
Spring Statemachine - Reference Documentation

1.0.0.RELEASE

Janne Valkealahti Pivotal

Copyright © 2015 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine iii

Table of Contents

Preface ... vi
I. Introduction ... 1

1. Background .. 2
2. Usage Scenarios .. 3

II. Getting started ... 4
3. System Requirements .. 5
4. Modules ... 6
5. Using Gradle ... 7
6. Using Maven ... 8
7. Developing your first Spring Statemachine application .. 11

III. Using Spring Statemachine .. 13
8. Statemachine Configuration .. 14

8.1. Configuring States ... 14
8.2. Configuring Hierarchical States ... 15
8.3. Configuring Regions .. 15
8.4. Configuring Transitions .. 16
8.5. Configuring Guards .. 17
8.6. Configuring Actions .. 17
8.7. Configuring Pseudo States ... 19

Initial State ... 19
Terminate State .. 20
History State .. 20
Choice State .. 20
Fork State .. 21
Join State .. 22

8.8. Configuring Common Settings .. 23
9. State Machine Factories ... 25

9.1. Factory via Adapter ... 25
Adapter Factory Limitations ... 25

9.2. State Machine via Builder .. 25
10. Using Actions ... 27

10.1. SpEL Expressions with Actions ... 28
11. Using Guards ... 29

11.1. SpEL Expressions with Guards ... 29
12. Using Extended State ... 30
13. Using StateContext ... 31
14. Triggering Transitions ... 32

14.1. EventTrigger .. 32
14.2. TimerTrigger .. 32

15. Listening State Machine Events .. 34
15.1. Application Context Events ... 34
15.2. State Machine Listener .. 34
15.3. Limitations and Problems ... 35

16. Context Integration ... 37
16.1. Annotation Support .. 37

17. State Machine Accessor ... 38
18. State Machine Interceptor ... 39

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine iv

19. State Machine Error Handling ... 40
20. Persisting State Machine .. 42
21. Using Distributed States ... 43

21.1. ZookeeperStateMachineEnsemble .. 44
22. Testing Support .. 45

IV. Recipes .. 46
23. Persist ... 47
24. Tasks ... 48

V. State Machine Examples .. 52
25. Turnstile ... 53
26. Showcase .. 55
27. CD Player .. 60
28. Tasks ... 68
29. Washer .. 73
30. Persist ... 76
31. Zookeeper .. 80
32. Web ... 82

VI. FAQ ... 85
33. State Changes ... 86
34. Extented State ... 87

VII. Appendices .. 88
A. Support Content ... 89

A.1. Classes Used in This Document .. 89
B. State Machine Concepts .. 90

B.1. Quick Example .. 90
B.2. Glossary ... 91
B.3. A State Machines Crash Course .. 92

States .. 92
Pseudo States .. 93

Initial .. 93
End .. 93
Choice ... 93
History ... 93
Fork ... 93
Join ... 94

Guard Conditions ... 94
Events ... 94
Transitions ... 94

Internal Transition ... 95
External vs. Local Transition ... 95

Actions ... 95
Hierarchical State Machines .. 95
Regions ... 96

C. Distributed State Machine Technical Paper ... 97
C.1. Abstract .. 97
C.2. Intro ... 97
C.3. Generic Concepts ... 98
C.4. ZookeeperStateMachinePersist .. 98
C.5. ZookeeperStateMachineEnsemble ... 98
C.6. Distributed Tolerance .. 99

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine v

Isolated Events .. 99
Parallel Events ... 100
Concurrent Extended State Variable Changes .. 100
Partition Tolerance ... 101
Crash and Join Tolerance ... 103

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine vi

Preface
Concept of a state machine is most likely older that any of a reader of this reference documentation
and definitely older than a Java language itself. Description of finite automate dates back to 1943 when
gentlemens Warren McCulloch and Walter Pitts wrote a paper about it. Later George H. Mealy presented
a state machine concept in 1955 which is known as a Mealy Machine. A year later in 1956 Edward F.
Moore presented another paper which is known as a Moore Machine. If you’re ever read anything about
state machines, names Mealy and Moore should have popped up at some point.

This reference documentations contains following parts.

Part I, “Introduction” introduction to this reference documentation

Part III, “Using Spring Statemachine” describes the usage of Spring State Machine(SSM)

Part V, “State Machine Examples” more detailed state machine samples

Part VI, “FAQ” frequently ask questions

Part VII, “Appendices” generic info about used material and state machines

Part I. Introduction
Spring Statemachine(SSM) is a framework for application developers to use traditional state machine
concepts with Spring applications. SSM aims to provide following features:

• Easy to use flat one level state machine for simple use cases.

• Hierarchical state machine structure to ease complex state configuration.

• State machine regions to provide even more complex state configurations.

• Usage of triggers, transitions, guards and actions.

• Type safe configuration adapter.

• State machine event listeners.

• Spring IOC integration to associate beans with a state machine.

Before you continue it’s worth to go through appendices Section B.2, “Glossary” and Section B.3, “A
State Machines Crash Course” to get a generic idea of what state machines are mostly because rest of
a documentation expects reader to be fairly familiar with state machine concepts.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 2

1. Background

State machines are powerful because behaviour is always guaranteed to be consistent and relatively
easily debugged due to ways how operational rules are written in stone when machine is started. Idea
is that your application is and may exist in a finite number of states and then something happens which
takes your application from one state to the next. What will drive a state machine are triggers which are
either based on events or timers.

It is much easier to design high level logic outside of your application and then interact with a state
machine with a various different ways. You can simply interact with a state machine by sending event,
listening what a state machine does or simply request a current state.

Traditionally state machines are added to a existing project when developer realizes that code base is
starting to look like a plate full of spaghetti. Spaghetti code looks like never ending hierarchical structure
of IFs, ELSEs and BREAK clauses and probably compiler should ask developer to go home when things
are starting to look too complex.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 3

2. Usage Scenarios

Project is a good candidate to use state machine if:

• Application or part of its structure can be represented as states.

• You want to split complex logic into smaller manageable tasks.

• Application is already suffering concurrency issues with i.e. something happening asynchronously.

You are already trying to implement a state machine if:

• Use of boolean flags or enums to model situations.

• Having variables which only have meaning for some part of your application lifecycle.

• Looping through if/else structure and checking if particular flag or enum is set and then making further
exceptions what to do when certain combination of your flags and enums exists or doesn’t exist
together.

Part II. Getting started
If you’re just getting started with Spring Statemachine, this is the section for you! Here we answer the
basic “what?”, “how?” and “why?” questions. You’ll find a gentle introduction to Spring Statemachine.
We’ll then build our first Spring Statemachine application, discussing some core principles as we go.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 5

3. System Requirements

Spring Statemachine 1.0.0.RELEASE is built and tested with JDK 8(all artifacts have JDK 7
compatibility) and Spring Framework 4.2.1.RELEASE and doesn’t require any other dependencies
outside of Spring Framework within its core system.

Other optional parts like Chapter 21, Using Distributed States has dependencies to a Zookeeper, while
Part V, “State Machine Examples” has dependencies to spring-shell and spring-boot which pulls other
dependencies beyond framework itself.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 6

4. Modules

The following modules are available for Spring Statemachine.

Module Description

spring-statemachine-core Core system of a Spring Statemachine.

spring-statemachine-recipes-common Common recipes which doesn’t require
dependencies outside of a core framework.

spring-statemachine-zookeeper Zookeeper integration for a distributed state
machine.

spring-statemachine-test Support module for state machine testing.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 7

5. Using Gradle

Here is a typical build.gradle file:

buildscript {

 repositories {

 maven { url "http://repo.spring.io/libs-release" }

 }

 dependencies {

 classpath("org.springframework.boot:spring-boot-gradle-plugin:1.2.5.RELEASE")

 }

}

apply plugin: 'base'

apply plugin: 'java'

apply plugin: 'eclipse'

apply plugin: 'idea'

apply plugin: 'spring-boot'

version = '0.1.0'

archivesBaseName = 'gs-statemachine'

repositories {

 mavenCentral()

 maven { url "http://repo.spring.io/libs-release" }

 maven { url "http://repo.spring.io/libs-milestone" }

 maven { url "http://repo.spring.io/libs-snapshot" }

}

dependencies {

 compile("org.springframework.statemachine:spring-statemachine-core:1.0.0.BUILD-SNAPSHOT")

 compile("org.springframework.boot:spring-boot-starter:1.2.5.RELEASE")

 testCompile("org.springframework.statemachine:spring-statemachine-test:1.0.0.BUILD-SNAPSHOT")

}

task wrapper(type: Wrapper) {

 gradleVersion = '1.11'

}

Note

Replace 1.0.0.BUILD-SNAPSHOT with a version you want to use.

Having a normal project structure you’d build this with command:

./gradlew clean build

Expected Spring Boot packaged fat-jar would be build/libs/gs-statemachine-0.1.0.jar.

Note

You don’t need repos libs-milestone and libs-snapshot for production development.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 8

6. Using Maven

Here is a typical pom.xml file:

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 9

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.springframework</groupId>

 <artifactId>gs-statemachine</artifactId>

 <version>0.1.0</version>

 <packaging>jar</packaging>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>1.2.5.RELEASE</version>

 </parent>

 <dependencies>

 <dependency>

 <groupId>org.springframework.statemachine</groupId>

 <artifactId>spring-statemachine-core</artifactId>

 <version>1.0.0.BUILD-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter</artifactId>

 <version>1.0.0.BUILD-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.statemachine</groupId>

 <artifactId>spring-statemachine-test</artifactId>

 <version>1.0.0.BUILD-SNAPSHOT</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>2.3.2</version>

 </plugin>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 <plugin>

 <artifactId>maven-failsafe-plugin</artifactId>

 <executions>

 <execution>

 <phase>package</phase>

 <goals>

 <goal>integration-test</goal>

 <goal>verify</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

 <repositories>

 <repository>

 <id>spring-release</id>

 <url>http://repo.spring.io/libs-release</url>

 <snapshots><enabled>false</enabled></snapshots>

 </repository>

 <repository>

 <id>spring-milestone</id>

 <url>http://repo.spring.io/libs-milestone</url>

 <snapshots><enabled>false</enabled></snapshots>

 </repository>

 <repository>

 <id>spring-snapshot</id>

 <url>http://repo.spring.io/libs-snapshot</url>

 <snapshots><enabled>true</enabled></snapshots>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>spring-release</id>

 <url>http://repo.spring.io/libs-release</url>

 <snapshots><enabled>false</enabled></snapshots>

 </pluginRepository>

 </pluginRepositories>

</project>

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 10

Note

Replace 1.0.0.BUILD-SNAPSHOT with a version you want to use.

Having a normal project structure you’d build this with command:

mvn clean package

Expected Spring Boot packaged fat-jar would be target/gs-statemachine-0.1.0.jar.

Note

You don’t need repos libs-milestone and libs-snapshot for production development.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 11

7. Developing your first Spring Statemachine
application

Let’s start by creating a simple Spring Boot Application class implementing CommandLineRunner.

@SpringBootApplication

public class Application implements CommandLineRunner {

 public static void main(String[] args) {

 SpringApplication.run(Application.class, args);

 }

}

Add states and events:

public static enum States {

 SI, S1, S2

}

public static enum Events {

 E1, E2

}

Add state machine configuration:

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 12

@Configuration

@EnableStateMachine

static class StateMachineConfig

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineConfigurationConfigurer<States, Events> config)

 throws Exception {

 config

 .withConfiguration()

 .autoStartup(true)

 .listener(listener());

 }

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.SI)

 .states(EnumSet.allOf(States.class));

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.SI).target(States.S1).event(Events.E1)

 .and()

 .withExternal()

 .source(States.S1).target(States.S2).event(Events.E2);

 }

 @Bean

 public StateMachineListener<States, Events> listener() {

 return new StateMachineListenerAdapter<States, Events>() {

 @Override

 public void stateChanged(State<States, Events> from, State<States, Events> to) {

 System.out.println("State change to " + to.getId());

 }

 };

 }

}

Implement CommandLineRunner, autowire StateMachine:

@Autowired

private StateMachine<States, Events> stateMachine;

@Override

public void run(String... args) throws Exception {

 stateMachine.sendEvent(Events.E1);

 stateMachine.sendEvent(Events.E2);

}

Depending whether you build your application using Gradle or Maven it’s run java -jar build/
libs/gs-statemachine-0.1.0.jar or java -jar target/gs-statemachine-0.1.0.jar
respectively.

What is expected for running this command is a normal Spring Boot output but if you look closely you
see lines:

State change to SI

State change to S1

State change to S2

Part III. Using Spring Statemachine
This part of the reference documentation explains the core functionality that Spring Statemachine
provides to any Spring based application.

Chapter 8, Statemachine Configuration the generic configuration support.

Chapter 9, State Machine Factories the generic state machine factory support.

Chapter 10, Using Actions the actions support.

Chapter 11, Using Guards the guard support.

Chapter 12, Using Extended State the extended state support.

Chapter 13, Using StateContext the state context support.

Chapter 14, Triggering Transitions the use of triggers.

Chapter 15, Listening State Machine Events the use of state machine listeners.

Chapter 16, Context Integration the generic Spring application context support.

Chapter 17, State Machine Accessor the state machine internal accessor support.

Chapter 18, State Machine Interceptor the state machine error handling support.

Chapter 19, State Machine Error Handling the state machine interceptor support.

Chapter 20, Persisting State Machine the state machine persisting support.

Chapter 21, Using Distributed States the distributed state machine support.

Chapter 22, Testing Support the state machine testing support.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 14

8. Statemachine Configuration

One of the common tasks when using a Statemachine is to design its runtime configuration. This chapter
will focus on how Spring Statemachine is configured and how it leverages Spring’s lightweight IoC
containers to simplify the application internals to make it more manageable.

Note

Configuration examples in this section are not feature complete, i.e. you always need to have
definitions of both states and transitions, otherwise state machine configuration would be ill-
formed. We have simply made code snippets less verbose by leaving other needed parts away.

8.1 Configuring States

We’ll get into more complex configuration examples a bit later but let’s first start with a something simple.
For most simple state machine you just use EnumStateMachineConfigurerAdapter and define
possible states, choose initial and optional end state.

@Configuration

@EnableStateMachine

public static class Config1Enums

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S1)

 .end(States.SF)

 .states(EnumSet.allOf(States.class));

 }

}

It’s also possible to use strings instead of enums as states and events by using
StateMachineConfigurerAdapter as shown below. Most of a configuration examples is using
enums but generally speaking strings and enums can be just interchanged.

@Configuration

@EnableStateMachine

public static class Config1Strings

 extends StateMachineConfigurerAdapter<String, String> {

 @Override

 public void configure(StateMachineStateConfigurer<String, String> states)

 throws Exception {

 states

 .withStates()

 .initial("S1")

 .end("SF")

 .states(new HashSet<String>(Arrays.asList("S1","S2","S3","S4")));

 }

}

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 15

Note

Using enums will bring more safe set of states and event types but limits possible combinations
to compile time. Strings don’t have this limitation and allows user to use more dynamic ways to
build state machine configurations but doesn’t allow same level of safety.

8.2 Configuring Hierarchical States

Hierarchical states can be defined by using multiple withStates() calls where parent() can be
used to indicate that these particular states are sub-states of some other state.

@Configuration

@EnableStateMachine

public static class Config2

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S1)

 .state(States.S1)

 .and()

 .withStates()

 .parent(States.S1)

 .initial(States.S2)

 .state(States.S2);

 }

}

8.3 Configuring Regions

There are no special configuration methods to mark a collection of states to be part of an orthogonal
state. To put it simple, orthogonal state is created when same hierarchical state machine has multiple
set of states each having a initial state. Because an individual state machine can only have one initial
state, multiple initial states must mean that a specific state must have multiple independent regions.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 16

@Configuration

@EnableStateMachine

public static class Config10

 extends EnumStateMachineConfigurerAdapter<States2, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States2, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States2.S1)

 .state(States2.S2)

 .and()

 .withStates()

 .parent(States2.S2)

 .initial(States2.S2I)

 .state(States2.S21)

 .end(States2.S2F)

 .and()

 .withStates()

 .parent(States2.S2)

 .initial(States2.S3I)

 .state(States2.S31)

 .end(States2.S3F);

 }

}

8.4 Configuring Transitions

We support three different types of transitions, external, internal and local. Transitions are either
triggered by a signal which is an event sent into a state machine or a timer.

@Configuration

@EnableStateMachine

public static class Config3

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S1)

 .states(EnumSet.allOf(States.class));

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.S1).target(States.S2)

 .event(Events.E1)

 .and()

 .withInternal()

 .source(States.S2)

 .event(Events.E2)

 .and()

 .withLocal()

 .source(States.S2).target(States.S3)

 .event(Events.E3);

 }

}

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 17

8.5 Configuring Guards

Guards are used to protect state transitions. Interface Guard is used to do an evaluation where method
has access to a StateContext.

@Configuration

@EnableStateMachine

public static class Config4

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.S1).target(States.S2)

 .event(Events.E1)

 .guard(guard())

 .and()

 .withExternal()

 .source(States.S2).target(States.S3)

 .event(Events.E2)

 .guardExpression("true");

 }

 @Bean

 public Guard<States, Events> guard() {

 return new Guard<States, Events>() {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 return true;

 }

 };

 }

}

In above two different types of guard configurations are used. Firstly a simple Guard is created as a
bean and attached to transition between states S1 and S2.

Secondly a simple SPeL expression can be used as a guard where expression must return a BOOLEAN
value. Behind a scenes this expression based guard is a SpelExpressionGuard. This was attached to
transition between states S2 and S3. Both guard in above sample always evaluate to true.

8.6 Configuring Actions

Actions can be defined to be executed with transitions and states itself. Action is always executed as
a result of a transition which originates from a trigger.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 18

@Configuration

@EnableStateMachine

public static class Config51

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.S1)

 .target(States.S2)

 .event(Events.E1)

 .action(action());

 }

 @Bean

 public Action<States, Events> action() {

 return new Action<States, Events>() {

 @Override

 public void execute(StateContext<States, Events> context) {

 // do something

 }

 };

 }

}

In above a single Action is defined as bean action and associated with a transition from S1 to S2.

@Configuration

@EnableStateMachine

public static class Config52

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S1, action())

 .state(States.S1, action(), null)

 .state(States.S2, null, action())

 .state(States.S3, action(), action());

 }

 @Bean

 public Action<States, Events> action() {

 return new Action<States, Events>() {

 @Override

 public void execute(StateContext<States, Events> context) {

 // do something

 }

 };

 }

}

Note

Usually you would not define same Action instance for different stages but we did it here not to
make too much noise in a code snippet.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 19

In above a single Action is defined as bean action and associated with states S1, S2 and S3. There
is more going on there which needs more clarification:

• We defined action for initial state S1.

• We defined entry action for state S1 and left exit action empty.

• We defined exit action for state S2 and left entry action empty.

• We defined entry action as well as exit action for state S3.

• Notice how state S1 is used twice with initial() and state() functions. This is only needed if
you want to define entry or exit actions with initial state.

Important

Defining action with initial() function only executes particular action when state machine or
sub state is started. Think this action to be initializing action which is only executed once. Action
defined with state() is then executed if state machine is transitioning back and forward between
initial and non-inital states.

8.7 Configuring Pseudo States

Pseudo state configuration is usually done by configuring states and transitions. Pseudo states are
automatically added to state machine as states.

Initial State

Simply mark a particular state as initial state by using initial() method. There are two methods
where one takes extra argument to define an initial action. This initial action is good for example initialize
extended state variables.

@Configuration

@EnableStateMachine

public static class Config11

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S1, initialAction())

 .end(States.SF)

 .states(EnumSet.allOf(States.class));

 }

 @Bean

 public Action<States, Events> initialAction() {

 return new Action<States, Events>() {

 @Override

 public void execute(StateContext<States, Events> context) {

 // do something initially

 }

 };

 }

}

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 20

Terminate State

Simply mark a particular state as end state by using end() method. This can be done max one time
per individual sub-machine or region.

@Configuration

@EnableStateMachine

public static class Config1Enums

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S1)

 .end(States.SF)

 .states(EnumSet.allOf(States.class));

 }

}

History State

History state can be defined once for each individual state machine. You need to choose its state
identifier and History.SHALLOW or History.DEEP respectively.

@Configuration

@EnableStateMachine

public static class Config12

 extends EnumStateMachineConfigurerAdapter<States3, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States3, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States3.S1)

 .state(States3.S2)

 .and()

 .withStates()

 .parent(States3.S2)

 .initial(States3.S2I)

 .state(States3.S21)

 .state(States3.S22)

 .history(States3.SH, History.SHALLOW);

 }

}

Choice State

Choice needs to be defined in both states and transitions to work properly. Mark particular state as
choice state by using choice() method. This state needs to match source state when transition is
configured for this choice.

Transition is configured using withChoice() where you define source state and first/then/last
structure which is equivalent to normal if/elseif/else. With first and then you can specify a
guard just like you’d use a condition with if/elseif clauses.

Transition needs to be able to exist so make sure last is used. Otherwise configuration is ill-formed.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 21

@Configuration

@EnableStateMachine

public static class Config13

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.SI)

 .choice(States.S1)

 .end(States.SF)

 .states(EnumSet.allOf(States.class));

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withChoice()

 .source(States.S1)

 .first(States.S2, s2Guard())

 .then(States.S3, s3Guard())

 .last(States.S4);

 }

 @Bean

 public Guard<States, Events> s2Guard() {

 return new Guard<States, Events>() {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 return false;

 }

 };

 }

 @Bean

 public Guard<States, Events> s3Guard() {

 return new Guard<States, Events>() {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 return true;

 }

 };

 }

}

Fork State

Fork needs to be defined in both states and transitions to work properly. Mark particular state as choice
state by using fork() method. This state needs to match source state when transition is configured
for this fork.

Target state needs to be a super state or immediate states in regions. Using a super state as target will
take all regions into initial states. Targeting individual state give more controlled entry into regions.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 22

@Configuration

@EnableStateMachine

public static class Config14

 extends EnumStateMachineConfigurerAdapter<States2, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States2, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States2.S1)

 .fork(States2.S2)

 .state(States2.S3)

 .and()

 .withStates()

 .parent(States2.S3)

 .initial(States2.S2I)

 .state(States2.S21)

 .state(States2.S22)

 .end(States2.S2F)

 .and()

 .withStates()

 .parent(States2.S3)

 .initial(States2.S3I)

 .state(States2.S31)

 .state(States2.S32)

 .end(States2.S3F);

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<States2, Events> transitions)

 throws Exception {

 transitions

 .withFork()

 .source(States2.S2)

 .target(States2.S22)

 .target(States2.S32);

 }

}

Join State

Join needs to be defined in both states and transitions to work properly. Mark particular state as choice
state by using join() method. This state doesn’t need to match either source states or target state
in a transition configuration.

Select one target state where transition goes when all source states has been joined. If you use state
hosting regions as source, end states of a regions are used as joins. Otherwise you can pick any states
from a regions.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 23

@Configuration

@EnableStateMachine

public static class Config15

 extends EnumStateMachineConfigurerAdapter<States2, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States2, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States2.S1)

 .state(States2.S3)

 .join(States2.S4)

 .and()

 .withStates()

 .parent(States2.S3)

 .initial(States2.S2I)

 .state(States2.S21)

 .state(States2.S22)

 .end(States2.S2F)

 .and()

 .withStates()

 .parent(States2.S3)

 .initial(States2.S3I)

 .state(States2.S31)

 .state(States2.S32)

 .end(States2.S3F);

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<States2, Events> transitions)

 throws Exception {

 transitions

 .withJoin()

 .source(States2.S2F)

 .source(States2.S3F)

 .target(States2.S5);

 }

}

8.8 Configuring Common Settings

Some of a common state machine configuration can be set via a ConfigurationConfigurer. This
allows to set BeanFactory, TaskExecutor, TaskScheduler, autostart flag for a state machine and
register StateMachineListener instances.

@Configuration

@EnableStateMachine

public static class Config17

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineConfigurationConfigurer<States, Events> config)

 throws Exception {

 config

 .withConfiguration()

 .autoStartup(true)

 .beanFactory(new StaticListableBeanFactory())

 .taskExecutor(new SyncTaskExecutor())

 .taskScheduler(new ConcurrentTaskScheduler())

 .listener(new StateMachineListenerAdapter<States, Events>());

 }

}

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 24

State machine autoStartup flag is disabled by default because all instances handling sub-states are
controlled by a state machine itself and cannot be started automatically. Also it is much safer to leave
this decision to a user whether a machine should be started automatically or not. This flag will only
control an autostart of a top-level state machine.

Setting a BeanFactory, TaskExecutor or TaskScheduler exist for conveniance for a user and are
also use within a framework itself.

Registering StateMachineListener instances is also partly for convenience but is required if user
wants to catch callback during a state machine lifecycle like getting notified of a state machine start/
stop events. Naturally it is not possible to listen a state machine start events if autoStartup is enabled
unless listener can be registered during a configuration phase.

DistributedStateMachine is configured via withDistributed() which allows to set a
StateMachineEnsemble which if exists automatically wraps created StateMachine with
DistributedStateMachine and enables distributed mode.

@Configuration

@EnableStateMachine

public static class Config18

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineConfigurationConfigurer<States, Events> config)

 throws Exception {

 config

 .withDistributed()

 .ensemble(stateMachineEnsemble());

 }

 @Bean

 public StateMachineEnsemble<States, Events> stateMachineEnsemble()

 throws Exception {

 // naturally not null but should return ensemble instance

 return null;

 }

}

More about distributed states, refer to section Chapter 21, Using Distributed States.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 25

9. State Machine Factories

There are use cases when state machine needs to be created dynamically instead of defining static
configuration at compile time. For example if there are custom components which are using its own
state machines and these components are created dynamically it is impossible to have a static state
machined build during the application start. Internally state machines are always build via a factory
interfaces and this then gives user an option to use this feature programmatically. Configuration for
state machine factory is exactly same as you’ve seen in various examples in this document where state
machine configuration is hard coded.

9.1 Factory via Adapter

Actually creating a state machine using @EnableStateMachine will work via factory so
@EnableStateMachineFactory is merely exposing that factory via its interface.

@Configuration

@EnableStateMachineFactory

public static class Config6

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S1)

 .end(States.SF)

 .states(EnumSet.allOf(States.class));

 }

}

Now that you’ve used @EnableStateMachineFactory to create a factory instead of a state machine
bean, it can be injected and used as is to request new state machines.

static class Bean3 {

 @Autowired

 StateMachineFactory<States, Events> factory;

 void method() {

 StateMachine<States,Events> stateMachine = factory.getStateMachine();

 stateMachine.start();

 }

}

Adapter Factory Limitations

Current limitation of factory is that all actions and guard it is associating with created state machine
will share a same instances. This means that from your actions and guard you will need to specifically
handle a case that same bean will be called by a different state machines. This limitation is something
which will be resolved in future releases.

9.2 State Machine via Builder

Using adapters shown above has a limitation imposed by its requirement to work via Spring
@Configuration classes and application context. While this is a very clear model to configure a state
machine instances it will limit configuration at a compile time which is not always what a user wants

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 26

to do. If there is a requirement to build more dynamic state machines, a simple builder pattern can be
used to construct similar instances. Using strings as states and events this builder pattern can be used
to build fully dynamic state machines outside of a Spring application context as shown above.

StateMachine<String, String> buildMachine() throws Exception {

 Builder<String, String> builder = StateMachineBuilder.builder();

 builder.configureStates()

 .withStates()

 .initial("S1")

 .end("SF")

 .states(new HashSet<String>(Arrays.asList("S1","S2","S3","S4")));

 return builder.build();

}

Builder is using same configuration interfaces behind the scenes that the @Configuration
model using adapter classes. Same model goes to configuring transitions, states and common
configuration via builder’s methods. This simply means that whatever you can use with a normal
EnumStateMachineConfigurerAdapter or StateMachineConfigurerAdapter can be used
dynamically via a builder.

Note

Currently builder.configureStates(), builder.configureTransitions() and other
interface methods cannot be chained together meaning builder methods needs to be called
individually.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 27

10. Using Actions

Actions are one of the most useful components from user perspective to interact and collaborate with
a state machine. Actions can be executed in various places in a state machine and its states lifecycle
like entering or exiting states or during a transitions.

@Override

public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.SI)

 .state(States.S1, action1(), action2())

 .state(States.S2, action1(), action2())

 .state(States.S3, action1(), action3());

}

Above action1 and action2 beans are attached to states entry and exit respectively.

@Bean

public Action<States, Events> action1() {

 return new Action<States, Events>() {

 @Override

 public void execute(StateContext<States, Events> context) {

 }

 };

}

@Bean

public BaseAction action2() {

 return new BaseAction();

}

@Bean

public SpelAction action3() {

 ExpressionParser parser = new SpelExpressionParser();

 return new SpelAction(

 parser.parseExpression(

 "stateMachine.sendEvent(T(org.springframework.statemachine.docs.Events).E1)"));

}

static class BaseAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 }

}

static class SpelAction extends SpelExpressionAction<States, Events> {

 public SpelAction(Expression expression) {

 super(expression);

 }

}

You can directly implement Action as an anonymous function or create a your own implementation and
define appropriate implementation as a bean.

In action3 a SpEL expression is used to send event Events.E1 into a state machine.

Note

StateContext is described in section Chapter 13, Using StateContext.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 28

10.1 SpEL Expressions with Actions

It is also possible to use SpEL expressions as a replacement for a full Action implementation.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 29

11. Using Guards

Above guard1 and guard2 beans are attached to states entry and exit respectively.

@Override

public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.SI).target(States.S1)

 .event(Events.E1)

 .guard(guard1())

 .and()

 .withExternal()

 .source(States.S1).target(States.S2)

 .event(Events.E1)

 .guard(guard2())

 .and()

 .withExternal()

 .source(States.S2).target(States.S3)

 .event(Events.E2)

 .guardExpression("extendedState.variables.get('myvar')");

}

You can directly implement Guard as an anonymous function or create a your own implementation and
define appropriate implementation as a bean. In above sample guardExpression is simply checking
if extended state variable myvar evaluates to TRUE.

@Bean

public Guard<States, Events> guard1() {

 return new Guard<States, Events>() {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 return true;

 }

 };

}

@Bean

public BaseGuard guard2() {

 return new BaseGuard();

}

static class BaseGuard implements Guard<States, Events> {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 return false;

 }

}

Note

StateContext is described in section Chapter 13, Using StateContext.

11.1 SpEL Expressions with Guards

It is also possible to use SpEL expressions as a replacement for a full Guard implementation. Only
requirement is that expression needs to return a Boolean value to satisfy Guard implementation. This
is demonstrated with a guardExpression() function which takes an expression as an argument.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 30

12. Using Extended State

Let’s assume that we’d need to create a state machine tracking how many times a user is pressing a
key on a keyboard and then terminate when keys are pressed 1000 times. Possible but a really naive
solution would be to create a new state for each 1000 key presses. Going even worse combinations
you might suddenly have astronomical number of states which naturally is not very practical.

This is where extended state variables comes into rescue by not having a necessity to add more states
to drive state machine changes, instead a simple variable change can be done during a transition.

StateMachine has a method getExtendedState() which returns an interface ExtendedState
which gives an access to extended state variables. You can access variables directly via a state machine
or StateContext during a callback from actions or transitions.

public Action<String, String> myVariableAction() {

 return new Action<String, String>() {

 @Override

 public void execute(StateContext<String, String> context) {

 context.getExtendedState()

 .getVariables().put("mykey", "myvalue");

 }

 };

}

If there is a need to get notified for extended state variable changes, there are two options; either use
StateMachineListener and listen extendedStateChanged(key, value) callbacks:

public static class ExtendedStateVariableListener

 extends StateMachineListenerAdapter<String, String> {

 @Override

 public void extendedStateChanged(Object key, Object value) {

 // do something with changed variable

 }

}

Or implement a Spring Application context listeners for OnExtendedStateChanged. Naturally as
mentioned in Chapter 15, Listening State Machine Events you can also listen all StateMachineEvent
events.

public static class ExtendedStateVariableEventListener

 implements ApplicationListener<OnExtendedStateChanged> {

 @Override

 public void onApplicationEvent(OnExtendedStateChanged event) {

 // do something with changed variable

 }

}

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 31

13. Using StateContext

StateContext is a domain object representing a current status of a state machine within a transition or
an action. Context gives an access to a various information like event, message headers, extended
state variables, current transition and a top-level state machine in case there is a need to send events
to a further processing.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 32

14. Triggering Transitions

Driving a statemachine is done via transitions which are triggered by triggers. Currently supported
triggers are EventTrigger and TimerTrigger.

14.1 EventTrigger

EventTrigger is the most useful trigger because it allows user to directly interact with a state machine
by sending events to it. These events are also called signals. Trigger is added to a transition simply by
associating a state to it during a configuration.

@Autowired

StateMachine<States, Events> stateMachine;

void signalMachine() {

 stateMachine.sendEvent(Events.E1);

 Message<Events> message = MessageBuilder

 .withPayload(Events.E2)

 .setHeader("foo", "bar")

 .build();

 stateMachine.sendEvent(message);

}

In above example we send an event using two different ways. Firstly we simply sent a type safe event
using state machine api method sendEvent(E event). Secondly we send event wrapped in a Spring
messaging Message using api method sendEvent(Message<E> message) with a custom event
headers. This allows user to add arbitrary extra information with an event which is then visible to
StateContext when for example user is implementing actions.

14.2 TimerTrigger

TimerTrigger is useful when something needs to be triggered automatically without any user interaction.
Trigger is added to a transition by associating a timer with it during a configuration.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 33

@Configuration

@EnableStateMachine

static class Config2 extends StateMachineConfigurerAdapter<String, String> {

 @Override

 public void configure(StateMachineStateConfigurer<String, String> states)

 throws Exception {

 states

 .withStates()

 .initial("S1")

 .state("S2");

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<String, String> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source("S1")

 .target("S2")

 .event("E1")

 .and()

 .withInternal()

 .source("S2")

 .action(timerAction())

 .timer(1000);

 }

 @Bean

 public TimerAction timerAction() {

 return new TimerAction();

 }

}

static class TimerAction implements Action<String, String> {

 @Override

 public void execute(StateContext<String, String> context) {

 // do something in every 1 sec

 }

}

In above we have two states, S1 and S2. We have a normal external transition from S1 to S2 with event
E1 but interesting part is when we define internal transition with source state S2 and associate it with
Action bean timerAction and timer value of 1000ms. Once a state machine receive event E1
it does a transition from S1 to S2 and timer kicks in. As long as state is kept in S2 TimerTrigger
executes and causes a transition associated with that state which in this case is the internal transition
which has the timerAction defined.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 34

15. Listening State Machine Events

There are use cases where you just want to know what is happening with a state machine, react to
something or simply get logging for debugging purposes. SSM provides interfaces for adding listeners
which then gives an option to get callback when various state changes, actions, etc are happening.

You basically have two options, either to listen Spring application context events or directly attach
listener to a state machine. Both of these basically will provide same information where one is producing
events as event classes and other producing callbacks via a listener interface. Both of these have pros
and cons which will be discussed later.

15.1 Application Context Events

Application context events classes are OnTransitionStartEvent, OnTransitionEvent,
OnTransitionEndEvent, OnStateExitEvent, OnStateEntryEvent, OnStateChangedEvent,
OnStateMachineStart and OnStateMachineStop. These can be used as is with spring typed
ApplicationListener class but they also share a common class StateMachineEvent which can be used
to get statemachine related events.

static class StateMachineApplicationEventListener

 implements ApplicationListener<StateMachineEvent> {

 @Override

 public void onApplicationEvent(StateMachineEvent event) {

 }

}

15.2 State Machine Listener

Using StateMachineListener you can either extend it and implement all callback methods or use
StateMachineListenerAdapter class which contains stub method implementations and choose which
ones to override.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 35

static class StateMachineEventListener

 extends StateMachineListenerAdapter<States, Events> {

 @Override

 public void stateChanged(State<States, Events> from, State<States, Events> to) {

 }

 @Override

 public void stateEntered(State<States, Events> state) {

 }

 @Override

 public void stateExited(State<States, Events> state) {

 }

 @Override

 public void transition(Transition<States, Events> transition) {

 }

 @Override

 public void transitionStarted(Transition<States, Events> transition) {

 }

 @Override

 public void transitionEnded(Transition<States, Events> transition) {

 }

 @Override

 public void stateMachineStarted(StateMachine<States, Events> stateMachine) {

 }

 @Override

 public void stateMachineStopped(StateMachine<States, Events> stateMachine) {

 }

}

In above example we simply created our own listener class StateMachineEventListener which extends
StateMachineListenerAdapter.

Once you have your own listener defined, it can be registered into a state machine via its interface as
shown below. It’s just a matter of flavour if it’s hooked up within a spring configuration or done manually
at any time of application life-cycle.

static class Config7 {

 @Autowired

 StateMachine<States, Events> stateMachine;

 @Bean

 public StateMachineEventListener stateMachineEventListener() {

 StateMachineEventListener listener = new StateMachineEventListener();

 stateMachine.addStateListener(listener);

 return listener;

 }

}

15.3 Limitations and Problems

Spring application context is not a fastest eventbus out there so it is advised to give some thought
what is a rate of events state machine is sending. For better performance it may be better to use
StateMachineListener interface. For this specific reason it is possible to use contextEvents flag with
@EnableStateMachine and @EnableStateMachineFactory to disable Spring application context events
as shown above.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 36

@Configuration

@EnableStateMachine(contextEvents = false)

public static class Config8

 extends EnumStateMachineConfigurerAdapter<States, Events> {

}

@Configuration

@EnableStateMachineFactory(contextEvents = false)

public static class Config9

 extends EnumStateMachineConfigurerAdapter<States, Events> {

}

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 37

16. Context Integration

It is a little limited to do interaction with a state machine by either listening its events or using actions with
states and transitions. Time to time this approach would be too limited and verbose to create interaction
with the application a state machine is working with. For this specific use case we have made a spring
style context integration which easily attach state machine functionality into your beans.

16.1 Annotation Support

@WithStateMachine annotation can be used to associate a state machine with a existing bean. Within
this annotation a property’s source and target can be used to qualify a transition

@WithStateMachine

static class Bean1 {

 @OnTransition(source = "S1", target = "S2")

 public void fromS1ToS2() {

 }

}

Default @OnTransition annotation can’t be used with a state and event enums user have created due
to java language limitations, thus string representation have to be used.

However if you want to have a type safe annotation it is possible to create a new annotation and use
@OnTransition as meta annotation. This user level annotation can make a reference to actual states
and events enums and framework will try to match these in a same way.

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

@OnTransition

static @interface StatesOnTransition {

 States[] source() default {};

 States[] target() default {};

}

Above we created a @StatesOnTransition annotation which defines source and target as a type
safe manner.

@WithStateMachine

static class Bean2 {

 @StatesOnTransition(source = States.S1, target = States.S2)

 public void fromS1ToS2() {

 }

}

In your own bean you can then use this @StatesOnTransition as is and use type safe source and
target.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 38

17. State Machine Accessor

StateMachine is a main interface to communicate with a state machine itself. Time to time there is a
need to get more dynamical and programmatic access to internal structures of a state machine and its
nested machines and regions. For these use cases a StateMachine is exposing a functional interface
StateMachineAccessor which provides an interface to get access to individual StateMachine and
Region instances.

StateMachineFunction is a simple functional interface which allows to apply
StateMachineAccess interface into a state machine. With jdk7 these will create a little verbose code
but with jdk8 lambdas things look relatively non-verbose.

Method doWithAllRegions gives access to all Region instances in a state machine.

stateMachine.getStateMachineAccessor().doWithAllRegions(new

 StateMachineFunction<StateMachineAccess<String,String>>() {

 @Override

 public void apply(StateMachineAccess<String, String> function) {

 function.setRelay(stateMachine);

 }

});

stateMachine.getStateMachineAccessor()

 .doWithAllRegions(access -> access.setRelay(stateMachine));

Method doWithRegion gives access to single Region instance in a state machine.

stateMachine.getStateMachineAccessor().doWithRegion(new

 StateMachineFunction<StateMachineAccess<String,String>>() {

 @Override

 public void apply(StateMachineAccess<String, String> function) {

 function.setRelay(stateMachine);

 }

});

stateMachine.getStateMachineAccessor()

 .doWithRegion(access -> access.setRelay(stateMachine));

Method withAllRegions gives access to all Region instances in a state machine.

for (StateMachineAccess<String, String> access :

 stateMachine.getStateMachineAccessor().withAllRegions()) {

 access.setRelay(stateMachine);

}

stateMachine.getStateMachineAccessor().withAllRegions()

 .stream().forEach(access -> access.setRelay(stateMachine));

Method withRegion gives access to single Region instance in a state machine.

stateMachine.getStateMachineAccessor()

 .withRegion().setRelay(stateMachine);

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 39

18. State Machine Interceptor

Instead of using a StateMachineListener interface one option is to use a
StateMachineInterceptor. One conceptual difference is that an interceptor can be used to
intercept and stop a current state change or transition logic. Instead of implementing full interface,
adapter class StateMachineInterceptorAdapter can be used to override default no-op methods.

Note

There is one recipe Chapter 23, Persist and one sample Chapter 30, Persist which are related
to use of an interceptor.

Interceptor can be registered via StateMachineAccessor. Concept of an interceptor is relatively deep
internal feature and thus is not exposed directly via StateMachine interface.

stateMachine.getStateMachineAccessor()

 .withRegion().addStateMachineInterceptor(new StateMachineInterceptor<String, String>() {

 @Override

 public StateContext<String, String> preTransition(StateContext<String, String> stateContext) {

 return stateContext;

 }

 @Override

 public void preStateChange(State<String, String> state, Message<String> message,

 Transition<String, String> transition, StateMachine<String, String> stateMachine) {

 }

 @Override

 public StateContext<String, String> postTransition(StateContext<String, String> stateContext) {

 return stateContext;

 }

 @Override

 public void postStateChange(State<String, String> state, Message<String> message,

 Transition<String, String> transition, StateMachine<String, String> stateMachine) {

 }

 @Override

 public Exception stateMachineError(StateMachine<String, String> stateMachine,

 Exception exception) {

 return exception;

 }

 });

Note

More about error handling shown in above example, see section Chapter 19, State Machine Error
Handling.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 40

19. State Machine Error Handling

If state machine detects an internal error during a state transition logic it may throw an exception. Before
this exception is processed internally, user is given a chance to intercept.

Normal StateMachineInterceptor can be used to intercept errors and example of it is shown
above.

StateMachine<String, String> stateMachine;

void addInterceptor() {

 stateMachine.getStateMachineAccessor()

 .doWithRegion(new StateMachineFunction<StateMachineAccess<String, String>>() {

 @Override

 public void apply(StateMachineAccess<String, String> function) {

 function.addStateMachineInterceptor(

 new StateMachineInterceptorAdapter<String, String>() {

 @Override

 public Exception stateMachineError(StateMachine<String, String> stateMachine,

 Exception exception) {

 // return null indicating handled error

 return exception;

 }

 });

 }

 });

}

When errors are detected, normal event notify mechanism is executed. This allows to use either
StateMachineListener or Spring Application context event listener, more about these read section
Chapter 15, Listening State Machine Events.

Having said that, a simple listener would look like:

public static class ErrorStateMachineListener

 extends StateMachineListenerAdapter<String, String> {

 @Override

 public void stateMachineError(StateMachine<String, String> stateMachine, Exception exception) {

 // do something with error

 }

}

Generic ApplicationListener checking StateMachineEvent would look like.

public static class GenericApplicationEventListener

 implements ApplicationListener<StateMachineEvent> {

 @Override

 public void onApplicationEvent(StateMachineEvent event) {

 if (event instanceof OnStateMachineError) {

 // do something with error

 }

 }

}

It’s also possible to define ApplicationListener directly to recognize only StateMachineEvent
instances.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 41

public static class ErrorApplicationEventListener

 implements ApplicationListener<OnStateMachineError> {

 @Override

 public void onApplicationEvent(OnStateMachineError event) {

 // do something with error

 }

}

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 42

20. Persisting State Machine

Traditionally an instance of a state machine is used as is within a running program. More dynamic
behaviour is possible to achieve via dynamic builders and factories which allows state machine
instantiation on-demand. Building an instance of a state machine is relatively heavy operation so if there
is a need to i.e. handle arbitrary state change in a database using a state machine we need to find a
better and faster way to do it.

Persist feature allows user to save a state of a state machine itself into an external repository and later
reset a state machine based of serialized state. For example if you have a database table keeping
orders it would be way too expensive to update order state via a state machine if a new instance would
need to be build for every change. Persist feature allows you to reset a state machine state without
instantiating a new state machine instance.

Note

There is one recipe Chapter 23, Persist and one sample Chapter 30, Persist which provides more
info about persisting states.

While it is possible to build a custom persistence feature using a StateMachineListener it has one
conceptual problem. When listener notifies a change of state, state change has already happened. If a
custom persistent method within a listener fails to update serialized state in an external repository, state
in a state machine and state in an external repository are then in inconsistent state.

State machine interceptor can be used instead of where attempt to save serialized state into an external
storage is done during the a state change within a state machine. If this interceptor callback fails, state
change attempt will be halted and instead of ending into an inconsistent state, user can then handle this
error manually. Using the interceptors are discussed in Chapter 18, State Machine Interceptor.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 43

21. Using Distributed States

Distributed state is probably one of a most compicated concepts of a Spring State Machine. What exactly
is a distributed state? A state within a single state machine is naturally really simple to understand but
when there is a need to introduce a shared distributed state through a state machines, things will get
a little complicated.

Note

Distributed state functionality is still a preview feature and is not yet considered to be stable in this
particular release. We expect this feature to mature towards the first official release.

For generic configuration support see section Section 8.8, “Configuring Common Settings” and actual
usage example see sample Chapter 31, Zookeeper.

Distributed State Machine is implemented via a DistributedStateMachine class
which simply wraps an actual instance of a StateMachine. DistributedStateMachine
intercepts communication with a StateMachine instance and works with distributed state
abstractions handled via interface StateMachineEnsemble. Depending on an actual implementation
StateMachinePersist interface may also be used to serialize a StateMachineContext which
contains enough information to reset a StateMachine.

While Distributed State Machine is implemented via an abstraction, only one implementation
currently exists based on Zookeeper.

Here is a generic example of how Zookeeper based Distributed State Machine would be
configured.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 44

@Configuration

@EnableStateMachine

static class Config

 extends StateMachineConfigurerAdapter<String, String> {

 @Override

 public void configure(StateMachineConfigurationConfigurer<String, String> config)

 throws Exception {

 config

 .withDistributed()

 .ensemble(stateMachineEnsemble())

 .and()

 .withConfiguration()

 .autoStartup(true);

 }

 @Override

 public void configure(StateMachineStateConfigurer<String, String> states)

 throws Exception {

 // config states

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<String, String> transitions)

 throws Exception {

 // config transitions

 }

 @Bean

 public StateMachineEnsemble<String, String> stateMachineEnsemble()

 throws Exception {

 return new ZookeeperStateMachineEnsemble<String, String>(curatorClient(), "/zkpath");

 }

 @Bean

 public CuratorFramework curatorClient()

 throws Exception {

 CuratorFramework client = CuratorFrameworkFactory

 .builder()

 .defaultData(new byte[0])

 .connectString("localhost:2181").build();

 client.start();

 return client;

 }

}

Current technical documentation of a Zookeeker based distributed state machine can be found from
an appendice Appendix C, Distributed State Machine Technical Paper.

21.1 ZookeeperStateMachineEnsemble

ZookeeperStateMachineEnsemble itself needs two mandatory settings, an instance of
curatorClient and basePath. Client is a CuratorFramework and path is root of a tree in a
Zookeeper.

Optionally it is possible to set cleanState which defaults to TRUE and will clear existing data if no
members exists in an ensemble. Set this to FALSE if you want to preserve distributed state within
application restarts.

Optionally it is possible to set a size of a logSize which defaults to 32 and is used to keep history
of state changes. Value of this setting needs to be a power of two. 32 is generally good default value
but if a particular state machine is left behind more than a size of a log it is put into error state and
disconnected from an ensemble indicating it has lost its history to reconstruct fully synchronized status.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 45

22. Testing Support

We have also added a set of utility classes to easy testing of a state machine instances. These are used
in a framework itself but are also very useful for end users.

StateMachineTestPlanBuilder is used to build a StateMachineTestPlan which then have one
method test() which runs a plan. StateMachineTestPlanBuilder contains a fluent builder api
to add steps into a plan and during these steps you can send events and check various conditions like
state changes, transitions and extended state variables.

Let’s take a simple StateMachine build using below example:

private StateMachine<String, String> buildMachine() throws Exception {

 StateMachineBuilder.Builder<String, String> builder = StateMachineBuilder.builder();

 builder.configureConfiguration()

 .withConfiguration()

 .taskExecutor(new SyncTaskExecutor())

 .autoStartup(true);

 builder.configureStates()

 .withStates()

 .initial("SI")

 .state("S1");

 builder.configureTransitions()

 .withExternal()

 .source("SI").target("S1")

 .event("E1");

 return builder.build();

}

In below test plan we have two steps, first we check that initial state S1 is indeed set, secondly we send
an event E1 and expect one state change to happen and machine to end up into a state S1.

StateMachine<String, String> machine = buildMachine();

StateMachineTestPlan<String, String> plan =

 StateMachineTestPlanBuilder.<String, String>builder()

 .defaultAwaitTime(2)

 .stateMachine(machine)

 .step()

 .expectStates("SI")

 .and()

 .step()

 .sendEvent("E1")

 .expectStateChanged(1)

 .expectStates("S1")

 .and()

 .build();

plan.test();

These utilities are also used within a framework to test distributed state machine features and multiple
machines can be added to a plan. If multiple machines are added then it is also possible to choose if
event is sent to particular, random or all machines.

Part IV. Recipes
This chapter contains documentation for existing built-in state machine recipes.

What exactly is a recipe? As Spring Statemachine is always going to be a foundational framework
meaning that its core will not have that much higher level functionality or dependencies outside of a
Spring Framework. Correct usage of a state machine may be a little difficult time to time and there’s
always some common use cases how state machine can be used. Recipe modules are meant to provide
a higher level solutions to these common use cases and also provide examples beyond samples how
framework can be used.

Note

Recipes are a great way to make external contributions this Spring Statemachine project. If you’re
not ready to contribute to the framework core itself, a custom and common recipe is a great way
to share functionality among other users.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 47

23. Persist

Persist recipe is a simple utility which allows to use a single state machine instance to persist and update
a state of an arbitrary item in a repository.

Recipe’s main class is PersistStateMachineHandler which assumes user to do three different
things:

• An instance of a StateMachine<String, String> needs to be used with a
PersistStateMachineHandler. States and Events are required to be type of Strings.

• PersistStateChangeListener need to be registered with handler order to react to persist
request.

• Method handleEventWithState is used to orchestrate state changes.

There is a sample demonstrating usage of this recipe at Chapter 30, Persist.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 48

24. Tasks

Tasks recipe is a concept to execute DAG of Runnable instances using a state machine. This recipe
has been developed from ideas introduced in sample Chapter 28, Tasks.

Generic concept of a state machine is shown below. In this state chart everything under TASKS just
shows a generic concept of how a single task is executed. Because this recipe allows to register deep
hierarcical DAG of tasks, meaning a real state chart would be deep nested collection of sub-states and
regions, there’s no need to be more presise.

For example if you have only two registered tasks, below state chart would be correct with TASK_id
replaced with TASK_1 and TASK_2 if registered tasks ids are 1 and 2.

Executing a Runnable may result an error and especially if a complex DAG of tasks is involved it
is desirable that there is a way to handle tasks execution errors and then having a way to continue
execution without executing already successfully executed tasks. Addition to this it would be nice if
some execution errors can be handled automatically and as a last fallback, if error can’t be handled
automatically, state machine is put into a state where user can handle errors manually.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 49

TasksHandler contains a builder method to configure handler instance and follows a simple builder
patter. This builder can be used to register Runnable tasks, TasksListener instances, define
StateMachinePersist hook, and setup custom TaskExecutor instance.

Now lets take a simple Runnable just doing a simple sleep as shown below. This is a base of all
examples in this chapter.

private static Runnable sleepRunnable() {

 return new Runnable() {

 @Override

 public void run() {

 try {

 Thread.sleep(2000);

 } catch (InterruptedException e) {

 }

 }

 };

}

To execute multiple sleepRunnable tasks just register tasks and execute runTasks() method from
TasksHandler.

TasksHandler handler = TasksHandler.builder()

 .task("1", sleepRunnable())

 .task("2", sleepRunnable())

 .task("3", sleepRunnable())

 .build();

handler.runTasks();

Order to listen what is happening with a task execution an instance of a TasksListener can be
registered with a TasksHandler. Recipe provides an adapter TasksListenerAdapter if you don’t
want to implement a full interface. Listener provides a various hooks to listen tasks execution events.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 50

private static class MyTasksListener extends TasksListenerAdapter {

 @Override

 public void onTasksStarted() {

 }

 @Override

 public void onTasksContinue() {

 }

 @Override

 public void onTaskPreExecute(Object id) {

 }

 @Override

 public void onTaskPostExecute(Object id) {

 }

 @Override

 public void onTaskFailed(Object id, Exception exception) {

 }

 @Override

 public void onTaskSuccess(Object id) {

 }

 @Override

 public void onTasksSuccess() {

 }

 @Override

 public void onTasksError() {

 }

 @Override

 public void onTasksAutomaticFix(TasksHandler handler, StateContext<String, String> context) {

 }

}

Listeners can be either registered via a builder or directly with a TasksHandler as shown above.

MyTasksListener listener1 = new MyTasksListener();

MyTasksListener listener2 = new MyTasksListener();

TasksHandler handler = TasksHandler.builder()

 .task("1", sleepRunnable())

 .task("2", sleepRunnable())

 .task("3", sleepRunnable())

 .listener(listener1)

 .build();

handler.addTasksListener(listener2);

handler.removeTasksListener(listener2);

handler.runTasks();

Above sample show how to create a deep nested DAG of tasks. Every task needs to have an unique
identifier and optionally as task can be defined to be a sub-task. Effectively this will create a DAG of
tasks.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 51

TasksHandler handler = TasksHandler.builder()

 .task("1", sleepRunnable())

 .task("1", "12", sleepRunnable())

 .task("1", "13", sleepRunnable())

 .task("2", sleepRunnable())

 .task("2", "22", sleepRunnable())

 .task("2", "23", sleepRunnable())

 .task("3", sleepRunnable())

 .task("3", "32", sleepRunnable())

 .task("3", "33", sleepRunnable())

 .build();

handler.runTasks();

When error happens and a state machine running these tasks goes into a ERROR state, user can
call handler methods fixCurrentProblems to reset current state of tasks kept in a state machine
extended state variables. Handler method continueFromError can then be used to instruct state
machine to transition from ERROR state back to READY state where tasks can be executed again.

TasksHandler handler = TasksHandler.builder()

 .task("1", sleepRunnable())

 .task("2", sleepRunnable())

 .task("3", sleepRunnable())

 .build();

 handler.runTasks();

 handler.fixCurrentProblems();

 handler.continueFromError();

Part V. State Machine Examples
This part of the reference documentation explains the use of state machines together with a sample
code and a uml state charts. We do few shortcuts when representing relationship between a state chart,
SSM configuration and what an application does with a state machine. For complete examples go and
study the samples repository.

Samples are build directly from a main source distribution during a normal build cycle. Samples in this
chapter are:

Chapter 25, Turnstile Turnstile.

Chapter 26, Showcase Showcase.

Chapter 27, CD Player CD Player.

Chapter 28, Tasks Tasks.

Chapter 29, Washer Washer.

Chapter 30, Persist Persist.

Chapter 31, Zookeeper Zookeeper.

Chapter 32, Web Web.

./gradlew clean build -x test

Every sample is located in its own directory under spring-statemachine-samples. Samples are
based on spring-boot and spring-shell and you will find usual boot fat jars under every sample projects
build/libs directory.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 53

25. Turnstile

Turnstile is a simple device which gives you an access if payment is made and is a very simple to model
using a state machine. In its simplest form there are only two states, LOCKED and UNLOCKED. Two
events, COIN and PUSH can happen if you try to go through it or you make a payment.

States.

public static enum States {

 LOCKED, UNLOCKED

}

Events.

public static enum Events {

 COIN, PUSH

}

Configuration.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 54

@Configuration

@EnableStateMachine

static class StateMachineConfig

 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.LOCKED)

 .states(EnumSet.allOf(States.class));

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.LOCKED)

 .target(States.UNLOCKED)

 .event(Events.COIN)

 .and()

 .withExternal()

 .source(States.UNLOCKED)

 .target(States.LOCKED)

 .event(Events.PUSH);

 }

}

You can see how this sample state machine interacts with event by running turnstile sample.

$ java -jar spring-statemachine-samples-turnstile-1.0.0.BUILD-SNAPSHOT.jar

sm>sm print

+--+

| SM |

+--+

| |

| +----------------+ +----------------+ |

| *-->| LOCKED | | UNLOCKED | |

| +----------------+ +----------------+ |

| +---| entry/ | | entry/ |---+ |

| | | exit/ | | exit/ | | |

| | | | | | | |

| PUSH| | |---COIN-->| | |COIN |

| | | | | | | |

| | | | | | | |

| | | |<--PUSH---| | | |

| +-->| | | |<--+ |

| | | | | |

| +----------------+ +----------------+ |

| |

+--+

sm>sm start

State changed to LOCKED

State machine started

sm>sm event COIN

State changed to UNLOCKED

Event COIN send

sm>sm event PUSH

State changed to LOCKED

Event PUSH send

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 55

26. Showcase

Showcase is a complex state machine showing all possible transition topologies up to four levels of
state nesting.

States.

public static enum States {

 S0, S1, S11, S12, S2, S21, S211, S212

}

Events.

public static enum Events {

 A, B, C, D, E, F, G, H, I

}

Configuration - states.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 56

@Override

public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.S0, fooAction())

 .state(States.S0)

 .and()

 .withStates()

 .parent(States.S0)

 .initial(States.S1)

 .state(States.S1)

 .and()

 .withStates()

 .parent(States.S1)

 .initial(States.S11)

 .state(States.S11)

 .state(States.S12)

 .and()

 .withStates()

 .parent(States.S0)

 .state(States.S2)

 .and()

 .withStates()

 .parent(States.S2)

 .initial(States.S21)

 .state(States.S21)

 .and()

 .withStates()

 .parent(States.S21)

 .initial(States.S211)

 .state(States.S211)

 .state(States.S212);

}

Configuration - transitions.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 57

@Override

public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.S1).target(States.S1).event(Events.A)

 .guard(foo1Guard())

 .and()

 .withExternal()

 .source(States.S1).target(States.S11).event(Events.B)

 .and()

 .withExternal()

 .source(States.S21).target(States.S211).event(Events.B)

 .and()

 .withExternal()

 .source(States.S1).target(States.S2).event(Events.C)

 .and()

 .withExternal()

 .source(States.S2).target(States.S1).event(Events.C)

 .and()

 .withExternal()

 .source(States.S1).target(States.S0).event(Events.D)

 .and()

 .withExternal()

 .source(States.S211).target(States.S21).event(Events.D)

 .and()

 .withExternal()

 .source(States.S0).target(States.S211).event(Events.E)

 .and()

 .withExternal()

 .source(States.S1).target(States.S211).event(Events.F)

 .and()

 .withExternal()

 .source(States.S2).target(States.S11).event(Events.F)

 .and()

 .withExternal()

 .source(States.S11).target(States.S211).event(Events.G)

 .and()

 .withExternal()

 .source(States.S211).target(States.S0).event(Events.G)

 .and()

 .withInternal()

 .source(States.S0).event(Events.H)

 .guard(foo0Guard())

 .action(fooAction())

 .and()

 .withInternal()

 .source(States.S2).event(Events.H)

 .guard(foo1Guard())

 .action(fooAction())

 .and()

 .withInternal()

 .source(States.S1).event(Events.H)

 .and()

 .withExternal()

 .source(States.S11).target(States.S12).event(Events.I)

 .and()

 .withExternal()

 .source(States.S211).target(States.S212).event(Events.I)

 .and()

 .withExternal()

 .source(States.S12).target(States.S212).event(Events.I);

}

Configuration - actions and guard.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 58

@Bean

public FooGuard foo0Guard() {

 return new FooGuard(0);

}

@Bean

public FooGuard foo1Guard() {

 return new FooGuard(1);

}

@Bean

public FooAction fooAction() {

 return new FooAction();

}

Action.

private static class FooAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 Map<Object, Object> variables = context.getExtendedState().getVariables();

 Integer foo = context.getExtendedState().get("foo", Integer.class);

 if (foo == null) {

 log.info("Init foo to 0");

 variables.put("foo", 0);

 } else if (foo == 0) {

 log.info("Switch foo to 1");

 variables.put("foo", 1);

 } else if (foo == 1) {

 log.info("Switch foo to 0");

 variables.put("foo", 0);

 }

 }

}

Guard.

private static class FooGuard implements Guard<States, Events> {

 private final int match;

 public FooGuard(int match) {

 this.match = match;

 }

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 Object foo = context.getExtendedState().getVariables().get("foo");

 return !(foo == null || !foo.equals(match));

 }

}

Let’s go through what this state machine do when it’s executed and we send various event to it.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 59

sm>sm start

Entry state S0

Entry state S1

Entry state S11

Init foo to 0

State machine started

sm>sm event A

Event A send

sm>sm event C

Exit state S11

Exit state S1

Entry state S2

Entry state S21

Entry state S211

Event C send

sm>sm event H

Switch foo to 1

Event H send

sm>sm event C

Exit state S211

Exit state S21

Exit state S2

Entry state S1

Entry state S11

Event C send

sm>sm event A

Exit state S11

Exit state S1

Entry state S1

Entry state S11

Event A send

What happens in above sample:

• State machine is started which takes it to its initial state S11 via superstates S1 and S0. Also extended
state variable foo is init to 0.

• We try to execute self transition in state S1 with event A but nothing happens because transition is
guarded by variable foo to be 1.

• We send event C which takes us to other state machine where initial state S211 and its superstates
are entered. In there we can use event H which does a simple internal transition to flip variable foo.
Then we simply go back using event C.

• Event A is sent again and now S1 does a self transition because guard evaluates true.

• It’s also worth to pay attention to how event H is handled in different states S0, S1 and S2. This
is a good example of how hierarchical states and their event handling works. If state S2 is unable
to handle event H due to guard condition, its parent is checked next. This guarantees that while on
state S2, foo flag is always flipped around. However in state S1 event H always match to its dummy
transition without guard or action, not never happens.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 60

27. CD Player

CD Player is a sample which resembles better use case of most of use have used in a real world. CD
Player itself is a really simple entity where user can open a deck, insert or change a disk, then drive
player functionality by pressing various buttons like eject, play, stop, pause, rewind and backward.

How many of us have really given a thought of what it will take to make a code for a CD Player which
interacts with a hardware. Yes, concept of a player is overly simple but if you look behind the scenes
things actually get a bit convoluted.

You’ve probably noticed that if your deck is open and you press play, deck will close and a song will start
to play if CD was inserted in a first place. In a sense when deck is open you first need to close it and then
try to start playing if cd is actually inserted. Hopefully you have now realised that a simple CD Player
is not anymore so simple. Sure you can wrap all this with a simple class with few boolean variables
and probably few nested if/else clauses, that will do the job, but what about if you need to make all this
behaviour much more complex, do you really want to keep adding more flags and if/else clauses.

Let’s go through how this sample and its state machine is designed and how those two interacts with
each other. Below three config sections are used withing a EnumStateMachineConfigurerAdapter.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 61

@Override

public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.IDLE)

 .state(States.IDLE)

 .and()

 .withStates()

 .parent(States.IDLE)

 .initial(States.CLOSED)

 .state(States.CLOSED, closedEntryAction(), null)

 .state(States.OPEN)

 .and()

 .withStates()

 .state(States.BUSY)

 .and()

 .withStates()

 .parent(States.BUSY)

 .initial(States.PLAYING)

 .state(States.PLAYING)

 .state(States.PAUSED);

}

@Override

public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.CLOSED).target(States.OPEN).event(Events.EJECT)

 .and()

 .withExternal()

 .source(States.OPEN).target(States.CLOSED).event(Events.EJECT)

 .and()

 .withExternal()

 .source(States.OPEN).target(States.CLOSED).event(Events.PLAY)

 .and()

 .withExternal()

 .source(States.PLAYING).target(States.PAUSED).event(Events.PAUSE)

 .and()

 .withInternal()

 .source(States.PLAYING)

 .action(playingAction())

 .timer(1000)

 .and()

 .withInternal()

 .source(States.PLAYING).event(Events.BACK)

 .action(trackAction())

 .and()

 .withInternal()

 .source(States.PLAYING).event(Events.FORWARD)

 .action(trackAction())

 .and()

 .withExternal()

 .source(States.PAUSED).target(States.PLAYING).event(Events.PAUSE)

 .and()

 .withExternal()

 .source(States.BUSY).target(States.IDLE).event(Events.STOP)

 .and()

 .withExternal()

 .source(States.IDLE).target(States.BUSY).event(Events.PLAY)

 .action(playAction())

 .guard(playGuard())

 .and()

 .withInternal()

 .source(States.OPEN).event(Events.LOAD).action(loadAction());

}

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 62

@Bean

public ClosedEntryAction closedEntryAction() {

 return new ClosedEntryAction();

}

@Bean

public LoadAction loadAction() {

 return new LoadAction();

}

@Bean

public TrackAction trackAction() {

 return new TrackAction();

}

@Bean

public PlayAction playAction() {

 return new PlayAction();

}

@Bean

public PlayingAction playingAction() {

 return new PlayingAction();

}

@Bean

public PlayGuard playGuard() {

 return new PlayGuard();

}

What we did in above configuration:

• We used EnumStateMachineConfigurerAdapter to configure states and transitions.

• States CLOSED and OPEN are defined as substates of IDLE, states PLAYING and PAUSED are
defined as substates of BUSY.

• With state CLOSED we added entry action as bean closedEntryAction.

• With transition we mostly mapped events to expected state transitions like EJECT closing and opening
a deck, PLAY, STOP and PAUSE doing their natural transitions. Few words to mention what we did
for other transitions.

• With source state PLAYING we added a timer trigger which is needed to automatically track elapsed
time within a playing track and to have facility to make a decision when to switch to next track.

• With event PLAY if source state is IDLE and target state is BUSY we defined action playAction
and guard playGuard.

• With event LOAD and state OPEN we defined internal transition with action loadAction which will
insert cd disc into extended state variables.

• PLAYING state defined three internal transitions where one is triggered by a timer executing a
playingAction which updates extended state variables. Other two transitions are with trackAction
with different events, BACK and FORWARD respectively which handles when user wants to go
back or forward in tracks.

This machine only have six states which are introduced as an enum.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 63

public static enum States {

 // super state of PLAYING and PAUSED

 BUSY,

 PLAYING,

 PAUSED,

 // super state of CLOSED and OPEN

 IDLE,

 CLOSED,

 OPEN

}

Events represent, in a sense in this example, what buttons user would press and if user loads a cd
disc into a deck.

public static enum Events {

 PLAY, STOP, PAUSE, EJECT, LOAD, FORWARD, BACK

}

Beans cdPlayer and library are just used with a sample to drive the application.

@Bean

public CdPlayer cdPlayer() {

 return new CdPlayer();

}

@Bean

public Library library() {

 return Library.buildSampleLibrary();

}

We can define extended state variable key as simple enums.

public static enum Variables {

 CD, TRACK, ELAPSEDTIME

}

public static enum Headers {

 TRACKSHIFT

}

We wanted to make this samply type safe so we’re defining our own annotation @StatesOnTransition
which have a mandatory meta annotation @OnTransition.

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

@OnTransition

public static @interface StatesOnTransition {

 States[] source() default {};

 States[] target() default {};

}

ClosedEntryAction is a entry action for state CLOSED to simply send and PLAY event to a statemachine
if cd disc is present.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 64

public static class ClosedEntryAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 if (context.getTransition() != null

 && context.getEvent() == Events.PLAY

 && context.getTransition().getTarget().getId() == States.CLOSED

 && context.getExtendedState().getVariables().get(Variables.CD) != null) {

 context.getStateMachine().sendEvent(Events.PLAY);

 }

 }

}

LoadAction is simply updating extended state variable if event headers contained information about a
cd disc to load.

public static class LoadAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 Object cd = context.getMessageHeader(Variables.CD);

 context.getExtendedState().getVariables().put(Variables.CD, cd);

 }

}

PlayAction is simply resetting player elapsed time which is kept as an extended state variable.

public static class PlayAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 context.getExtendedState().getVariables().put(Variables.ELAPSEDTIME, 0l);

 context.getExtendedState().getVariables().put(Variables.TRACK, 0);

 }

}

PlayGuard is used to guard transition from IDLE to BUSY with event PLAY if extended state variable
CD doesn’t indicate that cd disc has been loaded.

public static class PlayGuard implements Guard<States, Events> {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 ExtendedState extendedState = context.getExtendedState();

 return extendedState.getVariables().get(Variables.CD) != null;

 }

}

PlayingAction is updating extended state variable ELAPSEDTIME which cd player itself can read and
update lcd status. Action also handles track shift if user is going back or forward in tracks.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 65

public static class PlayingAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 Map<Object, Object> variables = context.getExtendedState().getVariables();

 Object elapsed = variables.get(Variables.ELAPSEDTIME);

 Object cd = variables.get(Variables.CD);

 Object track = variables.get(Variables.TRACK);

 if (elapsed instanceof Long) {

 long e = ((Long)elapsed) + 1000l;

 if (e > ((Cd) cd).getTracks()[((Integer) track)].getLength()*1000) {

 context.getStateMachine().sendEvent(MessageBuilder

 .withPayload(Events.FORWARD)

 .setHeader(Headers.TRACKSHIFT.toString(), 1).build());

 } else {

 variables.put(Variables.ELAPSEDTIME, e);

 }

 }

 }

}

TrackAction handles track shift action if user is going back or forward in tracks. If it is a last track of a
cd, playing is stopped and STOP event sent to a state machine.

public static class TrackAction implements Action<States, Events> {

 @Override

 public void execute(StateContext<States, Events> context) {

 Map<Object, Object> variables = context.getExtendedState().getVariables();

 Object trackshift = context.getMessageHeader(Headers.TRACKSHIFT.toString());

 Object track = variables.get(Variables.TRACK);

 Object cd = variables.get(Variables.CD);

 if (trackshift instanceof Integer && track instanceof Integer && cd instanceof Cd) {

 int next = ((Integer)track) + ((Integer)trackshift);

 if (next >= 0 && ((Cd)cd).getTracks().length > next) {

 variables.put(Variables.ELAPSEDTIME, 0l);

 variables.put(Variables.TRACK, next);

 } else if (((Cd)cd).getTracks().length <= next) {

 context.getStateMachine().sendEvent(Events.STOP);

 }

 }

 }

}

One other important aspect of a state machines is that they have their own responsibilities mostly around
handling states and all application level logic should be kept outside. This means that application needs
to have a ways to interact with a state machine and below sample is how cdplayer does it order to update
lcd status. Also pay attention that we annotated CdPlayer with @WithStateMachine which instructs state
machine to find methods from your pojo which are then called with various transitions.

@OnTransition(target = "BUSY")

public void busy(ExtendedState extendedState) {

 Object cd = extendedState.getVariables().get(Variables.CD);

 if (cd != null) {

 cdStatus = ((Cd)cd).getName();

 }

}

In above example we use @OnTransition annotation to hook a callback when transition happens with
a target state BUSY.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 66

@StatesOnTransition(target = {States.CLOSED, States.IDLE})

public void closed(ExtendedState extendedState) {

 Object cd = extendedState.getVariables().get(Variables.CD);

 if (cd != null) {

 cdStatus = ((Cd)cd).getName();

 } else {

 cdStatus = "No CD";

 }

 trackStatus = "";

}

@OnTransition we used above can only be used with strings which are matched from enums.
@StatesOnTransition is then something what user can create into his own application to get a type safe
annotation where a real enums can be used.

Let’s see an example how this state machine actually works.

sm>sm start

Entry state IDLE

Entry state CLOSED

State machine started

sm>cd lcd

No CD

sm>cd library

0: Greatest Hits

 0: Bohemian Rhapsody 05:56

 1: Another One Bites the Dust 03:36

1: Greatest Hits II

 0: A Kind of Magic 04:22

 1: Under Pressure 04:08

sm>cd eject

Exit state CLOSED

Entry state OPEN

sm>cd load 0

Loading cd Greatest Hits

sm>cd play

Exit state OPEN

Entry state CLOSED

Exit state CLOSED

Exit state IDLE

Entry state BUSY

Entry state PLAYING

sm>cd lcd

Greatest Hits Bohemian Rhapsody 00:03

sm>cd forward

sm>cd lcd

Greatest Hits Another One Bites the Dust 00:04

sm>cd stop

Exit state PLAYING

Exit state BUSY

Entry state IDLE

Entry state CLOSED

sm>cd lcd

Greatest Hits

What happened in above run:

• State machine is started which causes machine to get initialized.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 67

• CD Player lcd screen status is printed.

• CD Library is printed.

• CD Player deck is opened.

• CD with index 0 is loaded into a deck.

• Play is causing deck to get closed and immediate playing because cd was inserted.

• We print lcd status and request next track.

• We stop playing.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 68

28. Tasks

Tasks is a sample demonstrating a parallel task handling within a regions and additionally adds an error
handling to either automatically or manually fixing task problems before continuing back to a state where
tasks can be run again.

On a high level what happens in this state machine is:

• We’re always trying to get into READY state so that we can use event RUN to execute tasks.

• TASKS state which is composed with 3 independent regions has been put in a middle of FORK and
JOIN states which will cause regions to go into its initial states and to be joined by end states.

• From JOIN state we go automatically into a CHOICE state which checks existence of error flags in
extended state variables. Tasks can set these flags and it gives CHOICE state a possibility to go into
ERROR state where errors can be handled either automatically or manually.

• AUTOMATIC state in ERROR can try to automatically fix error and goes back to READY if it succeed
to do so. If error is something what can’t be handled automatically, user intervention is needed and
machine is put into MANUAL state via FALLBACK event.

States.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 69

public static enum States {

 READY,

 FORK, JOIN, CHOICE,

 TASKS, T1, T1E, T2, T2E, T3, T3E,

 ERROR, AUTOMATIC, MANUAL

}

Events.

public static enum Events {

 RUN, FALLBACK, CONTINUE, FIX;

}

Configuration - states.

@Override

public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.READY)

 .fork(States.FORK)

 .state(States.TASKS)

 .join(States.JOIN)

 .choice(States.CHOICE)

 .state(States.ERROR)

 .and()

 .withStates()

 .parent(States.TASKS)

 .initial(States.T1)

 .end(States.T1E)

 .and()

 .withStates()

 .parent(States.TASKS)

 .initial(States.T2)

 .end(States.T2E)

 .and()

 .withStates()

 .parent(States.TASKS)

 .initial(States.T3)

 .end(States.T3E)

 .and()

 .withStates()

 .parent(States.ERROR)

 .initial(States.AUTOMATIC)

 .state(States.AUTOMATIC, automaticAction(), null)

 .state(States.MANUAL);

}

Configuration - transitions.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 70

@Override

public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.READY).target(States.FORK)

 .event(Events.RUN)

 .and()

 .withFork()

 .source(States.FORK).target(States.TASKS)

 .and()

 .withExternal()

 .source(States.T1).target(States.T1E)

 .and()

 .withExternal()

 .source(States.T2).target(States.T2E)

 .and()

 .withExternal()

 .source(States.T3).target(States.T3E)

 .and()

 .withJoin()

 .source(States.TASKS).target(States.JOIN)

 .and()

 .withExternal()

 .source(States.JOIN).target(States.CHOICE)

 .and()

 .withChoice()

 .source(States.CHOICE)

 .first(States.ERROR, tasksChoiceGuard())

 .last(States.READY)

 .and()

 .withExternal()

 .source(States.ERROR).target(States.READY)

 .event(Events.CONTINUE)

 .and()

 .withExternal()

 .source(States.AUTOMATIC).target(States.MANUAL)

 .event(Events.FALLBACK)

 .and()

 .withInternal()

 .source(States.MANUAL)

 .action(fixAction())

 .event(Events.FIX);

}

Guard below is guarding choice entry into a ERROR state and needs to return TRUE if error has
happened. For this guard simply checks that all extended state variables(T1, T2 and T3) are TRUE.

@Bean

public Guard<States, Events> tasksChoiceGuard() {

 return new Guard<States, Events>() {

 @Override

 public boolean evaluate(StateContext<States, Events> context) {

 Map<Object, Object> variables = context.getExtendedState().getVariables();

 return !(ObjectUtils.nullSafeEquals(variables.get("T1"), true)

 && ObjectUtils.nullSafeEquals(variables.get("T2"), true)

 && ObjectUtils.nullSafeEquals(variables.get("T3"), true));

 }

 };

}

Actions below will simply send event to a state machine to request next step which would be either
fallback or continue back to ready.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 71

@Bean

public Action<States, Events> automaticAction() {

 return new Action<States, Events>() {

 @Override

 public void execute(StateContext<States, Events> context) {

 Map<Object, Object> variables = context.getExtendedState().getVariables();

 if (ObjectUtils.nullSafeEquals(variables.get("T1"), true)

 && ObjectUtils.nullSafeEquals(variables.get("T2"), true)

 && ObjectUtils.nullSafeEquals(variables.get("T3"), true)) {

 context.getStateMachine().sendEvent(Events.CONTINUE);

 } else {

 context.getStateMachine().sendEvent(Events.FALLBACK);

 }

 }

 };

}

@Bean

public Action<States, Events> fixAction() {

 return new Action<States, Events>() {

 @Override

 public void execute(StateContext<States, Events> context) {

 Map<Object, Object> variables = context.getExtendedState().getVariables();

 variables.put("T1", true);

 variables.put("T2", true);

 variables.put("T3", true);

 context.getStateMachine().sendEvent(Events.CONTINUE);

 }

 };

}

Currently default region execution is synchronous but it can be changed to asynchronous by changing
TaskExecutor. Task will simulate work by sleeping 2 seconds so you’ll able to see how actions in
regions are executed parallel.

@Bean(name = StateMachineSystemConstants.TASK_EXECUTOR_BEAN_NAME)

public TaskExecutor taskExecutor() {

 ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();

 taskExecutor.setCorePoolSize(5);

 return taskExecutor;

}

Let’s see an examples how this state machine actually works.

sm>sm start

State machine started

Entry state READY

sm>tasks run

Entry state TASKS

run task on T3

run task on T2

run task on T1

run task on T2 done

run task on T1 done

run task on T3 done

Entry state T2

Entry state T3

Entry state T1

Entry state T1E

Entry state T2E

Entry state T3E

Exit state TASKS

Entry state JOIN

Exit state JOIN

Entry state READY

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 72

In above we can execute tasks multiple times.

sm>tasks list

Tasks {T1=true, T3=true, T2=true}

sm>tasks fail T1

sm>tasks list

Tasks {T1=false, T3=true, T2=true}

sm>tasks run

Entry state TASKS

run task on T1

run task on T3

run task on T2

run task on T1 done

run task on T3 done

run task on T2 done

Entry state T1

Entry state T3

Entry state T2

Entry state T1E

Entry state T2E

Entry state T3E

Exit state TASKS

Entry state JOIN

Exit state JOIN

Entry state ERROR

Entry state AUTOMATIC

Exit state AUTOMATIC

Exit state ERROR

Entry state READY

In above, if we simulate failure for task T1, it is fixed automatically.

sm>tasks list

Tasks {T1=true, T3=true, T2=true}

sm>tasks fail T2

sm>tasks run

Entry state TASKS

run task on T2

run task on T1

run task on T3

run task on T2 done

run task on T1 done

run task on T3 done

Entry state T2

Entry state T1

Entry state T3

Entry state T1E

Entry state T2E

Entry state T3E

Exit state TASKS

Entry state JOIN

Exit state JOIN

Entry state ERROR

Entry state AUTOMATIC

Exit state AUTOMATIC

Entry state MANUAL

sm>tasks fix

Exit state MANUAL

Exit state ERROR

Entry state READY

In above if we simulate failure for either task T2 or T3, state machine goes to MANUAL state where
problem needs to be fixed manually before we’re able to go back to READY state.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 73

29. Washer

Washer is a sample demonstrating a use of a history state to recover a running state configuration with
a simulated power off situation.

Anyone ever used a washing machine knows that if you can somehow pause the program it will continue
from a same state when lid is closed. This kind of behaviour can be implemented in a state machine
by using a history pseudo state.

States.

public static enum States {

 RUNNING, HISTORY, END,

 WASHING, RINSING, DRYING,

 POWEROFF

}

Events.

public static enum Events {

 RINSE, DRY, STOP,

 RESTOREPOWER, CUTPOWER

}

Configuration - states.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 74

@Override

public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.RUNNING)

 .state(States.POWEROFF)

 .end(States.END)

 .and()

 .withStates()

 .parent(States.RUNNING)

 .initial(States.WASHING)

 .state(States.RINSING)

 .state(States.DRYING)

 .history(States.HISTORY, History.SHALLOW);

}

Configuration - transitions.

@Override

public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.WASHING).target(States.RINSING)

 .event(Events.RINSE)

 .and()

 .withExternal()

 .source(States.RINSING).target(States.DRYING)

 .event(Events.DRY)

 .and()

 .withExternal()

 .source(States.RUNNING).target(States.POWEROFF)

 .event(Events.CUTPOWER)

 .and()

 .withExternal()

 .source(States.POWEROFF).target(States.HISTORY)

 .event(Events.RESTOREPOWER)

 .and()

 .withExternal()

 .source(States.RUNNING).target(States.END)

 .event(Events.STOP);

}

Let’s see an example how this state machine actually works.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 75

sm>sm start

Entry state RUNNING

Entry state WASHING

State machine started

sm>sm event RINSE

Exit state WASHING

Entry state RINSING

Event RINSE send

sm>sm event DRY

Exit state RINSING

Entry state DRYING

Event DRY send

sm>sm event CUTPOWER

Exit state DRYING

Exit state RUNNING

Entry state POWEROFF

Event CUTPOWER send

sm>sm event RESTOREPOWER

Exit state POWEROFF

Entry state RUNNING

Entry state WASHING

Entry state DRYING

Event RESTOREPOWER send

What happened in above run:

• State machine is started which causes machine to get initialized.

• We go to RINSING state.

• We go to DRYING state.

• We cut power and go to POWEROFF state.

• State is restored via HISTORY state which takes state machine back to its previous known state.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 76

30. Persist

Persist is a sample using recipe Chapter 23, Persist to demonstrate how a database entry update logic
can be controlled by a state machine.

The state machine logic and configuration is shown above:

StateMachine Config.

@Configuration

@EnableStateMachine

static class StateMachineConfig

 extends StateMachineConfigurerAdapter<String, String> {

 @Override

 public void configure(StateMachineStateConfigurer<String, String> states)

 throws Exception {

 states

 .withStates()

 .initial("PLACED")

 .state("PROCESSING")

 .state("SENT")

 .state("DELIVERED");

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<String, String> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source("PLACED").target("PROCESSING")

 .event("PROCESS")

 .and()

 .withExternal()

 .source("PROCESSING").target("SENT")

 .event("SEND")

 .and()

 .withExternal()

 .source("SENT").target("DELIVERED")

 .event("DELIVER");

 }

}

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 77

PersistStateMachineHandler can be created using a below config:

Handler Config.

@Configuration

static class PersistHandlerConfig {

 @Autowired

 private StateMachine<String, String> stateMachine;

 @Bean

 public Persist persist() {

 return new Persist(persistStateMachineHandler());

 }

 @Bean

 public PersistStateMachineHandler persistStateMachineHandler() {

 return new PersistStateMachineHandler(stateMachine);

 }

}

Order class used with this sample is shown below:

Order Class.

public static class Order {

 int id;

 String state;

 public Order(int id, String state) {

 this.id = id;

 this.state = state;

 }

 @Override

 public String toString() {

 return "Order [id=" + id + ", state=" + state + "]";

 }

}

Now let’s see how this example works.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 78

sm>persist db

Order [id=1, state=PLACED]

Order [id=2, state=PROCESSING]

Order [id=3, state=SENT]

Order [id=4, state=DELIVERED]

sm>persist process 1

Exit state PLACED

Entry state PROCESSING

sm>persist db

Order [id=2, state=PROCESSING]

Order [id=3, state=SENT]

Order [id=4, state=DELIVERED]

Order [id=1, state=PROCESSING]

sm>persist deliver 3

Exit state SENT

Entry state DELIVERED

sm>persist db

Order [id=2, state=PROCESSING]

Order [id=4, state=DELIVERED]

Order [id=1, state=PROCESSING]

Order [id=3, state=DELIVERED]

What happened in above run:

• We listed rows from an existing embedded database which is already populated with sample data.

• We request to update order 1 into PROCESSING state.

• We list db entries again and see that state has been changed from PLACED into a PROCESSING.

• We do update for order 3 to update state from SENT into DELIVERED.

Note

If you’re wondering where is the database because there are literally no signs of it in a sample
code. Sample is based on Spring Boot and because necessary classes are in a classpath,
embedded HSQL instance is created automatically.

Spring Boot will even create an instance of JdbcTemplate which you can just autowire like how
it’s done in Persist.java.

@Autowired

private JdbcTemplate jdbcTemplate;

Finally we need to handle state changes:

public void change(int order, String event) {

 Order o = jdbcTemplate.queryForObject("select id, state from orders where id = ?", new Object[]

 { order },

 new RowMapper<Order>() {

 public Order mapRow(ResultSet rs, int rowNum) throws SQLException {

 return new Order(rs.getInt("id"), rs.getString("state"));

 }

 });

 handler.handleEventWithState(MessageBuilder.withPayload(event).setHeader("order", order).build(),

 o.state);

}

And use a PersistStateChangeListener to update database:

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 79

private class LocalPersistStateChangeListener implements PersistStateChangeListener {

 @Override

 public void onPersist(State<String, String> state, Message<String> message,

 Transition<String, String> transition, StateMachine<String, String> stateMachine) {

 if (message != null && message.getHeaders().containsKey("order")) {

 Integer order = message.getHeaders().get("order", Integer.class);

 jdbcTemplate.update("update orders set state = ? where id = ?", state.getId(), order);

 }

 }

}

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 80

31. Zookeeper

Zookeeper is a distributed version from sample Chapter 25, Turnstile.

Note

This sample needs and external Zookeeper instance accessible from localhost with default
port and settings.

Configuration of this sample is almost same as turnstile sample. We only add configuration for
distributed state machine where we configure StateMachineEnsemble.

@Override

public void configure(StateMachineConfigurationConfigurer<String, String> config) throws Exception {

 config

 .withDistributed()

 .ensemble(stateMachineEnsemble());

}

Actual StateMachineEnsemble needs to be created as bean together with CuratorFramework
client.

@Bean

public StateMachineEnsemble<String, String> stateMachineEnsemble() throws Exception {

 return new ZookeeperStateMachineEnsemble<String, String>(curatorClient(), "/foo");

}

@Bean

public CuratorFramework curatorClient() throws Exception {

 CuratorFramework client = CuratorFrameworkFactory.builder().defaultData(new byte[0])

 .retryPolicy(new ExponentialBackoffRetry(1000, 3))

 .connectString("localhost:2181").build();

 client.start();

 return client;

}

Let’s go through a simple example where two different shell instances are started with command java
-jar spring-statemachine-samples-zookeeper-1.0.0.BUILD-SNAPSHOT.jar.

First open first shell instance(do not start second instance yet). When state machine is started it will end
up into its initial state LOCKED. Then send event COIN to transit into UNLOCKED state.

Shell1.

sm>sm start

Entry state LOCKED

State machine started

sm>sm event COIN

Exit state LOCKED

Entry state UNLOCKED

Event COIN send

sm>sm state

UNLOCKED

Open second shell instance and start a state machine. You should see that distributed state UNLOCKED
is entered instead of default initial state LOCKED.

Shell2.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 81

sm>sm start

State machine started

sm>sm state

UNLOCKED

Then from either of a shells(we use second instance here) send event PUSH to transit from UNLOCKED
into LOCKED state.

Shell2.

sm>sm event PUSH

Exit state UNLOCKED

Entry state LOCKED

Event PUSH send

In other shell you should see state getting changed automatically based on distributed state kept in
Zookeeper.

Shell1.

sm>Exit state UNLOCKED

Entry state LOCKED

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 82

32. Web
Web is a distributed state machine example using a zookeeper to handle distributed state. This example
is meant to be run on a multiple browser sessions against a multiple different hosts.

This sample is using a modified state machine structure from a Chapter 26, Showcase to work with a
distributed state machine. The state machine logic is shown above:

Note

Due to nature of this sample an instance of a Zookeeper is expected to be available from a
localhost for every individual sample instance.

Let’s go through a simple example where three different sample instances are started with command
java -jar spring-statemachine-samples-web-1.0.0.BUILD-SNAPSHOT.jar. If you are
running different instances on a same host you need to distinguish used port by adding --
server.port=<myport> to the command. Otherwise default port for each host will be 8080.

In this sample run we have three hosts, n1, n2 and n3 which all have a local zookeeper instance running
and a state machine sample running on a port 8080.

@n1:~# java -jar spring-statemachine-samples-web-1.0.0.BUILD-SNAPSHOT.jar

@n2:~# java -jar spring-statemachine-samples-web-1.0.0.BUILD-SNAPSHOT.jar

@n3:~# java -jar spring-statemachine-samples-web-1.0.0.BUILD-SNAPSHOT.jar

When all instances are running you should see all showing similar information via a browser where
states are S0, S1 and S11, and extended state variable foo=0. Main state is S11.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 83

When you press button Event C in any of a browser window, distributed state is changed to S211
which is the target state denoted by transition associated with an event C.

Then let’s press button Event H and what is supposed to happen is that internal transition is executed
on all state machines changing extended state variable foo from value 0 to 1. This change is first done
on a state machine receiving the event and then propagated to other state machines. You should only
see variable foo to change from 0 to 1.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 84

Last we simply send an event Event K which is supposed to take state machine state back to state
S11 and you should see this happening in all browser sessions.

Part VI. FAQ
This chapter tries to give solutions to question user is most likely to ask.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 86

33. State Changes

I want to transit to next state automatically.

There are few choices a state machine developer can choose.

• Implement an action and send appropriate event into a state machine which triggers a transition into
a proper target state.

• Define deferred event within a state and before sending an event send an event which will be deferred
and thus causing next appropriate state transition when it is more convenient to handle that event.

• Implement a triggerless transition which will automatically cause state transition into a next state when
state has entry and its actions has been completed.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 87

34. Extented State

How I can initialise variables on state machine start.

Important concept in a state machine is that nothing really happens unless there is a trigger which is
causing a state transition which then can fire actions. However, having said that, Spring Statemachine
always have an initial transition when state machine is started. With this initial transition user can execute
a simple action which within a StateContext can do whatever it likes with an extended state variables.

Part VII. Appendices

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 89

Appendix A. Support Content
This appendix provides generic information about used classes and material in this reference
documentation.

A.1 Classes Used in This Document

public enum States {

 SI,S1,S2,S3,S4,SF

}

public enum States2 {

 S1,S2,S3,S4,S5,

 S2I,S21,S22,S2F,

 S3I,S31,S32,S3F

}

public enum States3 {

 S1,S2,SH,

 S2I,S21,S22,S2F

}

public enum Events {

 E1,E2,E3,E4,EF

}

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 90

Appendix B. State Machine Concepts
This appendix provides generic information about state machines.

B.1 Quick Example

Assuming we have states STATE1, STATE2 and events EVENT1, EVENT2, logic of state machine can
be defined as shown in below quick example.

static enum States {

 STATE1, STATE2

}

static enum Events {

 EVENT1, EVENT2

}

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 91

@Configuration

@EnableStateMachine

static class Config1 extends EnumStateMachineConfigurerAdapter<States, Events> {

 @Override

 public void configure(StateMachineStateConfigurer<States, Events> states)

 throws Exception {

 states

 .withStates()

 .initial(States.STATE1)

 .states(EnumSet.allOf(States.class));

 }

 @Override

 public void configure(StateMachineTransitionConfigurer<States, Events> transitions)

 throws Exception {

 transitions

 .withExternal()

 .source(States.STATE1).target(States.STATE2)

 .event(Events.EVENT1)

 .and()

 .withExternal()

 .source(States.STATE2).target(States.STATE1)

 .event(Events.EVENT2);

 }

}

@WithStateMachine

static class MyBean {

 @OnTransition(target = "STATE1")

 void toState1() {

 }

 @OnTransition(target = "STATE2")

 void toState2() {

 }

}

static class MyApp {

 @Autowired

 StateMachine<States, Events> stateMachine;

 void doSignals() {

 stateMachine.sendEvent(Events.EVENT1);

 stateMachine.sendEvent(Events.EVENT2);

 }

}

B.2 Glossary

State Machine
Main entity driving a collection of states together with regions, transitions and events.

State
A state models a situation during which some invariant condition holds. State is the main entity of
a state machine where state changes are driven by an events.

Extended State
An extended state is a special set of variables kept in a state machine to reduce number of needed
states.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 92

Transition
A transition is a relationship between a source state and a target state. It may be part of a compound
transition, which takes the state machine from one state configuration to another, representing the
complete response of the state machine to an occurrence of an event of a particular type.

Event
An entity which is send to a state machine which then drives a various state changes.

Initial State
A special state in which the state machine starts. Initial state is always bound to a particular state
machine or a region. A state machine with a multiple regions may have a multiple initial states.

End State
Also called as a final state is a special kind of state signifying that the enclosing region is completed.
If the enclosing region is directly contained in a state machine and all other regions in the state
machine also are completed, then it means that the entire state machine is completed.

History State
A pseudo state which allows a state machine to remember its last active state. Two types of history
state exists, shallow which only remember top level state and deep which remembers active states
in a sub-machines.

Choice State
A pseudo state which allows to make a transition choice based of i.e. event headers or extended
state variables.

Fork State
A pseudo state which gives a controlled entry into a regions.

Join State
A pseudo state which gives a controlled exit from a regions.

Region
A region is an orthogonal part of either a composite state or a state machine. It contains states
and transitions.

Guard
Is a boolean expression evaluated dynamically based on the value of extended state variables and
event parameters. Guard conditions affect the behavior of a state machine by enabling actions or
transitions only when they evaluate to TRUE and disabling them when they evaluate to FALSE.

Action
A action is a behaviour executed during the triggering of the transition.

B.3 A State Machines Crash Course

This appendix provides generic crash course to a state machine concepts.

States

A state is a model which a state machine can be in. It is always easier to describe state as a real world
example rather than trying to abstract concepts with a generic documentation. For example let’s take a

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 93

simple example of a keyboard most of us are using every single day. If you have a full keyboard which
has normal keys on a left side and the numeric keypad on a right side you may have noticed that the
numeric keypad may be in a two different states depending whether numlock is activated or not. If it is
not active then typing will result navigation using arrows, etc. If numpad is active then typing will result
numbers to be used. Essentially numpad part of a keyboard can be in two different states.

To relate state concept to programming it means that instead of using flags, nested if/else/break clauses
or other impractical logic you simply rely on state, state variables or other interaction with a state
machine.

Pseudo States

PseudoState is a special type of state which usually introduces more higher level logic into a state
machine by either giving a state a special meaning like initial state. State machine can then internally
react to these states by doing various actions available in UML state machine concepts.

Initial

Initial pseudostate state is always needed for every single state machine whether you have a simple
one level state machine or more complex state machine composed with submachines or regions. Initial
state simple defines where state machine should go when it starts and without it state machine is ill-
formed.

End

Terminate pseudostate which is also called as end state will indicate that a particular state machine
has reached its final state. Effectively this mean that a state machine will no longer process any events
and will not transit to any other state. However in a case of submachines are regions, state machine
is able to restart from its terminal state.

Choice

Choice pseudostate is used to choose a dynamic conditional branch of a transition from this state.
Dynamic condition is evaluated by guards so that at least one and at most one branch is selected.
Usually a simple if/elseif/else structure is used to make sure that at least one branch is selected.
Otherwise state machine might end up in a deadlock and configuration would be ill-formed.

History

History pseudostate can be used to remember a last active state configuration. After state machine
has been exited, history state can be used to restore previous knows configuration. There are two types
of history states available, SHALLOW only remember active state of a state machine itself while DEEP
also remembers nested states.

History state could be implemented externally by listening state machine events but this would soon
make logic very difficult to work with, especially if state machine contains complex nested structures.
Letting state machine itself to handle recording of history states makes things much simpler. What is
left for user to do is simply do a transition into a history state and state machine will hand the needed
logic to go back to its last known recorded state.

Fork

Fork pseudostate can be used to do an explicit entry into one or more regions.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 94

Target state can be a parent state hosting regions, which simply means that regions are activated by
entering its initial states. It’s also possible to add targets directly to any state in a region which allows
more controlled entry into a state.

Join

Join pseudostate is used to merge several transitions together originating from different regions. It is
generally used to wait and block for participating regions to get into its join target states.

Source state can be a parent state hosting regions, which means that join states will be a terminate
states of a participating regions. It’s also possible to define source states to be any state in a regions
which allows controlled exit from a regions.

Guard Conditions

Guard conditions are expressions which evaluates either to TRUE or FALSE based on extended state
variables and event parameters. Guards are used with actions and transitions to dynamically choose if
particular action or transition should be executed. Aspects of guards, event parameters and extended
state variables are simply to make state machine design much more simple.

Events

Event is the most used trigger behaviour to drive a state machine. There are other ways to trigger
behaviour to happen in state machine like a timer but events are the ones which really allows user to
interact with a state machine. Events are also called as signals to possibly alter a state machine state.

Transitions

A transition is a relationship between a source state and a target state. A switch from a state to another
is a state transition caused by a trigger.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 95

Internal Transition

Internal transition is used when action needs to be executed without causing a state transition. With
internal transition source and target state is always a same and it is identical with self-transition in the
absence of state entry and exit actions.

External vs. Local Transition

Most of the cases external and local transition are functionally equivalent except in cases where
transition is happening between super and sub states. Local transition doesn’t cause exit and entry to
source state if target state is a substate of a source state. Other way around, local transition doesn’t
cause exit and entry to target state if target is a superstate of a source state.

Above image shows a different between local and external transitions with a very simplistic super and
sub states.

Actions

Actions are the ones which really glues state machine state changes with a user’s own code. State
machine can execute action on various changes and steps in a state machine like entering or exiting
a state, or doing a state transition.

Actions usually have access to a state context which gives running code a choice to interact with a state
machine in a various ways. State context i.e. is exposing a whole state machine so user can access
extended state variables, event headers if transition is based on an event, or actual transition where it
is possible to see more detailed where this state change is coming from and where it is going.

Hierarchical State Machines

Concept of a hierarchical state machine is used to simplify state design when particular states can only
exist together.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 96

Hierarchical states are really an innovation in UML state machine over a traditional state machines like
Mealy or Moore machines. Hierarchical states allows to define some level of abstraction is a sense how
java developer would define a class structure with abstract classes. For example having a nested state
machine user is able to define transition on a multiple level of states possibly with a different conditions.
State machine will always try to see if current state is able to handle an event together with a transition
guard conditions. If these conditions are not evaluated to true, state machine will simply see what a
super state can handle.

Regions

Regions which are also called as orthogonal regions are usually viewed as exclusive OR operation
applied to a states. Concept of a region in terms of a state machine is usually a little difficult to understand
but things gets a little simpler with a simple example.

Some of us have a full size keyboard with main keys on a left side and numeric keys on a right side.
You’ve probably noticed that both sides really have their own state which you see if you press a numlock
key which only alters behaviour of numbad itself. If you don’t have a full size keyboard you can buy a
simple external usb numbad having only numbad part of a keys. If left and right side can freely exist
without the other they must have a totally different states which means they are operating on different
state machines.

It would be a little inconvenient to handle two different state machines as totally separate entities
because in a sense they are still working together in a sense. This is why orthogonal regions can combine
together a multiple simultaneous states within a single state in a state machine.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 97

Appendix C. Distributed State
Machine Technical Paper
This appendix provides more detailed technical documentation about using a Zookeeper with a Spring
State Machine.

C.1 Abstract

Introducing a distributed state on top of a single state machine instance running on a single
jvm is a difficult and a complex topic. Distributed State Machine is introducing a few relatively
complex problems on top of a simple state machine due to its run-to-completion model and generally
because of its single thread execution model, though orthogonal regions can be executed parallel. One
other natural problem is that a state machine transition execution is driven by triggers which are either
event or timer based.

Distributed Spring State Machine is trying to solve problem of spanning a generic State Machine
through a jvm boundary. Here we show that a generic State Machine concepts can be used in multiple
jvm’s and Spring Application Contexts.

We found that if Distributed State Machine abstraction is carefully chosen and backing distributed
state repository guarantees CP readiness, it is possible to create a consistent state machine which is
able to share distributed state among other state machines in an ensemble.

Our results demonstrate that distributed state changes are consistent if backing repository is CP. We
anticipate our distributed state machine to provide a foundation to applications which need to work
with a shared distributed states. This model aims to provide a good methods for cloud applications to
have much easier ways to communicate with each others without having a need to explicitly build these
distributed state concepts.

C.2 Intro

Spring State Machine is not forced to use a single threaded execution model because once multiple
regions are uses, regions can be executed parallel if necessary configuration is applied. This is an
important topic because once user wants to have a parallel state machine execution it will make state
changes faster for independent regions.

When state changes are no longer driven by a trigger in a local jvm or local state machine instance,
transition logic needs to be controlled externally in an arbitrary persistent storage. This storage needs
to have a ways to notify participating state machines when distributed state is changed.

CAP Theorem states that "it is impossible for a distributed computer system to simultaneously provide
all three of the following guarantees, consistency, availability and partition tolerance
". What this means is that whatever is chosen for a backing persistence storage is it advisable to be
CP. In this context CP means consistency and partition tolerance. Naturally Distributed
Spring Statemachine doesn’t care about what is its CAP level but in reality consistency and
partition tolerance are more important than availability. This is an exact reason why i.e.
Zookeeper is a CP storage.

All tests presented in this article are accomplished by running custom jepsen tests in a following
environment:

https://en.wikipedia.org/wiki/CAP_theorem

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 98

• Cluster having nodes n1, n2, n3, n4 and n5.

• Each node have a Zookeeper instance constructing an ensemble with all other nodes.

• Each node have a Chapter 32, Web sample installed which will connect to a local Zookeeper node.

• Every state machine instance will only communicate with a local Zookeeper instance. While
connecting machine to multiple instances is possible, it is not used here.

• All state machine instances when started will create a StateMachineEnsemble using Zookeeper
ensemble.

• Sample contains a custom rest api’s which jepsen will use to send events and check particular state
machine statuses.

All jepsen tests for Spring Distributed Statemachine are available from Jepsen Tests.

C.3 Generic Concepts

One design decision of a Distributed State Machine was not to make individual State
Machine instance aware of that it is part of a distributed ensemble. Because main functions and
features of a StateMachine can be accessed via its interface, it makes sense to wrap this instance
using a DistributedStateMachine, which simply intercepts all state machine communication and
collaborates with an ensemble to orchestrate distributed state changes.

One other important concept is to be able to persist enough information from a state machine order to
reset a state machine state from arbitrary state into a new deserialized state. This is naturally needed
when a new state machine instance is joining with an ensemble and it needs to synchronize its own
internal state with a distributed state. Together with using concepts of distributed states and state
persisting it is possible to create a distributed state machine. Currently only backing repository of a
Distributed State Machine is implemented using a Zookeeper.

As mentioned in Chapter 21, Using Distributed States distibuted states are enabled by
wrapping an instance of a StateMachine within a DistributedStateMachine. Specific
StateMachineEnsemble implementation is ZookeeperStateMachineEnsemble providing
integration with a Zookeeper.

C.4 ZookeeperStateMachinePersist

We wanted to have a generic interface StateMachinePersist which is able to persist
StateMachineContext into an arbitrary storage and ZookeeperStateMachinePersist is
implementing this interface for a Zookeeper.

C.5 ZookeeperStateMachineEnsemble

While distributed state machine is using one set of serialized contexts to update its own state, with
zookeeper we’re having a conceptual problem how these context changes can be listened. We’re able to
serialize context into a zookeeper znode and eventually listen when znode data is modified. However
Zookeeper doesn’t guarantee that you will get notification for every data change because registered
watcher for a znode is disabled once it fires and user need to re-register that watcher. During this
short time a znode data can be changed thus resulting missing events. It is actually very easy to miss
these events by just changing data from a multiple threads in a concurrent manner.

https://github.com/spring-projects/spring-statemachine/tree/master/jepsen/spring-statemachine-jepsen

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 99

Order to overcome this issue we’re keeping individual context changes in a multiple znodes and we
just use a simple integer counter to mark which znode is a current active one. This allows us to replay
missed events. We don’t want to create more and more znodes and then later delete old ones, instead
we’re using a simple concept of a circular set of znodes. This allows to use predefined set of znodes
where a current can be determided with a simple integer counter. We already have this counter by
tracking main znode data version which in Zookeeper is an integer.

Size of a circular buffer is mandated to be a power of two not to get trouble when interger is going to
overflow thus we don’t need to handle any specific cases.

C.6 Distributed Tolerance

Order to show how a various distributed actions against a state machine work in a real life, we’re using
a set of jepsen tests to simulate various conditions which may happen in a real distributed cluster.
These include a brain split on a network level, parallel events with a multiple distributed state
machines and changes in an extended state variables. Jepsen tests are based on a sample
Chapter 32, Web where this sample instance is run on multiple hosts together with a Zookeeper
instance on every node where state machine is run. Essentially every state machine sample will connect
to local Zookeeper instance which allows use, via jepsen to simulate network conditions.

Plotted graphs below in this chapter contain states and events which directly maps to a state chart which
can be found from Chapter 32, Web.

Isolated Events

Sending an isolated single event into exactly one state machine in an ensemble is the most simplest
testing scenario and demonstrates that a state change in one state machine is properly propagated into
other state machines in an ensemble.

In this test we will demonstrate that a state change in one machine will eventually cause a consistent
state change in other machines.

What’s happening in above chart:

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 100

• All machines report state S21.

• Event I is sent to node n1 and all nodes report state change from S21 to S22.

• Event C is sent to node n2 and all nodes report state change from S22 to S211.

• Event I is sent to node n5 and all nodes report state change from S211 to S212.

• Event K is sent to node n3 and all nodes report state change from S212 to S21.

• We cycle events I, C, I and K one more time via random nodes.

Parallel Events

Logical problem with multiple distributed state machines is that if a same event is sent into a multiple
state machine exactly at a same time, only one of those events will cause a distributed state transitions.
This is somewhat expected scenario because a first state machine, for this event, which is able to change
a distributed state will control the distributed transition logic. Effectively all other machines receiving
this same event will silently discard the event because distributed state is no longer in a state where
particular event can be processed.

In this test we will demonstrate that a state change caused by a parallel events throughout an ensemble
will eventually cause a consistent state change in all machines.

What’s happening in above chart:

• We use exactly same event flow than in previous sample the section called “Isolated Events” with a
difference that events are always sent to all nodes.

Concurrent Extended State Variable Changes

Extended state machine variables are not guaranteed to be atomic at any given time but after a
distributed state change, all state machines in an ensemble should have a synchronized extended state.

In this test we will demonstrate that a change in extended state variables in one distributed state machine
will eventually be consistent in all distributed state machines.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 101

What’s happening in above chart:

• Event J is send to node n5 with event variable testVariable having value v1. All nodes are then
reporting having varible testVariable as value v1.

• Event J is repeated from variable v2 to v8 doing same checks.

Partition Tolerance

We need to always assume that sooner or later things in a cluster will go bad whether it is just a crash
of a Zookeeper instance, a state machine or a network problem like a brain split. Brain split is a
situation where existing cluster members are isolated so that only part of a hosts are able to see each
others. Usual scenario is that a brain split will create a minority and majority partitions of an ensemble
where hosts in a minority cannot participate in an ensemble anymore until network status has been
healed.

In below tests we will demonstrate that various types of brain-split’s in an ensemble will eventually cause
fully synchronized state of all distributed state machines.

There are two scenarios having a one straight brain split in a network where where Zookeeper and
Statemachine instances are split in half, assuming each Statemachine will connect into a local
Zookeeper instance:

• If current zookeeper leader is kept in a majority, all clients connected into majority will keep functioning
properly.

• If current zookeeper leader is left in minority, all clients will disconnect from it and will try to connect
back till previous minority members has successfully joined back to existing majority ensemble.

Note

In our current jepsen tests we can’t separate zookeeper split brains scenarios between leader
left in majority or minority so we need to run tests multiple time to accomplish this situation.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 102

Note

In below plots we have mapped a state machine error state into an error to indicate that state
machine is in error state instead or a normal state. Please indicate this when interpreting chart
states.

In this first test we show that when existing zookeeper leader was kept in majority, 3 out of 5 machines
will continue as is.

What’s happening in above chart:

• First event C is sent to all machine leading a state change to S211.

• Jepsen nemesis will cause a brain-split which is causing partitions of n1/n2/n5 and n3/n4. Nodes
n3/n4 are left in minority and nodes n1/n2/n5 construct a new healthy majority. Nodes in majority
will keep function without problems but nodes in minority will get into error state.

• Jepsen will heal network and after some time nodes n3/n4 will join back into ensemble and
synchronize its distributed status.

• Lastly event K1 is sent to all state machines to ensure that ensemble is working properly. This state
change will lead back to state S21.

In this second test we show that when existing zookeeper leader was kept in minority, all machines
will error out:

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 103

What’s happening in above chart:

• First event C is sent to all machine leading a state change to S211.

• Jepsen nemesis will cause a brain-split which is causing partitions so that existing Zookeeper leader
is kept in minority and all instances are disconnected from ensemble.

• Jepsen will heal network and after some time all nodes will join back into ensemble and synchronize
its distributed status.

• Lastly event K1 is sent to all state machines to ensure that ensemble is working properly. This state
change will lead back to state S21.

Crash and Join Tolerance

In this test we will demonstrate that killing existing state machine and then joining new instance back into
an ensemble will keep the distributed state healthy and newly joined state machines will synchronize
their states properly.

Spring Statemachine - Reference Documentation

1.0.0.RELEASE Spring Statemachine 104

Note

In this test, states are not checked between first X and last X, thus graph will will show flat line in
between. States are checked exactly where state change happens between S21 and S211.

What’s happening in above chart:

• All state machines are transitioned from initial state S21 into S211 so that we can test proper state
synchronize during join.

• X is marking when a specific node has been crashed and started.

• At a same time we request states from all machines and plot it.

• Finally we do a simple transition back to S21 from S211 to make sure that all state machines are
still functioning properly.

	Spring Statemachine - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Background
	2. Usage Scenarios

	Part II. Getting started
	3. System Requirements
	4. Modules
	5. Using Gradle
	6. Using Maven
	7. Developing your first Spring Statemachine application

	Part III. Using Spring Statemachine
	8. Statemachine Configuration
	8.1 Configuring States
	8.2 Configuring Hierarchical States
	8.3 Configuring Regions
	8.4 Configuring Transitions
	8.5 Configuring Guards
	8.6 Configuring Actions
	8.7 Configuring Pseudo States
	Initial State
	Terminate State
	History State
	Choice State
	Fork State
	Join State

	8.8 Configuring Common Settings

	9. State Machine Factories
	9.1 Factory via Adapter
	Adapter Factory Limitations

	9.2 State Machine via Builder

	10. Using Actions
	10.1 SpEL Expressions with Actions

	11. Using Guards
	11.1 SpEL Expressions with Guards

	12. Using Extended State
	13. Using StateContext
	14. Triggering Transitions
	14.1 EventTrigger
	14.2 TimerTrigger

	15. Listening State Machine Events
	15.1 Application Context Events
	15.2 State Machine Listener
	15.3 Limitations and Problems

	16. Context Integration
	16.1 Annotation Support

	17. State Machine Accessor
	18. State Machine Interceptor
	19. State Machine Error Handling
	20. Persisting State Machine
	21. Using Distributed States
	21.1 ZookeeperStateMachineEnsemble

	22. Testing Support

	Part IV. Recipes
	23. Persist
	24. Tasks

	Part V. State Machine Examples
	25. Turnstile
	26. Showcase
	27. CD Player
	28. Tasks
	29. Washer
	30. Persist
	31. Zookeeper
	32. Web

	Part VI. FAQ
	33. State Changes
	34. Extented State

	Part VII. Appendices
	Appendix A. Support Content
	A.1 Classes Used in This Document

	Appendix B. State Machine Concepts
	B.1 Quick Example
	B.2 Glossary
	B.3 A State Machines Crash Course
	States
	Pseudo States
	Initial
	End
	Choice
	History
	Fork
	Join

	Guard Conditions
	Events
	Transitions
	Internal Transition
	External vs. Local Transition

	Actions
	Hierarchical State Machines
	Regions

	Appendix C. Distributed State Machine Technical Paper
	C.1 Abstract
	C.2 Intro
	C.3 Generic Concepts
	C.4 ZookeeperStateMachinePersist
	C.5 ZookeeperStateMachineEnsemble
	C.6 Distributed Tolerance
	Isolated Events
	Parallel Events
	Concurrent Extended State Variable Changes
	Partition Tolerance
	Crash and Join Tolerance

