
Spring Shell Documentation

Mark Pollack
Costin Leau

Jarred Li

Spring Shell Documentation
by Mark Pollack, Costin Leau, and Jarred Li

1.0.0.RELEASE

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies

and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Shell

1.0.0.RELEASE Spring Shell Documentation iii

Table of Contents

Preface ... iv

I. Introduction .. 1

1. Requirements ... 2

II. Reference Documentation .. 3

2. Spring Shell ... 4

2.1. Plugin Model .. 4

Commands ... 4

Converters ... 5

2.2. Built in commands .. 5

2.3. Customizing the shell .. 6

2.4. Communicating between plugins .. 6

2.5. Command method interception ... 6

2.6. Command line options ... 7

2.7. Scripts and comments .. 7

III. Developing Spring Shell Applications ... 8

3. Developing Spring Shell Applications ... 9

3.1. Marker Interface .. 9

3.2. Logging .. 9

3.3. CLI Annotations .. 9

3.4. Building and running the shell .. 11

IV. Spring Shell Sample application .. 12

4. Simple sample application using the Spring Shell ... 13

4.1. Introduction ... 13

4.2. HelloWorldCommands ... 13

Spring Shell

1.0.0.RELEASE Spring Shell Documentation iv

Preface
The Spring Shell provides an interactive shell that allows you to plugin your own custom commands

using a Spring based programming model.

The shell has been extracted from the Spring Roo project, giving it a strong foundation and rich feature

set. One significant change from Spring Roo is that the plugin model is no longer based on OSGi

but instead uses the Spring IoC container to discover commands through classpath scanning. There is

currently no classloader isolation between plugins, however that maybe added in future versions.

Spring Shell's features include

• A simple, annotation driven, programming model to contribute custom commands

• Use of Spring's classpath scanning functionality as the basis for a command plugin strategy and

command development

• Inheritance of the Roo Shell features, most notably tab completion, colorization, and script execution.

• Customization of command prompt, banner, shell history file name.

This document assumes that the reader already has a basic familiarity with the Spring Framework.

While every effort has been made to ensure that this documentation is comprehensive and there are no

errors, nevertheless some topics might require more explanation and some typos might have crept in.

If you do spot any mistakes or even more serious errors and you can spare a few cycles during lunch,

please do bring the error to the attention of the Spring Shell team by raising an issue.

http://www.springsource.org/spring-roo/
http://static.springsource.org/spring-roo/reference/html-single/index.html#usage-shell
https://jira.springsource.org/browse/SHL

Part I. Introduction
The Spring Shell provides an interactive shell that lets you contribute commands using a simple Spring

based programming model.

This document is the reference guide for the Spring Shell and covers the key classes that are part of

the Shell infrastructure, the plugin model, how to create commands for the shell as well as discussion

of the sample application.

Spring Shell

1.0.0.RELEASE Spring Shell Documentation 2

1. Requirements

The Spring Shell requires JDK level 6.0 and above as well as the Spring Framework 3.0 (3.1

recommended) and above.

http://www.springsource.org/about

Part II. Reference Documentation
This part of the reference documentation explains the core components of the Spring Shell.

Spring Shell

1.0.0.RELEASE Spring Shell Documentation 4

2. Spring Shell

The core components of the shell are its plugin model, built-in commands, and converters.

2.1 Plugin Model

The plugin model is based on Spring. Each plugin jar is required to contain the file META-

INF/spring/spring-shell-plugin.xml. These files will be loaded to bootstrap a Spring

ApplicationContext when the shell is started. The essential boostrapping code that looks for your

contributions looks like this:

new ClassPathXmlApplicationContext("classpath*:/META-INF/spring/spring-shell-plugin.xml");

In the spring-shell-plugin.xml file you should define the command classes and any other

collaborating objects that support the command's actions. The plugin model is depicted in the following

diagram

Note that the current plugin model loads all plugins under the same class loader. An open JIRA issue

suggests providing a classloader per plugin to provide isolation.

Commands

An easy way to declare the commands is to use Spring's component scanning functionality. Here is an

example spring-shell-plugin.xml from the sample application:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.1.xsd">

 <context:component-scan

 base-package="org.springframework.shell.samples.helloworld.commands" />

https://jira.springsource.org/browse/SHL-37

Spring Shell

1.0.0.RELEASE Spring Shell Documentation 5

</beans>

The commands are Spring components, demarcated as such using the @Component annotation. For

example, the shell of the HelloWorldCommands class from the sample application looks like this

@Component

public class HelloWorldCommands implements CommandMarker {

 // use any Spring annotations for Dependency Injection or other Spring

 // interfaces as required.

 // methods with @Cli annotations go here

}

Once the commands are registered and instantiated by the Spring container, they are registered with the

core shell parser so that the @Cli annotations can be processed. The way the commands are identified

is through the use of the CommandMarker interface.

Converters

The org.springframework.shell.core.Converter interface provides the contract to

convert the strings that are entered on the command line to rich Java types passed into the arguments

of @Cli-annotated methods.

By default converters for common types are registered. These cover primitive types (boolean, int, float...)

as well as Date, Character, and File.

If you need to register any additional Converter instances, register them with the Spring container

in the spring-shell-plugin.xml file and they will be picked up automatically.

2.2 Built in commands

There are a few built in commands. Here is a listing of their class name and functionality

• EssentialCommands - exit and quit - to exit the shell.

• HelpCommands - help - list all commands and their usage

• OsCommands - the keyword for this command is the exclamation point, !. After the exclamation

point you can pass in a unix/windows command string to be executed.

There are also a few commands that are provided by the AbstractShell class, these are

• date - Displays the local date and time

• script - Parses the specified resource file and executes its commands

• system properties - Shows the shell's properties

• version - Displays current CLI version

Spring Shell

1.0.0.RELEASE Spring Shell Documentation 6

2.3 Customizing the shell

There are a few extension points that allow you to customize the shell. The extension points are the

interfaces

• BannerProvider - Specifies the banner text, welcome message, and version number that will be

displayed when the shell is started

• PromptProvider - Specifies the command prompt text, eg. "shell>" or "#" or "$". This will

be called after every command execution so it does not need to be a static string.

• HistoryFileNameProvider - Specifies the name of the command history file

There is a default implementation for these interfaces but you should create your own implementations

for your own shell application. Use Spring's @Ordered annotation to set the priority of the provider.

This allows your provider implementations to take precedence over any other implementations that

maybe present on the classpath from other plugins.

To make cool "ASCII art" banners the website http://patorjk.com/software/taag is quite neat!

2.4 Communicating between plugins

As this is a standard Spring application you can use Spring's ApplicationContext event

infrastructure to communicate across plugins.

2.5 Command method interception

It has shown to be useful to provide a simple form of interception around the invocation of a

command method. This enables the command class to check for updates to state, such as configuration

information modified by other plugins, before the command method is executed. The interface

ExecutionProcessor should be implemented instead of CommandMarker to access this

functionality. The ExecutionProcessor interface is shown below

public interface ExecutionProcessor extends CommandMarker {

 /**

 * Method called before invoking the target command (described by {@link ParseResult}).

 * Additionally, for advanced cases, the parse result itself effectively changing the

 * invocation calling site.

 *

 * @param invocationContext target command context

 * @return the invocation target

 */

 ParseResult beforeInvocation(ParseResult invocationContext);

 /**

 * Method called after successfully invoking the target command (described by

 * {@link ParseResult}).

 *

 * @param invocationContext target command context

 * @param result the invocation result

 */

http://en.wikipedia.org/wiki/ASCII_art
http://patorjk.com/software/taag

Spring Shell

1.0.0.RELEASE Spring Shell Documentation 7

 void afterReturningInvocation(ParseResult invocationContext, Object result);

 /**

 * Method called after invoking the target command (described by {@link ParseResult})

 * had thrown an exception .

 *

 * @param invocationContext target command context

 * @param thrown the thrown object

 */

 void afterThrowingInvocation(ParseResult invocationContext, Throwable thrown);

}

2.6 Command line options

There are a few command line options that can be specified when starting the shell. They are

• --profiles - Specifies values for the system property spring.profiles.active so that Spring 3.1 and

greater profile support is enabled.

• --cmdfile - Specifies a file to read that contains shell commands

• --histsize - Specifies the maximum number of lines to store in the command history file. Default

value is 3000.

2.7 Scripts and comments

Scripts can be executed either by passing in the --cmdfile argument at startup or by executing the

script command inside the shell. When using scripts it helps to add comments and this can be done

using block comments that start and end with /* and */ or an inline one line comment using the //

or ; characters.

http://blog.springsource.com/2011/02/11/spring-framework-3-1-m1-released/

Part III. Developing
Spring Shell Applications

This section provides some guidance on how one can create commands for the Spring Shell.

Spring Shell

1.0.0.RELEASE Spring Shell Documentation 9

3. Developing Spring Shell Applications

Contributing commands to the shell is very easy. There are only a few annotations you need to learn.

The implementation style of the command is the same as developing classes for an application that

uses dependency injection. You can leverage all the features of the Spring container to implement your

command classes.

3.1 Marker Interface

The first step to creating a command is to implement the marker interface CommandMarker and to

annotate your class with Spring's @Component annotation. (Note there is an open JIRA issue to

provide a @CliCommand meta-annotation to avoid having to use a marker interface). Using the code

from the helloworld sample application, the code of a HelloWorldCommands class is shown below:

@Component

public class HelloWorldCommands implements CommandMarker {

 // use any Spring annotations for Dependency Injection or other Spring interfaces

 // as required.

 // methods with @Cli annotations go here

}

3.2 Logging

Logging is currently done using JDK logging. Due to the intricacies of console, JLine and Ansi handling,

it is generally advised to display messages as return values to the method commands. However, when

logging is required, the typical JDK logger declaration should suffice.

@Component

public class HelloWorldCommands implements CommandMarker {

 protected final Logger LOG = Logger.getLogger(getClass().getName());

 // methods with @Cli annotations go here

}

Warning
Note: it is the responsibility of the packager/developer to handle logging for third-party

libraries. Typically one wants to reduce the logging level so the console/shell does not get

affected by logging messages.

3.3 CLI Annotations

There are three annotations used on methods and method arguments that define the main contract for

interacting with the shell. These are:

Spring Shell

1.0.0.RELEASE Spring Shell Documentation 10

• CliAvailabilityIndicator - Placed on a method that returns a boolean value and indicates

if a particular command can be presented in the shell. This decision is usually based on the history

of commands that have been executed previously. It prevents extraneous commands being presented

until some preconditions are met, for example the execution of a 'configuration' command.

• CliCommand - Placed on a method that provides a command to the shell. Its value provides one or

more strings that serve as the start of a particular command name. These must be unique within the

entire application, across all plugins.

• CliOptions - Placed on the arguments of a command method, allowing it to declare the argument

value as mandatory or optional with a default value.

Here is a simple use of these annotations in a command class

@Component

public class HelloWorldCommands implements CommandMarker {

 @CliAvailabilityIndicator({"hw simple"})

 public boolean isCommandAvailable() {

 return true;

 }

 @CliCommand(value = "hw simple", help = "Print a simple hello world message")

 public String simple(

 @CliOption(key = { "message" }, mandatory = true, help = "The hello world message")

 final String message,

 @CliOption(key = { "location" }, mandatory = false,

 help = "Where you are saying hello", specifiedDefaultValue="At work")

 final String location) {

 return "Message = [" + message + "] Location = [" + location + "]";

 }

}

The method annotated with @CliAvailabilityIndicator is returning true so that the one and

only command in this class is exposed to the shell to be invoked. If there were more commands in the

class, you would list them as comma separated value.

The @CliCommand annotation is creating the command 'hw simple' in the shell. The help message

is what will be printed if you use the build in help command. The method name is 'simple' but it

could just have been any other name.

The @CliOption annotation on each of the command arguments is where you will spend most of

your time authoring commands. You need to decide which arguments are required, which are optional,

and if they are optional is there a default value. In this case there are two arguments or options to the

command: message and location. The message option is required and a help message is provided to give

guidance to the user when tabbing to get completion for the command.

The implementation of the 'simple' method is trivial, just a log statement, but this is where you would

typically call other collaborating objects that were injected into the class via Spring.

Spring Shell

1.0.0.RELEASE Spring Shell Documentation 11

The method argument types in this example are String, which doesn't present any issue

with type conversion. You can specify methods with any rich object type as well as basic

primitive types such as int, float etc. For all types other than those handled by the shell by

default (basic types, Date, File) you will need to register your own implementation of the

org.springframework.shell.core.Converter interface with the container in your plugin.

Note that the method return argument can be non-void - in our example, it is the actual message we want

to display. Whenever an object is returned, the shell will display its toString() representation.

3.4 Building and running the shell

In our opinion, the easiest way to build and execute the shell is to cut-n-paste the gradle script in the

example application. This uses the application plugin from gradle to create a bin directory with a startup

script for windows and Unix and places all dependent jars in a lib directory. Maven has a similar plugin

- the AppAssembler plugin.

The main class of the shell is org.springframework.shell.Bootstrap. As long as you place

other plugins, perhaps developed independently, on the classpath, the Bootstrap class will incorporate

them into the shell.

http://mojo.codehaus.org/appassembler/appassembler-maven-plugin/

Part IV. Spring Shell
Sample application

This part of the reference documentation covers the sample applications included with Spring Shell that

demonstrate the features in a code centric manner.

Chapter 4, Simple sample application using the Spring ShellDescribes a simple Spring Shell application

that echo's the command parameters to the console.

Spring Shell

1.0.0.RELEASE Spring Shell Documentation 13

4. Simple sample application using the Spring
Shell

4.1 Introduction

The sample application named 'helloworld' contains three 'hw' commands, they are 'hw simple', 'hw

complex' and 'hw enum' and demonstrate simple to intermediate level usage of the @Cli annotation

classes for creating commands.

The example code is located in the distribution directory <spring-shell-install-dir>/

samples/helloworld.

To build the example cd to the helloworld directory and execute gradlew installApp (you first

need to add the gradlew gradle wrapper to your path). To run the application cd to build\install

\helloworld\bin and execute the helloworld script.

4.2 HelloWorldCommands

The HelloWorldCommands class is show below

package org.springframework.shell.samples.helloworld.commands;

import org.springframework.shell.core.CommandMarker;

import org.springframework.shell.core.annotation.CliAvailabilityIndicator;

import org.springframework.shell.core.annotation.CliCommand;

import org.springframework.shell.core.annotation.CliOption;

import org.springframework.stereotype.Component;

@Component

public class HelloWorldCommands implements CommandMarker {

 private boolean simpleCommandExecuted = false;

 @CliAvailabilityIndicator({"hw simple"})

 public boolean isSimpleAvailable() {

 //always available

 return true;

 }

 @CliAvailabilityIndicator({"hw complex", "hw enum"})

 public boolean isComplexAvailable() {

 if (simpleCommandExecuted) {

 return true;

 } else {

 return false;

 }

 }

 @CliCommand(value = "hw simple", help = "Print a simple hello world message")

 public String simple(

 @CliOption(key = { "message" }, mandatory = true, help = "The hello world message") final String message,

 @CliOption(key = { "location" }, mandatory = false, help = "Where you are saying hello", specifiedDefaultValue="At work") final String location) {

 simpleCommandExecuted = true;

Spring Shell

1.0.0.RELEASE Spring Shell Documentation 14

 return "Message = [" + message + "] Location = [" + location + "]";

 }

 @CliCommand(value = "hw complex", help = "Print a complex hello world message")

 public String hello(

 @CliOption(key = { "message" }, mandatory = true, help = "The hello world message") final String message,

 @CliOption(key = { "name1"}, mandatory = true, help = "Say hello to the first name") final String name1,

 @CliOption(key = { "name2" }, mandatory = true, help = "Say hello to a second name") final String name2,

 @CliOption(key = { "time" }, mandatory = false, specifiedDefaultValue="now", help = "When you are saying hello") final String time,

 @CliOption(key = { "location" }, mandatory = false, help = "Where you are saying hello") final String location) {

 return "Hello " + name1 + " and " + name2 + ". Your special message is " + message + ". time=[" + time + "] location=[" + location + "]";

 }

 @CliCommand(value = "hw enum", help = "Print a simple hello world message from an enumerated value")

 public String eenum(

 @CliOption(key = { "message" }, mandatory = true, help = "The hello world message") final MessageType message){

 return "Hello. Your special enumerated message is " + message;

 }

 enum MessageType {

 Type1("type1"),

 Type2("type2"),

 Type3("type3");

 private String type;

 private MessageType(String type){

 this.type = type;

 }

 public String getType(){

 return type;

 }

 }

}

The use of the @CliAvailabilityIndicator annotation on two methods,

isSimpleAvailable and isComplexAvailable shows how you can enable the presence of

the 'hw complex' and 'hw enum' commands only if the 'hw simple' command was executed.

Here is an example session showing the behavior.

Spring Shell

1.0.0.RELEASE Spring Shell Documentation 15

The 'hw enum' command shows how the shell supports the use of an enumeration as command method

arguments.

	Spring Shell Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Requirements

	Part II. Reference Documentation
	2. Spring Shell
	2.1 Plugin Model
	Commands
	Converters

	2.2 Built in commands
	2.3 Customizing the shell
	2.4 Communicating between plugins
	2.5 Command method interception
	2.6 Command line options
	2.7 Scripts and comments

	Part III. Developing Spring Shell Applications
	3. Developing Spring Shell Applications
	3.1 Marker Interface
	3.2 Logging
	3.3 CLI Annotations
	3.4 Building and running the shell

	Part IV. Spring Shell Sample application
	4. Simple sample application using the Spring Shell
	4.1 Introduction
	4.2 HelloWorldCommands

