Spring Session - HttpSession (Quick
Start)

Rob Winch

Version 2.3.0.RELEASE



Table of Contents

Updating Dependencies

Spring XML Configuration

XML Servlet Container Initialization

httpsession-xml Sample Application
Running the httpsession-xml Sample Application
Exploring the httpsession-xml Sample Application
How Does It Work?

(o RN <> B e ) I " S



This guide describes how to use Spring Session to transparently leverage Redis
to back a web application’s HttpSession with XML-based configuration.

NOTE You can find the completed guide in the httpsession-xml sample application.

Index


../index.html

Updating Dependencies

Before you use Spring Session, you must update your dependencies. If you use Maven, you must
add the following dependencies:

pom.xml
<dependencies>

Q== oo ==2

<dependency>
<groupId>org.springframework.session</groupIld>
<artifactId>spring-session-data-redis</artifactld>
<version>2.3.0.RELEASE</version>
<type>pom</type>

</dependency>

<dependency>
<groupld>io.lettuce</groupld>
<artifactId>lettuce-core</artifactId>
<version>5.2.2.RELEASE</version>

</dependency>

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<version>5.2.6.RELEASE</version>

</dependency>

</dependencies>



Spring XML Configuration

After adding the required dependencies, we can create our Spring configuration. The Spring
configuration is responsible for creating a servlet filter that replaces the HttpSession
implementation with an implementation backed by Spring Session. To do so, add the following
Spring Configuration:

src/main/webapp/WEB-INF/spring/session.xml

@

<context:annotation-config/>

<bean
class="org.springframework.session.data.redis.config.annotation.web.http.RedisHttp
SessionConfiguration"/>

@

<bean
class="org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory"
/>

® We use the combination of <context:annotation-config/> and
RedisHttpSessionConfiguration because Spring Session does not yet provide XML
Namespace support (see gh-104). This creates a Spring Bean with the name of
springSessionRepositoryFilter that implements Filter. The filter is in charge of replacing
the HttpSession implementation to be backed by Spring Session. In this instance, Spring
Session is backed by Redis.

@ We create a RedisConnectionFactory that connects Spring Session to the Redis Server. We
configure the connection to connect to localhost on the default port (6379) For more
information on configuring Spring Data Redis, see the reference documentation.


https://github.com/spring-projects/spring-session/issues/104
https://docs.spring.io/spring-data/data-redis/docs/2.3.0.RELEASE/reference/html/

XML Servlet Container Initialization

Our Spring Configuration created a Spring Bean named springSessionRepositoryFilter that
implements Filter. The springSessionRepositoryFilter bean is responsible for replacing the
HttpSession with a custom implementation that is backed by Spring Session.

In order for our Filter to do its magic, we need to instruct Spring to load our session.xml
configuration. We can do so with the following configuration:

src/main/webapp/WEB-INF/web.xml

<context-param>
<param-name>contextConfiglocation</param-name>
<param-value>
/WEB-INF/spring/session.xml
</param-value>
</context-param>
<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener
</listener-class>
</listener>

The ContextlLoaderListener reads the contextConfiglocation and picks up our session.xml
configuration.

Last, we need to ensure that our Servlet Container (that is, Tomcat) uses our
springSessionRepositoryFilter for every request. The following snippet performs this last step for
us:

src/main/webapp/WEB-INF/web.xml

<filter>
<filter-name>springSessionRepositoryFilter</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-

class>

</filter>

<filter-mapping>
<filter-name>springSessionRepositoryFilter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>ERROR</dispatcher>

</filter-mapping>

The DelegatingFilterProxy looks up a Bean by the name of springSessionRepositoryFilter and cast
it to a Filter. For every request that DelegatingFilterProxy is invoked, the


https://docs.spring.io/spring/docs/5.2.6.RELEASE/spring-framework-reference/core.html#context-create
https://docs.spring.io/spring-framework/docs/5.2.6.RELEASE/javadoc-api/org/springframework/web/filter/DelegatingFilterProxy.html

springSessionRepositoryFilter is invoked.



httpsession-xml Sample Application

This section describes how to work with the httpsession-xml sample application.

Running the httpsession-xml Sample Application

You can run the sample by obtaining the source code and invoking the following command:

For the sample to work, you must install Redis 2.8+ on localhost and run it with the
default port (6379). Alternatively, you can update the RedisConnectionFactory to
point to a Redis server. Another option is to use Docker to run Redis on localhost.
See Docker Redis repository for detailed instructions.

NOTE

$ ./gradlew :spring-session-sample-xml-redis:tomcatRun

You should now be able to access the application at http://localhost:8080/

Exploring the httpsession-xml Sample Application
Now you can try using the application. Fill out the form with the following information:

o Attribute Name: username

e Attribute Value: rob

Now click the Set Attribute button. You should now see the values displayed in the table.

How Does It Work?

We interact with the standard HttpSession in the SessionServlet shown in the following listing:


https://github.com/spring-projects/spring-session/archive/2.3.0.RELEASE.zip
https://redis.io/download
https://www.docker.com/
https://hub.docker.com/_/redis/
http://localhost:8080/

sr¢/main/java/sample/SessionServlet.java
public class SessionServlet extends HttpServlet {

@0verride
protected void doPost(HttpServlietRequest req, HttpServletResponse resp) throws
IOException {

String attributeName = req.getParameter("attributeName");
String attributeValue = req.getParameter("attributeValue");
req.getSession().setAttribute(attributeName, attributeValue);
resp.sendRedirect(req.getContextPath() + "/");

}

private static final long serialVersionUID = 2878267318695777395L;

Instead of using Tomcat’s HttpSession, we persist the values in Redis. Spring Session creates a
cookie named SESSION in your browser. That cookie contains the ID of your session. You can view
the cookies (with Chrome or Firefox).

You can remove the session using redis-cli. For example, on a Linux based system you can type the
following:

$ redis-cli keys '*' | xargs redis-cli del

TIP The Redis documentation has instructions for installing redis-cli.

Alternatively, you can also delete the explicit key. To do so, enter the following into your terminal,
being sure to replace 7e8383a4-082c-4ffe-adbc-c40fd3363c5e with the value of your SESSION cookie:

$ redis-cli del spring:session:sessions:7e8383a4-082c-4ffe-adbc-c40fd3363c5e

Now you can visit the application at http://localhost:8080/ and see that the attribute we added is no
longer displayed.


https://developers.google.com/web/tools/chrome-devtools/manage-data/cookies
https://developer.mozilla.org/en-US/docs/Tools/Storage_Inspector
https://redis.io/topics/quickstart
http://localhost:8080/

	Spring Session - HttpSession (Quick Start)
	Table of Contents
	Updating Dependencies
	Spring XML Configuration
	XML Servlet Container Initialization
	httpsession-xml Sample Application
	Running the httpsession-xml Sample Application
	Exploring the httpsession-xml Sample Application
	How Does It Work?


