Spring Social Reference Documentation

1.1.0.M3

Craig Wallls , Keith Donald

Copyright © 2011-2013

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Social

Table of Contents

1. SPriNG SOCIAI OVEIVIEWuuiiiiiiieeeeii ettt et e et e et b e e e e ab e e e eaan s 1
00 R [011 oo 0o 1T] o I TP P PSP PPPPTTTR 1
1.2. Socializing @pPliCALIONS et et 1
R R o (o T o T o [PSPPI 2

ClIENt MOUUIES ...t e et e e e n e e 3
O B =T o 1=t g o 1= ol [TP UUPTRPTRN 4
JA A e 4
JAVA SEIVIEL AP ...t 4
SPriNG FrameEWOTK ..o i e et e e e et et e e 4
SPrNG SECUIMLY CIYPLO ovuniiiiii ettt e et e e e b s 4
Apache HIPCOMPONENTSiiiiiiiiiie e e e e e e e e anas 5
JaCKSON JSON PrOCESSOK ...ttt et e e e et ea e aeees 5
1.5, SAMPIE COUE ...neeiii ettt e 5

2. Service Provider 'CONNECE’ FramMEWOIKcccevuuuuiiiiieeiiiiiii et e et e e e e e e 7
2.0 M AP et e e e e 7
2.2. Establishing CONNECLIONSuuiiiiiiiiei e 9

OAULN2 SEIVICE PrOVIAEIS ...iviiiii et e e e e e e e et e et e e e e eeas 9
OAULNL SEIVICE PrOVIAEISceeiiit it et et e et e et e e et e e et e e eanaaees 11
Registering ConnectionFactory iNSTANCESoovivuiiiiiiiiiiie e 12
2.3. PersiSting CONNECHIONSivuuiiiiieiie e e et e e e e e e e e e e e e e e e e e et e e et e eanaas 13
JDBC-basSed PEISISIEINCEccuuiiiiiieii et e e e e eaa s 15

3. Adding Support for a New ServiCe ProVIAEIcociiuuiiiiiii et 16
3.1, PrOCESS OVEIVIEWciiiiiiiiiiie e e ettt e ettt e e ettt e e e e et e e bbb e e e e e e e ee s b s 16
3.2. Creating a source project for the provider client codecoooeiiiiiiiiii 16

Code Structure gUIdEIINESiiiii e e 16
3.3. Developing a Java binding to the provider's APlccoooiiiiiiiii e 17
Designing a new Java APl DINAINGcoouiiii e 17
Implementing a new Java APl DINAINGooiviiiiiiiii e 18
Testing a new Java APl biNdiNgooooiiiiiii e 20
Integrating an existing Java APl DINAINGooiuniiii e 21
3.4. Creating a ServiceProvider MOUEIoooiiuiiiiiii e 21
OAULNZ . e 21
L@ U 11 1 ST UOUPPPPUTTTTT 22
3.5. Creating an APIAGAPTET ... oo 23
3.6. Creating a CONNECHONFACIONYiiiiiieiiiieiie e e e e e e e e e et e e et e e e e eanaeaes 25
OAULNZ ettt et e a e a e e e raraaas 25
L U 1 o 1 25

4, CoNNECtiNG 10 SEIVICE PrOVIAEIS ...ccvuiiiii et e e e e e e e e e e e e e et e e eaaeees 27
o I 1 { To [§ (o 1 o] o R PP 27
4.2. Configuring ConNECICONLIONETciiiiii i 27

Configuring connection support iN XMLcouuiiiiiiiiii e e 30

4.3. Creating connections with Connect Control | erccooeiiiiiiiiii e 31
Displaying @ CONNECHION PAYEceeiutneeiiiii ettt e et et e e e e e et e eeeat e e eeain e eeens 33
Initiating the conNEection flOWcooiiiii e 34
AULNOTZALION SCOPE .eniiiieei e et e e e e e ean s 35
Responding to the authorization callbackccoooiiiiiiiiiii 36

[T Yoo] 1= o2 11 Vo R 36

Spring Social Reference
1.1.0.M3 Documentation ii

Spring Social

N B @] g g T=Tox (o] T) (= =] o] (0] ¢ P 37

5. Signing in with Service Provider ACCOUNLSciuuiiiiiiii e 39
S0 I 11 o o 15 o3 1T o I PPN 39

5.2. ENabling provider SIgN IN ... e e 39
ProviderSigninController's dependencCiescooeuiiiiiiiiiiiiiiie e 41

Adding a provider Sign in DULIONooouiiiiiii e 43

5.3. Signing up after a failed SigN N ... 43
Signing up With @ Sign UP TOMM ...ue e 44

IMPHCIE SIGN U et ettt e e e e e eai e e eeaans 45

Spring Social Reference
1.1.0.M3 Documentation iii

Spring Social

1. Spring Social Overview

1.1 Introduction

The Spring Social project enables your applications to establish Connections with Software-as-a-Service
(SaaS) Providers such as Facebook and Twitter to invoke APIs on behalf of Users.

1.2 Socializing applications

The phrase "social networking" often refers to efforts aimed at bringing people together. In the software
world, those efforts take the form of online social networks such as Facebook, Twitter, and LinkediIn.
Over half a billion of this world's internet users have flocked to these services to keep frequent contact
with family, friends, and colleagues.

Under the surface, however, these services are just software applications that gather, store, and process
information. Just like so many applications written before, these social networks have users who sign
in and perform some activity offered by the service.

What makes these applications a little different than traditional applications is that the data that they
collect represent some facet of their users' lives. What's more, these applications are more than willing
to share that data with other applications, as long as the user gives permission to do so. This means
that although these social networks are great at bringing people together, as software services they also
excel at bringing applications together.

To illustrate, imagine that Paul is a member of an online movie club. A function of the movie club
application is to recommend movies for its members to watch and to let its members maintain a list of
movies that they have seen and those that they plan to see. When Paul sees a movie, he signs into the
movie club site, checks the movie off of his viewing list, and indicates if he liked the movie or not. Based
on his responses, the movie club application can tailor future recommendations for Paul to see.

On its own, the movie club provides great value to Paul, as it helps him choose movies to watch. But
Paul is also a Facebook user. And many of Paul's Facebook friends also enjoy a good movie now and
then. If Paul were able to connect his movie club account with his Facebook profile, the movie club
application could offer him a richer experience. Perhaps when he sees a movie, the application could
post a message on his Facebook wall indicating so. Or when offering suggestions, the movie club could
factor in the movies that his Facebook friends liked.

Social integration is a three-way conversation between a service provider, a service consumer, and a
user who holds an account on both the provider and consumer. All interactions between the consumer
and the service provider are scoped to the context of the user's profile on the service provider.

In the narrative above, Facebook is the service provider, the movie club application is the service
consumer, and Paul is the user of both. The movie club application may interact with Facebook on behalf
of Paul, accessing whatever Facebook data and functionality that Paul permits, including retrieving
Paul's friends and posting messages to his wall.

From the user's perspective, both applications provide some valuable functionality. But by connecting
the user's account on the consumer application with his account on the provider application, the user
brings together two applications that can now offer the user more value than they could individually.

With Spring Social, your application can play the part of the service consumer, interacting with a service
provider on behalf of its users. The key features of Spring Social are:

Spring Social Reference
1.1.0.M3 Documentation 1

Spring Social

* A "Connect Framework" that handles the core authorization and connection flow with service
providers.

» A"Connect Controller" that handles the OAuth exchange between a service provider, consumer, and
user in a web application environment.

» A "Signin Controller" that allows users to authenticate with your application by signing in with their
Provider accounts, such as their Twitter or Facebook accounts.

In addition, there are a handful of provider-specific modules that extend Spring Social to enable
integration with popular SaaS providers, including Facebook and Twitter.

1.3 How to get

The core Spring Social project consists of the modules described in Table 1.1, “Spring Social Modules”.

Table 1.1. Spring Social Modules

Name Description
spring-social-core Spring Social's Connect Framework and OAuth client support.
spring-social-web Spring Social's Connect Control | er which uses the Connect

Framework to manage connections in a web application
environment.

spring-social-test Support for testing Connect implementations and API bindings.

Which of these modules your application needs will largely depend on what facets of Spring Social you
intend to use. At very minimum, you'll need the core module in your application's classpath:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. soci al </ gr oupl d>
<artifactld>spring-social-core</artifactld>
<ver si on>${spri ng-soci al . versi on} </ ver si on>
</ dependency>

To let Spring Social handle the back-and-forth authorization handshake between your web application
and a service provider, you'll need the web module:

<dependency>
<groupl d>or g. spri ngf ramewor k. soci al </ groupl d>
<artifact!|d>spring-social-web</artifact|d>
<versi on>${spri ng-soci al . versi on} </ ver si on>
</ dependency>

If you are developing against a milestone or release candidate version, such as 1.0.0.M1 or 1.0.0.RC1,
you will need to add the following repository in order to resolve the artifact:

Spring Social Reference
1.1.0.M3 Documentation 2

Spring Social

<reposi tory>
<i d>org. spri ngf ramewor k. maven. ni | est one</i d>
<name>Spri ng Maven M | estone Repository</nane>
<url >http://repo.springsource.org/libs-nilestone-|ocal </url>
</ repository>

If you are testing out the latest nightly build version (e.g. 1.0.0.BUILD-SNAPSHOT), you will need to
add the following repository:

<reposi tory>
<i d>org. spri ngf ramewor k. maven. snapshot </ i d>
<name>Spri ng Maven Snapshot Repository</nane>
<url| >http://repo.springsource.org/libs-snapshot-1|ocal </ url>
</ repository>

Client modules

In addition to modules that make up the core Spring Social project, there are a number of provider-
specific client modules that are released separately that provide connectivity and API bindings to popular
SaasS providers. These client modules are listed in Table 1.2, “Spring Social Client Modules”.

Table 1.2. Spring Social Client Modules
Name Maven group ID Maven artifact ID

Spring Social org.springframework.social spring-social-facebook
Facebook

Spring Social org.springframework.social spring-social-twitter
Twitter

Spring Social org.springframework.social spring-social-linkedin
LinkedIn

Spring Social org.springframework.social spring-social-tripit
Triplt

Spring Social org.springframework.social spring-social-github
GitHub

All of these modules are optional, depending on the connectivity needs of your application. For instance,
if your application will connect with Facebook, you'll want to add the Facebook module to your project:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. soci al </ gr oupl d>
<artifact!|d>spring-social -facebook</artifactld>
<versi on>${spri ng-soci al - f acebook. versi on} </ ver si on>
</ dependency>

Note that each of the client modules will progress and release on a different schedule than Spring Social.
Consequently, the version numbers for any given client module may not align with Spring Social or any
other client module.

Spring Social Reference
1.1.0.M3 Documentation 3

http://static.springsource.org/spring-social-facebook/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-facebook/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-twitter/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-twitter/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-linkedin/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-linkedin/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-tripit/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-tripit/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-github/docs/1.0.x/reference/html/
http://static.springsource.org/spring-social-github/docs/1.0.x/reference/html/

Spring Social

Refer to each client module's reference documentation for details on connectivity and the API binding.

1.4 Dependencies

Spring Social depends on a few things to run. Most dependencies are optional and an effort has been
made to keep the required dependencies to a minimum. The project dependencies are described in
this section.

Java

Spring Social requires Java 1.5 or greater.

Java Servlet API

The Spring Social web support requires Java Servlet 2.5 or greater (Tomcat 6+).

Spring Framework

Spring Social depends on RestTemplate provided by the core Spring Framework in the spring-web

module. It requires Spring Framework version 3.0.5 or above. Spring Framework 3.1 is recommended
to take advantage of several RestTemplate improvements.

If you are using Spring Social with Spring Framework 3.0.x (3.0.5 or >), make sure you explicitly add
the spring-web dependency to your build:

<dependency>
<groupl d>org. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-web</artifactld>
<versi on>3. 0. 7. RELEASE</ ver si on>

</ dependency>

Maven's dependency management favors "nearest" dependencies, so your project's definition of the
spring-web dependency will override Spring Social's transitive dependency on the recommended 3.1
version.

Gradle, on the other hand, favors the newest dependency. If you're using Gradle to build your project,
you'll need to also set the dependency's f or ce property to t r ue to force Gradle to resolve your chosen
version of Spring:

dependenci es {
conpi l e ("org.springframework: spring-web: 3.0. 6. RELEASE") { force=true }

}

Spring Security Crypto

If you're not already using Spring Security to secure your application, you'll need to add the standalone
crypto module. This is required for OAuthl request signing and encrypting credentials when persisting
Connection data. If you're already using Spring Security, there is nothing for you to do because the
crypto library comes included.

Spring Social Reference
1.1.0.M3 Documentation 4

http://www.springsource.org/documentation

Spring Social

<dependency>
<groupl d>org. spri ngf ramewor k. security</groupl d>
<artifactld>spring-security-crypto</artifactld>
<versi on>3. 1. 0. RELEASE</ ver si on>

</ dependency>

Apache HttpComponents

Spring Social has an optional dependency on Apache HttpComponents. If the HttpComponents
HttpClient library is present, it will use it as the HTTP client (which is generally recommended).
Otherwise, it will fall back on standard J2SE facilities.

<dependency>
<gr oupl d>or g. apache. htt pconponent s</ gr oup! d>
<artifactld>httpclient</artifactld>
<versi on>4. 1. 2</ versi on>

</ dependency>

Although shown here to depend on version 4.1.2 of the HttpClient library, Spring Social can also work
with 4.0.X versions of HttpClient.

Jackson JSON Processor

Spring Social's provider API bindings rely on the Jackson JSON Processor to map JSON responses
to Java objects. Each binding, such as Facebook or Twitter, transitively depends on Jackson 1.8.5, so
there's nothing special to do to add Jackson to your project's Maven or Gradle build.

1.5 Sample Code

We have created a few sample applications to illustrate the capabilities of Spring Social. To obtain the
https://github.com/SpringSource/spring-social-samples code, use the following git command:

git clone git://github.conl SpringSource/spring-social-sanples.git

The Spring Social Samples project includes the following samples:
* spring-social-quickstart - Designed to get you up and running quickly.

* spring-social-quickstart-30x - Designed to get you up and running quickly as well as using Spring
Social with Spring 3.0.x.

* spring-social-showcase - lllustrates most of Spring Social's features.

* spring-social-movies - Shows how to extend Spring Social to implement a new ServiceProvider and
API binding.

* spring-social-twitter4j - Shows how to extend Spring Social and re-use an existing AP binding.

* spring-social-popup - Shows how to use Spring Social to drive a browser popup-based connection
flow.

Spring Social Reference
1.1.0.M3 Documentation 5

http://hc.apache.org/httpcomponents-client-ga
http://jackson.codehaus.org/
https://github.com/SpringSource/spring-social-samples

Spring Social

* spring-social-canvas - Demonstrates how to use Spring Social within a Facebook Canvas application.

Spring Social Reference
1.1.0.M3 Documentation 6

Spring Social

2. Service Provider 'Connect' Framework

The spri ng- soci al - cor e module includes a Service Provider 'Connect' Framework for managing
connections to Software-as-a-Service (SaaS) providers such as Facebook and Twitter. This framework
allows your application to establish connections between local user accounts and accounts those users
have with external service providers. Once a connection is established, it can be be used to obtain a
strongly-typed Java binding to the ServiceProvider's API, giving your application the ability to invoke
the API on behalf of a user.

To illustrate, consider Facebook as an example ServiceProvider. Suppose your application, AcmeApp,
allows users to share content with their Facebook friends. To support this, a connection needs to
be established between a user's AcmeApp account and her Facebook account. Once established, a
Facebook instance can be obtained and used to post content to the user's wall. Spring Social's 'Connect'
framework provides a clean API for managing service provider connections such as this.

2.1 Core API

The Connect i on<A> interface models a connection to an external service provider such as Facebook:

public interface Connection<A> {
Connecti onKey get Key();
String getDi spl ayNane();
String getProfileUrl();
String getlmageUrl ();
voi d sync();
bool ean test();
bool ean hasExpired();
void refresh();
User Profile fetchUserProfile();
voi d updateStatus(String nessage);
A get Api ();

Connecti onData createData();

Each connection is uniquely identified by a composite key consisting of a providerld (e.g. 'facebook’)
and connected providerUserld (e.g. '1255689239', for Keith Donald's Facebook ID). This key tells you
what provider user the connection is connected to.

A connection has a number of meta-properties that can be used to render it on a screen, including a
displayName, profileUrl, and imageUrl. As an example, the following HTML template snippet could be
used to generate a link to the connected user's profile on the provider's site:

Spring Social Reference
1.1.0.M3 Documentation 7

Spring Social

<inmg src="${connection.imgelr|}" /
> ${connection.di spl ayName} </ a>

The value of these properties may depend on the state of the provider user's profile. In this case, sync()
can be called to synchronize these values if the user's profile is updated.

A connection can be tested to determine if its authorization credentials are valid. If invalid, the connection
may have expired or been revoked by the provider. If the connection has expired, a connection may be
refreshed to renew its authorization credentials.

A connection provides several operations that allow the client application to invoke the ServiceProvider's
API in a uniform way. This includes the ability to fetch a model of the user's profile and update the user's
status in the provider's system.

A connection's parameterized type <A> represents the Java binding to the ServiceProvider's native API.
An instance of this API binding can be obtained by calling get Api (). As an example, a Facebook
connection instance would be parameterized as Connection<Facebook>. get Api () would return a
Facebook instance that provides a Java binding to Facebook's graph API for a specific Facebook user.

Finally, the internal state of a connection can be captured for transfer between layers of your application
by calling cr eat eDat a() . This could be used to persist the connection in a database, or serialize it
over the network.

To put this model into action, suppose we have a reference to a Connection<Twitter> instance. Suppose
the connected user is the Twitter user with screen name 'kdonald'.

1. Connection#getKey() would return (‘twitter', '14718006") where '14718006' is @kdonald's Twitter-
assigned user id that never changes.

2. Connection#getDisplayName() would return '@kdonald'.
3. Connection#getProfileUrl() would return "http://twitter.com/kdonald'.

4. Connection#getimageUrl() would return ‘http://a0.twimg.com/profile_images/105951287/
IMG_5863 2 normal.jpg'.

5. Connection#sync() would synchronize the state of the connection with @kdonald's profile.

6. Connection#test() would return true indicating the authorization credentials associated with the
Twitter connection are valid. This assumes Twitter has not revoked the AcmeApp client application,
and @kdonald has not reset his authorization credentials (Twitter connections do not expire).

7. Connection#hasExpired() would return false.
8. Connection#refresh() would not do anything since connections to Twitter do not expire.

9. Connection#fetchUserProfile() would make a remote API call to Twitter to get @kdonald's profile data
and normalize it into a UserProfile model.

10Connection#updateStatus(String) would post a status update to @kdonald's timeline.

11Connection#getApi() would return a Twitter giving the client application access to the full capabilities
of Twitter's native API.

12 Connection#createData() would return ConnectionData that could be serialized and used to restore
the connection at a later time.

Spring Social Reference
1.1.0.M3 Documentation 8

Spring Social

2.2 Establishing connections

So far we have discussed how existing connections are modeled, but we have not yet discussed how
new connections are established. The manner in which connections between local users and provider
users are established varies based on the authorization protocol used by the ServiceProvider. Some
service providers use OAuth, others use Basic Auth, others may use something else. Spring Social
currently provides native support for OAuth-based service providers, including support for OAuth 1 and
OAuth 2. This covers the leading social networks, such as Facebook and Twitter, all of which use OAuth
to secure their APIs. Support for other authorization protocols can be added by extending the framework.

Each authorization protocol is treated as an implementation detail where protocol-specifics are kept
out of the core Connection APIl. A ConnectionFactory abstraction encapsulates the construction of
connections that use a specific authorization protocol. In the following sections, we will discuss the major
ConnectionFactory classes provided by the framework. Each section will also describe the protocol-
specific flow required to establish a new connection.

OAuth2 service providers

OAuth 2 is rapidly becoming a preferred authorization protocol, and is used by major service providers
such as Facebook, Github, Foursquare, and 37signals. In Spring Social, a OAuth2ConnectionFactory
is used to establish connections with a OAuth2-based service provider:

public class QAut h2Connecti onFact or y<A> ext ends Connect i onFact or y<A> {
publ i ¢ OQAut h2Oper ati ons get QAut hOper ati ons();
publ i ¢ Connecti on<A> creat eConnecti on(AccessG ant accessG ant);

publ i ¢ Connecti on<A> creat eConnecti on(Connecti onData data);

get QAut hQper at i ons() returns an API to use to conduct the authorization flow, or "OAuth Dance",
with a service provider. The result of this flow is an AccessG ant that can be used to establish a
connection with a local user account by calling cr eat eConnect i on. The OAuth20perations interface
is shown below:

public interface QAut h20perations {
String buil dAut hori zeUrl (G ant Type grant Type, OAut h2Par aneters paraneters);
String buil dAut henticateUrl (G ant Type grant Type, OAut h2Par aneters paraneters);

AccessG ant exchangeFor Access(String authorizationCode, String redirectUri,
Mul ti Val ueMap<String, String> additional Paraneters);

AccessGrant refreshAccess(String refreshToken, String scope,
Mul ti Val ueMap<String, String> additional Paraneters);

Spring Social Reference
1.1.0.M3 Documentation 9

Spring Social

Callers are first expected to call buildAuthorizeUrl(GrantType, OAuth2Parameters) to construct the URL
to redirect the user to for connection authorization. Upon user authorization, the authorizationCode
returned by the provider should be exchanged for an AccessGrant. The AccessGrant should then used
to create a connection. This flow is illustrated below:

As you can see, there is a back-and-forth conversation that takes place between the application and
the service provider to grant the application access to the provider account. This exchange, commonly
known as the "OAuth Dance", follows these steps:

1. The flow starts by the application redirecting the user to the provider's authorization URL. Here the
provider displays a web page asking the user if he or she wishes to grant the application access to
read and update their data.

2. The user agrees to grant the application access.

3. The service provider redirects the user back to the application (via the redirect URI), passing an
authorization code as a parameter.

4. The application exchanges the authorization code for an access grant.

5. The service provider issues the access grant to the application. The grant includes an access token
and a refresh token. One receipt of these tokens, the "OAuth dance" is complete.

6. The application uses the AccessGrant to establish a connection between the local user account and
the external provider account. With the connection established, the application can now obtain a
reference to the Service API and invoke the provider on behalf of the user.

The example code below shows use of a FacebookConnectionFactory to create a connection to
Facebook using the OAuth2 server-side flow illustrated above. Here, FacebookConnectionFactory is a
subclass of OAuth2ConnectionFactory:

FacebookConnect i onFact ory connectionFactory =
new FacebookConnectionFactory("clientld", "clientSecret");
QAut h2QOper at i ons oaut hOper ati ons = connecti onFact ory. get QAut hOper ati ons();
QAut h2Par anet ers parans = new QAut h2Par anet ers() ;
parans. set Redi rect Uri ("https://ny-cal |l back-url");
String authorizeUrl = oauthQperations. buil dAuthorizeUrl (G ant Type. AUTHORI ZATI ON_CODE,
par ans) ;
response. sendRedi rect (aut hori zeUrl);

/'l upon receiving the callback fromthe provider:

AccessGrant accessGrant = oaut hOperati ons. exchangeFor Access(aut hori zati onCode, "https://
my-cal | back-url", null);

Connect i on<Facebook> connecti on = connecti onFactory. creat eConnecti on(accessG ant);

The following example illustrates the client-side "implicit" authorization flow also supported by OAuth2.
The difference between this flow and the server-side "authorization code" flow above is the provider
callback directly contains the access grant (no additional exchange is necessary). This flow is
appropriate for clients incapable of keeping the access grant credentials confidential, such as a mobile
device or JavaScript-based user agent.

Spring Social Reference
1.1.0.M3 Documentation 10

Spring Social

FacebookConnect i onFact ory connectionFactory =
new FacebookConnectionFactory("clientld", "clientSecret");
QAut h2QOper at i ons oaut hOper ati ons = connecti onFact ory. get QAut hOper ati ons();
QAut h2Par anet ers parans = new QAut h2Par anet ers() ;
parans. set Redi rect Uri ("https://ny-call back-url");
String authorizeUrl = oauthOperations. buil dAut horizeUrl (G ant Type. | MPLI Cl T_GRANT, parans);
response. sendRedi r ect (aut hori zeUrl);

/'l upon receiving the call back fromthe provider:
AccessGrant accessGant = new AccessG ant (accessToken);
Connect i on<Facebook> connecti on = connecti onFactory. createConnecti on(accessG ant);

OAuth1 service providers

OAuth 1 is the previous version of the OAuth protocol. It is more complex OAuth 2, and sufficiently
different that it is supported separately. Twitter, Linked In, and Triplt are some of the well-known
ServiceProviders that use OAuth 1. In Spring Social, the OAuth1ConnectionFactory allows you to create
connections to a OAuthl-based Service Provider:

public class OAut hlConnecti onFact or y<A> ext ends Connecti onFact or y<A> {
publ i ¢ OAut hlOperati ons get QAut hOperati ons();
publ i ¢ Connecti on<A> creat eConnecti on(QAut hToken accessToken);

publ i ¢ Connecti on<A> creat eConnecti on(Connecti onData data);

Like a OAuth2-based provider, get QAut hQper ati ons() returns an API to use to conduct the
authorization flow, or "OAuth Dance". The result of the OAuth 1 flow is an QAut hToken that can
be used to establish a connection with a local user account by calling cr eat eConnecti on. The
OAuth1Operations interface is shown below:

public interface QAuthlQperations {

QAut hToken fet chRequest Token(String cal | backUrl ,
Mul ti Val ueMap<String, String> additional Paraneters);

String buil dAut horizeUrl (String request Token, QAut hlParaneters paraneters);
String buil dAuthenticateU |l (String request Token, QAuthlParaneters paraneters);

QAut hToken exchangeFor AccessToken(Aut hori zedRequest Token request Token,
Ml ti Val ueMap<String, String> additional Paraneters);

Callers are first expected to call fetchNewRequestToken(String) to obtain a temporary token
from the ServiceProvider to use during the authorization session. Next, callers should call
buildAuthorizeUrl(String, OAuth1Parameters) to construct the URL to redirect the user to for connection
authorization. Upon user authorization, the authorized request token returned by the provider should

Spring Social Reference
1.1.0.M3 Documentation 11

Spring Social

be exchanged for an access token. The access token should then used to create a connection. This
flow is illustrated below:

1. The flow starts with the application asking for a request token. The purpose of the request token is to
obtain user approval and it can only be used to obtain an access token. In OAuth 1.0a, the consumer
callback URL is passed to the provider when asking for a request token.

2. The service provider issues a request token to the consumer.

3. The application redirects the user to the provider's authorization page, passing the request token as
a parameter. In OAuth 1.0, the callback URL is also passed as a parameter in this step.

4. The service provider prompts the user to authorize the consumer application and the user agrees.

5. The service provider redirects the user's browser back to the application (via the callback URL). In
OAuth 1.0a, this redirect includes a verifier code as a parameter. At this point, the request token is
authorized.

6. The application exchanges the authorized request token (including the verifier in OAuth 1.0a) for an
access token.

7. The service provider issues an access token to the consumer. The "dance" is now complete.

8. The application uses the access token to establish a connection between the local user account
and the external provider account. With the connection established, the application can now obtain
a reference to the Service API and invoke the provider on behalf of the user.

The example code below shows use of a TwitterConnectionFactory to create a connection to Facebook
using the OAuthl server-side flow illustrated above. Here, TwitterConnectionFactory is a subclass of
OAuthl1ConnectionFactory:

Twi tt er Connect i onFact ory connecti onFactory =
new Twi tt er Connecti onFact ory("consuner Key", "consunerSecret");
QAut hlQOper ati ons oaut hOperati ons = connecti onFact ory. get QAut hOperati ons();
QAut hToken request Token = oaut hOperati ons. f et chRequest Token("htt ps://ny-cal | back-url",
null);
String authorizeU |l = oauthQperations. buil dAuthorizeUrl (request Token,
QAut h1Par anet er s. NONE) ;
response. sendRedi r ect (aut hori zeUrl);

/'l upon receiving the call back fromthe provider:
QAut hToken accessToken = oaut hOperati ons. exchangeFor AccessToken(
new Aut hori zedRequest Token(request Token, oauthVerifier), null);
Connecti on<Twi tter> connecti on = connecti onFactory. creat eConnecti on(accessToken);

Registering ConnectionFactory instances

As you will see in subsequent sections of this reference guide, Spring Social provides infrastructure
for establishing connections to one or more providers in a dynamic, self-service manner. For example,
one client application may allow users to connect to Facebook, Twitter, and LinkedIn. Another might
integrate Github and Pivotal Tracker. To make the set of connectable providers easy to manage and
locate, Spring Social provides a registry for centralizing connection factory instances:

Spring Social Reference
1.1.0.M3 Documentation 12

Spring Social

Connecti onFactoryRegi stry registry = new Connecti onFactoryRegi stry();

regi stry. addConnecti onFact ory(new FacebookConnecti onFactory("clientld", "clientSecret"));
regi stry. addConnect i onFact ory(new

Twi t t er Connecti onFact or y(" consuner Key", "consuner Secret"));

regi stry. addConnect i onFact ory(new

Li nkedl nConnecti onFact or y("consuner Key", "consunerSecret"));

This registry implements a locator interface that other objects can use to lookup connection factories
dynamically:

public interface ConnectionFactorylLocator {
Connecti onFact or y<?> get Connecti onFactory(String providerld);
<A> Connect i onFact or y<A> get Connecti onFact ory(C ass<A> api Type) ;

Set <String> regi steredProviderlds();

Example usage of a ConnectionFactoryLocator is shown below:

/'l generic | ookup by providerld
Connect i onFact or y<?> connecti onFactory = | ocat or. get Connecti onFact ory("facebook");

/'l typed | ookup by service api type
Connect i onFact or y<Facebook> connecti onFactory =
| ocat or . get Connect i onFact or y(Facebook. cl ass);

2.3 Persisting connections

After a connection has been established, you may wish to persist it for later use. This makes things
convenient for the user since a connection can simply be restored from its persistent form and does not
need to be established again. Spring Social provides a ConnectionRepository interface for managing
the persistence of a user's connections:

Spring Social Reference
1.1.0.M3 Documentation 13

Spring Social

public interface ConnectionRepository {
Mul ti Val ueMap<Stri ng, Connection<?>> findAl | Connections();
Li st <Connecti on<?>> findConnections(String providerld);
<A> Li st <Connecti on<A>> findConnecti ons(C ass<A> api Type);

Mul ti Val ueMap<String, Connection<?>> findConnecti onsToUser s(
Ml ti Val ueMap<String, String> providerUserlds);

Connect i on<?> get Connect i on(Connecti onKey connecti onKey);

<A> Connecti on<A> get Connecti on(C ass<A> api Type, String providerUserld);
<A> Connecti on<A> get Pri maryConnecti on(C ass<A> api Type);

<A> Connecti on<A> findPri maryConnection(C ass<A> api Type);

voi d addConnecti on(Connecti on<?> connection);

voi d updat eConnecti on(Connecti on<?> connecti on);

voi d renpveConnections(String providerld);

voi d renpveConnecti on(Connecti onKey connecti onKey);

As you can see, this interface provides a number of operations for adding, updating, removing,
and finding Connections. Consult the JavaDoc API of this interface for a full description of these
operations. Note that all operations on this repository are scoped relative to the "current user" that has
authenticated with your local application. For standalone, desktop, or mobile environments that only
have one user this distinction isn't important. In a multi-user web application environment, this implies
ConnectionRepository instances will be request-scoped.

For multi-user environments, Spring Social provides a UsersConnectionRepository that provides access
to the global store of connections across all users:

public interface UsersConnecti onRepository {
Li st<String> findUserldsWthConnection(Connection<?> connection);
Set<String> findUserldsConnectedTo(String providerld, Set<String> providerUserlds);

Connecti onRepository createConnecti onRepository(String userld);

As you can see, this repository acts as a factory for ConnectionRepository instances scoped to a single
user, as well as exposes a humber of multi-user operations. These operations include the ability to
lookup the local userlds associated with connections to support provider user sign-in and "registered
friends" scenarios. Consult the JavaDoc API of this interface for a full description.

Spring Social Reference
1.1.0.M3 Documentation 14

Spring Social

JDBC-based persistence

Spring Social provides a JdbcUsersConnectionRepository implementation capable of persisting
connections to a RDBMS. The database schema designed to back this repository is defined as follows:

create tabl e UserConnection (userld varchar(255) not null,

providerld varchar(255) not null,

provi der User | d varchar (255),

rank int not null,

di spl ayNane var char (255),

profileUrl varchar(512),

i mgeUr| varchar(512),

accessToken varchar (255) not null,

secret varchar(255),

refreshToken var char (255),

expi reTi nme bigint,

pri mary key (userld, providerld, providerUserld));
create uni que index UserConnectionRank on User Connection(userld, providerld, rank);

For convenience is bootstrapping the schema from a running application, this schema definition is
available in the spri ng- soci al - cor e module as a resource at the path /org/springframework/social/
connect/jdbc/JdbcUsersConnectionRepository.sgl. Note that although this schema was designed with
compatibility in mind, it may not be compatible with all databases. You may need to adapt this schema
definition to accommodate any peculiarities of your chosen database.

The implementation also provides support for encrypting authorization credentials so they are not stored
in plain-text.

The example code below demonstrates construction and usage of a JdbcUsersConnectionRepository:

/1 JDBC Dat aSource pointing to the DB where connection data is stored
Dat aSour ce dataSource = ...;

/'l locator for factories needed to construct Connections when restoring from persistent
form
Connecti onFact oryLocat or connecti onFactorylLocator = ...;

/'l encryptor of connection authorization credentials
Text Encryptor encryptor = ...;

User sConnect i onReposi tory usersConnecti onRepository =
new JdbcUser sConnect i onReposi t or y(dat aSour ce, connecti onFactorylLocator, encryptor);

/] create a connection repository for the single-user 'kdonald'
Connecti onRepository repository =
user sConnect i onReposi tory. creat eConnect i onReposi t ory("kdonal d");

/'l find kdonald's primary Facebook connection
Connect i on<Facebook> connection = repository.findPrimaryConnecti on(Facebook. cl ass);

Spring Social Reference
1.1.0.M3 Documentation 15

Spring Social

3. Adding Support for a New Service Provider

Spring Social makes it easy to add support for service providers that are not already supported by the
framework. If you review the existing client modules, such as spring-social-twitter and spring-social-
facebook, you will discover they are implemented in a consistent manner and they apply a set of well-
defined extension points. In this chapter, you will learn how to add support for new service providers
you wish to integrate into your applications.

3.1 Process overview

The process of adding support for a new service provider consists of several steps:
1. Create a source project for the client code e.g. spri ng-social -twitter.
2. Develop or integrate a Java binding to the provider's APl e.g. Twi tt er.

3. Create a ServiceProvider model that allows users to authorize with the remote provider and obtain
authorized APl instances e.g. Twi t t er Ser vi cePr ovi der.

4. Create an ApiAdapter that maps the provider's native API onto the uniform Connection model e.g.
Twi tt er Adapt er.

5. Finally, create a ConnectionFactory that wraps the other artifacts up and provides a simple interface
for establishing connections e.g. Twi tt er Connecti onFact ory.

The following sections of this chapter walk you through each of the steps with examples.

3.2 Creating a source project for the provider client code

A Spring Social client module is a standard Java project that builds a single jar artifact e.g. spring-social-
twitter.jar. We recommend the code structure of a client module follow the guidelines described below.

Code structure guidelines

We recommend the code for a new Spring Social client module reside within the
org. spri ngframework. soci al . {provi derl d} base package, where {providerld} is a unique
identifier you assign to the service provider you are adding support for. Consider some of the providers
already supported by the framework as examples:

Table 3.1. Spring Social Client Modules

Provider ID Artifact Name Base Package
facebook spring-social-facebook org.springframework.social.facebook
twitter spring-social-twitter org.springframework.social.twitter

Within the base package, we recommend the following subpackage structure:

Table 3.2. Module Structure

Subpackage Description

api The public interface that defines the API binding.

Spring Social Reference
1.1.0.M3 Documentation 16

Spring Social

Subpackage Description
api.impl The implementation of the API binding.
connect The types necessary to establish connections to the service
provider.

You can see this recommended structure in action by reviewing one of the other client modules such
as spring-social-twitter:

Here, the central service API type, Twitter, is located in the api package along with its supporting
operations types and data transfer object types. The primary implementation of that interface,
TwitterTemplate, is located in the api.impl package (along with other package-private impl types have
that been excluded from this view). Finally, the connect package contains the implementations of various
connect SPIs that enable connections to Twitter to be established and persisted.

3.3 Developing a Java binding to the provider's API

Spring Social favors the development of strongly-typed Java bindings to external service provider APIs.
This provides a simple, domain-oriented interface for Java applications to use to consume the API.
When adding support for a new service provider, if no suitable Java binding already exists you'll need
to develop one. If one already exists, such as Twitter4j for example, it is possible to integrate it into
the framework.

Designing a new Java API binding

API developers retain full control over the design and implementation of their Java bindings. That said,
we offer several design guidelines in an effort to improve overall consistency and quality:

e Favor separating the API binding interface from the implementation. This is illustrated in
the spring-social-twitter example in the previous section. There, "Twitter" is the central API
binding type and it is declared in the org.springframework.social.twitter.api package with other
public types. "TwitterTemplate" is the primary implementation of this interface and is located
in the org.springframework.social.twitter.api.impl subpackage along with other package-private
implementation types.

» Favor organizing the API binding hierarchically by RESTful resource. REST-based APIs typically
expose access to a number of resources in an hierarchical manner. For example, Twitter's API
provides access to "status timelines”, "searches", "lists", "direct messages", "friends", "geo location",
and "users". Rather than add all operations across these resources to a single flat "Twitter" interface,

the Twitter interface is organized hierarchically:

Spring Social Reference
1.1.0.M3 Documentation 17

Spring Social

public interface Twitter extends ApiBinding {
Di rect MessageOper ati ons direct MessageQper ations();
Fri endOperations friendQperations();
GeoQper ati ons geoOperations();
Li st Operations |istOperations();
Sear chQper ati ons searchOperations();
Ti mel i neCperations tinelineQperations();

User Oper ati ons user Operations();

DirectMessageOperations, for example, contains API bindings to Twitter's "direct_ messages"”
resource:

public interface Direct MessageQOperations {
Li st <Di r ect Message> get Di r ect MessagesRecei ved() ;
Li st <Di r ect Message> get Di r ect MessagesSent () ;
voi d sendDi rect Message(String toScreenNane, String text);
voi d sendDi rect Message(l ong toUserld, String text);

voi d del et eDi rect Message(l ong nmessagel d) ;

Implementing a new Java API binding

API developers are free to implement their Java API binding with whatever REST/HTTP client
they see fit. That said, Spring Social's existing API bindings such as spring-social-twitter all use
Spring Framework's RestTemplate in conjunction with the Jackson JSON ObjectMapper and Apache
HttpComponents HTTP client. RestTemplate is a popular REST client that provides a uniform object
mapping interface across a variety of data exchange formats (JSON, XML, etc). Jackson is the leading
Java-based JSON marshalling technology. Apache HttpComponents has proven to be the most robust
HTTP client (if it is not available on the classpath Spring Social will fallback to standard J2SE facilities,
however). To help promote consistency across Spring Social's supported bindings, we do recommend
you consider these implementation technologies (and please let us know if they do not meet your needs).

Spring Social has adopted a convention where each APl implementation class is named
"{Providerld}Template" e.g. TwitterTemplate. We favor this convention unless there is a good reason
to deviate from it. As discussed in the previous section, we recommend keeping implementation types
separate from the public API types. We also recommend keeping internal implementation details
package-private.

Spring Social Reference
1.1.0.M3 Documentation 18

Spring Social

The way in which an API binding implementation is constructed will vary based on the API's authorization
protocol. For APIs secured with OAuthl, the consumerKey, consumerSecret, accessToken, and
accessTokenSecret will be required for construction:

public Twi tterTenpl ate(String consumerKey, String consunerSecret, String accessToken,
String accessTokenSecret) { ... }

For OAuth2, only the access token should be required:

publ i ¢ FacebookTenpl ate(String accessToken) { ... }

Each request made to the API server needs to be signed with the authorization credentials provided
during construction of the binding. This signing process consists of adding an "Authorization" header to
each client request before it is executed. For OAuthl, the process is quite complicated, and is used to
support an elaborate request signature verification algorithm between the client and server. For OAuth2,
it is a lot simpler, but does still vary across the various drafts of the OAuth2 specification.

To encapsulate this complexity, for each authorization protocol Spring Social provides a ApiTemplate
base class you may extend from to construct a pre-configured RestTemplate instance that performs the
request signing for you. For OAuth1:

public class TwitterTenpl ate extends Abstract QAut h1Api Bi ndi ng {
public Twi tterTenpl ate(String consumerKey, String consunerSecret, String accessToken,
String accessTokenSecret) {
super (consuner Key, consuner Secret, accessToken, accessTokenSecret);

An OAuth2 example:

public class FacebookTenpl ate ext ends Abstract QAut h2Api Bi ndi ng {
publ i c FacebookTenpl ate(String accessToken) ({
super (accessToken) ;

}

Once configured as shown above, you simply implement call getRestTemplate() and implement the
various API operations. The existing Spring Social client modules all invoke their RestTemplate
instances in a standard manner:

public TwitterProfile getUserProfile() {
return get Rest Tenpl at e() . get For Obj ect (bui |l dUri ("account/verify_credentials.json"),
TwitterProfile.class);

A note on RestTemplate usage: we do favor the RestTemplate methods that accept a URI object instead
of a uri String. This ensures we always properly encode client data submitted in URI query parameters,
such as screen_name below:

Spring Social Reference
1.1.0.M3 Documentation 19

Spring Social

public TwitterProfile getUserProfile(String screenNane) {
return get Rest Tenpl at e() . get For Obj ect (bui |l dUri ("users/ show. j son",
Col I ecti ons. si ngl et onMap("screen_nane", screenNane)), TwitterProfile.class);

For complete implementation examples, consult the source of the existing API bindings included in
Spring Social. The spring-social -twitter and spri ng-soci al - facebook modules provide
particularly good references.

Testing a new Java API binding

As part of the spring-social-test module, Spring Social includes a framework for unit testing API bindings.
This framework consists of a "MockRestServiceServer" that can be used to mock out API calls to the
remote service provider. This allows for the development of independent, performant, automated unit
tests that verify client API binding and object mapping behavior.

To use, first create a MockRestServiceServer against the RestTemplate instance used by your API
implementation:

TwitterTenpl ate twitter = new
Twi tter Tenpl at e(" consuner Key", "consumer Secret", "accessToken",
"accessTokenSecret");
MockRest Server nockServer = MockRest Servi ceServer.createServer(twi tter.getRest Tenplate());

Then, for each test case, record expectations about how the server should be invoked and answer what
it should respond with:

@est

public void getUserProfile() {
Ht t pHeader s responseHeaders = new Htt pHeaders();
responseHeader s. set Cont ent Type(Medi aType. APPLI CATI ON_JSON) ;

nockSer ver . expect (request To("https://api.tw tter.com 1/account/
verify_credentials.json"))
. andExpect (met hod(GET))
. andRespond(wi t hResponse(j sonResource("verify-credential s"), responseHeaders));

TwitterProfile profile = twitter.userQperations().getUserProfile();
assert Equal s(161064614, profile.getld());
assert Equal s("kdonal d", profile.getScreenNane());

In the example above the response body is written from a verify-credentials.json file located in the same
package as the test class:

private Resource jsonResource(String filenane) {
return new O assPat hResource(filename + ".json", getC ass());

}

Spring Social Reference
1.1.0.M3 Documentation 20

Spring Social

The content of the file should mirror the content the remote service provider would return, allowing the
client JSON deserialization behavior to be fully tested:

"id":161064614,
"screen_nane": "kdonal d"

For complete test examples, consult the source of the existing API bindings included in Spring Social.
The spring-soci al -twi tter andspring-soci al - f acebook modules provide particularly good
references.

Integrating an existing Java API binding

If you are adding support for a popular service provider, chances are a Java binding to the provider's API
may already exist. For example, the Twitter4j library has been around for awhile and provides a complete
binding to Twitter's API. Instead of developing your own binding, you may simply wish to integrate what
already exists. Spring Social's connect framework has been carefully designed to support this scenario.

To integrate an existing API binding, simply note the binding's primary APl interface and implementation.
For example, in Twitter4j the main API interface is named "Twitter" and instances are constructed by a
TwitterFactory. You can always construct such an API instance directly, and you'll see in the following
sections how to expose an instance as part of a Connection.

3.4 Creating a ServiceProvider model

As described in the previous section, a client binding to a secure APl such as Facebook or Twitter
requires valid user authorization credentials to work. Such credentials are generally obtained by having
your application conduct an authorization "dance" or handshake with the service provider. Spring Social
provides the ServiceProvider<A> abstraction to handle this "authorization dance". The abstraction also
acts as a factory for native API (A) instances.

Since the authorization dance is protocol-specific, a ServiceProvider specialization exists for each
authorization protocol. For example, if you are connecting to a OAuth2-based provider, you would
implement OAuth2ServiceProvider. After you've done this, your implementation can be used to conduct
the OAuth2 dance and obtain an authorized API instance. This is typically done in the context of a
ConnectionFactory as part of establishing a new connection to the provider. The following sections
describe the implementation steps for each ServiceProvider type.

OAuth2

To implement an OAuth2-based ServiceProvider, first create a subclass of
AbstractOAuth2ServiceProvider named {Providerld}ServiceProvider. Parameterize <A> to be the Java
binding to the ServiceProvider's's API. Define a single constructor that accepts an clientld and
clientSecret. Finally, implement getApi(String) to return a new APl instance.

See or g. spri ngfranmewor k. soci al . facebook. connect . FacebookSer vi ceProvi der as an
example OAuth2ServiceProvider:

Spring Social Reference
1.1.0.M3 Documentation 21

Spring Social

public final class FacebookServiceProvi der extends Abstract QAut h2Servi ceProvi der <Facebook>

{

publ i ¢ FacebookServi ceProvider(String clientld, String clientSecret) {
super (new QAut h2Tenpl ate(clientld, clientSecret,
"https://graph. facebook. conf oaut h/ aut hori ze",
"https://graph. facebook. conm oaut h/ access_t oken"));

}

publ i c Facebook get Api (String accessToken) {
return new FacebookTenpl at e(accessToken) ;

}

In the constructor, you should call super, passing up the configured OAuth2Template that implements
OAuth20perations. The OAuth2Template will handle the "OAuth dance" with the provider, and should
be configured with the provided clientld and clientSecret, along with the provider-specific authorizeUrl
and accessTokenUrl.

Some providers support provider sign-in (see Chapter 5, Signing in with Service Provider Accounts)
through an authentication URL that is distinct from the authorization URL. Using the OAuth2Template
constructor as shown above will assume that the authentication URL is the same as the authorization
URL. But you may specify a different authentication URL by using OAuth2Template's other constructor.
Facebook does not have a separate authentication URL, but for the sake of the example, suppose
that Facebook's authentication URL is "https://graph.facebook.com/oauth/authenticate". The following
implementation of the FacebookServiceProvider constructor configures the OAuth2Template for that
case:

publ i ¢ FacebookServi ceProvider(String clientld, String clientSecret) ({
super (new QAut h2Tenpl ate(clientld, clientSecret,
"https://graph. facebook. conf oaut h/ aut hori ze",
"https://graph. facebook. conf oaut h/ aut henti cate",
"https://graph. facebook. com oaut h/ access_t oken"));

In getApi(String), you should construct your APl implementation, passing it the access token needed to
make authorized requests for protected resources.

OAuthl

To implement an OAuthl-based ServiceProvider, first create a subclass of
AbstractOAuth1ServiceProvider named {Providerld}ServiceProvider. Parameterize <A> to be the Java
binding to the ServiceProvider's API. Define a single constructor that accepts a consumerKey and
consumerSecret. Finally, implement getApi(String, String) to return a new API instance.

See org.springfranework. social.twitter.connect. TwitterServi ceProvider as an
example OAuthlServiceProvider:

Spring Social Reference
1.1.0.M3 Documentation 22

Spring Social

public final class TwitterServiceProvider extends Abstract QAut hlServi ceProvider<Twitter> {

public Tw tterServiceProvider(String consumerKey, String consumerSecret) {
super (consuner Key, consuner Secret, new QAut hlTenpl at e(consuner Key,
consuner Secr et ,
"https://tw tter.con oaut h/ request _t oken",
"https://tw tter.conm oaut h/ aut horize",
"https://tw tter.con oauth/authenticate",
"https://tw tter.conl oaut h/ access_t oken"));

}

public Twitter getApi (String accessToken, String secret) {
return new Twi tter Tenpl at e(get Consuner Key(), get Consuner Secret (), accessToken,
secret);

}

In the constructor, you should call super, passing up the the consumerKey, secret, and configured
OAuthlTemplate. The OAuthlTemplate will handle the "OAuth dance" with the provider. It should
be configured with the provided consumerKey and consumerSecret, along with the provider-specific
requestTokenUrl, authorizeUrl, authenticateUrl, and accessTokenUrl. The authenticateUrl parameter is
optional and may be left out if the provider doesn't have an authentication URL that is different than
the authorization URL.

As you can see here, OAuthlTemplate is constructed with Twitter's authentication URL (used for
provider sign-in; see Chapter 5, Signing in with Service Provider Accounts), which is distinct from their
authorization URL. Some providers don't have separate URLs for authentication and authorization. In
those cases, you can use OAuthlTemplate's other constructor which doesn't take the authentication
URL as a parameter. For example, here's how the TwitterServiceProvider constructor would look without
configuring the authentication URL:

public Tw tterServiceProvider(String consumerKey, String consumerSecret) {
super (consumer Key, consuner Secret, new QAut h1Tenpl at e(consuner Key, consumner Secr et
"https://tw tter.con oaut h/ request _token",
"https://tw tter.conl oaut h/ aut hori ze",
"https://tw tter.con oaut h/ access_t oken"));

In getApi(String, String), you should construct your APl implementation, passing it the four tokens
needed to make authorized requests for protected resources.

Consult the JavaDoc API of the various service provider types for more information and subclassing
options.

3.5 Creating an ApiAdapter

As discussed in the previous chapter, one of the roles of a Connection is to provide a common
abstraction for a linked user account that is applied across all service providers. The role of the
ApiAdapter is to map a provider's native APl interface onto this uniform Connection model. A connection
delegates to its adapter to perform operations such as testing the validity of its API credentials, setting
metadata values, fetching a user profile, and updating user status:

Spring Social Reference
1.1.0.M3 Documentation 23

Spring Social

public interface Api Adapter<A> {
bool ean test (A api);
voi d set Connecti onVal ues(A api, ConnectionVal ues val ues);
User Profile fetchUserProfile(A api);

voi d updateStatus(A api, String nmessage);

Consider or g. spri ngframewor k. soci al . twitter.connect. Twi tter Adapt er as an example
implementation:

public class Twi tter Adapter inplenments Api Adapter<Twitter> {

public boolean test(Twitter twitter) {
try {
twitter.userQperations().getUserProfile();
return true;
} catch (Api Exception e) {
return fal se;

public void setConnectionValues(Twitter twitter, ConnectionValues val ues) {
TwitterProfile profile = twitter.userQperations().getUserProfile();
val ues. set Provi der User | d(Long. toString(profile.getld()));
val ues. set Di spl ayNane(" @ + profile.getScreenNane());
val ues. setProfileUrl (profile.getProfileUrl());
val ues. setl mageUr| (profile.getProfilelnmageUrl());

}

public UserProfile fetchUserProfile(Twitter twitter) {
TwitterProfile profile = twitter.userQperations().getUserProfile();
return new UserProfileBuil der().setName(profile.getNanme()). setUser namg(
profile. getScreenName()). build();
}

public void updateStatus(Twitter twitter, String nessage) {
twitter.timelineQOperations().updateStatus(nmessage);

}

As you can see, test(...) returns true if the API instance is functional and false if it is not.
setConnectionValues(...) sets the connection's providerUserld, displayName, profileUrl, and imageUrl
properties from TwitterProfile data. fetchUserProfile(...) maps a TwitterProfile onto the normalized
UserProfile model. updateStatus(...) update's the user's Twitter status. Consult the JavaDoc for
ApiAdapter and Connection for more information and implementation guidance. We also recommend
reviewing the other ApiAdapter implementations for additional examples.

Spring Social Reference
1.1.0.M3 Documentation 24

Spring Social

3.6 Creating a ConnectionFactory

By now, you should have an API binding to the provider's API, a ServiceProvider<A> implementation
for conducting the "authorization dance", and an ApiAdapter<A> implementation for mapping onto the
uniform Connection model. The last step in adding support for a new service provider is to create
a ConnectionFactory that wraps up these artifacts and provides a simple interface for establishing
Connections. After this is done, you may use your connection factory directly, or you may add it to
a registry where it can be used by the framework to establish connections in a dynamic, self-service
manner.

Like a ServiceProvider<A>, a ConnectionFactory specialization exists for each authorization protocol.
For example, if you are adding support for a OAuth2-based provider, you would extend from
OAuth2ConnectionFactory. Implementation guidelines for each type are provided below.

OAuth2

Create a subclass of OAuth2ConnectionFactory<A> named {Providerld}ConnectionFactory and
parameterize A to be the Java binding to the service provider's API. Define a single constructor
that accepts a clientld and clientSecret. Within the constructor call super, passing up the assigned
providerld, a new {Providerld}ServiceProvider instance configured with the clientld/clientSecret, and a
new {Provider}Adapter instance.

See org. spri ngframewor k. soci al . f acebook. connect . FacebookConnecti onFactory as
an example OAuth2ConnectionFactory:

public class FacebookConnecti onFactory extends QAut h2Connecti onFact or y<Facebook> {
publ i ¢ FacebookConnecti onFactory(String clientld, String clientSecret) {
super (" facebook", new FacebookServi ceProvider(clientld, clientSecret), new
FacebookAdapter());

}

OAuth1l

Create a subclass of OAuthlConnectionFactory<A> named {Providerld}ConnectionFactory and
parameterize A to be the Java binding to the service provider's API. Define a single constructor
that accepts a consumerKey and consumerSecret. Within the constructor call super, passing up the
assigned providerld, a new {Providerld}ServiceProvider instance configured with the consumerKey/
consumerSecret, and a new {Provider}Adapter instance.

See or g. springframework. social.twitter.connect. TwitterConnecti onFactory as an
example OAuthlConnectionFactory:

public class Twi tterConnectionFactory extends OAut hlConnecti onFact ory<Facebook> {
public Tw tterConnecti onFactory(String consunerKey, String consunerSecret) {
super ("twitter", new Twi tterServiceProvi der (consuner Key, consunerSecret), new
Twi tter Adapter());
}

Spring Social Reference
1.1.0.M3 Documentation 25

Spring Social

Consult the source and JavaDoc API for ConnectionFactory and its subclasses more information,
examples, and advanced customization options.

Spring Social Reference
1.1.0.M3 Documentation 26

Spring Social

4. Connecting to Service Providers

4.1 Introduction

In Chapter 2, Service Provider '‘Connect' Framework, you learned how Spring Social's Service Provider
'‘Connect' Framework can be used to manage user connections that link your application's user accounts
with accounts on external service providers. In this chapter, you'll learn how to control the connect flow
in a web application environment.

Spring Social's spri ng-soci al -web module includes Connect Controll er, a Spring MVC
controller that coordinates the connection flow between an application and service providers.
Connect Control | er takes care of redirecting the user to the service provider for authorization and
responding to the callback after authorization.

4.2 Configuring ConnectController

As Connect Cont r ol | er directs the overall connection flow, it depends on several other objects to do
its job. Before getting into those, first we'll define a single Java @Configuration class where the various
Spring Social objects, including ConnectController, will be configured:

@confi guration
public class Social Config {

}

Now, Connect Control | er first delegates to one or more ConnectionFactory instances to establish
connections to providers on behalf of users. Once a connection has been established, it delegates to a
Connect i onReposi t ory to persist user connection data.

Each of the Spring Social provider modules includes a Connect i onFact or y implementation:
e org.springframework. social.twitter.connect. Twi tterConnectionFactory

» org.springfranmework. soci al . facebook. connect . FacebookConnect i onFact ory
e org.springframework. soci al . |inkedi n. connect. Li nkedl nConnecti onFactory
* org.springframework. social.tripit.connect. TripltConnectionFactory

e org.springfranmework. soci al . gi thub. connect. G t HubConnecti onFact ory

To register one or more ConnectionFactories, simply define a ConnectionFactoryLocator @Bean as
follows:

Spring Social Reference
1.1.0.M3 Documentation 27

Spring Social

@Configuration
public class Social Config {

@ean
publ i c Connecti onFactorylLocator connecti onFactorylLocator() {
Connecti onFact oryRegi stry registry = new Connecti onFactoryRegi stry();

regi stry. addConnecti onFact ory(new FacebookConnecti onFact ory(
envi ronment . get Property("facebook. clientld"),
envi ronment . get Property("facebook. clientSecret")));

regi stry. addConnect i onFact ory(new Twi tt er Connecti onFact or y(
envi ronnment . get Property("tw tter.consunerKey"),
envi ronment . get Property("“tw tter.consunmerSecret")));
return registry;

@ nj ect
private Environnment environnent;

Above, two connection factories, one for Facebook and one for Twitter, have been registered. If you
would like to support other providers, simply register their connection factories here. Because client
ids and secrets may be different across environments (e.g., test, production, etc), we recommend you
externalize these values.

As discussed in Section 2.3, “Persisting connections”, Connect i onReposi t ory defines operations
for persisting and restoring connections for a specific user. Therefore, when configuring a
Connect i onReposi t ory bean for use by ConnectController, it must be scoped such that it can be
created on a per-user basis. The following Java-based configuration shows how to construct an proxy
to a request-scoped Connect i onReposi t ory instance for the currently authenticated user:

@onfiguration
public class Social Config {

@ean
@cope(val ue="request", proxyMde=ScopedProxyMode. | NTERFACES)
publ i ¢ Connecti onRepository connecti onRepository(
Aut henti cati on authentication =
Securi t yCont ext Hol der. get Cont ext (). get Aut henti cation();
if (authentication == null) {
throw new ||| egal St at eException("Unable to get a Connecti onRepository: no user
signed in");
}
return
user sConnect i onReposi tory(). creat eConnecti onReposi tory(authentication.getNane());

}

The @Bean method above is injected with a Pri nci pal representing the current user's identity. This
is passed to UsersConnectionRepository to construct a ConnectionRepository instance for that user.

This means that we're also going to need to configure a User sConnect i onReposi t ory @Bean:

Spring Social Reference
1.1.0.M3 Documentation 28

Spring Social

@Configuration
public class Social Config {

@ean
publ i c UsersConnecti onRepository usersConnectionRepository() {
return new JdbcUser sConnecti onReposi t ory(dataSource, connecti onFactorylLocator (),
text Encryptor);

}

@ nj ect
private DataSource dataSource;

@ nj ect
private Text Encryptor textEncryptor;

UsersConnectionRepository is a singleton data store for connections across all users.
JdbcUser sConnect i onReposi t ory is the RDMS-based implementation and needs a Dat aSour ce,
Connecti onFact oryLocat or, and Text Encrypt or to do its job. It will use the Dat aSour ce to
access the RDBMS when persisting and restoring connections. When restoring connections, it will use
the Connect i onFact or yLocat or to locate ConnectionFactory instances.

JdbcUser sConnecti onRepository uses the Text Encryptor to encrypt credentials when
persisting connections. Spring Security 3.1 makes a few useful text encryptors available via static factory
methods in its Encr ypt or s class. For example, a no-op text encryptor is useful at development time
and can be configured like this:

@Configuration
public class SecurityConfig {

@Configuration
@rofile("dev")
static class Dev {

@Bean
publ i c Text Encryptor textEncryptor() ({
return Encryptors. noQpText ();

}

Notice that the inner configuration class is annotated with @r of i | e(" dev") . Spring 3.1 introduced
the profile concept where certain beans will only be created when certain profiles are active. Here, the
@r of i | e annotation ensures that this Text Encr ypt or will only be created when "dev" is an active
profile. For production-time purposes, a stronger text encryptor is recommended and can be created
when the "production” profile is active:

Spring Social Reference
1.1.0.M3 Documentation 29

Spring Social

@Configuration
public class SecurityConfig {

@Configuration
@rofile("prod")
static class Prod {

@ean
publ i c Text Encryptor textEncryptor() ({
return
Encrypt ors. queryabl eText (envi ronnent . get Property("security.encryptPassword"),
envi ronment . get Property("security.encryptSalt"));

@ nj ect
private Environnment environnent;

Configuring connection support in XML

Up to this point, the connection support configuration has been done using Spring's Java-based
configuration style. But you can configure it in either Java configuration or XML. Here's the XML
equivalent of the Connect i onFact or yRegi st ry configuration:

<bean i d="connecti onFactoryLocat or"
cl ass="org. spri ngfranmewor k. soci al . connect . support. Connecti onFact oryRegi stry">
<property nane="connectionFactories">
<list>

<bean cl ass="org. springframework. social.tw tter.connect. Twi tterConnecti onFactory">
<constructor-arg val ue="${tw tter. consunerKey}" />
<constructor-arg value="${twi tter.consunerSecret}" />
</ bean>

<bean cl ass="org. spri ngframework. soci al . f acebook. connect . FacebookConnecti onFact ory" >
<constructor-arg val ue="${facebook.clientld}" />
<constructor-arg val ue="${facebook. cli ent Secret}" />

</ bean>
</[list>
</ property>

</ bean>

This is functionally equivalent to the Java-based configuration of Connecti onFact oryRegi stry
shown before.

Here's an XML equivalent of the JdbcUser sConnect i onReposi tory and
Connect i onReposi t ory configurations shown before:

Spring Social Reference
1.1.0.M3 Documentation 30

Spring Social

<bean i d="user sConnect i onReposi t ory"
cl ass="org. spri ngframewor k. soci al . connect . j dbc. JdbcUser sConnect i onReposi tory" >
<constructor-arg ref="dataSource" />
<constructor-arg ref="connecti onFactorylLocator" />
<constructor-arg ref="textEncryptor" />
</ bean>

<bean i d="connecti onRepository" factory-nmethod="createConnecti onRepository"
fact ory-bean="user sConnecti onReposi tory" scope="request">
<constructor-arg val ue="#{request. userPrinci pal . name}" />
<aop: scoped- proxy proxy-target-class="false" />
</ bean>

Likewise, here is the equivalent configuration of the Text Encr ypt or beans:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 1. xsd" >

<beans profil e="dev">

<bean id="text Encryptor" class="org.springfranework.security.crypto.encrypt.Encryptors"
factory-net hod="noOpText" />
</ beans>

<beans profil e="prod">

<bean id="text Encryptor" class="org.springfranework.security.crypto.encrypt.Encryptors"
factory-nethod="text">
<constructor-arg val ue="${security. encryptPassword}" />
<constructor-arg val ue="${security.encryptSalt}" />
</ bean>
</ beans>

</ beans>

Just like the Java-based configuration, profiles are used to select which of the text encryptors will be
created.

4.3 Creating connections with Connect Control | er

With its dependencies configured, Connect Control | er now has what it needs to allow users
to establish connections with registered service providers. Now, simply add it to your Social
@Configuration:

Spring Social Reference
1.1.0.M3 Documentation 31

Spring Social

@Configuration
public class Social Config {

@ean
publ i c Connect Controller connectController() {
return new Connect Control | er(connecti onFactorylLocator (),
connecti onRepository());

Or, if you prefer Spring's XML-based configuration, then you can configure Connect Contr ol | er like
this:

<bean cl ass="org. spri ngframework. soci al . connect . web. Connect Control |l er">
<l-- relies on by-type autowiring for the constructor-args -->
</ bean>

Connect Control | er supports authorization flows for OAuth 1 and OAuth 2, relying on
QAut h1QOperations or QAuth2Qperations to handle the specifics for each protocol.
Connect Control | er will obtain the appropriate OAuth operations interface from one of the
provider connection factories registered with Connecti onFactoryRegi stry. It will select a
specific Connecti onFactory to use by matching the connection factory's ID with the URL
path. The path pattern that Connect Control | er handles is "/connect/{providerld}'. Therefore, if
Connect Control | er is handling a request for "/connect/twitter”, then the Connecti onFactory
whose get Provi derld() returns "twitter" will be used. (As configured in the previous section,
Twi tt er Connect i onFact ory will be chosen.)

When coordinating a connection with a service provider, Connect Cont r ol | er constructs a callback
URL for the provider to redirect to after the user grants authorization. By default Connect Control | er
uses information from the request to determine the protocol, host name, and port number to use when
creating the callback URL. This is fine in many cases, but if your application is hosted behind a proxy
those details may point to an internal server and will not be suitable for constructing a public callback
URL.

If you have this problem, you can set the appl i cati onUr| property to the base external URL of your
application. Connect Cont r ol | er will use that URL to construct the callback URL instead of using
information from the request. For example:

@Configuration
public class Social Config {

@Bean
publ i c Connect Controller connectController() {
Connect Control | er controller = new Connect Controll er(
connecti onFactoryLocator (), connectionRepository());
control |l er.setApplicationUl (environment.getProperty("application.url");
return controller;

Spring Social Reference
1.1.0.M3 Documentation 32

Spring Social

Or if you prefer XML configuration:

<bean cl ass="org. spri ngfranewor k. soci al . connect. web. Connect Control |l er">

<l-- relies on by-type autowiring for the constructor-args -->
<property nane="applicationUl" val ue="${application.url}" />
</ bean>

Just as with the authorization keys and secrets, we recommend that you externalize the application URL
because it will likely vary across different deployment environments.

The flow that Connect Cont r ol | er follows is slightly different, depending on which authorization
protocol is supported by the service provider. For OAuth 2-based providers, the flow is as follows:

* GET /connect - Displays a web page showing connection status for all providers.
e GET /connect/{providerld} - Displays a web page showing connection status to the provider.
» PCST /connect/{providerld} - Initiates the connection flow with the provider.

* GET /connect/{providerld}?code={code} - Receives the authorization callback from the
provider, accepting an authorization code. Uses the code to request an access token and complete
the connection.

» DELETE /connect/{providerld} - Severs all of the user's connection with the provider.

» DELETE /connect/{providerld}/{providerUserld} - Severs a specific connection with the
provider, based on the user's provider user ID.

For an OAuth 1 provider, the flow is very similar, with only a subtle difference in how the callback is
handled:

» CET /connect - Displays a web page showing connection status for all providers.
e GET /connect/{providerld} - Displays a web page showing connection status to the provider.
e PCST /connect/{providerld} - Initiates the connection flow with the provider.

o« GET / connect/ { provi der| d} ?oaut h_t oken={r equest
t oken} &aut h_verifier={verifier} - Receives the authorization callback from the provider,
accepting a verification code. Exchanges this verification code along with the request token for an
access token and completes the connection. The oaut h_veri fi er parameter is optional and is
only used for providers implementing OAuth 1.0a.

* DELETE /connect/{providerld} - Severs all of the user's connection with the provider.

» DELETE /connect/{providerld}/{providerUserld} - Severs a specific connection with the
provider, based on the user's provider user ID.

Displaying a connection page

Before the connection flow starts in earnest, a web application may choose to show a page that offers
the user information on their connection status. This page would offer them the opportunity to create

Spring Social Reference
1.1.0.M3 Documentation 33

Spring Social

a connection between their account and their social profile. Connect Cont r ol | er can display such a
page if the browser navigates to / connect / { pr ovi der}.

For example, to display a connection status page for Twitter, where the provider name is "twitter", your
application should provide a link similar to this:

<a href="<c:url value="/connect/twitter" />">Connect to Twitter

Connect Cont r ol | er will respond to this request by first checking to see if a connection already exists
between the user's account and Twitter. If not, then it will with a view that should offer the user an
opportunity to create the connection. Otherwise, it will respond with a view to inform the user that a
connection already exists.

The view names that Connect Cont r ol | er responds with are based on the provider's name. In this
case, since the provider name is "twitter", the view names are "connect/twitterConnect" and "connect/
twitterConnected".

Optionally, you may choose to display a page that shows connection status for all providers. In that
case, the link might look like this:

<a href="<c:url value="/connect" />">Your connections

The view name that Connect Cont r ol | er responds with for this URL is "connect/status".
Initiating the connection flow

To kick off the connection flow, the application should POST to / connect / { pr ovi der | d} . Continuing
with the Twitter example, a JSP view resolved from "connect/twitterConnect” might include the following
form:

<formaction="<c:url value="/connect/twitter" />" method="POST">
<p>You haven't created any connections with Twitter yet. Cdick the button to create
a connection between your account and your Twitter profile.
(You'll be redirected to Twitter where you'll be asked to authorize the
connection.) </ p>
<p><button type="submt"><ing src="<c:url value="/resources/social/twitter/
si gni n. png" />"/>
</ but t on></ p>
</fornr

When Connect Control | er handles the request, it will redirect the browser to the provider's
authorization page. In the case of an OAuth 1 provider, it will first fetch a request token from the
provider and pass it along as a parameter to the authorization page. Request tokens aren't used in
OAuth 2, however, so instead it passes the application's client ID and redirect URI as parameters to
the authorization page.

For example, Twitter's authorization URL has the following pattern:

https://tw tter.com oaut h/ aut hori ze?oaut h_t oken={t oken}

Spring Social Reference
1.1.0.M3 Documentation 34

Spring Social

If the application's request token were "vaVSe"l, then the browser would be redirected to https:/

twitter.com/oauth/authorize?oauth_token=vPyVSe and a page similar to the following would be
displayed to the user (from Twitter)z:

In contrast, Facebook is an OAuth 2 provider, so its authorization URL takes a slightly different pattern:

https://graph. facebook. conf oaut h/ aut hori ze?client _id={clientld}&edirect_uri={redirectUri}

Thus, if the application's Facebook client ID is "Ob754" and it's
redirect URI is "http://www.mycoolapp.com/connect/facebook”, then the browser would
be redirected to https:/graph.facebook.com/oauth/authorize?client_id=0b754&redirect_uri=http://
www.mycoolapp.com/connect/facebook and Facebook would display the following authorization page
to the user:

If the user clicks the "Allow" button to authorize access, the provider will redirect the browser back to the
authorization callback URL where Connect Cont r ol | er will be waiting to complete the connection.

The behavior varies from provider to provider when the user denies the authorization. For instance,
Twitter will simply show a page telling the user that they denied the application access and does not
redirect back to the application's callback URL. Facebook, on the other hand, will redirect back to the
callback URL with error information as request parameters.

Authorization scope

In the previous example of authorizing an application to interact with a user's Facebook profile, you
notice that the application is only requesting access to the user's basic profile information. But there's
much more that an application can do on behalf of a user with Facebook than simply harvest their profile
data. For example, how can an application gain authorization to post to a user's Facebook wall?

OAuth 2 authorization may optionally include a scope parameter that indicates the type of authorization
being requested. On the provider, the "scope" parameter should be passed along to the authorization
URL. In the case of Facebook, that means that the Facebook authorization URL pattern should be as
follows:

https://graph. facebook. coni oaut h/ aut hori ze?
client_id={clientld}&edirect_uri={redirectUri}&scope={scope}

Connect Cont rol | er accepts a "scope" parameter at authorization and passes its value along to the
provider's authorization URL. For example, to request permission to post to a user's Facebook wall, the
connect form might look like this:

YThis is just an example. Actual request tokens are typically much longer.
2| the user has not yet signed into Twitter, the authorization page will also include a username and password field for authentication
into Twitter.

Spring Social Reference
1.1.0.M3 Documentation 35

Spring Social

<form action="<c:url value="/connect/twitter" />" method="PCST">
<i nput type="hi dden" nane="scope" val ue="publish_streamoffline_access" />
<p>You haven't created any connections with Twitter yet. dick the button to create
a connection between your account and your Twitter profile.
(You'll be redirected to Twitter where you'll be asked to authorize the
connection.) </ p>
<p><button type="submit"><ing src="<c:url value="/resources/social/twtter/
si gni n. png" />"/>
</ but t on></ p>
</fornr

The hidden "scope” field contains the scope values to be passed along in the scope> parameter to
Facebook's authorization URL. In this case, "publish_stream" requests permission to post to a user's
wall. In addition, "offline_access" requests permission to access Facebook on behalf of a user even
when the user isn't using the application.

© Note

OAuth 2 access tokens typically expire after some period of time. Per the OAuth 2 specification,
an application may continue accessing a provider after a token expires by using a refresh token
to either renew an expired access token or receive a new access token (all without troubling the
user to re-authorize the application).

Facebook does not currently support refresh tokens. Moreover, Facebook access tokens expire
after about 2 hours. So, to avoid having to ask your users to re-authorize ever 2 hours, the best
way to keep a long-lived access token is to request "offline_access".

When asking for "publish_stream,offline_access" authorization, the user will be prompted with the
following authorization page from Facebook:

Scope values are provider-specific, so check with the service provider's documentation for the available
scopes. Facebook scopes are documented at http://developers.facebook.com/docs/authentication/

permissions.

Responding to the authorization callback

After the user agrees to allow the application have access to their profile on the provider, the provider
will redirect their browser back to the application's authorization URL with a code that can be exchanged
for an access token. For OAuth 1.0a providers, the callback URL is expected to receive the code (known
as a verifier in OAuth 1 terms) in an oaut h_veri fi er parameter. For OAuth 2, the code will be in
a code parameter.

Connect Cont rol | er will handle the callback request and trade in the verifier/code for an access
token. Once the access token has been received, the OAuth dance is complete and the application
may use the access token to interact with the provider on behalf of the user. The last thing that
Connect Cont r ol | er does is to hand off the access token to the Ser vi cePr ovi der implementation
to be stored for future use.

Disconnecting

To delete a connection via Connect Cont r ol | er, submit a DELETE request to "/connect/{provider}".

Spring Social Reference
1.1.0.M3 Documentation 36

http://developers.facebook.com/docs/authentication/permissions
http://developers.facebook.com/docs/authentication/permissions

Spring Social

In order to support this through a form in a web browser, you'll need to have Spring's
Hi ddenHt t pMet hodFi | t er configured in your application's web.xml. Then you can provide a
disconnect button via a form like this:

<form action="<c:url value="/connect/twitter" />" nethod="post">
<di v class="form nfo">
<p>
Spring Social Showcase is connected to your Twitter account.
Click the button if you wish to disconnect.
</ p>
</ di v>
<button type="subnit">Di sconnect </ button>
<i nput type="hi dden" nane="_net hod" val ue="del ete" />
</ forn>

When this form is submitted, Connect Cont r ol | er will disconnect the user's account from the provider.
It does this by calling the di sconnect () method on each of the Connecti ons returned by the
provider's get Connecti ons() method.

4.4 Connection interceptors

In the course of creating a connection with a service provider, you may want to inject additional
functionality into the connection flow. For instance, perhaps you'd like to automatically post a tweet to
a user's Twitter timeline immediately upon creating the connection.

Connect Cont rol | er may be configured with one or more connection interceptors that it will call at
points in the connection flow. These interceptors are defined by the Connect | nt er cept or interface:

public interface Connect | nterceptor<A> {

voi d preConnect (Connecti onFact ory<A> connecti onFactory, Milti Val ueMap<String, String>
par aneters, WebRequest request);

voi d post Connect (Connecti on<A> connecti on, WbRequest request);

The pr eConnect () method will be called by Connect Cont r ol | er just before redirecting the browser
to the provider's authorization page. Custom authorization parameters may be added to the provided
parameter map. post Connect () will be called immediately after a connection has been persisted
linking the user's local account with the provider profile.

For example, suppose that after connecting a user account with their Twitter profile you want to
immediately post a tweet about that connection to the user's Twitter timeline. To accomplish that, you
might write the following connection interceptor:

Spring Social Reference
1.1.0.M3 Documentation 37

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/filter/HiddenHttpMethodFilter.html

Spring Social

public class Tweet Aft er Connect | nterceptor inplenents Connectl|nterceptor<Twitter> {

public void preConnect (Connecti onFactory<Twi tterApi > provider, MiltiVal ueMap<String,
String> paraneters, WebRequest request) {
/'l nothing to do

public voi d post Connect (Connection<Twi tterApi > connecti on, WebRequest request) {
connection. updateStatus("l've connected with the Spring Social Showcase!");

This interceptor can then be injected into Connect Cont r ol | er when it is created:

@ean
publ i c Connect Controller connectController() {
Connect Control |l er controller = new Connect Control | er(connecti onFactorylLocator (),
connecti onRepository());
control |l er.addl nterceptor(new Tweet Aft er Connect I nterceptor());
return controller;

Or, as configured in XML:

<bean cl ass="org. spri ngfranewor k. soci al . connect. web. Connect Control |l er">
<property name="i nterceptors">
<list>

<bean cl ass="org. spri ngframework. soci al . showcase. twi tter. Tweet Aft er Connect | nterceptor" /
</list>

</ property>
</ bean>

Note that the i nt er cept or s property is a list and can take as many interceptors as you'd like to wire
into it. When it comes time for Connect Cont r ol | er to call into the interceptors, it will only invoke the
interceptor methods for those interceptors whose service operations type matches the service provider's
operations type. In the example given here, only connections made through a service provider whose
operation type is Twi t t er Api will trigger the interceptor's methods.

Spring Social Reference
1.1.0.M3 Documentation 38

Spring Social

5. Signing in with Service Provider Accounts

5.1 Introduction

In order to ease sign in for their users, many applications allow sign in with a service provider such as
Twitter or Facebook. With this authentication technique, the user signs into (or may already be signed
into) his or her provider account. The application then tries to match that provider account to a local user
account. If a match is found, the user is automatically signed into the application.

Spring Social supports such service provider-based authentication
with Provi der Si gnl nControl | er from the spring-social -web module.
Provi der Si gnl nCont r ol | er works very much like Connect Cont r ol | er inthat it goes through the
OAuth flow (either OAuth 1 or OAuth 2, depending on the provider). Instead of creating a connection at
the end of process, however, Pr ovi der Si gnl nCont r ol | er attempts to find a previously established
connection and uses the connected account to authenticate the user with the application. If no previous
connection matches, the flow will be sent to the application's sign up page so that the user may register
with the application.

5.2 Enabling provider sign in

To add provider sign in capability to your Spring application, configure Pr ovi der Si gnl nControl | er
as a bean in your Spring MVC application:

@Bean
publ i c ProviderSignlnController providerSignlnController() {
return new Provider Si gnl nControl | er(connectionFactorylLocator(),
user sConnect i onRepository(), new Si npl eSi gnl nAdapter());

Or in XML, if you prefer:

<bean cl ass="org. spri ngframework. soci al . connect . web. Provi der Si gnl nController">
<I-- relies on by-type autowiring for the constructor-args -->
</ bean>

As with Connect Control | er, Provi der Si gnl nCont r ol | er uses information from the request to
determine the protocol, host name, and port number to use when creating a callback URL. But you
may set the appl i cati onUr| property to the base external URL of your application to overcome any
problems where the request refers to an internal server. For example:

@Bean
publ i c ProviderSignlnController providerSignlnController() {
Provi der Si gnl nControl l er controller = new
Provi der Si gnl nControl | er (connecti onFact oryLocat or (),
user sConnect i onReposi tory(), new Sinpl eSi gnl nAdapter());
controller.setApplicationUl (environnent.getProperty("application.url"));
return controller

Spring Social Reference
1.1.0.M3 Documentation 39

Spring Social

Or when configured in XML:

<bean cl ass="org. spri ngfranewor k. soci al . connect . web. Provi der Si gnl nControl |l er">

<l-- relies on by-type autowiring for the constructor-args -->
<property nane="applicationUl" val ue="${application.url}" />
</ bean>

Once again, we recommend that you externalize the value of the application URL since it will vary
between deployment environments.

When authenticating via an OAuth 2 provider, Pr ovi der Si gnl nCont r ol | er supports the following
flow:

e PCST /signin/{providerld} - Initiates the sign in flow by redirecting to the provider's
authentication endpoint.

e GET /signin/{providerld}?code={verifier} - Receives the authentication callback from
the provider, accepting a code. Exchanges this code for an access token. Using this access token,
it retrieves the user's provider user ID and uses that to lookup a connected account and then
authenticates to the application through the sign in service.

« If the provider user ID doesn't match any existing connection, Pr ovi der Si gnl nCont r ol | er will
redirect to a sign up URL. The default sign up URL is "/signup" (relative to the application root), but
can be customized by setting the si gnUpUr | property.

« Ifthe provider user ID matches more than one existing connection, Pr ovi der Si gnl nControl | er
will redirect to the application's sign in URL to offer the user a chance to sign in through another
provider or with their username and password. The request to the sign in URL will have an "error"
query parameter set to "multiple_users" to indicate the problem so that the page can communicate
it to the user. The default sign in URL is "/signin” (relative to the application root), but can be
customized by setting the si gnl nUr | property.

« If any error occurs while fetching the access token or while fetching the user's profile data,
Provi der Si gnl nCont r ol | er will redirect to the application's sign in URL. The request to the
sign in URL will have an "error" query parameter set to "provider" to indicate an error occurred while
communicating with the provider. The default sign in URL is "/signin" (relative to the application
root), but can be customized by setting the si gnl nUr | property.

For OAuth 1 providers, the flow is only slightly different:

» PCST /signin/{providerld} - Initiates the sign in flow. This involves fetching a request token
from the provider and then redirecting to Provider's authentication endpoint.

« If any error occurs while fetching the request token, Pr ovi der Si gnl nCont r ol | er will redirect to
the application's sign in URL. The request to the sign in URL will have an "error" query parameter set
to "provider" to indicate an error occurred while communicating with the provider. The default signin
URL is "/signin” (relative to the application root), but can be customized by setting the si gnl nUr |

property.

o GET / si gnin/ {providerld}?oaut h_t oken={request
t oken} &aut h_verifier={verifier} - Receives the authentication callback from the provider,
accepting a verification code. Exchanges this verification code along with the request token for an

Spring Social Reference
1.1.0.M3 Documentation 40

Spring Social

access token. Using this access token, it retrieves the user's provider user ID and uses that to lookup
a connected account and then authenticates to the application through the sign in service.

« If the provider user ID doesn't match any existing connection, Pr ovi der Si gnl nCont r ol | er will
redirect to a sign up URL. The default sign up URL is "/signup" (relative to the application root), but
can be customized by setting the si gnUpUr | property.

« Ifthe provider user ID matches more than one existing connection, Pr ovi der Si gnl nControl | er
will redirect to the application's sign in URL to offer the user a chance to sign in through another
provider or with their username and password. The request to the sign in URL will have an "error"
query parameter set to "multiple_users" to indicate the problem so that the page can communicate
it to the user. The default sign in URL is "/signin” (relative to the application root), but can be
customized by setting the si gnl nUr | property.

« If any error occurs when exchanging the request token for an access token or while fetching the
user's profile data, Pr ovi der Si gnl nCont r ol | er will redirect to the application's sign in URL.
The request to the sign in URL will have an "error" query parameter set to "provider” to indicate an
error occurred while communicating with the provider. The default sign in URL is "/signin” (relative
to the application root), but can be customized by setting the si gnl nUr | property.

ProviderSigninController's dependencies

As shown in the Java-based configuration above, Provi der Si gnl nControl | er depends on a
handful of other objects to do its job.

A Connecti onFact oryLocat or to lookup the ConnectionFactory used to create the Connection
to the provider.

* A UsersConnecti onRepository to find the user that has the connection to the provider user
attempting to sign in.

* A Si gnl nAdapt er to sign a user into the application when a matching connection is found.

When using XML configuration, it isn't necessary to explicitly configure these constructor
arguments because Pr ovi der Si gnl nCont r ol | er's constructor is annotated with @ nj ect . Those
dependencies will be given to Pr ovi der Si gnl nCont r ol | er via autowiring. You'll still need to make
sure they're available as beans in the Spring application context so that they can be autowired.

You should have already configured most of these dependencies when setting up connection support
(in the previous chapter). But when used with Pr ovi der Si gnl nCont r ol | er, you should configure
them to be created as scoped proxies:

Spring Social Reference
1.1.0.M3 Documentation 41

Spring Social

@ean
@cope(val ue="si ngl eton", proxyMde=ScopedProxyMde. | NTERFACES)
publ i ¢ Connecti onFact oryLocat or connecti onFactorylLocator() {
Connecti onFactoryRegi stry registry = new Connecti onFactoryRegi stry();

regi stry. addConnect i onFact or y(new FacebookConnect i onFact ory(
envi ronnment . get Property("facebook.clientld"),
envi ronment . get Property("facebook. clientSecret")));

regi stry. addConnect i onFact ory(new Twi tt er Connect i onFact or y(
envi ronment . get Property("tw tter.consunmerKey"),
envi ronment . get Property("“tw tter.consumer Secret")));

return registry;

}

@Bean
@cope(val ue="si ngl et on", proxyMbde=ScopedProxyNMbde. | NTERFACES)
publ i c UsersConnecti onRepository usersConnecti onRepository() {
return new JdbcUser sConnecti onReposi t ory(dat aSource, connecti onFactorylLocator (),
t ext Encryptor);

}

In the event that the sign in attempt fails, the sign in attempt will be stored in the session to be used to
present a sign-up page to the user (see Section 5.3, “Signing up after a failed sign in”). By configuring
ConnectionFactoryLocator and UsersConnectionRepository as scoped proxies, it enables the proxies
to be carried along with the sign in attempt in the session rather than the actual objects themselves.

The Si gnl nAdapt er is exclusively used for provider sign in and so a Si gnl nAdapt er bean will need
to be added to the configuration. But first, you'll need to write an implementation of the Si gnl nAdapt er
interface.

The Si gnl nAdapt er interface is defined as follows:

public interface SignlnAdapter {
String signln(String userld, Connection<?> connection, NativeWbRequest request);

}

The si gnl n() method takes the local application user's user ID normalized as a St ri ng. No other
credentials are necessary here because by the time this method is called the user will have signed
into the provider and their connection with that provider has been used to prove the user's identity.
Implementations of this interface should use this user ID to authenticate the user to the application.

Different applications will implement security differently, so each application must implement
Si gnl nAdapt er in a way that fits its unique security scheme. For example, suppose that an
application's security is based on Spring Security and simply uses a user's account ID as their principal.
In that case, a simple implementation of Si gnl nAdapt er might look like this:

Spring Social Reference
1.1.0.M3 Documentation 42

Spring Social

@ber vi ce
public class SpringSecuritySignlnAdapter inplenments SignlnAdapter {
public String signin(String |ocal Userld, Connection<?> connection, NativeWbRequest

request) {
Securi t yCont ext Hol der . get Cont ext (). set Aut henti cati on(
new User nanePasswor dAut hent i cati onToken(l ocal Userld, null, null));
return null;
}

Adding a provider sign in button

With Provi der Si gnl nControl | er and a Si gnl nAdapt er configured, the backend support for
provider sign in is in place. The last thing to do is to add a sign in button to your application that will kick
off the authentication flow with Pr ovi der Si gnl nControl | er.

For example, the following HTML snippet adds a "Signin with Twitter" button to a page:

<formid="tw_signin" action="<c:url value="/signin/twitter"/>" nethod="POST">
<button type="submit">
<inmg src="<c:url value="/resources/social/twitter/sign-in-with-twitter-d.png"/>" />
</ but t on>
</fornr

Notice that the path used in the form's action attribute maps to the first step in
Provi der Si gnl nCont rol | er's flow. In this case, the provider is identified as "twitter".

© Note

Some providers offer client-side sign in widgets, such as Twitter @Anywhere's "Connect with
Twitter" button and Facebook's <f b: | ogi n- but t on>. Although these widgets offer a sign
in experience similar to that of Provi der Si gnl nContr ol | er, they cannot be used to drive
Provi der Si gnl nCont r ol | er'ssigninflow. The Provi der Si gnl nCont r ol | er signin flow
should be initiated by submitting a POST request as described above.

Clicking this button will trigger a POST request to "/signin/twitter", kicking off the Twitter sign in flow. If
the user has not yet signed into Twitter, the user will be presented with the following page from Twitter:

After signing in, the flow will redirect back to the application to complete the sign in process.

5.3 Signing up after a failed sign in

If Provi der Si gnl nControl | er can't find a local user associated with a provider user attempting
to sign in, there may be an opportunity to have the user sign up with the application. Leveraging the
information about the user received from the provider, the user may be presented with a pre-filled sign
up form to explicitly sign up with the application. It's also possible to use the user's provider data to
implicitly create a new local application user without presenting a sign up form.

Spring Social Reference
1.1.0.M3 Documentation 43

Spring Social

Signing up with a sign up form

By default, the sign up URL is "/signup", relative to the application root. You can override that default
by setting the si gnUpUr| property on the controller. For example, the following configuration of
Provi der Si gnl nContr ol | er sets the sign up URL to "/register":

@ean
publ i c ProviderSignlnController providerSignlnController() {
Provi der Si gnl nControl |l er controller = new
Provi der Si gnl nControl | er (connecti onFact oryLocat or (),
user sConnect i onRepository(), new Si npl eSi gnl nAdapter());
control ler.setSignUpUrl ("/register");
return controller;

Or to set the sign up URL using XML configuration:

<bean cl ass="org. spri ngfranewor k. soci al . connect . web. Provi der Si gnl nControl |l er">
<property nane="signUpUrl" val ue="/register" />
</ bean>

Before redirecting to the sign up page, Pr ovi der Si gnl nCont r ol | er collects some information about
the authentication attempt. This information can be used to prepopulate the sign up form and then, after
successful sign up, to establish a connection between the new account and the provider account.

To prepopulate the sign up form, you can fetch the user profile data from a connection retrieved
from Provi der Si gnl nUti | s. get Connecti on() . For example, consider this Spring MVC controller
method that setups up the sign up form with a Si gnupFor mto bind to the sign up form:

@request Mappi ng(val ue="/si gnup", met hod=Request Met hod. GET)
publ i ¢ Si gnupFor m si gnupFor m WebRequest request) {
Connecti on<?> connection = ProviderSignlnUtils.getConnection(request);

if (connection != null) {
return Si gnupForm fronProvi derUser (connection. fetchUserProfile());
} else {

return new Si gnupForn();

}

If Provi der SignlnUtils. get Connection() returns a connection, that means there was a failed
provider sign in attempt that can be completed if the user registers to the application. In that
case, a Si ghupFor m object is created from the user profile data obtained from the connection's
fetchUser Profil e() method. Within f r onPr ovi der User (), the Si gnupFor mproperties may be
set like this:

Spring Social Reference
1.1.0.M3 Documentation 44

Spring Social

public static SignupForm fronProviderUser(UserProfile providerUser) {
Si gnupForm form = new Si gnupFor () ;
form set Fi rst Name(provi der User. get Fi rst Nane()) ;
f orm set Last Name(pr ovi der User . get Last Nane()) ;
form set User nane(provi der User . get User nane()) ;
form set Emai | (provi derUser. get Email ());
return form

Here, the Si gnupFor mis created with the user's first name, last name, username, and email from the
User Prof i | e. In addition, User Pr of i | e also has a get Name() method which will return the user's
full name as given by the provider.

The availability of User Pr of i | e's properties will depend on the provider. Twitter, for example, does
not provide a user's email address, so the get Emai | () method will always return null after a sign in
attempt with Twitter.

After the wuser has successfully signed up in your application a connection can be
created between the new local user account and their provider account. To complete the
connection call ProviderSi gnlnltils. handl ePost Si gnUp(). For example, the following
method handles the sign up form submission, creates an account and then calls
Provi der Si gnl nUti | s. handl ePost Si gnUp() to complete the connection:

@Request Mappi ng(val ue="/si gnup", nethod=Request Met hod. POST)
public String signup(@alid SignupForm form Bindi ngResult fornBinding, WebRequest
request) {
if (formBinding.hasErrors()) {

return null;
}
Account account = createAccount(form fornBinding);
if (account != null) {
SignlnUils. signin(account. get Usernane());
Provi der Si gnlnUtil s. handl ePost Si gnUp(account . get User nane(), request);
return “"redirect:/";
}
return null;

Implicit sign up

To enable implicit sign up, you must create an implementation of the Connect i onSi gnUp interface and
inject an instance of that Connect i onSi gnUp to the connection repository. The Connecti onSi gnUp
interface is simple, with only a single method to implement:

public interface ConnectionSignUp {
String execut e(Connecti on<?> connection);

}

The execut e() method is given a Connect i on that it can use to retrieve information about the user.
It can then use that information to create a new local application user and return the new local user

Spring Social Reference
1.1.0.M3 Documentation 45

Spring Social

ID. For example, the following implementation fetches the user's provider profile and uses it to create
a new account:

public class Account Connecti onSi gnUp i npl enents Connecti onSi gnUp {
private final AccountRepository account Repository;

publ i ¢ Account Connecti onSi gnUp(Account Reposi tory account Repository) {
t hi s. account Repository = account Repository;

public String execute(Connection<?> connection) {
UserProfile profile = connection.fetchUserProfile();
Account account = new Account (profile.getUsername(), profile.getFirstNane(),
profile. getLastNane());
account Reposi tory. creat eAccount (account) ;
return account. get User nane();

If there is any problem in creating the new user implicitly (for example, if the implicitly chosen username
is already taken) execut e() may return null to indicate that the user could not be created implicitly.
This will ultimately result in Pr ovi der Si gnl nCont r ol | er redirecting the user to the signup page.

Once you've written a Connecti onSi gnUp for your application, you'll need to inject it into the
User sConnect i onReposi t ory. In Java-based configuration:

@ean

@cope(val ue="si ngl eton", proxyMde=ScopedProxyMde. | NTERFACES)

publ i c UsersConnecti onRepository usersConnecti onRepository(Account Repository

account Repository) {
JdbcUser sConnecti onRepository repository = new JdbcUser sConnecti onReposi tory(
dat aSour ce, connectionFactorylLocator(), Encryptors.noQpText());

repository. set Connecti onSi gnUp(new Account Connecti onSi gnUp(account Repository));
return repository;

Spring Social Reference
1.1.0.M3 Documentation 46

	Spring Social Reference Documentation
	Table of Contents
	1. Spring Social Overview
	1.1 Introduction
	1.2 Socializing applications
	1.3 How to get
	Client modules

	1.4 Dependencies
	Java
	Java Servlet API
	Spring Framework
	Spring Security Crypto
	Apache HttpComponents
	Jackson JSON Processor

	1.5 Sample Code

	2. Service Provider 'Connect' Framework
	2.1 Core API
	2.2 Establishing connections
	OAuth2 service providers
	OAuth1 service providers
	Registering ConnectionFactory instances

	2.3 Persisting connections
	JDBC-based persistence

	3. Adding Support for a New Service Provider
	3.1 Process overview
	3.2 Creating a source project for the provider client code
	Code structure guidelines

	3.3 Developing a Java binding to the provider's API
	Designing a new Java API binding
	Implementing a new Java API binding
	Testing a new Java API binding
	Integrating an existing Java API binding

	3.4 Creating a ServiceProvider model
	OAuth2
	OAuth1

	3.5 Creating an ApiAdapter
	3.6 Creating a ConnectionFactory
	OAuth2
	OAuth1

	4. Connecting to Service Providers
	4.1 Introduction
	4.2 Configuring ConnectController
	Configuring connection support in XML

	4.3 Creating connections with ConnectController
	Displaying a connection page
	Initiating the connection flow
	Authorization scope

	Responding to the authorization callback
	Disconnecting

	4.4 Connection interceptors

	5. Signing in with Service Provider Accounts
	5.1 Introduction
	5.2 Enabling provider sign in
	ProviderSignInController's dependencies
	Adding a provider sign in button

	5.3 Signing up after a failed sign in
	Signing up with a sign up form
	Implicit sign up

