
Spring Session - Custom Cookie
Rob Winch, Eleftheria Stein-Kousathana

Version 2.3.0.RELEASE

Table of Contents
Spring Java Configuration . 2

Configuration Options . 3

custom-cookie Sample Application . 4

Running the custom-cookie Sample Application . 4

Exploring the custom-cookie Sample Application. 4

This guide describes how to configure Spring Session to use custom cookies with
Java Configuration. The guide assumes you have already set up Spring Session in
your project using your chosen data store. For example, HttpSession with Redis.

NOTE You can find the completed guide in the Custom Cookie sample application.

Index

1

./boot-redis.html
../index.html

Spring Java Configuration
Once you have set up Spring Session, you can customize how the session cookie is written by
exposing a CookieSerializer as a Spring bean. Spring Session comes with DefaultCookieSerializer.
Exposing the DefaultCookieSerializer as a Spring bean augments the existing configuration when
you use configurations like @EnableRedisHttpSession. The following example shows how to
customize Spring Session’s cookie:

 @Bean
 public CookieSerializer cookieSerializer() {
 DefaultCookieSerializer serializer = new DefaultCookieSerializer();
 serializer.setCookieName("JSESSIONID"); ①
 serializer.setCookiePath("/"); ②
 serializer.setDomainNamePattern("^.+?\\.(\\w+\\.[a-z]+)$"); ③
 return serializer;
 }

① We customize the name of the cookie to be JSESSIONID.

② We customize the path of the cookie to be / (rather than the default of the context root).

③ We customize the domain name pattern (a regular expression) to be ^.+?\\.(\\w+\\.[a-
z]+)$. This allows sharing a session across domains and applications. If the regular
expression does not match, no domain is set and the existing domain is used. If the regular
expression matches, the first grouping is used as the domain. This means that a request to
https://child.example.com sets the domain to example.com. However, a request to
http://localhost:8080/ or https://192.168.1.100:8080/ leaves the cookie unset and, thus, still
works in development without any changes being necessary for production.

WARNING
You should only match on valid domain characters, since the domain name is
reflected in the response. Doing so prevents a malicious user from performing
such attacks as HTTP Response Splitting.

2

https://docs.oracle.com/javase/tutorial/essential/regex/groups.html
https://child.example.com
http://localhost:8080/
https://192.168.1.100:8080/
https://en.wikipedia.org/wiki/HTTP_response_splitting

Configuration Options
The following configuration options are available:

• cookieName: The name of the cookie to use. Default: SESSION.

• useSecureCookie: Specifies whether a secure cookie should be used. Default: Use the value of
HttpServletRequest.isSecure() at the time of creation.

• cookiePath: The path of the cookie. Default: The context root.

• cookieMaxAge: Specifies the max age of the cookie to be set at the time the session is created.
Default: -1, which indicates the cookie should be removed when the browser is closed.

• jvmRoute: Specifies a suffix to be appended to the session ID and included in the cookie. Used to
identify which JVM to route to for session affinity. With some implementations (that is, Redis)
this option provides no performance benefit. However, it can help with tracing logs of a
particular user.

• domainName: Allows specifying a specific domain name to be used for the cookie. This option is
simple to understand but often requires a different configuration between development and
production environments. See domainNamePattern as an alternative.

• domainNamePattern: A case-insensitive pattern used to extract the domain name from the
HttpServletRequest#getServerName(). The pattern should provide a single grouping that is used
to extract the value of the cookie domain. If the regular expression does not match, no domain
is set and the existing domain is used. If the regular expression matches, the first grouping is
used as the domain.

• sameSite: The value for the SameSite cookie directive. To disable the serialization of the SameSite
cookie directive, you may set this value to null. Default: Lax

WARNING
You should only match on valid domain characters, since the domain name is
reflected in the response. Doing so prevents a malicious user from performing
such attacks as HTTP Response Splitting.

3

https://docs.oracle.com/javase/tutorial/essential/regex/groups.html
https://en.wikipedia.org/wiki/HTTP_response_splitting

custom-cookie Sample Application
This section describes how to work with the custom-cookie sample application.

Running the custom-cookie Sample Application
You can run the sample by obtaining the source code and invoking the following command:

$./gradlew :spring-session-sample-javaconfig-custom-cookie:tomcatRun

NOTE

For the sample to work, you must install Redis 2.8+ on localhost and run it with the
default port (6379). Alternatively, you can update the RedisConnectionFactory to
point to a Redis server. Another option is to use Docker to run Redis on localhost.
See Docker Redis repository for detailed instructions.

You should now be able to access the application at http://localhost:8080/

Exploring the custom-cookie Sample Application
Now you can use the application. Fill out the form with the following information:

• Attribute Name: username

• Attribute Value: rob

Now click the Set Attribute button. You should now see the values displayed in the table.

If you look at the cookies for the application, you can see the cookie is saved to the custom name of
JSESSIONID.

4

https://github.com/spring-projects/spring-session/archive/2.3.0.RELEASE.zip
https://redis.io/download
https://www.docker.com/
https://hub.docker.com/_/redis/
http://localhost:8080/

	Spring Session - Custom Cookie
	Table of Contents
	Spring Java Configuration
	Configuration Options
	custom-cookie Sample Application
	Running the custom-cookie Sample Application
	Exploring the custom-cookie Sample Application

