Spring Statemachine - Reference Documentation

2.1.0.M1

Janne Valkealahti Pivotal

Copyright © 2015 2016 2017 2018 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Statemachine - Reference Documentation

Table of Contents

L 1= 7= Lo vii
I 01 oo [N o1 o] o H PP PSPPSR 1
I == Tod (o | (01U [Vo PP 2

2. USOE SCENATIOS ..oevuueiiitiieetiit ettt e et e ettt e e e ettt e ettt e e e e e bt e e et ete e e e eettaeeeeteaeeeetaaaaees 3

LI =Y 1] o =) ¢= L =T o P 4
3. SYStEM REQUITEMENTS ...ttt ettt et e et e e e et e e e et e e et e e et e aebn e eanaee 5

1Y o o 111 6

LT £ oo T] = Lo |1 7

OO £ [To 1Y F= YT o TP 8

7. Developing your first Spring Statemachine applicationcccoviiiiiiiiiii e 11

L. WRAE'S INBW ettt ettt e e et e et bt e e e e et e e n e e a e e e e e eennnee 13
S o I O TSP 14

1S T | 0 T 15

0. N L2, 8 et e 15

L0, N 200 ittt et e e e bt e ettt e bt a e e e e e bbb e e e e e 16

0 20 T 2 0 16

V. Using SPring State€mMacChiNgcccuiiiiiieiiii e e e e e e e et e e e e aa e 17
11. Statemachine ConfiQUIatioNooiuiiiiii e e 18
11.1. Using enable annotatiOnNsSc.uviiiiiiiiiiiiii e 18

11.2. CoNfIQUING STALES ...vuiiiiiiii e e e e e e e 18

11.3. Configuring Hierarchical Statesc.ooiiiiiiiiii e 19

11.4. Configuring REGIONSuuiiiiiiiiet ettt e s 19

11.5. Configuring TranSItIONSiiueiiiiii e e e e e e e e e e e eeaneees 20

11.6. CoNfigUIiNG GUAITS .. ceuuiiiiiiii ettt et et e et e e et e e e b e eanaees 21

11.7. ConfiguriNg ACLIONSuuiiiiiii et 21

STALE ACHIONS vttt e 23

Transition Action Error Handling ... 25

State Action Error Handlingooooiiiiiiii e 25

11.8. Configuring PSEUAO SEAtESiiiiiiiiiiii e e e 26

INITIAL STALE ...t et 26

TerMINAE SEALE ...uiiieiiii e e e e e e e e e e e 27

[[(0T VS = (= 27

(01 0 Lo oIS = L PP 28

B8 [o 10T) - = P 30

FOTK SEALE .ottt 31

JOIN SEALE ..eeiie i e e 32

EXIt/ENrY POINt STALES ...t 34

11.9. Configuring CoOmMMON SELNGS .. covuuiiiii i e e e e e 35

11.10. Configuring MOAEI e 38

11.11. ThingS t0 REMEMDET ... e 39

12. State MAChINE ID ...oooviiiiiiii et 41
12.1. With @EnableStateMachingc.oiieiiiii e 41

12.2. With @EnableStateMachin@FacCtorycc.oieiiiiiiiiiiiiie e 41

12.3. With StateMachineMOdelIFACIOrYoviiiiiiiiii e e 41

13. State Maching FACIOMESc.uiiiiiiiiiie e et e e e 43
13.1. FACLOry Vi AQAPLELeun ittt aeaa s 43

Adapter Factory LImItatioNScooiiiiiiiiiii e 43

2.1.0M1 Spring Statemachine iii

Spring Statemachine - Reference Documentation

13.2. State Machine via BUIAENuiiiiiiiiiii e 43

14. USING DEfIred EVENLScuuiiiiiii ettt et e e e et e e e eaaaees 45
15, USING SCOPES ...eiitiieieiii ettt ettt e e ettt e e et et e e et et e e ettt e e et et e e e e eaan s 47
G U 1S T Ao 1T £ N 49
16.1. SpPEL EXpressions With ACHONSco.uiiiiiiiiie e e 50

17, USING GUANTS ..eveniiiiii ettt ettt e ettt e ettt e e et et r e e e e bt a e et etb e e e eeteaeeeens 51
17.1. SpEL EXpressions With GUArAScccuuiiiiiiiiiiiic e e 51

18. USING EXIENAEA STALEc.uniiiiiiiiie et e e e e e ea e eees 52
19. USING STATECONTEXL ...evvtiiiiiiii ettt ettt ettt e e et e e et e e e eba s 53
R T] = T 1 53

20. Triggering TraNSItIONSiiuuiiit ettt e e et et e et et e et e e et e e et e e et e eaaeeennns 54
PO Y=o i o T 1= S PP SOPPTTR 54

24O I 12 T= I o o = 54

21. Listening State Maching EVENTSoiiuiiiiiiii e 57
21.1. Application CONEXE EVENTSuuiiiiiiii it eens 57
21.2. State Maching LISTENEToiiiiiiiii e 58
21.3. Limitations and Problems ... 59

22. CONEXE INTEGIALIONcieeiii ettt ettt ettt e et e et eeeene s 60
22.1. ENabling INtEgrationcocuuieiiiiii i e e e e 61
22.2. Method Parametersc..iiiiiiii ettt 61
22.3. Transition ANNOLALIONSc.uuiiitiiiiie e e e e e e e et e e e eenaees 62
22.4. State ANNOTALIONSiiiiiiii e e et e e e et e e e eeaa e eaees 63
22.5. EVENE ANNOTATION ...ovniiieeeii et e e et e e e eaa s 64
22.6. State Machine ANNOLALIONSoiiiuiiii e e e 64
22.7. Extended State ANNOLALIONuiiiiiiii et 65

23. State MaCINE ACCESSONiei ittt ettt e e e e e e e e eanns 66
24, State Maching INTEICEPION ... it e et e e 67
25. State MaChiNe SECUILYcieiiiii i e e e e e an s 68
25.1. CONfIQUIING SECUIILY ..eeeeiiii ettt ettt e e e e e e ean e 68
25.2. SECUMNNG EVENTS ..ottt ettt e e e e e e 68
25.3. SECUMNNG TraNSItIONS ...cvuueiiiieiii e e e e e e e e e e e e e et e e aaeeeanns 69
25.4. SECUIMNG ACLIONS ...ttt et e e e et e e et e e et e e e e e eanaaes 70
25.5. Using Security Attributes and EXPreSSiONSoviiiiiiiiiiiiiiineeiii e 71
Generic ANDULE USAQJE ...ccvuiiiiiiiiii et e e e e e e e e 71

Generic EXPreSSioN USAQEc..iiiuiiiiiiii ettt e e e e e e e 71

EVENt ALLHDULES .oeiiee e e 72

V=T T o] (17 o] P 72

Transition ALHDULESooou e 72

TranSitioN EXPrESSIONSc.uuuiiiiiieieiii ettt e e ettt e et e et e e e 72

25.6. Understanding SECUILYciuuuiiiiiiei eaans 73

26. State Machine Error Handlingooouuiiiiii e 74
27. State MaAChING SEIVICES ...ieeiii i e e e e e e e e e et 76
27.1. Using StateMacChiNESEIVICEc..uuiiiinieiii it e e e e 76

28. Persisting State MaCKhINEoiiuiii e 77
28.1. Using StateMachin@CONTEXLiiiiiiiiieiiii e 77
28.2. Using StateMachinEPErSISIErocvvuniiii i e e e 77
28.3. USING RIS ...ttt et e 79
28.4. Using StateMachineRUNtIMEPErSISIEruuiiiiiiiiii e 79

pZAS S oL TaTo T =TT] ST 0T o] o Lo o A 80
29.1. MONItoriNg @Nd TrACING ...ieun ittt e e e e et e et e e e e eannas 80

2.1.0M1 Spring Statemachine iv

Spring Statemachine - Reference Documentation

PAS I =T o To Y1 (o] YA @Fo] 1 1o [N 80

30. Monitoring State MaACKHINEiiii e 81
31. Using Distributed STALESiiiiiiiiiiiii e 82
31.1. ZookeeperStateMachinEENSEMDBIEccovuiiiiiiii e 83

32, TESHNG SUPPOIT ...ttt ettt e e et et e et e e et e e et e e et e et ta e e e e e et e aeanaaeanas 84
33. Eclipse MOdeling SUPPOITuiiiiiiieeeit e et 86
33.1. Using UmiStateMachineModelFactorycoeveiiiiiiiiiiieee e e 87
StateMachineComponentRESOIVETccoeuiiiiiiii e 87

33.2. Creating MOELo i 88
33.3. DEfiNE SEALES ...iiiiiiiiiiii e 91
33.4. DEfiNE BVENLS ... et 93
[T 1= G =T o | PN 95

33.5. DefiNe TranSItIONSiiiiiiii i e e 95
33.6. DEfINE TIMEIS ..euiiiiiii e et et e e e e et e ea e eees 97
IS T R B 1= 1T O To Lo = P 99
33.8. DefiNe JUNCLION ..coevtiiiiiiii e e et 100
33.9. DefiNe ENIIY/EXIE ..eunieeieiie et e e e 100
33.10. DEfINE HISLOMYiieeiiiieieiii ettt e s 101
SRNAIIOW .. e 101

(DT o R TP PP PPPRPI 102

[0 7= L] PP 103

33.11. Define FOIKIJOMN ...coeieiiiiii et eaanns 104
33.12. DEefiN@ ACHIONS ...ttt et e et et e e e e e eaas 105
T = U o) o P 105

33.13. DEfiNE GUANTS ...ovuieeiiii ettt et e e et e et e e eab e eee 105
33.14. Define Bean REfEreNCecc.uiiiuiiiiii e 105
33.15. Define SPEL REFEIENCEcovuiiiiiii e 105
33.16. Using Sub-Machine ReferencCecooevuiiiiiiiiiii e 106

34, REPOSILONY SUPPOIT ...ttt ettt ettt et et e e et e et e et et e e e an e e et e aeaneaeens 109
34.1. RePOSIEOrY CONIg ..oeeeriiiiiii et 109

| USRI PPN 110

R OIS et 113

MORNGODB ... e 114

34.2. REPOSIHOrY PEISISIENCEvuiiiiiiiii i eiie e e et e e e e e e e e e e e e e aneees 115

B | SO 116

=T 1P 116

/o T o 15T 116

RV = Tor | o= SRR 117
B =T £ 1] P 118
BB, TASKS L.iiiiii ettt sttt e e e e e s 119
VI. State Machine EXamPIES ... e e 123
R IV 0 1)1 124
38, SNOWCASE .. iiiiii ettt e e et e e e e aee 126
TS O I B o o P 132
O T 1= T PPN 140
AL, WASKET . 145
A2, PRISIST ittt et e et et e e e e e aaa s 148
A3, ZOOKEEPET ...ttt e e e e aea 152
A4, WED oo e e et 154
TS Yol o] o1 PP UPTUPTRR 157

2.1.0M1 Spring Statemachine v

Spring Statemachine - Reference Documentation

G TS = o | 158
O Y= | S Y= Vo = N 160
8. DPIOY ettt 168
e T @ o 1=] a7 o] o1 o 170
ETO N | = N @o oo PRSPPI 174
DL, DAt POISIST ..eniiiii i 178
o2 1 o o) (o] 1T 183
RV LR X PR 186
53, SEAE CRANGES ...ttt ettt ettt et e e e 187
LS (=] [0 [0 IS - - 188
VA 1LY o] o 1= o [o [[of =2 S TP PPTRPIN 189
F NS0 o] oo o A O] o] (=] o | PP 190
A.L. Classes Used in This DOCUMENTcciiuiiiiiiiiii e et e e e e e e e eeen 190

B. State MacChing CONCEPLScuuiiiiieiie ettt e e e e e ean s 191
B.1. QUICK EXAMPIE ..ot 191

2 7 €11 TS VP 192

B.3. A State Machines Crash COUISEc.oiiiiiiiiiii e 194

] = 1 =2 194

[ST=T0 o (o S -1 (= P 194

= | N 194

1 o PP 194

CROICE e 194

B [T 10 o 194

HISTOTY ettt 195

O K e 195

JOIN e 195

ENLY POINT .ot e 196

A 01 196

LT = o I @ o 1110 1 1S 196

B BN o e 196

QLI = 1 5710 N 196

INternal TranSItioNcooiiiiiii e e 196

External vs. Local TranSitioncooceviiiiiiiiii e, 197

1o) P 197
Hierarchical State MaChiNeScc.oiiiiiiiiii e 197

REGIONS et 198

C. Distributed State Machine Technical PApercc.cviveiiiiiiiiii e 199
L I Y o1 1 = T 199

L2 | 11 o 199

O B C =T o 1T ol @ o =T o] £ P 200

C.4. ZookeeperStateMacChiNnEPErSISEcouuiiiiiiii e 200

C.5. ZookeeperStateMachineENSEMDIEiiiiiiiiiiii e 200

O T BT 1S) i1 001 1=To I o] =T = s To = 201
[[Y0] F= 10T B A=Y o £ 201

Parallel EVENTS ... 202
Concurrent Extended State Variable Changescccocccevvviiiivii i, 202

Partition TOIEIraNCEcouiiiiiiie e e e e e aaas 203

Crash and Join TOIEIANCEcouuiiiii e 205

55. Developer DOCUMENTALIONccvuuiiieieiiii e e e e e e e e e e e e e e e e e e n e e et e e eanaeeanaaes 207
55.1. StateMachine Config Modelcooouiiiiii e 207

2.1.0M1 Spring Statemachine Vi

Spring Statemachine - Reference Documentation

Preface

The concept of a state machine is most likely older that any reader of this reference documentation and
definitely older than the Java language itself. Description of finite automata dates back to 1943 when
gentlemen Warren McCulloch and Walter Pitts wrote a paper about it. Later George H. Mealy presented
a state machine concept in 1955 which is known as a Mealy Machine. A year later in 1956 Edward F.
Moore presented another paper which is known as a Moore Machine. If you've ever read anything about
state machines, the names Mealy and Moore should have popped up at some point.

This reference documentation contains the following parts.

Part I, “Introduction” introduction to this reference documentation

Part IV, “Using Spring Statemachine” describes the usage of Spring Statemachine(SSM)
Part VI, “State Machine Examples” more detailed state machine examples

Part VII, “FAQ” frequently asked questions

Part VIII, “Appendices” generic info about used material and state machines

2.1.0M1 Spring Statemachine Vii

Part I. Introduction

Spring Statemachine(SSM) is a framework for application developers to use traditional state machine
concepts with Spring applications. SSM aims to provide the following features:

» Easy to use flat one level state machine for simple use cases.
 Hierarchical state machine structure to ease complex state configuration.
« State machine regions to provide even more complex state configurations.
» Usage of triggers, transitions, guards and actions.

» Type safe configuration adapter.

» State machine event listeners.

» Spring IOC integration to associate beans with a state machine.

Before you continue it's worth to go through appendices Section B.2, “Glossary” and Section B.3, “A
State Machines Crash Course” to get a generic idea of what state machines are, mostly because the
rest of the documentation expects the reader to be fairly familiar with state machine concepts.

Spring Statemachine - Reference Documentation

1. Background

State machines are powerful because behaviour is always guaranteed to be consistent and relatively
easily debugged due to how operational rules are written in stone when machine is started. The idea is
that your application is and may exist in a finite number of states and then something happens which
takes your application from one state to the next. What will drive a state machine are triggers, which
are either based on events or timers.

It is much easier to design high level logic outside of your application and then interact with a state
machine in various different ways. You can simply interact with a state machine by sending events,
listening to what a state machine does or simply requesting the current state.

Traditionally state machines are added to an existing project when developers realize that the code
base is starting to look like a plate full of spaghetti. Spaghetti code looks like a never ending, hierarchical
structure of IFs, ELSEs and BREAK clauses and probably compilers should ask developers to go home
when things are starting to look too complex.

2.1.0M1 Spring Statemachine 2

Spring Statemachine - Reference Documentation

2. Usage Scenarios

A project is a good candidate to use a state machine if:
» The application or part of its structure can be represented as states.
* You want to split complex logic into smaller manageable tasks.

» The application is already suffering concurrency issues with i.e. something happening
asynchronously.

You are already trying to implement a state machine if:
 Using boolean flags or enums to model situations.
» Having variables which only have meaning for some part of your application lifecycle.

» Looping through if/else structure and checking if a particular flag or enum is set and then making
further exceptions about what to do when certain combinations of your flags and enums exist or don’t
exist together.

2.1.0M1 Spring Statemachine 3

Part Il. Getting started

If you're just getting started with Spring Statemachine, this is the section for you! Here we answer the
basic “what?”, “how?” and “why?” questions. You'll find a gentle introduction to Spring Statemachine.
We'll then build our first Spring Statemachine application, discussing some core principles as we go.

Spring Statemachine - Reference Documentation

3. System Requirements

Spring Statemachine 2.1.0.M1 is built and tested with JDK 8(all artifacts have JDK 7 compatibility)
and Spring Framework 5.1.2.RELEASE and doesn'’t require any other dependencies outside of Spring
Framework within its core system.

Other optional parts like Chapter 31, Using Distributed States has dependencies to a Zookeeper , while
Part VI, “State Machine Examples” has dependencies to spring-shell and spring-boot which pulls other
dependencies beyond framework itself. Also optional security and data access has dependencies to
Spring Security and Spring Data Modules.

2.1.0M1 Spring Statemachine 5

Spring Statemachine - Reference Documentation

4. Modules

The following modules are available for Spring Statemachine.

Module

spring-statemachine-core

Description

Core system of a Spring Statemachine.

spring-statemachine-recipes-common

spring-statemachine-kryo
spring-statemachine-data-common
spring-statemachine-data-jpa
spring-statemachine-data-redis
spring-statemachine-data-mongodb

spring-statemachine-zookeeper

Common recipes which doesn’t require
dependencies outside of a core framework.

Kr yo serializers for state machine.

Common support module for Spri ng Dat a.
Support module for Spri ng Data JPA.
Support module for Spri ng Data Redi s.
Support module for Spri ng Data MongoDB.

Zookeeper integration for a distributed state
machine.

spring-statemachine-test

Support module for state machine testing.

spring-statemachine-cluster

spring-statemachine-uml

spring-statemachine-autoconfigure

spring-statemachine-bom

Support module for Spring Cloud Cluster.

Support module for Ul uml modeling with Eclipse
Papyrus.

Support module for Spri ng Boot .

Bill of Materials pom.

spring-statemachine-starter

Spring Boot starter.

2.1.0.M1

Spring Statemachine

Spring Statemachine - Reference Documentation

5. Using Gradle

Here is a typical bui | d. gr adl e file created by https://start.spring.io:

bui I dscript {
ext {
springBoot Version = '2.1. 0. RELEASE
}
repositories {
mavenCentral ()
maven { url "https://repo.spring.iol/snapshot" }
maven { url "https://repo.spring.io/mlestone" }
}
dependenci es {
cl asspat h("org. spri ngf ramewor k. boot : spri ng- boot - gr adl e- pl ugi n: ${ spri ngBoot Ver si on}")
}
}

apply plugin: 'java'

apply plugin: 'eclipse'

apply plugin: '"org.springframework. boot"'

apply plugin: "io.spring.dependency-managenent"'

group = 'com exanpl e’
version = '0.0.1- SNAPSHOT'
sourceConpatibility = 1.8

repositories {
mavenCentral ()
maven { url "https://repo.spring.iol/snapshot" }
maven { url "https://repo.spring.io/mlestone" }

}

ext {
spri ngSt at emachi neVersion = '2.1.0. M’

}

dependenci es {
conpi | e(' org. spri ngframewor k. st at emachi ne: spri ng- st at emachi ne-starter')
test Conpi | e(' org. spri ngframewor k. boot : spri ng-boot-starter-test')

}

dependencyManagenent {
inports {
mavenBom " or g. spri ngf ranmewor k. st at enmachi ne: spri ng- st at enachi ne- bom ${ spri ngSt at emachi neVer si on}"
}
}

Note

Replace 0. 0. 1- SNAPSHOT with a version you want to use.

Having a normal project structure you’d build this with command:

./gradl ew clean build

Expected Spring Boot packaged fat-jar would be bui | d/ | i bs/ denp- 0. 0. 1- SNAPSHOT. j ar .

Note

You don't need repos | i bs-mi | estone and | i bs- snapshot for production development.

2.1.0M1 Spring Statemachine

https://start.spring.io

Spring Statemachine - Reference Documentation

6. Using Maven

Here is a typical pom xm file created by https://start.spring.io:

2.1.0M1 Spring Statemachine

https://start.spring.io

Spring Statemachine - Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://maven. apache. org/ POM 4. 0. 0 http://maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>com exanpl e</ gr oupl d>
<artifactld>denmo</artifactld>
<ver si on>0. 0. 1- SNAPSHOT</ ver si on>
<packagi ng>j ar </ packagi ng>

<nane>gs- st at emachi ne</ nane>
<description>Denp project for Spring Statemachi ne</description>

<par ent >

<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactl|d>
<versi on>2.1. 0. RELEASE</ ver si on>

<rel ativePath/> <!-- | ookup parent fromrepository -->
</ par ent >

<properties>

<proj ect . bui | d. sour ceEncodi ng>UTF- 8</ proj ect . bui | d. sour ceEncodi ng>

<proj ect.reporting. out put Encodi ng>UTF- 8</ proj ect . repor ti ng. out put Encodi ng>
<j ava. version>1. 8</j ava. versi on>

<spring- st at emachi ne. ver si on>2. 1. 0. ML</ spri ng- st at emachi ne. ver si on>

</ properties>

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. st at emachi ne</ gr oupl d>
<artifactld>spring-statemachi ne-starter</artifactld>
</ dependency>

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-test</artifactld>
<scope>t est </ scope>

</ dependency>

</ dependenci es>

<dependencyManagenent >

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. st at emachi ne</ gr oupl d>
<artifact|d>spring-statemachi ne-bom</artifactld>
<versi on>${ spri ng- st at emachi ne. ver si on} </ ver si on>
<t ype>pon¥/type>
<scope>i nport </ scope>
</ dependency>

</ dependenci es>

</ dependencyManagenent >

<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact|d>spring-boot-mven-plugin</artifactld>

</ pl ugi n>
</ pl ugi ns>
</ bui | d>

<repositories>
<reposi tory>
<i d>spri ng- snapshots</i d>
<name>Spring Snapshot s</ nane>
<url>https://repo.spring.iol/snapshot</url>
<snapshot s>
<enabl ed>t r ue</ enabl ed>
</ snapshot s>
</repository>
<repository>
<i d>spring-mlestones</id>
<nanme>Spring M| estones</nane>
<url >https://repo.spring.io/mlestone</url>
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
</repository>

Spring Statemachine - Reference Documentation

Note

Replace 0. 0. 1- SNAPSHOT with a version you want to use.

Having a normal project structure you'd build this with command:

mvn cl ean package

Expected Spring Boot packaged fat-jar would be t ar get / deno- 0. 0. 1- SNAPSHOT. j ar .

Note

You don’t need repos | i bs-ni | estone and | i bs- snapshot for production development.

2.1.0M1 Spring Statemachine

10

Spring Statemachine - Reference Documentation

7. Developing your first Spring Statemachine
application

Let's start by creating a simple Spring Boot Appl i cat i on class implementing CormandLi neRunner .

@Bpr i ngBoot Appl i cati on
public class Application inplenents ConmandLi neRunner {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}

Add states and events:

public enum States {
S, S1, S2
}

public enum Events {
El, E2
}

Add state machine configuration:

2.1.0M1 Spring Statemachine 11

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
public class StateMachi neConfig
ext ends EnunSt at eMachi neConf i gur er Adapt er <St ates, Events> {

@verride
public void configure(StateMachi neConfi gurationConfigurer<States, Events> config)
throws Exception {
config
.wi t hConfiguration()
.autoStartup(true)
.listener(listener());

}

@verride
public void configure(StateMachi neStat eConfi gurer<States, Events> states)
throws Exception {
states
. Wi thStates()
.initial(States. Sl)
.states(Enuntet. al | O (St ates. cl ass));

}

@verride
public void configure(StateMachi neTransitionConfigurer<States, Events> transitions)
throws Exception {
transitions
.wi thExternal ()
.source(States. Sl).target (States. Sl).event (Events. E1)
.and()
. Wi t hExt ernal ()
.source(States. S1).target (States. S2). event (Events. E2);

}

@Bean
publ i c StateMchi neli stener<States, Events> |listener() {
return new StateMachi neli st ener Adapt er<States, Events>() {
@verride
public void stateChanged(State<States, Events> from State<States, Events> to) {
Systemout.println("State change to " + to.getld());
}
IE

Implement CommandLi neRunner , autowire St at eMachi ne:

@\ut owi r ed
private StateMachi ne<States, Events> stateMchi ne;

@verride

public void run(String... args) throws Exception {
st at eMachi ne. sendEvent (Events. E1) ;
st at eMachi ne. sendEvent (Event s. E2) ;

Depending whether you build your application using Gr adl e or Maven it'srunjava -jar build/
i bs/gs-statemachine-0.1.0.jar orjava -jar target/gs-statenmachine-0.1.0.jar
respectively.

What is expected for running this command is a normal Spring Boot output but if you look closely you
see lines:

State change to SI
State change to S1
State change to S2

2.1.0M1 Spring Statemachine 12

Part Ill. What’s New

Spring Statemachine - Reference Documentation

8.In1.1

Spring Statemachine 1.1 is focusing on security and a better interoperability with web applications.
» Comprehensive support for Spring Security is added, Chapter 25, State Machine Security

» Context integration with “@WithStateMachine' has been greatly enhanced, Chapter 22, Context
Integration

» St ateCont ext is now a first class citizen with how user can interact with a State Machine,
Chapter 19, Using StateContext.

» Features around persistence has been enhanced with a build-in support for redis, Section 28.3, “Using
Redis”.

» New feature helping with persist operations, Section 28.2, “Using StateMachinePersister”.
» Configuration model classes are now a public API.

* New features in timer based events.

» New Junction pseudostate the section called “Junction State”.

» New Exit Point and Entry Point pseudostates the section called “Exit/Entry Point States”.
» Configuration model verifier.

* New samples, Chapter 46, Security, Chapter 47, Event Service.

» Ul modeling support using Eclipse Papyrus, Chapter 33, Eclipse Modeling Support.

2.1.0M1 Spring Statemachine 14

Spring Statemachine - Reference Documentation

9.In 1.2

Spring Statemachine 1.2 is focusing generic enhancements, better UML support and integrations with
external config repositories.

e Support for UML submachines Section 33.16, “Using Sub-Machine Reference”

* New Repository abstraction keeping machine configuration in an external repository Chapter 34,
Repository Support

* New support for state actions. the section called “State Actions”

* New transition error action concepts. the section called “Transition Action Error Handling”
* New action error action concepts. the section called “State Action Error Handling”

« Initial work for Spring Boot support. Chapter 29, Spring Boot Support

» Support for tracing and monitoring. Chapter 30, Monitoring State Machine

91In1.2.8

Spring Statemachine 1.2.8 contains a bit more functionality normally not seen in a point release but
these changes didn't merit a fork of Spring Statemachine 1.3.

» JPA entity classes have changed table names the section called “JPA”
* New sample Chapter 51, Data Persist

» New Entity classes for persistence Section 34.2, “Repository Persistence” used with Section 34.2,
“Repository Persistence”

 Transition conflict policy mentioned in Section 11.9, “Configuring Common Settings”

2.1.0M1 Spring Statemachine 15

Spring Statemachine - Reference Documentation

10.In 2.0

Spring Statemachine 2.0 is focusing on Spring Boot 2.x support.

10.11In 2.0.0

» Format of monitoring and tracing has been changed Section 29.1, “Monitoring and Tracing”

* Module spring-statenachi ne-boot has been renamed to spring-statenachine-
aut oconfigure

2.1.0M1 Spring Statemachine

16

Part IV. Using Spring Statemachine

This part of the reference documentation explains the core functionality that Spring Statemachine
provides to any Spring based application.

Chapter 11, Statemachine Configuration the generic configuration support.
Chapter 12, State Machine ID the use of machine id.

Chapter 13, State Machine Factories the generic state machine factory support.
Chapter 14, Using Deferred Events the deferred event support.

Chapter 15, Using Scopes the scope support.

Chapter 16, Using Actions the actions support.

Chapter 17, Using Guards the guard support.

Chapter 18, Using Extended State the extended state support.

Chapter 19, Using StateContext the state context support.

Chapter 20, Triggering Transitions the use of triggers.

Chapter 21, Listening State Machine Events the use of state machine listeners.
Chapter 22, Context Integration the generic Spring application context support.
Chapter 23, State Machine Accessor the state machine internal accessor support.
Chapter 24, State Machine Interceptor the state machine error handling support.
Chapter 25, State Machine Security the state machine security support.

Chapter 26, State Machine Error Handling the state machine interceptor support.
Chapter 27, State Machine Services the state machine service support.

Chapter 28, Persisting State Machine the state machine persisting support.
Chapter 29, Spring Boot Support the Spring Boot support.

Chapter 30, Monitoring State Machine the monitoring and trancing support.
Chapter 31, Using Distributed States the distributed state machine support.
Chapter 32, Testing Support the state machine testing support.

Chapter 33, Eclipse Modeling Support the state machine uml modeling support.

Chapter 34, Repository Support the state machine repository config support.

Spring Statemachine - Reference Documentation

11. Statemachine Configuration

One of the common tasks when using a Statemachine is to design its runtime configuration. This chapter
will focus on how Spring Statemachine is configured and how it leverages Spring’s lightweight 1o0C
containers to simplify the application internals to make it more manageable.

Note

Configuration examples in this section are not feature complete, i.e. you always need to have
definitions of both states and transitions, otherwise state machine configuration would be ill-
formed. We have simply made code snippets less verbose by leaving other needed parts away.

11.1 Using enable annotations

We use familiar spring enabler annotations to ease configuration. Two annotations exists,
@EnableStateMachine and @EnableStateMachineFactory. These annotations if placed in a
@Configuration class will enable some basic functionality needed by a state machines.

@EnableStateMachine is used when a configuration wants to create an instance of a StateMachine.
Usually @Configuration class extends adapters Enuntt at eMachi neConfi gur er Adapter or
St at eMachi neConf i gur er Adapt er which allows user to override configuration callback methods.
We automatically detect if user is using these adapter classes and modify runtime configuration logic.

@EnableStateMachineFactory is used when a configuration wants to create an instance of a
StateMachineFactory.

Note

Usage examples of these are shown in below sections.

11.2 Configuring States

We'll get into more complex configuration examples a bit later but let’s first start with a something simple.
For most simple state machine you just use Enuntt at eMachi neConfi gur er Adapt er and define
possible states, choose initial and optional end state.

@onfiguration
@Enabl eSt at eMachi ne
public class ConfiglEnuns
ext ends Enuntt at eMachi neConfi gur er Adapt er <St ates, Events> {

@verride
public voi d configure(StateMachi neStateConfigurer<States, Events> states)
throws Exception {
states
.Wi thStates()
.initial(States. S1)
.end(St at es. SF)
.states(Enuntet.al |l Of (States. class));

}

Its also possible to use strings instead of enums as states and events by using
St at eMachi neConf i gur er Adapt er as shown below. Most of a configuration examples is using
enums but generally speaking strings and enums can be just interchanged.

2.1.0M1 Spring Statemachine 18

Spring Statemachine - Reference Documentation

@onfi guration
@Enabl eSt at eMachi ne
public class ConfiglStrings
ext ends StateMachi neConfi gurer Adapter<String, String> {

@verride
public void configure(StateMichi neStateConfigurer<String, String> states)
throws Exception {

states
.withStates()
Linitial ("S1")
.end("SF")

.states(new HashSet <String>(Arrays. asLi st ("S1","S2","S3","S4")));

Note

Using enums will bring more safe set of states and event types but limits possible combinations
to compile time. Strings don't have this limitation and allows user to use more dynamic ways to
build state machine configurations but doesn’t allow same level of safety.

11.3 Configuring Hierarchical States

Hierarchical states can be defined by using multiple wi t hSt at es() calls where par ent () can be
used to indicate that these particular states are sub-states of some other state.

@onfi guration
@Enabl eSt at eMachi ne
public class Config2
ext ends EnunSt at eMachi neConf i gur er Adapt er <St at es, Events> {

@verride
public void configure(StateMichi neSt ateConfi gurer<States, Events> states)
throws Exception {
states
.withStates()
.initial(States. Sl1)
.state(States. S1)
.and()
. Wi thStates()
. parent (St at es. S1)
.initial(States. S2)
.state(States. S2);

11.4 Configuring Regions

There are no special configuration methods to mark a collection of states to be part of an orthogonal
state. To put it simple, orthogonal state is created when same hierarchical state machine has multiple
set of states each having a initial state. Because an individual state machine can only have one initial
state, multiple initial states must mean that a specific state must have multiple independent regions.

2.1.0M1 Spring Statemachine 19

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
public class Configl0

@verride

throws Exception {
states
.withStates()
Linitial(States2.S1)
.state(States2. S2)
.and()
. Wi thStates()
. parent (St at es2. S2)
Linitial(States2.S2l)
.state(States2.S21)
.end(St at es2. S2F)
.and()
. Wi thStates()
. parent (St at es2. S2)
Linitial(States2.S3l)
. state(States2. S31)
.end(St at es2. S3F) ;

11.5 Configuring Transitions

ext ends EnunSt at eMachi neConf i gur er Adapt er <St at es2, Events> {

public void configure(StateMachi neStat eConfi gurer<States2, Events> states)

We support three different types of transitions, ext er nal , i nt er nal and| ocal . Transitions are either

triggered by a signal which is an event sent into a state machine or a timer.

@configuration
@Enabl eSt at eMachi ne
public class Config3

@verride
public void configure(StateMchi neSt at eConfi gurer<St at es,
throws Exception {
states
. Wi thStates()
.initial(States. S1)
.states(Enuntet. al | O (St ates. cl ass));

}
@verride

throws Exception {
transitions

.wi t hExt ernal ()
.source(States. S1).target (States. S2)
.event (Events. E1)
.and()

.withlnternal ()
. source(St ates. S2)
.event (Event s. E2)
.and()

.wi thLocal ()
.source(States. S2).target (States. S3)
.event (Events. E3);

ext ends Enuntt at eMachi neConfi gur er Adapt er <St at es, Events> {

Event s> states)

public void configure(StateMichi neTransitionConfigurer<States, Events> transitions)

2.1.0M1 Spring Statemachine

20

Spring Statemachine - Reference Documentation

11.6 Configuring Guards

Guards are used to protect state transitions. Interface Guard is used to do an evaluation where method
has access to a StateContext.

@onfiguration
@nabl eSt at eMachi ne
public class Config4
ext ends Enunst at eMachi neConfi gur er Adapt er <St at es, Events> {

@verride
public void configure(StateMichi neTransitionConfigurer<States, Events> transitions)
throws Exception {
transitions
.wi t hExt ernal ()
.source(States. S1).target (States. S2)
.event (Events. E1)
.guard(guard())
.and()
. Wi t hExt ernal ()
.source(States. S2).target (States. S3)
.event (Event s. E2)
. guar dExpression("true");

}

@ean
public Guard<States, Events> guard() {
return new Guard<States, Events>() {

@verride
publ i c bool ean eval uat e(St at eCont ext <St at es, Events> context) {
return true;

}

In above two different types of guard configurations are used. Firstly a simple Guard is created as a
bean and attached to transition between states S1 and S2.

Secondly a simple SPeL expression can be used as a guard where expression must return a BOOLEAN
value. Behind a scenes this expression based guard is a SpelExpressionGuard. This was attached to
transition between states S2 and S3. Both guard in above sample always evaluate to true.

11.7 Configuring Actions

Actions can be defined to be executed with transitions and states itself. Action is always executed as
a result of a transition which originates from a trigger.

2.1.0M1 Spring Statemachine 21

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
public class Config51
ext ends EnunSt at eMachi neConf i gur er Adapt er <St ates, Events> {

@verride
public void configure(StateMachi neTransitionConfigurer<States, Events> transitions)
throws Exception {
transitions
.wi thExternal ()
.source(St ates. S1)
.target(States. S2)
.event (Event s. E1)
.action(action());

}

@Bean
public Action<States, Events> action() {
return new Action<States, Events>() {

@verride
public voi d execute(StateContext<States, Events> context) {
/1 do sonet hing
}
ba

In above a single Act i on is defined as bean act i on and associated with a transition from S1 to S2.

@configuration
@Enabl eSt at eMachi ne
public class Config52
ext ends Enuntt at eMachi neConfi gur er Adapt er <St at es, Events> {

@verride
public void configure(StateMchi neSt ateConfi gurer<States, Events> states)
throws Exception {
states
. Wi thStates()
.initial (States.S1, action())
.state(States.S1, action(), null)
.state(States.S2, null, action())
.state(States. S2, action())
.state(States.S3, action(), action());

}

@Bean
public Action<States, Events> action() {
return new Action<States, Events>() {

@verride
public voi d execute(StateContext<States, Events> context) {
/1 do sonet hi ng

}

Note

Usually you would not define same Act i on instance for different stages but we did it here not to
make too much noise in a code snippet.

2.1.0M1 Spring Statemachine 22

Spring Statemachine - Reference Documentation

In above a single Act i on is defined as bean act i on and associated with states S1, S2 and S3. There
is more going on there which needs more clarification:

* We defined action for initial state S1.

» We defined entry action for state S1 and left exit action empty.
» We defined exit action for state S2 and left entry action empty.
» We defined a single state action for state S2.

» We defined entry action as well as exit action for state S3.

* Notice how state S1 is used twice with i niti al () and st at e() functions. This is only needed if
you want to define entry or exit actions with initial state.

Important

Defining action with i ni ti al () function only executes particular action when state machine or
sub state is started. Think this action to be initializing action which is only executed once. Action
defined with st at e() is then executed if state machine is transitioning back and forward between
initial and non-initial states.

State Actions

State actions are executed differently compared to entry and exit actions simply because execution
happens after state has been entered and can be cancelled if state exit happens before particular action
has been completed.

State Actions are executed using a normal Spring TaskSchedul er wrapped within a Runnabl e which
may get cancelled via Schedul edFut ur e. What this means is that whatever you're doing in your action,
you need to be able to catch I nt er r upt edExcept i on or generally periodically check if Thread is
interrupted.

Below shows typical config which uses default IMMEDIATE _CANCEL which would simply cancel
running task immediately when state is complete.

2.1.0M1 Spring Statemachine 23

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
static class Configl extends StateMachi neConfigurerAdapter<String, String> {

@verride
public void configure(StateMachi neConfigurationConfigurer<String, String> config) throws Exception {
config
. Wi thConfiguration()
. stat eDoAct i onPol i cy(St at eDoAct i onPol i cy. | MVEDI ATE_CANCEL) ;

}
@verride
public void configure(StateMachi neStateConfigurer<String, String> states) throws Exception {
states
. Wi thStates()

Linitial ("S1")

.state("S2", context -> {})

.state("S3");
}
@verride

public void configure(StateMachi neTransitionConfigurer<String, String> transitions) throws Exception

transitions

. Wi t hExt ernal ()
.source("S1")
.target ("S2")
.event ("E1")
.and()

.wi thExternal ()
.source("S2")
.target ("S3")
.event ("E2");

Policy can be setto TIMEOUT _CANCEL together with a global timeout per machine. This changes state
behaviour to wait action completion before cancel is requested.

@verride
public void configure(StateMachi neConfi gurationConfigurer<String, String> config) throws Exception {
config
.wi t hConfiguration()
. stateDoActi onPol i cy(Stat eDoActi onPol i cy. TI MEOUT_CANCEL)
. stat eDoActi onPol i cyTi neout (10, Ti neUnit. SECONDS) ;

If Event directly take machine into a state so that event headers are available to particular action, itis also
possible to use dedicated event header to instruct a specific timeout which is defined in millis. Reserved
header value StateMachineMessageHeaders.HEADER_DO_ACTION_TIMEOQOUT is used for this.

@\ut owi r ed
St at eMachi ne<String, String> stateMachine;

voi d sendEvent Usi ngTi neout () {
st at eMachi ne. sendEvent (MessageBui | der
. Wi t hPayl oad(" E1")
. set Header (St at eMachi neMessageHeader s. HEADER DO _ACTI ON_TI MEQUT, 5000)
Lbuild());

2.1.0M1 Spring Statemachine 24

Spring Statemachine - Reference Documentation

Transition Action Error Handling

User can always catch exceptions manually but with actions defined for transitions it is possible to define
error action which is called if exception is raised. Exception is then available from a St at eCont ext
passed to that action.

@Confi guration
@nabl eSt at eMachi ne
public class Config53
ext ends EnunSt at eMachi neConf i gur er Adapt er <St at es, Events> {

@verride
public void configure(StateMachi neTransitionConfigurer<States, Events> transitions)
throws Exception {
transitions
.wi thExternal ()
.source(States. S1)
.target (States. S2)
.event (Event s. E1)
.action(action(), errorAction());

}

@Bean
public Action<States, Events> action() {
return new Action<States, Events>() {

@verride
public voi d execute(StateContext<States, Events> context) {
throw new Runti neException("MError");
}
ba
}

@ean
public Action<States, Events> errorAction() {
return new Action<States, Events>() {

@verride

public void execute(Stat eCont ext <St ates, Events> context) {
/1 RuntimeException("M/Error") added to context
Exception exception = context.get Exception();
exception. get Message() ;

Similar logic can be done manually for every action if needed.

@verride
public void configure(StateMachi neTransitionConfigurer<States, Events> transitions)
throws Exception {
transitions
.wi t hExt ernal ()
.source(States. S1)
.target (States. S2)
.event (Events. E1)
.action(Actions.errorCallingAction(action(), errorAction()));

State Action Error Handling

Similar logic for error handling what is available for transition actions is also available for actions defined
for state behaviour and its entry and exit.

2.1.0M1 Spring Statemachine 25

Spring Statemachine - Reference Documentation

For these St at eConf i gur er has methods st at eEnt ry, st at eDo and st at eExi t to define error

action together with an actual act i on.

@onfi guration
@Enabl eSt at eMachi ne
public class Config55

@verride

throws Exception {
states

. Wi thStates()
.initial(States. S1)
.stateEntry(States.S2, action(), errorAction())
.stateDo(States.S2, action(), errorAction())
.stateExit(States.S2, action(), errorAction())
.state(States. S3);

}
@Bean

public Action<States, Events> action() {
return new Action<States, Events>() {

@verride

throw new Runti neException("MError");
}

}

@Bean
public Action<States, Events> errorAction() {
return new Action<States, Events>() {

@verride

/1 RuntinmeException("MError") added to context
Excepti on exception = context.get Exception();
exception. get Message() ;

11.8 Configuring Pseudo States

ext ends Enuntt at eMachi neConfi gur er Adapt er <St at es, Events> {

public void configure(StateMchi neSt at eConfi gurer<States, Events> states)

public voi d execute(StateContext<States, Events> context) {

public void execute(Stat eCont ext <St ates, Events> context) {

Pseudo state configuration is usually done by configuring states and transitions. Pseudo states are

automatically added to state machine as states.

Initial State

Simply mark a particular state as initial state by using i niti al () method. There are two methods
where one takes extra argument to define an initial action. This initial action is good for example initialize

extended state variables.

2.1.0M1 Spring Statemachine

26

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
public class Configll
ext ends EnunSt at eMachi neConf i gur er Adapt er <St ates, Events> {

@verride
public void configure(StateMchi neSt at eConfi gurer<States, Events> states)
throws Exception {
states
.withStates()
.initial (States.S1, initial Action())
.end(States. SF)
.states(Enuntet. al | O (St ates. cl ass));

}

@Bean
public Action<States, Events> initial Action() {
return new Action<States, Events>() {

@verride
public void execute(StateCont ext<States, Events> context) {
/1 do sonething initially
}
IE

Terminate State

Simply mark a particular state as end state by using end() method. This can be done max one time
per individual sub-machine or region.

@onfiguration
@nabl eSt at eMachi ne
public class ConfiglEnuns
ext ends Enuntt at eMachi neConfi gur er Adapt er <St at es, Events> {

@verride
public void configure(StateMchi neSt at eConfi gurer<States, Events> states)
throws Exception {
states
. Wi thStates()
Linitial(States. S1)
.end(States. SF)
.states(Enuntet. al | O (St ates. cl ass));

History State

History state can be defined once for each individual state machine. You need to choose its state
identifier and Hi st ory. SHALLOWor Hi st or y. DEEP respectively.

2.1.0M1 Spring Statemachine 27

Spring Statemachine - Reference Documentation

@onfi guration
@Enabl eSt at eMachi ne
public class Configl2
ext ends EnunSt at eMachi neConf i gur er Adapt er <St at es3, Events> {

@verride
public void configure(StateMachi neStat eConfi gurer<States3, Events> states)
throws Exception {
states
.withStates()
.initial(States3.S1)
.state(States3.S2)
.and()
. Wi thStates()
. parent (St at es3. S2)
Linitial(States3.S2l)
.state(States3.S21)
.state(States3.S22)
.history(States3.SH, Hi story. SHALLOW ;
}

@verride
public void configure(StateMchi neTransiti onConfi gurer<States3, Events> transitions)
throws Exception {
transitions
Wi thH story()
. source(St at es3. SH)
.target (States3. S22);

Also as shown above, optionally it is possible to define a default transition from a history state into a
state vertex in a same machine. This transition takes place as a default if for example machine has
never been entered, thus no history would be available. If default state transition is not defined, then
normal entry into a region is done. This default transition is also used if machine’s history is a final state.

Choice State

Choice needs to be defined in both states and transitions to work properly. Mark particular state as
choice state by using choi ce() method. This state needs to match source state when transition is

configured for this choice.

Transition is configured using wi t hChoi ce() where you define source state and fi rst/t hen/ | ast
structure which is equivalent to normal i f/ el sei f/ el se. With fi rst and t hen you can specify a

guard just like you'd use a condition with i f/ el sei f clauses.

Transition needs to be able to exist so make sure | ast is used. Otherwise configuration is ill-formed.

2.1.0M1 Spring Statemachine

28

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
public class Configl3
ext ends EnunSt at eMachi neConf i gur er Adapt er <St ates, Events> {

@verride
public void configure(StateMchi neSt at eConfi gurer<States, Events> states)
throws Exception {
states
.withStates()
.initial(States. Sl)
. choi ce(St at es. S1)
.end(St at es. SF)
.states(Enuntet. al | O (St ates. cl ass));

}

@verride
public void configure(StateMachi neTransitionConfigurer<States, Events> transitions)
throws Exception {
transitions
. Wi t hChoi ce()
.source(States. S1)
.first(States. S2, s2Guard())
.then(States. S3, s3Guard())
.last(States. S4);
}

@Bean
public Guard<States, Events> s2Guard() {
return new Guard<States, Events>() {

@verride
publ i c bool ean eval uat e(St at eCont ext <St at es, Events> context) {
return fal se;
}
IE
}

@Bean
public Guard<States, Events> s3Cuard() {
return new Guard<States, Events>() {

@verride
publi c bool ean eval uat e(St at eCont ext <St at es, Events> context) {
return true;
}
IE

Actions can be executed with both incoming and outgoing transitions of a choice pseudostate. As seeing
from below example, one dummy lambda action is defined leading into a choice state and one similar
dummy lambda action defined for one outgoing transition where it also define an error action.

2.1.0M1 Spring Statemachine 29

Spring Statemachine - Reference Documentation

@onfi guration
@Enabl eSt at eMachi ne
public class Config23
ext ends EnunSt at eMachi neConf i gur er Adapt er <St ates, Events> {

@verride
public void configure(StateMchi neSt at eConfi gurer<States, Events> states)
throws Exception {
states
.withStates()
.initial(States. Sl)
. choi ce(St at es. S1)
.end(St at es. SF)
.states(Enuntet. al | O (St ates. cl ass));
}

@verride
public void configure(StateMachi neTransitionConfigurer<States, Events> transitions)
throws Exception {
transitions
. Wit hExt ernal ()
.source(States. Sl)
.action(c -> {
/] action with SI-S1
b
.target (States. S1)
.and()
. wi t hChoi ce()
.source(States. S1)
.first(States.S2, ¢ -> {
return true;
b
.last(States.S3, ¢ -> {
/'l action with S1-S3
boc->{
/'l error callback for action S1-S3

1)

Note

Junction have same api format meaning actions can be defined similarly.

Junction State

Junction needs to be defined in both states and transitions to work properly. Mark particular state as
choice state by using j unct i on() method. This state needs to match source state when transition is
configured for this choice.

Transition is configured using wi t hJuncti on() where you define source state and first/then/
| ast structure which is equivalentto normali f/ el sei f/ el se.Withfirst andt hen you can specify
a guard just like you'd use a condition with i f / el sei f clauses.

Transition needs to be able to exist so make sure | ast is used. Otherwise configuration is ill-formed.

2.1.0M1 Spring Statemachine 30

Spring Statemachine - Reference Documentation

@onfi guration
@Enabl eSt at eMachi ne
public class Config20
ext ends EnunSt at eMachi neConf i gur er Adapt er <St ates, Events> {

@verride
public void configure(StateMchi neSt at eConfi gurer<States, Events> states)
throws Exception {
states
.withStates()
.initial(States. Sl)
.junction(States. S1)
.end(St at es. SF)
.states(Enuntet. al | O (St ates. cl ass));

}

@verride
public void configure(StateMachi neTransitionConfigurer<States, Events> transitions)
throws Exception {
transitions
. Wi thdunction()
.source(States. S1)
.first(States. S2, s2Guard())
.then(States. S3, s3Guard())
.last(States. S4);

}

@Bean
public Guard<States, Events> s2Guard() {
return new Guard<States, Events>() {

@verride
publ i c bool ean eval uat e(St at eCont ext <St at es, Events> context) {
return fal se;
}
IE
}

@Bean
public Guard<States, Events> s3Cuard() {
return new Guard<States, Events>() {

@verride
publi c bool ean eval uat e(St at eCont ext <St at es, Events> context) {
return true;
}
IE

Note

Difference between choice and junction is purely academic as both are implemented with f i r st/
t hen/ | ast structure. However in theory based on uml model, choice allows only one incoming
transition while junction allows multiple incoming transitions. At a code level functionality is pretty
much identical.

Fork State

Fork needs to be defined in both states and transitions to work properly. Mark particular state as choice
state by using f or k() method. This state needs to match source state when transition is configured

for this fork.

2.1.0M1 Spring Statemachine

31

Spring Statemachine - Reference Documentation

Target state needs to be a super state or immediate states in regions. Using a super state as target will
take all regions into initial states. Targeting individual state give more controlled entry into regions.

@onfi guration
@Enabl eSt at eMachi ne
public class Configl4
ext ends Enuntt at eMachi neConfi gur er Adapt er <St at es2, Events> {

@verride
public void configure(StateMachi neSt ateConfi gurer<States2, Events> states)
throws Exception {
states
. Wi thStates()
.initial(States2. S1)
.fork(States2. S2)
.state(States2. S3)
.and()
.withStates()
. parent (St at es2. S3)
.initial(States2.S2l)
.state(States2. S21)
. state(States2. S22)
.end(St at es2. S2F)
.and()
. Wi thStates()
. parent (States2. S3)
.initial (States2.S3l)
. state(States2. S31)
. state(States2. S32)
.end(States2. S3F);
}

@verride
public void configure(StateMachi neTransitionConfigurer<States2, Events> transitions)
throws Exception {
transitions
.wi t hFork()
. source(St at es2. S2)
.target (States2. S22)
.target (States2. S32);

Join State

Join needs to be defined in both states and transitions to work properly. Mark particular state as choice
state by using j oi n() method. This state doesn’t need to match either source states or target state
in a transition configuration.

Select a target state where transition goes when all source states has been joined. If you use state
hosting regions as source, end states of a regions are used as joins. Otherwise you can pick any states
from a regions.

2.1.0M1 Spring Statemachine 32

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
public class Configl5
ext ends EnunSt at eMachi neConf i gur er Adapt er <St at es2, Events> {

@verride
public void configure(StateMachi neStat eConfi gurer<States2, Events> states)
throws Exception {
states
.withStates()

Linitial(States2.S1)

.state(States2. S3)

.join(States2. S4)

.state(States2. S5)

.and()

.withStates()
. parent (St at es2. S3)
.initial(States2.S2l)
.state(States2. S21)
. state(States2. S22)
.end(St at es2. S2F)
.and()

. Wi thStates()
. parent (States2. S3)
.initial (States2.S3l)
. state(States2. S31)
. state(States2. S32)
.end(States2. S3F);

}

@verride
public void configure(StateMachi neTransitionConfi gurer<States2, Events> transitions)
throws Exception {
transitions
.wi thJoin()
. source(St at es2. S2F)
. source(St at es2. S3F)
.target (States2. S4)
.and()
.wi thExternal ()
. source(St ates2. S4)
.target (States2. S5);

It is also possible to have multiple transitions originating from a join state. It this case it is advised to
use guards and define those so that only one guard evaluates TRUE at any given time as otherwise
transition behaviour is not predicted. This is shown above where guard simply checks if extended state
has variables.

2.1.0M1 Spring Statemachine 33

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
public class Config22
ext ends EnunSt at eMachi neConf i gur er Adapt er <St at es2, Events> {

@verride
public void configure(StateMachi neStat eConfi gurer<States2, Events> states)
throws Exception {
states
.withStates()

Linitial(States2.S1)

.state(States2. S3)

.join(States2. S4)

.state(States2. S5)

.end(St at es2. SF)

.and()

. Wi thStates()
. parent (States2. S3)
.initial (States2.S2l)
.state(States2. S21)
. state(States2. S22)
.end(St at es2. S2F)
.and()

. Wi thStates()
. parent (St at es2. S3)
.initial (States2. S3l)
. state(States2. S31)
.state(States2. S32)
.end(St at es2. S3F) ;

@verride
public void configure(StateMachi neTransiti onConfi gurer<States2, Events> transitions)
throws Exception {
transitions
. Wi thJoi n()
. source(St at es2. S2F)
. source(St at es2. S3F)
.target (States2. S4)
.and()
.wi thExternal ()
. source(States2. S4)
.target (States2. S5)
. guar dExpressi on("! ext endedSt at e. vari abl es. i SEnpty()")
.and()
.wi thExternal ()
. source(St at es2. S4)
.target(States2. SF)
. guar dExpr essi on(" ext endedSt at e. vari abl es. i sEnpty()");

Exit/Entry Point States

Exit and Entry Points can be used to do more controlled exit and entry from and into a submachines.

2.1.0M1 Spring Statemachine

Spring Statemachine - Reference Documentation

@onfi guration
@Enabl eSt at eMachi ne
static class Config2l extends StateMachi neConfigurerAdapter<String, String> {

@verride
public void configure(StateMchi neStateConfigurer<String, String> states)
throws Exception {
states
. Wi thStates()
Linitial("s1")
.state("S2")
.state("S3")
.and()
. Wi thStates()
. parent (" S2")
Linitial("s21")
.entry(" S2ENTRY")
cexit("S2EXIT")
.state("S22");
}

@verride
public void configure(StateMachi neTransitionConfigurer<String, String> transitions)
throws Exception {

transitions

.wi t hExt ernal ()
.source("S1").target ("S2")
.event ("E1")

.and()

.wi thExternal ()
.source("S1").target (" S2ENTRY")
.event (" ENTRY")

.and()

.wi thExternal ()
.source("S22").target ("S2EXI T")
.event ("EXIT")

.and()

Wi thEntry()

. source(" S2ENTRY") . t ar get (" S22")
.and()

.wi thEXi t()

.source("S2EXI T").target ("S3");

As shown above you need to mark particular states as exit and entry states. Then you create a normal
transitions into those states and also specify withExit() and withEntry() where those states will exit and
entry respectively.

11.9 Configuring Common Settings

Some of a common state machine configuration can be set via a Conf i gur at i onConf i gur er. This
allows to set BeanFact ory, TaskExecut or, TaskSchedul er, autostart flag for a state machine and
register St at eMachi nelLi st ener instances.

2.1.0M1 Spring Statemachine 35

Spring Statemachine - Reference Documentation

@onfi guration
@Enabl eSt at eMachi ne
public class Configl7
ext ends EnunSt at eMachi neConf i gur er Adapt er <St ates, Events> {

@verride
public void configure(StateMachi neConfi gurationConfigurer<States, Events> config)
throws Exception {
config
.wi t hConfiguration()
.autoStartup(true)
. machi nel d("nyMachi nel d")
. beanFact ory(new Stati cLi st abl eBeanFactory())
. taskExecut or (new SyncTaskExecut or ())
. taskSchedul er (new Concurrent TaskSchedul er ())
.listener(new StateMachi neLi st ener Adapt er<States, Events>())
.transitionConflictPolicy(TransitionConflictPolicy.CH LD);

State machine aut oSt ar t up flag is disabled by default because all instances handling sub-states are
controlled by a state machine itself and cannot be started automatically. Also it is much safer to leave
this decision to a user whether a machine should be started automatically or not. This flag will only
control an autostart of a top-level state machine.

Setting machi nel d within a configuration is simply a convenience if user wants or needs to do it here.

Setting a BeanFact or y, TaskExecut or or TaskSchedul er exist for convenience for a user and are
also use within a framework itself.

Registering St at eMachi neLi st ener instances is also partly for convenience but is required if user
wants to catch callback during a state machine lifecycle like getting notified of a state machine start/
stop events. Naturally it is not possible to listen a state machine start events if aut oSt ar t up is enabled
unless listener can be registered during a configuration phase.

transiti onConflictPolicy canbeusedincaseswhere multiple transition paths could be selected.
One usual use case for this is if machine contains anonymous transitions leading out from a sub-state
and a parent state and user want to define a policy which one will be selected. This is a global setting
within a machine instance and default to CHILD.

Di stri but edSt at eMachi ne is configured via wit hDi stributed() which allows to set a
St at eMachi neEnsenbl e which if exists automatically wraps created St at eMachi ne with
Di stri but edSt at eMachi ne and enables distributed mode.

2.1.0M1 Spring Statemachine 36

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
public class Configl8
ext ends EnunSt at eMachi neConf i gur er Adapt er <St ates, Events> {

@verride
public void configure(StateMachi neConfi gurationConfigurer<States, Events> config)
throws Exception {
config
.wi thDistributed()
. ensenbl e(st at eMachi neEnsenbl e()) ;

}

@Bean
publ i c StateMachi neEnsenbl e<St at es, Events> st at eMachi neEnsenbl e()
throws Exception {
/1 naturally not null but should return ensenbl e instance
return null;

More about distributed states, refer to section Chapter 31, Using Distributed States.

St at eMachi neMbdel Veri fi er is an interface what is used internally to do some sanity checks
for a state machine structure. Its purpose is to fail fast early instead of letting common
configuration errors into a state machine itself. On default verifier is automatically enabled and
Def aul t St at eMachi neModel Veri fi er implementation is used.

With wi t hVeri fi er () user can disable verifier or set a custom one if needed.

@configuration
@Enabl eSt at eMachi ne
public class Configl9
ext ends Enuntt at eMachi neConfi gur er Adapt er <St at es, Events> {

@verride
public void configure(StateMachi neConfi gurationConfigurer<States, Events> config)
throws Exception {
config
.withVerifier()
. enabl ed(true)
.verifier(verifier());

}

@Bean
public StateMachi neMobdel Veri fier<States, Events> verifier() {
return new St at eMachi neMbdel Verifier<States, Events>() {

@verride
public void verify(StateMachi neMbdel <St ates, Events> nodel) {
/1 throw exception indicating nmalformed nodel
}
IE

More about config model, refer to section Section 55.1, “StateMachine Config Model”.

Note

Config methods wi t hSecuri ty, wi t hMoni t ori ng and wi t hPer si st ence are documented
in sections Chapter 25, State Machine Security, Chapter 30, Monitoring State Machine and
Section 28.4, “Using StateMachineRuntimePersister” respectively.

2.1.0M1 Spring Statemachine 37

Spring Statemachine - Reference Documentation

11.10 Configuring Model

St at eMachi neModel Factory is a hook to configure statemachine model without using a
manual configuration. Essentially it is a third party integration to integrate into a configuration
model. St at eMachi neModel Factory can be hooked into a configuration model by using a
St at eMachi neModel Confi gur er as shown above.

@onfi guration
@Enabl eSt at eMachi ne
public static class Configl extends StateMachi neConfi gurerAdapter<String, String> {

@verride
public void configure(StateMuchi neMbdel Configurer<String, String> nodel) throws Exception {
nodel
. wi t hMbdel ()
.factory(nodel Factory());

}

@Bean
publ i c StateMachi neMbdel Factory<String, String> nodel Factory() {
return new Custonft at eMachi neMbdel Factory();

}

As a custom example Cust onfst at eMachi neMbdel Fact or y would simply define two states, S1 and
S2 and an event E1 between those states.

public static class CustonftateMachi neMddel Factory inplenments StateMachi neModel Factory<String, String> {

@verride
public StateMachi neMbdel <String, String> build() {
ConfigurationData<String, String> configurationData = new ConfigurationData<>();
Col | ection<StateData<String, String>> stateData = new ArraylList<>();
st at eDat a. add(new St ateData<String, String>("S1", true));
st at eDat a. add(new St at eDat a<String, String>("S2"));
StatesData<String, String> statesData = new St at esDat a<>(stateData);
Col | ection<TransitionData<String, String>> transitionData = new ArrayList<>();
transitionData.add(new TransitionData<String, String>("S1", "S2", "E1"));
Transi tionsData<String, String> transitionsData = new Transiti onsData<>(transitionData);
St at eMachi neModel <String, String> stateMachi neModel = new Def aul t St at eMachi neModel <Stri ng,
String>(configurationData,
statesData, transitionsData);
return stateMachi neMbdel ;

}

@verride

public StateMachi neMbdel <String, String> build(String nmachineld) {
return build();

}

Note

Defining a custom model is usually not what end user is looking for, although itis possible, however
it is a central concept of allowing external access to this configuration model.

Example of using this model factory integration can be found from Chapter 33, Eclipse Modeling
Support. More generic info about custom model integration can be found from Chapter 55, Developer
Documentation.

2.1.0M1 Spring Statemachine 38

Spring Statemachine - Reference Documentation

11.11 Things to Remember

When defining actions, guards or any other references from a configuration there are things to remember
how Spring Framework works with beans. In below we have defined a normal configuration with states
S1 and S2 and 4 transitions between those. All transitions are either guarded by guar d1 or guar d2.
Pay attention that guar d1 is created as a real bean because it's annotated with a @Bean, while guar d2
is not.

What this mean is that event E3 would get guar d2 condition as TRUE and E4 would get guar d2
condition as FALSE as those are simply coming from a plain method calls to those functions.

However because guar d1 is defined as a @Bean, it is proxied by a Spring Framework, thus additional
calls to its method will result only one instantiation of that instance. Event E1 would get first proxied
instance with condition TRUE while event E2 would get same instance with TRUE condition while method
call was defined with FALSE. This is not a Spring State Machine specific behaviour, it's just how Spring
Framework works with Beans.

2.1.0M1 Spring Statemachine 39

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
public class Configl
ext ends StateMachi neConfi gurer Adapter<String, String> {

@verride
public void configure(StateMachi neStateConfigurer<String, String> states)
throws Exception {

states
.withStates()
Linitial ("S1")
.state("S2");
}
@verride

public void configure(StateMachi neTransitionConfigurer<String, String> transitions)
throws Exception {
transitions

. Wi t hExt ernal ()
.source("Sl1").target ("S2").event ("EL").guard(guardl(true))
.and()

.wi thExternal ()
.source("S1").target ("S2").event ("E2").guard(guardl(fal se))
.and()

. Wi t hExt ernal ()
.source("Sl1").target ("S2").event ("E3").guard(guard2(true))
.and()

.wi thExternal ()
.source("S1").target ("S2").event ("E4").guard(guard2(false));

@Bean
public Guard<String, String> guardl(final bool ean val ue) {
return new Quard<String, String>() {
@verride
public bool ean eval uat e(St ateContext<String, String> context) {
return val ue;

}

public Guard<String, String> guard2(final boolean value) {
return new Guard<String, String>() {
@verride
publ i c bool ean eval uat e(St at eCont ext<String, String> context) {
return val ue;
}
IE

2.1.0M1 Spring Statemachine

40

Spring Statemachine - Reference Documentation

12. State Machine ID

Various classes and interfaces use machi nel d either as a variable or parameter in a methods. This
chapter takes a closer look how nmachi nel d relates to normal machine operation and instantiation.

During a runtime machi nel d really don't have any big operational role except to distinguish machines
from each other for example when following logs or doing deeper debugging. Having a lot of different
machine instances quickly gets user lost in translation if there is no easy way to identify these instances
and option to set this machi nel d was given to a user.

12.1 With @EnableStateMachine

Setting machi nel d via JavaConfig as nymachi ne then exposes that for logs as shown above. This
same machi nel d is also available via method St at eMachi ne. get 1 d().

@verride
public void configure(StateMachi neConfi gurationConfigurer<String, String> config)
throws Exception {
config
. Wi thConfiguration()
. machi nel d(" nymachi ne") ;

11:23: 54,509 |INFO nai n support.Lifecycl ebject Support [main] -
started S2 S1 / S1 / uui d=8f e53d34-8c85- 49f d- a6ba- 773dal5fcafl / id=nymachine

Note

Manual builder Section 13.2, “State Machine via Builder” uses same config interface meaning
behaviour would be equivalent.

12.2 With @EnableStateMachineFactory

You'll see same nmachi nel d getting configured if you use a StateMachineFactory and request a new
machine using id.

St at eMachi neFactory<String, String> factory = context.get Bean(StateMchi neFactory.cl ass);
St at eMachi ne<String, String> machine = factory. get StateMachi ne(" mymachi ne");

12.3 With StateMachineModelFactory

Behind a scenes all machine configurations are first translated into a StateMachineModel so that
StateMachineFactory don't need to know from where configuration originated as machine can be built
from JavaConfig, UML or Repository. If user wants to go crazy a custom StateMachineModel can also
be used which would be a lowest possible level to define configuration.

What all these has to do with a machi nel d? StateMachineModelFactory also have a method
St at eMachi neModel <S, E> buil d(String machi nel d) which a StateMachineModelFactory
implementation may choose to use.

RepositoryStateMachineModelFactory Chapter 34, Repository Support uses nachi neld to
support different configurations in a persistent storage used via Spring Data Repository
interfaces. For example both StateRepository and TransitionRepository have a method Li st <T>
fi ndByMachi nel d(String nachineld) order to build different states and transitions by a

2.1.0M1 Spring Statemachine 41

Spring Statemachine - Reference Documentation

machi nel d. With RepositoryStateMachineModelFactory if machi nel d is used as empty or NULL
defaults to repository config(in a backing persistent model) without known machine id.

Note

UmlStateMachineModelFactory currently doesn’t distinguish between different machine id's as
uml source is always coming from a same file. Thought this may get changed in future releases.

2.1.0M1 Spring Statemachine 42

Spring Statemachine - Reference Documentation

13. State Machine Factories

There are use cases when state machine needs to be created dynamically instead of defining static
configuration at compile time. For example if there are custom components which are using its own
state machines and these components are created dynamically it is impossible to have a static state
machined build during the application start. Internally state machines are always build via a factory
interfaces and this then gives user an option to use this feature programmatically. Configuration for
state machine factory is exactly same as you've seen in various examples in this document where state
machine configuration is hard coded.

13.1 Factory via Adapter

Actually creating a state machine using @EnableStateMachine will work via factory so
@EnableStateMachineFactory is merely exposing that factory via its interface.

@onfi guration
@Enabl eSt at eMachi neFact ory
public class Config6
ext ends Enuntt at eMachi neConf i gur er Adapt er <St at es, Events> {

@verride
public void configure(StateMuchi neSt at eConfi gurer<States, Events> states)
throws Exception {
states
.withStates()
.initial(States. S1)
.end(St at es. SF)
.states(Enuntet. al | O (St ates. cl ass));

Now that you've used @EnableStateMachineFactory to create a factory instead of a state machine
bean, it can be injected and used as is to request new state machines.

public class Bean3 {

@\ut owi red
St at eMachi neFact ory<St ates, Events> factory;

voi d nethod() {
St at eMachi ne<St at es, Event s> st at eMachi ne = factory. get St at eMachi ne();
st at eMachi ne. start ();

Adapter Factory Limitations

Current limitation of factory is that all actions and guard it is associating with created state machine
will share a same instances. This means that from your actions and guard you will need to specifically
handle a case that same bean will be called by a different state machines. This limitation is something
which will be resolved in future releases.

13.2 State Machine via Builder

Using adapters shown above has a limitation imposed by its requirement to work via Spring
@Conf i gur ati on classes and application context. While this is a very clear model to configure a state
machine instances it will limit configuration at a compile time which is not always what a user wants

2.1.0M1 Spring Statemachine 43

Spring Statemachine - Reference Documentation

to do. If there is a requirement to build more dynamic state machines, a simple builder pattern can be
used to construct similar instances. Using strings as states and events this builder pattern can be used
to build fully dynamic state machines outside of a Spring application context as shown above.

St at eMachi ne<String, String> buildMachinel() throws Exception {
Bui | der<String, String> builder = StateMachi neBuil der. builder();
bui | der. configureStates()
. Wi thStates()

Linitial ("S1")

.end("SF")

. states(new HashSet <String>(Arrays. asList("S1","S2","S3","S4")));
return builder. build();

Builder is using same configuration interfaces behind the scenes that the @Confi guration
model using adapter classes. Same model goes to configuring transitions, states and common
configuration via builder's methods. This simply means that whatever you can use with a normal
Enuntt at eMachi neConfi gur er Adapt er or St at eMachi neConf i gur er Adapt er can be used
dynamically via a builder.

Note

Currently bui |l der. configureStates(), builder.configureTransitions() and
bui | der. confi gureConfi guration() interface methods cannot be chained together
meaning builder methods needs to be called individually.

St at eMachi ne<String, String> buil dMachine2() throws Exception {
Bui | der<String, String> builder = StateMachi neBuil der. builder();
bui | der. confi gureConfi guration()
.wi t hConfiguration()
.autoStartup(fal se)
. beanFactory(null)
. taskExecut or (nul I')
. taskSchedul er (nul 1)
.listener(null);
return builder.build();

It is important to understand on what cases common configuration needs to be used with a
machines instantiated from a builder. Configurer returned from a wi t hConfi gurati on() can be
used to setup autoStart, TaskScheduler, TaskExecutor, BeanFactory and additionally register a
StateMachineListener. If StateMachine instance returned from a builder is registered as a bean via
@Bean, i.e. BeanFactory is attached automatically and then a default TaskExecutor can be found from
there. If instances are used outside of a spring application context these methods must be used to setup
needed facilities.

2.1.0M1 Spring Statemachine 44

Spring Statemachine - Reference Documentation

14. Using Deferred Events

When an event is sent it may fire an Event Tri gger which then may cause a transition to happen if a
state machine is in a state where trigger is evaluated successfully. Normally this may lead to a situation
where an event is not accepted and is dropped. However it may be desirable to postpone this event
until a state machine enters other state, in which it is possible to accept that event. In other words an
event simply arrives at an inconvenient time.

Spring Statemachine provides a mechanism for deferring events for later processing. Every state can
have a list of deferred events. If an event in the current state’s deferred event list occurs, the event
will be saved (deferred) for future processing until a state is entered that does not list the event in its
deferred event list. When such a state is entered, the state machine will automatically recall any saved
events that are no longer deferred and will then either consume or discard these events. It is possible
for a superstate to have a transition defined on an event that is deferred by a substate. Following same
hierarchical state machines concepts, the substate takes precedence over the superstate, the event will
be deferred and the transition for the superstate will not be executed. With orthogonal regions where
one orthogonal region defers an event and another accepts the event, the accept takes precedence
and the event is consumed and not deferred.

The most obvious use case for event deferring is when an event is causing a transition into a particular
state and state machine is then returned back to its original state where second event should cause a
same transition. Let’s take this with a simple example.

@onfiguration
@nabl eSt at eMachi ne
static class Config5 extends StateMachi neConfigurerAdapter<String, String> {

@verride
public void configure(StateMchineStateConfigurer<String, String> states)
throws Exception {
states
. Wi thStates()
Linitial ("READY")
. st at e(" DEPLOYPREPARE", "DEPLOY")
. st at e(" DEPLOYEXECUTE", "DEPLOY");

}

@verride
public void configure(StateMachi neTransitionConfigurer<String, String> transitions)
throws Exception {
transitions
.wi thExternal ()
. sour ce(" READY") . t ar get (" DEPLOYPREPARE")
.event (" DEPLOY")
.and()
.wi thExternal ()
. sour ce(" DEPLOYPREPARE") . t ar get (" DEPLOYEXECUTE")
.and()
. Wi t hExt ernal ()
. sour ce(" DEPLOYEXECUTE") . t ar get (" READY") ;

In above state machine has state READY which indicates that machine is ready to process events which
would take it into a DEPLOY state where the actual deployment would happen. After deploy actions has
been executed machine is then returned back into a READY state. Sending multiple events in a READY
state is not causing any trouble if machine is using synchronous executor because event sending would
block between event calls. However if executor is using threads then other events may get lost because

2.1.0M1 Spring Statemachine 45

Spring Statemachine - Reference Documentation

machine is no longer in a state where event could be processed. Thus deferring some of these events
allows machine to preserve these events.

@configuration
@Enabl eSt at eMachi ne
static class Config6 extends StateMachi neConfigurerAdapter<String, String> {

@verride
public void configure(StateMichi neStateConfigurer<String, String> states)
throws Exception {
states
.withStates()
Linitial ("READY")
. state("DEPLOY", "DEPLOY")
. state("DONE")
.and()
. W thStates()
. par ent (" DEPLOY")
.initial ("DEPLOYPREPARE")
. st at e(" DEPLOYPREPARE", "DONE")
. st at e(" DEPLOYEXECUTE") ;

}

@verride
public void configure(StateMachi neTransitionConfigurer<String, String> transitions)

throws Exception {
transitions

.wi t hExt ernal ()
. sour ce(" READY") . t ar get (" DEPLOY")
. event (" DEPLOY")
.and()

.wi thExternal ()
. sour ce(" DEPLOYPREPARE") . t ar get (" DEPLOYEXECUTE")
.and()

. Wi t hExt ernal ()
. sour ce(" DEPLOYEXECUTE") . t ar get (" READY")
.and()

.wi thExternal ()
. sour ce(" READY") .t ar get (" DONE")
.event (" DONE")
.and()

.wi thExternal ()
. source("DEPLOY") . target (" DONE")
.event ("DONE") ;

In above state machine which is using nested states instead of a flat state model, event DEPLOY can be
deferred directly in a substate. It is also showing concept of deferring event DONE in one of a sub-states
which would then override anonymous transition between DEPLOY and DONE states if state machine
happens to be in a DEPLOYPREPARE state when DONE event is dispatched. In DEPLOYEXECUTE
state DONE event is not deferred, thus event would be handled in a super state.

2.1.0M1 Spring Statemachine 46

Spring Statemachine - Reference Documentation

15. Using Scopes

Support for scopes in a state machine is very limited but it is possible to enable use of session
scope using a normal spring @cope annotation. Firstly if state machine is build manually via a
builder and returned into context as @ean, and secondly via a configuration adapter. Both of these
simply needs an a @cope to be present where scopeName is set to session and proxyMode to

ScopedPr oxyMode. TARGET _CLASS. Examples for both use cases are shown below.

Tip
See sample Chapter 45, Scope how to use session scoping.

@onfiguration
public class Config3 {

@Bean
@cope(scopeNane="sessi on", proxyMde=ScopedProxyMVbde. TARGET _CLASS)

St at eMachi ne<String, String> stateMachine() throws Exception {
Bui | der<String, String> buil der = StateMachi neBuil der. buil der();
bui | der. confi gureConfi guration()

.wi thConfiguration()
.autoStartup(true)
. taskExecut or (new SyncTaskExecutor());
bui | der. configureStates()
. Wi thStates()
Linitial ("S1")
.state("S2");
bui | der. confi gureTransitions()
. Wit hExt ernal ()
.source("S1")
.target ("S2")
.event ("E1");
St at eMachi ne<String, String> stateMachine = builder.build();
return stateMchi ne;

2.1.0M1 Spring Statemachine

a7

Spring Statemachine - Reference Documentation

@onfi guration

@nabl eSt at eMachi ne

@cope(scopeNane="sessi on", proxyMde=ScopedProxyMWbde. TARGET _CLASS)

public static class Config4 extends StateMachi neConfigurerAdapter<String, String> {

@verride
public void configure(StateMachi neConfi gurationConfigurer<String, String> config) throws Exception {
config
. Wi thConfiguration()
.autoStartup(true);

}
@verride
public void configure(StateMachi neStateConfigurer<String, String> states) throws Exception {
states
.withStates()
Linitial ("S1")
.state("S2");
}
@verride
public void configure(StateMachi neTransitionConfigurer<String, String> transitions) throws Exception
{
transitions
. Wi t hExt ernal ()
.source("S1")
.target ("S2")
.event ("E1");
}
}

Once you have scoped state machine into sessi on, autowiring it into a @ontrol | er will give
new state machine instance per session. State machine is then destroyed when Ht t pSessi on is
invalidated.

@ontrol |l er
public class StateMachi neController {

@\ut owi r ed
St at eMachi ne<String, String> stateMchine;

@Request Mappi ng(pat h="/state", nethod=Request Met hod. POST)

public HttpEntity<Void> setState(@equestParan("event”) String event) {
st at eMachi ne. sendEvent (event);
return new ResponseEntity<Voi d>(Ht t pSt at us. ACCEPTED) ;

}

@Request Mappi ng(pat h="/state", nethod=Request Met hod. GET)
@ResponseBody
public String getState() {
return stateMachine.getState().getld();
}

Note

Using state machines in a sessi on scopes needs a careful planning mostly because it is a
relatively heavy component.

Note

Spring Statemachine poms don’t have any dependencies to Spring MVC classes which you will
need to work with session scope. But if you're working with a web application, you've already
pulled those deps directly from Spring MVC or Spring Boot.

2.1.0M1 Spring Statemachine 48

Spring Statemachine - Reference Documentation

16. Using Actions

Actions are one of the most useful components from user perspective to interact and collaborate with
a state machine. Actions can be executed in various places in a state machine and its states lifecycle
like entering or exiting states or during a transitions.

@verride
public voi d configure(StateMachi neSt at eConfi gurer<States, Events> states)
throws Exception {
states
. Wi thStates()
.initial(States. Sl)
.state(States. S1, actionl(), action2())
.state(States.S2, actionl(), action2())
.state(States.S3, actionl(), action3());

Above acti onl and act i on2 beans are attached to states entry and exit respectively.

@Bean
public Action<States, Events> actionl() {
return new Action<States, Events>() {

@verride
public voi d execute(StateContext<States, Events> context) {
}
ba
}
@Bean

public BaseAction action2() {
return new BaseAction();

}

@ean
public Spel Action action3() {
Expr essi onPar ser parser = new Spel Expressi onParser();
return new Spel Acti on(
par ser. par seExpr essi on(
"stat eMachi ne. sendEvent (T(or g. spri ngf ramewor k. st at emachi ne. docs. Events). E1)"));

}

public class BaseAction inplenents Action<States, Events> {

@verride
public void execute(StateCont ext <States, Events> context) {
}

}

public class Spel Acti on extends Spel Expressi onActi on<States, Events> {
publ i c Spel Acti on(Expressi on expression) {

super (expressi on);

}

You can directly implement Action as an anonymous function or create a your own implementation and
define appropriate implementation as a bean.

Inacti on3 a SpEL expression is used to send event Events.E1 into a state machine.

Note

StateContext is described in section Chapter 19, Using StateContext.

2.1.0M1 Spring Statemachine 49

Spring Statemachine - Reference Documentation

16.1 SpEL Expressions with Actions

It is also possible to use SpEL expressions as a replacement for a full Action implementation.

2.1.0M1 Spring Statemachine

50

Spring Statemachine - Reference Documentation

17. Using Guards

Above guar d1 and guar d2 beans are attached to states entry and exit respectively.

@verride
public void configure(StateMachi neTransitionConfigurer<States, Events> transitions)
throws Exception {
transitions
.wi thExternal ()
.source(States. Sl).target (States. S1)
.event (Events. E1)
.guard(guardl())
.and()
. Wit hExt ernal ()
.source(States. S1).target(States. S2)
.event (Events. E1)
. guard(guard2())
.and()
.wi t hExt ernal ()
.source(States. S2).target (States. S3)
.event (Events. E2)
. guar dExpr essi on(" ext endedSt at e. vari abl es. get (' nyvar')");

You can directly implement Guard as an anonymous function or create a your own implementation and
define appropriate implementation as a bean. In above sample guar dExpr essi on is simply checking
if extended state variable myvar evaluates to TRUE.

@ean
public Guard<States, Events> guardl() {
return new Quard<States, Events>() {

@verride
publ i c bool ean eval uat e(St at eCont ext <St at es, Events> context) {
return true;

}
}

@Bean
public BaseGuard guard2() {
return new BaseGuard();

}

public class BaseGuard inplenments Guard<States, Events> {

@verride
publ i c bool ean eval uat e(St at eCont ext <St at es, Events> context) {
return fal se;

}

Note

StateContext is described in section Chapter 19, Using StateContext.

17.1 SpEL Expressions with Guards

It is also possible to use SpEL expressions as a replacement for a full Guard implementation. Only
requirement is that expression needs to return a Boolean value to satisfy Guard implementation. This
is demonstrated with a guardExpression() function which takes an expression as an argument.

2.1.0M1 Spring Statemachine 51

Spring Statemachine - Reference Documentation

18. Using Extended State

Let's assume that we’d need to create a state machine tracking how many times a user is pressing a
key on a keyboard and then terminate when keys are pressed 1000 times. Possible but a really naive
solution would be to create a new state for each 1000 key presses. Going even worse combinations
you might suddenly have astronomical number of states which naturally is not very practical.

This is where extended state variables comes into rescue by not having a necessity to add more states
to drive state machine changes, instead a simple variable change can be done during a transition.

St at eMachi ne has a method get Ext endedSt at e() which returns an interface Ext endedSt at e
which gives an access to extended state variables. You can access variables directly via a state machine
or St at eCont ext during a callback from actions or transitions.

public Action<String, String> nyVariabl eAction() {
return new Action<String, String>() {

@verride
public void execute(StateContext<String, String> context) {
cont ext . get Ext endedSt at e()
.getVariabl es(). put("nmykey", "nyvalue");

If there is a need to get notified for extended state variable changes, there are two options; either use
St at eMachi nelLi st ener and listen ext endedSt at eChanged(key, val ue) callbacks:

public class ExtendedStateVari abl eLi st ener
extends St ateMachi nelLi st ener Adapter<String, String> {

@verride
public void extendedSt at eChanged(Obj ect key, Object value) {
/1 do sonething with changed vari abl e

}

Or implement a Spring Application context listeners for OnExt endedSt at eChanged. Naturally as
mentioned in Chapter 21, Listening State Machine Events you can also listen all St at eMachi neEvent
events.

public class ExtendedStateVariabl eEventLi st ener
i npl enents ApplicationLi st ener <OnExt endedSt at eChanged> {

@verride
public void onApplicationEvent (OnExt endedSt at eChanged event) {
/1 do sonething with changed vari abl e

}

2.1.0M1 Spring Statemachine 52

Spring Statemachine - Reference Documentation

19. Using StateContext

StateContext is a one of a most important objects when working with a state machine as it is passed
into various methods and callbacks to give status of a current state of a state machine and where it
is possibly going. If simplifying things a little it can be considered to be a snapshot of a current state
machine stage where it is at a time StateContext is passed on.

Note

In Spring Statemachi ne 1.0.x StateContext usage were relatively naive in terms of how
it was used to just pass stuff around as a simple PQJQ. Starting from Spri ng St at enmachi ne
1. 1. x its role has been greatly improved by making it a first class citizen in a state machine.

In overall StateContext can be used as.

» Access to current Message, Event or their MessageHeader s if known.

» Access to state machine Ext ended St at e.

» Access to St at eMachi ne itself.

» Access to possible state machine error.

» Access to current Tr ansi ti on if applicable.

» Access to source and target states where state machine is possibly getting from and going to.
» Access to current St age as described in Section 19.1, “Stages”.

StateContext is passed into various components interacting with user like Act i on and Guar d.

19.1 Stages

Stage is representation of a stage on which a state machine is currently interacting
with a user. Current stages are EVENT_NOT_ACCEPTED, EXTENDED STATE_CHANGED,
STATE_CHANGED, STATE_ENTRY, STATE_EXI T, STATEMACHI NE_ERROR, STATEMACHI NE_START,
STATEMACHI NE_STOP, TRANSI TI ON, TRANSI TI ON_START and TRANSI TI ON_END which look very
familiar as those match how user can interact with listeners as described in Chapter 21, Listening State
Machine Events.

2.1.0M1 Spring Statemachine 53

http://docs.spring.io/spring-statemachine/docs/2.1.0.M1/api/org/springframework/statemachine/StateContext.html
http://docs.spring.io/spring-statemachine/docs/2.1.0.M1/api/org/springframework/statemachine/StateContext.Stage.html

Spring Statemachine - Reference Documentation

20. Triggering Transitions

Driving a statemachine is done via transitions which are triggered by triggers. Currently supported
triggers are EventTrigger and TimerTrigger.

20.1 EventTrigger

EventTrigger is the most useful trigger because it allows user to directly interact with a state machine
by sending events to it. These events are also called signals. Trigger is added to a transition simply by
associating a state to it during a configuration.

@\ut owi r ed
St at eMachi ne<St at es, Event s> st at eMachi ne;

voi d si gnal Machi ne() {
st at eMachi ne. sendEvent (Events. E1) ;

Message<Event s> nessage = MessageBui | der
.wi t hPayl oad(Event s. E2)
. set Header ("foo0", "bar")
Lbuild();

st at eMachi ne. sendEvent (nessage) ;

In above example we send an event using two different ways. Firstly we simply sent a type safe event
using state machine api method sendEvent (E event) . Secondly we send event wrapped in a Spring
messaging Message using api method sendEvent (Message<E> nessage) with a custom event
headers. This allows user to add arbitrary extra information with an event which is then visible to
StateContext when for example user is implementing actions.

Note

Message headers are generally passed on until machine runs to completion for a specific event.
For example if an event is causing transition into a state A which have an anonymous transition
into a state B, original event is available for actions or guards in state B.

20.2 TimerTrigger

TimerTrigger is useful when something needs to be triggered automatically without any user interaction.
Tri gger is added to a transition by associating a timer with it during a configuration.

Currently there are two types of timers supported, one which fires continuously and one which fires once
a source state is entered.

2.1.0M1 Spring Statemachine 54

Spring Statemachine - Reference Documentation

@onfi guration
@Enabl eSt at eMachi ne

@verride

throws Exception {

states
. Wi thStates()
Linitial("s1")
.state("S2")
.state("S3");
}
@verride

throws Exception {
transitions
. Wi t hExt ernal ()

.and()
.wi thExternal ()

.and()

.withlnternal ()
.source("S2")
.action(tinmerAction())
.timer(1000)

.and()

.withlnternal ()
.source("S3")
.action(tinmerAction())
.ti mer Once(1000);

}

@Bean
public TinmerAction tinerAction() {
return new Ti merAction();

}
}

@verride

}

public class Config2 extends StateMachi neConfi gurerAdapter<String, String> {

public void configure(StateMchi neStateConfigurer<String, String> states)

public void configure(StateMachi neTransitionConfigurer<String, String> transitions)

.source("Sl1").target ("S2").event ("E1L")

.source("S1").target("S3").event("E2")

public class TinerAction inplenents Action<String, String> {

public void execute(StateContext<String, String> context) {
/'l do sonmething in every 1 sec

In above we have three states, S1, S2 and S3. We have a normal external transition from S1 to S2
and from S1 to S3 with events E1 and E2 respectively. Interesting parts are when we define internal

transitions for source states S2 and S3.

For both transitions we associate Act i on bean ti ner Act i on where source state S2 will use ti ner
and S3 will use t i mer Once. Values given are with milliseconds which in these cases mean 1000ns.

Once a state machine receive event E1 it does a transition from S1 to S2 and timer kicks in. As long as
state is kept in S2 Ti mer Tri gger executes and causes a transition associated with that state which
in this case is the internal transition which has the t i mer Act i on defined.

Once a state machine receive event E2 it does a transition from S1 to S3 and timer kicks in. This timer
is executed only once after state is entered after a delay defined in a timer.

2.1.0.M1

Spring Statemachine 55

Spring Statemachine - Reference Documentation

Note

Behind a scenes timers are a simple triggers which may cause an transition to happen. Defining
a transition with a t i mer () will keep firing triggers and only causes transition if source state is
active. Transition with ti mer Once() is a little different as it will only trigger after a delay when
source state is actually entered.

Tip

Use ti ner Once() if you want something to happen after a delay exactly once when state is
entered.

2.1.0M1 Spring Statemachine

56

Spring Statemachine - Reference Documentation

21. Listening State Machine Events

There are use cases where you just want to know what is happening with a state machine, react to
something or simply get logging for debugging purposes. SSM provides interfaces for adding listeners
which then gives an option to get callback when various state changes, actions, etc are happening.

You basically have two options, either to listen Spring application context events or directly attach
listener to a state machine. Both of these basically will provide same information where one is producing
events as event classes and other producing callbacks via a listener interface. Both of these have pros
and cons which will be discussed later.

21.1 Application Context Events

Application context events classes are OnTransitionStartEvent, OnTransitionEvent,
OnTransitionEndEvent, OnStateExitEvent, OnStateEntryEvent, OnStateChangedEvent,
OnStateMachineStart and OnStateMachineStop and others which extends base event class
StateMachineEvent These can be used as is with spring typed ApplicationListener.

StateMachine will send context events via StateMachineEventPublisher it's set. Default implementation
is automatically created if @Configuration class is annotated with @EnableStateMachine.

public class StateMachi neApplicati onEventLi st ener
i npl enents Appl i cationLi st ener <St at eMachi neEvent > {

@verride
public voi d onApplicationEvent (StateMachi neEvent event) {
}

}

@onfiguration
public class ListenerConfig {

@Bean
publ i c StateMachi neAppl i cationEventLi stener contextListener() {
return new St at eMachi neAppl i cati onEventLi stener();

}

Context events are also automatically enabled via @EnableStateMachine with machine builder
StateMachine registered as a bean as shown below.

@onfiguration
@nabl eSt at eMachi ne
public class Manual Bui | der Config {

@Bean
public StateMachi ne<String, String> stateMachine() throws Exception {

Bui | der<String, String> buil der = StateMachi neBuil der. buil der();
bui | der. configureStates()
. Wi thStates()
Linitial ("S1")
.state("S2");
bui | der. confi gureTransitions()
.wi thExternal ()
.source("S1")
.target("S2")
.event ("E1");
return builder. build();

2.1.0M1 Spring Statemachine 57

Spring Statemachine - Reference Documentation

21.2 State Machine Listener

Using StateMachineListener you can either extend it and implement all callback methods or use
StateMachineListenerAdapter class which contains stub method implementations and choose which
ones to override.

public class StateMachi neEventLi st ener
ext ends StateMachi neLi st ener Adapt er <St ates, Events> {

@verride
public void stateChanged(State<States, Events> from State<States, Events> to) {

}

@verride
public void stateEntered(State<States, Events> state) {

}

@verride
public void stateExited(State<States, Events> state) {

}

@verride
public void transition(Transition<States, Events> transition) {

}

@verride
public void transitionStarted(Transition<States, Events> transition) {

}

@verride
public void transitionEnded(Transition<States, Events> transition) {

}

@verride
public void stateMachi neStarted(StateMachi ne<St ates, Events> stateMachine) {

}

@verride
public void stateMachi neSt opped(St at eMachi ne<St at es, Event s> st at eMachi ne) {

}

@verride
public void event Not Accept ed(Message<Event s> event) {

}

@verride
public void extendedSt at eChanged(Obj ect key, Object value) {

}

@verride
public voi d stateMchi neError (StateMchi ne<States, Events> stateMachine, Exception exception) {

}

@verride
public void stateContext(StateContext<States, Events> stateContext) {

}

In above example we simply created our own listener class StateMachineEventListener which extends
StateMachineListenerAdapter.

Listener method st at eCont ext gives an access to various StateContext changes on a different
stages. More about about it in section Chapter 19, Using StateContext.

2.1.0M1 Spring Statemachine 58

Spring Statemachine - Reference Documentation

Once you have your own listener defined, it can be registered into a state machine via its interface as
shown below. It's just a matter of flavour if it’'s hooked up within a spring configuration or done manually

at any time of application life-cycle.

public class Config7 {

@\ut owi r ed
St at eMachi ne<St at es, Event s> st at eMachi ne;

@Bean

st at eMachi ne. addSt at eLi st ener (1i stener);
return listener;

21.3 Limitations and Problems

publ i c StateMachi neEvent Li st ener stat eMachi neEvent Li stener () {
St at eMachi neEvent Li stener |istener = new StateMachi neEventLi stener();

Spring application context is not a fastest eventbus out there so it is advised to give some thought
what is a rate of events state machine is sending. For better performance it may be better to use
StateMachineListener interface. For this specific reason it is possible to use cont ext Event s flag with
@EnableStateMachine and @EnableStateMachineFactory to disable Spring application context events

as shown above.

@onfiguration
@nabl eSt at eMachi ne(cont ext Events = fal se)
public class Config8
ext ends Enuntt at eMachi neConfi gur er Adapt er <St at es,

}

@onfiguration
@nabl eSt at eMachi neFact ory(cont ext Events = fal se)
public class Config9
ext ends Enuntt at eMachi neConfi gur er Adapt er <St at es,

}

Event s> {

Event s> {

2.1.0M1 Spring Statemachine

59

Spring Statemachine - Reference Documentation

22. Context Integration

Itis a little limited to do interaction with a state machine by either listening its events or using actions with
states and transitions. Time to time this approach would be too limited and verbose to create interaction
with the application a state machine is working with. For this specific use case we have made a spring
style context integration which easily attach state machine functionality into your beans.

Available annotations has been harmonised to enable access to same state machine execution points
than what is available from Chapter 21, Listening State Machine Events.

@WithStateMachine annotation can be used to associate a state machine with an existing bean. Then
it is possible to start adding supported annotations to methods of that bean.

@Vt hSt at eMachi ne
public class Beanl {

@nTransition
public void anyTransition() {

}

It is also possible to attach to any other state machine from an application context by using annotation
nare field.

@V t hSt at eMachi ne(nane = "nyMachi neBeanNane")
public class Bean2 {

@nTransition
public void anyTransition() {

}

Sometimes it is more convenient to use machine id which is something user can set to better identify
multiple instances. This id maps to getld() method in a StateMachine interface.

@\ t hSt at eMachi ne(id = "nyMachi nel d")
public class Beanl6 {

@nTransition
public void anyTransition() {

}

@WithStateMachine can also be used as a meta-annotation as shown above. In this case you could
annotate your bean with WithMyBean.

@rar get (El enent Type. TYPE)

@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@\ t hSt at eMachi ne(nane = "nyMachi neBeanNane")
public @nterface WthMBean {

}

Note

Return type of these methods doesn’t matter and is effectively discard.

2.1.0M1 Spring Statemachine 60

Spring Statemachine - Reference Documentation

22.1 Enabling Integration

All features for @WithStateMachine can be enabled by using annotation @EnableWithStateMachine
which simply imports needed configuration into Spring Application Context. Both @EnableStateMachine
and @EnableStateMachineFactory are already annotated with this so there is no need for user to
add it again. However if machine is build and configured without a use of configuration adapters,
@EnableWithStateMachine must be used order to use features with @WithStateMachine. Idea for this
is shown below.

public static StateMachine<String, String> buil dVachi ne(BeanFactory beanFactory) throws Exception {
Bui | der<String, String> builder = StateMachi neBuil der. builder();

bui | der. confi gureConfi guration()
.wi thConfiguration()
. machi nel d(" nyMachi nel d")
. beanFact or y(beanFact ory);

bui | der. configureStates()
. Wi thStates()
Linitial ("S1")
.state("S2");

bui | der. confi gureTransitions()
.wi thExternal ()
.source("S1")
.target("S2")
.event ("E1");

return builder. build();

}

@\ t hSt at evachi ne(id = "myMachi nel d")
static class Beanl7 {

@nsSt at eChanged
public voi d onStateChanged() {
}

Important

If machine is not created as a Bean then it is mandatory to set BeanFactory for a machine as
shown above. Otherwise machine will be unaware of handlers calling your @WithStateMachine
methods.

22.2 Method Parameters

Every annotation is supporting exactly same set of possible method parameters but runtime behaviour
is different depending on an annotation itself and a stage where annotated method is called. To better
understand how context works see Chapter 19, Using StateContext.

Note

For differences between method parameters, see individual annotation docs below.

Effectively all annotated methods are called using Spring SPel expressions which are build dynamically
during the process. As to make this work these expressions needs to have a root object it evaluates
against. This root object is a St at eCont ext and we have also made some tweaks internally so that it
is possible to access St at eCont ext methods directly without going through the context handle.

2.1.0M1 Spring Statemachine 61

Spring Statemachine - Reference Documentation

Simplest method parameter would naturally be a St at eCont ext itself.

@\ t hSt at eMachi ne
public class Bean3 {

@nTransition
public void anyTransition(StateContext<String, String> stateContext) {

}

Rest of the St at eCont ext content can be accessed as shown below. Number of parameters or order
of those doesn’t matter.

@\t hSt at eMachi ne
public class Bean4 {

@nTransition

public void anyTransition(
@vent Headers Map<String, Object> headers,
Ext endedSt at e ext endedSt at e,
St at eMachi ne<String, String> stateMachine,
Message<Stri ng> nessage,
Exception e) {

22.3 Transition Annotations

Annotations for transitions are OnTr ansi ti on, OnTransi ti onStart and OnTr ansi ti onEnd.

These annotations behave exactly same and let's see how OnTransi ti on is used. Within this
annotation a property’s source and target can be used to qualify a transition. If source and target is left
empty then any transition is matched.

@Vt hSt at eMachi ne
public class Bean5 {

@nTransition(source = "S1", target = "S2")
public void fronS1ToS2() {
}

@nTransition
public void anyTransition() {

}

Default @OnTransition annotation can't be used with a state and event enums user have created due
to java language limitations, thus string representation have to be used.

Additionally it is possible to access Event Headers and Ext endedSt ate by adding needed
arguments to a method. Method is then called automatically with these arguments.

@N t hSt at eMachi ne
public class Bean6 {

@t at esOnTransi ti on(source = States. Sl, target = States. S2)
public void fronSlToS2(@vent Headers Map<String, Object> headers, ExtendedState extendedState) {

}

However if you want to have a type safe annotation it is possible to create a new annotation and use
@OnTransition as meta annotation. This user level annotation can make a reference to actual states
and events enums and framework will try to match these in a same way.

2.1.0M1 Spring Statemachine 62

Spring Statemachine - Reference Documentation

@rar get (El enent Type. METHOD)

@Ret ent i on(Ret enti onPol i cy. RUNTI ME)
@nTransition

public @nterface StatesOnTransition {

States[] source() default {};

States[] target() default {};

Above we created a @StatesOnTransition annotation which defines sour ce and t ar get as a type
safe manner.

@N t hSt at eMachi ne
public class Bean7 {

@t at esOnTransi ti on(source = States. Sl, target = States. S2)
public void fronS1ToS2() {

}

In your own bean you can then use this @StatesOnTransition as is and use type safe sour ce and
target.

22.4 State Annotations

Annotations for states are OnSt at eChanged, OnSt at eEntry and OnSt at eExi t .

@Vt hSt at eMachi ne
public class Bean8 {

@nsSt at eChanged
public voi d anyStat eChange() {
}

In a same way that in transition annotations it's possible to define target and source states.

@N' t hSt at eMachi ne
public class Bean9 {

@nsSt at eChanged(source = "S1", target = "S2")
public void stateChangeFronSltoS2() {
}

For type safety a new annotation needs to be created for enums with OnSt at eChanged as a meta
annotation.

@rar get (El enent Type. METHOD)

@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)
@nsSt at eChanged

public @nterface StatesOnStates {

States[] source() default {};

States[] target() default {};

2.1.0M1 Spring Statemachine 63

Spring Statemachine - Reference Documentation

@\t hSt at eMachi ne
public class BeanlO {

@5t at esOnSt at es(source = States. Sl, target = States. S2)
public void fronB1ToS2() {
}

Methods for state entry and exit behave in a same way.

@N t hSt at eMachi ne
public class Beanll {

@nSt at eEnt ry
public void anyStateEntry() {

}

@nSt at eExi t
public void anyStateExit() {

}

22.5 Event Annotation

There is one event related annotation named OnEvent Not Accept ed. It is possible to listen only

specific event by defining event property with the annotation.

@Vt hSt at eMachi ne
public class Beanl2 {

@nEvent Not Accept ed
public void anyEvent Not Accept ed() {
}

@nEvent Not Accept ed(event = "E1")
public void elEvent Not Accepted() {
}

22.6 State Machine Annotations

Annotations for state machine are OnStateMachi neStart,

OnSt at eMachi neError.

During a state machine start and stop lifecycle methods are called.

OnSt at eMachi neStop and

@\t hSt at eMachi ne
public class Beanl3 {

@nSt at eMachi neSt art
public void onStateMachineStart () {

}

@nsSt at eMachi neSt op
public void onStateMachi neStop() {
}

In case a state machine goes into an error with exception, below annotation is called.

2.1.0M1 Spring Statemachine

64

Spring Statemachine - Reference Documentation

@\t hSt at eMachi ne
public class Beanl4 {

@St at eMachi neError
public void onStateMachi neError() {

}

22.7 Extended State Annotation

There is one extended state related annotation named OnExt endedSt at eChanged. It's also possible
to listen changes only for specific key changes.

@\ t hSt at eMachi ne
public class Beanl5 {

@nExt endedSt at eChanged
public voi d anyStateChange() {

}

@nExt endedSt at eChanged(key = "keyl")
public voi d keylChanged() {
}

2.1.0M1 Spring Statemachine 65

Spring Statemachine - Reference Documentation

23. State Machine Accessor

St at eMachi ne is a main interface to communicate with a state machine itself. Time to time there is a
need to get more dynamical and programmatic access to internal structures of a state machine and its
nested machines and regions. For these use cases a St at eMachi ne is exposing a functional interface
St at eMachi neAccessor which provides an interface to get access to individual St at eMachi ne and
Regi on instances.

St at eMachi neFunction is a simple functional interface which allows to apply
St at eMachi neAccess interface into a state machine. With jdk7 these will create a little verbose code
but with jdk8 lambdas things look relatively non-verbose.

Method doW t hAl | Regi ons gives access to all Regi on instances in a state machine.

st at eMachi ne. get St at eMachi neAccessor (). doW t hAl | Regi ons(new
St at eMachi neFunct i on<St at eMachi neAccess<String, String>>() {

@verride
public voi d appl y(StateMachi neAccess<String, String> function) {
functi on. set Rel ay(st at eMachi ne) ;
}
5D

st at eMachi ne. get St at eMachi neAccessor ()
. doW t hAl | Regi ons(access -> access. set Rel ay(stateMachine));

Method doW t hRegi on gives access to single Regi on instance in a state machine.

st at eMachi ne. get St at eMachi neAccessor (). doW t hRegi on(new
St at eMachi neFunct i on<St at eMachi neAccess<String, String>>() {

@verride
public void apply(StateMachi neAccess<String, String> function) {
function. set Rel ay(st at eMachi ne);
}
55

st at eMachi ne. get St at eMachi neAccessor ()
. doWt hRegi on(access -> access. set Rel ay(st at eMachi ne));

Method wi t hAl | Regi ons gives access to all Regi on instances in a state machine.

for (StateMachi neAccess<String, String> access :
st at eMachi ne. get St at eMachi neAccessor (). w t hAl | Regi ons()) {
access. set Rel ay(st ateMachi ne);

}

st at eMachi ne. get St at eMachi neAccessor (). w t hAl | Regi ons()
.strean().forEach(access -> access. set Rel ay(st at eMachi ne));

Method wi t hRegi on gives access to single Regi on instance in a state machine.

st at eMachi ne. get St at eMachi neAccessor ()
. Wi t hRegi on() . set Rel ay(st at eMachi ne) ;

2.1.0M1 Spring Statemachine 66

Spring Statemachine - Reference Documentation

24. State Machine Interceptor

Instead of wusing a StateMachineListener interface one option is to use a
St at eMachi nel nt er cept or. One conceptual difference is that an interceptor can be used to
intercept and stop a current state change or transition logic. Instead of implementing full interface,
adapter class St at eMachi nel nt er cept or Adapt er can be used to override default no-op methods.

Note

There is one recipe Chapter 35, Persist and one sample Chapter 42, Persist which are related
to use of an interceptor.

Interceptor can be registered via St at eMachi neAccessor . Concept of an interceptor is relatively deep
internal feature and thus is not exposed directly via St at eMachi ne interface.

st at eMachi ne. get St at eMachi neAccessor ()
.wi t hRegi on() . addSt at eMachi nel nt er cept or (new St at eMachi nel nterceptor<String, String>() {

@verride
publ i c Message<String> preEvent (Message<String> nessage, StateMachine<String, String>
st at eMachi ne) {
return message;

}

@verride
public StateContext<String, String> preTransition(StateContext<String, String> stateContext) {
return stateContext;

}

@verride
public void preStateChange(State<String, String> state, Message<String> nessage,
Transition<String, String> transition, StateMachine<String, String> stateMachine) {

}

@verride
public StateContext<String, String> postTransition(StateContext<String, String> stateContext) {
return stateContext;

}

@verride
public void post StateChange(State<String, String> state, Message<String> nessage,
Transition<String, String> transition, StateMachine<String, String> stateMachine) {

}

@verride
publ i c Exception stateMachi neError(StateMachi ne<String, String> stateMachine,
Excepti on exception) {
return exception;
}
19

Note

More about error handling shown in above example, see section Chapter 26, State Machine Error
Handling.

2.1.0M1 Spring Statemachine 67

Spring Statemachine - Reference Documentation

25. State Machine Security

Security features are built atop of functionality from a Spring Security. Security features are handy when
it is required to protect part of a state machine execution and interaction with it.

Important

We expect user to be fairly familiar with a Spring Security meaning we don’t go into details of how
overall security framework works. For this read Spring Security reference documentation.

First level of defence with a security is naturally protecting events which really are a driver from user
point of view what is going to happen in a state machine. More fine grained security settings can then be
defined for transitions and actions. This can be think of like allowing an employee to access a building,
walk around it and then giving more detailed access rights to enter different rooms and allow to switch
lights on and off while being on those rooms. If you trust your users then event security may be all you
need, if you don’t, then more detailed security needs to be applied.

More detailed info can be found from section Section 25.6, “Understanding Security”.
Tip

For complete example, see sample Chapter 46, Security.

25.1 Configuring Security

All generic configurations for security are done in SecurityConfi gur er which is obtained from
St at eMachi neConf i gur ati onConfi gur er. Security is disabled on default even if Spring Security
classes are present.

@onfiguration
@nabl eSt at eMachi ne
static class Config4 extends StateMachi neConfigurerAdapter<String, String> {

@verride
public voi d configure(StateMachi neConfi gurationConfigurer<String, String> config)
throws Exception {
config
. Wi thSecurity()
. enabl ed(true)
.transitionAccessDeci si onManager (nul |')
.event AccessDeci si onManager (nul I');

If absolutely needed AccessDeci si onManager for both events and transitions can be customised. If
decision managers are not defined or are set to nul | , default managers are created internally.

25.2 Securing Events

Event security is defined on a global level within a Securi t yConfi gurer.

2.1.0M1 Spring Statemachine 68

http://projects.spring.io/spring-security

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
static class Configl extends StateMachi neConfigurerAdapter<String, String> {

@verride
public voi d configure(StateMachi neConfi gurationConfigurer<String, String> config)
throws Exception {
config
. Wi thSecurity()
. enabl ed(true)
.event ("true")
.event (" ROLE_ANONYMOUS", Conpari sonType. ANY) ;

In above configuration we use expression t r ue which always evaluates to TRUE. Using an expression
which always evaluates to TRUE would not make sense in a real application but gives a point that
expression needs to return either TRUE or FALSE. We also defined attribute ROLE_ANONYMOUS and
Conpari sonType ANY. Using attributes and expressions, see section Section 25.5, “Using Security
Attributes and Expressions”.

25.3 Securing Transitions

Transition security can be defined globally.

@onfiguration
@nabl eSt at eMachi ne
static class Config6 extends StateMachi neConfigurerAdapter<String, String> {

@verride
public voi d configure(StateMachi neConfi gurationConfigurer<String, String> config)
throws Exception {
config
. Wi thSecurity()
. enabl ed(true)
.transition("true")
.transition("ROLE_ANONYMOUS", Conpari sonType. ANY);

If security is defined in a transition itself it will override any globally set security.

@onfiguration
@nabl eSt at eMachi ne
static class Config2 extends StateMachi neConfigurerAdapter<String, String> {

@verride
public void configure(StateMachi neTransitionConfigurer<String, String> transitions)
throws Exception {
transitions
.wi thExternal ()
. source("S0")
.target ("S1")
.event ("A")
. secur ed(" ROLE_ANONYMOUS", Conpari sonType. ANY)
.secured("hasTarget ('S1')");

Using attributes and expressions, see section Section 25.5, “Using Security Attributes and Expressions”.

2.1.0M1 Spring Statemachine 69

Spring Statemachine - Reference Documentation

25.4 Securing Actions

There are no dedicated security definitions for actions in a state machine, but it can be accomplished
using a global method security from a Spring Security. This simply needs that an Act i on is defined as
a proxied @ean and its execut e method annotated with a @ecur ed.

@configuration
@Enabl eSt at eMachi ne
static class Config3 extends StateMchi neConfigurerAdapter<String, String> {

@verride
public void configure(StateMachi neConfi gurationConfigurer<String, String> config)
throws Exception {
config
.withSecurity()
.enabl ed(true);

}

@verride
public void configure(StateMachi neStateConfigurer<String, String> states)
throws Exception {

states
. Wi thStates()
Linitial ("S0")
.state("S1");
}
@verride

public void configure(StateMachi neTransitionConfigurer<String, String> transitions)
throws Exception {
transitions

.wi thExternal ()
. source("S0")
.target("S1")
.action(securedAction())
.event ("A");

}

@cope(proxyMde = ScopedProxyMde. TARGET_CLASS)

@Bean
public Action<String, String> securedAction() {
return new Action<String, String>() {

@ecur ed(" ROLE_ANONYMOUS")
@verride
public void execute(StateContext<String, String> context) {

}

Global method security needs to be enabled with a Spring Security which is done with along a lines
shown below. See Spring Security reference docs for more details.

@onfi guration
@nabl ed obal Met hodSecurity(securedEnabl ed = true)
public static class Config5 extends WebSecurityConfigurerAdapter {

@\ut owi r ed
public void configured obal (Aut henti cati onManager Bui | der auth) throws Exception {
aut h
. i nMenor yAut hent i cati on()
. W thUser ("user"). password("password").rol es("USER");
}

2.1.0M1 Spring Statemachine 70

Spring Statemachine - Reference Documentation

25.5 Using Security Attributes and Expressions

Generally there are two ways to define security properties, firstly using security attributes and secondly
using security expressions. Attributes are easier to use but are relatively limited in terms of functionality.
Expressions provide more features but are a little bit of harder to use.

Generic Attribute Usage

On default AccessDeci si onManager instances for events and transitions both use a Rol eVot er,
meaning you can use role attributes familiar from Spring Security.

For attributes we have 3 different comparison types, ANY, ALL and MAJORI TY which maps into
default access decision managers Af fi r mat i veBased, Unani nousBased and ConsensusBased
respectively. If custom AccessDeci si onManager has been defined, comparison type is effectively
discarded as it's only used to create a default manager.

Generic Expression Usage

Security expressions needs to return either TRUE or FALSE.

The base class for expression root objects is Securit yExpr essi onRoot . This provides some
common expressions which are available in both transition and event security.

Table 25.1. Common built-in expressions

Expression Description

hasRol e([rol e]) Returns t r ue if the current principal has
the specified role. By default if the supplied
role does not start with 'ROLE_" it will
be added. This can be customized by
modifying the def aul t Rol ePrefi x on
Def aul t WebSecuri t yExpr essi onHandl er.

hasAnyRol e([rol el, rol e2]) Returns t r ue if the current principal has any
of the supplied roles (given as a comma-
separated list of strings). By default if the
supplied role does not start with 'ROLE_" it
will be added. This can be customized by
modifying the def aul t Rol ePrefi x on
Def aul t WebSecuri t yExpr essi onHandl er.

hasAut hority([authority]) Returns t r ue if the current principal has the
specified authority.

hasAnyAut hority([authorityl, aut hority2Returnstr ue if the current principal has any of
the supplied roles (given as a comma-separated
list of strings)

princi pal Allows direct access to the principal object
representing the current user

aut henti cati on Allows direct access to the current
Aut hent i cat i on object obtained from the
Securi t yCont ext

2.1.0M1 Spring Statemachine 71

Spring Statemachine - Reference Documentation

Expression Description
permtAll Always evaluatesto t r ue
denyAl | Always evaluates to f al se

i sAnonynous()

i sRerrember Me()

Returns t r ue if the current principal is an
anonymous user

Returns t r ue if the current principal is a
remember-me user

i sAut henti cat ed()

Returns t r ue if the user is not anonymous

i sFul | yAut henti cat ed()

hasPer m ssi on(Chj ect target, Object
per m ssi on)

hasPer m ssi on(hj ect targetld,
String target Type, Object
per m ssi on)

Returns t r ue if the user is not an anonymous or
a remember-me user

Returns t r ue if the user has access to the
provided target for the given permission. For
example, hasPer m ssi on(donai nObj ect
"read')

Returns t r ue if the user has access to the
provided target for the given permission.
For example, hasPer m ssi on(1,

' com exanpl e. domai n. Message’ ,
"read')

Event Attributes

Event id can be matched by using prefix EVENT _.

attribute EVENT_A.

Event Expressions

For example matching event A would match with

The base class for expression root object for event is Event Securit yExpressi onRoot . This
provides access to a Message object which is passed around with eventing.

Table 25.2. Event expressions

Expression

hasEvent ((bj ect event)

Transition Attributes

Matching transition sources and targets,

TRANSI TI ON_TARGET _ respectively.

Transition Expressions

Description

Returns t r ue if the event matches given event.

use prefixes TRANSI TI ON_SOURCE_ and

The base class for expression root object for transition is Tr ansi t i onSecur i t yExpr essi onRoot .
This provides access to a Tr ansi t i on object which is passed around for transition changes.

2.1.0M1 Spring Statemachine

72

Spring Statemachine - Reference Documentation

Table 25.3. Transition expressions

Expression Description

hasSour ce(Gbj ect source) Returns t r ue if the transition source matches
given source.

hasTar get (Chj ect target) Returns t r ue if the transition target matches
given target.

25.6 Understanding Security

This section provides more detailed info how security works within a state machine. Not really something
you'd need to know but it is always better to be transparent instead of hiding all the magic what happens
behind the scenes.

Note

Security only makes sense if State Machine is executed in a walled garden where user don’t have
direct access to the application thus could modify Spring Security’s Securi t yCont ext hold in
a thread local. If user controls the jvm, then effectively there is no security at all.

Integration point for security is done with a StateMachinelnterceptor which is then added automatically
into a state machine if security is enabled. Specific class is a St at eMachi neSecuri tyl nt er cept or
which intercepts events and transitions. This interceptor then consults Spring Security's
AccessDeci si onManager if event can be send or if transition can be executed. Effectively if decision
or vote with a AccessDeci si onManager will result an exception, event or transition is denied.

Due to way how AccessDeci si onManager from Spring Security works, we need one instance of it
per secured object. This is a reason why there is a different manager for events and transitions. In this
case events and transitions are different class objects we're securing.

On default for events, voters Event Expr essi onVot er, Event Vot er and Rol eVot er are added into
a AccessDeci si onManager .

On default for transitions, voters Transiti onExpressi onVoter, TransitionVoter and
Rol eVot er are added into a AccessDeci si onManager .

2.1.0M1 Spring Statemachine 73

Spring Statemachine - Reference Documentation

26. State Machine Error Handling

If state machine detects an internal error during a state transition logic it may throw an exception. Before
this exception is processed internally, user is given a chance to intercept.

Normal St at eMachi nel nt er cept or can be used to intercept errors and example of it is shown
above.

St at eMachi ne<String, String> stateMachine;

voi d addlnterceptor() {
st at eMachi ne. get St at eMachi neAccessor ()
. doW t hRegi on(new St at eMachi neFunct i on<St at eMachi neAccess<String, String>>() {

@verride
public void appl y(StateMachi neAccess<String, String> function) {
function. addSt at eMachi nel nt er cept or (
new St at eMachi nel nt er cept or Adapter<String, String>() {
@verride
publ i c Exception stateMachi neError (StateMachi ne<String, String> stateMchine,
Exception exception) {
/1 return null indicating handl ed error
return exception;

1)
1)

When errors are detected, normal event notify mechanism is executed. This allows to use either
St at eMachi neLi st ener or Spring Application context event listener, more about these read section
Chapter 21, Listening State Machine Events.

Having said that, a simple listener would look like:

public class ErrorStateMchineLi stener
ext ends Stat eMachi neLi st ener Adapter<String, String> {

@verride
public void stateMachi neError (StateMachi ne<String, String> stateMachi ne, Exception exception) {
/1 do sonething with error

}

Generic Appl i cati onLi st ener checking St at eMachi neEvent would look like.

public class GenericApplicationEventListener
i npl enents ApplicationLi st ener<StateMachi neEvent > {

@verride
public void onApplicationEvent (St ateMachi neEvent event) {
if (event instanceof OnStateMachineError) {
/1 do sonething with error

}

It's also possible to define Appl i cati onLi st ener directly to recognize only St at eMachi neEvent
instances.

2.1.0M1 Spring Statemachine 74

Spring Statemachine - Reference Documentation

public class ErrorApplicationEventListener
i npl enents Appl i cationLi st ener <OnSt at eMachi neError> {

@verride
public void onApplicationEvent (OnSt at eMachi neError event) {

/1 do sonething with error

}

Tip

Actions defined for transitions also have their own error handling logic the section called
“Transition Action Error Handling”.

2.1.0M1 Spring Statemachine

75

Spring Statemachine - Reference Documentation

27. State Machine Services

StateMachine services are higher level implementations meant to provide more user level functionalities
to ease normal runtime operations. Currently only one service interface Section 27.1, “Using
StateMachineService” exists.

27.1 Using StateMachineService

St at eMachi neServi ce is an interface meant to handle running machines and have a
simple methods to 'acquire’ and 'release’ machines. It has one default implementation named
Def aul t St at eMachi neSer vi ce.

2.1.0M1 Spring Statemachine 76

Spring Statemachine - Reference Documentation

28. Persisting State Machine

Traditionally an instance of a state machine is used as is within a running program. More dynamic
behaviour is possible to achieve via dynamic builders and factories which allows state machine
instantiation on-demand. Building an instance of a state machine is relatively heavy operation so if there
is a need to i.e. handle arbitrary state change in a database using a state machine we need to find a
better and faster way to do it.

Persist feature allows user to save a state of a state machine itself into an external repository and later
reset a state machine based of serialized state. For example if you have a database table keeping
orders it would be way too expensive to update order state via a state machine if a new instance would
need to be build for every change. Persist feature allows you to reset a state machine state without
instantiating a new state machine instance.

Note

There is one recipe Chapter 35, Persist and one sample Chapter 42, Persist which provides more
info about persisting states.

While it is possible to build a custom persistence feature using a St at eMachi neLi st ener it has one
conceptual problem. When listener notifies a change of state, state change has already happened. If a
custom persistent method within a listener fails to update serialized state in an external repository, state
in a state machine and state in an external repository are then in inconsistent state.

State machine interceptor can be used instead of where attempt to save serialized state into an external
storage is done during the a state change within a state machine. If this interceptor callback fails, state
change attempt will be halted and instead of ending into an inconsistent state, user can then handle this
error manually. Using the interceptors are discussed in Chapter 24, State Machine Interceptor.

28.1 Using StateMachineContext

It is impossible to persist a StateMachine using normal java serialization as object graph is too rich
and contains too much dependencies into other Spring context classes. St at eMachi neCont ext is a
runtime representation of a state machine which can be used to restore an existing machine into a state
represented by a particular St at eMachi neCont ext object.

28.2 Using StateMachinePersister

Building a St at eMachi neCont ext and then restoring a state machine from it has always been
a little bit of a black magic if done manually. Interface St at eMachi nePer si st er aims to ease
these operations by providing persist and restore methods. Default implementation of this interface is
Def aul t St at eMachi nePer si st er

Usage of a St at eMachi nePer si st er is easy to demonstrate by following a snippets from tests. We
start by creating to two similar configs for a state machine nachi nel and nachi ne2. We could build
different machines for this demonstration using various other ways but this serves a purpose for this
case.

2.1.0M1 Spring Statemachine 77

Spring Statemachine - Reference Documentation

@onfi guration

@Enabl eSt at eMachi ne(nane = "machi nel")
static class Configl extends Config {

}

@configuration

@Enabl eSt at eMachi ne(nane = "nmachi ne2")
static class Config2 extends Config {

}

static class Config extends StateMachi neConfigurerAdapter<String, String> {

@verride
public void configure(StateMachi neStateConfigurer<String, String> states) throws Exception {
states
.withStates()
Linitial("s1")
.state("S1")
.state("S2");
}
@verride
public void configure(StateMachi neTransitionConfigurer<String, String> transitions) throws Exception
{
transitions
.wi t hExt ernal ()
.source("S1")
.target("S2")
.event ("E1");
}
}

As we're using a St at eMachi nePer si st we simply create an in-memory implementation.

Note

In-memory sample is just for demonstration purposes, use a real persistent storage
implementations.

static class | nMenoryStateMachi nePersist inplenments StateMachi nePersist<String, String, String> {
private final HashMap<String, StateMachineContext<String, String>> contexts = new HashMap<>();

@verride
public void wite(StateMachi neContext<String, String> context, String contextObj) throws Exception {
cont exts. put (cont ext Cbj, context);

}

@verride
public StateMachi neContext<String, String> read(String contextQj) throws Exception {
return contexts. get(contextObj);

}

After we have instantiated two different machines we can transfer nachi nel into state S2 via event
E1, then persist it and restore machi ne2.

2.1.0M1 Spring Statemachine 78

Spring Statemachine - Reference Documentation

I nMenor ySt at eMachi nePer si st st at eMachi nePersi st = new | nMenor ySt at eMachi nePer si st () ;
St at eMachi nePersi ster<String, String, String> persister = new
Def aul t St at eMachi nePer si st er <>(st at eMachi nePer si st) ;

St at eMachi ne<String, String> stateMachinel = context.getBean("nmachi nel", StateMachine. class);
St at eMachi ne<String, String> stateMachine2 = context.getBean("nachi ne2", StateMachine.class);
st at eMachi nel. start();

st at eMachi nel. sendEvent (" E1");
assert That (stat eMachi nel. get State().getlds(), contains("S2"));

persi ster. persist(stateMachinel, "nyid");
persister.restore(stateMachine2, "nyid");
assert That (st at eMachi ne2. get State().getlds(), contains("S2"));

28.3 Using Redis

Support for persisting State Machine into Redis is done via Reposi t or ySt at eMachi nePer si st
which implements St at eMachi nePer si st . Specific implementation is a
Redi sSt at eMachi neCont ext Reposi tory which uses kryo serialization to persist a
St at eMachi neCont ext into Redi s.

For StateMachi nePersister we have a redis related Redi sStat eMachi nePersi ster
implementation which takes an instance of a St at eMachi nePer si st and uses String as its context
object.

Tip
Check sample Chapter 47, Event Service for detailed usage.

Redi sSt at eMachi neCont ext Reposi t ory will need a Redi sConnecti onFact ory for it to work
and we recommend a Jedi sConnect i onFact ory for it as seeing from above example.

28.4 Using StateMachineRuntimePersister

St at eMachi neRunt i nePer si ster is a simple extension to Stat eMachi nePersi st adding
interface level method to get St at eMachi nel nt er cept or associated with it. This interceptor is then
required to persist machine during state changes without needing to stop and start a machine.

Currently there are implementations for this interface for out-of-the-box
supported Spring Data Repositories. These are JpaStat eMachi neRunti nmePersi ster,
Redi sSt at eMachi neRunt i mePer si st er and MongoDbSt at eMachi neRunt i mePer si ster.

Tip

Check sample ??? for detailed usage.

2.1.0M1 Spring Statemachine 79

Spring Statemachine - Reference Documentation

29. Spring Boot Support

Auto-configuration module spri ng- st at enachi ne- aut oconf i gur e contains all integration logic
with Spring Boot providing functionality i.e. for auto-config and actuators. All what is needed is to have
State Machine as part of a boot application together with this library.

29.1 Monitoring and Tracing

Boot St at eMachi neMonitor is created automatically and associated with a state
machine. Boot St at eMachi neMonitor is a custom StateMachi neMonitor implementation
which integrates with boot's MeterRegistry and endpoints via a custom
St at eMachi neTr aceReposi t or y. Optionally this auto-configuration can be disabled by setting key
spring. st at emachi ne. noni t or. enabl ed to f al se. Use of this auto-config is shown in sample
Chapter 52, Monitoring.

29.2 Repository Config

Spring Data Repositories and Entity class scanning is auto-configured automatically for Chapter 34,
Repository Support if needed classes are found from a classpath.

Currently supported configs are configured for JPA, Redi s
and MongoDB. Repository auto-configuration can be disabled using
a properties spring. st at emachi ne. dat a. j pa. repositories. enabl ed,
spring. statemachi ne. data. redi s. repositories. enabl ed and

spring. st at emachi ne. dat a. nongo. reposi t ori es. enabl ed respectively.

2.1.0M1 Spring Statemachine 80

Spring Statemachine - Reference Documentation

30. Monitoring State Machine

St at eMachi neMoni t or can be used to get more information about durations of how long transitions
and actions takes to execute. Below you can see how this interface is implemented.

public class Test StateMachi neMnitor extends Abstract StateMachi neMonitor<String, String> {

@verride
public void transition(StateMachine<String, String> stateMachine, Transition<String, String>
transition, long duration) {

}

@verride
public void action(StateMachine<String, String> stateMchine, Action<String, String> action, |ong
duration) {

}

Once you have St at eMachi neMbni t or implementation it can be added to a state machine via
configuration as shown below.

@onfi guration
@nabl eSt at eMachi ne
public class Configl extends StateMachi neConfi gurerAdapter<String, String> {

@verride
public void configure(StateMachi neConfi gurationConfigurer<String, String> config)
throws Exception {
config
. Wi t hMoni toring()
.moni tor (stateMachi neMonitor());

}

@verride
public void configure(StateMachi neStateConfigurer<String, String> states) throws Exception {
states
.withStates()
Linitial("s1")
.state("S2");
}

@verride
public void configure(StateMachi neTransitionConfigurer<String, String> transitions) throws Exception

transitions
. Wi t hExt ernal ()
.source("S1")
.target ("S2")
.event ("E1");
}

@Bean
publ i c StateMachi neMonitor<String, String> stateMachi neMnitor() {
return new Test St at eMachi neMoni tor () ;

}

Tip

Check sample Chapter 52, Monitoring for detailed usage.

2.1.0M1 Spring Statemachine 81

Spring Statemachine - Reference Documentation

31. Using Distributed States

Distributed state is probably one of a most complicated concepts of a Spring State Machine. What
exactly is a distributed state? A state within a single state machine is naturally really simple to understand
but when there is a need to introduce a shared distributed state through a state machines, things will
get a little complicated.

Note

Distributed state functionality is still a preview feature and is not yet considered to be stable in this
particular release. We expect this feature to mature towards the first official release.

For generic configuration support see section Section 11.9, “Configuring Common Settings” and actual
usage example see sample Chapter 43, Zookeeper.

Distributed State Machine is implemented via a DistributedStateMachi ne class
which simply wraps an actual instance of a StateMachine. DistributedStateMachine
intercepts communication with a St at eMachi ne instance and works with distributed state
abstractions handled via interface St at eMachi neEnsenbl e. Depending on an actual implementation
St at eMachi nePer si st interface may also be used to serialize a St at eMachi neCont ext which
contains enough information to reset a St at eMachi ne.

While Di stributed State Machi ne is implemented via an abstraction, only one implementation
currently exists based on Zookeeper .

Here is a generic example of how Zookeeper based Di stributed State Machi ne would be
configured.

2.1.0M1 Spring Statemachine 82

Spring Statemachine - Reference Documentation

@onfi guration
@Enabl eSt at eMachi ne
public class Config
ext ends StateMachi neConfi gurer Adapter<String, String> {

@verride
public void configure(StateMachi neConfi gurationConfigurer<String, String> config)
throws Exception {
config
.wi thDistributed()
. ensenbl e(st at eMachi neEnsenbl e())
.and()
.wi thConfiguration()
.autoStartup(true);

}

@verride
public void configure(StateMchineStateConfigurer<String, String> states)
throws Exception {
/1 config states

}

@verride
public void configure(StateMachi neTransitionConfigurer<String, String> transitions)
throws Exception {
/1 config transitions

}

@Bean
public StateMachi neEnsenbl e<String, String> stateMachi neEnsenbl e()
throws Exception {
return new Zookeeper St at eMachi neEnsenbl e<String, String>(curatorCient(), "/zkpath");

}

@Bean
public CuratorFramework curatordient()
throws Exception {
Cur at or Framewor k client = Curat or Framewor kFact ory
. bui | der ()
. def aul t Dat a(new byt e[0])
.connect String("l ocal host:2181"). buil d();
client.start();
return client;

Current technical documentation of a Zookeeker based distributed state machine can be found from
an appendice Appendix C, Distributed State Machine Technical Paper.

31.1 ZookeeperStateMachineEnsemble

Zookeeper St at eMachi neEnsenbl e itself needs two mandatory settings, an instance of
curatorC ient and basePat h. Client is a Cur at or Fr anewor k and path is root of a tree in a
Zookeeper .

Optionally it is possible to set cl eanSt at e which defaults to TRUE and will clear existing data if no
members exists in an ensemble. Set this to FALSE if you want to preserve distributed state within
application restarts.

Optionally it is possible to set a size of a | 0gSi ze which defaults to 32 and is used to keep history
of state changes. Value of this setting needs to be a power of two. 32 is generally good default value
but if a particular state machine is left behind more than a size of a log it is put into error state and
disconnected from an ensemble indicating it has lost its history to reconstruct fully synchronized status.

2.1.0M1 Spring Statemachine 83

Spring Statemachine - Reference Documentation

32. Testing Support

We have also added a set of utility classes to easy testing of a state machine instances. These are used
in a framework itself but are also very useful for end users.

St at eMachi neTest Pl anBui | der is used to build a St at eMachi neTest Pl an which then have one
method t est () which runs a plan. St at eMachi neTest Pl anBui | der contains a fluent builder api
to add steps into a plan and during these steps you can send events and check various conditions like
state changes, transitions and extended state variables.

Let's take a simple St at eMachi ne build using below example:

private StateMachine<String, String> buildMVachi ne() throws Exception {
St at eMachi neBui | der. Bui |l der<String, String> builder = StateMachi neBuil der. buil der();

bui I der. conf i gureConfi guration()
.wi thConfi guration()
. taskExecut or (new SyncTaskExecut or ())
.autoStartup(true);

bui | der. configureStates()
.withStates()
cinitial ("SI")
.state("S1");

bui | der. confi gureTransitions()
.wi thExternal ()
.source("SI").target ("S1")
.event ("E1")
.action(c -> {
c. get ExtendedState(). get Vari abl es(). put ("keyl", "val uel");
IO

return builder.build();

In below test plan we have two steps, first we check that initial state S| is indeed set, secondly we send
an event E1 and expect one state change to happen and machine to end up into a state S1.

St at eMachi ne<String, String> nmachine = buil dVachi ne();
St at eMachi neTest Pl an<String, String> plan =
St at eMachi neTest Pl anBui | der. <String, String>builder()
. def aul t Awai t Ti me(2)
. st at eMachi ne(machi ne)
.step()
.expect States("SI")
.and()
.step()
. sendEvent (" E1")
. expect St at eChanged(1)
. expect States("S1")
. expect Vari abl e("key1")
. expect Vari abl e("keyl", "val uel")
. expect Vari abl eWt h(haskey("key1"))
. expect Vari abl eWt h(hasVal ue("val uel"))
. expect Vari abl eWt h(hasEntry("keyl", "valuel"))
. expect Vari abl eW t h(not (hasKey("key2")))
.and()
Lbuild();
plan.test();

These utilities are also used within a framework to test distributed state machine features and multiple
machines can be added to a plan. If multiple machines are added then it is also possible to choose if
event is sent to particular, random or all machines.

2.1.0M1 Spring Statemachine 84

Spring Statemachine - Reference Documentation

Above testing example uses hamcrest imports:

i nport
i nport
i nport
i nport

Tip

All possible options for expected are documented in javadocs StateMachineTestPlanStepBuilder.

static
static
static
static

org. hancrest.
org. hancrest.
org. hancrest.
org. hancrest.

Cor eMat chers. not ;

col | ecti on. | sMapCont ai ni ng. hasKey;
col | ection. | sMapCont ai ni ng. hasVal ue;
col | ecti on. | sMapCont ai ni ng. hasEntry;

2.1.0.M1

Spring Statemachine

85

http://docs.spring.io/spring-statemachine/docs/2.1.0.M1/api/org/springframework/statemachine/test/StateMachineTestPlanBuilder.StateMachineTestPlanStepBuilder.html

Spring Statemachine - Reference Documentation

33. Eclipse Modeling Support

Defining a state machine configuration with Ul modeling is supported via Eclipse Papyrus framework.

From eclipse wizard create a new Papyrus Model with UML Diagram Language. In this example it's
named as si npl e- machi ne. Then you've given an option to choose various diagram kind's and a
St at eMachi ne Di agr ammust be chosen.

We want to create a machine having two states, S1 and S2 where S1 is initial state. Then event E1 is
created to do a transition from S1 to S2. In papyrus a machine would then look like something shown
below.

4 StateMachine

=1 El 52

Behind a scenes a raw uml file would look like.

<?xm version="1.0" encodi ng="UTF-8"?>
<uni : Model xmi:version="20131001" xm ns: xm ="http://wwm. ong. or g/ spec/ XM / 20131001" xml ns:um ="http://
www. ecl i pse. org/unm 2/5. 0.0/ UM." xmi:id="_AMP3| P8f EeWI5bORGB4c_A" nane="Root El enent " >
<packagedEl ement xmi:type="umnl : Stat eMachi ne" xm :id="_AVRFQP8f EeWM5bORGB4c_A" nane="St at eMachi ne" >
<regi on xm :type="uml : Regi on" xm :id="_AMRsUP8f EeWA5bORGB4c_A" nane="Regi onl">

<transition xm:type="um :Transition" xm:id="_chgcgP8f EeWI5bORGB4c_A" source="_EZr g4P8f EeWI5bORGB4c_A" tar get =" _FAvg4P8f

<trigger xm:type="um :Trigger" xm:id="_hs5j UP8f EeWA5bORGB4c_A" event ="_NeH84P8f EeWA5bORGB4c_A"/ >
</transition>

<transition xm:type="um : Transition" xm :id="_egLl| oP8f EeWA5bORGB4c_A" source="_Fg0l EP8f EeWM5bORGB4c_A" t ar get =" _EZr g4P8f

<subvertex xm:type="um :State" xm :id="_EZr g4P8f EeWI5bORGB4c_A" nane="S1"/>
<subvertex xm:type="um :State" xm :id="_FAvg4P8f EeWI5bORCB4c_A" nane="S2"/>
<subvertex xm:type="um : Pseudostate" xm :id="_Fg0l EP8f EeWM5bORGB4c_A"/ >
</ regi on>
</ packagedEl enent >
<packagedEl ement xmi:type="um : Signal" xm :id="_L01DOP8f EeWM5bORGB4c_A" nane="E1"/>
<packagedEl ement xmi:type="uml : Signal Event" xm :id="_NeH384P8f EeWI5bORGB4c_A" nane="Si gnal Event E1" si gnal ="_L01DOP8f EeW5k
>
</ uni : Model >

Tip

When opening existing uml model defined as uml, you'll have three files, . di, . not ati on and
.um . If model was not created in your eclipse’s session, it doesn’t understand how to open an
actual state chart. This is a known issue in a Papyrus plugin and there is an easy workaround. In a

Papyrus Perspective you'll see Model Explorer for you model, double click Diagram StateMachine
Diagram which will instruct eclipse to open this specific model in its proper Papyrus modeling

plugin.

2.1.0M1 Spring Statemachine 86

Spring Statemachine - Reference Documentation

33.1 Using UmlStateMachineModelFactory

After uml file is in place in your project, it can be imported into configuration using
St at eMachi neModel Confi gurer where Stat eMachi neModel Factory is associated with a
model. Unl St at eMachi neModel Fact ory is a special factory which knows how to process Eclipse
Papyrus generated uml structure. Source uml file can either be given as a Spring Resour ce or a normal
location string.

@onfiguration
@nabl eSt at eMachi ne
public static class Configl extends StateMachi neConfi gurerAdapter<String, String> {

@verride
public void configure(StateMachi neMbdel Configurer<String, String> nodel) throws Exception {
nodel
. Wi t hMbdel ()
.factory(nodel Factory());

}

@Bean
publ i c St at eMachi neMbdel Factory<String, String> nodel Factory() {
return new Unl St at eMachi neModel Factory("cl asspat h: or g/ spri ngf ramewor k/ st at emachi ne/ uni / docs/
si nmpl e- machi ne. um ") ;
}
}

As usually Spring StateMachine is working with Guards and Actions which are defined as bean, those
need to be hooked into uml by its internal modeling structure. In a below sections you will see how
customized bean references are defined within uml definitions. Thought it is also possible to register
particular methods manually without defining those as beans.

If Ur St at eMachi neMbdel Factory is created as a bean its ResourcelLoader is wired
automatically to find registered actions and guards. It's also possible to manually define a
St at eMachi neConponent Resol ver which will then be used to find these components. Factory also
have methods registerAction and registerGuard which can be used to register these components. More
about this in the section called “StateMachineComponentResolver”.

Uml model is relatively loose what comes for the implementation like Spring StateMachine itself. There
are choices what implementation need to take for uml support as it leaves a lot of features and
functionalities for an implementation to decide. Below sections go through how Spring StateMachine
will implement uml model based on Eclipse Papyrus plugin.

StateMachineComponentResolver

Below example shows how Unl StateMachi neMbdel Factory is defined with a
St at eMachi neConponent Resol ver which registers a simple functions nmyActi on and nyCGuard
respectively. As you notice these components are not created as beans.

2.1.0M1 Spring Statemachine 87

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
public static class Config2 extends StateMachi neConfi gurerAdapter<String, String> {

@verride
public void configure(StateMachi neModel Configurer<String, String> nodel) throws Exception {
nodel
. wi t hMbdel ()
.factory(nodel Factory());

}

@Bean
publ i c Stat eMachi neMbdel Factory<String, String> nodel Factory() {
Um St at eMachi neMbdel Factory factory = new Um St at eMachi neMbdel Fact or y(
"cl asspat h: or g/ spri ngf ramewor k/ st at emachi ne/ unm / docs/ si npl e- machi ne. um ") ;
factory. set St at eMachi neConponent Resol ver (st at eMachi neConponent Resol ver ());
return factory;

@Bean
publ i c St at eMachi neConponent Resol ver<String, String> stateMachi neConponent Resol ver () {
Def aul t St at eMachi neConponent Resol ver<String, String> resolver = new
Def aul t St at eMachi neConponent Resol ver <>();
resol ver.regi sterAction("nyAction", mnyAction());
resol ver.regi sterGard("nyGuard", nyGuard());
return resol ver;

}

public Action<String, String> nyAction() {
return new Action<String, String>() {

@verride
public void execute(StateContext<String, String> context) {
}

b

public Guard<String, String> nyGuard() {
return new Guard<String, String>() {

@verride
public bool ean eval uat e(St at eContext<String, String> context) {
return false;

33.2 Creating Model

Let's start by creating an empty state machine model.

2.1.0M1 Spring Statemachine

Spring Statemachine - Reference Documentation

x New Papyrus Model

g

Select the language of the new diagrams

Diagram Language:
UML core;

=] ‘t uML
:t Profile

DSML:

"i SysML

2) < Back Mext = Cancel

You'll start by creating a new model and giving it a name.

2.1.0.M1

Spring Statemachine

89

Spring Statemachine - Reference Documentation

New Papyrus Model

Initialization information f,

Select root element name and diagram kind

Root model element name:
RootElement

Select a Diagram Kind:

Diagram name NMame

e e e R

™ B Timing Diagram

™ s8UseCase Diagram

" M ClassTreeTable

™ " Generic Table

I I Generic Tree Table

I rmStereotypeDisplayTre

Quantit:

You can load a template:

A UML model with basic primitive types

Choose a profile to apply

Browse Workspace Browse Registered Profiles

@ < Back Next > Cancel Finish

Then you need to choose a StateMachine Diagram.

2.1.0.M1 Spring Statemachine

Spring Statemachine - Reference Documentation

x Papyrus - sample/model.di - Papyrus
: W e v QS 5 - - oo -

- D FE:DP e H oo f;cf'_:-'

& Project Explorer £ = 8 ~?modeldi=

-

HMrE R v oo

Quick Access = |~? Papyrus & Java
= n

i Palette 3
S B S

StateMachinel

& Nodes
® Region
SState
* Initial
® FinalState
® shallowHistory
® DeepHistory
A Fork

< Edges
o % Transition

*=sample
+#model
% Model Explorer = = n
T E ARRBEGS v \
rEaRootElement
%o StateMachine Diagram 2
= Properties
@ StateMachine1
UML Name
_ Is abstract
“profite
2 Outline =2 = n Is leaf

w7 Hepeanee
ISR so-ification

Use case

StateMachine1

true © false
true ©false

publd

<Undefined>

You end up having an empty state machine.

In above sample named nodel

Link
< ContextLink

true © false
O true false

Is active
Is reentrant

you'll end up three files, nodel . di, nodel . notati on and

nodel . um which can then be used in any other eclipse instance and nodel . um can be used by

importing it into a Spring Statemachine.

33.3 Define States

State identifier is simply coming from a component name in a diagram. You must have initial state in
your machine which is done by adding Initial and then drawing a transition to your own initial state.

2.1.0.M1

Spring Statemachine

91

Spring Statemachine - Reference Documentation

Papyrus - sample/model.di - Papyrus

N E R WD B P = - vl vl e E VWD v oo FEyBrB 0 Qs - - =0 -
B I O ATH S Quick Access | |72 Papyrus| & Java
& Project Explorer £ = 8 ~*modeldi = o
5 & - i Palette b
~@sample StateMachinel BRI -W.
+amodel 4 Nodes
D Region
S1 ¥
“State
* Initial
® FinalState

® shallowHistory
® DeepHistory

& Fork
B -] = 9 M 4oz -
Model Explorer 2 Edges
EEELSAE S T L - “ Transition
%Link
< ContextLink
e StateMachine Diagram =
= Properties = v oM v =0
@ Region1
UML Name Region1
Is leaf true © false
& Outline = = n Visibility public v

In above we added one state S1, initial state, and draw a transition between those two to indicate that
S1 is an initial state.

2.1.0.M1 Spring Statemachine 92

Spring Statemachine - Reference Documentation

Papyrus - sample/model.di - Papyrus

B~ R %2 B:D~p =~ BrdrRBrErRH - HE-B-8~H~-0~%~- &
B A v - - Quick Access
& Project Explorer £ = 8 ~*modeldi
~@sample StateMachinel
+#model
& Model Explorer = B
EnE ERBEYS T - ~
e StateMachine Diagram =
= Properties =
o StateMachine1
UML Name StateMachine1
_ Is abstract true © false Is active true
% Outline = - n — Is leaf true © false Is reentrant O true
s @ < _Visibility publid]
- _Spe:ificatuon <Undefined=>
: . I .

In above we added a second state S2 and added a transition between those two.

33.4 Define Events

$ - - 5l w G e
| ® |~ Papyrus| & Java
= B
i# Palette »
s @ LI - .
4 Nodes
@ Region
“State
* Initial
® FinalState
® shallowHistory
® DeepHistory
& Fork

Edlﬁe;

3 Transition
“ Link

ContextLink

O false
false

+ (X7

To associate an event for a transition you need to create a Si gnal E1. Done from RootElement#New

Child#Signal.

2.1.0.M1

Spring Statemachine

93

Spring Statemachine - Reference Documentation

Papyrus - sample/model.di - Papyrus

H~EB R %2 B~ . - vl vl e E VWD v oo BrA~B~ >0~ 5~ - - o - -
B I Avhoeogow Quick Access |!| ® |2 Papyrus| &' Java
I Project Explorer 2 = 8 ~*modeldi 2 = B
5 & - i Palette b
~Esample StateMachinel LE ST
+amodel 4 Nodes
D Region
S1 52
o Sstate
* Initial
® FinalState

® shallowHistory
® DeepHistory

& Fork
. o —— M oo -
Model Explorer 4 Edges
EE® ABG v - - 2 Transition
% Link
»c*StateMachinet

< ContextLink
=E1

- . N i i x4
téDiagram StateMachine Diagr 'a StateMachine Diagram

= Properties = v oM v =0

& RootElement

UML Name RootElement
ROt S0 Visibility public v
s[{ ~
. Location platform:/resource/sample/model.uml
—u—u Package merge + %7

2 1 item selected

And then Si gnal Event with defined signal E1. Done from RootElement#New Child#SignalEvent.

2.1.0.M1 Spring Statemachine 94

Spring Statemachine - Reference Documentation

0 Papyrus - sample/model.di - Papyrus

HvE @) >~ v D Bivodw s B B B -0 vQv @ Fv 0 v v Gvov

i,

W
1

(<]
]

B - - - Quick Access ;2 - Papyrus | & Java

I Project Explorer 2 = 8 ~*modeldi = B
= - i Palette 3
~@sample StateMachinel s @S-
+#model 8 Nodes
™ Region
S1 52
o Sstate
* Initial
® FinalState
@ shallowHistory
® DeepHistory
A Fork
B] = n . —
i Model Explorer 3 Edges
® RB 8 - - % Transition
] RoutElemer‘rt % Link
-::ateMachlnﬂ / ContextLink
_ e ——— R
iagram StateMachine Diagr = Properties 2 J Model Validation # ¥ = 0
%= SignalEvent1
UML Name SignalEventEl
= Visibility public v
& Outline 2 _ Signal = E1 =~ (¥ (7

Now that you have a Si gnal Event defined it can be used to associate a trigger with a transition. More
about that in Section 33.5, “Define Transitions”.

Defer Event

Events can be deferred to get processed in a more appropriate time. In UML this is done from a state
itself. Choose any state and create a new trigger under Deferrable trigger and choose Si gnal Event
which matches Si gnal you want to defer.

33.5 Define Transitions

Transition is simply created by drawing transition line between source and target states. In above we
have states S1 and S2 and anonymous transition between those two. We want to associate event E1
with that transition. We choose a transition, create a new trigger and define Si gnal Event E1 for that.

2.1.0M1 Spring Statemachine 95

Spring Statemachine - Reference Documentation

R L 8 -

B-a-

' Project Explorer & = 0 ~modeldiz Filter: [==

= =

5 >
~@sample StateMachinel ~EaRootElement

r“?model 5= SignalEventE1 i po

ary
Name
=M Visibility public v r -
Event <Undefined> L) (] [Recent selections
-
- Port Lk I
= E 4 L
s -
8 J ¥ SignalEventE1 E i
UML Comments ‘
@ Cancel OK E
@ Cancel OK : Ofalse —
= OUHiNE"s =7 -ﬁ wing yexcernal ~ Visibility public ~
u(E - — Effect <Undefined> %+ # (% Guard <Undefined> - (][] (%
. - . _ Trigger &)%)~
B [Advanced

This will give you something like shown below.

2.1.0.M1 Spring Statemachine 96

Spring Statemachine - Reference Documentation

x Papyrus - sample/model.di - Papyrus

N~ @R % 2 e v w0 B ow ol ow B

I Project Explorer 2 = B8 ~*modeldi =

= & -

w
‘
(<]
‘
‘
:

*=sample

StateMachinel

»~?model

El

(3T
J

& Model Explorer = o

@

B BB~ tH~0~Qv o &~ - - o - -
Quick Access = |~? Papyrus & Java
= B
i Palette b
TEER &
4 Nodes
® Region
“State
® Initial
® FinalState

® shallowHistory
® DeepHistory
A Fork

o Edt_ie;
% Transition

EnE ERBEYS T !
- = RootElement
»c*StateMachine1
=E1
fmSignalEventE1

e StateMachine Diagram =

t&Diagram StateMachine Diagr = Properties i 4 Model Validation

P <Transition>

true © false

external

<Undefined>

®<Trigger>

UML Name
_ Is leaf
&= Outline = =n = Kind

& (F < I et
. _ Trigger

’ “Advanced

i
Tip

Link
< ContextLink

Visibility public} ~
Guard <Undefined> | [
+ (%)

If Si gnal Event is omitted for a transition it becomes an anonymous transition.

33.6 Define Timers

Transition can also happen based on timed events. Spring Statemachine support two types of timers,
ones which fires continuously on a background and ones which fires once with a delay when state is

entered.

Add new Ti meEvent child to Model Explorer, modify When as expression defined as Literallnteger.
Value of it is then timer as milliseconds. Is Relative is left to false making timer to fire continuously.

2.1.0.M1

Spring Statemachine

97

Spring Statemachine - Reference Documentation

Papyrus - sample/model.di - Papyrus

= - i@

B I A<*H-v~ -

| Project Explorer & L -

e & -

*=sample
“»di
notation
& uml

% Model Explorer & =g
T ERBESR <
~zRootElement
» c*StateMachine1
&= E]
% SignalEventE1
+fo TimeEvent2
4 Diagram StateMachine Diagram

& Outline & & =B

"o 1 item selected

. v v B oy oo BH-B-d-

~» model.di &

StateMachinel

El
ST 52 at 1000 3

after 2000

s StateMachine Diagram =
[Properties i3
"o TimeEvent1

UML Name TimeEvent1

_ Is relative true O false
W

when t-= 1000

Quick Access ® |72 Papyrus & Java
=B
“ Palette b
&GI8
4 Nodes
@ Region
SState
* Initial
® FinalState
@ shallowHistory
@ DeepHistory
FFork
i Join
Choice
& Junction
© EntryPoint
@ ExitPoint
* Terminate
© ConnectionPointRef...
< Edges ¢
% Transition
7 Link
ContextLink

To define one timed based event when state is entered it's exactly same as above but Is Relative is

now defined as true.

2.1.0.M1

Spring Statemachine

98

Spring Statemachine - Reference Documentation

Papyrus - sample/modelL.di - Papyrus

. L - e .- e R vgrEr T rS oy oo

BB @~ -0~

5 Project Explorer & = 8 ~Imodeldi
*=sample StateMachinel

2di a2 g atlo00

notation ® 51 ‘-LiJ s3
& uml L—J
after 2000
% Model Explorer & =g
g ABE s <

~zRootElement
» c*StateMachine1
=E1
% SignalEventE1
* "o TimeEvent1

4 Diagram StateMachine Diagram

Ta StateMachine Diagram &

I Properties &3
& Outline = 5 ~ = ° wTimeEvent2
— " E UML Name TimeEvent2
- _ Is relative O true false
g Visibility public]
when t-¢ 2000

"o 1 item selected

Quick Access

“# Papyrus | &' Java

b =

= Palette 2

| al]-9-

Nodes

T Region

“State

* Initial

#® FinalState

@ shallowHistory

® DeepHistory

“FFork

ik Join

Choice

& Junction

© EntryPoint

@ ExitPoint

* Terminate

</ ConnectionPointRef...
Edges L
3 Transition

“Link

ContextLink

Then what is left for user is to pick these time events instead of signal event for a particular transition.

33.7 Define Choice

Choice is simply defined by drawing one incoming transition into a CHO CE states and multiple outgoing
transition from it into target states. Configuration model in our St at eConf i gur er allows to define if/
elseif/else structure but with uml we simply need to work with individual Guards for outgoing transitions.

Make sure that guards defined for transitions do not overlap so that whatever happens, only one guard
would evaluate to TRUE at any given time. This gives precise and predictable results for choice branch
evaluation. Also it is advised to leave one transition without a guard so that at least one transition path

is guaranteed.

2.1.0M1 Spring Statemachine

99

Spring Statemachine - Reference Documentation

Papyrus - sample/model.di - Papyrus

= M Hy B S v v TETVR D v - H-EB-@~ t%~0-Q - ¢ -
B v v - Quick Access = -7 Papyrus | &' Java
Project Explorer & = 8 “modeldiz = n
= & Palette 3
ri&sample StateMachine LRS-
= Nodes
[s2Guard) - Region
“state
* Initial
= eins =2 ® FinalState
El @ shallowHistory
® DeepHistory
“Fork
[s4Guard] % Join
#
% Model Explorer =0 _Cho-cg
& - & Junction
- @ EntryPoint
~caRootElement ° En.r: .om
» *StateMachine e omt_
3 Edges
sz SignalEventE1 % Transition
tdDiagram StateMachine Diagram ¥ Link
ContextLink
ta StateMachine Diagram o
Tl Properties = ¢+ v =
» StateMachine
= Qutline & = g YUML Name StateMachine
5 B ~ _ Is abstract true O false Is active true O false
_ Is leaf true O false Isreentrant © true false
= Tppearance — z
= _ Specification <Undefined>
_ Use case + %)
Note

Junction is very much same except it allows multiple incoming transitions. Thus its behaviour
compared to choice is purely academic. Actual logic to select outgoing transition is exactly same.

33.8 Define Junction

See Section 33.7, “Define Choice”.

33.9 Define Entry/Exit

EntryPoint and ExitPoint are used to do controlled entry and exit with state having sub-states. In a below
statechart events E1 and E2 will do a normal state behaviour by entering and exiting state S2 where
normal state behaviour happens by entering initial state S21.

Using event E3 takes machine into EntryPoint ENTRY which then leads into S22 without activating initial
state S21 at any time. Similarly ExitPoint EXI T with event E4 controls specific exit into state S4 while
normal exit behaviour from S2 would take machine into state S3. While being on a state S22 you can
choose events E4 or E2 to take machine into states S3 or S4 respectively.

2.1.0M1 Spring Statemachine 100

Spring Statemachine - Reference Documentation

Papyrus - sample/model.di - Papyrus

M- 2 2~ - - R ~E~VW~-H -~ - BB~~~ %~0~Q~5 +~ - - -
Quick Access = -7 Papyrus &' Java
= Project Explorer = 8 “modeldiz = n
— ” i Palette b
T StateMachine haan-w-
+-¥model —_— Nodes
52 HoCe
< Region
51 EL i)@ “state
* Initial
& ® FinalState
E3 522 E4 | ® shallowHistory
Enrm’L—) EXIT n ® DeepHistory
“Fork
& Join
i
% Model Explorer 1 = o ’ Cho-c.e
. a & Junction
i B v
- = RootElement : “ EntryPoint
» *StateMachine ‘jExitPoinlt-
VEl Edges
“E2 % Transition
= E3 o
Link
Y SignalEventE1 7 ContutLink
fuSignalEventE2 : ontextLin
% SignalEventE3 te StateMachine Diagram =
“E4 © Properties & + v =g
‘iz SignalEventEd)
. =L9 v » StateMachine
2 Qutline 2 - umML Name StateMachine
u [- _ Is abstract true O false Is active true O false
_ Is leaf true O false Isreentrant © true false
' Wopenee v
< -
_ Specification <Undefined>
I ... CIE:
Note

If state is defined as submachine reference and entry/exit points need to be used, a
ConnectionPointReference has to be defined externally , its entry/exit reference set to point
to a correct entry/exit point within a submachine reference. Only after that it is possible to
target a transition which correctly links from outside into inside of a submachine reference. With
ConnectionPointReference you may need to find these settings from Properties # Advanced #
UML # Entry/Exit. UML Spec allows to define multiple entries and exits but with a state machine

only one is allowed.

33.10 Define History

When working with history states three different concepts are in play. UML defines a Deep History and
a Shallow History. Default History State comes into play when history state is not yet known. These are
represented in following sections.

Shallow

Shallow History is simply selected and a transition defined into it.

2.1.0.M1 Spring Statemachine 101

Spring Statemachine - Reference Documentation

Papyrus - sample/simple-h

BB~~~ %~0~Q~5 +~ v il - IR
B I L v B - Quick Access | B 2 Papyrus| & Java
' Project Explorer & =8 |~ <7 simple-history-shallow.di & - = n
= = < Palette 3
~i&sample StateMachine EReail-®.
+~»model 52 < Nodes
+~#simple-history-deep ® Region
+3simple-history-default ® s1)_E @ B2 521 S state
- i simple-history-shallow * nitial
E4 . ® FinalState
E3 1t sH @ shallowHistory
eDeelestc»ry
- % Fork
& Join
Choi
% Model Explorer =B Chom_a
e s - & Junction
'DHDD(EleImEI';K - ‘ @ EntryPoint
» *StateMachine @ ExitPoint
“E < Edges
HE2 .
WE3 "% Transition
wE4 “# Link
¥z SignalEventEl # ContextLink
fn SignalEventE2 %= StateMachine Diagram =
¥ SignalEventE3
. OP jes @ J M | Validati I -]
%2 SignalEvented roperties lodel Validation
Diagram StateMachine Diagrajiii 24y
2 Outline & = n UML Name EH
i@ - Kind shallowHistory ~ | Visibility bublic v

Deep

Deep History is used for state which has other deep nested states, thus giving a chance to save whole
nested state structure.

2.1.0.M1 Spring Statemachine 102

Spring Statemachine - Reference Documentation

Papyrus - sample/simple-history-deep.di - Papyrus

- . 7P 2~ e B~ ~E~-VWrH v n ~ BB~~~ H~0~Q~5 +~ - - o o
m v - - Quick Access = -7 Papyrus | &' Java
& Project Explorer - a8 |- " <7 simple-history-deep.di @ = n
= % < Palette 3
~&sample StateMachine Rell-w-
+-dmodel ! Nodes
-/ simple-history-deep = 52] & Region
+-#simple-history-default Scrate
+dsimple-history-shallow 521) * nitial
S211) g (5212 ® FinalState
2] ® shallowHistory
E3 ® Deep History
“Fork
E4 * Joi
_I.: SH . JOII’!
% Model Explorer 1 = o _-ChD'C_E
) . - & Junction
~m m)nc:le'ment) © EntryPoint
» *StateMachine @ ExitPoint
- ; | Edges
=
™ E3 % Transition
I
= E4) Link .
' SignalEventE1 ContextLink
¥ SignalEventE2 %= StateMachine Diagram =

¥ SignalEventE3
I | jes & idati
% SignalEventEa Properties 2 J Model Validation

Diagram StateMachine Diagrajiil 1y

& Outline = @ g UML Name BH
il - _ Kind deepHistary ’ Visibility m w
[Profite 1
; [sle 1
™ .
: [Appearance 1
. [RUlersARd Grig |
[Advanced1
Default

In cases where a Transition terminates on a history when the state has not been entered before or it
had reached its final state, there is an option to force a transition to a specific substate, using the default
history mechanism. For this to happen you simply define transition into this default state. This is would
be a transition from SHto S22.

In a below example state S22 would be entered if state S2 has never been active as its history has
never been recorded. If state S2 has been active then either S20 or S21 would get chosen.

2.1.0.M1 Spring Statemachine 103

Spring Statemachine - Reference Documentation

Papyrus - sample/simple-history-default.di - Papyrus

- VP IEP i v B~ ~E~-VWrH v n ~ rE~B~A~%~0~Q~5 +~ - - o o
n A hw g~ Quick Access E _’JPaDyrus_ & Java
= Project Explorer = o -?simple-history-default.di @ -7 simple-history-shallow.di -2 simple-history-deep.di = B
: = < Palette 3
~i&sample StateMachine EReail-®.
+-¥model 52 “ Nodes
+“asimple-history-deep = = ® Region
- i simple-history-default sl @ ﬁ ©state
+dsimple-history-shallow * nitial
& "{SH 522 ® FinalState
£3 i @ shallowHistory
eDeeDHlstory
“Fork
& Join
. L3 i
% Model Explorer & = o Achalce
& Junction
E B BAeEg ~ o)
~E ROOCELBMEnt EntryPoint
» *StateMachine @ ExitPoint
“E % Edges
HE2 ., .
= E3 Transition
I
wE4 Link .
% SignalEventE1 # ContextLink
‘i SignalEventE2 %= StateMachine Diagram =

Y SignalEventE3 O Properties - v am g
¥n SignalEventEd PRE RS

Diagram StateMachine Diagrajiil 1y

uML Mame SH

Kind shallowHistory v~ Visibility publid v

& Outline & = n

33.11 Define Fork/Join

Both Fork and Join are represented as bars in Papyrus. As shown below you need to draw one outgoing
transition from FORK into state S2 which have orthogonal regions. JO N is then reverse where joined
states are collected together via incoming transitions.

2.1.0.M1 Spring Statemachine 104

Spring Statemachine - Reference Documentation

werkspace-papyrus-201 - Papyrus - sample/model.di - Papyrus

= 2 B~B~-im 2~ * > Bt~y -F-U~O~-~ B~ 100% | [BTO~QIE A~
-
Project Explorer & = 0 “modeldi &8 =0
- FPalette ©
== sample StateMachine o @, S, 0L .
n Nodes
FORK 52 JOIN ¥ Region
::[TJ] (5201 Sctate
(51 u 3 * Initial
® FinalState
521|ﬂ rSZIﬂ @ shallow...
u @ DeepHis...
"¢ Fork
% Model Explorer & =8 & Join
L - L) # Choice
~taRootElement & Junction
»3StateMachine © EntryPoint
taéDiagram StateMachine Diagrar @ ExitPoint

* Terminate

Edges
% Transition
#Link
< Context...
2 gutline & s = = g ‘sStateMachine Diagram &
Ol Properties & 4 Model Validation % References ™ = =0
o =i a » StateMachine
uML Mame StateMachine
Comments Is abstract true © false Is active true © false
Profile Is leaf true © false Is reentrant © true False
Style - -
Appearance Visibility public ~
General Specification | <Undefined=>

33.12 Define Actions

State entry and exit actions can be associated by using a behaviour, more about this in Section 33.14,
“Define Bean Reference”.

Initial Action

Initial action as shown in Section 11.7, “Configuring Actions” is defined in uml by adding action in
transition leading from Initial State marker into actual state. This Action is then executed when state
machine is started.

33.13 Define Guards

Guard can be defined by first adding Constraint and then defining its Specification as OpaqueExpression
which works in a same way than Section 33.14, “Define Bean Reference”.

33.14 Define Bean Reference

When there is a need to make a bean reference in any uml effect, action or guard, supported method
to do thatis via Funct i onBehavi or or OQpaqueBehavi or where defined language needs to be bean
and language body having a bean reference id.

33.15 Define SpEL Reference

When there is a need to use a SpEL instead of a bean reference in any uml effect, action or guard,
supported method to do that is via Funct i onBehavi or or QpaqueBehavi or where defined language
needs to be spel and language body having a SpEL expression.

2.1.0M1 Spring Statemachine 105

Spring Statemachine - Reference Documentation

33.16 Using Sub-Machine Reference

Normally when using sub-states those are simply drawn into a state chart itself. Chart itself may become
a little complex and big to follow so we also support defining sub-state as a statemachine reference.

First create a New Diagram and give it a name i.e. SubStateMachine Diagram.

workspace-papyrus-2 - Papyrus - sample/model.di - Papyrus

I e S [S oy k A s @
‘= Project Explorer &2 = B -»modeldi & = 0
= b - i Palette b
Nodes
* () e
I Region
- “state
% Model Explorer = 0 .
Initial
EERER T ® FinalState
@shallow...
® DeepHis...
HE o
Edges
% Transition
Link
< Context...

N =]

& Outline

* | X

e1 1 item selected

Give new diagram a design you need.

2.1.0.M1 Spring Statemachine 106

Spring Statemachine - Reference Documentation

workspace-papyrus-2 - Papyrus - sample/model.di - Papyrus

[HFrO*Q % P EH~B~FE DS - el e ErRee o - % | 100% - |

- il - e e SSIB I AR s Quick Access || = [
{2 Project Explorer & = B8 “?modeldiz = D
ok » v i Palette
ECTTE | SuBStieHacine) XLULLE

+amodel E2 < Nodes

G

= Moddl orer & - n S State

% Model Explorer * Initial
EEERBER - ® Finalstate
- = RootElement @shallow..
» *StateMachine ®DeepHis...

» »SubStateMachine S

wE1 < Edges
®mE2 “% Transition

FuSignalEventEl 4 Link
Fu SignalEventE2 7 Context...

téD!agram StateMachine I:Jragr e StateMachine Diagram %e SubStateMachine Diagram &
t&Diagram SubStateMachine D
T Properties &2 4 Model Validation %' References

e =

@ SubStateMachine

&= Outline = =n
5@ - UML Mame SubStateMachine
Comments Is abstract true O False Is active true © False
" Profile Is leaf true © false Isreentrant O true false

Style
P Visibility Ipublid v
General Specification <Undefined> - g
Rulers And Grid Use case + %
Advanced

From state you want to link(in this case state S2), click Subrachi ne field and choose your linked
machine, i.e. SubStateMachine.

2.1.0.M1 Spring Statemachine 107

Spring Statemachine - Reference Documentation

.o

M@ -0~~~ %2 B8~

NI I =

‘2 Project Explorer &2

=
r~¥model

% Model Explorer &
= T E % E
-k
» *StateMachine
» »SubStateMachine
mE1
mE2
s SignalEventEl
s SignalEventE2

&

&

B

A v & v

a - *model.di 2

-

téDiagram StateMachine Diagr
t&Diagram SubStateMachine D

&= Outline =2

i~ v B B RrrEr Do~ % 100%

StateMachine

(=]

% StateMachine Diagram # s SubSkateMachine Diagram]

O Properties 2 | 4 Model Validation % References

@52

uML
Comments
Profile

Style
Appearance
Rulers And Grid
Advanced

Filter:

-tz RootElement
5tateMachine

MName 52 1
State invarianl <Undefined= - (g
Do activity <Undefined> =
Submachine <Undefined>) Recent selections

+SubStateMachine
Deferrable trigger

] Cancel OK

™

Finally you'll see that state S2 is linked to SubSt at eMachi ne as a sub-state.

workspace-papyrus-2 - yrus - sample/model.di - Papyrus

w Palette ©
Nl

® Region
“State
*® Initial
FinalState
@shallow..
® DeepHis...
N T

% Edges
% Transition
Link
7 Context...

e =]

+ o
*
+ /%

(s H#v0~Q -~
@0

‘s Project Explorer 2

»~amodel

% Model Explorer &
= O %

» 3StateMachine
» *SubStateMachine
- E1
ol Ez
s SignalEventEl
i SignalEventE2

téDiagram StateMachine Diagr
t&Diagram SubStateMachine D

2 Outline 2

-

2. B-Q-~

= B < modeldi 2

I E—

Quick Access B |2

StateMachine

=52

UML
Comments
Profile

Style
Appearance
Rulers And Grid
Advanced

e StateMachine Diagram # %a SubStateMachine Diagram

O Properties 2 | 4 Model Validation % References

Name 52
State invarianl <Undefined> | [% Entry <Undefined>
Do activity <Undefined> - . Exit <Undefined>

Submachine = SubStateMachine) (%2 X

Deferrable trigger

i« Palette P
h®eil-W-
< Nodes
® Region
“state
* Initial
® FinalState
@shallow...
® DeepHis...
WP
% Edges
“Y Transition
4 Link
< Context...

2.1.0.M1

Spring Statemachine

108

Spring Statemachine - Reference Documentation

34. Repository Support

This section contains documentation related to using 'Spring Data Repositories' used in State Machine.

34.1 Repository Config

Itis also possible to keep machine configuration in an external storage where it will be loaded on demand
instead of creating a static configuration either using JavaConfig or UML based config. This integration
works via Spring Data Repository abstraction.

We have created special St at eMachi neMbdel Fact ory implementation called
Reposi t or ySt at eMachi neModel Fact ory which is able to use base repository interfaces
St at eRepository, Transiti onRepository, ActionRepository and CuardRepository
accompanied with base entity interfaces RepositoryState, RepositoryTransition,
Reposi t or yActi on and Reposi t or yGQuar d respectively.

Due to way how Entities and Repositories work in a Spring Data, from a user perspective read access
can be fully abstracted as it is done in Reposi t or ySt at eMachi neModel Fact ory as there is no
need to know what is a real mapped Entity class Repository is working with. Writing into a Repository is
always dependant of using a real Repository specific Entity class. From machine configuration point of
view we don’t need to know these, meaning we don’t need to know actual implementation whether that
is JPA, Redis or anything else what Spring Data supports. Using a real Repository related Entity class
comes into play when you manually try to write new states or transitions into a backed repository.

Tip

Entity classes for RepositoryState and RepositoryTransition have machi nel d field which is in
users disposal and can be used to differentiate between configurations for example if machines
are built via StateMachineFactory.

Actual out of a box implementations are documented in below sections where images below are uml
equivalent statecharts of a repository configs.

(StateMachine)
® (S1) El (s2) E2 S3
M o

Figure 34.1. SimpleMachine

2.1.0M1 Spring Statemachine 109

Spring Statemachine - Reference Documentation

(StateMachine A
i '
= < =
. .
p "y
A A
Figure 34.2. SimpleSubMachine
StateMachine
S0
H[fooOGuard]/...
. S1 S2
H H[foolGuard]/...
511 : 22l
o —] p o
z - o S211 G
D G B
- F
E
B
|
512
! S212
A
Figure 34.3. ShowcaseMachine
JPA
Actual Repository implementations for a JPA are JpaSt at eReposi tory,

JpaTransiti onRepository, JpaActionRepository and JpaCGuardRepository which
are backed by Entity classes JpaRepositoryState, JpaRepositoryTransition,
JpaReposi t oryActi on and JpaReposi t or yGQuar d respectively.

Important

Version '1.2.8' unfortunately had to made a change into JPA’s Entity model regarding used table
names. Previously generated table names always had a prefix 'JPA_REPOSITORY_' derived
from Entity class names. As this caused breaking issues with databases imposing restrictions

2.1.0M1 Spring Statemachine 110

Spring Statemachine - Reference Documentation

on database object lengths, all Entity classes have spesific definitions to force table names. For
example 'JPA_REPOSITORY_STATE'is now simple 'STATE' and so on with other Entity classes.

Generic way to update states and transition manually for jpa is shown below. This is equivalent to

machine shown in Figure 34.1, “SimpleMachine”.

@\ut owi r ed
St at eReposi t ory<JpaReposi t orySt at e> st at eRepository;

@\ut owi r ed
Transi ti onReposi t or y<JpaReposi toryTransi ti on> transiti onRepository;

voi d addConfig() {
JpaRepositoryState stateSl = new JpaRepositoryState("S1", true);
JpaReposi toryState stateS2 new JpaRepositoryState("S2");
JpaRepositoryState stateS3 = new JpaRepositoryState("S3");

st at eReposi tory. save(stateSl);
st at eReposi tory. save(stateS2);
st at eReposi tory. save(stateS3);

JpaRepositoryTransition transiti onS1ToS2

transitionRepository. save(transitionS1ToS2);
transitionRepository.save(transitionS2ToS3);

This is equivalent to machine shown in Figure 34.2, “SimpleSubMachine”.

new JpaRepositoryTransition(stateSl, stateS2, "E1");
JpaReposi toryTransition transitionS2ToS3 = new JpaRepositoryTransition(stateS2, stateS3, "E2");

@\ut owi r ed
St at eReposi t ory<JpaReposi t orySt at e> st at eRepository;

@\ut owi r ed
Transi ti onReposi t or y<JpaReposi toryTransi ti on> transiti onRepository;

voi d addConfig() {
JpaRepositoryState stateSl new JpaRepositoryState("S1l", true);
JpaRepositoryState stateS2 = new JpaRepositoryState("S2");
JpaRepositoryState stateS3 = new JpaRepositoryState("S3");

JpaReposi toryState stateS21 = new JpaRepositoryState("S21", true);
st at eS21. set Par ent St at e(st at eS2) ;

JpaRepositoryState stateS22 = new JpaRepositoryState("S22");

st at eS22. set Par ent St at e(st at eS2) ;

st at eReposi tory. save(stateSl);
st at eReposi tory. save(stateS2);
st at eReposi tory. save(stateS3);
st at eReposi tory. save(stateS21);
st at eReposi tory. save(st at eS22) ;

JpaRepositoryTransition transiti onS2ToS3 = new JpaRepositoryTransition(stateS21, stateS22,
JpaRepositoryTransition transitionS21ToS22 = new JpaRepositoryTransition(stateS2, stateS3,

transitionRepository.save(transitionS1ToS2);
transiti onRepository.save(transiti onS2ToS3);
transiti onRepository. save(transiti onS21ToS22);

This is equivalent to machine shown in Figure 34.3, “ShowcaseMachine”.

First you access all repositories.

JpaRepositoryTransition transitionS1ToS2 = new JpaRepositoryTransition(stateSl, stateS2, "El1");

"E2");
"E3");

2.1.0M1 Spring Statemachine

111

Spring Statemachine - Reference Documentation

@\ut owi r ed
St at eReposi t ory<JpaReposi t orySt at e> st at eRepository;

@\ut owi r ed
Transi ti onReposi t or y<JpaReposi toryTransi ti on> transiti onRepository;

@\ut owi r ed
Act i onReposi t or y<JpaReposi t or yActi on> acti onReposi tory;

@\ut owi r ed
Guar dReposi t or y<JpaReposi t or yGuar d> guar dReposi tory;

Create actions and guards.

JpaReposi toryCGuard fooOCGuard = new JpaRepositoryCuard();
f ooOCuar d. set Nane("f ooOCuard");

JpaReposi toryGuard foolGuard = new JpaRepositoryGuard();
foolCuard. set Nane("foolCuard");

JpaReposi toryAction fooAction = new JpaRepositoryAction();
f ooActi on. set Nane("f ooAction");

guar dReposi tory. save(fooOGuard);
guar dReposi tory. save(foolGuard);
acti onReposi tory. save(fooAction);

Create states.

JpaRepositoryState stateSO0O = new JpaRepositoryState("S0", true);
stat eS0. setlnitial Acti on(fooAction);

JpaRepositoryState stateSl = new JpaRepositoryState("S1", true);
st at eSl. set Par ent St at e(st at eS0) ;

JpaRepositoryState stateS11 = new JpaRepositoryState("S11", true);
st at eS11. set Par ent St at e(st at eS1) ;

JpaRepositoryState stateS12 = new JpaRepositoryState("S12");

st at eS12. set Par ent St at e(st at eS1) ;

JpaRepositoryState stateS2 = new JpaRepositoryState("S2");

st at eS2. set Par ent St at e(st at eS0) ;

JpaRepositoryState stateS21 = new JpaRepositoryState("S21", true);
st at eS21. set Par ent St at e(st at eS2) ;

st at eS211. set Par ent St at e(st at eS21) ;
JpaRepositoryState stateS212 = new JpaRepositoryState("S212");
st at eS212. set Par ent St at e(st at eS21) ;

st at eReposi tory. save(st at eS0) ;
st at eReposi tory. save(stateSl);
st at eReposi tory. save(stateSll);
st at eReposi tory. save(stateS12);
st at eReposi tory. save(st at eS2);
st at eReposi tory. save(stateS21);
st at eReposi tory. save(stateS211);
st at eReposi tory. save(st at eS212);

Finally create transitions.

JpaRepositoryState stateS211 = new JpaRepositoryState("S211", true);

2.1.0M1 Spring Statemachine

112

Spring Statemachine - Reference Documentation

JpaRepositoryTransition transitionS1ToS1 = new JpaRepositoryTransition(stateSl, stateSl, "A");
transitionS1ToS1. set Guar d(foolCuard);

JpaRepositoryTransition transitionS1ToS11 = new JpaRepositoryTransition(stateSl, stateSll, "B");
JpaRepositoryTransition transitionS21ToS211 = new JpaRepositoryTransition(stateS21, stateS211, "B");
JpaRepositoryTransition transiti onS1ToS2 = new JpaRepositoryTransition(stateSl, stateS2, "C');
JpaRepositoryTransition transitionS1ToSO = new JpaRepositoryTransition(stateSl, stateS0, "D');
JpaRepositoryTransition transitionS211ToS21 = new JpaRepositoryTransition(stateS211, stateS21, "D');
JpaRepositoryTransition transitionS0ToS211 = new JpaRepositoryTransition(stateS0, stateS211, "E');
JpaRepositoryTransition transitionS1ToS211 = new JpaRepositoryTransition(stateSl, stateS211, "F");
JpaRepositoryTransition transitionS2ToS21 = new JpaRepositoryTransition(stateS2, stateS21, "F");
JpaRepositoryTransition transitionS11ToS211 = new JpaRepositoryTransition(stateSll, stateS211, "G');

JpaRepositoryTransition transitionS0O = new JpaRepositoryTransition(stateS0, stateS0, "H');
transitionS0. set Ki nd(Transi ti onKi nd. | NTERNAL) ;

transitionS0. set Guar d(fooOGuard);

transitionS0. set Acti ons(new HashSet <>(Arrays. asLi st (fooAction)));

JpaRepositoryTransition transitionSl = new JpaRepositoryTransition(stateSl, stateSl, "H');
transitionSl. set Ki nd(Transi ti onKi nd. | NTERNAL) ;

JpaRepositoryTransition transitionS2 = new JpaRepositoryTransition(stateS2, stateS2, "H');
transitionS2. setKind(TransitionKind. | NTERNAL) ;

transitionS2. set Guard(foolCGuard);

transitionS2. set Acti ons(new HashSet <>(Arrays. asLi st (f ooAction)));

JpaRepositoryTransition transitionS11ToS12 = new JpaRepositoryTransition(stateSll, stateS12, "I");
JpaRepositoryTransition transitionS12ToS212 = new JpaRepositoryTransition(stateSl2, stateS212, "I");
JpaReposi toryTransition transitionS211ToS12 = new JpaRepositoryTransition(stateS211, stateS12, "I");

JpaRepositoryTransition transitionS1l = new JpaRepositoryTransition(stateSl1l, stateSl1, "J");
JpaRepositoryTransition transitionS2ToS1 = new JpaRepositoryTransition(stateS2, stateSl, "K');

transiti onRepository. save(transiti onS1ToSl1);
transiti onRepository. save(transiti onS1ToS11);
transiti onRepository. save(transiti onS21ToS211);
transitionRepository.save(transitionS1ToS2);
transitionRepository.save(transitionS1ToS0);
transitionRepository.save(transitionS211ToS21);
transiti onRepository. save(transiti onS0ToS211);
transiti onRepository.save(transiti onS1ToS211);
transiti onRepository. save(transiti onS2ToS21);
transitionRepository.save(transitionS11ToS211);
transitionRepository. save(transitionS0);
transitionRepository.save(transitionSl);
transiti onRepository. save(transitionS2);
transiti onRepository. save(transiti onS11ToS12);
transiti onRepository. save(transiti onS12ToS212);
transitionRepository.save(transitionS211ToS12);
transitionRepository.save(transitionSll);
transitionRepository.save(transitionS2ToS1);

Complete example can be found from sample Chapter 50, JPA Config. This example is also showing
how repository can be pre-populated from existing json file having a definitions for entity classes.

Redis

Actual Repository implementations for a Redis are Redi sStateRepository,
Redi sTransi ti onReposi t ory, Redi sActi onReposi t ory and Redi sGuar dReposi t ory which
are backed by Entity classes Redi sRepositoryState, Redi sRepositoryTransition,
Redi sReposi t or yAct i on and Redi sReposi t or yGQuar d respectively.

Generic way to update states and transition manually for redis is shown below. This is equivalent to
machine shown in Figure 34.1, “SimpleMachine”.

2.1.0M1 Spring Statemachine 113

Spring Statemachine - Reference Documentation

@\ut owi r ed
St at eReposi t or y<Redi sReposi torySt at e> st at eRepository;

@\ut owi r ed
Transi ti onReposi t or y<Redi sReposi toryTransi ti on> transiti onRepository;

voi d addConfig() {
Redi sReposi torySt ate stateS1 new Redi sRepositoryState("S1", true);
Redi sReposi toryState stateS2 = new Redi sRepositoryState("S2");
Redi sRepositoryState stateS3 = new Redi sRepositoryState("S3");

st at eReposi tory. save(stateSl);
st at eReposi tory. save(stateS2);
st at eReposi tory. save(stateS3);

Redi sRepositoryTransition transiti onS1ToS2 = new Redi sRepositoryTransition(stateSl, stateS2, "E1");
Redi sRepositoryTransition transiti onS2ToS3 = new Redi sRepositoryTransition(stateS2, stateS3, "E2");

transitionRepository.save(transitionS1ToS2);
transitionRepository.save(transitionS2ToS3);

This is equivalent to machine shown in Figure 34.2, “SimpleSubMachine”.

@\ut owi r ed
St at eReposi t or y<Redi sReposi torySt at e> st at eRepository;

@\ut owi r ed
Transi ti onReposi t or y<Redi sReposi toryTransiti on> transiti onRepository;

voi d addConfig() {
Redi sReposi toryState stateSl = new Redi sRepositoryState("S1", true);
Redi sRepositoryState stateS2 = new Redi sRepositoryState("S2");
Redi sReposi toryState stateS3 = new Redi sRepositoryState("S3");

st at eReposi tory. save(stateSl);
st at eReposi tory. save(stateS2);
st at eReposi tory. save(stat eS3);

Redi sRepositoryTransition transitionS1ToS2 = new Redi sRepositoryTransition(stateSl, stateS2, "E1");
Redi sReposi toryTransition transiti onS2ToS3 = new Redi sReposi toryTransition(stateS2, stateS3, "E2");

transitionRepository.save(transitionS1ToS2);
transiti onRepository.save(transiti onS2ToS3);

}
MongoDB
Actual Repository implementations for a MongoDB are MongoDbSt ateRepository,
MongoDbTr ansi ti onRepository, MongoDbAct i onRepository and
MongoDbCuar dReposi tory which are backed by Entity classes

MongoDbReposi t orySt at e, MongoDbRepositoryTransition, MongoDbRepositoryAction
and MongoDbReposi t or yGQuar d respectively.

Generic way to update states and transition manually for redis is shown below. This is equivalent to
machine shown in Figure 34.1, “SimpleMachine”.

2.1.0M1 Spring Statemachine 114

Spring Statemachine - Reference Documentation

@\ut owi r ed
St at eReposi t or y<MongoDbReposi t or ySt at e> st at eRepository;

@\ut owi r ed
Transi ti onReposi t or y<MongoDbReposi t oryTransi ti on> transiti onRepository;

voi d addConfig() {
MongoDbReposi toryState stateSl = new MongoDbRepositoryState("S1", true);
MongoDbReposi toryState stateS2 = new MongoDbRepositoryState("S2");
MongoDbReposi toryState stateS3 = new MongoDbRepositoryState("S3");

st at eReposi tory. save(stateSl);
st at eReposi tory. save(stateS2);
st at eReposi tory. save(stateS3);

MongoDbReposi toryTransition transiti onS1ToS2 = new MongoDbReposi toryTransiti on(stateSl,
stateS2, "El1");

MongoDbReposi toryTransition transiti onS2ToS3 = new MongoDbReposi toryTransiti on(stateS2,
stateS3, "E2");

transitionRepository.save(transitionS1ToS2);
transiti onRepository. save(transiti onS2ToS3);

This is equivalent to machine shown in Figure 34.2, “SimpleSubMachine”.

@\ut owi r ed
St at eReposi t or y<MongoDbReposi t or ySt at e> st at eRepository;

@\ut owi r ed
Transi ti onReposi t or y<MongoDbReposi toryTransi ti on> transiti onRepository;

voi d addConfig() {
MbongoDbReposi toryState stateSl = new MongoDbRepositoryState("S1", true);
MongoDbReposi toryState stateS2 = new MongoDbRepositoryState("S2");
MongoDbReposi torySt at e st at eS3 new MongoDbRepositoryState("S3");

MongoDbReposi toryState stateS21 = new MongoDbRepositoryState("S21", true);
st at eS21. set Par ent St at e(st at eS2) ;

MbongoDbReposi torySt at e stateS22 = new MongoDbReposi toryState("S22");

st at eS22. set Par ent St at e(st at eS2) ;

st at eReposi tory. save(stateSl);
st at eReposi tory. save(stateS2);
st at eReposi tory. save(st at eS3);
st at eReposi tory. save(stat eS21);
st at eReposi tory. save(st at eS22) ;

MongoDbReposi toryTransition transiti onS1ToS2 = new MongoDbReposi toryTransiti on(stateSl,
stateS2, "El1");

MongoDbReposi toryTransition transiti onS2ToS3 = new MongoDbReposi t oryTransi ti on(stat eS21,
stateS22, "E2");

MongoDbReposi toryTransition transiti onS21ToS22 = new MongoDbReposi t oryTransi ti on(st at eS2,
stateS3, "E3");

transiti onRepository. save(transiti onS1ToS2);
transitionRepository. save(transitionS2ToS3);
transitionRepository. save(transitionS21ToS22);

34.2 Repository Persistence

Apart from storing machine configuration, shown in Section 34.1, “Repository Config”, in an external
repository it is also possible to persist machine into repositories.

Interface St at eMachi neReposi t ory is a central access point interacting with machine persistence
and is backed by Entity class Reposi t or ySt at eMachi ne.

2.1.0M1 Spring Statemachine 115

Spring Statemachine - Reference Documentation

JPA

Actual Repository implementation for a JPA is JpaSt at eMachi neReposi t ory which is backed by
Entity class JpaReposi t or ySt at eMachi ne.

Generic way to persist machine for jpa is shown below.

@\ut owi r ed
St at eMachi neReposi t or y<JpaReposi t or ySt at eMachi ne> st at eMachi neReposi tory;

void persist() {

JpaReposi t or ySt at eMachi ne machi ne = new JpaReposi t oryStateMachi ne();
machi ne. set Machi nel d("machi ne");

machi ne. set State("S1");

/'l raw byte[] representation of a context

machi ne. set St at eMachi neCont ext (new byte[] { 0 });

st at eMachi neReposi t ory. save(nachi ne);

Redis

Actual Repository implementation for a Redis is Redi sSt at eMachi neReposi t ory which is backed
by Entity class Redi sReposi t or ySt at eMachi ne.

Generic way to persist machine for jpa is shown below.

@\ut owi r ed
St at eMachi neReposi t or y<Redi sReposi t or ySt at eMachi ne> st at eMachi neReposi tory;

void persist() {

Redi sReposi t or ySt at eMachi ne machi ne = new Redi sReposi torySt at eMachi ne();
machi ne. set Machi nel d(" machi ne");

machi ne. set State("S1");

/1 raw byte[] representation of a context

machi ne. set St at eMachi neCont ext (new byte[] { 0 });

st at eMachi neReposi t ory. save(nachi ne);

MongoDB

Actual Repository implementation for a MongoDB is MongoDbSt at eMachi neReposi t ory which is
backed by Entity class MongoDbReposi t or ySt at eMachi ne.

Generic way to persist machine for jpa is shown below.

@\ut owi r ed
St at eMachi neReposi t or y<MongoDbReposi t or ySt at eMachi ne> st at eMachi neReposi tory;

void persist() {

MongoDbReposi t or ySt at eMachi ne machi ne = new MongoDbReposi t or ySt at eMachi ne() ;
machi ne. set Machi nel d(" machi ne");

machi ne. set State("S1");

/'l raw byte[] representation of a context

machi ne. set St at eMachi neCont ext (new byte[] { 0 });

st at eMachi neReposi tory. save(machi ne) ;

2.1.0M1 Spring Statemachine 116

Part V. Recipes

This chapter contains documentation for existing built-in state machine recipes.

What exactly is a recipe? As Spring Statemachine is always going to be a foundational framework
meaning that its core will not have that much higher level functionality or dependencies outside of a
Spring Framework. Correct usage of a state machine may be a little difficult time to time and there’s
always some common use cases how state machine can be used. Recipe modules are meant to provide
a higher level solutions to these common use cases and also provide examples beyond samples how
framework can be used.

Note

Recipes are a great way to make external contributions this Spring Statemachine project. If you're
not ready to contribute to the framework core itself, a custom and common recipe is a great way
to share functionality among other users.

Spring Statemachine - Reference Documentation

35. Persist

Persist recipe is a simple utility which allows to use a single state machine instance to persist and update
a state of an arbitrary item in a repository.

Recipes main class is Per si st St at eMachi neHandl er which assumes user to do three different
things:

« An instance of a StateMachine<String, String> needs to be used with a
Per si st St at eMachi neHandl er . States and Events are required to be type of Strings.

» Persi st St at eChangelLi st ener need to be registered with handler order to react to persist
request.

» Method handl eEvent Wt hSt at e is used to orchestrate state changes.

There is a sample demonstrating usage of this recipe at Chapter 42, Persist.

2.1.0M1 Spring Statemachine 118

Spring Statemachine - Reference Documentation

36. Tasks

Tasks recipe is a concept to execute DAG of Runnabl e instances using a state machine. This recipe
has been developed from ideas introduced in sample Chapter 40, Tasks.

Generic concept of a state machine is shown below. In this state chart everything under TASKS just
shows a generic concept of how a single task is executed. Because this recipe allows to register deep
hierarchical DAG of tasks, meaning a real state chart would be deep nested collection of sub-states and
regions, there’s no need to be more precise.

For example if you have only two registered tasks, below state chart would be correct with TASK i d
replaced with TASK 1 and TASK 2 if registered tasks ids are 1 and 2.

‘ 5M
FORK TASKS JD'N
RUN
o—»| reapy —»| —> | o—»| TASKIdINITIAL | | —»| —
A A +
| TASK id |
o—p| TASKId_INITIAL |
| TASK_id |
[OK]
| CHOICE |4
#[ERROR]
ERROR
CONTINUE FALLBACK
o—p| AUTOMATIC S——— MANUAL
FIX

Executing a Runnabl e may result an error and especially if a complex DAG of tasks is involved it
is desirable that there is a way to handle tasks execution errors and then having a way to continue
execution without executing already successfully executed tasks. Addition to this it would be nice if
some execution errors can be handled automatically and as a last fallback, if error can’t be handled
automatically, state machine is put into a state where user can handle errors manually.

2.1.0M1 Spring Statemachine 119

Spring Statemachine - Reference Documentation

TasksHandl er contains a builder method to configure handler instance and follows a simple builder
pattern. This builder can be used to register Runnabl e tasks, TasksLi st ener instances, define
St at eMachi nePer si st hook, and setup custom TaskExecut or instance.

Now let's take a simple Runnabl e just doing a simple sleep as shown below. This is a base of all
examples in this chapter.

private Runnabl e sl eepRunnabl e() {
return new Runnabl e() {

@verride
public void run() {
try {
Thr ead. sl eep(2000)
} catch (InterruptedException e) {

}

To execute multiple sl eepRunnabl e tasks just register tasks and execute r unTasks() method from
TasksHandl er.

TasksHandl er handl er = TasksHandl er. bui | der ()
.task("1", sleepRunnable())
.task("2", sleepRunnable())
.task("3", sleepRunnable())

Lbuild();

handl er. runTasks();

Order to listen what is happening with a task execution an instance of a TasksLi st ener can be
registered with a TasksHandl er . Recipe provides an adapter TasksLi st ener Adapt er if you don’t
want to implement a full interface. Listener provides a various hooks to listen tasks execution events.

2.1.0M1 Spring Statemachine 120

Spring Statemachine - Reference Documentation

private class M/TasksLi stener extends TasksLi stener Adapter {

@verride
public void onTasksStarted() {

}

@verride
public void onTasksConti nue() {
}

@verride
public void onTaskPreExecut e(Object id) {

}

@verride
public voi d onTaskPost Execut e(Cbj ect id) {

}

@verride
public void onTaskFail ed(Object id, Exception exception) {
}

@verride
public void onTaskSuccess(Object id) {

}

@verride
public void onTasksSuccess() {

}

@verride
public void onTasksError () {

}

@verride
public void onTasksAut omati cFi x(TasksHandl er handl er, StateContext<String, String> context) {

}

Listeners can be either registered via a builder or directly with a TasksHandl er as shown above.

MyTasksLi stener |istenerl = new MyTasksLi stener();
M/TasksLi stener |istener2 = new MyTasksLi stener();

TasksHandl er handl er = TasksHandl er. bui | der ()
.task("1", sleepRunnable())
.task("2", sleepRunnable())
.task("3", sleepRunnable())
.listener(listenerl)

Lbuild();

handl er . addTasksLi st ener (| i stener2);
handl er. renoveTasksLi st ener (| i st ener 2);

handl er. runTasks();

Above sample show how to create a deep nested DAG of tasks. Every task needs to have an unique
identifier and optionally as task can be defined to be a sub-task. Effectively this will create a DAG of
tasks.

2.1.0M1 Spring Statemachine 121

Spring Statemachine - Reference Documentation

handl er. runTasks();

sl eepRunnabl e())
"12", sl eepRunnabl e())
"13", sl eepRunnabl e())
sl eepRunnabl e())
"22", sl eepRunnabl e())
"23", sl eepRunnabl e())
sl eepRunnabl e())
"32", sl eepRunnabl e())
"33", sleepRunnable())

TasksHandl er handl er = TasksHandl er. bui | der ()
.task("1",
.task("1",
.task("1",
.task("2",
.task("2",
.task("2",
.task("3",
.task("3",
.task("3",
Lbuild();

When error happens and a state machine running these tasks goes into a ERROR state, user can
call handler methods f i xCur r ent Pr obl ens to reset current state of tasks kept in a state machine
extended state variables. Handler method cont i nueFr onEr r or can then be used to instruct state

machine to transition from ERRCR state back to READY state where tasks can be executed again.

sl eepRunnabl e())
sl eepRunnabl e())
sl eepRunnabl e())

handl er. runTasks();
handl er. fi xCurrent Probl ens()
handl er. cont i nueFr onError ()

TasksHandl er handl er = TasksHandl er. buil der ()
.task("1",
.task("2",
.task("3",
Lbui 1 d();

2.1.0.M1

Spring Statemachine

122

Part VI. State Machine Examples

This part of the reference documentation explains the use of state machines together with a sample
code and a uml state charts. We do few shortcuts when representing relationship between a state chart,
SSM configuration and what an application does with a state machine. For complete examples go and
study the samples repository.

Samples are build directly from a main source distribution during a normal build cycle. Samples in this
chapter are:

Chapter 37, Turnstile Turnstile.

Chapter 38, Showcase Showcase.
Chapter 39, CD Player CD Player.
Chapter 40, Tasks Tasks.

Chapter 41, Washer Washer.

Chapter 42, Persist Persist.

Chapter 43, Zookeeper Zookeeper.
Chapter 44, Web Web.

Chapter 45, Scope Scope.

Chapter 46, Security Security.

Chapter 47, Event Service Event Service.
Chapter 48, Deploy Deploy.

Chapter 49, Order Shipping Order Shipping.
Chapter 50, JPA Config JPA Config.
Chapter 51, Data Persist Data Persist.

Chapter 52, Monitoring Monitoring.

./gradlew clean build -x test

Every sample is located in its own directory under spri ng- st at emachi ne- sanpl es. Samples are
based on spring-boot and spring-shell and you will find usual boot fat jars under every sample projects
bui | d/ 1'i bs directory.

Note

Filenames for jars we refer in this section are populated during a build of this document, meaning
if you're building samples from a master, you have files with BUl LD- SNAPSHOT postfix.

Spring Statemachine - Reference Documentation

37. Turnstile

Turnstile is a simple device which gives you an access if payment is made and is a very simple to model
using a state machine. In its simplest form there are only two states, LOCKED and UNLOCKED. Two

events, CO N and PUSH can happen if you try to go through it or you make a payment.

5M

o—Pp LOCKED

entry/
exit

PUSH

— COIN —p

4— PUSH —

UNLOCKED

entry/
exit

COIN

States.

public enum States {
LOCKED, UNLOCKED
}

Events.

public enum Events {
CO N, PUSH
}

Configuration.

2.1.0.M1

Spring Statemachine

124

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
static class StateMachi neConfig

@verride

throws Exception {
states
.withStates()
.initial (States. LOCKED)
.states(Enuntet.all Of (States. class));

@verride

throws Exception {
transitions

. Wi t hExt ernal ()
. sour ce(St at es. LOCKED)
. target (St at es. UNLOCKED)
.event (Events. CO N)
.and()

.wi thExternal ()
. sour ce(St at es. UNLOCKED)
. target (St ates. LOCKED)
.event (Events. PUSH) ;

You can see how this sample state machine interacts with event by running t ur nsti | e sample.

$ java -jar spring-statenmachi ne-sanpl es-turnstile-2.1.0. M.jar

smesm print

Y
| SM

e mcameceeemccemeeeccecamccememeceemeeemeeamecammmecmemeeemm—a————=-
|

| Fom e + L +

| x> LOCKED | | UNLOCKED |

| E + E +

| +---| entry/ | | entry/ [---+

| | | exit/ | | exit/ | |

| [| | (.

| PUSH | |---CON-->| | | CO N
| [| | (.

| [| | (.

| [| <--PUSH---| [

I +--> | | | <--+

| | | | |

| L + L +

|
Y

snpsm start
State changed to LOCKED
State machine started

snmpsm event CO N
State changed to UNLOCKED
Event CO N send

smesm event PUSH
State changed to LOCKED
Event PUSH send

ext ends EnunSt at eMachi neConf i gur er Adapt er <St ates, Events> {

public void configure(StateMchi neSt at eConfi gurer<States, Events> states)

public void configure(StateMachi neTransitionConfigurer<States,

Event s> transitions)

2.1.0M1 Spring Statemachine

125

Spring Statemachine - Reference Documentation

38. Showcase

Showcase is a complex state machine showing all possible transition topologies up to four levels of
state nesting.

|)
entry/
exit
H/[foo.equals(0)];
o—Pp 51 52
entry/ C entry/
D exit —p| exit
44— | H/ H/[foo.equals(1)];
C
o—p 511 +“— o—1p s21
entry/ F entry/
exit +— exit
B o—p 5211
—P F G
| entry/ p
| G | exit |
p E
B <
D
| 512 —»
entry/
exit |
5212
entry/
| exit
p
A
Alfoo.equals(1)];

States.

public enum States {
S0, S1, Si11, S12, S2, S21, S211, S212

}

Events.

public enum Events {
A B C D E F G H I
}

Configuration - states.

2.1.0M1 Spring Statemachine 126

Spring Statemachine - Reference Documentation

@verride
public void configure(StateMichi neSt at eConfi gurer<States, Events> states)
throws Exception {
states
. Wi thStates()
.initial(States.S0, fooAction())
. state(States. SO)
.and()
. Wi thStates()
. parent (St at es. SO)
.initial(States. S1)
.state(States. S1)
.and()
. Wi thStates()
. parent (St at es. S1)
.initial(States. S11)
.state(States. S11)
.state(States. S12)
.and()
. Wi thStates()
. parent (St at es. S0)
.state(States. S2)
.and()
. Wi thStates()
. parent (St at es. S2)
.initial (States. S21)
.state(States. S21)
.and()
. Wi thStates()
. parent (St at es. S21)
.initial (States. S211)
.state(States. S211)
.state(States. S212);

Configuration - transitions.

2.1.0M1 Spring Statemachine 127

Spring Statemachine - Reference Documentation

@verride

t
trans

public void configure(StateMachi neTransitionConfi gurer<States

hrows Exception {

itions

wi t hExt ernal ()
.source(States

.Sl).target (States. S1). event (Events. A)

.guard(foolGuard())

.and()

. Wit hExt ernal ()
.source(States.

.and()

.wi thExternal ()
.source(States.

.and()

. Wit hExt ernal ()
.source(States.

.and()

.wi thExternal ()
.source(States.

.and()

. Wit hExt ernal ()
.source(States.

.and()

.wi thExternal ()
. source(States.

.and()

. Wit hExt ernal ()
.source(States.

. and()

.wi thExternal ()
.source(States.

.and()

. Wit hExt ernal ()
.source(States.

.and()

.wi thExternal ()
. source(States.

.and()

. Wit hExt ernal ()
.source(States.

.and()

.withlnternal ()

.source(States

Sl).target(States. S11). event (Events. B)

S21).target (States. S211) . event (Event s. B)

Sl).target(States. S2).event (Events. C

S2).target (States. S1). event (Events. C

Sl1).target(States. SO).event (Events. D)

S211).target (States. S21). event (Event s. D)

S0) . target (States. S211) . event (Events. E)

S1).target (States. S211). event (Events. F)

S2).target(States. S11). event (Events. F)

S11).target (States. S211). event (Events. G

S211).target (States. SO). event (Events. G

. S0) . event (Event s. H)

. guar d(fooOGuard())
.action(fooAction())

.and()

.withlnternal ()

.source(States

. S2).event (Events. H

.guard(foolGuard())

.acti on(fooAct
.and()

.withlnternal ()

.source(States
.and()

. Wi t hExt ernal ()

.source(States
.and()

.wi thExternal ()

.source(States
.and()

. Wi t hExt ernal ()

.source(States

ion())

. S1).event (Events. H)

.S11).target (States. S12). event (Events. |)

. S211) . target (States. S212) . event (Events. |)

. S12) .target (States. S212). event (Events.1);

Event s> transitions)

Configuration - actions and guard.

2.1.0.M1

Spring Statemachine

128

Spring Statemachine - Reference Documentation

@Bean
publ i c FooGuard fooOGuard() {
return new FooQuard(0);

}

@Bean
public FooGuard foolGuard() {
return new FooGQuard(1);

@Bean
public FooAction fooAction() {
return new FooAction();

Action.
private static class FooAction inplenments Action<States, Events> {

@verride
public void execute(StateContext<States, Events> context) {
Map<Obj ect, Cbject> variables = context.get Ext endedState().getVari abl es();
I nteger foo = context.get Ext endedState().get("foo", Integer.class);
if (foo == null) {
log.info("Init foo to 0");
vari abl es. put ("foo", 0);
} elseif (foo == 0) {
log.info("Switch foo to 1");
vari abl es. put ("foo", 1);
} elseif (foo == 1) {
log.info("Switch foo to 0");
vari abl es. put ("foo", 0);

Guard.

private static class FooGuard inplenents Guard<States, Events> {
private final int match;

public FooGuard(int match) {
this. mtch = match;

@verride

public bool ean eval uat e(St at eCont ext <St ates, Events> context) {
Obj ect foo = context.get ExtendedState().getVariables().get("foo");
return !'(foo == null || !foo.equal s(match));

Let's go through what this state machine do when it's executed and we send various event to it.

2.1.0M1 Spring Statemachine 129

Spring Statemachine - Reference Documentation

smpsm start

Init foo to O

Entry state SO

Entry state S1

Entry state S11
State machine started

snpsm event A
Event A send

smsm event C
Exit state Sl11
Exit state S1
Entry state S2
Entry state S21
Entry state S211
Event C send

snpsm event H

Switch foo to 1

Internal transition source=S0
Event H send

snmpsm event C
Exit state S211
Exit state S21
Exit state S2
Entry state S1
Entry state S11
Event C send

snpsm event A
Exit state Sl11
Exit state Sl
Entry state S1
Entry state S11
Event A send

What happens in above sample:

 State machine is started which takes it to its initial state S11 via superstates S1 and SO. Also extended
state variable f oo is init to 0.

* We try to execute self transition in state S1 with event A but nothing happens because transition is
guarded by variable f oo to be 1.

* We send event C which takes us to other state machine where initial state S211 and its superstates
are entered. In there we can use event H which does a simple internal transition to flip variable f 0o.
Then we simply go back using event C.

* Event A is sent again and now S1 does a self transition because guard evaluates true.

Let’'s take closer look of how hierarchical states and their event handling works with a below example.

2.1.0M1 Spring Statemachine 130

Spring Statemachine - Reference Documentation

smesm vari abl es
No vari abl es

snpsm start

Init foo to O

Entry state SO

Entry state Sl

Entry state S11
State machine started

snmpsm vari abl es
f 00=0

snpsm event H
Internal transition source=S1
Event H send

smesm vari abl es
f oo=0

snpsm event C
Exit state Sl1
Exit state Sl
Entry state S2
Entry state S21
Entry state S211
Event C send

snpsm vari abl es
f 00=0

snpsm event H

Switch foo to 1

Internal transition source=S0
Event H send

smesm vari abl es
foo=1

smesm event H

Switch foo to 0

Internal transition source=S2
Event H send

snpsm vari abl es
f 00=0

What happens in above sample:
» We print extended state variables in various stages.
» With event H we end up executing internal transition which is logged with source state.

 It's also worth to pay attention to how event H is handled in different states SO, S1 and S2. This
is a good example of how hierarchical states and their event handling works. If state S2 is unable
to handle event H due to guard condition, its parent is checked next. This guarantees that while on
state S2, f oo flag is always flipped around. However in state S1 event H always match to its dummy
transition without guard or action, not never happens.

2.1.0M1 Spring Statemachine 131

Spring Statemachine - Reference Documentation

39. CD Player

CD Player is a sample which resembles better use case of most of use have used in a real world. CD
Player itself is a really simple entity where user can open a deck, insert or change a disk, then drive
player functionality by pressing various buttons like eject, play, stop, pause, rewind and backward.

How many of us have really given a thought of what it will take to make a code for a CD Player which
interacts with a hardware. Yes, concept of a player is overly simple but if you look behind the scenes
things actually get a bit convoluted.

You've probably noticed that if your deck is open and you press play, deck will close and a song will start
to play if CD was inserted in a first place. In a sense when deck is open you first need to close it and then
try to start playing if cd is actually inserted. Hopefully you have now realised that a simple CD Player
is not anymore so simple. Sure you can wrap all this with a simple class with few boolean variables
and probably few nested if/else clauses, that will do the job, but what about if you need to make all this
behaviour much more complex, do you really want to keep adding more flags and if/else clauses.

SM
BUSY o—7Pp IDLE
entry/ entry/
exit exit
o—Pp PLAYING o—Pp CLOSED
STOP
entry/ e entry/
exit PLAY exit
—Pp
timer/ls
_ 4+ _ 4+
PLAY
PAUSE + — EJECT
PAUSE EJECT
PAUSED OPEN
entry/ entry/
L | exit — L | exit —
L LOAD

Let's go through how this sample and its state machine is designed and how those two interacts with
each other. Below three config sections are used withing a EnumStateMachineConfigurerAdapter.

2.1.0M1 Spring Statemachine 132

Spring Statemachine - Reference Documentation

@verride
public void configure(StateMichi neSt at eConfi gurer<States, Events> states)
throws Exception {
states
. Wi thStates()
.initial(States.|DLE)
.state(States. | DLE)
.and()
. Wi thStates()
. parent (States. | DLE)
.initial (States. CLOSED)
.state(States. CLOSED, closedEntryAction(), null)
. stat e(St at es. OPEN)
.and()
. Wi thStates()
. state(States. BUSY)
.and()
. Wi thStates()
. par ent (St at es. BUSY)
.initial (States. PLAYI NG
. state(States. PLAYI NG
.state(States. PAUSED) ;

@verride

throws Exception {
transitions
.wi thExternal ()

.and()
. Wi t hExt ernal ()

.and()

.wi thExternal ()
.source(States. OPEN) .t arget (St at es. CLOSED) . event (Event s. PLAY)
.and()

. Wi t hExt ernal ()

.and()
.withlnternal ()
. sour ce(St at es. PLAYI NG
.action(playi ngAction())
.tinmer(1000)
.and()
.withlnternal ()
. source(States. PLAYI NG . event (Event s. BACK)
.action(trackAction())
.and()
.withlnternal ()
. source(States. PLAYI NG . event (Event s. FORWARD)
.action(trackAction())
.and()
.wi thExternal ()

.and()
.wi t hExt ernal ()
.source(States. BUSY).target(States.|DLE).event (Events. STOP)
.and()
.wi thExternal ()
.source(States. | DLE).target(States. BUSY). event (Events. PLAY)
.action(playAction())
.guard(pl ayGuard())
.and()
.withlnternal ()
.source(States. OPEN) . event (Events. LOAD) . acti on(| oadAction())

public void configure(StateMachi neTransitionConfigurer<States, Events> transitions)

.source(States. CLOSED) .t ar get (St at es. OPEN) . event (Event s. EJECT)

.source(States. OPEN). target (States. CLOSED). event (Event s. EJECT)

.source(States. PLAYI NG . t ar get (St at es. PAUSED) . event (Event s. PAUSE)

.source(States. PAUSED) . t ar get (St at es. PLAYI NG . event (Event s. PAUSE)

2.1.0M1 Spring Statemachine

133

Spring Statemachine - Reference Documentation

@Bean
public C osedEntryAction closedEntryAction() {
return new Cl osedEntryAction();

}

@Bean
public LoadAction |oadAction() {
return new LoadAction();

}

@Bean
public TrackAction trackAction() {
return new TrackAction();

}

@Bean
public PlayAction playAction() {
return new PlayAction();

}

@ean
public PlayingAction playingAction() {
return new Pl ayi ngAction();

}

@ean
public PlayGuard playGuard() {
return new PlayGuard();

}

What we did in above configuration:

* We used EnumStateMachineConfigurerAdapter to configure states and transitions.

States CLOSED and OPEN are defined as substates of IDLE, states PLAYING and PAUSED are
defined as substates of BUSY.

With state CLOSED we added entry action as bean closedEntryAction.

 With transition we mostly mapped events to expected state transitions like EJECT closing and opening
a deck, PLAY, STOP and PAUSE doing their natural transitions. Few words to mention what we did
for other transitions.

< With source state PLAYING we added a timer trigger which is needed to automatically track elapsed
time within a playing track and to have facility to make a decision when to switch to next track.

« With event PLAY if source state is IDLE and target state is BUSY we defined action playAction
and guard playGuard.

* With event LOAD and state OPEN we defined internal transition with action loadAction which will
insert cd disc into extended state variables.

« PLAYING state defined three internal transitions where one is triggered by a timer executing a
playingAction which updates extended state variables. Other two transitions are with trackAction
with different events, BACK and FORWARD respectively which handles when user wants to go
back or forward in tracks.

This machine only have six states which are introduced as an enum.

2.1.0M1 Spring Statemachine 134

Spring Statemachine - Reference Documentation

public enum States {
/'l super state of PLAYI NG and PAUSED
BUSY,
PLAYI NG
PAUSED,
/'l super state of CLOSED and OPEN
| DLE,
CLGSED,
OPEN

Events represent, in a sense in this example, what buttons user would press and if user loads a cd
disc into a deck.

public enum Events {
PLAY, STOP, PAUSE, EJECT, LOAD, FORWARD, BACK

}

Beans cdPlayer and library are just used with a sample to drive the application.

@Bean
public CdPl ayer cdPl ayer () {
return new CdPl ayer ();

}

@Bean
public Library library() {
return Library. buil dSanpl eLi brary();

}

We can define extended state variable key as simple enums.

public enum Vari abl es {
CD, TRACK, ELAPSEDTI ME

}

public enum Headers {
TRACKSHI FT
}

We wanted to make this samply type safe so we're defining our own annotation @ StatesOnTransition
which have a mandatory meta annotation @OnTransition.

@rar get (El enent Type. METHOD)

@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)
@nTransition

public @nterface StatesOnTransition {

States[] source() default {};

States[] target() default {};

ClosedEntryAction is a entry action for state CLOSED to simply send and PLAY event to a statemachine
if cd disc is present.

2.1.0M1 Spring Statemachine 135

Spring Statemachine - Reference Documentation

public static class O osedEntryAction inplenents Action<States, Events> {

@verride
public voi d execute(StateContext<States, Events> context) {
if (context.getTransition() != null
&& context. get Event () == Events. PLAY
&% context.getTransition().getTarget().getld() == States. CLOSED
&& cont ext. get Ext endedSt ate(). get Vari abl es().get(Variables.CD) != null) {

cont ext . get St at eMachi ne() . sendEvent (Event s. PLAY) ;

LoadAction is simply updating extended state variable if event headers contained information about a
cd disc to load.

public static class LoadAction inplenents Action<States, Events> {

@verride
public void execute(Stat eCont ext <St ates, Events> context) {
Obj ect cd = cont ext.get MessageHeader (Vari abl es. CD) ;
cont ext . get Ext endedSt at e() . get Vari abl es() . put (Vari abl es. CD, cd);

PlayAction is simply resetting player elapsed time which is kept as an extended state variable.

public static class PlayAction inplenents Action<States, Events> {

@verride

public voi d execute(StateContext<States, Events> context) {
cont ext . get Ext endedSt at e() . get Vari abl es(). put (Vari abl es. ELAPSEDTI ME, O0l);
cont ext . get Ext endedSt at e() . get Vari abl es() . put (Vari abl es. TRACK, 0);

PlayGuard is used to guard transition from IDLE to BUSY with event PLAY if extended state variable
CD doesn't indicate that cd disc has been loaded.

public static class PlayQuard inpl enents Guard<States, Events> {

@verride

publ i c bool ean eval uat e(St at eCont ext <St at es, Events> context) {
Ext endedSt at e ext endedSt at e = cont ext . get Ext endedSt at e() ;
return extendedSt at e. get Vari abl es().get(Variables.CD) != null;

PlayingAction is updating extended state variable ELAPSEDTIME which cd player itself can read and
update lcd status. Action also handles track shift if user is going back or forward in tracks.

2.1.0M1 Spring Statemachine 136

Spring Statemachine - Reference Documentation

public static class PlayingAction inplenents Action<States, Events> {

@verride
public voi d execute(StateContext<States, Events> context) {
Map<Obj ect, Object> variabl es = context. get Ext endedSt at e() . get Vari abl es();
Obj ect el apsed = vari abl es. get (Vari abl es. ELAPSEDTI ME) ;
Obj ect cd = vari abl es. get(Vari abl es. CD) ;
Obj ect track = vari abl es. get (Vari abl es. TRACK) ;
if (el apsed instanceof Long) {
long e = ((Long)el apsed) + 1000l ;
if (e > ((Cd) cd).getTracks()[((Integer) track)].getLength()*1000) {
cont ext . get St at eMachi ne() . sendEvent (MessageBui | der
. Wi t hPayl oad(Event s. FORWARD)
. set Header (Header s. TRACKSHI FT. toString(), 1).build());
} else {
vari abl es. put (Vari abl es. ELAPSEDTI ME, e);

}

TrackAction handles track shift action if user is going back or forward in tracks. If it is a last track of a
cd, playing is stopped and STOP event sent to a state machine.

public static class TrackAction inplenents Action<States, Events> {

@verride
public void execute(Stat eCont ext <States, Events> context) {
Map<Obj ect, Object> variabl es = context. get Ext endedSt at e(). get Vari abl es();
Obj ect trackshift = context.get MessageHeader (Headers. TRACKSHI FT.toString());
Obj ect track = variabl es. get(Vari abl es. TRACK) ;
bj ect cd = vari abl es. get (Vari abl es. CD) ;
if (trackshift instanceof Integer && track instanceof Integer && cd instanceof Cd) {
int next = ((Integer)track) + ((Integer)trackshift);
if (next >> 0 & ((Cd)cd).getTracks().length > next) {
vari abl es. put (Vari abl es. ELAPSEDTI ME, Ol);
vari abl es. put (Vari abl es. TRACK, next);
} else if (((Cd)cd).getTracks().length <= next) {
cont ext . get St at eMachi ne() . sendEvent (Events. STOP) ;

}

One other important aspect of a state machines is that they have their own responsibilities mostly around
handling states and all application level logic should be kept outside. This means that application needs
to have a ways to interact with a state machine and below sample is how cdplayer does it order to update
Icd status. Also pay attention that we annotated CdPlayer with @WithStateMachine which instructs state
machine to find methods from your pojo which are then called with various transitions.

@nTransition(target = "BUSY")
public void busy(ExtendedSt ate extendedState) {
Obj ect cd = extendedState. getVariabl es().get(Variables.CD);
if (cd!=null) {
cdStatus = ((Cd)cd).getNane();
}

In above example we use @OnTransition annotation to hook a callback when transition happens with
a target state BUSY.

2.1.0M1 Spring Statemachine 137

Spring Statemachine - Reference Documentation

@t atesOnTransition(target = {States. CLOSED, States.|DLE})
public void cl osed(Ext endedSt at e ext endedState) {
Obj ect cd = extendedSt ate. getVari abl es().get(Variables.CD);
if (cd!=null) {
cdStatus = ((Cd)cd).get Nane();
} else {
cdStatus = "No CD';
}

trackStatus = "";

@OnTransition we used above can only be used with strings which are matched from enums.
@StatesOnTransition is then something what user can create into his own application to get a type safe

annotation where a real enums can be used.

Let's see an example how this state machine actually works.

snpsm start

Entry state |IDLE
Entry state CLOSED
State machine started

snecd | cd
No CD

smecd |ibrary
0: Geatest Hts

0: Bohem an Rhapsody 05:56

1. Another One Bites the Dust 03:36
1. Geatest Hits Il

0: A Kind of Magic 04:22

1: Under Pressure 04:08

snrcd ej ect
Exit state CLOSED
Entry state OPEN

snecd | oad O
Loading cd Geatest Hits

smecd pl ay

Exit state OPEN
Entry state CLOSED
Exit state CLOSED
Exit state |DLE
Entry state BUSY
Entry state PLAYI NG

snecd | cd
Greatest Hits Bohem an Rhapsody 00: 03

snrcd forward

snecd | cd
G eatest Hits Another One Bites the Dust 00: 04

snpcd stop

Exit state PLAYI NG
Exit state BUSY
Entry state |DLE
Entry state CLOSED

snpcd | cd
Greatest Hits

What happened in above run:

» State machine is started which causes machine to get initialized.

2.1.0M1 Spring Statemachine

138

Spring Statemachine - Reference Documentation

» CD Player Icd screen status is printed.

e CD Library is printed.

» CD Player deck is opened.

» CD with index 0 is loaded into a deck.

» Play is causing deck to get closed and immediate playing because cd was inserted.
» We print Icd status and request next track.

» We stop playing.

2.1.0M1 Spring Statemachine 139

Spring Statemachine - Reference Documentation

40. Tasks

Tasks is a sample demonstrating a parallel task handling within a regions and additionally adds an error
handling to either automatically or manually fixing task problems before continuing back to a state where
tasks can be run again.

‘ 5M
FORK TASKS JOIN
RUN
o—p| READY |—Iv e o—p‘ T1 ‘—Iv)(—p | —
A e
o—}‘ T2 ‘ —»X
o—b‘ T3 ‘ —»X
[OK]
| CHOICE |4
¢ [ERROR]
ERROR
CONTINUE FALLBACK
o—p AUTOMATIC > MANUAL
FIX

On a high level what happens in this state machine is:
» We're always trying to get into READY state so that we can use event RUN to execute tasks.

e TASKS state which is composed with 3 independent regions has been put in a middle of FORK and
JOIN states which will cause regions to go into its initial states and to be joined by end states.

e From JOIN state we go automatically into a CHOICE state which checks existence of error flags in
extended state variables. Tasks can set these flags and it gives CHOICE state a possibility to go into
ERROR state where errors can be handled either automatically or manually.

* AUTOMATIC state in ERROR can try to automatically fix error and goes back to READY if it succeed
to do so. If error is something what can’t be handled automatically, user intervention is needed and
machine is put into MANUAL state via FALLBACK event.

States.

2.1.0M1 Spring Statemachine 140

Spring Statemachine - Reference Documentation

public enum States {
READY,
FORK, JO N, CHO CE,
TASKS, T1, T1E, T2, T2E, T3, T3E,
ERROR, AUTOVATI C, MANUAL

Events.

public enum Events {
RUN, FALLBACK, CONTI NUE, FI X;
}

Configuration - states.

@verride
public void configure(StateMchi neSt at eConfi gurer<States, Events> states)
throws Exception {
states
. Wi thStates()

.initial (States. READY)

.fork(States. FORK)

. st at e(St at es. TASKS)

.join(States.JAN)

. choi ce(St at es. CHO CE)

. state(States. ERROR)

.and()

.withStates()
. par ent (St at es. TASKS)
.initial(States. T1)
.end(St at es. T1E)
.and()

. Wi thStates()
. par ent (St at es. TASKS)
.initial(States. T2)
.end(St ates. T2E)
.and()

. Wi thStates()
. par ent (St at es. TASKS)
.initial(States. T3)
.end(St at es. T3E)
.and()

. Wi thStates()
. par ent (St at es. ERROR)
.initial (States. AUTOVATI C)
.state(States. AUTOVATI C, automati cAction(), null)
.state(States. MANUAL) ;

Configuration - transitions.

2.1.0M1 Spring Statemachine 141

Spring Statemachine - Reference Documentation

@verride
public void configure(StateMachi neTransitionConfigurer<States, Events> transitions)
throws Exception {
transitions

.wi thExternal ()

. source(St at es. READY) . t ar get (St at es. FORK)
.event (Event s. RUN)
.and()

. Wit hFor k()
.source(States. FORK) . t ar get (St at es. TASKS)
.and()

.wi thExternal ()

.source(States. Tl).target (States. TLE)
.and()

. Wit hExt ernal ()

.source(States. T2).target (States. T2E)
.and()

.wi thExternal ()

.source(States. T3).target (States. T3E)
.and()

. Wi thJoi n()
.source(States. TASKS). target (States. JO N)
.and()

.wi thExternal ()

.source(States. JO N).target (States. CHO CE)
.and()

. Wi t hChoi ce()

. sour ce(St at es. CHO CE)
.first(States. ERROR tasksChoiceGuard())
.l ast (St at es. READY)

.and()

.wi t hExt ernal ()

.source(States. ERROR) . t ar get (St at es. READY)
.event (Event s. CONTI NUE)
.and()

.wi thExternal ()

.source(States. AUTOVATI C) . t ar get (St at es. MANUAL)
.event (Event s. FALLBACK)
.and()

.withlnternal ()

. source(St at es. MANUAL)
.action(fixAction())
.event (Events. FI X);

Guard below is guarding choice entry into a ERROR state and needs to return TRUE if error has
happened. For this guard simply checks that all extended state variables(T1, T2 and T3) are TRUE.

@Bean
public Guard<States, Events> tasksChoiceQuard() {
return new Guard<States, Events>() {

@verride
publ i c bool ean eval uat e(St at eCont ext <St at es, Events> context) {
Map<Obj ect, Cbject> variabl es = context.get Ext endedState().get Vari abl es()
return ! (ObjectUtils.null Saf eEqual s(vari abl es. get ("T1"), true)
&% bj ectUtils. null Saf eEqual s(vari abl es. get ("T2"), true)
&% Obj ect Uil s. null Saf eEqual s(vari abl es. get ("T3"), true))

Actions below will simply send event to a state machine to request next step which would be either
fallback or continue back to ready.

2.1.0M1 Spring Statemachine 142

Spring Statemachine - Reference Documentation

@Bean
public Action<States, Events> automaticAction() {
return new Action<States, Events>() {

@verride
public voi d execute(StateContext<States, Events> context) {
Map<Obj ect, Object> variabl es = context. get Ext endedSt at e() . get Vari abl es();
if (ObjectUtils.null Saf eEqual s(vari abl es. get ("T1"), true)
&% bj ect Utils. null Saf eEqual s(vari abl es. get ("T2"), true)
&% bj ectUtils. null Saf eEqual s(vari abl es. get ("T3"), true)) {
cont ext . get St at eMachi ne() . sendEvent (Event s. CONTI NUE) ;
} else {
cont ext . get St at eMachi ne() . sendEvent (Event s. FALLBACK) ;

@Bean
public Action<States, Events> fixAction() {
return new Action<States, Events>() {

@verride
public voi d execute(StateContext<States, Events> context) {
Map<Obj ect, Object> vari abl es = context. get Ext endedSt at e() . get Vari abl es();
vari abl es. put ("T1", true);
vari abl es. put ("T2", true);
vari abl es. put ("T3", true);
cont ext . get St at eMachi ne() . sendEvent (Event s. CONTI NUE) ;

Currently default region execution is synchronous but it can be changed to asynchronous by changing
TaskExecut or . Task will simulate work by sleeping 2 seconds so you'll able to see how actions in

regions are executed parallel.

@ean(nanme = StateMachi neSyst enConst ant s. TASK_EXECUTOR_BEAN_NANE)

publ ic TaskExecutor taskExecutor() {
Thr eadPool TaskExecut or taskExecutor = new ThreadPool TaskExecut or () ;
t askExecut or . set Cor ePool Si ze(5) ;
return taskExecutor;

Let's see an examples how this state machine actually works.

snpsm start
State machine started
Entry state READY

snpt asks run

Entry state TASKS
run task on T3

run task on T2

run task on T1

run task on T2 done
run task on T1 done
run task on T3 done
Entry state T2
Entry state T3
Entry state T1
Entry state T1E
Entry state T2E
Entry state T3E
Exit state TASKS
Entry state JON
Exit state JON
Entry state READY

2.1.0M1 Spring Statemachine

143

Spring Statemachine - Reference Documentation

In above we can execute tasks multiple times.

snpt asks i st
Tasks {Tl=true, T3=true,

st asks fail T1

snpt asks |ist

snpt asks run

Entry state TASKS
run task on T1

run task on T3

run task on T2

run task on T1 done
run task on T3 done
run task on T2 done
Entry state T1
Entry state T3
Entry state T2
Entry state T1E
Entry state T2E
Entry state T3E
Exit state TASKS
Entry state JON
Exit state JON
Entry state ERROR
Entry state AUTOVATIC
Exit state AUTOVATIC
Exit state ERROR
Entry state READY

snpt asks i st
Tasks {Tl=true, T3=true,

st asks fail T2

st asks run

Entry state TASKS
run task on T2

run task on T1

run task on T3

run task on T2 done
run task on T1 done
run task on T3 done
Entry state T2
Entry state T1
Entry state T3
Entry state T1E
Entry state T2E
Entry state T3E
Exit state TASKS
Entry state JON
Exit state JON
Entry state ERROR
Entry state AUTOVATIC
Exit state AUTOVATIC
Entry state MANUAL

st asks fix

Exit state MANUAL
Exit state ERROR
Entry state READY

Tasks {T1=fal se, T3=true,

T2=true}

T2=true}

In above, if we simulate failure for task T1, it is fixed automatically.

T2=true}

In above if we simulate failure for either task T2 or T3, state machine goes to MANUAL state where

problem needs to be fixed manually before we're able to go back to READY state.

2.1.0.M1

Spring Statemachine

144

Spring Statemachine - Reference Documentation

41. Washer

Washer is a sample demonstrating a use of a history state to recover a running state configuration with

a simulated power off situation.

Anyone ever used a washing machine knows that if you can somehow pause the program it will continue
from a same state when lid is closed. This kind of behaviour can be implemented in a state machine

by using a history pseudo state.

o—Pp RUNNING

o—p WASHING RINSE RINSING
—>

HISTORY

DRY

DRYING

RESTOREPOWER CUTPOWER

POWEROFF

STOP

X

States.

public enum States {
RUNNI NG, HI STORY, END,
WASHI NG, RINSI NG, DRYI NG
PONEROFF

Events.

public enum Events {
RI NSE, DRY, STOP,
RESTOREPOVER, CUTPOWER

Configuration - states.

2.1.0M1 Spring Statemachine

145

Spring Statemachine - Reference Documentation

@verride
public void configure(StateMichi neSt at eConfi gurer<States, Events> states)
throws Exception {
states
. Wi thStates()
Linitial(States. RUNNI NG
. st at e(St at es. PONEROFF)
. end(St at es. END)
.and()
.withStates()
. par ent (St at es. RUNNI NG
Linitial(States. WASHI NG
. state(States. Rl NSI NG
. state(States. DRYI NG
.history(States. H STORY, Hi story. SHALLOW ;

Configuration - transitions.

@verride
public void configure(StateMichi neTransitionConfigurer<States, Events> transitions)
throws Exception {
transitions

.wi thExternal ()
.source(States. WASHI NG) . t ar get (St at es. RI NSI NG
.event (Event s. Rl NSE)
.and()

.wi thExternal ()
.source(States. RINSING . target (States. DRYI NG
.event (Event s. DRY)
.and()

.wi t hExt ernal ()
.source(States. RUNNI NG) . t ar get (St at es. POANEROFF)
.event (Event s. CUTPOVER)
.and()

.wi thExternal ()
. sour ce(St at es. POAERCFF) . t ar get (St at es. Hl STORY)
. event (Event s. RESTOREPOVER)
.and()

.wi thExternal ()
.source(States. RUNNI NG . t ar get (St at es. END)
.event (Events. STOP) ;

Let's see an example how this state machine actually works.

2.1.0M1 Spring Statemachine 146

Spring Statemachine - Reference Documentation

smpsm start

Entry state RUNNI NG
Entry state WASHI NG
State machine started

snmpsm event RI NSE
Exit state WASHI NG
Entry state RINSI NG
Event RI NSE send

snmpsm event DRY
Exit state RINSING
Entry state DRYI NG
Event DRY send

snmpsm event CUTPONER
Exit state DRYlI NG
Exit state RUNNI NG
Entry state PONEROFF
Event CUTPONER send

snmpsm event RESTOREPOVNER
Exit state PONEROFF
Entry state RUNNI NG
Entry state WASHI NG
Entry state DRYI NG
Event RESTOREPOVNER send

What happened in above run:

 State machine is started which causes machine to get initialized.
* We go to RINSING state.

* We go to DRYING state.

« We cut power and go to POWEROFF state.

 State is restored via HISTORY state which takes state machine back to its previous known state.

2.1.0M1 Spring Statemachine

147

Spring Statemachine - Reference Documentation

42. Persist

Persist is a sample using recipe Chapter 35, Persist to demonstrate how a database entry update logic

can be controlled by a state machine.

The state machine logic and configuration is shown above:

SM
o—Pp PLACED PROCESSING
PROCESS SEND
SENT DELIVERED
DELIVER
4+—

StateMachine Config.

@onfi guration
@Enabl eSt at eMachi ne
static class StateMachi neConfig

@verride

throws Exception {
states
.withStates()
Linitial ("PLACED")
. stat e(" PROCESSI NG")
.state("SENT")
. state("DELI VERED") ;

}
@verride

throws Exception {
transitions

.wi thExternal ()
.source("PLACED") . tar get (" PROCESSI NG")
. event (" PROCESS")
.and()

.wi t hExt ernal ()
. source("PROCESSI NG') . t ar get (" SENT")
.event (" SEND")
.and()

.wi thExternal ()
.source("SENT") . target (" DELI VERED")
.event (" DELI VER") ;

ext ends StateMachi neConfi gurer Adapter<String, String> {

public void configure(StateMichi neSt ateConfigurer<String,

public void configure(StateMachi neTransitionConfigurer<String,

String> states)

String> transitions)

2.1.0M1 Spring Statemachine

148

Spring Statemachine - Reference Documentation

Per si st St at eMachi neHandl er can be created using a below config:

Handler Config.

@configuration
static class PersistHandl erConfig {

@\ut owi r ed
private StateMchi ne<String, String> stateMachine;

@Bean
public Persist persist() {
return new Persi st (persistStateMachi neHandl er());

}

@Bean
publ i c Persi st St at eMachi neHandl er per si st St at eMachi neHandl er () {

return new Persi st St at eMachi neHandl er (st at eMachi ne) ;

}

Order class used with this sample is shown below:

Order Class.

public static class Oder {
int id,
String state;
public Oder(int id, String state) {

this.id =id;
this.state = state;

}
@verride
public String toString() {
return "Order [id=" +id + ", state=" + state + "]";
}

Now let's see how this example works.

2.1.0M1 Spring Statemachine 149

Spring Statemachine - Reference Documentation

smepersi st db

O der [id=1, state=PLACED]

O der [id=2, state=PROCESSI NG
Order [id=3, state=SENT]

Order [id=4, state=DELIVERED]

smeper si st process 1
Exit state PLACED
Entry state PROCESSI NG

snepersi st db

Order [id=2, state=PROCESSI NG
Order [id=3, state=SENT]

Order [id=4, state=DELI|VERED]
O der [id=1, state=PROCESSI NG

snmepersi st deliver 3
Exit state SENT
Entry state DELI VERED

snepersi st db

Order [id=2, state=PROCESSI NG
Order [id=4, state=DELIVERED]
Order [id=1, state=PROCESSING
O der [id=3, state=DELIVERED]

What happened in above run:

We listed rows from an existing embedded database which is already populated with sample data.

* We request to update order 1 into PROCESSI NG state.

We list db entries again and see that state has been changed from PLACED into a PROCESSI NG.

» We do update for order 3 to update state from SENT into DEL| VERED.

Note

If you're wondering where is the database because there are literally no signs of it in a sample
code. Sample is based on Spring Boot and because necessary classes are in a classpath,
embedded HSQL instance is created automatically.

Spring Boot will even create an instance of JdbcTenpl at e which you can just autowire like how
it's done in Per si st. j ava.

@\ut owi r ed
private JdbcTenpl ate jdbcTenpl at e;

Finally we need to handle state changes:

public void change(int order, String event) {
O der o = jdbcTenpl ate. queryFor Obj ect ("sel ect id, state fromorders where id = ?", new Object[]
{ order },
new RowMapper <Order>() {
public Order mapRow(ResultSet rs, int rowNum) throws SQLException {
return new Order(rs.getInt("id"), rs.getString("state"));
}
b
handl er. handl eEvent Wt hSt at e(MessageBui | der. wi t hPayl oad(event) . set Header ("order”, order). build(),
o.state);

}

And use a Per si st St at eChangel.i st ener to update database:

2.1.0M1 Spring Statemachine 150

Spring Statemachine - Reference Documentation

private class Local Persi st St at eChangeLi stener inpl ements Persi st St at eChangeli stener {

@verride
public void onPersist(State<String, String> state, Message<String> nessage,
Transition<String, String> transition, StateMachine<String, String> stateMchine) {
if (message != null && nessage. get Headers().contai nsKey("order")) {
I nteger order = nessage. get Headers().get("order", Integer.class);
j dbcTenpl at e. updat e("update orders set state = ? where id = ?", state.getld(), order);

2.1.0M1 Spring Statemachine

151

Spring Statemachine - Reference Documentation

43. Zookeeper

Zookeeper is a distributed version from sample Chapter 37, Turnstile.

Note

This sample needs and external Zookeeper instance accessible from | ocal host with default
port and settings.

Configuration of this sample is almost same as turnsti | e sample. We only add configuration for
distributed state machine where we configure St at eMachi neEnsenbl e.

@verride
public voi d configure(StateMachi neConfi gurationConfigurer<String, String> config) throws Exception {
config
.wi thDi stributed()
. ensenbl e(st at eMachi neEnsenbl e());

Actual St at eMachi neEnsenbl e needs to be created as bean together with Cur at or Fr amewor k
client.

@Bean
public StateMachi neEnsenbl e<String, String> stateMachi neEnsenbl e() throws Exception {
return new Zookeeper St at eMachi neEnsenbl e<String, String>(curatorCient(), "/foo");

}

@Bean
public CuratorFranmework curatorCient() throws Exception {
Cur at or Framewor k client = CuratorFramewor kFactory. buil der (). def aul t Dat a(new byt e[0])
.retryPol i cy(new Exponenti al Backof f Ret ry(1000, 3))
.connect String("local host:2181"). build();
client.start();
return client;

Let's go through a simple example where two different shell instances are started with command

@1: ~# java -jar spring-statenmachi ne-sanpl es-zookeeper-2.1.0. ML..jar

First open first shell instance(do not start second instance yet). When state machine is started it will end
up into its initial state LOCKED. Then send event CO Nto transit into UNLOCKED state.

Shell1.

smpsm start
Entry state LOCKED
State machine started

snpsm event CO N
Exit state LOCKED
Entry state UNLOCKED
Event CO N send

snpsm st ate
UNLOCKED

Open second shell instance and start a state machine. You should see that distributed state UNLOCKED
is entered instead of default initial state L OCKED.

Shell2.

2.1.0M1 Spring Statemachine 152

Spring Statemachine - Reference Documentation

snpsm start
State machine started

snpsm state
UNLOCKED

Then from either of a shells(we use second instance here) send event PUSH to transit from UNLOCKED
into LOCKED state.

Shell2.

snmpsm event PUSH
Exit state UNLOCKED
Entry state LOCKED
Event PUSH send

In other shell you should see state getting changed automatically based on distributed state kept in
Zookeeper.

Shelll.

smPEXxit state UNLOCKED
Entry state LOCKED

2.1.0M1 Spring Statemachine 153

Spring Statemachine - Reference Documentation

44. Web

Web is a distributed state machine example using a zookeeper to handle distributed state. This example
is meant to be run on a multiple browser sessions against a multiple different hosts.

This sample is using a modified state machine structure from a Chapter 38, Showcase to work with a
distributed state machine. The state machine logic is shown above:

| S0
entry/
exit
H/[foo.equals{0)];
o—Pp S1 S2
entry/ C entry/
D exit —p| exit
44— | H H/[foo.equals(1)];
K
o—Pp S11 4— o—p 521
entry/ F entry/
exit +— exit
B o—Pp 5211
—P J F G
» | entry/ »
l | G | exit |
» E
_B, ¢
D
I 512 — >
entry/
exit |
5212
entry/
| exit
»
A
Alfoo.equals(1)];

Note

Due to nature of this sample an instance of a Zookeeper is expected to be available from a
localhost for every individual sample instance.

Let's go through a simple example where three different sample instances are started. If you
are running different instances on a same host you need to distinguish used port by adding - -
server . port=<nyport > to the command. Otherwise default port for each host will be 8080.

In this sample run we have three hosts, n1, n2 and n3 which all have a local zookeeper instance running
and a state machine sample running on a port 8080.

@1: ~# java -jar spring-statenmachi ne-sanpl es-web-2.1.0. M. jar
@2: ~# java -jar spring-statenmachi ne-sanpl es-web-2.1.0. M. jar
@3: ~# java -jar spring-statenachi ne-sanpl es-web-2.1.0. M. jar

When all instances are running you should see all showing similar information via a browser where
states are SO, S1 and S11, and extended state variable f 00=0. Main state is S11.

2.1.0M1 Spring Statemachine 154

Spring Statemachine - Reference Documentation

Spring Statemachine Zookeeper Demo - Google Chrome

@ Spring Statemachin: x iy

¢ » € [[hn1:8080 Q< =

Spring Statemachine Zookeeper Demo

eventA || eventB | event C |ex.rentD event E || event F eventG| eventHI eventll eventKi

. event J |[New testV le |
States Variables Messages
SO foo=0
=il
511

When you press button Event Cin any of a browser window, distributed state is changed to S211
which is the target state denoted by transition associated with an event C.

Spring Statemachine Zookee per Demo - Google Chrome

@ Spring Statemachir L Janne

{ c n2:8080 O A @®Q=

Spring Statemachine Zookeeper Demo

eventA || eventB | eventC || event D ‘eventE event F eventG| event H |event| |eventK

event J - \Variabl lue
States Variables Messages

S0 foo=0 Enter state 5211
Enter state 521

. Enter state 52
Exit state S1

521
Exit state 511

5211

Then let's press button Event Hand what is supposed to happen is that internal transition is executed
on all state machines changing extended state variable f oo from value 0 to 1. This change is first done
on a state machine receiving the event and then propagated to other state machines. You should only
see variable f oo to change from 0 to 1.

2.1.0.M1 Spring Statemachine 155

Spring Statemachine - Reference Documentation

Spring Statemachine Zookee per Demo - Google Chrome

& Spring Statemachin: x Janne

4 (o n3:8080 O A @ P =

Spring Statemachine Zookeeper Demo

event A l event B | eventC | eventD ‘ event E | event F l eventG | eventH || event| | event K

event J |[New test\ le valus
States Variables Messages

50 foo=1 Enter state 5211
Enter state 521

52 Enter state 52
Exit state 51

521
Exit state 511

s211

Last we simply send an event Event K which is supposed to take state machine state back to state
S11 and you should see this happening in all browser sessions.

Spring Statemachine Zookeeper Demo - Google Chrome

: @ Spring Statemachin: x iy
L4 ¢ [3n1:8080 0=

Spring Statemachine Zookeeper Demo

eventA || eventB | event C |ex.rentD event E || event F eventG| eventH| eventll event K

eventJ|---.-=_'-,- le valu
L]
States Variables Messages
S0 =il Enter state S11
Enter state S1
> Exit state 52
Exit state 521
511
Exit state 5211
Enter state 5211
Enter state S21

Enter state 52

2.1.0.M1 Spring Statemachine 156

Spring Statemachine - Reference Documentation

45. Scope

Scope is a state machine example using a session scope to provide individual instance for every user.

5M

This is a simple state machine having states S0, S1 and S2. Transitions between those are controlled
via events A, B and C as shown in a state chart.

@1: ~# java -jar spring-statenmachi ne-sanpl es-scope-2.1.0. M. jar

When instance is running you can open a browser and play with a state machine. If you open same page
using a different browser, i.e one in Chrome and one in Firefox, you should get a new state machine
instance per user session.

Spring Statemachine Scope Demo - Google Chrome

o/ Spring Statemachin: x §

& localhost O =

]

States: [SO]

ISendA‘ Send B I Send C |

B T +
| SM
B T e +
Fomemmmm + A Fommmmm - + B Fomem s +
*¥-->| 50 |------ >| ST |------ >| 52 |
R + Fommmmm- + R +
" |
| c |
B I +
B T PP +

2.1.0M1 Spring Statemachine 157

Spring Statemachine - Reference Documentation

46. Security

Security is a state machine example using most of a combinations of securing a state machine. It is
securing sending events, transitions and actions.

5M

@1: ~# java -jar spring-statemachi ne-sanpl es-secure-2.1.0. M. jar

We secure event sending with a users having a role USER. None of a other users imposed by a Spring
Security can’t send events into a state machine.

@verride
public void configure(StateMchi neConfi gurationConfigurer<States, Events> config)
throws Exception {
config
.wi t hConfi guration()
.autoStartup(true)
.and()
.Wwi thSecurity()
. enabl ed(true)
.event ("hasRol e(' USER)");

In this sample we define two users, user having a role USER and admin having both roles USER and
ADM N. Authentication for both user for password is passwor d.

@nabl eWebSecurity
@Enabl ed obal Met hodSecuri ty(securedEnabl ed = true)
static class SecurityConfig extends WebSecurityConfigurerAdapter {

@\ut owi r ed
public void configured obal (Aut henti cati onManager Bui | der auth) throws Exception {
aut h
. i nMenor yAut hent i cati on()
. W thUser ("user")
. passwor d(" password")
.rol es("USER")
.and()
. Wi t hUser ("adni n")
. passwor d(" passwor d")
.roles("USER', "ADM N');

2.1.0M1 Spring Statemachine 158

Spring Statemachine - Reference Documentation

We define various transitions between states according to a statechart seen above. Only a user with
active ADM N role can execute external transitions between S2 and S3. Similarly ADM N can only
execute internal transition in a state S1.

@verride
public void configure(StateMachi neTransitionConfigurer<States, Events> transitions)
throws Exception {
transitions

.wi thExternal ()
.source(States. S0).target (States. S1). event (Events. A)
.and()

. Wi t hExt ernal ()
.source(States. S1).target (States. S2). event (Events. B)
.and()

.wi thExternal ()
.source(States. S2).target (States. SO). event (Events. C)
.and()

. Wi t hExt ernal ()
.source(States. S2).target (States. S3). event (Events. E)
. secured("ROLE_ADM N', Conpari sonType. ANY)
.and()

.wi thExternal ()
.source(States. S3).target (States. SO). event (Events. C)
.and()

.withlnternal ()
.source(States. SO). event (Events. D)
.action(adm nAction())
.and()

.withlnternal ()
.source(States. S1). event (Events. F)
.action(transitionAction())
. secured("ROLE_ADM N', Conpari sonType. ANY) ;

Act i on adm nActi on is secured with a role ADM N.

@cope(proxyMdde = ScopedPr oxyMdde. TARGET _CLASS)

@Bean

public Action<States, Events> adm nAction() {
return new Action<States, Events>() {

@ecur ed(" ROLE_ADM N')
@verride
public void execute(Stat eCont ext <St ates, Events> context) {
I og.info("Executed only for admn role")
}
b

Below Act i on would only be executed with internal transition in a state S1 when event F is send.
Transition itself is secured with a role ADM N so this transition will not be executed if current user does
not hate that role.

@Bean
public Action<States, Events> transitionAction() {
return new Action<States, Events>() {

@verride
public voi d execute(StateContext<States, Events> context) {
| og.info("Executed only for admin role")
}
ba

2.1.0M1 Spring Statemachine 159

Spring Statemachine - Reference Documentation

47. Event Service

Event Service is an example how state machine concepts can be used as a processing engine for
events. Sample was born out from a question:

Note

Can Spring Statemachine be used as a microservice to feed events to it with millions different
state machine instances.

In this example we will use a Redi s to persist a state machine instances.

Obviously a million state machine instances in a jvm would be a relatively bad idea due to memory
constraints. This simply leads to other available features from a Spring Statemachine to persist a
St at eMachi neCont ext and re-use existing instances.

We assume few things like there is a shopping application which is sending different types of PageVi ew
events into a separate microservice which is then tracking user behaviour using a state machine. State
model is shown below which simply have few states representing user navigating on product items list,
add and remove items from a cart and going to a payment page and initiating a pay operation. Actual
shopping application would send these events into this service for example using a simple rest calls.
More about this later.

Note

Remember that focus here is to have an application which is exposing a REST api user can use
to send events which would be processed by a state machine per request.

5M

VIEW_I VIEW_C VIEW_P
o—Pp LANDING —_——» ITEMS —_—> CART B PAYMENT
ADD DEL PAY
RESET VIEW | VIEW_C
+— +— —
T RESET % |
| VIEW_I
RESET

In below state machine configuration we simply model what we have in a state chart. Various actions
are updating state machine Ext ended St at e to track number of entries into various states and also
how many times internal transition for ADD and DEL are called and if PAY has been executed. Don't
focus on st at eMachi neTar get or @cope for now, as we'll explain those in a bit.

2.1.0M1 Spring Statemachine 160

Spring Statemachine - Reference Documentation

@ean(nane = "stateMachi neTarget")
@cope(scopeNane="pr ot ot ype")

bui | der. confi gureConfi guration()
.wi thConfiguration()
.autoStartup(true);

bui | der. configureStates()
. Wi thStates()

Linitial(States. HOVE)
.states(Enuntet. al | O (St ates. cl ass));

bui | der. confi gureTransitions()

.withlnternal ()
.source(States. | TEMS). event (Event's. ADD)
.action(addAction())
.and()

.withlnternal ()
.source(States. CART) . event (Event s. DEL)
.action(del Action())
.and()

.withlnternal ()
. sour ce(St at es. PAYMENT) . event (Event s. PAY)
.action(payAction())
.and()

.wi thExternal ()
.source(States. HOVE) . t ar get (St at es. | TEMB)
.action(pagevi ewAction())
.event (Events. VIEW)
.and()

. Wit hExt ernal ()
.source(States. CART) . target (States. | TEMS)
.action(pagevi ewAction())
.event (Events. VIEW)
.and()

.wi t hExt ernal ()
.source(States. | TEMS) .t ar get (St at es. CART)
.action(pagevi ewAction())
.event (Events. VI EW C)
.and()

. Wi t hExt ernal ()
. source(St at es. PAYMENT) . t ar get (St at es. CART)
.action(pagevi ewAction())
.event (Events. VIEW Q)
.and()

.wi thExternal ()
.source(St ates. CART) . t ar get (St at es. PAYMENT)
.action(pagevi ewAction())
.event (Events. VI EW P)
.and()

.wi thExternal ()
.source(States.| TEMS) .t arget (St at es. HOVE)
.action(resetAction())
.event (Event s. RESET)
.and()

.wi thExternal ()
. source(States. CART) . t ar get (St at es. HOVE)
.action(resetAction())
.event (Event s. RESET)
.and()

. Wit hExt ernal ()
. source(States. PAYMENT) . t ar get (St at es. HOVE)
.action(resetAction())
.event (Event s. RESET) ;

return builder. build();

public StateMachi ne<States, Events> stateMachi neTarget () throws Exception {

Bui | der<States, Events> buil der = StateMachi neBuil der.<States, Events>builder();

2.1.0M1 Spring Statemachine

161

Spring Statemachine - Reference Documentation

In below config we set up a Redi sConnecti onFact ory which defaults to localhost and default
port. We use St at eMachi nePer si st with a Reposi t or ySt at eMachi nePer si st implementation.
Finally we create a Redi sSt at eMachi nePer si st er which underneath uses a previously created
St at eMachi nePer si st bean.

These are then used in a Cont r ol | er handling REST calls.

@ean
publ i ¢ Redi sConnecti onFactory redi sConnectionFactory() {
return new Jedi sConnectionFactory();

}

@Bean
publ i c StateMachi nePersist<States, Events, String> stateMachi nePersi st (Redi sConnecti onFactory
connecti onFactory) {
Redi sSt at eMachi neCont ext Reposi t ory<States, Events> repository =
new Redi sSt at eMachi neCont ext Reposi t or y<St at es, Event s>(connecti onFactory);
return new RepositoryStateMachi nePersi st <States, Events>(repository);

}

@Bean
publ i ¢ Redi sSt at eMachi nePersi ster<States, Events> redi sStateMachi nePersister(
St at eMachi nePer si st <St at es, Events, String> stateMachi nePersist) {
return new Redi sSt at eMachi nePer si st er <St at es, Event s>(st at eMachi nePer si st) ;

We now getinto why St at eMachi ne was created as st at eMachi neTar get and a pr ot ot ype bean.
State machine instantiation is a relatively expensive operation so it is better to try to pool instances
instead of instantiating a new instance with every request. For this we first create a pool Tar get Sour ce
which wraps st at eMachi neTar get and pools it with max size of 3. This pool Tar get Sour ce is then
proxied with Pr oxyFact or yBean using a r equest scope. Effectively this means that every REST
request will get pooled state machine instance from a bean factory. It's shown later how these are used.

@Bean
@cope(val ue = "request"”, proxyMde = ScopedProxyMbde. TARGET _CLASS)
publ i c ProxyFactoryBean stateMachine() {

ProxyFact oryBean pfb = new ProxyFactoryBean();

pf b. set Tar get Sour ce(pool Tar get Source());

return pfb;
}
@Bean
publ i ¢ CommpnsPool 2Tar get Sour ce pool Tar get Source() {
ComonsPool 2Tar get Sour ce pool = new CommonsPool 2Tar get Sour ce() ;

pool . set MaxSi ze(3) ;
pool . set Tar get BeanNane(" st at eMachi neTarget ") ;
return pool;

Let's get into actual demo. You need to have a redis running on a localhost with a default settings. Then
run the boot based sample application:

@1: ~# java -jar spring-statemachi ne-sanpl es-eventservice-2.1.0. M. jar

In a browser you see something like:

2.1.0M1 Spring Statemachine 162

Spring Statemachine - Reference Documentation

Spring Statemachine Event Service Demo - Google Chrome

@ Spring Statemac’ = Y

O:

s

4 @ [localhost
. VIEW_I
. VIEW_C
. VIEW_P
. RESET
. ADD
. DEL
. PAY
| ice || bob || dave |
il
| SM
e il
T EEEEEE + VIEW I 4-----mmmmmmmmmoo- + VIEW € 4----=-mmmmmmmmmn- + VIEW P 4------m-mmmomoo-
*--=| HOME |]--------- =| ITEMS |--------- =| CART |--------- =| PAYMENT
| | | | | | |
| | | ADD [| DEL | | PAY
| | | 4o + | Hmmmmmeo-- + | [
| | RESET | | |] viEwI | | | | viEwc | |
| [<--nmmnm- | A R | L [
e + e + R e TR T + e
| RESET | | | |
| ettt ettt ittt + | |
| [VIEW I I |
| RESET R e R R R T e R T LR e E P + |
B e i e e i +
B il

In this Ul you have three users you can use, j oe, bob and dave. Clicking button will show current state
and extended state. Enabling a radio button before clicking users will send particular event for that user.
This is a way you can play with this using an Ul.

In our StateMachi neController we autowire StateMachi ne and St at eMachi nePer si st .
StateMachine is a request scoped so you'll get new instance per request while
St at eMachi nePer si st is normal singleton bean.

@\ut owi r ed
private StateMchi ne<States, Events> stateMachine;

@\ut owi r ed
private StateMachi nePersister<States, Events, String> stateMachi nePersister;

Below f eedAndGet St at e is just used with an Ul to do same things what actual REST api will do.

@Request Mappi ng("/state")
public String feedAndCet St at e(@equest Paran{val ue = "user”, required = false) String user,
@Request Paran{value = "id", required = false) Events id, Mdel nodel) throws Exception {
nmodel . addAttribute("user", user);
nodel . addAttribute("all Types", Events.values());
nodel . addAttri bute("stateChartMdel ", stateChartMdel);
/1 we may get into this page without a user so
/1 do nothing with a state nachine
if (StringUils.hasText(user)) {
reset St at eMachi neFr ontt or e(user) ;
if (id!=null) {
f eedMachi ne(user, id);
}
nodel . addAttribute("states", stateMachine.getState().getlds());
nodel . addAt tri but e("ext endedSt ate”, stateMachi ne. get Ext endedSt at e(). get Vari abl es());
}

return "states";

2.1.0M1 Spring Statemachine 163

1]

Spring Statemachine - Reference Documentation

Below f eedPagevi ewis a REST method which accepts a post with a json content.

@Request Mappi ng(val ue = "/feed", net hod= Request Met hod. POST)
@ResponseSt at us(Ht t pSt at us. OK)
public void feedPagevi ew(@equest Body(required = true) Pageview event) throws Exception {
Assert.not Nul | (event.getUser(), "User nust be set");
Assert.notNul | (event.getld(), "Id nust be set");
reset St at eMachi neFr ontt or e(event . get User ()) ;
f eedMachi ne(event. get User (), event.getld());

Below feedMachi ne will send event into a StateMachi ne and persists its state using a

St at eMachi nePer si ster.

private void feedMachi ne(String user, Events id) throws Exception {
st at eMachi ne. sendEvent (i d);
st at eMachi nePer si st er. persi st (st at eMachine, "testprefix:" + user);

Below r eset St at eMachi neFr onfst or e is used to restore a state machine for a particular user.

private StateMachi ne<States, Events> reset StateMachi neFronStore(String user) throws Exception {
return stateMachi nePersister.restore(stateMachine, “"testprefix:" + user);

}

As you'd send event using Ul, same can be done using a REST calls:

curl http://1ocal host: 8080/ feed -H "Content-Type: application/json" --data
"{"user":"joe","id":"VIEWI"}"

At this point you should have a content in Redi s with at est prefi x: j oe key.

$./redis-cli
127.0.0.1: 6379> KEYS *
1) "testprefix:joe"

Below is a three images when state for j oe has been changed from HOVE to | TEMS and when ADD

action has been executed.

Send event ADD:

2.1.0M1 Spring Statemachine

164

Spring Statemachine - Reference Documentation

Spring Statemachine Event Service Demo - Google Chrome

@ Spring Statemac’ = Y
L[4 @ [localhost:808(

User: joe
States: [I[TEMS]
Extended State: {ITEMS=1}

. VIEW_I
. VIEW_C
. VIEW_P
. RESET

. ADD

. DEL

. PAY

joe || bob || dave

=
m
—

Now your are still on state | TEMS and internal transition caused extended state variable COUNT to
increase to 1.

2.1.0.M1 Spring Statemachine 165

Spring Statemachine - Reference Documentation

Spring Statemachine Event Service Demo - Google Chrome

@ Spring Statemac’ = Y
£ @ [localhost:

User: joe
States: [I[TEMS]
Extended State: {COUNT=1, ITEMS=1}

. VIEW_I
. VIEW_C
. VIEW_P
. RESET

. ADD

. DEL

. PAY

joe || bob || dave

CART [>

|
|
R + |
|
|

Execute below cur | rest call few times or do it via Ul and you should see COUNT variable to increase
with every call.

curl http://1ocal host: 8080/ feed -H "Content-Type: application/json" # --data
‘{"user":"joe","id":"ADD"}'

2.1.0.M1 Spring Statemachine 166

Spring Statemachine - Reference Documentation

Spring Statemachine Event Service Demo - Google Chrome

User: joe
States: [I[TEMS]

Extended State: {COUNT=5, ITEMS=1}

. VIEW_I
. VIEW_C
. VIEW_P
. RESET
. ADD
. DEL
. PAY
joe || bob || dave
B e e e +
| SM |
e et e et i e R D e L R L +
B R LR R + VIEW I 4-----memmmmoeoon- + VIEW € 4r-e--mmmmmmooooees + VIEW P --mcmmmmoooooee +
*oo>| HOME [------=-- > ITEMS |------"-- =] CART |------=-- >| PAYMENT |
| | | | | | | |
| | | ADD | | DEL | | PAY |
| | | +ooemeeee- + | 4o + | 4o +
| | RESET | | |] VIEWI | | | | VIEWC | | | 1
| |<omemeees | Vo< |1 Vo<t | v
R e R + R e T R T R + e e T + e +
~ ~ ~ I I |
RESET			
o +			
	VIEW I		
RESET L R R e R L] +			
L e e e e e +
B e iR e e e +

2.1.0.M1 Spring Statemachine 167

Spring Statemachine - Reference Documentation

48. Deploy

Deploy is an example how state machine concepts can be used with an uml modeling to provide a
generic error handling state. This state machine is a relatively complex example of how various features
can be used to provide a centralized error handling concept.

StateMachine

READY r DEPLOY

Jentry OpagueBehavior DEPLOY

readyEntryction

PREPAREDEFLOY
it O Behavi
= exﬁ:?rt:)em:tiz:or Jentry OpagueBehavior preparedeployEntryAction J

Jentry OpagueBehavior
installEntryAction

INSTALL
ISINSTALLED & [isinstalledGuard]

ERROR UNDEPLOY

Jentry

OpagueBehavior
errorentryAction

START
lentry OpaqueBehavior
startEntryAction

[installedOkGuard]

o= C
[hasErrorGuard] EXITDEPLOY INSTALLOK
HASERROR
A
UNDEFLOY
. ;[FREPAREUNDEPLOY]
A LRI [isRunningGuard] (STOP
A fentry O Beh
en agueBehavior
EXITUNDEFLOY v opaq

stopEntryAction

Note

Above statechart is designed using Eclipse Papyrus Plugin Chapter 33, Eclipse Modeling Support
and imported into Spring StateMachine via its uml model file. Actions and Guards defined in a
model are resolved from a Spring Application Context.

In this state machine scenario we have two different behaviors, DEPLOY and UNDEPL OY what user tries
to execute.

What is happening a above statechart:

* In DEPLOY state | NSTALL and START states are entered conditionally. We enter START directly if
product is already installed and no need to try to START if install fails.

» In UNDEPLOY state we enter STOP conditionally if application is already running.

2.1.0M1 Spring Statemachine 168

Spring Statemachine - Reference Documentation

» Conditional choices for DEPLOY and UNDEPLOY are done via Choice pseudostate within those states
and choices are selected by Guards.

» We used Exit Point pseudostates to have more controlled exit from DEPLOY and UNDEPLOY states.

 After exit from DEPLOY and UNDEPLOY we go through a Junction pseudostate to make a choice if we
want to go through ERRCR state in case error was added into an Extended State.

 Finally we go back to READY state to process new requests.
Let’s get into actual demo. Run the boot based sample application:

java -jar spring-statenmachi ne-sanpl es-depl oy-2.1.0. ML. j ar

In a browser you see something like:

Spring Statemachine Deploy Demo - Google Chrome

& Spring Statemac = Yy
'4 @ [localhost w QO =

States: [READY]

Choose event

. DEPLOY
. UNDEPLOY

Choose event header(s)

. isInstalled
. installedOk
. isRunning
. hasError
Send Event
Messages:

Enter READY

Important

As we don't have a real install, start or stop functionality we simulate failures by checking existence
of particular message headers.

Now you can start to send event to a machine and choose various message headers which will drive
a different functionality.

2.1.0M1 Spring Statemachine 169

Spring Statemachine - Reference Documentation

49. Order Shipping

Order Shipping is an example how state machine concepts can be used with a process of building a
simple order processing system.

Below you can see a statechart driving this order shipping sample.

{ WAIT_NEW_GFDER. 3 - T
J‘ ® Jentry OpaqueBehaior entryHandleOrder
WAKE_PRODUCTION FLAN) JUNCTION_ORDER

‘ FRODUCE

PLACE_ORDER

——

Iproduce|

1

N

i RECENVE_ORDER
‘ JUNETION STOCK

entry OpagueBehans
antryRecanacrder
ImakePradPlan]

1o

e

CHOME _PRODUCTION
FoRx
CHECK_STOCK [WAT_PRODUCT]
*— 's SEND_BILL B (" MOTFY_CUSTGMER CHOICE_PAYMENT OK
‘] i . lpaymentok]
| 7J /_L
g b HANDLE_PAYMENT) RO
RECENVE_PAVMENT

SEND_REMINDER.

[orderok)
—

CHOICE_HANDLE_ORDER

CUSTOMER_ERROR

ORDER_SHIFPED (]

fentry Opagquedshawor
entrySendReminder

What is happening a above statechart:
» Machine enters WAI T_NEW ORDER default state.

» Event PLACE_ORDERtransitions into state RECEl VE_ORDER and entry action ent r yRecei veOr der
is executed.

« If order is OK machine goes into two regions one handling order production and one handling user
level payment, else machine goes into CUSTOVER_ERRCR final state.

» Machine will loop in a lower region to remind user of a payment until RECEI VE_PAYMENT is sent
successfully to indicate correct payment.

» Both regions will go into waiting states WAI T_PRODUCT and WAI T_ORDER to be joined before parent
orthogonal state HANDLE ORDER is exited.

» Finally machine goes via SHI P_ORDER into its final state ORDER _SHI PPED.

Let’s get into actual demo. Run the boot based sample application:

java -jar spring-statenmachi ne-sanpl es-ordershi ppi ng-2.1.0. M. jar

In a browser you see something shown above. You can start by choosing customer and order and
create a machine.

2.1.0M1 Spring Statemachine 170

Spring Statemachine - Reference Documentation

Spring Statemachine Ordershipping Demo - Google Chrome

o Spring Statemac »x { Y
L[4 @ | [localhost:208

=p
o
n

Choose customer

s ® customerl
. customer2
. customer3

Choose order

« ® prderl
. order2
. order3

Create Machine

Choose event

. PLACE_ORDER
. RECEIVE_PAYMENT

. makeProdPlan
. produce
. payment

Send Event

Machines:

Id States

Refresh

Machine for particular order is now created and you can start to play with placing an order and sending
a payment. Other settings like makeProdPlan, produce and payment allows you to control how machine
works.

2.1.0.M1 Spring Statemachine 171

Spring Statemachine - Reference Documentation

Spring Statemachine Ordershipping Demo - Google Chrome

-&¥ = Spring Statemac x Y\
4 @ | [localhost:208

=p
o
n

Choose customer

s ® customerl
. customer2
. customer3

Choose order

e ® prderl
. order2
. order3

Create Machine

Choose event

« ® PLACE_ORDER
. RECEIVE_PAYMENT

. makeProdPlan
. produce
. payment

Send Event

Machines:

Id States
customerl:orderl [WAIT_NEW_ORDER]

Refresh

customerl:orderl enter WAIT NEW ORDER

Finally you can see what machine does by refreshing a page.

2.1.0.M1 Spring Statemachine 172

Spring Statemachine - Reference Documentation

Spring Statemachine Ordershipping Demo - Google Chrome

o Spring Statemac »x { Y
€ @ | [localhost:

=p
o
n

Choose customer

. customerl
. customer2
. customer3

Choose order

. order1
. order2
. order3

Create Machine

Choose event

. PLACE_ORDER
. RECEIVE_PAYMENT

. makeProdPlan
. produce
. payment

Send Event

Machines:

Id States
customerl:orderl [HANDLE_ORDER, WAIT_PRODUCT, WAIT_PAYMENT]

Refresh

customerl:orderl enter WAIT PAYMENT
customerl:orderl exit SEND REMINDER
customerl:orderl enter SEND REMINDER
customerl:orderl exit WAIT PAYMENT
customerl:orderl enter WAIT PRODUCT
customerl:orderl exit FILL ORDER
customerl:orderl enter FILL ORDER
customerl:orderl enter WAIT PAYMENT
customerl:orderl exit SEND BILL
customerl:orderl enter SEND BILL
customerl:orderl enter CHECK_STOCK
customerl:orderl enter HANDLE ORDER
customerl:orderl exit RECEIVE ORDER
customerl:orderl enter RECEIVE_ORDER
customerl:orderl exit WAIT NEW ORDER
customerl:orderl enter WAIT NEW ORDER

2.1.0.M1 Spring Statemachine 173

Spring Statemachine - Reference Documentation

50. JPA Config

JPA Config is an example how state machine concepts can be used with a machine configuration kept
in a database. This sample is using embedded H2 database with a H2 Console to ease playing with
a database.

This sample uses spri ng- st at enachi ne-aut oconfi gure which on default auto-configures
repositories and entity classes needed for JPA. Thus only @pr i ngBoot Appl i cat i on is needed.

@pr i ngBoot Appl i cati on
public class Application {

public static void main(String[] args) {
SpringApplication. run(Application.class, args);
}
}

What comes for a machine config Reposi t or ySt at eMachi neMbdel Fact ory can be used as shown
below.

@onfiguration
@nabl eSt at eMachi neFact ory
public static class Config extends StateMachi neConfi gurerAdapter<String, String> {

@\ut owi r ed
private StateRepository<? extends RepositoryState> stateRepository;

@\ut owi r ed
private Transiti onRepository<? extends RepositoryTransition> transitionRepository;

@verride
public void configure(StateMachi neMdbdel Configurer<String, String> nodel) throws Exception {
nodel
. wi t hMbdel ()
.factory(nodel Factory());
}

@Bean
publ i c StateMachi neMbdel Factory<String, String> nodel Factory() {
return new RepositoryStateMachi neMbdel Fact or y(st at eRepository, transitionRepository);

}

Let’s get into actual demo. Run the boot based sample application:

java -jar spring-statenmachi ne-sanpl es-dat aj pa-2.1.0. ML. j ar

Accessing application via http://localhost:8080 brings up a new constructed machine with every request
and you can choose to send events to a machine. Possible events and machine configuration are
updated from a database with every request.

2.1.0M1 Spring Statemachine 174

http://localhost:8080

Spring Statemachine - Reference Documentation

Spring Statemachine Demo - Google Chrome

w Spring Statema x
&« C | O localhost:8080/state gl &
h2 console
Choose events

» OEL
+ OE2

Send Events

Machine stopped
Enter 51
Machine started

Refresh

To access embedded console use JDBC URL j dbc: h2: mem t est db if it's not already set.

H2 Console - Google Chrome

w H2 Console

& C | O localhost:8080/h2-console/login.jsp?jsessionid=e1ff563c576ebde16d8372a762b | O

English ¥ | Preferences Tools Help

Saved Seftings: | Generic H2 (Embedded) v

Setting Name: Generic H2 (Embedded) Save | Remove

Driver Class: org.h2.Driver

JDBC URL: jdbe:h2:mem:testdd

User Name sa

Password:

Connect| | Test Connection

From console you can see how database tables look like and modify those as you wish.

2.1.0.M1 Spring Statemachine 175

Spring Statemachine - Reference Documentation

H2 Console - Google Chrome

&/ H2 Console

&« C | @ localhost e ¥
M| & | @ Auto commit “0) | Maxrows:[1000 v | | | | Auto complete [off v | (@)
| jdbc:hz:mem:testdb Run || Run Selected || Auto complete || Clear | SQL statement:
[[ACTION SELECT * FROM STATE
= E DEFERRED_EVENTS
® [GUARD
= [STATE
®E B ID
[INITIAL_STATE
[KIND
[MACHINE_ID
® [REGION “
E STATE
L SELECT * FROM STATE;
8 [SUBMACHINE_ID ID |INITIAL_STATE |KIND |MACHINE_ID |REGION |STATE |SUBMACHINE_ID |INITIAL_ACTION_ID |PARENT_STATE_ID
[INITIAL_ACTION_ID = = = = = = =
= E PARENT STATE ID 1 |TRUE null null 51 null null null
& lr‘lz Indexes 2 |FALSE null null 52 null null null
[] STATE_ENTRY_ACTIONS 3 |FALSE null null 53 null nuill null
= E STATE_EXIT_ACTIONS (3 rows, 4 ms)

[[] STATE_MACHINE

@ [[] STATE_STATE_ACTIONS Edit
[[TRANSITION

= E TRANSITION_ACTIONS

[INFORMATION_SCHEMA

[# £ Sequences

= {§f Users

@ H2 1.4.190 (2015-10-11)

Now that you got this far you probably wondered how those default states and transitions got populated
into a database. Spring Data already have a nice trick to auto populate repositories and we simply use
this feature via Jackson2Reposi t or yPopul at or Fact or yBean.

@ean
public StateMachi neJackson2Reposi t or yPopul at or Fact or yBean j ackson2Reposi t or yPopul at or Fact oryBean() {
St at eMachi neJackson2Reposi t or yPopul at or Fact oryBean factoryBean = new
St at eMachi neJackson2Reposi t or yPopul at or Fact or yBean() ;
fact oryBean. set Resour ces(new Resource[]{new O assPat hResource("data.json")});
return factoryBean;

Actual source for populator data is shown below.

2.1.0M1 Spring Statemachine 176

Spring Statemachine - Reference Documentation

[

{
"@d": "10",
"_class": "org.springframework. stat emachi ne. dat a. j pa. JpaReposi t oryAction",
"spel": "T(System).out.println('hello exit S1')"

b

{
"@d": "11",
"_class": "org.springframework. statemachi ne. dat a. j pa. JpaReposi t oryActi on",
"spel": "T(System.out.println('hello entry S2')"

b

{
"@d": "12",
"_class": "org.springframework. statemachi ne. dat a.] pa. JpaReposi t oryActi on",
"spel": "T(System).out.println('hello state S3')"

B

{
"@d": "13",
"_class": "org.springframework. statemachi ne. dat a. j pa. JpaReposi t oryActi on",
"spel": "T(System.out.println('hello")"

}

{
"@d": "1",
"_class": "org.springframework. statenmachi ne. data. j pa. JpaReposi toryState",
"initial": true,
"state": "S1",
"exitActions": ["10"]

B

{
"@d": "2",
"_class": "org.springframework. statenmachi ne. data. j pa. JpaReposi toryState",
“initial": false,
"state": "S2",
"entryActions": ["11"]

b

{
"@d": "3,
"_class": "org.springframework. statemachi ne. data. j pa. JpaReposi toryState",
“initial": false,
"state": "S3",
"stateActions": ["12"]

b

{
"_class": "org.springframework. statemachi ne. dat a.] pa. JpaReposi toryTransition",
"source": "1",
“"target": "2",
"event": "E1",
"kind": "EXTERNAL"

).

{
"_class": "org.springframework. statemachi ne. dat a. j pa. JpaReposi toryTransition",
"source": "2",
"target": "3",
"event": "E2",
"actions": ["13"]

}

|
2.1.0M1 Spring Statemachine 177

Spring Statemachine - Reference Documentation

51. Data Persist

Data Persist is an example how state machine concepts can be used with persisting machine in an
external repository. This sample is using embedded H2 database with a H2 Console to ease playing
with a database. Optionally it's also possible to enable Redis or MongoDB.

This sample uses spri ng- st at enachi ne-aut oconfi gure which on default auto-configures
repositories and entity classes needed for JPA. Thus only @pr i ngBoot Appl i cat i on is needed.

@pr i ngBoot Appl i cati on
public class Application {

public static void main(String[] args) {
SpringApplication. run(Application.class, args);
}
}

St at eMachi neRunt i mePer si st er is a new interface working on aruntime level of a St at eMachi ne
and its implementation JpaPer si sti ngSt at eMachi nel nt er cept or is meant to be used with a
JPA.

@onfi guration
@rofile("jpa")
public static class JpaPersisterConfig {

@Bean
publ i c StateMachi neRunti nePersi ster<States, Events, String> stateMichi neRunti nePersi ster (
JpaSt at eMachi neReposi tory j paSt at eMachi neRepository) {
return new JpaPersi stingSt at eMachi nel nt er cept or <>(j paSt at eMachi neReposi tory);

Same configuration optionally enabled with mongo profile.

@onfiguration
@rofile("nongo")
public static class MngoPersisterConfig {

@Bean
publ i c StateMachi neRunti nePersi ster<States, Events, String> stateMichi neRunti nePersi ster (

MongoDbSt at eMachi neReposi tory j paSt at eMachi neReposi tory) {
return new MongoDbPersi sti ngSt at eMachi nel nt er cept or <>(j paSt at eMachi neReposi tory);

Same configuration optionally enabled with redis profile.

@onfiguration
@rofile("redis")
public static class RedisPersisterConfig {

@Bean
publ i c StateMachi neRunti nePersi ster<States, Events, String> stateMichi neRunti nePersi ster (
Redi sSt at eMachi neReposi tory j paStateMachi neRepository) {
return new Redi sPersi stingStateMachi nel nt ercept or <>(j paSt at eMachi neReposi tory);

St at eMachi ne can be configured to use runtime persistence by using wi t hPer si st ence config
method.

2.1.0M1 Spring Statemachine 178

Spring Statemachine - Reference Documentation

@\ut owi r ed
private StateMachi neRunti nePersister<States, Events, String> stateMachi neRunti nmePersister;

@verride
public void configure(StateMchi neConfi gurationConfigurer<States, Events> config)
throws Exception {
config
. Wi t hPersi stence()
.runti mePersi ster(stateMachi neRunti mePersister);

In this sample we also use Def aul t St at eMachi neSer vi ce which makes it easier to work with
multiple machines

@Bean
public StateMachi neServi ce<States, Events> stateMachi neService(
St at eMachi neFact ory<St at es, Events> st at eMachi neFactory,
St at eMachi neRunt i mePer si st er<States, Events, String> stateMachi neRunti mePersister) {
return new Defaul t St at eMachi neServi ce<States, Events>(stateMchi neFactory,
st at eMachi neRunt i mePer si ster);

}

A logic using a St at eMachi neSer vi ce in this sample is show below.

private synchroni zed StateMachi ne<States, Events> get StateMachine(String nmachineld) throws Exception {

i stener.reset Messages();

if (currentStateMachine == null) {
current St at eMachi ne = st at eMachi neServi ce. acqui reSt at eMachi ne(machi nel d) ;
current St at eMachi ne. addSt at eLi st ener (1i stener);
current St at eMachi ne. start();

} else if (!OojectUils.null SafeEqual s(current StateMachine.getld(), machineld)) {
st at eMachi neServi ce. rel easeSt at eMachi ne(current St at eMachi ne. getld());
current St at eMachi ne. stop();
current St at eMachi ne = st at eMachi neServi ce. acqui reSt at eMachi ne(machi nel d) ;
current St at eMachi ne. addSt at eLi st ener (11 stener);
current St at eMachi ne. start();

}

return current St at eMachi ne;

Let's get into actual demo. Run the boot based sample application:

java -jar spring-statemachi ne-sanpl es-datapersist-2.1.0. M. jar

Note

Profile jpais enabled on default in application.yml. If you want to try other backends, enable mongo
or redis profile.

java -jar spring-statenmachi ne-sanpl es-dat apersist-2.1.0. ML.jar --spring.profiles.active=jpa
java -jar spring-statenmachi ne-sanpl es-datapersist-2.1.0. ML.jar --spring.profiles.active=nongo
java -jar spring-statenmachi ne-sanpl es-dat apersist-2.1.0. ML.jar --spring.profiles.active=redis

Accessing application via http://localhost:8080 brings up a new constructed machine with every request
and you can choose to send events to a machine. Possible events and machine configuration are
updated from a database with every request.

Machines in this sample have a simple configuration with states 'S1' to 'S6' and events 'El'
to 'E6' transitioning machine between those states. Two machine identifiers 'datajpapersistl’ and
'datajpapersist2' can be used to request particular machine.

2.1.0M1 Spring Statemachine 179

http://localhost:8080

Spring Statemachine - Reference Documentation

Spring Statemachine Demo - Google Chrome

o/ Spring Statemachir x

< C' | @ localhost Q Yl i

h2 console
Choose machine

« ® datajpapersistl
. datajpapersist2

Choose events

. E1l
. E2
. E3
. E4
. E5
. E6

Send Events

Events

StateMachineContext

DefaultStateMachineContext [id=datajpapersistl, childs=[], state=S1, historyStates={},
event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}]]

Sample defaults to using machine 'datajpapersistl' and goes to its initial state 'S1".

2.1.0M1 Spring Statemachine 180

Spring Statemachine - Reference Documentation

Spring Statemachine Demo - Google Chrome

o/ Spring Statemachir x
< C' | @ localhost Q v ¢
h2 console
Choose machine

« ® datajpapersistl
. datajpapersist2

Choose events

. E1l
. E2
. E3
. E4
. E5
. E6

Send Events
Events

Enter S3
Exit S2
Enter 52
Exit S1

StateMachineContext

DefaultStateMachineContext [id=datajpapersistl, childs=[], state=S3, historyStates={},
event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}]]

If events 'E1' and 'E2' are sent into machine 'datajpapersistl’ its state is persisted as 'S3'.

2.1.0M1 Spring Statemachine 181

Spring Statemachine - Reference Documentation

Spring Statemachine Demo - Google Chrome

o/ Spring Statemachir x

< C' | @ localhost Q Yl i

h2 console
Choose machine

« ® datajpapersistl
. datajpapersist2

Choose events

. E1l
. E2
. E3
. E4
. E5
. E6

Send Events

Events

StateMachineContext

DefaultStateMachineContext [id=datajpapersistl, childs=[], state=S3, historyStates={},
event=null, eventHeaders=null, extendedState=DefaultExtendedState [variables={}]]

If requesting machine 'datajpapersistl' by not sending any events, machine is restored back to its
persisted state 'S3'.

2.1.0M1 Spring Statemachine 182

Spring Statemachine - Reference Documentation

52. Monitoring

Monitoring is an example how state machine concepts can be used to monitor machine transitions and
actions.

@onfi guration
@knabl eSt at eMachi ne
public static class Config extends StateMachi neConfigurerAdapter<String, String> {

@verride
public void configure(StateMachi neStateConfigurer<String, String> states)

throws Exception {

states
.withStates()
Linitial("s1")
.state("S2", null, (c) -> {Systemout.printin("hello");})
.state("S3", (c) -> {Systemout.printin("hello");}, null);
}
@verride

public void configure(StateMachi neTransitionConfigurer<String, String> transitions)
throws Exception {
transitions

.wi thExternal ()
.source("S1").target("S2").event ("E1")
.action((c) -> {Systemout.println("hello");})
.and()

.wi thExternal ()
.source("S2").target ("S3").event ("E2");

Let's get into actual demo. Run the boot based sample application:

java -jar spring-statenmachi ne-sanpl es-nonitoring-2.1.0. M.jar

Spring Statemachine Demo - Google Chrome

@ Spring Statema x

= | 0 localhost w0

Choose events

. El
. E2

Send Events

Machine stopped
Enter S1
Machine started

Refresh

2.1.0M1 Spring Statemachine 183

Spring Statemachine - Reference Documentation

Execute some transitions.

Spring Statemachine Demo - Google Chrome

& Spring Statemsz

— C | O localhost w0

Choose events

. El
. E2

Send Events

Machine stopped
Enter S3
Exit S2
Enter S2
Exit S1
Enter S1
Machine started

Refresh

Metrics can be viewed from Boot.

curl http://1ocal host:8080/actuator/ metrics/ssmtransition.duration
{
"nane":"ssmtransition.duration",
"measurenments": [
{
"statistic":"COUNT",
"value":3.0
Ba
{
"statistic":"TOTAL_TI ME",
"val ue": 0. 007
B
{
"statistic":"MAX",
"val ue": 0. 004
}
I
"avail abl eTags": [
{
"tag":"transiti onNane",
"val ues": [
"INl TIAL_S1",
" EXTERNAL_S1_S2"
]
}
|
}

2.1.0.M1 Spring Statemachine 184

Spring Statemachine - Reference Documentation

http://1 ocal host: 8080/ actuator/netrics/ssmtransition.transit

curl
{
"nane":"ssmtransition.transit",
"measurenents": [
{
"statistic":"COUNT",
"val ue":3.0
}
1
"avai |l abl eTags": [
{
"tag":"transiti onNane",
"val ues": [
" EXTERNAL_S1_S2",
"I NI TI AL_S1"
|
}

Tracing can be viewed from Boot.

curl

http://1 ocal host: 8080/ act uat or/ st at emachi net r ace

nfo":{

“duration":2,

“machi ne": nul |,
"transition":"EXTERNAL_S1_S2"

"timestanp":"2018-02-11T06: 44: 12. 723+0000",

}
ba
{
"timestanp":"2018-02-11T06: 44: 12. 720+0000",
"info":{
"duration":0,
"machi ne": nul |,
"action":"deno. nonitoring. StateMachi neConfi g$Confi g$$Lanbda$576/ 1499688007 @2b47b2f "
}
e
{
"tinmestanp”:"2018-02-11T06: 44: 12. 714+0000",
"info":{
"duration":1,
"machi ne": nul |,
"transition":"I N Tl AL_S1"
}
B
{
"tinmestanp":"2018-02-11T06: 44: 09. 689+0000",
"info":{
“duration":4,
“machi ne": nul |,
“transition":"I N TI AL_S1"
}
}
|
2.1.0M1 Spring Statemachine 185

Part VII. FAQ

This chapter tries to give solutions to question user is most likely to ask.

Spring Statemachine - Reference Documentation

53. State Changes

| want to transit to next state automatically.
There are few choices a state machine developer can choose.

» Implement an action and send appropriate event into a state machine which triggers a transition into
a proper target state.

» Define deferred event within a state and before sending an event send an event which will be deferred
and thus causing next appropriate state transition when it is more convenient to handle that event.

» Implement a triggerless transition which will automatically cause state transition into a next state when
state has entry and its actions has been completed.

2.1.0M1 Spring Statemachine 187

Spring Statemachine - Reference Documentation

54. Extended State

How | can initialise variables on state machine start.

Important concept in a state machine is that nothing really happens unless there is a trigger which is
causing a state transition which then can fire actions. However, having said that, Spring Statemachine
always have an initial transition when state machine is started. With this initial transition user can execute
a simple action which within a StateContext can do whatever it likes with an extended state variables.

2.1.0M1 Spring Statemachine 188

Part VIIl. Appendices

Spring Statemachine - Reference Documentation

Appendix A. Support Content

This appendix provides generic information about used classes and material in this reference
documentation.

A.1 Classes Used in This Document

public enum States {
Sl, S1, S2, S8, S4, SF
}

public enum States2 {
S1, S2, S3, S4, S5, SF,
S21, S21, S22, S2F,
S3l1, S31, S32, S3F

}

public enum St ates3 {
S1, S2, SH,
S21, S21, S22, S2F

public enum Events {
El, E2, E3, E4, EF
}

2.1.0M1 Spring Statemachine 190

Spring Statemachine - Reference Documentation

Appendix B. State Machine Concepts

This appendix provides generic information about state machines.

B.1 Quick Example

Assuming we have states STATEL, STATE2 and events EVENT1, EVENTZ2, logic of state machine can
be defined as shown in below quick example.

SM
o—Pp STATE1 STATE?2
entry/ entry/
exit exit
— EVENT1—Pp
4-EVENT2 —

public enum States {
STATE1, STATE2
}

public enum Events {
EVENT1, EVENT2
}

2.1.0M1 Spring Statemachine 191

Spring Statemachine - Reference Documentation

@onfi guration
@nabl eSt at eMachi ne
public class Configl extends EnunftateMachi neConfi gurer Adapt er <St ates, Events> {

@verride
public voi d configure(StateMachi neStateConfigurer<States, Events> states)
throws Exception {
states
. Wi thStates()
Linitial (States. STATEL)
.states(Enuntet. al | O (St at es. cl ass));

}

@verride
public void configure(StateMchi neTransitionConfigurer<States, Events> transitions)

throws Exception {
transitions

.wi thExternal ()
.source(St ates. STATEL) . t ar get (St at es. STATE2)
.event (Event s. EVENT1)
.and()

.wi thExternal ()
.source(States. STATE2) . t ar get (St at es. STATEL)
.event (Events. EVENT2) ;

@Vt hSt at eMachi ne
public class MyBean {

@nTransition(target = "STATE1")
void toStatel() {
}

@nTransition(target = "STATE2")
void toState2() {
}

public class M/App {

@\ut owi r ed
St at eMachi ne<St at es, Event s> st at eMachi ne;

voi d doSignal s() {
st at eMachi ne. sendEvent (Event s. EVENT1) ;
st at eMachi ne. sendEvent (Event s. EVENT2) ;

B.2 Glossary

State Machine

Main entity driving a collection of states together with regions, transitions and events.

State

A state models a situation during which some invariant condition holds. State is the main entity of

a state machine where state changes are driven by an events.

Extended State

An extended state is a special set of variables kept in a state machine to reduce number of needed

states.

2.1.0M1 Spring Statemachine

Spring Statemachine - Reference Documentation

Transition
A transition is a relationship between a source state and a target state. It may be part of a compound
transition, which takes the state machine from one state configuration to another, representing the
complete response of the state machine to an occurrence of an event of a particular type.

Event
An entity which is send to a state machine which then drives a various state changes.

Initial State
A special state in which the state machine starts. Initial state is always bound to a particular state
machine or a region. A state machine with a multiple regions may have a multiple initial states.

End State
Also called as a final state is a special kind of state signifying that the enclosing region is completed.
If the enclosing region is directly contained in a state machine and all other regions in the state
machine also are completed, then it means that the entire state machine is completed.

History State
A pseudo state which allows a state machine to remember its last active state. Two types of history
state exists, shallow which only remember top level state and deep which remembers active states
in a sub-machines.

Choice State
A pseudo state which allows to make a transition choice based of i.e. event headers or extended
state variables.

Junction State
A pseudo state which is relatively similar to choice state but allows multiple incoming transitions
while choice only allows one incoming transition.

Fork State
A pseudo state which gives a controlled entry into a regions.

Join State
A pseudo state which gives a controlled exit from a regions.

Entry Point
A pseudo state which allows a controlled entry into a submachine.

Exit Point
A pseudo state which allows a controlled exit from a submachine.

Region
A region is an orthogonal part of either a composite state or a state machine. It contains states
and transitions.

Guard
Is a boolean expression evaluated dynamically based on the value of extended state variables and
event parameters. Guard conditions affect the behavior of a state machine by enabling actions or
transitions only when they evaluate to TRUE and disabling them when they evaluate to FALSE.

Action
A action is a behaviour executed during the triggering of the transition.

2.1.0M1 Spring Statemachine 193

Spring Statemachine - Reference Documentation

B.3 A State Machines Crash Course

This appendix provides generic crash course to a state machine concepts.

States

A state is a model which a state machine can be in. It is always easier to describe state as a real world
example rather than trying to abstract concepts with a generic documentation. For example let’s take a
simple example of a keyboard most of us are using every single day. If you have a full keyboard which
has normal keys on a left side and the numeric keypad on a right side you may have noticed that the
numeric keypad may be in a two different states depending whether numlock is activated or not. If it is
not active then typing will result navigation using arrows, etc. If numpad is active then typing will result
numbers to be used. Essentially numpad part of a keyboard can be in two different states.

To relate state concept to programming it means that instead of using flags, nested if/else/break clauses
or other impractical logic you simply rely on state, state variables or other interaction with a state
machine.

Pseudo States

PseudoState is a special type of state which usually introduces more higher level logic into a state
machine by either giving a state a special meaning like initial state. State machine can then internally
react to these states by doing various actions available in UML state machine concepts.

Initial

Initial pseudostate state is always needed for every single state machine whether you have a simple
one level state machine or more complex state machine composed with submachines or regions. Initial
state simple defines where state machine should go when it starts and without it state machine is ill-
formed.

End

Terminate pseudostate which is also called as end state will indicate that a particular state machine
has reached its final state. Effectively this mean that a state machine will no longer process any events
and will not transit to any other state. However in a case of submachines are regions, state machine
is able to restart from its terminal state.

Choice

Choice pseudostate is used to choose a dynamic conditional branch of a transition from this state.
Dynamic condition is evaluated by guards so that at least one and at most one branch is selected.
Usually a simple if/elseif/else structure is used to make sure that at least one branch is selected.
Otherwise state machine might end up in a deadlock and configuration would be ill-formed.

Junction

Junction pseudostate is functionally similar than choice as both are implemented with if/elseif/else
structure. Only real difference is that junction allows multiple incoming transitions while choice only
allows one. Thus difference is purely academic but have some differences i.e. when state machine is
designed using real Ul modeling framework.

2.1.0M1 Spring Statemachine 194

Spring Statemachine - Reference Documentation

History

History pseudostate can be used to remember a last active state configuration. After state machine
has been exited, history state can be used to restore previous knows configuration. There are two types
of history states available, SHALLOW only remember active state of a state machine itself while DEEP
also remembers nested states.

History state could be implemented externally by listening state machine events but this would soon
make logic very difficult to work with, especially if state machine contains complex nested structures.
Letting state machine itself to handle recording of history states makes things much simpler. What is
left for user to do is simply do a transition into a history state and state machine will hand the needed
logic to go back to its last known recorded state.

In cases where a Transition terminates on a history state when the state has not been entered before
(i.e., no prior history) or it had reached its End State, there is an option to force a transition to a specific
substate, using the default history mechanism. This is a Transition that originates in the history state
and terminates on a specific Vertex (the default history state) of the Region containing the history state.
This Transition is only taken if execution leads to the history state and the state had never been active
before. Otherwise, the normal history entry into the Region is executed. If no default history transition
is defined, then standard default entry of the region is performed.

Fork

Fork pseudostate can be used to do an explicit entry into one or more regions.

Target state can be a parent state hosting regions, which simply means that regions are activated by
entering its initial states. It's also possible to add targets directly to any state in a region which allows
more controlled entry into a state.

Join

Join pseudostate is used to merge several transitions together originating from different regions. It is
generally used to wait and block for participating regions to get into its join target states.

2.1.0M1 Spring Statemachine 195

Spring Statemachine - Reference Documentation

Source state can be a parent state hosting regions, which means that join states will be a terminate
states of a participating regions. It's also possible to define source states to be any state in a regions
which allows controlled exit from a regions.

Entry Point

An Entry Point pseudostate represents an entry point for a state machine or a composite state that
provides encapsulation of the insides of the state or state machine. In each region of the state machine
or composite state owning the Entry Point , there is at most a single transition from the entry point to
a Vertex within that Region.

Exit Point

An EXxit Point pseudostate is an exit point of a state machine or composite state that provides
encapsulation of the insides of the state or state machine. Transitions terminating on an Exit Point within
any region of the composite state or a state machine referenced by a submachine state implies exiting
of this composite state or submachine state (with execution of its associated exit behavior).

Guard Conditions

Guard conditions are expressions which evaluates either to TRUE or FALSE based on extended state
variables and event parameters. Guards are used with actions and transitions to dynamically choose if
particular action or transition should be executed. Aspects of guards, event parameters and extended
state variables are simply to make state machine design much more simple.

Events

Event is the most used trigger behaviour to drive a state machine. There are other ways to trigger
behaviour to happen in state machine like a timer but events are the ones which really allows user to
interact with a state machine. Events are also called as signals to possibly alter a state machine state.

Transitions

A transition is a relationship between a source state and a target state. A switch from a state to another
is a state transition caused by a trigger.

Internal Transition

Internal transition is used when action needs to be executed without causing a state transition. With
internal transition source and target state is always a same and it is identical with self-transition in the
absence of state entry and exit actions.

2.1.0M1 Spring Statemachine 196

Spring Statemachine - Reference Documentation

External vs. Local Transition

Most of the cases external and local transition are functionally equivalent except in cases where
transition is happening between super and sub states. Local transition doesn’t cause exit and entry to
source state if target state is a substate of a source state. Other way around, local transition doesn’t
cause exit and entry to target state if target is a superstate of a source state.

LOCAL EXTERNAL

— T’

Above image shows a different between local and external transitions with a very simplistic super and
sub states.

Actions

Actions are the ones which really glues state machine state changes with a user's own code. State
machine can execute action on various changes and steps in a state machine like entering or exiting
a state, or doing a state transition.

Actions usually have access to a state context which gives running code a choice to interact with a state
machine in a various ways. State context i.e. is exposing a whole state machine so user can access
extended state variables, event headers if transition is based on an event, or actual transition where it
is possible to see more detailed where this state change is coming from and where it is going.

Hierarchical State Machines

Concept of a hierarchical state machine is used to simplify state design when particular states can only
exist together.

Hierarchical states are really an innovation in UML state machine over a traditional state machines like
Mealy or Moore machines. Hierarchical states allows to define some level of abstraction is a sense how
java developer would define a class structure with abstract classes. For example having a nested state
machine user is able to define transition on a multiple level of states possibly with a different conditions.
State machine will always try to see if current state is able to handle an event together with a transition

2.1.0M1 Spring Statemachine 197

Spring Statemachine - Reference Documentation

guard conditions. If these conditions are not evaluated to true, state machine will simply see what a
super state can handle.

Regions

Regions which are also called as orthogonal regions are usually viewed as exclusive OR operation
applied to a states. Concept of aregion in terms of a state machine is usually a little difficult to understand
but things gets a little simpler with a simple example.

Some of us have a full size keyboard with main keys on a left side and numeric keys on a right side.
You've probably noticed that both sides really have their own state which you see if you press a numlock
key which only alters behaviour of numpad itself. If you don’t have a full size keyboard you can buy a
simple external usb numpad having only numpad part of a keys. If left and right side can freely exist
without the other they must have a totally different states which means they are operating on different
state machines.

It would be a little inconvenient to handle two different state machines as totally separate entities
because in a sense they are still working together in a sense. This is why orthogonal regions can combine
together a multiple simultaneous states within a single state in a state machine.

2.1.0M1 Spring Statemachine 198

Spring Statemachine - Reference Documentation

Appendix C. Distributed State
Machine Technical Paper

This appendix provides more detailed technical documentation about using a Zookeeper with a Spring
State Machine.

C.1 Abstract

Introducing a di stri buted state on top of a single state machine instance running on a single
j vmis a difficult and a complex topic. Di stri but ed State Machi ne is introducing a few relatively
complex problems on top of a simple state machine due to its run-to-completion model and generally
because of its single thread execution model, though orthogonal regions can be executed parallel. One
other natural problem is that a state machine transition execution is driven by triggers which are either
event orti ner based.

Distributed Spri ng St at e Machi ne is trying to solve problem of spanning a generic St at e Machi ne
through a jvm boundary. Here we show that a generic St at e Machi ne concepts can be used in multiple
jvm s and Spring Application Contexts.

We found thatif Di stri but ed St at e Machi ne abstraction is carefully chosen and backing distributed
state repository guarantees CP readiness, it is possible to create a consistent state machine which is
able to share distributed state among other state machines in an ensemble.

Our results demonstrate that distributed state changes are consistent if backing repository is CP. We
anticipate our distributed state machine to provide a foundation to applications which need to work
with a shared distributed states. This model aims to provide a good methods for cloud applications to
have much easier ways to communicate with each others without having a need to explicitly build these
distributed state concepts.

C.2 Intro

Spring State Machine is not forced to use a single threaded execution model because once multiple
regions are uses, regions can be executed parallel if necessary configuration is applied. This is an
important topic because once user wants to have a parallel state machine execution it will make state
changes faster for independent regions.

When state changes are no longer driven by a trigger in a local jvm or local state machine instance,
transition logic needs to be controlled externally in an arbitrary persistent storage. This storage needs
to have a ways to notify participating state machines when distributed state is changed.

CAP Theorem states that "it is impossible for a distributed computer system to simultaneously provide
all three of the following guarantees, consi st ency, avail ability and partition tol erance
". What this means is that whatever is chosen for a backing persistence storage is it advisable to be
CP. In this context CP means consi stency and partition tol erance. Naturally Di stri but ed
Spring Statemachi ne doesn’t care about what is its CAP level but in reality consi st ency and
partition tol erance are more important than avai |l abi i ty. This is an exact reason why i.e.
Zookeeper is a CP storage.

All tests presented in this article are accomplished by running custom j epsen tests in a following
environment:

2.1.0M1 Spring Statemachine 199

https://en.wikipedia.org/wiki/CAP_theorem

Spring Statemachine - Reference Documentation

 Cluster having nodes nl1, n2, n3, n4 and n5.
» Each node have a Zookeeper instance constructing an ensemble with all other nodes.
» Each node have a Chapter 44, Web sample installed which will connect to a local Zookeeper node.

» Every state machine instance will only communicate with a local Zookeeper instance. While
connecting machine to multiple instances is possible, it is hot used here.

 All state machine instances when started will create a St at eMachi neEnsenbl e using Zookeeper
ensemble.

» Sample contains a custom rest api's which j epsen will use to send events and check particular state
machine statuses.

All jepsen tests for Spring Di stri buted Statenachi ne are available from Jepsen Tests.

C.3 Generic Concepts

One design decision of a Distributed State Machine was not to make individual St ate
Machi ne instance aware of that it is part of adi st ri but ed ensenbl e. Because main functions and
features of a St at eMachi ne can be accessed via its interface, it makes sense to wrap this instance
using a Di st ri but edSt at eMachi ne, which simply intercepts all state machine communication and
collaborates with an ensemble to orchestrate distributed state changes.

One other important concept is to be able to persist enough information from a state machine order to
reset a state machine state from arbitrary state into a new deserialized state. This is naturally needed
when a new state machine instance is joining with an ensemble and it needs to synchronize its own
internal state with a distributed state. Together with using concepts of distributed states and state
persisting it is possible to create a distributed state machine. Currently only backing repository of a
Di stributed State Machi ne isimplemented using a Zookeeper .

As mentioned in Chapter 31, Using Distributed States distributed states are enabled by
wrapping an instance of a StateMachine within a Di stributedStat eMachi ne. Specific
St at eMachi neEnsenbl e implementation is Zookeeper St at eMachi neEnsenbl e providing
integration with a Zookeeper .

C.4 ZookeeperStateMachinePersist

We wanted to have a generic interface St at eMachi nePersi st which is able to persist
St at eMachi neCont ext into an arbitrary storage and Zookeeper St at eMachi nePer si st is
implementing this interface for a Zookeeper .

C.5 ZookeeperStateMachineEnsemble

While distributed state machine is using one set of serialized contexts to update its own state, with
zookeeper we're having a conceptual problem how these context changes can be listened. We're able to
serialize context into a zookeeper znode and eventually listen when znode data is modified. However
Zookeeper doesn’t guarantee that you will get notification for every data change because registered
wat cher for a znode is disabled once it fires and user need to re-register that wat cher . During this
short time a znode data can be changed thus resulting missing events. It is actually very easy to miss
these events by just changing data from a multiple threads in a concurrent manner.

2.1.0M1 Spring Statemachine 200

https://github.com/spring-projects/spring-statemachine/tree/master/jepsen/spring-statemachine-jepsen

Spring Statemachine - Reference Documentation

Order to overcome this issue we're keeping individual context changes in a multiple znodes and we
just use a simple integer counter to mark which znode is a current active one. This allows us to replay
missed events. We don’t want to create more and more znodes and then later delete old ones, instead
we’re using a simple concept of a circular set of znodes. This allows to use predefined set of znodes
where a current can be determined with a simple integer counter. We already have this counter by
tracking main znode data version which in Zookeeper is an integer.

Size of a circular buffer is mandated to be a power of two not to get trouble when integer is going to
overflow thus we don’t need to handle any specific cases.

C.6 Distributed Tolerance

Order to show how a various distributed actions against a state machine work in a real life, we’re using
a set of j epsen tests to simulate various conditions which may happen in a real distributed cluster.
These include abr ai n spl i t onanetwork level, parallel events with a multiple di st ri but ed state
machi nes and changes in an ext ended state vari abl es. Jepsen tests are based on a sample
Chapter 44, Web where this sample instance is run on multiple hosts together with a Zookeeper
instance on every node where state machine is run. Essentially every state machine sample will connect
to local Zookeeper instance which allows use, via j epsen to simulate network conditions.

Plotted graphs below in this chapter contain states and events which directly maps to a state chart which
can be found from Chapter 44, Web.

Isolated Events

Sending an isolated single event into exactly one state machine in an ensemble is the most simplest
testing scenario and demonstrates that a state change in one state machine is properly propagated into
other state machines in an ensemble.

In this test we will demonstrate that a state change in one machine will eventually cause a consistent
state change in other machines.

1 1 1]]]]]] States nl
states n2
S212 ﬂ| ns states n3
— p— states nd
states n5
dna events
d s211 | g
T — — 8
| =
< K] i 1n3 &
:
et | =
5] 5
S 522 | g
C m -1 n2
521 |
—H — = qn
1 1 1 L L L L L L
0 5x109 1x101°1.5x10192x10192.5x10193x10193.5x101%4x101%4.5x10105x1010
ns ns ns ns ns ns ns ns ns ns ns
elapsed time
What's happening in above chart:
2.1.0M1 Spring Statemachine 201

Spring Statemachine - Reference Documentation

» All machines report state S21.

e Eventl is sentto node nl and all nodes report state change from S21 to S22.

« Event Cis sent to node n2 and all nodes report state change from S22 to S211.
» Eventl is sentto node n5 and all nodes report state change from S211 to S212.
» Event Kis sent to node n3 and all nodes report state change from S212 to S21.

* We cycle events | , C, | and K one more time via random nodes.
Parallel Events

Logical problem with multiple distributed state machines is that if a same event is sent into a multiple
state machine exactly at a same time, only one of those events will cause a distributed state transitions.
This is somewhat expected scenario because a first state machine, for this event, which is able to change
a distributed state will control the distributed transition logic. Effectively all other machines receiving
this same event will silently discard the event because distributed state is no longer in a state where
particular event can be processed.

In this test we will demonstrate that a state change caused by a parallel events throughout an ensemble
will eventually cause a consistent state change in all machines.

! ! ! ! ! ! ! ! ! states nl
s212 | ﬂl ﬂ| ﬂl ﬂl N3 Cotee n
States 1S
I I I I na, evens
§ sy — — 3
g i K i@
S st — — g
=< | K i€ |
s21 mi i H I Kl {n1

0 5x109 1x10101.5x10192x10192.5x10193x10103.5x10104x101%4.5x10105x1010
ns ns ns ns ns ns ns ns ns ns ns

elapsed time

What's happening in above chart:

» We use exactly same event flow than in previous sample the section called “Isolated Events” with a
difference that events are always sent to all nodes.

Concurrent Extended State Variable Changes

Extended state machine variables are not guaranteed to be atomic at any given time but after a
distributed state change, all state machines in an ensemble should have a synchronized extended state.

In this test we will demonstrate that a change in extended state variables in one distributed state machine
will eventually be consistent in all distributed state machines.

2.1.0M1 Spring Statemachine 202

Spring Statemachine - Reference Documentation

! ! ! ! ! ! ! ! variable nl
v —— variable n2
Eil n> variable n3
v7 F variable nd
variable n5
iabl
e | dna . variables
a4 o
B o
o
g V5 | | ®
= g >
P n3 @
E vd - — 2
® o
=
B v2 v3=v4 v n2 ~
v2 —_—
] <1 nl
'U' -
1 1 1 1 1 1 1 1

5x109 1x1010 1.5x1010 2x1010 2.5x1010 3x1010 3.5x1010 4x1010 4.5x1010 5x1010
ns ns ns ns ns ns ns ns ns ns

elapsed time

What's happening in above chart:

« Event J is send to node n5 with event variable t est Var i abl e having value v1. All nodes are then
reporting having variable t est Var i abl e as value v1.

» Event J is repeated from variable v2 to v8 doing same checks.
Partition Tolerance

We need to always assume that sooner or later things in a cluster will go bad whether it is just a crash
of a Zookeeper instance, a state machine or a network problem like a brai n split. Brain splitis a
situation where existing cluster members are isolated so that only part of a hosts are able to see each
others. Usual scenario is that a brain split will create a minority and majority partitions of an ensemble
where hosts in a minority cannot participate in an ensemble anymore until network status has been
healed.

In below tests we will demonstrate that various types of brain-split’s in an ensemble will eventually cause
fully synchronized state of all distributed state machines.

There are two scenarios having a one straight brain split in a network where where Zookeeper and
St at emachi ne instances are split in half, assuming each St at emachi ne will connect into a local
Zookeeper instance:

« If current zookeeper leader is kept in a majority, all clients connected into majority will keep functioning
properly.

« If current zookeeper leader is left in minority, all clients will disconnect from it and will try to connect
back till previous minority members has successfully joined back to existing majority ensemble.

Note

In our current j epsen tests we can't separate zookeeper split brains scenarios between leader
left in majority or minority so we need to run tests multiple time to accomplish this situation.

2.1.0M1 Spring Statemachine 203

Spring Statemachine - Reference Documentation

Note

In below plots we have mapped a state machine error state into an er r or to indicate that st at e
nmachi ne is in error state instead or a normal state. Please indicate this when interpreting chart

states.

In this first test we show that when existing zookeeper leader was kept in majority, 3 out of 5 machines

will continue as is.

-y — =
3
s21|=Id] Lo

0 2x1010 4x1010 6x1010 8x1010 1x1011 1.2x101! 1.4x101! 1.6x1011
ns ns ns ns ns ns ns ns ns

elapsed time

What's happening in above chart:

» First event Cis sent to all machine leading a state change to S211.

events via nodes

states nl
states n2
states n3
states nd
states n5

events

» Jepsen nemesis will cause a brain-split which is causing partitions of n1/ n2/ n5 and n3/ n4. Nodes
n3/ n4 are left in minority and nodes n1/ n2/ n5 construct a new healthy majority. Nodes in majority

will keep function without problems but nodes in minority will get into error state.

» Jepsen will heal network and after some time nodes n3/ n4 will join back into ensemble and

synchronize its distributed status.

» Lastly event K1 is sent to all state machines to ensure that ensemble is working properly. This state

change will lead back to state S21.

In this second test we show that when existing zookeeper leader was kept in minority, all machines

will error out:

2.1.0M1 Spring Statemachine

204

Spring Statemachine - Reference Documentation

! states nl
error - , = 1 ns EEZE: 2%
states n4
0 i
g [=]
c sl = K - n3 §
m =
s22 | in2 °
521 | =|C] 1 nl
1 1 1 1 1 1 1

0 2x1010 4x1010 6x1010 B8x1010 1x1011 1.2x101! 1.4x1011 1.6x1011
ns ns ns ns ns ns ns ns ns

elapsed time

What's happening in above chart:
» First event Cis sent to all machine leading a state change to S211.

» Jepsen nemesis will cause a brain-split which is causing partitions so that existing Zookeeper leader
is kept in minority and all instances are disconnected from ensemble.

» Jepsen will heal network and after some time all nodes will join back into ensemble and synchronize
its distributed status.

 Lastly event K1 is sent to all state machines to ensure that ensemble is working properly. This state
change will lead back to state S21.

Crash and Join Tolerance
In this test we will demonstrate that killing existing state machine and then joining new instance back into

an ensemble will keep the distributed state healthy and newly joined state machines will synchronize
their states properly.

2.1.0M1 Spring Statemachine 205

Spring Statemachine - Reference Documentation

]] 1]]]
5212 | ns
n4
§ S211 |
(=]
=
n3
g sa2f
n2
s21 ﬂ E nl
0 2x1I010 4x1I010 sxllolﬂ Bxllolo 1x1I011 1.2xI1011 1.4x1011
ns ns ns ns ns ns ns
elapsed time
Note

crash/start in nodes

states nl
states n2
states n3
states nd
states n5

crash

In this test, states are not checked between first X and last X, thus graph will will show flat line in

between. States are checked exactly where state change happens between S21 and S211.

What's happening in above chart:

» All state machines are transitioned from initial state S21 into S211 so that we can test proper state

synchronize during join.

» Xis marking when a specific node has been crashed and started.

» At a same time we request states from all machines and plot it.

» Finally we do a simple transition back to S21 from S211 to make sure that all state machines are

still functioning properly.

2.1.0.M1

Spring Statemachine

206

Spring Statemachine - Reference Documentation

55. Developer Documentation

This appendix provides generic information for a developers who may want to contribute or other people

who want to understand how state machine works or what are its internal concepts.

55.1 StateMachine Config Model

St at eMachi neMbdel and other related SPI classes are an abstraction between various configuration

and factory classes. This also allows easier integration for others to build state machines.

As shown above a state machine can be instantiated by building a model using configuration data

classes and then asking a factory to build a state machine.

/| setup configuration data
ConfigurationData<String, String> configurationData = new Confi gurationData<>();

/] setup states data

Col | ection<StateData<String, String>> stateData = new ArrayList<>();
st at eDat a. add(new StateData<String, String>("S1", true));

st at eDat a. add(new St at eData<String, String>("S2"));
StatesData<String, String> statesData = new StatesData<>(stateData);

/] setup transitions data

Col | ection<TransitionData<String, String>> transitionData = new ArrayList<>();
transitionData.add(new TransitionData<String, String>("S1", "S2", "E1"));

Transi tionsData<String, String> transitionsData = new Transiti onsData<>(transitionData);

/| setup nodel

st at esDat a,
transitionsData);

/] instantiate nachine via factory

St at eMachi ne<String, String> stateMachine = factory. get StateMachine();

St at eMachi neModel <String, String> stateMachi neModel = new Def aul t St at eMachi neMbdel <>(confi gurati onDat a,

bj ect St at eMachi neFactory<String, String> factory = new Obj ect St at eMachi neFact or y<>(st at eMachi neMbdel) ;

2.1.0M1 Spring Statemachine

207

	Spring Statemachine - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Background
	2. Usage Scenarios

	Part II. Getting started
	3. System Requirements
	4. Modules
	5. Using Gradle
	6. Using Maven
	7. Developing your first Spring Statemachine application

	Part III. What’s New
	8. In 1.1
	9. In 1.2
	9.1 In 1.2.8

	10. In 2.0
	10.1 In 2.0.0

	Part IV. Using Spring Statemachine
	11. Statemachine Configuration
	11.1 Using enable annotations
	11.2 Configuring States
	11.3 Configuring Hierarchical States
	11.4 Configuring Regions
	11.5 Configuring Transitions
	11.6 Configuring Guards
	11.7 Configuring Actions
	State Actions
	Transition Action Error Handling
	State Action Error Handling

	11.8 Configuring Pseudo States
	Initial State
	Terminate State
	History State
	Choice State
	Junction State
	Fork State
	Join State
	Exit/Entry Point States

	11.9 Configuring Common Settings
	11.10 Configuring Model
	11.11 Things to Remember

	12. State Machine ID
	12.1 With @EnableStateMachine
	12.2 With @EnableStateMachineFactory
	12.3 With StateMachineModelFactory

	13. State Machine Factories
	13.1 Factory via Adapter
	Adapter Factory Limitations

	13.2 State Machine via Builder

	14. Using Deferred Events
	15. Using Scopes
	16. Using Actions
	16.1 SpEL Expressions with Actions

	17. Using Guards
	17.1 SpEL Expressions with Guards

	18. Using Extended State
	19. Using StateContext
	19.1 Stages

	20. Triggering Transitions
	20.1 EventTrigger
	20.2 TimerTrigger

	21. Listening State Machine Events
	21.1 Application Context Events
	21.2 State Machine Listener
	21.3 Limitations and Problems

	22. Context Integration
	22.1 Enabling Integration
	22.2 Method Parameters
	22.3 Transition Annotations
	22.4 State Annotations
	22.5 Event Annotation
	22.6 State Machine Annotations
	22.7 Extended State Annotation

	23. State Machine Accessor
	24. State Machine Interceptor
	25. State Machine Security
	25.1 Configuring Security
	25.2 Securing Events
	25.3 Securing Transitions
	25.4 Securing Actions
	25.5 Using Security Attributes and Expressions
	Generic Attribute Usage
	Generic Expression Usage
	Event Attributes
	Event Expressions
	Transition Attributes
	Transition Expressions

	25.6 Understanding Security

	26. State Machine Error Handling
	27. State Machine Services
	27.1 Using StateMachineService

	28. Persisting State Machine
	28.1 Using StateMachineContext
	28.2 Using StateMachinePersister
	28.3 Using Redis
	28.4 Using StateMachineRuntimePersister

	29. Spring Boot Support
	29.1 Monitoring and Tracing
	29.2 Repository Config

	30. Monitoring State Machine
	31. Using Distributed States
	31.1 ZookeeperStateMachineEnsemble

	32. Testing Support
	33. Eclipse Modeling Support
	33.1 Using UmlStateMachineModelFactory
	StateMachineComponentResolver

	33.2 Creating Model
	33.3 Define States
	33.4 Define Events
	Defer Event

	33.5 Define Transitions
	33.6 Define Timers
	33.7 Define Choice
	33.8 Define Junction
	33.9 Define Entry/Exit
	33.10 Define History
	Shallow
	Deep
	Default

	33.11 Define Fork/Join
	33.12 Define Actions
	Initial Action

	33.13 Define Guards
	33.14 Define Bean Reference
	33.15 Define SpEL Reference
	33.16 Using Sub-Machine Reference

	34. Repository Support
	34.1 Repository Config
	JPA
	Redis
	MongoDB

	34.2 Repository Persistence
	JPA
	Redis
	MongoDB

	Part V. Recipes
	35. Persist
	36. Tasks

	Part VI. State Machine Examples
	37. Turnstile
	38. Showcase
	39. CD Player
	40. Tasks
	41. Washer
	42. Persist
	43. Zookeeper
	44. Web
	45. Scope
	46. Security
	47. Event Service
	48. Deploy
	49. Order Shipping
	50. JPA Config
	51. Data Persist
	52. Monitoring

	Part VII. FAQ
	53. State Changes
	54. Extended State

	Part VIII. Appendices
	Appendix A. Support Content
	A.1 Classes Used in This Document

	Appendix B. State Machine Concepts
	B.1 Quick Example
	B.2 Glossary
	B.3 A State Machines Crash Course
	States
	Pseudo States
	Initial
	End
	Choice
	Junction
	History
	Fork
	Join
	Entry Point
	Exit Point

	Guard Conditions
	Events
	Transitions
	Internal Transition
	External vs. Local Transition

	Actions
	Hierarchical State Machines
	Regions

	Appendix C. Distributed State Machine Technical Paper
	C.1 Abstract
	C.2 Intro
	C.3 Generic Concepts
	C.4 ZookeeperStateMachinePersist
	C.5 ZookeeperStateMachineEnsemble
	C.6 Distributed Tolerance
	Isolated Events
	Parallel Events
	Concurrent Extended State Variable Changes
	Partition Tolerance
	Crash and Join Tolerance

	55. Developer Documentation
	55.1 StateMachine Config Model

