Spring Session provides transparent integration with Spring’s WebSocket support.
Note | |
---|---|
Spring Session’s WebSocket support works only with Spring’s WebSocket support. Specifically,it does not work with using JSR-356 directly, because JSR-356 does not have a mechanism for intercepting incoming WebSocket messages. |
So why do we need Spring Session when we use WebSockets?
Consider an email application that does much of its work through HTTP requests.
However, there is also a chat application embedded within it that works over WebSocket APIs.
If a user is actively chatting with someone, we should not timeout the HttpSession
, since this would be a pretty poor user experience.
However, this is exactly what JSR-356 does.
Another issue is that, according to JSR-356, if the HttpSession
times out, any WebSocket that was created with that HttpSession
and an authenticated user should be forcibly closed.
This means that, if we are actively chatting in our application and are not using the HttpSession, we also do disconnect from our conversation.
The WebSocket Sample provides a working sample of how to integrate Spring Session with WebSockets. You can follow the basic steps for integration described in the next few headings, but we encourage you to follow along with the detailed WebSocket Guide when integrating with your own application.
Before using WebSocket integration, you should be sure that you have Chapter 5, HttpSession
Integration working first.
In a typical Spring WebSocket application, you would implement WebSocketMessageBrokerConfigurer
.
For example, the configuration might look something like the following:
@Configuration @EnableScheduling @EnableWebSocketMessageBroker public class WebSocketConfig implements WebSocketMessageBrokerConfigurer { @Override public void registerStompEndpoints(StompEndpointRegistry registry) { registry.addEndpoint("/messages").withSockJS(); } @Override public void configureMessageBroker(MessageBrokerRegistry registry) { registry.enableSimpleBroker("/queue/", "/topic/"); registry.setApplicationDestinationPrefixes("/app"); } }
We can update our configuration to use Spring Session’s WebSocket support. The following example shows how to do so:
src/main/java/samples/config/WebSocketConfig.java.
@Configuration @EnableScheduling @EnableWebSocketMessageBroker public class WebSocketConfig extends AbstractSessionWebSocketMessageBrokerConfigurer<Session> { @Override protected void configureStompEndpoints(StompEndpointRegistry registry) { registry.addEndpoint("/messages").withSockJS(); } @Override public void configureMessageBroker(MessageBrokerRegistry registry) { registry.enableSimpleBroker("/queue/", "/topic/"); registry.setApplicationDestinationPrefixes("/app"); } }
To hook in the Spring Session support we only need to change two things:
What does AbstractSessionWebSocketMessageBrokerConfigurer
do behind the scenes?
WebSocketConnectHandlerDecoratorFactory
is added as a WebSocketHandlerDecoratorFactory
to WebSocketTransportRegistration
.
This ensures a custom SessionConnectEvent
is fired that contains the WebSocketSession
.
The WebSocketSession
is necessary to terminate any WebSocket connections that are still open when a Spring Session is terminated.
SessionRepositoryMessageInterceptor
is added as a HandshakeInterceptor
to every StompWebSocketEndpointRegistration
.
This ensures that the Session
is added to the WebSocket properties to enable updating the last accessed time.
SessionRepositoryMessageInterceptor
is added as a ChannelInterceptor
to our inbound ChannelRegistration
.
This ensures that every time an inbound message is received, that the last accessed time of our Spring Session is updated.
WebSocketRegistryListener
is created as a Spring bean.
This ensures that we have a mapping of all of the Session
IDs to the corresponding WebSocket connections.
By maintaining this mapping, we can close all the WebSocket connections when a Spring Session (HttpSession) is terminated.