
Spring Session - WebSocket
Rob Winch

Version 2.3.0.RELEASE

Table of Contents
HttpSession Setup . 2

Spring Configuration . 3

websocket Sample Application . 5

Running the websocket Sample Application . 5

Exploring the websocket Sample Application. 5

This guide describes how to use Spring Session to ensure that WebSocket
messages keep your HttpSession alive.

NOTE
Spring Session’s WebSocket support works only with Spring’s WebSocket support.
Specifically,it does not work with using JSR-356 directly, because JSR-356 does not
have a mechanism for intercepting incoming WebSocket messages.

Index

1

https://www.jcp.org/en/jsr/detail?id=356
../index.html

HttpSession Setup
The first step is to integrate Spring Session with the HttpSession. These steps are already outlined in
the HttpSession with Redis Guide.

Please make sure you have already integrated Spring Session with HttpSession before proceeding.

2

./boot-redis.html

Spring Configuration
In a typical Spring WebSocket application, you would implement WebSocketMessageBrokerConfigurer.
For example, the configuration might look something like the following:

@Configuration
@EnableScheduling
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

 @Override
 public void registerStompEndpoints(StompEndpointRegistry registry) {
 registry.addEndpoint("/messages").withSockJS();
 }

 @Override
 public void configureMessageBroker(MessageBrokerRegistry registry) {
 registry.enableSimpleBroker("/queue/", "/topic/");
 registry.setApplicationDestinationPrefixes("/app");
 }

}

We can update our configuration to use Spring Session’s WebSocket support. The following example
shows how to do so:

3

src/main/java/samples/config/WebSocketConfig.java

@Configuration
@EnableScheduling
@EnableWebSocketMessageBroker
public class WebSocketConfig extends
AbstractSessionWebSocketMessageBrokerConfigurer<Session> { ①

 @Override
 protected void configureStompEndpoints(StompEndpointRegistry registry) { ②
 registry.addEndpoint("/messages").withSockJS();
 }

 @Override
 public void configureMessageBroker(MessageBrokerRegistry registry) {
 registry.enableSimpleBroker("/queue/", "/topic/");
 registry.setApplicationDestinationPrefixes("/app");
 }

}

To hook in the Spring Session support we only need to change two things:

① Instead of implementing WebSocketMessageBrokerConfigurer, we extend
AbstractSessionWebSocketMessageBrokerConfigurer

② We rename the registerStompEndpoints method to configureStompEndpoints

What does AbstractSessionWebSocketMessageBrokerConfigurer do behind the scenes?

• WebSocketConnectHandlerDecoratorFactory is added as a WebSocketHandlerDecoratorFactory to
WebSocketTransportRegistration. This ensures a custom SessionConnectEvent is fired that
contains the WebSocketSession. The WebSocketSession is necessary to terminate any WebSocket
connections that are still open when a Spring Session is terminated.

• SessionRepositoryMessageInterceptor is added as a HandshakeInterceptor to every
StompWebSocketEndpointRegistration. This ensures that the Session is added to the WebSocket
properties to enable updating the last accessed time.

• SessionRepositoryMessageInterceptor is added as a ChannelInterceptor to our inbound
ChannelRegistration. This ensures that every time an inbound message is received, that the last
accessed time of our Spring Session is updated.

• WebSocketRegistryListener is created as a Spring bean. This ensures that we have a mapping of
all of the Session IDs to the corresponding WebSocket connections. By maintaining this
mapping, we can close all the WebSocket connections when a Spring Session (HttpSession) is
terminated.

4

websocket Sample Application
The websocket sample application demonstrates how to use Spring Session with WebSockets.

Running the websocket Sample Application
You can run the sample by obtaining the source code and invoking the following command:

$./gradlew :spring-session-sample-boot-websocket:bootRun

TIP

For the purposes of testing session expiration, you may want to change the session
expiration to be 1 minute (the default is 30 minutes) by adding the following
configuration property before starting the application:

src/main/resources/application.properties

server.servlet.session.timeout=1m # Session timeout. If a duration
suffix is not specified, seconds will be used.

NOTE

For the sample to work, you must install Redis 2.8+ on localhost and run it with the
default port (6379). Alternatively, you can update the RedisConnectionFactory to
point to a Redis server. Another option is to use Docker to run Redis on localhost.
See Docker Redis repository for detailed instructions.

You should now be able to access the application at http://localhost:8080/

Exploring the websocket Sample Application
Now you can try using the application. Authenticate with the following information:

• Username rob

• Password password

Now click the Login button. You should now be authenticated as the user rob.

Open an incognito window and access http://localhost:8080/

You are prompted with a login form. Authenticate with the following information:

• Username luke

• Password password

5

https://github.com/spring-projects/spring-session/archive/2.3.0.RELEASE.zip
https://redis.io/download
https://www.docker.com/
https://hub.docker.com/_/redis/
http://localhost:8080/
http://localhost:8080/

Now send a message from rob to luke. The message should appear.

Wait for two minutes and try sending a message from rob to luke again. You can see that the
message is no longer sent.

NOTE

Why two minutes?

Spring Session expires in 60 seconds, but the notification from Redis is not
guaranteed to happen within 60 seconds. To ensure the socket is closed in a
reasonable amount of time, Spring Session runs a background task every minute at
00 seconds that forcibly cleans up any expired sessions. This means you need to
wait at most two minutes before the WebSocket connection is terminated.

You can now try accessing http://localhost:8080/ You are prompted to authenticate again. This
demonstrates that the session properly expires.

Now repeat the same exercise, but instead of waiting two minutes, send a message from each of the
users every 30 seconds. You can see that the messages continue to be sent. Try accessing
http://localhost:8080/ You are not prompted to authenticate again. This demonstrates the session is
kept alive.

NOTE
Only messages sent from a user keep the session alive. This is because only
messages coming from a user imply user activity. Received messages do not imply
activity and, thus, do not renew the session expiration.

6

http://localhost:8080/
http://localhost:8080/

	Spring Session - WebSocket
	Table of Contents
	HttpSession Setup
	Spring Configuration
	websocket Sample Application
	Running the websocket Sample Application
	Exploring the websocket Sample Application

