This guide describes how to use Spring Session to transparently leverage a relational database to back a web application’s HttpSession with Java Configuration.

You can find the completed guide in the httpsession-jdbc sample application.

1. Updating Dependencies

Before you use Spring Session, you must update your dependencies. If you use Maven, you must add the following dependencies:

pom.xml
<dependencies>
	<!-- ... -->

	<dependency>
		<groupId>org.springframework.session</groupId>
		<artifactId>spring-session-jdbc</artifactId>
		<version>2.1.13.RELEASE</version>
		<type>pom</type>
	</dependency>
	<dependency>
		<groupId>org.springframework</groupId>
		<artifactId>spring-web</artifactId>
		<version>5.1.18.RELEASE</version>
	</dependency>
</dependencies>

2. Spring Java Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring configuration is responsible for creating a Servlet Filter that replaces the HttpSession implementation with an implementation backed by Spring Session. To do so, add the following Spring Configuration:

@EnableJdbcHttpSession (1)
public class Config {

	@Bean
	public EmbeddedDatabase dataSource() {
		return new EmbeddedDatabaseBuilder() (2)
				.setType(EmbeddedDatabaseType.H2)
				.addScript("org/springframework/session/jdbc/schema-h2.sql").build();
	}

	@Bean
	public PlatformTransactionManager transactionManager(DataSource dataSource) {
		return new DataSourceTransactionManager(dataSource); (3)
	}

}
1 The @EnableJdbcHttpSession annotation creates a Spring Bean with the name of springSessionRepositoryFilter. That bean implements Filter. The filter is in charge of replacing the HttpSession implementation to be backed by Spring Session. In this instance, Spring Session is backed by a relational database.
2 We create a dataSource that connects Spring Session to an embedded instance of an H2 database. We configure the H2 database to create database tables by using the SQL script that is included in Spring Session.
3 We create a transactionManager that manages transactions for previously configured dataSource.

For additional information on how to configure data access related concerns, see the Spring Framework Reference Documentation.

3. Java Servlet Container Initialization

Our Spring Configuration created a Spring bean named springSessionRepositoryFilter that implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, Spring needs to load our Config class. Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our springSessionRepositoryFilter for every request. Fortunately, Spring Session provides a utility class named AbstractHttpSessionApplicationInitializer to make both of these steps easy. The following example shows how to do so:

src/main/java/sample/Initializer.java
public class Initializer extends AbstractHttpSessionApplicationInitializer { (1)

	public Initializer() {
		super(Config.class); (2)
	}
}
The name of our class (Initializer) does not matter. What is important is that we extend AbstractHttpSessionApplicationInitializer.
1 The first step is to extend AbstractHttpSessionApplicationInitializer. Doing so ensures that the Spring bean named springSessionRepositoryFilter is registered with our Servlet Container for every request.
2 AbstractHttpSessionApplicationInitializer also provides a mechanism to ensure Spring loads our Config.

4. httpsession-jdbc Sample Application

This section describes how to work with the httpsession-jdbc Sample Application.

4.1. Running the httpsession-jdbc Sample Application

You can run the sample by obtaining the source code and invoking the following command:

$ ./gradlew :spring-session-sample-javaconfig-jdbc:tomcatRun

You should now be able to access the application at http://localhost:8080/

4.2. Exploring the httpsession-jdbc Sample Application

Now you can try using the application. To do so, fill out the form with the following information:

  • Attribute Name: username

  • Attribute Value: rob

Now click the Set Attribute button. You should now see the values displayed in the table.

4.3. How Does It Work?

We interact with the standard HttpSession in the SessionServlet shown in the following listing:

src/main/java/sample/SessionServlet.java
@WebServlet("/session")
public class SessionServlet extends HttpServlet {

	@Override
	protected void doPost(HttpServletRequest req, HttpServletResponse resp)
			throws ServletException, IOException {
		String attributeName = req.getParameter("attributeName");
		String attributeValue = req.getParameter("attributeValue");
		req.getSession().setAttribute(attributeName, attributeValue);
		resp.sendRedirect(req.getContextPath() + "/");
	}

	private static final long serialVersionUID = 2878267318695777395L;
}

Instead of using Tomcat’s HttpSession, we persist the values in H2 database. Spring Session creates a cookie named SESSION in your browser. That cookie contains the ID of your session. You can view the cookies (with Chrome or Firefox).

If you like, you can remove the session by using the H2 web console available at: http://localhost:8080/h2-console/ (use jdbc:h2:mem:testdb for JDBC URL).

Now you can visit the application at http://localhost:8080/ and see that the attribute we added is no longer displayed.