
Spring Statemachine - Reference Documentation

1.0.0.M2

Janne Valkealahti Pivotal

Copyright © 2015 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine iii

Table of Contents

Preface .. v
I. Introduction ... 1

1. Requirements ... 2
2. Background .. 3
3. Usage Scenarios .. 4

II. Spring and Statemachine ... 5
4. Statemachine Configuration .. 6

4.1. Configuring States ... 6
4.2. Configuring Hierarchical States .. 6
4.3. Configuring Regions .. 7
4.4. Configuring Transitions .. 7
4.5. Configuring Guards ... 8
4.6. Configuring Actions ... 9
4.7. Configuring Pseudo States ... 10

Initial State ... 10
Terminate State .. 11
History State .. 11
Choice State .. 11
Fork State .. 12
Join State .. 13

5. State Machine Factories ... 15
5.1. Factory Limitations ... 15

6. Using Actions ... 16
6.1. SpEL Expressions with Actions .. 17

7. Using Guards ... 18
7.1. SpEL Expressions with Guards .. 18

8. Using StateContext ... 19
9. Triggering Transitions ... 20

9.1. EventTrigger .. 20
9.2. TimerTrigger .. 20

10. Listening State Machine Events .. 21
10.1. Application Context Events ... 21
10.2. State Machine Listener .. 21
10.3. Limitations and Problems ... 22

11. Context Integration ... 24
11.1. Annotation Support .. 24

III. State Machine Examples ... 25
12. Turnstile ... 26
13. Showcase .. 28
14. CD Player .. 33
15. Tasks ... 41
16. Washer .. 46

IV. FAQ ... 49
17. State Changes ... 50
18. Extented State ... 51

V. Appendices .. 52
A. Support Content ... 53

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine iv

A.1. Classes Used in This Document .. 53
B. State Machine Concepts .. 54

B.1. Quick Example .. 54
B.2. Glossary ... 55
B.3. A State Machines Crash Course .. 56

States .. 56
Pseudo States .. 57

Initial .. 57
End .. 57
Choice ... 57
History ... 57
Fork ... 57
Join ... 58

Guard Conditions ... 58
Events ... 58
Transitions ... 58

Internal Transition ... 59
External vs. Local Transition ... 59

Actions ... 59
Hierarchical State Machines .. 59
Regions ... 60

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine v

Preface
Concept of a state machine is most likely older that any of a reader of this reference documentation
and definitely older than a Java language itself. Description of finite automate dates back to 1943
when gentlements Warren McCulloch and Walter Pitts wrote a paper about it. Later George H. Mealy
presented a state machine concept in 1955 which is known as a Mealy Machine. A year later in 1956
Edward F. Moore presented another paper which is known as a Moore Machine. If you’re ever read
anything about state machines, names Mealy and Moore should have popped up at some point.

This reference documentations contains following parts.

Part I, “Introduction” introduction to this reference documentation

Part II, “Spring and Statemachine” describes the usage of Spring State Machine(SSM)

Part III, “State Machine Examples” more detailed state machine samples

Part IV, “FAQ” frequently ask questions

Part V, “Appendices” generic info about used material and state machines

Part I. Introduction
Spring Statemachine(SSM) is a framework for application developers to use traditional state machine
concepts with Spring applications. SSM aims to provide following features:

• Easy to use flat one level state machine for simple use cases.

• Hierarchical state machine structure to ease complex state configuration.

• State machine regions to provide even more complex state configurations.

• Usage of triggers, transitions, guards and actions.

• Type safe configuration adapter.

• State machine event listeners.

• Spring IOC integration to associate beans with a state machine.

Before you continue it’s worth to go through appendices Section B.2, “Glossary” and Section B.3, “A
State Machines Crash Course” to get a generic idea of what state machines are mostly because rest of
a documentation expects reader to be fairly familiar with state machine concepts.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 2

1. Requirements

Spring Statemachine 1.0.0.M2 is built and tested with JDK 7 and Spring Framework 4.1.6.RELEASE
and doesn’t require any other dependencies outside of Spring Framework. Samples require spring-shell
and spring-boot which pulls other dependencies beyond framework itself.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 3

2. Background

State machines are powerful because behaviour is always guaranteed to be consistent and relatively
easily debugged due to ways how operational rules are written in stone when machine is started. Idea
is that your application is and may exist in a finite number of states and then something happens which
takes your application from one state to the next. What will drive a state machine are triggers which are
either based on events or timers.

It is much easier to design high level logic outside of your application and then interact with a state
machine with a various different ways. You can simply interact with a state machine by sending event,
listening what a state machine does or simply request a current state.

Traditionally state machines are added to a existing project when developer realizes that code base is
starting to look like a plate full of spaghetti. Spaghetti code looks like never ending hierarchical structure
of IFs, ELSEs and BREAK clauses and probably compiler should ask developer to go home when things
are starting to look too complex.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 4

3. Usage Scenarios

Project is a good candidate to use state machine if:

• Application or part of its structure can be represented as states.

• You want to split complex logic into smaller manageable tasks.

• Application is already suffering concurrency issues with i.e. something happening asynchronously.

You are already trying to implement a state machine if:

• Use of boolean flags or enums to model situations.

• Having variables which only have meaning for some part of your application lifecycle.

• Looping through if/else structure and checking if particular flag or enum is set and then making further
exceptions what to do when certain combination of your flags and enums exists or doesn’t exist
together.

Part II. Spring and Statemachine
This part of the reference documentation explains the core functionality that Spring Statemachine
provides to any Spring based application.

Chapter 4, Statemachine Configuration describes the generic configuration support.

Chapter 5, State Machine Factories describes the generic state machine factory support.

Chapter 9, Triggering Transitions describes the use of triggers.

Chapter 10, Listening State Machine Events describes the use of state machine listeners.

Chapter 11, Context Integration describes the generic Spring application context support.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 6

4. Statemachine Configuration

One of the common tasks when using a Statemachine is to design its runtime configuration. This chapter
will focus on how Spring Statemachine is configured and how it leverages Spring’s lightweight IoC
containers to simplify the application internals to make it more manageable.

Note

Configuration examples in this section are not feature complete, i.e. you always need to have
definitions of both states and transitions, otherwise state machine configuration would be ill-
formed. We have simply made code snippets less verbose by leaving other needed parts away.

4.1 Configuring States

We’ll get into more complex configuration examples a bit later but lets first start with a something simple.
For most simple state machine you just use EnumStateMachineConfigurerAdapter and define
possible states, choose initial and optional end state.

@Configuration

@EnableStateMachine

public static class Config1 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S1)

 .end(States.SF)

 .states(EnumSet.allOf(States.class));

 }

}

4.2 Configuring Hierarchical States

Hierarchical states can be defined by using multiple withStates() calls where parent() can be
used to indicate that these particular states are sub-states of some other state.

@Configuration

@EnableStateMachine

public static class Config2 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S1)

 .state(States.S1)

 .and()

 .withStates()

 .parent(States.S1)

 .initial(States.S2)

 .state(States.S2);

 }

}

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 7

4.3 Configuring Regions

There are no special configuration methods to mark a collection of states to be part of an orthogonal
state. To put it simple, orthogonal state is created when same hierarchical state machine has multiple
set of states each having a initial state. Because an individual state machine can only have one initial
state, multiple initial states must mean that a specific state must have multiple independent regions.

@Configuration

@EnableStateMachine

public static class Config10

 extends EnumStateMachineConfigurerAdapter<States2, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States2, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States2.S1)

 .state(States2.S2)

 .and()

 .withStates()

 .parent(States2.S2)

 .initial(States2.S2I)

 .state(States2.S21)

 .end(States2.S2F)

 .and()

 .withStates()

 .parent(States2.S2)

 .initial(States2.S3I)

 .state(States2.S31)

 .end(States2.S3F);

 }

}

4.4 Configuring Transitions

We support three different types of transitions, external, internal and local. Transitions are either
triggered by a signal which is an event sent into a state machine or a timer.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 8

@Configuration

@EnableStateMachine

public static class Config3 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S1)

 .states(EnumSet.allOf(States.class));

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.S1).target(States.S2)

 .event(Events.E1)

 .and()

 .withInternal()

 .source(States.S2)

 .event(Events.E2)

 .and()

 .withLocal()

 .source(States.S2).target(States.S3)

 .event(Events.E3);

 }

}

4.5 Configuring Guards

Guards are used to protect state transitions. Interface Guard is used to do an evaluation where method
has access to a StateContext.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 9

@Configuration

@EnableStateMachine

public static class Config4 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.S1).target(States.S2)

 .event(Events.E1)

 .guard(guard())

 .and()

 .withExternal()

 .source(States.S2).target(States.S3)

 .event(Events.E2)

 .guardExpression("true");

 }

 @Bean

 public Guard<States, Events> guard() {

 return new Guard<States, Events>() {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 return true;

 }

 };

 }

}

In above two different types of guard configurations are used. Firstly a simple Guard is created as a
bean and attached to transition between states S1 and S2.

Secondly a simple spel expression can be used as a guard where expression must return a BOOLEAN
value. Behind a scenes this spel based guard is a SpelExpressionGuard. This was attached to transition
between states S2 and S3. Both guard in above sample always evaluate to true.

4.6 Configuring Actions

Actions can be defined with various steps within a state transitions.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 10

@Configuration

@EnableStateMachine

public static class Config5 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.S1)

 .target(States.S2)

 .event(Events.E1)

 .action(action());

 }

 @Bean

 public Action<States, Events> action() {

 return new Action<States, Events>() {

 @Override

 public void execute(StateContext<States, Events> context) {

 // do something

 }

 };

 }

}

4.7 Configuring Pseudo States

Pseudo state configuration is usually done by configuring states and transitions. Pseudo states are
automatically added to state machine as states.

Initial State

Simply mark a particular state as initial state by using initial() method. There are two methods
where one takes extra argument to define an initial action. This initial action is good for example initialize
extended state variables.

@Configuration

@EnableStateMachine

public static class Config11 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S1, initialAction())

 .end(States.SF)

 .states(EnumSet.allOf(States.class));

 }

 @Bean

 public Action<States, Events> initialAction() {

 return new Action<States, Events>() {

 @Override

 public void execute(StateContext<States, Events> context) {

 // do something initially

 }

 };

 }

}

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 11

Terminate State

Simply mark a particular state as end state by using end() method. This can be done max one time
per individual sub-machine or region.

@Configuration

@EnableStateMachine

public static class Config1 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S1)

 .end(States.SF)

 .states(EnumSet.allOf(States.class));

 }

}

History State

History state can be defined once for each individual state machine. You need to choose its state
identifier and History.SHALLOW or History.DEEP respectively.

@Configuration

@EnableStateMachine

public static class Config12 extends EnumStateMachineConfigurerAdapter<States3, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States3, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States3.S1)

 .state(States3.S2)

 .and()

 .withStates()

 .parent(States3.S2)

 .initial(States3.S2I)

 .state(States3.S21)

 .state(States3.S22)

 .history(States3.SH, History.SHALLOW);

 }

}

Choice State

Choice needs to be defined in both states and transitions to work properly. Mark particular state as
choice state by using choice() method. This state needs to match source state when transition is
configured for this choice.

Transition is configured using withChoice() where you define source state and first/then/last
structure which is equivalent to normal if/elseif/else. With first and then you can specify a
guard just like you’d use a condition with if/elseif clauses.

Transition needs to be able to exist so make sure last is used. Otherwise configuration is ill-formed.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 12

@Configuration

@EnableStateMachine

public static class Config13 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.SI)

 .choice(States.S1)

 .end(States.SF)

 .states(EnumSet.allOf(States.class));

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withChoice()

 .source(States.S1)

 .first(States.S2, s2Guard())

 .then(States.S3, s3Guard())

 .last(States.S4);

 }

 @Bean

 public Guard<States, Events> s2Guard() {

 return new Guard<States, Events>() {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 return false;

 }

 };

 }

 @Bean

 public Guard<States, Events> s3Guard() {

 return new Guard<States, Events>() {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 return true;

 }

 };

 }

}

Fork State

Fork needs to be defined in both states and transitions to work properly. Mark particular state as choice
state by using fork() method. This state needs to match source state when transition is configured
for this fork.

Target state needs to be a super state or immediate states in regions. Using a super state as target will
take all regions into initial states. Targeting individual state give more controlled entry into regions.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 13

@Configuration

@EnableStateMachine

public static class Config14 extends EnumStateMachineConfigurerAdapter<States2, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States2, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States2.S1)

 .fork(States2.S2)

 .state(States2.S3)

 .and()

 .withStates()

 .parent(States2.S3)

 .initial(States2.S2I)

 .state(States2.S21)

 .state(States2.S22)

 .end(States2.S2F)

 .and()

 .withStates()

 .parent(States2.S3)

 .initial(States2.S3I)

 .state(States2.S31)

 .state(States2.S32)

 .end(States2.S3F);

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<States2, Events> transitions)

 throws Exception {

 transitions

 .withFork()

 .source(States2.S2)

 .target(States2.S22)

 .target(States2.S32);

 }

}

Join State

Join needs to be defined in both states and transitions to work properly. Mark particular state as choice
state by using join() method. This state doesn’t need to match either source states or target state
in a transition configuration.

Select one target state where transition goes when all source states has been joined. If you use state
hosting regions as source, end states of a regions are used as joins. Otherwise you can pick any states
from a regions.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 14

@Configuration

@EnableStateMachine

public static class Config15 extends EnumStateMachineConfigurerAdapter<States2, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States2, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States2.S1)

 .state(States2.S3)

 .join(States2.S4)

 .and()

 .withStates()

 .parent(States2.S3)

 .initial(States2.S2I)

 .state(States2.S21)

 .state(States2.S22)

 .end(States2.S2F)

 .and()

 .withStates()

 .parent(States2.S3)

 .initial(States2.S3I)

 .state(States2.S31)

 .state(States2.S32)

 .end(States2.S3F);

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<States2, Events> transitions)

 throws Exception {

 transitions

 .withJoin()

 .source(States2.S2F)

 .source(States2.S3F)

 .target(States2.S5);

 }

}

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 15

5. State Machine Factories

There are use cases when state machine needs to be created dynamically instead of defining static
configuration at compile time. For example if there are custom components which are using its own
state machines and these components are created dynamically it is impossible to have a static state
machined build during the application start. Internally state machines are always build via a factory
interfaces and this then gives user an option to use this feature programmatically. Configuration for
state machine factory is exactly same as you’ve seen in various examples in this document where state
machine configuration is hard coded.

Actually creating a state machine using @EnableStateMachine will work via factory so
@EnableStateMachineFactory is merely exposing that factory via its interface.

@Configuration

@EnableStateMachineFactory

public static class Config6

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S1)

 .end(States.SF)

 .states(EnumSet.allOf(States.class));

 }

}

Now that you’ve used @EnableStateMachineFactory to create a factory instead of a state machine
bean, it can be injected and used as is to request new state machines.

static class Bean3 {

 @Autowired

 StateMachineFactory<States, Events> factory;

 void method() {

 StateMachine<States,Events> stateMachine = factory.getStateMachine();

 stateMachine.start();

 }

}

5.1 Factory Limitations

Current limitation of factory is that all actions and guard it is associating with created state machine
will share a same instances. This means that from your actions and guard you will need to specifically
handle a case that same bean will be called by a different state machines. This limitation is something
which will be resolved in future releases.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 16

6. Using Actions

Actions are one of the most useful components from user perspective to interact and collaborate with
a state machine. Actions can be executed in various places in a state machine and its states lifecycle
like entering or exiting states or during a transitions.

@Override

public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.SI)

 .state(States.S1, action1(), action2())

 .state(States.S2, action1(), action2())

 .state(States.S3, action1(), action3());

}

Above action1 and action2 beans are attached to states entry and exit respectively.

@Bean

public Action<States, Events> action1() {

 return new Action<States, Events>() {

 @Override

 public void execute(StateContext<States, Events> context) {

 }

 };

}

@Bean

public BaseAction action2() {

 return new BaseAction();

}

@Bean

public SpelAction action3() {

 ExpressionParser parser = new SpelExpressionParser();

 return new SpelAction(

 parser.parseExpression(

 "stateMachine.sendEvent(T(org.springframework.statemachine.docs.Events).E1)"));

}

static class BaseAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 }

}

static class SpelAction extends SpelExpressionAction<States, Events> {

 public SpelAction(Expression expression) {

 super(expression);

 }

}

You can directly implement Action as an anonymous function or create a your own implementation and
define appropriate implementation as a bean.

In action3 a SpEL expression is used to send event Events.E1 into a state machine.

Note

StateContext is described in section Chapter 8, Using StateContext.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 17

6.1 SpEL Expressions with Actions

It is also possible to use SpEL expressions as a replacement for a full Action implementation.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 18

7. Using Guards

Above guard1 and guard2 beans are attached to states entry and exit respectively.

@Override

public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.SI).target(States.S1)

 .event(Events.E1)

 .guard(guard1())

 .and()

 .withExternal()

 .source(States.S1).target(States.S2)

 .event(Events.E1)

 .guard(guard2())

 .and()

 .withExternal()

 .source(States.S2).target(States.S3)

 .event(Events.E2)

 .guardExpression("extendedState.variables.get('myvar')");

}

You can directly implement Guard as an anonymous function or create a your own implementation and
define appropriate implementation as a bean. In above sample guardExpression is simply checking
if extended state variable myvar evaluates to TRUE.

@Bean

public Guard<States, Events> guard1() {

 return new Guard<States, Events>() {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 return true;

 }

 };

}

@Bean

public BaseGuard guard2() {

 return new BaseGuard();

}

static class BaseGuard implements Guard<States, Events> {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 return false;

 }

}

Note

StateContext is described in section Chapter 8, Using StateContext.

7.1 SpEL Expressions with Guards

It is also possible to use SpEL expressions as a replacement for a full Guard implementation. Only
requirement is that expression needs to return a Boolean value to satisfy Guard implementation. This
is demonstrated with a guardExpression() function which takes an expression as an argument.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 19

8. Using StateContext

StateContext is a domain object representing a current status of a state machine within a transition or
an action. Context gives an access to a various information like event, message headers, extended
state variables, current transition and a top-level state machine in case there is a need to send events
to a further processing.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 20

9. Triggering Transitions

Driving a statemachine is done via transitions which are triggered by triggers. Currently supported
triggers are EventTrigger and TimerTrigger.

9.1 EventTrigger

EventTrigger is the most useful trigger because it allows user to directly interact with a state machine
by sending events to it. These events are also called signals. Trigger is added to a transition simply by
associating a state to it during a configuration.

@Autowired

StateMachine<States, Events> stateMachine;

void signalMachine() {

 stateMachine.sendEvent(Events.E1);

 Message<Events> message = MessageBuilder

 .withPayload(Events.E2)

 .setHeader("foo", "bar")

 .build();

 stateMachine.sendEvent(message);

}

In above example we send an event using two different ways. Firstly we simply sent a type safe event
using state machine api method sendEvent(E event). Secondly we send event wrapped in a Spring
messaging Message using api method sendEvent(Message<E> message) with a custom event
headers. This allows user to add arbitrary extra information with an event which is then visible to
StateContext when for example user is implementing actions.

9.2 TimerTrigger

TimerTrigger is useful when something needs to be triggered automatically without any user interaction.
Trigger is added to a transition by associating a timer to it during a configuration.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 21

10. Listening State Machine Events

There are use cases where you just want to know what is happening with a state machine, react to
something or simply get logging for debugging purposes. SSM provides interfaces for adding listeners
which then gives an option to get callback when various state changes, actions, etc are happening.

You basically have two options, either to listen Spring application context events or directly attach
listener to a state machine. Both of these basically will provide same information where one is producing
events as event classes and other producing callbacks via a listener interface. Both of these have pros
and cons which will be discussed later.

10.1 Application Context Events

Application context events classes are OnTransitionStartEvent, OnTransitionEvent,
OnTransitionEndEvent, OnStateExitEvent, OnStateEntryEvent, OnStateChangedEvent,
OnStateMachineStart and OnStateMachineStop. These can be used as is with spring typed
ApplicationListener class but they also share a common class StateMachineEvent which can be used
to get statemachine related events.

static class StateMachineApplicationEventListener

 implements ApplicationListener<StateMachineEvent> {

 @Override

 public void onApplicationEvent(StateMachineEvent event) {

 }

}

10.2 State Machine Listener

Using StateMachineListener you can either extend it and implement all callback methods or use
StateMachineListenerAdapter class which contains stub method implementations and choose which
ones to override.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 22

static class StateMachineEventListener

 extends StateMachineListenerAdapter<States, Events> {

 @Override

 public void stateChanged(State<States, Events> from, State<States, Events> to) {

 }

 @Override

 public void stateEntered(State<States, Events> state) {

 }

 @Override

 public void stateExited(State<States, Events> state) {

 }

 @Override

 public void transition(Transition<States, Events> transition) {

 }

 @Override

 public void transitionStarted(Transition<States, Events> transition) {

 }

 @Override

 public void transitionEnded(Transition<States, Events> transition) {

 }

 @Override

 public void stateMachineStarted(StateMachine<States, Events> stateMachine) {

 }

 @Override

 public void stateMachineStopped(StateMachine<States, Events> stateMachine) {

 }

}

In above example we simply created our own listener class StateMachineEventListener which extends
StateMachineListenerAdapter.

Once you have your own listener defined, it can be registered into a state machine via its interface as
shown below. It’s just a matter of flavour if it’s hooked up within a spring configuration or done manually
at any time of application life-cycle.

static class Config7 {

 @Autowired

 StateMachine<States, Events> stateMachine;

 @Bean

 public StateMachineEventListener stateMachineEventListener() {

 StateMachineEventListener listener = new StateMachineEventListener();

 stateMachine.addStateListener(listener);

 return listener;

 }

}

10.3 Limitations and Problems

Spring application context is not a fastest event bus out there so it is advised to give some thought
what is a rate of events state machine is sending. For better performance it may be better to use
StateMachineListener interface. For this specific reason it is possible to use contextEvents flag with
@EnableStateMachine and @EnableStateMachineFactory to disable Spring application context events
as shown above.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 23

@Configuration

@EnableStateMachine(contextEvents = false)

public static class Config8

 extends EnumStateMachineConfigurerAdapter<States, Events> {

}

@Configuration

@EnableStateMachineFactory(contextEvents = false)

public static class Config9

 extends EnumStateMachineConfigurerAdapter<States, Events> {

}

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 24

11. Context Integration

It is a little limited to do interaction with a state machine by either listening its events or using actions with
states and transitions. Time to time this approach would be too limited and verbose to create interaction
with the application a state machine is working with. For this specific use case we have made a spring
style context integration which easily attach state machine functionality into your beans.

11.1 Annotation Support

@WithStateMachine annotation can be used to associate a state machine with a existing bean. Withing
this annotation a propertys source and target can be used to qualify a transition

@WithStateMachine

static class Bean1 {

 @OnTransition(source = "S1", target = "S2")

 public void fromS1ToS2() {

 }

}

Default @OnTransition annotation can’t be used with a state and event enums user have created due
to java language limitations, thus string representation have to be used.

However if you want to have a type safe annotation it is possible to create a new annotation and use
@OnTransition as meta annotation. This user level annotation can make a reference to actual states
and events enums and framework will try to match these in a same way.

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

@OnTransition

static @interface StatesOnTransition {

 States[] source() default {};

 States[] target() default {};

}

Above we created a @StatesOnTransition annotation which defines source and target as a type
safe manner.

@WithStateMachine

static class Bean2 {

 @StatesOnTransition(source = States.S1, target = States.S2)

 public void fromS1ToS2() {

 }

}

In your own bean you can then use this @StatesOnTransition as is and use type safe source and
target.

Part III. State Machine Examples
This part of the reference documentation explains the use of state machines together with a sample
code and a uml state charts. We do few shortcuts when representing relationship between a state chart,
SSM configuration and what an application does with a state machine. For complete examples go and
study the samples repository.

Samples are build directly from a main source distribution during a normal build cycle.

./gradlew clean build -x test

Every sample is located in its own directory under spring-statemachine-samples. Samples are
based on spring-boot and spring-shell and you will find usual boot fat jars under every sample projects
build/libs directory.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 26

12. Turnstile

Turnstile is a simple device which gives you an access if payment is made and is a very simple to model
using a state machine. In its simplest form there are only two states, LOCKED and UNLOCKED. Two
events, COIN and PUSH can happen if you try to go through it or you make a payment.

States.

public static enum States {

 LOCKED, UNLOCKED

}

Events.

public static enum Events {

 COIN, PUSH

}

Configuration.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 27

@Configuration

@EnableStateMachine

static class StateMachineConfig

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.LOCKED)

 .states(EnumSet.allOf(States.class));

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.LOCKED)

 .target(States.UNLOCKED)

 .event(Events.COIN)

 .and()

 .withExternal()

 .source(States.UNLOCKED)

 .target(States.LOCKED)

 .event(Events.PUSH);

 }

}

You can see how this sample state machine interacts with event by running turnstile sample.

$ java -jar spring-statemachine-samples-turnstile-1.0.0.BUILD-SNAPSHOT.jar

sm>sm print

+--+

| SM |

+--+

| |

| +----------------+ +----------------+ |

| *-->| LOCKED | | UNLOCKED | |

| +----------------+ +----------------+ |

| +---| entry/ | | entry/ |---+ |

| | | exit/ | | exit/ | | |

| | | | | | | |

| PUSH| | |---COIN-->| | |COIN |

| | | | | | | |

| | | | | | | |

| | | |<--PUSH---| | | |

| +-->| | | |<--+ |

| | | | | |

| +----------------+ +----------------+ |

| |

+--+

sm>sm start

State changed to LOCKED

State machine started

sm>sm event COIN

State changed to UNLOCKED

Event COIN send

sm>sm event PUSH

State changed to LOCKED

Event PUSH send

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 28

13. Showcase

Showcase is a complex state machine showing all possible transition topologies up to four levels of
state nesting.

States.

public static enum States {

 S0, S1, S11, S12, S2, S21, S211, S212

}

Events.

public static enum Events {

 A, B, C, D, E, F, G, H, I

}

Configuration - states.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 29

@Override

public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S0, fooAction())

 .state(States.S0)

 .and()

 .withStates()

 .parent(States.S0)

 .initial(States.S1)

 .state(States.S1)

 .and()

 .withStates()

 .parent(States.S1)

 .initial(States.S11)

 .state(States.S11)

 .state(States.S12)

 .and()

 .withStates()

 .parent(States.S0)

 .state(States.S2)

 .and()

 .withStates()

 .parent(States.S2)

 .initial(States.S21)

 .state(States.S21)

 .and()

 .withStates()

 .parent(States.S21)

 .initial(States.S211)

 .state(States.S211)

 .state(States.S212);

}

Configuration - transitions.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 30

@Override

public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.S1).target(States.S1).event(Events.A)

 .guard(foo1Guard())

 .and()

 .withExternal()

 .source(States.S1).target(States.S11).event(Events.B)

 .and()

 .withExternal()

 .source(States.S21).target(States.S211).event(Events.B)

 .and()

 .withExternal()

 .source(States.S1).target(States.S2).event(Events.C)

 .and()

 .withExternal()

 .source(States.S2).target(States.S1).event(Events.C)

 .and()

 .withExternal()

 .source(States.S1).target(States.S0).event(Events.D)

 .and()

 .withExternal()

 .source(States.S211).target(States.S21).event(Events.D)

 .and()

 .withExternal()

 .source(States.S0).target(States.S211).event(Events.E)

 .and()

 .withExternal()

 .source(States.S1).target(States.S211).event(Events.F)

 .and()

 .withExternal()

 .source(States.S2).target(States.S11).event(Events.F)

 .and()

 .withExternal()

 .source(States.S11).target(States.S211).event(Events.G)

 .and()

 .withExternal()

 .source(States.S211).target(States.S0).event(Events.G)

 .and()

 .withInternal()

 .source(States.S0).event(Events.H)

 .guard(foo0Guard())

 .action(fooAction())

 .and()

 .withInternal()

 .source(States.S2).event(Events.H)

 .guard(foo1Guard())

 .action(fooAction())

 .and()

 .withInternal()

 .source(States.S1).event(Events.H)

 .and()

 .withExternal()

 .source(States.S11).target(States.S12).event(Events.I)

 .and()

 .withExternal()

 .source(States.S211).target(States.S212).event(Events.I)

 .and()

 .withExternal()

 .source(States.S12).target(States.S212).event(Events.I);

}

Configuration - actions and guard.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 31

@Bean

public FooGuard foo0Guard() {

 return new FooGuard(0);

}

@Bean

public FooGuard foo1Guard() {

 return new FooGuard(1);

}

@Bean

public FooAction fooAction() {

 return new FooAction();

}

Action.

private static class FooAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 Map<Object, Object> variables = context.getExtendedState().getVariables();

 Integer foo = context.getExtendedState().get("foo", Integer.class);

 if (foo == null) {

 log.info("Init foo to 0");

 variables.put("foo", 0);

 } else if (foo == 0) {

 log.info("Switch foo to 1");

 variables.put("foo", 1);

 } else if (foo == 1) {

 log.info("Switch foo to 0");

 variables.put("foo", 0);

 }

 }

}

Guard.

private static class FooGuard implements Guard<States, Events> {

 private final int match;

 public FooGuard(int match) {

 this.match = match;

 }

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 Object foo = context.getExtendedState().getVariables().get("foo");

 return !(foo == null || !foo.equals(match));

 }

}

Lets go through what this state machine do when it’s executed and we send various event to it.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 32

sm>sm start

Entry state S0

Entry state S1

Entry state S11

Init foo to 0

State machine started

sm>sm event A

Event A send

sm>sm event C

Exit state S11

Exit state S1

Entry state S2

Entry state S21

Entry state S211

Event C send

sm>sm event H

Switch foo to 1

Event H send

sm>sm event C

Exit state S211

Exit state S21

Exit state S2

Entry state S1

Entry state S11

Event C send

sm>sm event A

Exit state S11

Exit state S1

Entry state S1

Entry state S11

Event A send

What happens in above sample:

• State machine is started which takes it to its initial state S11 via superstates S1 and S0. Also extended
state variable foo is init to 0.

• We try to execute self transition in state S1 with event A but nothing happens because transition is
guarded by variable foo to be 1.

• We send event C which takes us to other state machine where initial state S211 and its superstates
are entered. In there we can use event H which does a simple internal transition to flip variable foo.
Then we simply go back using event C.

• Event A is sent again and now S1 does a self transition because guard evaluates true.

• It’s also worth to pay attention to how event H is handled in different states S0, S1 and S2. This
is a good example of how hierarchical states and their event handling works. If state S2 is unable
to handle event H due to guard condition, its parent is checked next. This guarantees that while on
state S2, foo flag is always flipped around. However in state S1 event H always match to its dummy
transition without guard or action, not never happens.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 33

14. CD Player

CD Player is a sample which resembles better use case of most of use have used in a real world. CD
Player itself is a really simple entity where user can open a deck, insert or change a disk, then drive
player functionality by pressing various buttons like eject, play, stop, pause, rewind and backward.

How many of use have really given a thought of what it will take to make a code for a CD Player which
interacts with a hardware. Yes, concept of a player is overly simple but if you look behind a scenes
things actually get a bit convoluted.

You’ve probably noticed that if your deck is open and you press play, deck will close and a song will start
to play if CD was inserted in a first place. In a sense when deck is open you first need to close it and then
try to start playing if cd is actually inserted. Hopefully you have now realised that a simple CD Player
is not anymore so simple. Sure you can wrap all this with a simple class with few boolean variables
and probably few nested if/else clauses, that will do the job, but what about if you need to make all this
behaviour much more complex, do you really want to keep adding more flags and if/else clauses.

Lets go through how this sample and its state machine is designed and how those two interacts with
each other. Below three config sections are used withing a EnumStateMachineConfigurerAdapter.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 34

@Override

public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.IDLE)

 .state(States.IDLE)

 .and()

 .withStates()

 .parent(States.IDLE)

 .initial(States.CLOSED)

 .state(States.CLOSED, closedEntryAction(), null)

 .state(States.OPEN)

 .and()

 .withStates()

 .state(States.BUSY)

 .and()

 .withStates()

 .parent(States.BUSY)

 .initial(States.PLAYING)

 .state(States.PLAYING)

 .state(States.PAUSED);

}

@Override

public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.CLOSED).target(States.OPEN).event(Events.EJECT)

 .and()

 .withExternal()

 .source(States.OPEN).target(States.CLOSED).event(Events.EJECT)

 .and()

 .withExternal()

 .source(States.OPEN).target(States.CLOSED).event(Events.PLAY)

 .and()

 .withExternal()

 .source(States.PLAYING).target(States.PAUSED).event(Events.PAUSE)

 .and()

 .withInternal()

 .source(States.PLAYING)

 .action(playingAction())

 .timer(1000)

 .and()

 .withInternal()

 .source(States.PLAYING).event(Events.BACK)

 .action(trackAction())

 .and()

 .withInternal()

 .source(States.PLAYING).event(Events.FORWARD)

 .action(trackAction())

 .and()

 .withExternal()

 .source(States.PAUSED).target(States.PLAYING).event(Events.PAUSE)

 .and()

 .withExternal()

 .source(States.BUSY).target(States.IDLE).event(Events.STOP)

 .and()

 .withExternal()

 .source(States.IDLE).target(States.BUSY).event(Events.PLAY)

 .action(playAction())

 .guard(playGuard())

 .and()

 .withInternal()

 .source(States.OPEN).event(Events.LOAD).action(loadAction());

}

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 35

@Bean

public ClosedEntryAction closedEntryAction() {

 return new ClosedEntryAction();

}

@Bean

public LoadAction loadAction() {

 return new LoadAction();

}

@Bean

public TrackAction trackAction() {

 return new TrackAction();

}

@Bean

public PlayAction playAction() {

 return new PlayAction();

}

@Bean

public PlayingAction playingAction() {

 return new PlayingAction();

}

@Bean

public PlayGuard playGuard() {

 return new PlayGuard();

}

What we did in above configuration:

• We used EnumStateMachineConfigurerAdapter to configure states and transitions.

• States CLOSED and OPEN are defined as substates of IDLE, states PLAYING and PAUSED are
defined as substates of BUSY.

• With state CLOSED we added entry action as bean closedEntryAction.

• With transition we mostly mapped events to expected state transitions like EJECT closing and opening
a deck, PLAY, STOP and PAUSE doing their natural transitions. Few words to mention what we did
for other transitions.

• With source state PLAYING we added a timer trigger which is needed to automatically track elapsed
time within a playing track and to have facility to make a decision when to switch to next track.

• With event PLAY if source state is IDLE and target state is BUSY we defined action playAction
and guard playGuard.

• With event LOAD and state OPEN we defined internal transition with action loadAction which will
insert cd disc into extended state variables.

• PLAYING state defined three internal transitions where one is triggered by a timer executing a
playingAction which updates extended state variables. Other two transitions are with trackAction
with different events, BACK and FORWARD respectively which handles when user wants to go
back or forward in tracks.

This machine only have six states which are introduced as an enum.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 36

public static enum States {

 // super state of PLAYING and PAUSED

 BUSY,

 PLAYING,

 PAUSED,

 // super state of CLOSED and OPEN

 IDLE,

 CLOSED,

 OPEN

}

Events represent, in a sense in this example, what buttons user would press and if user loads a cd
disc into a deck.

public static enum Events {

 PLAY, STOP, PAUSE, EJECT, LOAD, FORWARD, BACK

}

Beans cdPlayer and library are just used with a sample to drive the application.

@Bean

public CdPlayer cdPlayer() {

 return new CdPlayer();

}

@Bean

public Library library() {

 return Library.buildSampleLibrary();

}

We can define extended state variable key as simple enums.

public static enum Variables {

 CD, TRACK, ELAPSEDTIME

}

public static enum Headers {

 TRACKSHIFT

}

We wanted to make this samply type safe so we’re defining our own annotation @StatesOnTransition
which have a mandatory meta annotation @OnTransition.

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

@OnTransition

public static @interface StatesOnTransition {

 States[] source() default {};

 States[] target() default {};

}

ClosedEntryAction is a entry action for state CLOSED to simply send and PLAY event to a statemachine
if cd disc is present.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 37

public static class ClosedEntryAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 if (context.getTransition() != null

 && context.getEvent() == Events.PLAY

 && context.getTransition().getTarget().getId() == States.CLOSED

 && context.getExtendedState().getVariables().get(Variables.CD) != null) {

 context.getStateMachine().sendEvent(Events.PLAY);

 }

 }

}

LoadAction is simply updating extended state variable if event headers contained information about a
cd disc to load.

public static class LoadAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 Object cd = context.getMessageHeader(Variables.CD);

 context.getExtendedState().getVariables().put(Variables.CD, cd);

 }

}

PlayAction is simply resetting player elapsed time which is kept as an extended state variable.

public static class PlayAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 context.getExtendedState().getVariables().put(Variables.ELAPSEDTIME, 0l);

 context.getExtendedState().getVariables().put(Variables.TRACK, 0);

 }

}

PlayGuard is used to guard transition from IDLE to BUSY with event PLAY if extended state variable
CD doesn’t indicate that cd disc has been loaded.

public static class PlayGuard implements Guard<States, Events> {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 ExtendedState extendedState = context.getExtendedState();

 return extendedState.getVariables().get(Variables.CD) != null;

 }

}

PlayingAction is updating extended state variable ELAPSEDTIME which cd player itself can read and
update lcd status. Action also handles track shift if user is going back or forward in tracks.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 38

public static class PlayingAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 Map<Object, Object> variables = context.getExtendedState().getVariables();

 Object elapsed = variables.get(Variables.ELAPSEDTIME);

 Object cd = variables.get(Variables.CD);

 Object track = variables.get(Variables.TRACK);

 if (elapsed instanceof Long) {

 long e = ((Long)elapsed) + 1000l;

 if (e > ((Cd) cd).getTracks()[((Integer) track)].getLength()*1000) {

 context.getStateMachine().sendEvent(MessageBuilder

 .withPayload(Events.FORWARD)

 .setHeader(Headers.TRACKSHIFT.toString(), 1).build());

 } else {

 variables.put(Variables.ELAPSEDTIME, e);

 }

 }

 }

}

TrackAction handles track shift action if user is going back or forward in tracks. If it is a last track of a
cd, playing is stopped and STOP event sent to a state machine.

public static class TrackAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 Map<Object, Object> variables = context.getExtendedState().getVariables();

 Object trackshift = context.getMessageHeader(Headers.TRACKSHIFT.toString());

 Object track = variables.get(Variables.TRACK);

 Object cd = variables.get(Variables.CD);

 if (trackshift instanceof Integer && track instanceof Integer && cd instanceof Cd) {

 int next = ((Integer)track) + ((Integer)trackshift);

 if (next >= 0 && ((Cd)cd).getTracks().length > next) {

 variables.put(Variables.ELAPSEDTIME, 0l);

 variables.put(Variables.TRACK, next);

 } else if (((Cd)cd).getTracks().length <= next) {

 context.getStateMachine().sendEvent(Events.STOP);

 }

 }

 }

}

One other important aspect of a state machines is that they have their own responsibilies mostly around
handling states and all application level logic should be kept outside. This means that application needs
to have a ways to interact with a state machine and below sample is how cdplayer does it order to update
lcd status. Also pay attention that we annotated CdPlayer with @WithStateMachine which instructs state
machine to find methods from your pojo which are then called with various transitions.

@OnTransition(target = "BUSY")

public void busy(ExtendedState extendedState) {

 Object cd = extendedState.getVariables().get(Variables.CD);

 if (cd != null) {

 cdStatus = ((Cd)cd).getName();

 }

}

In above example we use @OnTransition annotation to hook a callback when transition happens with
a target state BUSY.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 39

@StatesOnTransition(target = {States.CLOSED, States.IDLE})

public void closed(ExtendedState extendedState) {

 Object cd = extendedState.getVariables().get(Variables.CD);

 if (cd != null) {

 cdStatus = ((Cd)cd).getName();

 } else {

 cdStatus = "No CD";

 }

 trackStatus = "";

}

@OnTransition we used above can only be used with strings which are matched from enums.
@StatesOnTransition is then something what user can create into his own application to get a type safe
annotation where a real enums can be used.

Lets see an example how this state machine actually works.

sm>sm start

Entry state IDLE

Entry state CLOSED

State machine started

sm>cd lcd

No CD

sm>cd library

0: Greatest Hits

 0: Bohemian Rhapsody 05:56

 1: Another One Bites the Dust 03:36

1: Greatest Hits II

 0: A Kind of Magic 04:22

 1: Under Pressure 04:08

sm>cd eject

Exit state CLOSED

Entry state OPEN

sm>cd load 0

Loading cd Greatest Hits

sm>cd play

Exit state OPEN

Entry state CLOSED

Exit state CLOSED

Exit state IDLE

Entry state BUSY

Entry state PLAYING

sm>cd lcd

Greatest Hits Bohemian Rhapsody 00:03

sm>cd forward

sm>cd lcd

Greatest Hits Another One Bites the Dust 00:04

sm>cd stop

Exit state PLAYING

Exit state BUSY

Entry state IDLE

Entry state CLOSED

sm>cd lcd

Greatest Hits

What happened in above run:

• State machine is started which causes machine to get initialized.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 40

• CD Player lcd screen status is printed.

• CD Library is printed.

• CD Player deck is opened.

• CD with index 0 is loaded into a deck.

• Play is causing deck to get closed and immediate playing because cd was inserted.

• We print lcd status and request next track.

• We stop playing.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 41

15. Tasks

Tasks is a sample demonstrating a parallel task handling within a regions and additionally adds an error
handling to either automatically or manually fixing task problems before continuing back to a state where
tasks can be run again.

On a high level what happens in this state machine is:

• We’re always trying to get into READY state so that we can use event RUN to execute tasks.

• TASKS state which is composed with 3 independent regions has been put in a middle of FORK and
JOIN states which will cause regions to go into its initial states and to be joined by end states.

• From JOIN state we go automatically into a CHOICE state which checks existence of error flags in
extended state variables. Tasks can set these flags and it gives CHOICE state a possibility to go into
ERROR state where errors can be handled either automatically or manually.

• AUTOMATIC state in ERROR can try to automatically fix error and goes back to READY if it succeed
to do so. If error is something what can’t be handled automatically, user intervention is needed and
machine is put into MANUAL state via FALLBACK event.

States.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 42

public static enum States {

 READY,

 FORK, JOIN, CHOICE,

 TASKS, T1, T1E, T2, T2E, T3, T3E,

 ERROR, AUTOMATIC, MANUAL

}

Events.

public static enum Events {

 RUN, FALLBACK, CONTINUE, FIX;

}

Configuration - states.

@Override

public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.READY)

 .fork(States.FORK)

 .state(States.TASKS)

 .join(States.JOIN)

 .choice(States.CHOICE)

 .state(States.ERROR)

 .and()

 .withStates()

 .parent(States.TASKS)

 .initial(States.T1)

 .end(States.T1E)

 .and()

 .withStates()

 .parent(States.TASKS)

 .initial(States.T2)

 .end(States.T2E)

 .and()

 .withStates()

 .parent(States.TASKS)

 .initial(States.T3)

 .end(States.T3E)

 .and()

 .withStates()

 .parent(States.ERROR)

 .initial(States.AUTOMATIC)

 .state(States.AUTOMATIC, automaticAction(), null)

 .state(States.MANUAL);

}

Configuration - transitions.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 43

@Override

public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.READY).target(States.FORK)

 .event(Events.RUN)

 .and()

 .withFork()

 .source(States.FORK).target(States.TASKS)

 .and()

 .withExternal()

 .source(States.T1).target(States.T1E)

 .and()

 .withExternal()

 .source(States.T2).target(States.T2E)

 .and()

 .withExternal()

 .source(States.T3).target(States.T3E)

 .and()

 .withJoin()

 .source(States.TASKS).target(States.JOIN)

 .and()

 .withExternal()

 .source(States.JOIN).target(States.CHOICE)

 .and()

 .withChoice()

 .source(States.CHOICE)

 .first(States.ERROR, tasksChoiceGuard())

 .last(States.READY)

 .and()

 .withExternal()

 .source(States.ERROR).target(States.READY)

 .event(Events.CONTINUE)

 .and()

 .withExternal()

 .source(States.AUTOMATIC).target(States.MANUAL)

 .event(Events.FALLBACK)

 .and()

 .withInternal()

 .source(States.MANUAL)

 .action(fixAction())

 .event(Events.FIX);

}

Guard below is guarding choice entry into a ERROR state and needs to return TRUE if error has
happened. For this guard simply checks that all extended state variables(T1, T2 and T3) are TRUE.

@Bean

public Guard<States, Events> tasksChoiceGuard() {

 return new Guard<States, Events>() {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 Map<Object, Object> variables = context.getExtendedState().getVariables();

 return !(ObjectUtils.nullSafeEquals(variables.get("T1"), true)

 && ObjectUtils.nullSafeEquals(variables.get("T2"), true)

 && ObjectUtils.nullSafeEquals(variables.get("T3"), true));

 }

 };

}

Actions below will simply send event to a state machine to request next step which would be either
fallback or continue back to ready.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 44

@Bean

public Action<States, Events> automaticAction() {

 return new Action<States, Events>() {

 @Override

 public void execute(StateContext<States, Events> context) {

 Map<Object, Object> variables = context.getExtendedState().getVariables();

 if (ObjectUtils.nullSafeEquals(variables.get("T1"), true)

 && ObjectUtils.nullSafeEquals(variables.get("T2"), true)

 && ObjectUtils.nullSafeEquals(variables.get("T3"), true)) {

 context.getStateMachine().sendEvent(Events.CONTINUE);

 } else {

 context.getStateMachine().sendEvent(Events.FALLBACK);

 }

 }

 };

}

@Bean

public Action<States, Events> fixAction() {

 return new Action<States, Events>() {

 @Override

 public void execute(StateContext<States, Events> context) {

 Map<Object, Object> variables = context.getExtendedState().getVariables();

 variables.put("T1", true);

 variables.put("T2", true);

 variables.put("T3", true);

 context.getStateMachine().sendEvent(Events.CONTINUE);

 }

 };

}

Currently default region execution is synchronous but it can be changed to asynchronous by changing
TaskExecutor. Task will simulate work by sleeping 2 seconds so you’ll able to see how actions in
regions are executed parallel.

@Bean

public TaskExecutor taskExecutor() {

 ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();

 taskExecutor.setCorePoolSize(5);

 return taskExecutor;

}

Lets see an examples how this state machine actually works.

sm>sm start

State machine started

Entry state READY

sm>tasks run

Entry state TASKS

run task on T3

run task on T2

run task on T1

run task on T2 done

run task on T1 done

run task on T3 done

Entry state T2

Entry state T3

Entry state T1

Entry state T1E

Entry state T2E

Entry state T3E

Exit state TASKS

Entry state JOIN

Exit state JOIN

Entry state READY

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 45

In above we can execute tasks multiple times.

sm>tasks list

Tasks {T1=true, T3=true, T2=true}

sm>tasks fail T1

sm>tasks list

Tasks {T1=false, T3=true, T2=true}

sm>tasks run

Entry state TASKS

run task on T1

run task on T3

run task on T2

run task on T1 done

run task on T3 done

run task on T2 done

Entry state T1

Entry state T3

Entry state T2

Entry state T1E

Entry state T2E

Entry state T3E

Exit state TASKS

Entry state JOIN

Exit state JOIN

Entry state ERROR

Entry state AUTOMATIC

Exit state AUTOMATIC

Exit state ERROR

Entry state READY

In above, if we simulate failure for task T1, it is fixed automatically.

sm>tasks list

Tasks {T1=true, T3=true, T2=true}

sm>tasks fail T2

sm>tasks run

Entry state TASKS

run task on T2

run task on T1

run task on T3

run task on T2 done

run task on T1 done

run task on T3 done

Entry state T2

Entry state T1

Entry state T3

Entry state T1E

Entry state T2E

Entry state T3E

Exit state TASKS

Entry state JOIN

Exit state JOIN

Entry state ERROR

Entry state AUTOMATIC

Exit state AUTOMATIC

Entry state MANUAL

sm>tasks fix

Exit state MANUAL

Exit state ERROR

Entry state READY

In above if we simulate failure for either task T2 or T3, state machine goes to MANUAL state where
problem needs to be fixed manually before we’re able to go back to READY state.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 46

16. Washer

Washer is a sample demonstrating a use of a history state to recover a running state configuration with
a simulated power off situation.

Anyone ever used a washing machine knows that if you can somehow pause the program it will continue
from a same state when lid is closed. This kind of behaviour can be implemented in a state machine
by using a history pseudo state.

States.

public static enum States {

 RUNNING, HISTORY, END,

 WASHING, RINSING, DRYING,

 POWEROFF

}

Events.

public static enum Events {

 RINSE, DRY, STOP,

 RESTOREPOWER, CUTPOWER

}

Configuration - states.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 47

@Override

public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.RUNNING)

 .state(States.POWEROFF)

 .end(States.END)

 .and()

 .withStates()

 .parent(States.RUNNING)

 .initial(States.WASHING)

 .state(States.RINSING)

 .state(States.DRYING)

 .history(States.HISTORY, History.SHALLOW);

}

Configuration - transitions.

@Override

public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.WASHING).target(States.RINSING)

 .event(Events.RINSE)

 .and()

 .withExternal()

 .source(States.RINSING).target(States.DRYING)

 .event(Events.DRY)

 .and()

 .withExternal()

 .source(States.RUNNING) .target(States.POWEROFF)

 .event(Events.CUTPOWER)

 .and()

 .withExternal()

 .source(States.POWEROFF).target(States.HISTORY)

 .event(Events.RESTOREPOWER)

 .and()

 .withExternal()

 .source(States.RUNNING).target(States.END)

 .event(Events.STOP);

}

Lets see an example how this state machine actually works.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 48

sm>sm start

Entry state RUNNING

Entry state WASHING

State machine started

sm>sm event RINSE

Exit state WASHING

Entry state RINSING

Event RINSE send

sm>sm event DRY

Exit state RINSING

Entry state DRYING

Event DRY send

sm>sm event CUTPOWER

Exit state DRYING

Exit state RUNNING

Entry state POWEROFF

Event CUTPOWER send

sm>sm event RESTOREPOWER

Exit state POWEROFF

Entry state RUNNING

Entry state WASHING

Entry state DRYING

Event RESTOREPOWER send

What happened in above run:

• State machine is started which causes machine to get initialized.

• We go to RINSING state.

• We go to DRYING state.

• We cut power and go to POWEROFF state.

• State is restored via HISTORY state which takes state machine back to its previous known state.

Part IV. FAQ
This chapter tries to give solutions to question user is most likely to ask.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 50

17. State Changes

I want to transit to next state automatically.

There are few choices a state machine developer can choose.

• Implement an action and send appropriate event into a state machine which triggers a transition into
a proper target state.

• Define deferred event within a state and before sending an event send a event which will be deferred
and thus causing next appropriate state transition when it is more convenient to handle that event.

• Implement a triggerless transition which will automatically cause state transition into a next state when
state has entry and its actions has been completed.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 51

18. Extented State

How I can initialise variables on state machine start.

Important concept in a state machine is that nothing really happens unless there is a trigger which is
causing a state transition which then can fire actions. However, having said that, Spring Statemachine
always have an initial transition when state machine is started. With this initial transition user can execute
a simple action which within a StateContext can do whatever it likes with an extended state variables.

Part V. Appendices

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 53

Appendix A. Support Content
This appendix provides generic information about used classes and material in this reference
documentation.

A.1 Classes Used in This Document

public enum States {

 SI,S1,S2,S3,S4,SF

}

public enum States2 {

 S1,S2,S3,S4,S5,

 S2I,S21,S22,S2F,

 S3I,S31,S32,S3F

}

public enum States3 {

 S1,S2,SH,

 S2I,S21,S22,S2F

}

public enum Events {

 E1,E2,E3,E4,EF

}

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 54

Appendix B. State Machine Concepts
This appendix provides generic information about state machines.

B.1 Quick Example

Assuming we have states STATE1, STATE2 and events EVENT1, EVENT2, logic of state machine can
be defined as shown in below quick example.

static enum States {

 STATE1, STATE2

}

static enum Events {

 EVENT1, EVENT2

}

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 55

@Configuration

@EnableStateMachine

static class Config1 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.STATE1)

 .states(EnumSet.allOf(States.class));

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.STATE1).target(States.STATE2)

 .event(Events.EVENT1)

 .and()

 .withExternal()

 .source(States.STATE2).target(States.STATE1)

 .event(Events.EVENT2);

 }

}

@WithStateMachine

static class MyBean {

 @OnTransition(target = "STATE1")

 void toState1() {

 }

 @OnTransition(target = "STATE2")

 void toState2() {

 }

}

static class MyApp {

 @Autowired

 StateMachine<States, Events> stateMachine;

 void doSignals() {

 stateMachine.sendEvent(Events.EVENT1);

 stateMachine.sendEvent(Events.EVENT2);

 }

}

B.2 Glossary

State Machine
Main entity driving a collection of states together with regions, transitions and events.

State
A state models a situation during which some invariant condition holds. State is the main entity of
a state machine where state changes are driven by an events.

Transition
A transition is a relationship between a source state and a target state. It may be part of a compound
transition, which takes the state machine from one state configuration to another, representing the
complete response of the state machine to an occurrence of an event of a particular type.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 56

Event
An entity which is send to a state machine which then drives a various state changes.

Initial State
A special state in which the state machine starts. Initial state is always bound to a particular state
machine or a region. A state machine with a multiple regions may have a multiple initial states.

End State
Also called as a final state is a special kind of state signifying that the enclosing region is completed.
If the enclosing region is directly contained in a state machine and all other regions in the state
machine also are completed, then it means that the entire state machine is completed.

History State
A pseudo state which allows a state machine to remember its last active state. Two types of history
state exists, shallow which only remember top level state and deep which remembers active states
in a sub-machines.

Choice State
A pseudo state which allows to make a transition choice based of i.e. event headers or extended
state variables.

Fork State
A pseudo state which gives a controlled entry into a regions.

Join State
A pseudo state which gives a controlled exit from a regions.

Region
A region is an orthogonal part of either a composite state or a state machine. It contains states
and transitions.

Guard
Is a boolean expression evaluated dynamically based on the value of extended state variables and
event parameters. Guard conditions affect the behavior of a state machine by enabling actions or
transitions only when they evaluate to TRUE and disabling them when they evaluate to FALSE.

Action
A action is a behaviour executed during the triggering of the transition.

B.3 A State Machines Crash Course

This appendix provides generic crash course to a state machine concepts.

States

A state is a model which a state machine can be in. It is always easier to describe state as a real world
example rather than trying to abstract concepts with a generic documentation. For example lets take a
simple example of a keyboard most of us are using every single day. If you have a full keyboard which
has normal keys on a left side and the numeric keypad on a right side you may have noticed that the
numeric keypad may be in a two different states depending whether numlock is activated or not. If it is
not active then typing will result navigation using arrows, etc. If numpad is active then typing will result
numbers to be used. Essentially numpad part of a keyboard can be in two different states.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 57

To relate state concept to programming it means that instead of using flags, nested if/else/break clauses
or other impractical logic you simply rely on state, state variables or other interaction with a state
machine.

Pseudo States

PseudoState is a special type of state which usually introduces more higher level logic into a state
machine by either giving a state a special meaning like initial state. State machine can then internally
react to these states by doing various actions available in UML state machine concepts.

Initial

Initial pseudostate state is always needed for every single state machine whether you have a simple
one level state machine or more complex state machine composed with submachines or regions. Initial
state simple defines where state machine should go when it starts and without it state machine is ill-
formed.

End

Terminate pseudostate which is also called as end state will indicate that a particular state machine
has reached its final state. Effectively this mean that a state machine will no longer process any events
and will not transit to any other state. However in a case of submachines are regions, state machine
is able to restart from its terminal state.

Choice

Choice pseudostate is used to choose a dynamic conditional branch of a transition from this state.
Dynamic condition is evaluated by guards so that at least one and at most one branch is selected.
Usually a simple if/elseif/else structure is used to make sure that at least one branch is selected.
Otherwise state machine might end up in a deadlock and configuration would be ill-formed.

History

History pseudostate can be used to remember a last active state configuration. After state machine
has been exited, history state can be used to restore previous knows configuration. There are two types
of history states available, SHALLOW only remember active state of a state machine itself while DEEP
also remembers nested states.

History state could be implemented externally by listening state machine events but this would soon
make logic very difficult to work with, especially if state machine contains complex nested structures.
Letting state machine itself to handle recording of history states makes things much simpler. What is
left for user to do is simply do a transition into a history state and state machine will hand the needed
logic to go back to its last known recorded state.

Fork

Fork pseudostate can be used to do an explicit entry into one or more regions.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 58

Target state can be a parent state hosting regions, which simply means that regions are activated by
entering its initial states. It’s also possible to add targets directly to any state in a region which allows
more controlled entry into a state.

Join

Join pseudostate is used to merge several transitions together originating from different regions. It it
generally used to wait and block for participating regions to get into its join target states.

Source state can be a parent state hosting regions, which means that join states will be a terminate
states of a participating regions. It’s also possible to define source states to be any state in a regions
which allows controlled exit from a regions.

Guard Conditions

Guard conditions are expressions which evaluates either to TRUE or FALSE based on extended state
variables and event parameters. Guards are used with actions and transitions to dynamically choose if
particular action or transition should be executed. Aspects of guards, event parameters and extended
state variables are simply to make state machine design much more simple.

Events

Event is the most used trigger behaviour to drive a state machine. There are other ways to trigger
behaviour to happen in state machine like a timer but events are the ones which really allows user to
interact with a state machine. Events are also called as signals to possibly alter a state machine state.

Transitions

A transition is a relationship between a source state and a target state. A switch from a state to another
is a state transition caused by a trigger.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 59

Internal Transition

Internal transition is used when action needs to be executed without causing a state transition. With
internal transition source and target state is always a same and it is identical with self-transition in the
absence of state entry and exit actions.

External vs. Local Transition

Most of the cases external and local transition are functionally equivalent except in cases where
transition is happening between super and sub states. Local transition doesn’t cause exit and entry to
source state if target state is a substate of a source state. Other way around, local transition doesn’t
cause exit and entry to target state if target is a superstate of a source state.

Above image shows a different between local and external transitions with a very simplistic super and
sub states.

Actions

Actions are the ones which really glues state machine state changes with a user’s own code. State
machine can execute action on various changes and steps in a state machine like entering or exiting
a state, or doing a state transition.

Actions usually have access to a state context which gives running code a choice to interact with a state
machine in a various ways. State context i.e. is exposing a whole state machine so user can access
extended state variables, event headers if transition is based on an event, or actual transition where it
is possible to see more detailed where this state change is coming from and where it is going.

Hierarchical State Machines

Concept of a hierarchical state machine is used to simplify state design when particular states can only
exist together.

Spring Statemachine - Reference Documentation

1.0.0.M2 Spring Statemachine 60

Hierarchical states are really an innovation in UML state machine over a traditional state machines like
Mealy or Moore machines. Hierarchical states allows to define some level of abstraction is a sense how
java developer would define a class structure with abstract classes. For example having a nested state
machine user is able to define transition on a multiple level of states possibly with a different conditions.
State machine will always try to see if current state is able to handle an event together with a transition
guard conditions. If these conditions are not evaluated to true, state machine will simply see what a
super state can handle.

Regions

Regions which are also called as orthogonal regions are usually viewed as exclusive OR operation
applied to a states. Concept of a region in terms of a state machine is usually a little difficult to understand
but things gets a little simpler with a simple example.

Some of us have a full size keyboard with main keys on a left side and numeric keys on a right side.
You’ve probably noticed that both sides really have their own state which you see if you press a numlock
key which only alters behaviour of numbad itself. If you don’t have a full size keyboard you can buy a
simple external usb numbad having only numbad part of a keys. If left and right side can freely exist
without the other they must have a totally different states which means they are operating on different
state machines.

It would be a little inconvenient to handle two different statemachines as totally separate entities because
in a sense they are still working together in a sense. This is why orthogonal regions can combine together
a multiple simultaneous states within a single state in a state machine.

	Spring Statemachine - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Requirements
	2. Background
	3. Usage Scenarios

	Part II. Spring and Statemachine
	4. Statemachine Configuration
	4.1 Configuring States
	4.2 Configuring Hierarchical States
	4.3 Configuring Regions
	4.4 Configuring Transitions
	4.5 Configuring Guards
	4.6 Configuring Actions
	4.7 Configuring Pseudo States
	Initial State
	Terminate State
	History State
	Choice State
	Fork State
	Join State

	5. State Machine Factories
	5.1 Factory Limitations

	6. Using Actions
	6.1 SpEL Expressions with Actions

	7. Using Guards
	7.1 SpEL Expressions with Guards

	8. Using StateContext
	9. Triggering Transitions
	9.1 EventTrigger
	9.2 TimerTrigger

	10. Listening State Machine Events
	10.1 Application Context Events
	10.2 State Machine Listener
	10.3 Limitations and Problems

	11. Context Integration
	11.1 Annotation Support

	Part III. State Machine Examples
	12. Turnstile
	13. Showcase
	14. CD Player
	15. Tasks
	16. Washer

	Part IV. FAQ
	17. State Changes
	18. Extented State

	Part V. Appendices
	Appendix A. Support Content
	A.1 Classes Used in This Document

	Appendix B. State Machine Concepts
	B.1 Quick Example
	B.2 Glossary
	B.3 A State Machines Crash Course
	States
	Pseudo States
	Initial
	End
	Choice
	History
	Fork
	Join

	Guard Conditions
	Events
	Transitions
	Internal Transition
	External vs. Local Transition

	Actions
	Hierarchical State Machines
	Regions

