Spring Statemachine - Reference Documentation
Table of Contents
	Preface
	I. Introduction	1. Requirements
	2. Background
	3. Usage Scenarios

	II. Spring and Statemachine	4. Statemachine Configuration	Configuring States
	Configuring Hierarchical States
	Configuring Regions
	Configuring Transitions
	Configuring Guards
	Configuring Actions
	Configuring Pseudo States	Initial State
	Terminate State
	History State
	Choice State
	Fork State
	Join State

	5. State Machine Factories	Factory Limitations

	6. Using Actions	SpEL Expressions with Actions

	7. Using Guards	SpEL Expressions with Guards

	8. Using StateContext
	9. Triggering Transitions	EventTrigger
	TimerTrigger

	10. Listening State Machine Events	Application Context Events
	State Machine Listener
	Limitations and Problems

	11. Context Integration	Annotation Support

	III. State Machine Examples	12. Turnstile
	13. Showcase
	14. CD Player
	15. Tasks
	16. Washer

	IV. FAQ	17. State Changes
	18. Extented State

	V. Appendices	A. Support Content	Classes Used in This Document

	B. State Machine Concepts	Quick Example
	Glossary
	A State Machines Crash Course	States
	Pseudo States	Initial
	End
	Choice
	History
	Fork
	Join

	Guard Conditions
	Events
	Transitions	Internal Transition
	External vs. Local Transition

	Actions
	Hierarchical State Machines
	Regions

Spring Statemachine - Reference Documentation

 Janne Valkealahti
Pivotal

1.0.0.M2

Copyright © 2015 Pivotal Software, Inc.

 Copies of this document may be made for your own use and for
 distribution to others, provided that you do not charge any fee for such
 copies and further provided that each copy contains this Copyright
 Notice, whether distributed in print or electronically.

Preface

Concept of a state machine is most likely older that any of a reader
of this reference documentation and definitely older than a Java
language itself. Description of finite automate dates back to 1943
when gentlements Warren McCulloch and Walter Pitts wrote a paper about
it. Later George H. Mealy presented a state machine concept in 1955
which is known as a Mealy Machine. A year later in 1956 Edward F.
Moore presented another paper which is known as a Moore Machine. If
you’re ever read anything about state machines, names Mealy and Moore
should have popped up at some point.

This reference documentations contains following parts.

Part I, “Introduction” introduction to this reference documentation

Part II, “Spring and Statemachine” describes the usage of Spring State Machine(SSM)

Part III, “State Machine Examples” more detailed state machine samples

Part IV, “FAQ” frequently ask questions

Part V, “Appendices” generic info about used material and state machines

Part I. Introduction

Spring Statemachine(SSM) is a framework for application developers to
use traditional state machine concepts with Spring applications. SSM
aims to provide following features:

	
Easy to use flat one level state machine for simple use cases.

	
Hierarchical state machine structure to ease complex state
configuration.

	
State machine regions to provide even more complex state
configurations.

	
Usage of triggers, transitions, guards and actions.

	
Type safe configuration adapter.

	
State machine event listeners.

	
Spring IOC integration to associate beans with a state machine.

Before you continue it’s worth to go through appendices the section called “Glossary”
and the section called “A State Machines Crash Course” to get a generic idea of what state machines are
mostly because rest of a documentation expects reader to be fairly
familiar with state machine concepts.

Chapter 1. Requirements

Spring Statemachine 1.0.0.M2 is built and tested with JDK 7 and Spring
Framework 4.1.6.RELEASE and doesn’t require any other dependencies
outside of Spring Framework. Samples require spring-shell and
spring-boot which pulls other dependencies beyond framework
itself.

Chapter 2. Background

State machines are powerful because behaviour is always guaranteed to be
consistent and relatively easily debugged due to ways how operational
rules are written in stone when machine is started. Idea is that your
application is and may exist in a finite number of states and then something
happens which takes your application from one state to the next. What
will drive a state machine are triggers which are either based on
events or timers.

It is much easier to design high level logic outside of your
application and then interact with a state machine with a various
different ways. You can simply interact with a state machine by
sending event, listening what a state machine does or simply request a
current state.

Traditionally state machines are added to a existing project when
developer realizes that code base is starting to look like a plate
full of spaghetti. Spaghetti code looks like never ending hierarchical
structure of IFs, ELSEs and BREAK clauses and probably compiler should
ask developer to go home when things are starting to look too complex.

Chapter 3. Usage Scenarios

Project is a good candidate to use state machine if:

	
Application or part of its structure can be represented as states.

	
You want to split complex logic into smaller manageable tasks.

	
Application is already suffering concurrency issues with i.e.
something happening asynchronously.

You are already trying to implement a state machine if:

	
Use of boolean flags or enums to model situations.

	
Having variables which only have meaning for some part of your
application lifecycle.

	
Looping through if/else structure and checking if particular flag or
enum is set and then making further exceptions what to do when certain
combination of your flags and enums exists or doesn’t exist together.

Part II. Spring and Statemachine

This part of the reference documentation explains the core functionality
that Spring Statemachine provides to any Spring based application.

Chapter 4, Statemachine Configuration describes the generic configuration support.

Chapter 5, State Machine Factories describes the generic state machine factory support.

Chapter 9, Triggering Transitions describes the use of triggers.

Chapter 10, Listening State Machine Events describes the use of state machine listeners.

Chapter 11, Context Integration describes the generic Spring application context support.

Chapter 4. Statemachine Configuration

One of the common tasks when using a Statemachine is to design its
runtime configuration. This chapter will focus on how Spring
Statemachine is configured and how it leverages Spring’s lightweight
IoC containers to simplify the application internals to make it more
manageable.

	[image: [Note]]	Note
	
Configuration examples in this section are not feature complete, i.e.
you always need to have definitions of both states and transitions,
otherwise state machine configuration would be ill-formed. We have
simply made code snippets less verbose by leaving other needed parts
away.

Configuring States

We’ll get into more complex configuration examples a bit later but
lets first start with a something simple. For most simple state
machine you just use EnumStateMachineConfigurerAdapter and define
possible states, choose initial and optional end state.

@Configuration
@EnableStateMachine
public static class Config1 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override
 public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.S1)
 .end(States.SF)
 .states(EnumSet.allOf(States.class));
 }

}

Configuring Hierarchical States

Hierarchical states can be defined by using multiple withStates()
calls where parent() can be used to indicate that these
particular states are sub-states of some other state.

@Configuration
@EnableStateMachine
public static class Config2 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override
 public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.S1)
 .state(States.S1)
 .and()
 .withStates()
 .parent(States.S1)
 .initial(States.S2)
 .state(States.S2);
 }

}

Configuring Regions

There are no special configuration methods to mark a collection of
states to be part of an orthogonal state. To put it simple, orthogonal
state is created when same hierarchical state machine has multiple set
of states each having a initial state. Because an individual state
machine can only have one initial state, multiple initial states must
mean that a specific state must have multiple independent regions.

@Configuration
@EnableStateMachine
public static class Config10
 extends EnumStateMachineConfigurerAdapter<States2, Events> {

 @Override
 public void configure(StateMachineStateConfigurer<States2, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States2.S1)
 .state(States2.S2)
 .and()
 .withStates()
 .parent(States2.S2)
 .initial(States2.S2I)
 .state(States2.S21)
 .end(States2.S2F)
 .and()
 .withStates()
 .parent(States2.S2)
 .initial(States2.S3I)
 .state(States2.S31)
 .end(States2.S3F);
 }

}

Configuring Transitions

We support three different types of transitions, external,
internal and local. Transitions are either triggered by a signal
which is an event sent into a state machine or a timer.

@Configuration
@EnableStateMachine
public static class Config3 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override
 public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.S1)
 .states(EnumSet.allOf(States.class));
 }

 @Override
 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)
 throws Exception {
 transitions
 .withExternal()
 .source(States.S1).target(States.S2)
 .event(Events.E1)
 .and()
 .withInternal()
 .source(States.S2)
 .event(Events.E2)
 .and()
 .withLocal()
 .source(States.S2).target(States.S3)
 .event(Events.E3);
 }

}

Configuring Guards

Guards are used to protect state transitions. Interface Guard is
used to do an evaluation where method has access to a StateContext.

@Configuration
@EnableStateMachine
public static class Config4 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override
 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)
 throws Exception {
 transitions
 .withExternal()
 .source(States.S1).target(States.S2)
 .event(Events.E1)
 .guard(guard())
 .and()
 .withExternal()
 .source(States.S2).target(States.S3)
 .event(Events.E2)
 .guardExpression("true");

 }

 @Bean
 public Guard<States, Events> guard() {
 return new Guard<States, Events>() {

 @Override
 public boolean evaluate(StateContext<States, Events> context) {
 return true;
 }
 };
 }

}

In above two different types of guard configurations are used. Firstly a
simple Guard is created as a bean and attached to transition between
states S1 and S2.

Secondly a simple spel expression can be used as a guard where
expression must return a BOOLEAN value. Behind a scenes this spel
based guard is a SpelExpressionGuard. This was attached to
transition between states S2 and S3. Both guard in above sample
always evaluate to true.

Configuring Actions

Actions can be defined with various steps within a state transitions.

@Configuration
@EnableStateMachine
public static class Config5 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override
 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)
 throws Exception {
 transitions
 .withExternal()
 .source(States.S1)
 .target(States.S2)
 .event(Events.E1)
 .action(action());
 }

 @Bean
 public Action<States, Events> action() {
 return new Action<States, Events>() {

 @Override
 public void execute(StateContext<States, Events> context) {
 // do something
 }
 };
 }

}

Configuring Pseudo States

Pseudo state configuration is usually done by configuring states and
transitions. Pseudo states are automatically added to state machine as
states.

Initial State

Simply mark a particular state as initial state by using initial()
method. There are two methods where one takes extra argument to define
an initial action. This initial action is good for example initialize
extended state variables.

@Configuration
@EnableStateMachine
public static class Config11 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override
 public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.S1, initialAction())
 .end(States.SF)
 .states(EnumSet.allOf(States.class));
 }

 @Bean
 public Action<States, Events> initialAction() {
 return new Action<States, Events>() {

 @Override
 public void execute(StateContext<States, Events> context) {
 // do something initially
 }
 };
 }

}

Terminate State

Simply mark a particular state as end state by using end() method.
This can be done max one time per individual sub-machine or region.

@Configuration
@EnableStateMachine
public static class Config1 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override
 public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.S1)
 .end(States.SF)
 .states(EnumSet.allOf(States.class));
 }

}

History State

History state can be defined once for each individual state machine.
You need to choose its state identifier and History.SHALLOW or
History.DEEP respectively.

@Configuration
@EnableStateMachine
public static class Config12 extends EnumStateMachineConfigurerAdapter<States3, Events> {

 @Override
 public void configure(StateMachineStateConfigurer<States3, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States3.S1)
 .state(States3.S2)
 .and()
 .withStates()
 .parent(States3.S2)
 .initial(States3.S2I)
 .state(States3.S21)
 .state(States3.S22)
 .history(States3.SH, History.SHALLOW);
 }

}

Choice State

Choice needs to be defined in both states and transitions to work
properly. Mark particular state as choice state by using choice()
method. This state needs to match source state when transition is
configured for this choice.

Transition is configured using withChoice() where you define source
state and first/then/last structure which is equivalent to normal
if/elseif/else. With first and then you can specify a guard just
like you’d use a condition with if/elseif clauses.

Transition needs to be able to exist so make sure last is used.
Otherwise configuration is ill-formed.

@Configuration
@EnableStateMachine
public static class Config13 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override
 public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.SI)
 .choice(States.S1)
 .end(States.SF)
 .states(EnumSet.allOf(States.class));
 }

 @Override
 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)
 throws Exception {
 transitions
 .withChoice()
 .source(States.S1)
 .first(States.S2, s2Guard())
 .then(States.S3, s3Guard())
 .last(States.S4);
 }

 @Bean
 public Guard<States, Events> s2Guard() {
 return new Guard<States, Events>() {

 @Override
 public boolean evaluate(StateContext<States, Events> context) {
 return false;
 }
 };
 }

 @Bean
 public Guard<States, Events> s3Guard() {
 return new Guard<States, Events>() {

 @Override
 public boolean evaluate(StateContext<States, Events> context) {
 return true;
 }
 };
 }

}

Fork State

Fork needs to be defined in both states and transitions to work
properly. Mark particular state as choice state by using fork()
method. This state needs to match source state when transition is
configured for this fork.

Target state needs to be a super state or immediate states in
regions. Using a super state as target will take all regions into
initial states. Targeting individual state give more controlled entry
into regions.

@Configuration
@EnableStateMachine
public static class Config14 extends EnumStateMachineConfigurerAdapter<States2, Events> {

 @Override
 public void configure(StateMachineStateConfigurer<States2, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States2.S1)
 .fork(States2.S2)
 .state(States2.S3)
 .and()
 .withStates()
 .parent(States2.S3)
 .initial(States2.S2I)
 .state(States2.S21)
 .state(States2.S22)
 .end(States2.S2F)
 .and()
 .withStates()
 .parent(States2.S3)
 .initial(States2.S3I)
 .state(States2.S31)
 .state(States2.S32)
 .end(States2.S3F);
 }

 @Override
 public void configure(StateMachineTransitionConfigurer<States2, Events> transitions)
 throws Exception {
 transitions
 .withFork()
 .source(States2.S2)
 .target(States2.S22)
 .target(States2.S32);
 }

}

Join State

Join needs to be defined in both states and transitions to work
properly. Mark particular state as choice state by using join()
method. This state doesn’t need to match either source states or
target state in a transition configuration.

Select one target state where transition goes when all source states
has been joined. If you use state hosting regions as source, end
states of a regions are used as joins. Otherwise you can pick any
states from a regions.

@Configuration
@EnableStateMachine
public static class Config15 extends EnumStateMachineConfigurerAdapter<States2, Events> {

 @Override
 public void configure(StateMachineStateConfigurer<States2, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States2.S1)
 .state(States2.S3)
 .join(States2.S4)
 .and()
 .withStates()
 .parent(States2.S3)
 .initial(States2.S2I)
 .state(States2.S21)
 .state(States2.S22)
 .end(States2.S2F)
 .and()
 .withStates()
 .parent(States2.S3)
 .initial(States2.S3I)
 .state(States2.S31)
 .state(States2.S32)
 .end(States2.S3F);
 }

 @Override
 public void configure(StateMachineTransitionConfigurer<States2, Events> transitions)
 throws Exception {
 transitions
 .withJoin()
 .source(States2.S2F)
 .source(States2.S3F)
 .target(States2.S5);
 }

}

Chapter 5. State Machine Factories

There are use cases when state machine needs to be created dynamically
instead of defining static configuration at compile time. For example
if there are custom components which are using its own state machines
and these components are created dynamically it is impossible to have
a static state machined build during the application start. Internally
state machines are always build via a factory interfaces and this then
gives user an option to use this feature programmatically.
Configuration for state machine factory is exactly same as you’ve seen
in various examples in this document where state machine configuration
is hard coded.

Actually creating a state machine using @EnableStateMachine will
work via factory so @EnableStateMachineFactory is merely exposing
that factory via its interface.

@Configuration
@EnableStateMachineFactory
public static class Config6
 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override
 public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.S1)
 .end(States.SF)
 .states(EnumSet.allOf(States.class));
 }

}

Now that you’ve used @EnableStateMachineFactory to create a factory
instead of a state machine bean, it can be injected and used as is to
request new state machines.

static class Bean3 {

 @Autowired
 StateMachineFactory<States, Events> factory;

 void method() {
 StateMachine<States,Events> stateMachine = factory.getStateMachine();
 stateMachine.start();
 }
}

Factory Limitations

Current limitation of factory is that all actions and guard it is
associating with created state machine will share a same instances.
This means that from your actions and guard you will need to
specifically handle a case that same bean will be called by a different
state machines. This limitation is something which will be resolved in
future releases.

Chapter 6. Using Actions

Actions are one of the most useful components from user perspective to
interact and collaborate with a state machine. Actions can be executed
in various places in a state machine and its states lifecycle like
entering or exiting states or during a transitions.

@Override
public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.SI)
 .state(States.S1, action1(), action2())
 .state(States.S2, action1(), action2())
 .state(States.S3, action1(), action3());
}

Above action1 and action2 beans are attached to states entry and
exit respectively.

@Bean
public Action<States, Events> action1() {
 return new Action<States, Events>() {

 @Override
 public void execute(StateContext<States, Events> context) {
 }
 };
}

@Bean
public BaseAction action2() {
 return new BaseAction();
}

@Bean
public SpelAction action3() {
 ExpressionParser parser = new SpelExpressionParser();
 return new SpelAction(
 parser.parseExpression(
 "stateMachine.sendEvent(T(org.springframework.statemachine.docs.Events).E1)"));
}

static class BaseAction implements Action<States, Events> {

 @Override
 public void execute(StateContext<States, Events> context) {
 }
}

static class SpelAction extends SpelExpressionAction<States, Events> {

 public SpelAction(Expression expression) {
 super(expression);
 }
}

You can directly implement Action as an anonymous function or create
a your own implementation and define appropriate implementation as a
bean.

In action3 a SpEL expression is used to send event Events.E1 into
a state machine.

	[image: [Note]]	Note
	
StateContext is described in section Chapter 8, Using StateContext.

SpEL Expressions with Actions

It is also possible to use SpEL expressions as a replacement for a
full Action implementation.

Chapter 7. Using Guards

Above guard1 and guard2 beans are attached to states entry and
exit respectively.

@Override
public void configure(StateMachineTransitionConfigurer<States, Events> transitions)
 throws Exception {
 transitions
 .withExternal()
 .source(States.SI).target(States.S1)
 .event(Events.E1)
 .guard(guard1())
 .and()
 .withExternal()
 .source(States.S1).target(States.S2)
 .event(Events.E1)
 .guard(guard2())
 .and()
 .withExternal()
 .source(States.S2).target(States.S3)
 .event(Events.E2)
 .guardExpression("extendedState.variables.get('myvar')");
}

You can directly implement Guard as an anonymous function or create
a your own implementation and define appropriate implementation as a
bean. In above sample guardExpression is simply checking if extended
state variable myvar evaluates to TRUE.

@Bean
public Guard<States, Events> guard1() {
 return new Guard<States, Events>() {

 @Override
 public boolean evaluate(StateContext<States, Events> context) {
 return true;
 }
 };
}

@Bean
public BaseGuard guard2() {
 return new BaseGuard();
}

static class BaseGuard implements Guard<States, Events> {

 @Override
 public boolean evaluate(StateContext<States, Events> context) {
 return false;
 }
}

	[image: [Note]]	Note
	
StateContext is described in section Chapter 8, Using StateContext.

SpEL Expressions with Guards

It is also possible to use SpEL expressions as a replacement for a
full Guard implementation. Only requirement is that expression needs
to return a Boolean value to satisfy Guard implementation. This is
demonstrated with a guardExpression() function which takes an
expression as an argument.

Chapter 8. Using StateContext

StateContext is a domain object representing a current status of a
state machine within a transition or an action. Context gives an
access to a various information like event, message headers, extended
state variables, current transition and a top-level state machine in
case there is a need to send events to a further processing.

Chapter 9. Triggering Transitions

Driving a statemachine is done via transitions which are triggered
by triggers. Currently supported triggers are EventTrigger and
TimerTrigger.

EventTrigger

EventTrigger is the most useful trigger because it allows user to
directly interact with a state machine by sending events to it. These
events are also called signals. Trigger is added to a transition simply
by associating a state to it during a configuration.

@Autowired
StateMachine<States, Events> stateMachine;

void signalMachine() {
 stateMachine.sendEvent(Events.E1);

 Message<Events> message = MessageBuilder
 .withPayload(Events.E2)
 .setHeader("foo", "bar")
 .build();
 stateMachine.sendEvent(message);
}

In above example we send an event using two different ways. Firstly we
simply sent a type safe event using state machine api method
sendEvent(E event). Secondly we send event wrapped in a Spring
messaging Message using api method sendEvent(Message<E> message)
with a custom event headers. This allows user to add arbitrary extra
information with an event which is then visible to StateContext when
for example user is implementing actions.

TimerTrigger

TimerTrigger is useful when something needs to be triggered
automatically without any user interaction. Trigger is added to a
transition by associating a timer to it during a configuration.

Chapter 10. Listening State Machine Events

There are use cases where you just want to know what is happening with
a state machine, react to something or simply get logging for
debugging purposes. SSM provides interfaces for adding listeners which
then gives an option to get callback when various state changes,
actions, etc are happening.

You basically have two options, either to listen Spring application
context events or directly attach listener to a state machine. Both of
these basically will provide same information where one is producing
events as event classes and other producing callbacks via a listener
interface. Both of these have pros and cons which will be discussed later.

Application Context Events

Application context events classes are OnTransitionStartEvent,
OnTransitionEvent, OnTransitionEndEvent, OnStateExitEvent,
OnStateEntryEvent, OnStateChangedEvent, OnStateMachineStart and
OnStateMachineStop. These can be used as is with spring typed
ApplicationListener class but they also share a common class
StateMachineEvent which can be used to get statemachine related
events.

static class StateMachineApplicationEventListener
 implements ApplicationListener<StateMachineEvent> {

 @Override
 public void onApplicationEvent(StateMachineEvent event) {
 }
}

State Machine Listener

Using StateMachineListener you can either extend it and
implement all callback methods or use StateMachineListenerAdapter
class which contains stub method implementations and choose which ones
to override.

static class StateMachineEventListener
 extends StateMachineListenerAdapter<States, Events> {

 @Override
 public void stateChanged(State<States, Events> from, State<States, Events> to) {
 }

 @Override
 public void stateEntered(State<States, Events> state) {
 }

 @Override
 public void stateExited(State<States, Events> state) {
 }

 @Override
 public void transition(Transition<States, Events> transition) {
 }

 @Override
 public void transitionStarted(Transition<States, Events> transition) {
 }

 @Override
 public void transitionEnded(Transition<States, Events> transition) {
 }

 @Override
 public void stateMachineStarted(StateMachine<States, Events> stateMachine) {
 }

 @Override
 public void stateMachineStopped(StateMachine<States, Events> stateMachine) {
 }
}

In above example we simply created our own listener class
StateMachineEventListener which extends
StateMachineListenerAdapter.

Once you have your own listener defined, it can be registered into a
state machine via its interface as shown below. It’s just a matter of
flavour if it’s hooked up within a spring configuration or done
manually at any time of application life-cycle.

static class Config7 {

 @Autowired
 StateMachine<States, Events> stateMachine;

 @Bean
 public StateMachineEventListener stateMachineEventListener() {
 StateMachineEventListener listener = new StateMachineEventListener();
 stateMachine.addStateListener(listener);
 return listener;
 }

}

Limitations and Problems

Spring application context is not a fastest event bus out there so it
is advised to give some thought what is a rate of events state machine
is sending. For better performance it may be better to use
StateMachineListener interface. For this specific reason it is
possible to use contextEvents flag with @EnableStateMachine and
@EnableStateMachineFactory to disable Spring application context
events as shown above.

@Configuration
@EnableStateMachine(contextEvents = false)
public static class Config8
 extends EnumStateMachineConfigurerAdapter<States, Events> {
}

@Configuration
@EnableStateMachineFactory(contextEvents = false)
public static class Config9
 extends EnumStateMachineConfigurerAdapter<States, Events> {
}

Chapter 11. Context Integration

It is a little limited to do interaction with a state machine by
either listening its events or using actions with states and
transitions. Time to time this approach would be too limited and
verbose to create interaction with the application a state machine is
working with. For this specific use case we have made a spring style
context integration which easily attach state machine functionality
into your beans.

Annotation Support

@WithStateMachine annotation can be used to associate a state
machine with a existing bean. Withing this annotation a propertys
source and target can be used to qualify a transition

@WithStateMachine
static class Bean1 {

 @OnTransition(source = "S1", target = "S2")
 public void fromS1ToS2() {
 }
}

Default @OnTransition annotation can’t be used with a state and
event enums user have created due to java language limitations, thus
string representation have to be used.

However if you want to have a type safe annotation it is possible to
create a new annotation and use @OnTransition as meta annotation.
This user level annotation can make a reference to actual states and
events enums and framework will try to match these in a same way.

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@OnTransition
static @interface StatesOnTransition {

 States[] source() default {};

 States[] target() default {};
}

Above we created a @StatesOnTransition annotation which defines
source and target as a type safe manner.

@WithStateMachine
static class Bean2 {

 @StatesOnTransition(source = States.S1, target = States.S2)
 public void fromS1ToS2() {
 }
}

In your own bean you can then use this @StatesOnTransition as is and
use type safe source and target.

Part III. State Machine Examples

This part of the reference documentation explains the use of state
machines together with a sample code and a uml state charts. We do few
shortcuts when representing relationship between a state chart, SSM
configuration and what an application does with a state machine. For
complete examples go and study the samples repository.

Samples are build directly from a main source distribution during a
normal build cycle.

./gradlew clean build -x test

Every sample is located in its own directory under
spring-statemachine-samples. Samples are based on spring-boot and
spring-shell and you will find usual boot fat jars under every sample
projects build/libs directory.

Chapter 12. Turnstile

Turnstile is a simple device which gives you an access if payment is
made and is a very simple to model using a state machine. In its
simplest form there are only two states, LOCKED and UNLOCKED. Two
events, COIN and PUSH can happen if you try to go through it or
you make a payment.

[image: statechart1]

States.

public static enum States {
 LOCKED, UNLOCKED
}

Events.

public static enum Events {
 COIN, PUSH
}

Configuration.

@Configuration
@EnableStateMachine
static class StateMachineConfig
 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override
 public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.LOCKED)
 .states(EnumSet.allOf(States.class));
 }

 @Override
 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)
 throws Exception {
 transitions
 .withExternal()
 .source(States.LOCKED)
 .target(States.UNLOCKED)
 .event(Events.COIN)
 .and()
 .withExternal()
 .source(States.UNLOCKED)
 .target(States.LOCKED)
 .event(Events.PUSH);
 }

}

You can see how this sample state machine interacts with event by
running turnstile sample.

$ java -jar spring-statemachine-samples-turnstile-1.0.0.BUILD-SNAPSHOT.jar

sm>sm print
+--+
| SM |
+--+
| |
| +----------------+ +----------------+ |
| *-->| LOCKED | | UNLOCKED | |
| +----------------+ +----------------+ |
+---	entry/		entry/	---+		
		exit/		exit/		
PUSH			---COIN-->			COIN
			<--PUSH---			
+-->				<--+		
+----------------+ +----------------+						
+--+

sm>sm start
State changed to LOCKED
State machine started

sm>sm event COIN
State changed to UNLOCKED
Event COIN send

sm>sm event PUSH
State changed to LOCKED
Event PUSH send

Chapter 13. Showcase

Showcase is a complex state machine showing all possible transition
topologies up to four levels of state nesting.

[image: statechart2]

States.

public static enum States {
 S0, S1, S11, S12, S2, S21, S211, S212
}

Events.

public static enum Events {
 A, B, C, D, E, F, G, H, I
}

Configuration - states.

@Override
public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.S0, fooAction())
 .state(States.S0)
 .and()
 .withStates()
 .parent(States.S0)
 .initial(States.S1)
 .state(States.S1)
 .and()
 .withStates()
 .parent(States.S1)
 .initial(States.S11)
 .state(States.S11)
 .state(States.S12)
 .and()
 .withStates()
 .parent(States.S0)
 .state(States.S2)
 .and()
 .withStates()
 .parent(States.S2)
 .initial(States.S21)
 .state(States.S21)
 .and()
 .withStates()
 .parent(States.S21)
 .initial(States.S211)
 .state(States.S211)
 .state(States.S212);
}

Configuration - transitions.

@Override
public void configure(StateMachineTransitionConfigurer<States, Events> transitions)
 throws Exception {
 transitions
 .withExternal()
 .source(States.S1).target(States.S1).event(Events.A)
 .guard(foo1Guard())
 .and()
 .withExternal()
 .source(States.S1).target(States.S11).event(Events.B)
 .and()
 .withExternal()
 .source(States.S21).target(States.S211).event(Events.B)
 .and()
 .withExternal()
 .source(States.S1).target(States.S2).event(Events.C)
 .and()
 .withExternal()
 .source(States.S2).target(States.S1).event(Events.C)
 .and()
 .withExternal()
 .source(States.S1).target(States.S0).event(Events.D)
 .and()
 .withExternal()
 .source(States.S211).target(States.S21).event(Events.D)
 .and()
 .withExternal()
 .source(States.S0).target(States.S211).event(Events.E)
 .and()
 .withExternal()
 .source(States.S1).target(States.S211).event(Events.F)
 .and()
 .withExternal()
 .source(States.S2).target(States.S11).event(Events.F)
 .and()
 .withExternal()
 .source(States.S11).target(States.S211).event(Events.G)
 .and()
 .withExternal()
 .source(States.S211).target(States.S0).event(Events.G)
 .and()
 .withInternal()
 .source(States.S0).event(Events.H)
 .guard(foo0Guard())
 .action(fooAction())
 .and()
 .withInternal()
 .source(States.S2).event(Events.H)
 .guard(foo1Guard())
 .action(fooAction())
 .and()
 .withInternal()
 .source(States.S1).event(Events.H)
 .and()
 .withExternal()
 .source(States.S11).target(States.S12).event(Events.I)
 .and()
 .withExternal()
 .source(States.S211).target(States.S212).event(Events.I)
 .and()
 .withExternal()
 .source(States.S12).target(States.S212).event(Events.I);

}

Configuration - actions and guard.

@Bean
public FooGuard foo0Guard() {
 return new FooGuard(0);
}

@Bean
public FooGuard foo1Guard() {
 return new FooGuard(1);
}

@Bean
public FooAction fooAction() {
 return new FooAction();
}

Action.

private static class FooAction implements Action<States, Events> {

 @Override
 public void execute(StateContext<States, Events> context) {
 Map<Object, Object> variables = context.getExtendedState().getVariables();
 Integer foo = context.getExtendedState().get("foo", Integer.class);
 if (foo == null) {
 log.info("Init foo to 0");
 variables.put("foo", 0);
 } else if (foo == 0) {
 log.info("Switch foo to 1");
 variables.put("foo", 1);
 } else if (foo == 1) {
 log.info("Switch foo to 0");
 variables.put("foo", 0);
 }
 }
}

Guard.

private static class FooGuard implements Guard<States, Events> {

 private final int match;

 public FooGuard(int match) {
 this.match = match;
 }

 @Override
 public boolean evaluate(StateContext<States, Events> context) {
 Object foo = context.getExtendedState().getVariables().get("foo");
 return !(foo == null || !foo.equals(match));
 }
}

Lets go through what this state machine do when it’s executed and we
send various event to it.

sm>sm start
Entry state S0
Entry state S1
Entry state S11
Init foo to 0
State machine started

sm>sm event A
Event A send

sm>sm event C
Exit state S11
Exit state S1
Entry state S2
Entry state S21
Entry state S211
Event C send

sm>sm event H
Switch foo to 1
Event H send

sm>sm event C
Exit state S211
Exit state S21
Exit state S2
Entry state S1
Entry state S11
Event C send

sm>sm event A
Exit state S11
Exit state S1
Entry state S1
Entry state S11
Event A send

What happens in above sample:

	
State machine is started which takes it to its initial state S11
via superstates S1 and S0. Also extended state variable foo is
init to 0.

	
We try to execute self transition in state S1 with event A but
nothing happens because transition is guarded by variable foo to
be 1.

	
We send event C which takes us to other state machine where
initial state S211 and its superstates are entered. In there we
can use event H which does a simple internal transition to flip
variable foo. Then we simply go back using event C.

	
Event A is sent again and now S1 does a self transition because
guard evaluates true.

	
It’s also worth to pay attention to how event H is handled in
different states S0, S1 and S2. This is a good example of how
hierarchical states and their event handling works. If state S2 is
unable to handle event H due to guard condition, its parent is
checked next. This guarantees that while on state S2, foo flag
is always flipped around. However in state S1 event H always
match to its dummy transition without guard or action, not never
happens.

Chapter 14. CD Player

CD Player is a sample which resembles better use case of most of use have
used in a real world. CD Player itself is a really simple entity where
user can open a deck, insert or change a disk, then drive player
functionality by pressing various buttons like eject, play,
stop, pause, rewind and backward.

How many of use have really given a thought of what it will take to
make a code for a CD Player which interacts with a hardware. Yes,
concept of a player is overly simple but if you look behind a scenes
things actually get a bit convoluted.

You’ve probably noticed that if your deck is open and you press play,
deck will close and a song will start to play if CD was inserted in
a first place. In a sense when deck is open you first need to close
it and then try to start playing if cd is actually inserted. Hopefully
you have now realised that a simple CD Player is not anymore so simple.
Sure you can wrap all this with a simple class with few boolean variables
and probably few nested if/else clauses, that will do the job, but what
about if you need to make all this behaviour much more complex, do you
really want to keep adding more flags and if/else clauses.

[image: statechart3]

Lets go through how this sample and its state machine is designed and
how those two interacts with each other. Below three config sections
are used withing a EnumStateMachineConfigurerAdapter.

@Override
public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.IDLE)
 .state(States.IDLE)
 .and()
 .withStates()
 .parent(States.IDLE)
 .initial(States.CLOSED)
 .state(States.CLOSED, closedEntryAction(), null)
 .state(States.OPEN)
 .and()
 .withStates()
 .state(States.BUSY)
 .and()
 .withStates()
 .parent(States.BUSY)
 .initial(States.PLAYING)
 .state(States.PLAYING)
 .state(States.PAUSED);

}

@Override
public void configure(StateMachineTransitionConfigurer<States, Events> transitions)
 throws Exception {
 transitions
 .withExternal()
 .source(States.CLOSED).target(States.OPEN).event(Events.EJECT)
 .and()
 .withExternal()
 .source(States.OPEN).target(States.CLOSED).event(Events.EJECT)
 .and()
 .withExternal()
 .source(States.OPEN).target(States.CLOSED).event(Events.PLAY)
 .and()
 .withExternal()
 .source(States.PLAYING).target(States.PAUSED).event(Events.PAUSE)
 .and()
 .withInternal()
 .source(States.PLAYING)
 .action(playingAction())
 .timer(1000)
 .and()
 .withInternal()
 .source(States.PLAYING).event(Events.BACK)
 .action(trackAction())
 .and()
 .withInternal()
 .source(States.PLAYING).event(Events.FORWARD)
 .action(trackAction())
 .and()
 .withExternal()
 .source(States.PAUSED).target(States.PLAYING).event(Events.PAUSE)
 .and()
 .withExternal()
 .source(States.BUSY).target(States.IDLE).event(Events.STOP)
 .and()
 .withExternal()
 .source(States.IDLE).target(States.BUSY).event(Events.PLAY)
 .action(playAction())
 .guard(playGuard())
 .and()
 .withInternal()
 .source(States.OPEN).event(Events.LOAD).action(loadAction());
}

@Bean
public ClosedEntryAction closedEntryAction() {
 return new ClosedEntryAction();
}

@Bean
public LoadAction loadAction() {
 return new LoadAction();
}

@Bean
public TrackAction trackAction() {
 return new TrackAction();
}

@Bean
public PlayAction playAction() {
 return new PlayAction();
}

@Bean
public PlayingAction playingAction() {
 return new PlayingAction();
}

@Bean
public PlayGuard playGuard() {
 return new PlayGuard();
}

What we did in above configuration:

	
We used EnumStateMachineConfigurerAdapter to configure states and
transitions.

	
States CLOSED and OPEN are defined as substates of IDLE,
states PLAYING and PAUSED are defined as substates of BUSY.

	
With state CLOSED we added entry action as bean
closedEntryAction.

	
With transition we mostly mapped events to expected state
transitions like EJECT closing and opening a deck, PLAY, STOP
and PAUSE doing their natural transitions. Few words to mention
what we did for other transitions.

	
With source state PLAYING we added a timer trigger which is
needed to automatically track elapsed time within a playing track and
to have facility to make a decision when to switch to next track.

	
With event PLAY if source state is IDLE and target state is
BUSY we defined action playAction and guard playGuard.

	
With event LOAD and state OPEN we defined internal
transition with action loadAction which will insert cd disc into
extended state variables.

	
PLAYING state defined three internal transitions where one is
triggered by a timer executing a playingAction which updates
extended state variables. Other two transitions are with trackAction
with different events, BACK and FORWARD respectively which handles
when user wants to go back or forward in tracks.

This machine only have six states which are introduced as an enum.

public static enum States {
 // super state of PLAYING and PAUSED
 BUSY,
 PLAYING,
 PAUSED,
 // super state of CLOSED and OPEN
 IDLE,
 CLOSED,
 OPEN
}

Events represent, in a sense in this example, what buttons user would
press and if user loads a cd disc into a deck.

public static enum Events {
 PLAY, STOP, PAUSE, EJECT, LOAD, FORWARD, BACK
}

Beans cdPlayer and library are just used with a sample to drive
the application.

@Bean
public CdPlayer cdPlayer() {
 return new CdPlayer();
}

@Bean
public Library library() {
 return Library.buildSampleLibrary();
}

We can define extended state variable key as simple enums.

public static enum Variables {
 CD, TRACK, ELAPSEDTIME
}

public static enum Headers {
 TRACKSHIFT
}

We wanted to make this samply type safe so we’re defining our own
annotation @StatesOnTransition which have a mandatory meta
annotation @OnTransition.

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@OnTransition
public static @interface StatesOnTransition {

 States[] source() default {};

 States[] target() default {};

}

ClosedEntryAction is a entry action for state CLOSED to simply
send and PLAY event to a statemachine if cd disc is present.

public static class ClosedEntryAction implements Action<States, Events> {

 @Override
 public void execute(StateContext<States, Events> context) {
 if (context.getTransition() != null
 && context.getEvent() == Events.PLAY
 && context.getTransition().getTarget().getId() == States.CLOSED
 && context.getExtendedState().getVariables().get(Variables.CD) != null) {
 context.getStateMachine().sendEvent(Events.PLAY);
 }
 }
}

LoadAction is simply updating extended state variable if event
headers contained information about a cd disc to load.

public static class LoadAction implements Action<States, Events> {

 @Override
 public void execute(StateContext<States, Events> context) {
 Object cd = context.getMessageHeader(Variables.CD);
 context.getExtendedState().getVariables().put(Variables.CD, cd);
 }
}

PlayAction is simply resetting player elapsed time which is kept as
an extended state variable.

public static class PlayAction implements Action<States, Events> {

 @Override
 public void execute(StateContext<States, Events> context) {
 context.getExtendedState().getVariables().put(Variables.ELAPSEDTIME, 0l);
 context.getExtendedState().getVariables().put(Variables.TRACK, 0);
 }
}

PlayGuard is used to guard transition from IDLE to BUSY with
event PLAY if extended state variable CD doesn’t indicate that cd
disc has been loaded.

public static class PlayGuard implements Guard<States, Events> {

 @Override
 public boolean evaluate(StateContext<States, Events> context) {
 ExtendedState extendedState = context.getExtendedState();
 return extendedState.getVariables().get(Variables.CD) != null;
 }
}

PlayingAction is updating extended state variable ELAPSEDTIME which
cd player itself can read and update lcd status. Action also handles
track shift if user is going back or forward in tracks.

public static class PlayingAction implements Action<States, Events> {

 @Override
 public void execute(StateContext<States, Events> context) {
 Map<Object, Object> variables = context.getExtendedState().getVariables();
 Object elapsed = variables.get(Variables.ELAPSEDTIME);
 Object cd = variables.get(Variables.CD);
 Object track = variables.get(Variables.TRACK);
 if (elapsed instanceof Long) {
 long e = ((Long)elapsed) + 1000l;
 if (e > ((Cd) cd).getTracks()[((Integer) track)].getLength()*1000) {
 context.getStateMachine().sendEvent(MessageBuilder
 .withPayload(Events.FORWARD)
 .setHeader(Headers.TRACKSHIFT.toString(), 1).build());
 } else {
 variables.put(Variables.ELAPSEDTIME, e);
 }
 }
 }
}

TrackAction handles track shift action if user is going back or forward
in tracks. If it is a last track of a cd, playing is stopped and STOP
event sent to a state machine.

public static class TrackAction implements Action<States, Events> {

 @Override
 public void execute(StateContext<States, Events> context) {
 Map<Object, Object> variables = context.getExtendedState().getVariables();
 Object trackshift = context.getMessageHeader(Headers.TRACKSHIFT.toString());
 Object track = variables.get(Variables.TRACK);
 Object cd = variables.get(Variables.CD);
 if (trackshift instanceof Integer && track instanceof Integer && cd instanceof Cd) {
 int next = ((Integer)track) + ((Integer)trackshift);
 if (next >= 0 && ((Cd)cd).getTracks().length > next) {
 variables.put(Variables.ELAPSEDTIME, 0l);
 variables.put(Variables.TRACK, next);
 } else if (((Cd)cd).getTracks().length <= next) {
 context.getStateMachine().sendEvent(Events.STOP);
 }
 }
 }
}

One other important aspect of a state machines is that they have their
own responsibilies mostly around handling states and all application
level logic should be kept outside. This means that application needs
to have a ways to interact with a state machine and below sample is
how cdplayer does it order to update lcd status. Also pay attention
that we annotated CdPlayer with @WithStateMachine which instructs
state machine to find methods from your pojo which are then called
with various transitions.

@OnTransition(target = "BUSY")
public void busy(ExtendedState extendedState) {
 Object cd = extendedState.getVariables().get(Variables.CD);
 if (cd != null) {
 cdStatus = ((Cd)cd).getName();
 }
}

In above example we use @OnTransition annotation to hook a callback
when transition happens with a target state BUSY.

@StatesOnTransition(target = {States.CLOSED, States.IDLE})
public void closed(ExtendedState extendedState) {
 Object cd = extendedState.getVariables().get(Variables.CD);
 if (cd != null) {
 cdStatus = ((Cd)cd).getName();
 } else {
 cdStatus = "No CD";
 }
 trackStatus = "";
}

@OnTransition we used above can only be used with strings which are
matched from enums. @StatesOnTransition is then something what user
can create into his own application to get a type safe annotation where
a real enums can be used.

Lets see an example how this state machine actually works.

sm>sm start
Entry state IDLE
Entry state CLOSED
State machine started

sm>cd lcd
No CD

sm>cd library
0: Greatest Hits
 0: Bohemian Rhapsody 05:56
 1: Another One Bites the Dust 03:36
1: Greatest Hits II
 0: A Kind of Magic 04:22
 1: Under Pressure 04:08

sm>cd eject
Exit state CLOSED
Entry state OPEN

sm>cd load 0
Loading cd Greatest Hits

sm>cd play
Exit state OPEN
Entry state CLOSED
Exit state CLOSED
Exit state IDLE
Entry state BUSY
Entry state PLAYING

sm>cd lcd
Greatest Hits Bohemian Rhapsody 00:03

sm>cd forward

sm>cd lcd
Greatest Hits Another One Bites the Dust 00:04

sm>cd stop
Exit state PLAYING
Exit state BUSY
Entry state IDLE
Entry state CLOSED

sm>cd lcd
Greatest Hits

What happened in above run:

	
State machine is started which causes machine to get initialized.

	
CD Player lcd screen status is printed.

	
CD Library is printed.

	
CD Player deck is opened.

	
CD with index 0 is loaded into a deck.

	
Play is causing deck to get closed and immediate playing because cd
was inserted.

	
We print lcd status and request next track.

	
We stop playing.

Chapter 15. Tasks

Tasks is a sample demonstrating a parallel task handling within a
regions and additionally adds an error handling to either
automatically or manually fixing task problems before continuing back
to a state where tasks can be run again.

[image: statechart5]

On a high level what happens in this state machine is:

	
We’re always trying to get into READY state so that we can use event
RUN to execute tasks.

	
TASKS state which is composed with 3 independent regions has been
put in a middle of FORK and JOIN states which will cause regions to
go into its initial states and to be joined by end states.

	
From JOIN state we go automatically into a CHOICE state which checks
existence of error flags in extended state variables. Tasks can set
these flags and it gives CHOICE state a possibility to go into ERROR
state where errors can be handled either automatically or manually.

	
AUTOMATIC state in ERROR can try to automatically fix error and goes
back to READY if it succeed to do so. If error is something what
can’t be handled automatically, user intervention is needed and
machine is put into MANUAL state via FALLBACK event.

States.

public static enum States {
 READY,
 FORK, JOIN, CHOICE,
 TASKS, T1, T1E, T2, T2E, T3, T3E,
 ERROR, AUTOMATIC, MANUAL
}

Events.

public static enum Events {
 RUN, FALLBACK, CONTINUE, FIX;
}

Configuration - states.

@Override
public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.READY)
 .fork(States.FORK)
 .state(States.TASKS)
 .join(States.JOIN)
 .choice(States.CHOICE)
 .state(States.ERROR)
 .and()
 .withStates()
 .parent(States.TASKS)
 .initial(States.T1)
 .end(States.T1E)
 .and()
 .withStates()
 .parent(States.TASKS)
 .initial(States.T2)
 .end(States.T2E)
 .and()
 .withStates()
 .parent(States.TASKS)
 .initial(States.T3)
 .end(States.T3E)
 .and()
 .withStates()
 .parent(States.ERROR)
 .initial(States.AUTOMATIC)
 .state(States.AUTOMATIC, automaticAction(), null)
 .state(States.MANUAL);
}

Configuration - transitions.

@Override
public void configure(StateMachineTransitionConfigurer<States, Events> transitions)
 throws Exception {
 transitions
 .withExternal()
 .source(States.READY).target(States.FORK)
 .event(Events.RUN)
 .and()
 .withFork()
 .source(States.FORK).target(States.TASKS)
 .and()
 .withExternal()
 .source(States.T1).target(States.T1E)
 .and()
 .withExternal()
 .source(States.T2).target(States.T2E)
 .and()
 .withExternal()
 .source(States.T3).target(States.T3E)
 .and()
 .withJoin()
 .source(States.TASKS).target(States.JOIN)
 .and()
 .withExternal()
 .source(States.JOIN).target(States.CHOICE)
 .and()
 .withChoice()
 .source(States.CHOICE)
 .first(States.ERROR, tasksChoiceGuard())
 .last(States.READY)
 .and()
 .withExternal()
 .source(States.ERROR).target(States.READY)
 .event(Events.CONTINUE)
 .and()
 .withExternal()
 .source(States.AUTOMATIC).target(States.MANUAL)
 .event(Events.FALLBACK)
 .and()
 .withInternal()
 .source(States.MANUAL)
 .action(fixAction())
 .event(Events.FIX);
}

Guard below is guarding choice entry into a ERROR state and needs to
return TRUE if error has happened. For this guard simply checks that
all extended state variables(T1, T2 and T3) are TRUE.

@Bean
public Guard<States, Events> tasksChoiceGuard() {
 return new Guard<States, Events>() {

 @Override
 public boolean evaluate(StateContext<States, Events> context) {
 Map<Object, Object> variables = context.getExtendedState().getVariables();
 return !(ObjectUtils.nullSafeEquals(variables.get("T1"), true)
 && ObjectUtils.nullSafeEquals(variables.get("T2"), true)
 && ObjectUtils.nullSafeEquals(variables.get("T3"), true));
 }
 };
}

Actions below will simply send event to a state machine to request
next step which would be either fallback or continue back to ready.

@Bean
public Action<States, Events> automaticAction() {
 return new Action<States, Events>() {

 @Override
 public void execute(StateContext<States, Events> context) {
 Map<Object, Object> variables = context.getExtendedState().getVariables();
 if (ObjectUtils.nullSafeEquals(variables.get("T1"), true)
 && ObjectUtils.nullSafeEquals(variables.get("T2"), true)
 && ObjectUtils.nullSafeEquals(variables.get("T3"), true)) {
 context.getStateMachine().sendEvent(Events.CONTINUE);
 } else {
 context.getStateMachine().sendEvent(Events.FALLBACK);
 }
 }
 };
}

@Bean
public Action<States, Events> fixAction() {
 return new Action<States, Events>() {

 @Override
 public void execute(StateContext<States, Events> context) {
 Map<Object, Object> variables = context.getExtendedState().getVariables();
 variables.put("T1", true);
 variables.put("T2", true);
 variables.put("T3", true);
 context.getStateMachine().sendEvent(Events.CONTINUE);
 }
 };
}

Currently default region execution is synchronous but it can be
changed to asynchronous by changing TaskExecutor. Task will simulate
work by sleeping 2 seconds so you’ll able to see how actions in
regions are executed parallel.

@Bean
public TaskExecutor taskExecutor() {
 ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
 taskExecutor.setCorePoolSize(5);
 return taskExecutor;
}

Lets see an examples how this state machine actually works.

sm>sm start
State machine started
Entry state READY

sm>tasks run
Entry state TASKS
run task on T3
run task on T2
run task on T1
run task on T2 done
run task on T1 done
run task on T3 done
Entry state T2
Entry state T3
Entry state T1
Entry state T1E
Entry state T2E
Entry state T3E
Exit state TASKS
Entry state JOIN
Exit state JOIN
Entry state READY

In above we can execute tasks multiple times.

sm>tasks list
Tasks {T1=true, T3=true, T2=true}

sm>tasks fail T1

sm>tasks list
Tasks {T1=false, T3=true, T2=true}

sm>tasks run
Entry state TASKS
run task on T1
run task on T3
run task on T2
run task on T1 done
run task on T3 done
run task on T2 done
Entry state T1
Entry state T3
Entry state T2
Entry state T1E
Entry state T2E
Entry state T3E
Exit state TASKS
Entry state JOIN
Exit state JOIN
Entry state ERROR
Entry state AUTOMATIC
Exit state AUTOMATIC
Exit state ERROR
Entry state READY

In above, if we simulate failure for task T1, it is fixed
automatically.

sm>tasks list
Tasks {T1=true, T3=true, T2=true}

sm>tasks fail T2

sm>tasks run
Entry state TASKS
run task on T2
run task on T1
run task on T3
run task on T2 done
run task on T1 done
run task on T3 done
Entry state T2
Entry state T1
Entry state T3
Entry state T1E
Entry state T2E
Entry state T3E
Exit state TASKS
Entry state JOIN
Exit state JOIN
Entry state ERROR
Entry state AUTOMATIC
Exit state AUTOMATIC
Entry state MANUAL

sm>tasks fix
Exit state MANUAL
Exit state ERROR
Entry state READY

In above if we simulate failure for either task T2 or T3, state
machine goes to MANUAL state where problem needs to be fixed manually
before we’re able to go back to READY state.

Chapter 16. Washer

Washer is a sample demonstrating a use of a history state to recover a
running state configuration with a simulated power off situation.

Anyone ever used a washing machine knows that if you can somehow pause
the program it will continue from a same state when lid is closed.
This kind of behaviour can be implemented in a state machine by using
a history pseudo state.

[image: statechart6]

States.

public static enum States {
 RUNNING, HISTORY, END,
 WASHING, RINSING, DRYING,
 POWEROFF
}

Events.

public static enum Events {
 RINSE, DRY, STOP,
 RESTOREPOWER, CUTPOWER
}

Configuration - states.

@Override
public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.RUNNING)
 .state(States.POWEROFF)
 .end(States.END)
 .and()
 .withStates()
 .parent(States.RUNNING)
 .initial(States.WASHING)
 .state(States.RINSING)
 .state(States.DRYING)
 .history(States.HISTORY, History.SHALLOW);
}

Configuration - transitions.

@Override
public void configure(StateMachineTransitionConfigurer<States, Events> transitions)
 throws Exception {
 transitions
 .withExternal()
 .source(States.WASHING).target(States.RINSING)
 .event(Events.RINSE)
 .and()
 .withExternal()
 .source(States.RINSING).target(States.DRYING)
 .event(Events.DRY)
 .and()
 .withExternal()
 .source(States.RUNNING) .target(States.POWEROFF)
 .event(Events.CUTPOWER)
 .and()
 .withExternal()
 .source(States.POWEROFF).target(States.HISTORY)
 .event(Events.RESTOREPOWER)
 .and()
 .withExternal()
 .source(States.RUNNING).target(States.END)
 .event(Events.STOP);
}

Lets see an example how this state machine actually works.

sm>sm start
Entry state RUNNING
Entry state WASHING
State machine started

sm>sm event RINSE
Exit state WASHING
Entry state RINSING
Event RINSE send

sm>sm event DRY
Exit state RINSING
Entry state DRYING
Event DRY send

sm>sm event CUTPOWER
Exit state DRYING
Exit state RUNNING
Entry state POWEROFF
Event CUTPOWER send

sm>sm event RESTOREPOWER
Exit state POWEROFF
Entry state RUNNING
Entry state WASHING
Entry state DRYING
Event RESTOREPOWER send

What happened in above run:

	
State machine is started which causes machine to get initialized.

	
We go to RINSING state.

	
We go to DRYING state.

	
We cut power and go to POWEROFF state.

	
State is restored via HISTORY state which takes state machine back
to its previous known state.

Part IV. FAQ

This chapter tries to give solutions to question user is most likely
to ask.

Chapter 17. State Changes

I want to transit to next state automatically.
​

There are few choices a state machine developer can choose.

	
Implement an action and send appropriate event into a state machine
which triggers a transition into a proper target state.

	
Define deferred event within a state and before sending an event
send a event which will be deferred and thus causing next
appropriate state transition when it is more convenient to handle
that event.

	
Implement a triggerless transition which will automatically cause
state transition into a next state when state has entry and its
actions has been completed.

Chapter 18. Extented State

How I can initialise variables on state machine start.
​

Important concept in a state machine is that nothing really happens
unless there is a trigger which is causing a state transition which
then can fire actions. However, having said that, Spring Statemachine
always have an initial transition when state machine is started. With
this initial transition user can execute a simple action which within
a StateContext can do whatever it likes with an extended state
variables.

Part V. Appendices

Appendix A. Support Content

This appendix provides generic information about used classes and
material in this reference documentation.

Classes Used in This Document

public enum States {
 SI,S1,S2,S3,S4,SF
}

public enum States2 {
 S1,S2,S3,S4,S5,
 S2I,S21,S22,S2F,
 S3I,S31,S32,S3F
}

public enum States3 {
 S1,S2,SH,
 S2I,S21,S22,S2F
}

public enum Events {
 E1,E2,E3,E4,EF
}

Appendix B. State Machine Concepts

This appendix provides generic information about state machines.

Quick Example

Assuming we have states STATE1, STATE2 and events EVENT1,
EVENT2, logic of state machine can be defined as shown in below
quick example.

[image: statechart0]

static enum States {
 STATE1, STATE2
}

static enum Events {
 EVENT1, EVENT2
}

@Configuration
@EnableStateMachine
static class Config1 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override
 public void configure(StateMachineStateConfigurer<States, Events> states)
 throws Exception {
 states
 .withStates()
 .initial(States.STATE1)
 .states(EnumSet.allOf(States.class));
 }

 @Override
 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)
 throws Exception {
 transitions
 .withExternal()
 .source(States.STATE1).target(States.STATE2)
 .event(Events.EVENT1)
 .and()
 .withExternal()
 .source(States.STATE2).target(States.STATE1)
 .event(Events.EVENT2);
 }
}

@WithStateMachine
static class MyBean {

 @OnTransition(target = "STATE1")
 void toState1() {
 }

 @OnTransition(target = "STATE2")
 void toState2() {
 }
}

static class MyApp {

 @Autowired
 StateMachine<States, Events> stateMachine;

 void doSignals() {
 stateMachine.sendEvent(Events.EVENT1);
 stateMachine.sendEvent(Events.EVENT2);
 }
}

Glossary

	State Machine
	
Main entity driving a collection of states together with regions,
transitions and events.

	State
	
A state models a situation during which some invariant condition
holds. State is the main entity of a state machine where state changes
are driven by an events.

	Transition
	
A transition is a relationship between a source state and a target
state. It may be part of a compound transition, which takes the state
machine from one state configuration to another, representing the complete
response of the state machine to an occurrence of an event of a
particular type.

	Event
	
An entity which is send to a state machine which then drives a various
state changes.

	Initial State
	
A special state in which the state machine starts. Initial state is
always bound to a particular state machine or a region. A state
machine with a multiple regions may have a multiple initial states.

	End State
	
Also called as a final state is a special kind of state signifying
that the enclosing region is completed. If the enclosing region is
directly contained in a state machine and all other regions in the
state machine also are completed, then it means that the entire state
machine is completed.

	History State
	
A pseudo state which allows a state machine to remember its last
active state. Two types of history state exists, shallow which only
remember top level state and deep which remembers active states in a
sub-machines.

	Choice State
	
A pseudo state which allows to make a transition choice based of i.e.
event headers or extended state variables.

	Fork State
	
A pseudo state which gives a controlled entry into a regions.

	Join State
	
A pseudo state which gives a controlled exit from a regions.

	Region
	
A region is an orthogonal part of either a composite state or a state
machine. It contains states and transitions.

	Guard
	
Is a boolean expression evaluated dynamically based on the value of
extended state variables and event parameters. Guard conditions affect
the behavior of a state machine by enabling actions or transitions
only when they evaluate to TRUE and disabling them when they evaluate
to FALSE.

	Action
	
A action is a behaviour executed during the triggering of the
transition.

A State Machines Crash Course

This appendix provides generic crash course to a state machine
concepts.

States

A state is a model which a state machine can be in. It is always
easier to describe state as a real world example rather than trying to
abstract concepts with a generic documentation. For example lets take
a simple example of a keyboard most of us are using every single day.
If you have a full keyboard which has normal keys on a left side and
the numeric keypad on a right side you may have noticed that the
numeric keypad may be in a two different states depending whether
numlock is activated or not. If it is not active then typing will
result navigation using arrows, etc. If numpad is active then typing
will result numbers to be used. Essentially numpad part of a keyboard
can be in two different states.

To relate state concept to programming it means that instead of using
flags, nested if/else/break clauses or other impractical logic you
simply rely on state, state variables or other interaction with a
state machine.

Pseudo States

PseudoState is a special type of state which usually introduces more
higher level logic into a state machine by either giving a state a
special meaning like initial state. State machine can then internally
react to these states by doing various actions available in UML state
machine concepts.

Initial

Initial pseudostate state is always needed for every single state
machine whether you have a simple one level state machine or more
complex state machine composed with submachines or regions. Initial
state simple defines where state machine should go when it starts and
without it state machine is ill-formed.

End

Terminate pseudostate which is also called as end state will indicate
that a particular state machine has reached its final state. Effectively
this mean that a state machine will no longer process any events and will
not transit to any other state. However in a case of submachines are
regions, state machine is able to restart from its terminal state.

Choice

Choice pseudostate is used to choose a dynamic conditional branch of
a transition from this state. Dynamic condition is evaluated by guards
so that at least one and at most one branch is selected. Usually a
simple if/elseif/else structure is used to make sure that at least one
branch is selected. Otherwise state machine might end up in a deadlock
and configuration would be ill-formed.

History

History pseudostate can be used to remember a last active state
configuration. After state machine has been exited, history state can
be used to restore previous knows configuration. There are two types
of history states available, SHALLOW only remember active state of a
state machine itself while DEEP also remembers nested states.

History state could be implemented externally by listening state
machine events but this would soon make logic very difficult to work
with, especially if state machine contains complex nested structures.
Letting state machine itself to handle recording of history states
makes things much simpler. What is left for user to do is simply do a
transition into a history state and state machine will hand the needed
logic to go back to its last known recorded state.

Fork

Fork pseudostate can be used to do an explicit entry into one or more regions.

[image: statechart7]

Target state can be a parent state hosting regions, which simply
means that regions are activated by entering its initial states. It’s
also possible to add targets directly to any state in a region which
allows more controlled entry into a state.

Join

Join pseudostate is used to merge several transitions together
originating from different regions. It it generally used to wait
and block for participating regions to get into its join target states.

[image: statechart8]

Source state can be a parent state hosting regions, which means that
join states will be a terminate states of a participating regions.
It’s also possible to define source states to be any state in a
regions which allows controlled exit from a regions.

Guard Conditions

Guard conditions are expressions which evaluates either to TRUE or
FALSE based on extended state variables and event parameters. Guards
are used with actions and transitions to dynamically choose if
particular action or transition should be executed. Aspects of guards,
event parameters and extended state variables are simply to make state
machine design much more simple.

Events

Event is the most used trigger behaviour to drive a state machine.
There are other ways to trigger behaviour to happen in state machine
like a timer but events are the ones which really allows user to
interact with a state machine. Events are also called as signals to
possibly alter a state machine state.

Transitions

A transition is a relationship between a source state and a target
state. A switch from a state to another is a state transition caused
by a trigger.

Internal Transition

Internal transition is used when action needs to be executed without
causing a state transition. With internal transition source and target
state is always a same and it is identical with self-transition in the
absence of state entry and exit actions.

External vs. Local Transition

Most of the cases external and local transition are functionally
equivalent except in cases where transition is happening between super
and sub states. Local transition doesn’t cause exit and entry to
source state if target state is a substate of a source state. Other
way around, local transition doesn’t cause exit and entry to target
state if target is a superstate of a source state.

[image: statechart4]

Above image shows a different between local and external transitions
with a very simplistic super and sub states.

Actions

Actions are the ones which really glues state machine state changes
with a user’s own code. State machine can execute action on various
changes and steps in a state machine like entering or exiting a state,
or doing a state transition.

Actions usually have access to a state context which gives running
code a choice to interact with a state machine in a various ways.
State context i.e. is exposing a whole state machine so user can
access extended state variables, event headers if transition is based
on an event, or actual transition where it is possible to see more
detailed where this state change is coming from and where it is going.

Hierarchical State Machines

Concept of a hierarchical state machine is used to simplify state
design when particular states can only exist together.

Hierarchical states are really an innovation in UML state machine over
a traditional state machines like Mealy or Moore machines.
Hierarchical states allows to define some level of abstraction is a
sense how java developer would define a class structure with abstract
classes. For example having a nested state machine user is able to
define transition on a multiple level of states possibly with a
different conditions. State machine will always try to see if current
state is able to handle an event together with a transition guard
conditions. If these conditions are not evaluated to true, state
machine will simply see what a super state can handle.

Regions

Regions which are also called as orthogonal regions are usually viewed
as exclusive OR operation applied to a states. Concept of a region in
terms of a state machine is usually a little difficult to understand
but things gets a little simpler with a simple example.

Some of us have a full size keyboard with main keys on a left side and numeric
keys on a right side. You’ve probably noticed that both sides really
have their own state which you see if you press a numlock key which
only alters behaviour of numbad itself. If you don’t have a full size
keyboard you can buy a simple external usb numbad having only numbad
part of a keys. If left and right side can freely exist without the
other they must have a totally different states which means they are
operating on different state machines.

It would be a little inconvenient to handle two different
statemachines as totally separate entities because in a sense they are
still working together in a sense. This is why orthogonal regions can
combine together a multiple simultaneous states within a single state
in a state machine.

images/statechart4.png
LOCAL EXTERNAL

images/note.png

images/statechart8.png
o—p| T o—p| T1

————————————— - | — e |

o—p| T2 o—p| T2
L=

images/statechart7.png

images/statechart0.png
s

STATEL

entry/
exit,

—EVENT1-p
4-EVENT2 —

STATE2

entry/
exit,

images/statechart6.png
RUNNING
WASHING RINSE RINSING DRY DRYING
—
HISTORY
RESTOREPOWER cutpower

POWEROFF

sTOP

X

images/statechart3.png
s

BUSY

entry/
exit,

o—p | PLAYING

entry/
exit,

timer/ls

PAUSE

PAUSE

PAUSED

entry/
exit,

sTOP

PLAY

IDLE

entry/
exit,

CLOSED

PLAY

entry/
exit,

EJE

cT

EJECT

OPEN

entry/
exit,

LOAD

images/statechart5.png
s

o—Pp READY

CONTINUE

TASKS JOIN
RUN
—> —>| > T1 —»X — —
T2 —»x
T3 —»x
CHOICE —
| tERRoRI
ERROR
FALLBACK

AUTOMATIC

MANUAL
FIX

R

images/statechart2.png
S0

entry/
exit,
Hi[foo.equals(0)];

o—p s1 s2
entry/ C entry/
D exit exit
‘ b Hi[foo. equals(1)];
C
o—p S11 “— | o s21
entry/ F entry/
exit “— exit
B o—p s211
— F
- »[entry R
I G | exit)
-
B —
—
1 S12
entry/
exit !
s212
entry/
1 exit
[N
Al

Alfoo.equals(1)];

images/statechart1.png
s

PUSH

LOCKED|

entr
exit,

!

— COIN —

4—PUsH —

UNLOCKED

entr
exit,

!

coINn

