessi onExpi r edEvent
and Sessi onDel et edEvent events (respectively) through the Appl i cati onEvent Publ i sher.

Storage Details

Sessions are stored in a distributed | Map in Hazelcast. The | Map interface methods
are used to get() and put() Sessions. Additionally, the val ues() method supports a
Fi ndByl ndexNaneSessi onReposi t or y#f i ndByl ndexNaneAndl ndexVal ue operation, together
with appropriate Val ueExt r act or (which needs to be registered with Hazelcast). See the Hazelcast
Spring Sample for more details on this configuration. The expiration of a session in the | Map is handled
by Hazelcast's support for setting the time to live on an entry when it is put () into the | Map. Entries
(sessions) that have been idle longer than the time to live are automatically removed from the | Map.

You should not need to configure any settings such as max-i dl e-seconds or tinme-to-1ive-
seconds for the | Map within the Hazelcast configuration.

Note that if you use Hazelcast's Map St or e to persist your sessions | Map, the following limitations apply
when reloading the sessions from MapSt or e:

» Reloading triggers Ent r yAddedLi st ener results in Sessi onCr eat edEvent being re-published

» Reloading uses default TTL for a given | Map results in sessions losing their original TTL

please define title in your docbook file! 38

Spring Session

10. Customing Sessi onRepository

Implementing a custom Sessi onReposi t ory API should be a fairly straightforward task. Coupling
the custom implementation with @nabl eSpri ngHt t pSessi on support lets you reuse existing Spring
Session configuration facilities and infrastructure. There are, however, a couple of aspects that deserve
closer consideration.

During the lifecycle of an HTTP request, the HtpSession is typically persisted to
Sessi onReposi t ory twice. The first persist operation is to ensure that the session is available to
the client as soon as the client has access to the session ID, and it is also necessary to write after
the session is committed because further modifications to the session might be made. Having this in
mind, we generally recommend that a Sessi onReposi t ory implementation keep track of changes
to ensure that only deltas are saved. This is particularly important in highly concurrent environments,
where multiple requests operate on the same Ht t pSessi on and, therefore, cause race conditions,
with requests overriding each other’'s changes to session attributes. All of the Sessi onRepository
implementations provided by Spring Session use the described approach to persist session changes
and can be used for guidance when you implement custom Sessi onReposi tory.

Note that the same recommendations apply for implementing a custom
React i veSessi onRepository as well. In this case, you should use the
@Enabl eSpri ngWebSessi on.

please define title in your docbook file! 39

Spring Session

11. Upgrading to 2.x

With the new major release version, the Spring Session team took the opportunity to make some non-
passive changes. The focus of these changes is to improve and harmonize Spring Session’s APIs as
well as remove the deprecated components.

11.1 Baseline Update

Spring Session 2.0 requires Java 8 and Spring Framework 5.0 as a baseline, since its entire codebase
is now based on Java 8 source code. See Upgrading to Spring Framework 5.x for more on upgrading
Spring Framework.

11.2 Replaced and Removed Modules

As a part of the project’s splitting of the modules, the existing spri ng- sessi on has been replaced with
the spri ng- sessi on- cor e module. The spri ng-sessi on- cor e module holds only the common
set of APIs and components, while other modules contain the implementation of the appropriate
Sessi onReposi t ory and functionality related to that data store. This applies to several existing
modules that were previously a simple dependency aggregator helper module. With new module
arrangement, the following modules actually carry the implementation:

» Spring Session Data Redis

» Spring Session JDBC

» Spring Session Hazelcast

Also, the following modules were removed from the main project repository:
e Spring Session Data MongoDB

» Spring Session Data GemFire

Note that these two have moved to separate repositories and continue to be available under new artifact
names:

e spring-session-dat a- nongodb

e Spring-sessi on-dat a- geode

11.3 Replaced and Removed Packages, Classes, and Methods

The following changes were made to packages, classes, and methods:

» Expi ringSessi on API has been merged into the Sessi on API.

* The Sessi on API has been enhanced to make full use of Java 8.

» The Sessi on API has been extended with changeSessi onl d support.

e The Sessi onReposi t ory API has been updated to better align with Spring Data method naming
conventions.

* Abstract Sessi onEvent and its subclasses are no longer constructable without an underlying
Sessi on object.

please define title in your docbook file! 40

https://github.com/spring-projects/spring-framework/wiki/Upgrading-to-Spring-Framework-5.x
https://github.com/spring-projects/spring-session-data-mongodb
https://github.com/spring-projects/spring-session-data-geode

Spring Session

» The Redis namespace used by Redi sOper ati onsSessi onReposi t ory is now fully configurable,
instead of being partially configurable.

» Redis configuration support has been updated to avoid registering a Spring Session-specific
Redi sTenpl at e bean.

» JDBC configuration support has been updated to avoid registering a Spring Session-specific
JdbcTenpl at e bean.

» Previously deprecated classes and methods have been removed across the codebase

11.4 Dropped Support

As a part of the changes to Ht t pSessi onStrat egy and its alignment to the counterpart from the
reactive world, the support for managing multiple users' sessions in a single browser instance has been
removed. The introduction of a new API to replace this functionality is under consideration for future
releases.

please define title in your docbook file! 41

Spring Session

12. Spring Session Community

We are glad to consider you a part of our community. The following sections provide additional about
how to interact with the Spring Session community.

12.1 Support

You can get help by asking questions on Stack Overflow with the spri ng- sessi on tag. Similarly, we
encourage helping others by answering questions on Stack Overflow.

12.2 Source Code

You can find the source code on GitHub at https://github.com/spring-projects/spring-session/

12.3 Issue Tracking

We track issues in GitHub issues at https://github.com/spring-projects/spring-session/issues

12.4 Contributing

We appreciate pull requests.
12.5 License

Spring Session is Open Source software released under the Apache 2.0 license.

12.6 Community Extensions

Name Location

Spring Session OrientDB https://github.com/maseev/spring-session-
orientdb

Spring Session Infinispan https://infinispan.org/docs/dev/user_guide/

user_guide.html#externalizing_session_using_spring_session

please define title in your docbook file! 42

https://stackoverflow.com/questions/tagged/spring-session
https://github.com/spring-projects/spring-session/
https://github.com/spring-projects/spring-session/issues
https://help.github.com/articles/using-pull-requests/
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/maseev/spring-session-orientdb
https://github.com/maseev/spring-session-orientdb
https://infinispan.org/docs/dev/user_guide/user_guide.html#externalizing_session_using_spring_session
https://infinispan.org/docs/dev/user_guide/user_guide.html#externalizing_session_using_spring_session

Spring Session

13. Minimum Requirements

The minimum requirements for Spring Session are:
» Java 8+.
 If you run in a Servlet Container (not required), Servlet 3.1+.

* If you use other Spring libraries (not required), the minimum required version is Spring 5.0.x.

@nabl eRedi sHt t pSessi on requires Redis 2.8+. This is necessary to support Session Expiration

e @nabl eHazel cast Ht t pSessi on requires Hazelcast 3.6+. This is necessary to support
Fi ndByl ndexNaneSessi onReposi tory

Note

At its core, Spring Session has a required dependency only on spri ng-j cl . For an example
of using Spring Session without any other Spring dependencies, see the hazelcast sample
application.

please define title in your docbook file! 43

	Spring Session
	Table of Contents
	
	1. Introduction
	2. What’s New in 2.0
	3. Samples and Guides (Start Here)
	4. Spring Session Modules
	5. HttpSession Integration
	5.1 Why Spring Session and HttpSession?
	5.2 HttpSession with Redis
	Redis Java-based Configuration
	Spring Java Configuration
	Java Servlet Container Initialization

	Redis XML-based Configuration
	Spring XML Configuration
	XML Servlet Container Initialization

	5.3 HttpSession with JDBC
	JDBC Java-based Configuration
	Spring Java Configuration
	Java Servlet Container Initialization

	JDBC XML-based Configuration
	Spring XML Configuration
	XML Servlet Container Initialization

	JDBC Spring Boot-based Configuration
	Spring Boot Configuration
	Configuring the DataSource
	Servlet Container Initialization

	5.4 HttpSession with Hazelcast
	Spring Configuration
	Servlet Container Initialization

	5.5 How HttpSession Integration Works
	5.6 HttpSession and RESTful APIs
	Spring Configuration
	Servlet Container Initialization

	5.7 Using HttpSessionListener

	6. WebSocket Integration
	6.1 Why Spring Session and WebSockets?
	6.2 WebSocket Usage
	HttpSession Integration
	Spring Configuration

	7. WebSession Integration
	7.1 Why Spring Session and WebSession?
	7.2 WebSession with Redis
	7.3 How WebSession Integration Works

	8. Spring Security Integration
	8.1 Spring Security Remember-me Support
	8.2 Spring Security Concurrent Session Control
	8.3 Limitations

	9. API Documentation
	9.1 Using Session
	9.2 Using SessionRepository
	9.3 Using FindByIndexNameSessionRepository
	9.4 Using ReactiveSessionRepository
	9.5 Using @EnableSpringHttpSession
	9.6 Using @EnableSpringWebSession
	9.7 Using RedisOperationsSessionRepository
	Instantiating a RedisOperationsSessionRepository
	Using @EnableRedisHttpSession
	Custom RedisSerializer

	Redis TaskExecutor
	Storage Details
	Saving a Session
	Optimized Writes
	Session Expiration

	SessionDeletedEvent and SessionExpiredEvent
	Using SessionCreatedEvent
	Viewing the Session in Redis

	9.8 Using ReactiveRedisOperationsSessionRepository
	Instantiating a ReactiveRedisOperationsSessionRepository
	Using @EnableRedisWebSession
	Optimized Writes

	Viewing the Session in Redis

	9.9 Using MapSessionRepository
	Instantiating MapSessionRepository
	Using Spring Session and Hazlecast

	9.10 Using ReactiveMapSessionRepository
	9.11 Using JdbcOperationsSessionRepository
	Instantiating a JdbcOperationsSessionRepository
	Using @EnableJdbcHttpSession
	Customizing LobHandler
	Customizing ConversionService

	Storage Details
	Transaction Management

	9.12 Using HazelcastSessionRepository
	Instantiating a HazelcastSessionRepository
	Using @EnableHazelcastHttpSession
	Basic Customization
	Session Events
	Storage Details

	10. Customing SessionRepository
	11. Upgrading to 2.x
	11.1 Baseline Update
	11.2 Replaced and Removed Modules
	11.3 Replaced and Removed Packages, Classes, and Methods
	11.4 Dropped Support

	12. Spring Session Community
	12.1 Support
	12.2 Source Code
	12.3 Issue Tracking
	12.4 Contributing
	12.5 License
	12.6 Community Extensions

	13. Minimum Requirements

