
Spring Web Flow Reference Guide

Version 2.5.0.RELEASE

Keith Donald , Erwin Vervaet , Jeremy Grelle , Scott Andrews , Rossen Stoyanchev , Phillip Webb

Copyright ©

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow iii

Table of Contents

Preface ... ix
1. Introduction .. 1

1.1. What this guide covers .. 1
1.2. What Web Flow requires to run .. 1
1.3. Resources ... 1
1.4. How to access Web Flow artifacts from Maven Central .. 1
1.5. How to access nightly builds and milestone releases ... 1

Accessing snapshots and milestones with Maven .. 2
2. What's New ... 3

2.1. Spring Web Flow 2.5 ... 3
2.2. Spring Web Flow 2.4 ... 3

Java-based Configuration ... 3
Spring MVC Flash Scope Integration ... 3
Partial JSR-303 Bean Validation ... 3
Hibernate Support .. 3
Tiles 3 Support .. 3
Minimum JSF 2.0 Requirement ... 3
Portlet API 2.0 and JSF 2.0 support .. 4
Deprecations .. 4

2.3. Spring Web Flow 2.3 ... 4
Embedding A Flow On A Page ... 4
Support For JSR-303 Bean Validation ... 4
Flow-Managed Persistence Context Propagation ... 4
Portlet 2.0 Resource Requests ... 4
Custom ConversationManager .. 4
Redirect In Same State .. 5
Samples .. 5

2.4. Spring Web Flow 2.2 ... 5
JSF 2 Support ... 5

Comprehensive JSF 2 Support ... 5
Travel Sample With the PrimeFaces Components .. 5

Spring Security Facelets Tag Library ... 6
Spring JavaScript Updates ... 6

Deprecated ResourcesServlet ... 6
Dojo 1.5 and dojox ... 6
Two Spring JS artifacts .. 6
Client resources moved into META-INF/web-resources ... 6

JSF Portlet Support .. 6
Portlet API 2.0 and JSF 1.2 support .. 6

3. Defining Flows ... 7
3.1. Introduction ... 7
3.2. What is a flow? ... 7
3.3. What is the makeup of a typical flow? .. 7
3.4. How are flows authored? ... 8
3.5. Essential language elements .. 8

flow ... 8
view-state .. 9

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow iv

transition .. 9
end-state ... 9
Checkpoint: Essential language elements .. 9

3.6. Actions .. 10
evaluate ... 10

Assigning an evaluate result ... 10
Converting an evaluate result .. 11

Checkpoint: flow actions ... 11
3.7. Input/Output Mapping .. 11

input .. 12
Declaring an input type ... 12
Assigning an input value ... 12
Marking an input as required .. 12

output .. 12
Specifying the source of an output value ... 13

Checkpoint: input/output mapping .. 13
3.8. Variables ... 13

var ... 13
3.9. Variable Scopes .. 14

Flow Scope .. 14
View Scope .. 14
Request Scope .. 14
Flash Scope ... 14
Conversation Scope ... 14

3.10. Calling subflows ... 14
subflow-state .. 14

Passing a subflow input .. 15
Mapping subflow output .. 15

Checkpoint: calling subflows ... 15
4. Expression Language (EL) .. 17

4.1. Introduction ... 17
Expression types .. 17

Standard Expressions ... 17
Template expressions ... 17

4.2. EL Implementations ... 18
Spring EL .. 18
Unified EL .. 18

4.3. EL portability ... 18
4.4. Special EL variables .. 19

flowScope .. 20
viewScope ... 20
requestScope ... 20
flashScope ... 20
conversationScope ... 20
requestParameters ... 20
currentEvent ... 21
currentUser .. 21
messageContext ... 21
resourceBundle .. 21
flowRequestContext .. 21

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow v

flowExecutionContext .. 21
flowExecutionUrl ... 21
externalContext .. 21

4.5. Scope searching algorithm ... 22
5. Rendering views ... 23

5.1. Introduction ... 23
5.2. Defining view states ... 23
5.3. Specifying view identifiers .. 23

Flow relative view ids ... 23
Absolute view ids ... 24
Logical view ids .. 24

5.4. View scope ... 24
Allocating view variables ... 24
Assigning a viewScope variable .. 24
Manipulating objects in view scope ... 24

5.5. Executing render actions .. 25
5.6. Binding to a model .. 25
5.7. Performing type conversion .. 25

Type Conversion Options ... 26
Upgrading to Spring 3 Type Conversion And Formatting ... 26
Configuring Type Conversion and Formatting ... 27
Working With Spring 3 Type Conversion And Formatting .. 28
Formatting Annotations ... 29
Working With Dates ... 29

5.8. Suppressing binding .. 29
5.9. Specifying bindings explicitly .. 29
5.10. Validating a model ... 30

JSR-303 Bean Validation .. 30
Partial Validation .. 31

Programmatic validation .. 31
Implementing a model validate method .. 31
Implementing a Validator .. 32
Default validate method .. 33

ValidationContext ... 33
5.11. Suppressing validation ... 33
5.12. Executing view transitions .. 34

Transition actions ... 34
Global transitions .. 34
Event handlers ... 35
Rendering fragments .. 35

5.13. Working with messages ... 35
Adding plain text messages .. 35
Adding internationalized messages .. 36
Using message bundles ... 36
Understanding system generated messages .. 36

5.14. Displaying popups ... 37
5.15. View backtracking .. 37

Discarding history ... 37
Invalidating history .. 37

6. Executing actions ... 38

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow vi

6.1. Introduction ... 38
6.2. Defining action states .. 38
6.3. Defining decision states ... 39
6.4. Action outcome event mappings ... 39
6.5. Action implementations .. 39

Invoking a POJO action .. 40
Invoking a custom Action implementation .. 40
Invoking a MultiAction implementation ... 40

6.6. Action exceptions .. 40
Handling a business exception with a POJO action .. 40
Handling a business exception with a MultiAction ... 41
Using an exception-handler element .. 41

6.7. Other Action execution examples ... 42
on-start .. 42
on-entry ... 42
on-exit ... 42
on-end ... 42
on-render ... 43
on-transition ... 43
Named actions ... 43
Streaming actions ... 44
Handling File Uploads .. 44

7. Flow Managed Persistence ... 46
7.1. Introduction ... 46
7.2. FlowScoped PersistenceContext ... 46
7.3. Flow Managed Persistence And Sub-Flows ... 47

8. Securing Flows .. 48
8.1. Introduction ... 48
8.2. How do I secure a flow? .. 48
8.3. The secured element ... 48

Security attributes ... 48
Matching type .. 48

8.4. The SecurityFlowExecutionListener ... 49
Custom Access Decision Managers .. 49

8.5. Configuring Spring Security .. 49
Spring configuration .. 49
web.xml Configuration .. 50

9. Flow Inheritance ... 51
9.1. Introduction ... 51
9.2. Is flow inheritance like Java inheritance? .. 51
9.3. Types of Flow Inheritance .. 51

Flow level inheritance ... 51
State level inheritance .. 51

9.4. Abstract flows .. 52
9.5. Inheritance Algorithm ... 52

Mergeable Elements ... 52
Non-mergeable Elements .. 53

10. System Setup ... 54
10.1. Introduction ... 54
10.2. Java Config and XML Namespace .. 54

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow vii

10.3. Basic system configuration ... 54
FlowRegistry .. 54
FlowExecutor ... 55

10.4. flow-registry options ... 55
Specifying flow locations ... 55
Assigning custom flow identifiers ... 55
Assigning flow meta-attributes ... 56
Registering flows using a location pattern .. 56
Flow location base path .. 56
Configuring FlowRegistry hierarchies ... 57
Configuring custom FlowBuilder services ... 58

conversion-service .. 59
expression-parser ... 60
view-factory-creator .. 60
development .. 60

10.5. flow-executor options ... 60
Attaching flow execution listeners .. 60
Tuning FlowExecution persistence .. 61

max-executions .. 61
max-execution-snapshots .. 61

11. Spring MVC Integration ... 62
11.1. Introduction ... 62
11.2. Configuring web.xml ... 62
11.3. Dispatching to flows ... 62

Registering the FlowHandlerAdapter .. 62
Defining flow mappings ... 62
Flow handling workflow ... 63

11.4. Implementing custom FlowHandlers .. 63
Example FlowHandler ... 64
Deploying a custom FlowHandler .. 65
FlowHandler Redirects .. 65

11.5. View Resolution ... 65
11.6. Signaling an event from a View .. 66

Using a named HTML button to signal an event ... 66
Using a hidden HTML form parameter to signal an event .. 66
Using a HTML link to signal an event .. 66

11.7. Embedding A Flow On A Page ... 67
Embedded Mode Vs Default Redirect Behavior .. 67
Embedded Flow Examples ... 67

11.8. Saving Flow Output to MVC Flash Scope ... 67
12. Spring JavaScript Quick Reference ... 69

12.1. Introduction ... 69
12.2. Serving Javascript Resources ... 69
12.3. Including Spring Javascript in a Page ... 70
12.4. Spring Javascript Decorations .. 70
12.5. Handling Ajax Requests ... 72

Providing a Library-Specific AjaxHandler .. 72
Handling Ajax Requests with Spring MVC Controllers ... 72
Handling Ajax Requests with Spring MVC + Spring Web Flow 73

13. JSF Integration ... 74

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow viii

13.1. Introduction ... 74
13.2. Configuring web.xml ... 74
13.3. Configuring Web Flow for use with JSF .. 75
13.4. Replacing the JSF Managed Bean Facility .. 76

Using Flow Variables .. 76
Using Scoped Spring Beans ... 77
Manipulating The Model ... 77
Data Model Implementations ... 78

13.5. Handling JSF Events With Spring Web Flow ... 78
Handling JSF In-page Action Events ... 78
Handling JSF Action Events ... 79
Performing Model Validation ... 80
Handling Ajax Events In JSF .. 80

13.6. Embedding a Flow On a Page ... 81
13.7. Redirect In Same State .. 81
13.8. Handling File Uploads with JSF .. 82

File Uploads with PrimeFaces ... 82
13.9. Using the Spring Security Facelets Tag Library ... 82
13.10. Third-Party Component Library Integration .. 84

14. Testing flows .. 85
14.1. Introduction ... 85
14.2. Extending AbstractXmlFlowExecutionTests .. 85
14.3. Specifying the path to the flow to test ... 85
14.4. Registering flow dependencies ... 85
14.5. Testing flow startup ... 85
14.6. Testing flow event handling .. 86
14.7. Mocking a subflow ... 86

A. Flow Definition Language 1.0 to 2.0 Mappings .. 88

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow ix

Preface
Many web applications require the same sequence of steps to execute in different contexts. Often these
sequences are merely components of a larger task the user is trying to accomplish. Such a reusable
sequence is called a flow.

Consider a typical shopping cart application. User registration, login, and cart checkout are all examples
of flows that can be invoked from several places in this type of application.

Spring Web Flow is the module of Spring for implementing flows. The Web Flow engine plugs into
the Spring Web MVC platform and provides declarative flow definition language. This reference guide
shows you how to use and extend Spring Web Flow.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 1

1. Introduction

1.1. What this guide covers

This guide covers all aspects of Spring Web Flow. It covers implementing flows in end-user applications
and working with the feature set. It also covers extending the framework and the overall architectural
model.

1.2. What Web Flow requires to run

Java 1.8 or higher.

Spring 5.0 or higher.

1.3. Resources

You can ask questions and interact on StackOverflow using the designated tags, see Spring at
StackOverflow.

Report bugs and make requests using the Spring Issue Tracker.

Submit pull requests and work with the source code , see Web Flow on Github.

1.4. How to access Web Flow artifacts from Maven Central

Each jar in the Web Flow distribution is available in the Maven Central Repository. This allows you to
easily integrate Web Flow into your application if you are already using Maven as the build system for
your web development project.

To access Web Flow jars from Maven Central, declare the following dependency in your pom:

<dependency>

 <groupId>org.springframework.webflow</groupId>

 <artifactId>spring-webflow</artifactId>

 <version>x.y.z.RELEASE</version>

</dependency>

If using JavaServer Faces, declare the following dependency in your pom (includes transitive
dependencies "spring-binding", "spring-webflow"):

<dependency>

 <groupId>org.springframework.webflow</groupId>

 <artifactId>spring-faces</artifactId>

 <version>x.y.z.RELEASE</version>

</dependency>

1.5. How to access nightly builds and milestone releases

Nightly snapshots of Web Flow development branches are available using Maven. These snapshot
builds are useful for testing out fixes you depend on in advance of the next release, and provide a
convenient way for you to provide feedback about whether a fix meets your needs.

https://spring.io/questions
https://spring.io/questions
http://jira.spring.io
https://github.com/spring-projects/spring-webflow
http://search.maven.org

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 2

Accessing snapshots and milestones with Maven

For milestones and snapshots you'll need to use the SpringSource repository. Add the following
repository to your Maven pom.xml:

<repository>

 <id>spring</id>

 <name>Spring Repository</name>

 <url>http://repo.spring.io/snapshot</url>

</repository>

Then declare the following dependencies:

<dependency>

 <groupId>org.springframework.webflow</groupId>

 <artifactId>spring-webflow</artifactId>

 <version>x.y.z.BUILD-SNAPSHOT</version>

</dependency>

And if using JSF:

<dependency>

 <groupId>org.springframework.webflow</groupId>

 <artifactId>spring-faces</artifactId>

 <version>x.y.z.BUILD-SNAPSHOT</version>

</dependency>

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 3

2. What's New

2.1. Spring Web Flow 2.5

This release provides an upgrade path to Spring Framework 5 that in turn requires Java 8+, Servlet 3.1,
Hibernate 5, Tiles 3. See the Spring Framework wiki for more details. The samples repository has been
upgraded to Spring Web Flow 2.5.

As of 2.5 there is no longer a spring-js module. The classes from that module have been kept but
moved to new packages in the spring-webflow module. The spring-js-resources module is available as
an optional module that must be included explicitly.

This release requires JSF 2.2 or higher.

2.2. Spring Web Flow 2.4

This release requires JDK 1.6.

Java-based Configuration

Web Flow now supports a Java-based alternative for its system configuration. See the updated
Chapter 10, System Setup.

Also see the booking-mvc and booking-faces samples that have been updated to use all Java config.

Spring MVC Flash Scope Integration

When a flow ends it can now redirect to a Spring MVC controller after saving attributes in Spring MVC's
flash scope for the controller to access.

See Section 11.8, “Saving Flow Output to MVC Flash Scope”.

Partial JSR-303 Bean Validation

A flow definition can apply partial validation on the model through the validation-hints attribute supported
on view state and transition elements.

See the section called “Partial Validation”.

Hibernate Support

The HibernateFlowExecutionListener now supports Hibernate 4 in addition to Hibernate 3.

As of 2.4.4 the HibernateFlowExecutionListener also works with Hibernate 5.

Tiles 3 Support

The AjaxTilesView now supports Tiles 3 in addition to Tiles 2.2.

Minimum JSF 2.0 Requirement

Java ServerFaces version 1.2 and earlier are no longer supported by Spring Web Flow, if you have not
done so already you will need to upgrade to JSF 2.0 or above. In addition the Spring Faces components
that were previously provided with JSF 1.2 for progressive AJAX enhancements have been removed
in this release.

https://github.com/spring-projects/spring-framework/wiki/What%27s-New-in-Spring-Framework-5.x
https://github.com/spring-projects/spring-webflow-samples
https://github.com/spring-projects/spring-webflow-samples/tree/master/booking-mvc
https://github.com/spring-projects/spring-webflow-samples/tree/master/booking-faces

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 4

See ???.

Portlet API 2.0 and JSF 2.0 support

The internal Portlet integration introduced in Spring Web Flow 2.2 has been upgraded for JSF 2.0
compatibility. Some of the more advanced JSF 2.0 features, such as partial state saving, are not
supported in a Portlet environment, however, existing application can now upgrade to the minimum
required JSF version. Upgraded projects will need to ensure that the <faces:resources> elements
is included as part of their Spring configuration.

Deprecations

This release deprecates Spring.js. The deprecation includes the entire spring-js-resources module
including Spring.js and Spring-Dojo.js and the bundled Dojo and CSS Framework. Also deprecated
is the SpringJavascriptAjaxHandler from the spring-js module. The rest of spring-js, e.g.
AjaxHandler, AjaxTilesView, will be folded into spring-webflow in a future release.

OGNL support is now deprecated.

2.3. Spring Web Flow 2.3

Embedding A Flow On A Page

By default Web Flow does a client-side redirect upon entering every view state. That makes it impossible
to embed a flow on a page or within a modal dialog and execute more than one view state without
causing a full-page refresh. Web Flow now supports launching a flow in "embedded" mode. In this
mode a flow can transition to other view states without a client-side redirect during Ajax requests. See
Section 11.7, “Embedding A Flow On A Page” and Section 13.6, “Embedding a Flow On a Page”.

Support For JSR-303 Bean Validation

Support for the JSR-303 Bean Validation API is now available building on equivalent support available
in Spring MVC. See Section 5.10, “Validating a model” for more details.

Flow-Managed Persistence Context Propagation

Starting with Web Flow 2.3 a flow managed PersistenceContext is automatically extended
(propagated) to sub-flows assuming the subflow also has the feature enabled as well. See Section 7.3,
“Flow Managed Persistence And Sub-Flows”.

Portlet 2.0 Resource Requests

Support for Portlet 2.0 resource requests has now been added enabling Ajax requests with partial
rendering. URLs for such requests can be prepared with the <portlet:resourceURL> tag in JSP
pages. Server-side processing is similar to a combined an action and a render requests but combined
in a single request. Unlike a render request, the response from a resource request includes content
from the target portlet only.

Custom ConversationManager

The <flow-execution-repository> element now provides a conversation-manager attribute
accepting a reference to a ConversationManager instance.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 5

Redirect In Same State

By default Web Flow does a client-side redirect when remaining in the same view state as long as the
current request is not an Ajax request. This is useful after form validation failure. Hitting Refresh or
Back won't result in browser warnings. Hence this behavior is usually desirable. However a new flow
execution attribute makes it possible to disable it and that may also be necessary in some cases specific
to JSF applications. See Section 13.7, “Redirect In Same State”.

Samples

The process for building the samples included with the distribution has been simplified. Maven can
be used to build all samples in one step. Eclipse settings include source code references to simplify
debugging.

Additional samples can be accessed as follows:

mkdir spring-samples

cd spring-samples

svn co https://src.springframework.org/svn/spring-samples/webflow-primefaces-showcase

cd webflow-primefaces-showcase

mvn package

import into Eclipse

mkdir spring-samples

cd spring-samples

svn co https://src.springframework.org/svn/spring-samples/webflow-showcase

cd webflow-showcase

mvn package

import into Eclipse

2.4. Spring Web Flow 2.2

JSF 2 Support

Comprehensive JSF 2 Support

Building on 2.1, Spring Web Flow version 2.2 adds support for core JSF 2 features The following features
that were not supported in 2.1 are now available: partial state saving, JSF 2 resource request, handling,
and JSF 2 Ajax requests. At this point support for JSF 2 is considered comprehensive although not
covering every JSF 2 feature -- excluded are mostly features that overlap with the core value Web Flow
provides such as those relating to navigation and state management.

See Section 13.3, “Configuring Web Flow for use with JSF” for important configuration changes. Note
that partial state saving is only supported with Sun Mojarra 2.0.3 or later. It is not yet supported with
Apache MyFaces. This is due to the fact MyFaces was not as easy to customize with regards to how
component state is stored. We will work with Apache MyFaces to provide this support. In the mean time
you will need to use the javax.faces.PARTIAL_STATE_SAVING context parameter in web.xml to
disable partial state saving with Apache MyFaces.

Travel Sample With the PrimeFaces Components

The main Spring Travel sample demonstrating Spring Web Flow and JSF support is now built on JSF 2
and components from the PrimeFaces component library. Please check out the booking-faces sample
in the distribution.

Additional samples can be found at the Spring Web Flow - Prime Faces Showcase, an SVN repository
within the spring-samples repository. Use these commands to check out and build:

https://src.springframework.org/svn/spring-samples/webflow-primefaces-showcase
https://src.springframework.org/svn/spring-samples

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 6

svn co https://src.springframework.org/svn/spring-samples/webflow-primefaces-showcase

 cd webflow-primefaces-showcase

 mvn package

Spring Security Facelets Tag Library

A new Spring Security tag library is available for use with with JSF 2.0 or with JSF 1.2 Facelets views.
It provides an <authorize> tag as well as several EL functions. See Section 13.9, “Using the Spring
Security Facelets Tag Library” for more details.

Spring JavaScript Updates

Deprecated ResourcesServlet

Starting with Spring 3.0.4, the Spring Framework includes a replacement for the ResourcesServlet.
Please see the Spring Framework documentation for details on the custom mvc namespace, specifically
the new "resources" element.

Dojo 1.5 and dojox

The bundled custom Dojo build is upgraded to version 1.5. It now includes dojox.

Note that applications are generally encouraged to prepare their own custom Dojo build for optimized
performance depending on what parts of Dojo are commonly used together. For examples see the
scripts used by Spring Web Flow to prepare its own custom Dojo build.

Two Spring JS artifacts

The spring-js artifact has been split in two -- the new artifact (spring-js-resources) contains
client side resource (.js, .css, etc.) while the existing artifact (spring-js) contains server-side Java
code only.

Applications preparing their own custom Dojo build have an option now to avoid including spring-js-
resources and put Spring.js and Spring-Dojo.js directly under the root of their web application.

Client resources moved into META-INF/web-resources

Bundled client resources (.js, .css, etc.) have been moved to META-INF/web-resources from their
previous location under META-INF. This change is transparent for applications but will result in simpler
and safer configuration when using the new resource handling mechanism available in Spring 3.0.4.

JSF Portlet Support

Portlet API 2.0 and JSF 1.2 support

In previous versions of Spring Web Flow support for JSF Portlets relied on a Portlet Bridge for JSF
implementation and was considered experimental. Spring Web Flow 2.2 adds support for JSF Portlets
based on its own internal Portlet integration targeting Portlet API 2.0 and JSF 1.2 environments. See
??? for more details. The Spring Web Flow Travel JSF Portlets sample has been successfully tested
on the Apache Pluto portal container.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-static-resources
https://src.springframework.org/svn/spring-webflow/branches/spring-webflow-2.2-maintenance/spring-js-resources/scripts/dojo

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 7

3. Defining Flows

3.1. Introduction

This chapter begins the Users Section. It shows how to implement flows using the flow definition
language. By the end of this chapter you should have a good understanding of language constructs,
and be capable of authoring a flow definition.

3.2. What is a flow?

A flow encapsulates a reusable sequence of steps that can execute in different contexts. Below is a
Garrett Information Architecture diagram illustrating a reference to a flow that encapsulates the steps
of a hotel booking process:

Site Map illustrating a reference to a flow

3.3. What is the makeup of a typical flow?

In Spring Web Flow, a flow consists of a series of steps called "states". Entering a state typically results
in a view being displayed to the user. On that view, user events occur that are handled by the state.
These events can trigger transitions to other states which result in view navigations.

http://www.jjg.net/ia/visvocab/

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 8

The example below shows the structure of the book hotel flow referenced in the previous diagram:

Flow diagram

3.4. How are flows authored?

Flows are authored by web application developers using a simple XML-based flow definition language.
The next steps of this guide will walk you through the elements of this language.

3.5. Essential language elements

flow

Every flow begins with the following root element:

<?xml version="1.0" encoding="UTF-8"?>

<flow xmlns="http://www.springframework.org/schema/webflow"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/webflow

 http://www.springframework.org/schema/webflow/spring-webflow.xsd">

</flow>

All states of the flow are defined within this element. The first state defined becomes the flow's starting
point.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 9

view-state

Use the view-state element to define a step of the flow that renders a view:

<view-state id="enterBookingDetails" />

By convention, a view-state maps its id to a view template in the directory where the
flow is located. For example, the state above might render /WEB-INF/hotels/booking/
enterBookingDetails.xhtml if the flow itself was located in the /WEB-INF/hotels/booking
directory.

transition

Use the transition element to handle events that occur within a state:

<view-state id="enterBookingDetails">

 <transition on="submit" to="reviewBooking" />

</view-state>

These transitions drive view navigations.

end-state

Use the end-state element to define a flow outcome:

<end-state id="bookingCancelled" />

When a flow transitions to a end-state it terminates and the outcome is returned.

Checkpoint: Essential language elements

With the three elements view-state, transition, and end-state, you can quickly express your
view navigation logic. Teams often do this before adding flow behaviors so they can focus on developing
the user interface of the application with end users first. Below is a sample flow that implements its view
navigation logic using these elements:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 10

<flow xmlns="http://www.springframework.org/schema/webflow"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/webflow

 http://www.springframework.org/schema/webflow/spring-webflow.xsd">

 <view-state id="enterBookingDetails">

 <transition on="submit" to="reviewBooking" />

 </view-state>

 <view-state id="reviewBooking">

 <transition on="confirm" to="bookingConfirmed" />

 <transition on="revise" to="enterBookingDetails" />

 <transition on="cancel" to="bookingCancelled" />

 </view-state>

 <end-state id="bookingConfirmed" />

 <end-state id="bookingCancelled" />

</flow>

3.6. Actions

Most flows need to express more than just view navigation logic. Typically they also need to invoke
business services of the application or other actions.

Within a flow, there are several points where you can execute actions. These points are:

• On flow start

• On state entry

• On view render

• On transition execution

• On state exit

• On flow end

Actions are defined using a concise expression language. Spring Web Flow uses the Unified EL by
default. The next few sections will cover the essential language elements for defining actions.

evaluate

The action element you will use most often is the evaluate element. Use the evaluate element to
evaluate an expression at a point within your flow. With this single tag you can invoke methods on Spring
beans or any other flow variable. For example:

<evaluate expression="entityManager.persist(booking)" />

Assigning an evaluate result

If the expression returns a value, that value can be saved in the flow's data model called flowScope:

<evaluate expression="bookingService.findHotels(searchCriteria)" result="flowScope.hotels" />

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 11

Converting an evaluate result

If the expression returns a value that may need to be converted, specify the desired type using the
result-type attribute:

<evaluate expression="bookingService.findHotels(searchCriteria)" result="flowScope.hotels"

 result-type="dataModel"/>

Checkpoint: flow actions

Now review the sample booking flow with actions added:

<flow xmlns="http://www.springframework.org/schema/webflow"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/webflow

 http://www.springframework.org/schema/webflow/spring-webflow.xsd">

 <input name="hotelId" />

 <on-start>

 <evaluate expression="bookingService.createBooking(hotelId, currentUser.name)"

 result="flowScope.booking" />

 </on-start>

 <view-state id="enterBookingDetails">

 <transition on="submit" to="reviewBooking" />

 </view-state>

 <view-state id="reviewBooking">

 <transition on="confirm" to="bookingConfirmed" />

 <transition on="revise" to="enterBookingDetails" />

 <transition on="cancel" to="bookingCancelled" />

 </view-state>

 <end-state id="bookingConfirmed" />

 <end-state id="bookingCancelled" />

</flow>

This flow now creates a Booking object in flow scope when it starts. The id of the hotel to book is obtained
from a flow input attribute.

3.7. Input/Output Mapping

Each flow has a well-defined input/output contract. Flows can be passed input attributes when they start,
and can return output attributes when they end. In this respect, calling a flow is conceptually similar to
calling a method with the following signature:

FlowOutcome flowId(Map<String, Object> inputAttributes);

... where a FlowOutcome has the following signature:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 12

public interface FlowOutcome {

 public String getName();

 public Map<String, Object> getOutputAttributes();

}

input

Use the input element to declare a flow input attribute:

<input name="hotelId" />

Input values are saved in flow scope under the name of the attribute. For example, the input above
would be saved under the name hotelId.

Declaring an input type

Use the type attribute to declare the input attribute's type:

<input name="hotelId" type="long" />

If an input value does not match the declared type, a type conversion will be attempted.

Assigning an input value

Use the value attribute to specify an expression to assign the input value to:

<input name="hotelId" value="flowScope.myParameterObject.hotelId" />

If the expression's value type can be determined, that metadata will be used for type coersion if no
type attribute is specified.

Marking an input as required

Use the required attribute to enforce the input is not null or empty:

<input name="hotelId" type="long" value="flowScope.hotelId" required="true" />

output

Use the output element to declare a flow output attribute. Output attributes are declared within end-
states that represent specific flow outcomes.

<end-state id="bookingConfirmed">

 <output name="bookingId" />

</end-state>

Output values are obtained from flow scope under the name of the attribute. For example, the output
above would be assigned the value of the bookingId variable.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 13

Specifying the source of an output value

Use the value attribute to denote a specific output value expression:

<output name="confirmationNumber" value="booking.confirmationNumber" />

Checkpoint: input/output mapping

Now review the sample booking flow with input/output mapping:

<flow xmlns="http://www.springframework.org/schema/webflow"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/webflow

 http://www.springframework.org/schema/webflow/spring-webflow.xsd">

 <input name="hotelId" />

 <on-start>

 <evaluate expression="bookingService.createBooking(hotelId, currentUser.name)"

 result="flowScope.booking" />

 </on-start>

 <view-state id="enterBookingDetails">

 <transition on="submit" to="reviewBooking" />

 </view-state>

 <view-state id="reviewBooking">

 <transition on="confirm" to="bookingConfirmed" />

 <transition on="revise" to="enterBookingDetails" />

 <transition on="cancel" to="bookingCancelled" />

 </view-state>

 <end-state id="bookingConfirmed" >

 <output name="bookingId" value="booking.id"/>

 </end-state>

 <end-state id="bookingCancelled" />

</flow>

The flow now accepts a hotelId input attribute and returns a bookingId output attribute when a new
booking is confirmed.

3.8. Variables

A flow may declare one or more instance variables. These variables are allocated when the flow starts.
Any @Autowired transient references the variable holds are also rewired when the flow resumes.

var

Use the var element to declare a flow variable:

<var name="searchCriteria" class="com.mycompany.myapp.hotels.search.SearchCriteria"/>

Make sure your variable's class implements java.io.Serializable, as the instance state is saved
between flow requests.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 14

3.9. Variable Scopes

Web Flow can store variables in one of several scopes:

Flow Scope

Flow scope gets allocated when a flow starts and destroyed when the flow ends. With the default
implementation, any objects stored in flow scope need to be Serializable.

View Scope

View scope gets allocated when a view-state enters and destroyed when the state exits. View scope
is only referenceable from within a view-state. With the default implementation, any objects stored
in view scope need to be Serializable.

Request Scope

Request scope gets allocated when a flow is called and destroyed when the flow returns.

Flash Scope

Flash scope gets allocated when a flow starts, cleared after every view render, and destroyed when the
flow ends. With the default implementation, any objects stored in flash scope need to be Serializable.

Conversation Scope

Conversation scope gets allocated when a top-level flow starts and destroyed when the top-level
flow ends. Conversation scope is shared by a top-level flow and all of its subflows. With the default
implementation, conversation scoped objects are stored in the HTTP session and should generally be
Serializable to account for typical session replication.

The scope to use is often determined contextually, for example depending on where a variable is defined
-- at the start of the flow definition (flow scope), inside a a view state (view scope), etc. In other cases,
for example in EL expressions and Java code, it needs to be specified explicitly. Subsequent sections
explain how this is done.

3.10. Calling subflows

A flow may call another flow as a subflow. The flow will wait until the subflow returns, then respond to
the subflow outcome.

subflow-state

Use the subflow-state element to call another flow as a subflow:

<subflow-state id="addGuest" subflow="createGuest">

 <transition on="guestCreated" to="reviewBooking">

 <evaluate expression="booking.guests.add(currentEvent.attributes.guest)" />

 </transition>

 <transition on="creationCancelled" to="reviewBooking" />

</subflow-state>

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 15

The above example calls the createGuest flow, then waits for it to return. When the flow returns with
a guestCreated outcome, the new guest is added to the booking's guest list.

Passing a subflow input

Use the input element to pass input to the subflow:

<subflow-state id="addGuest" subflow="createGuest">

 <input name="booking" />

 <transition to="reviewBooking" />

</subflow-state>

Mapping subflow output

When a subflow completes, its end-state id is returned to the calling flow as the event to use to continue
navigation.

The subflow can also create output attributes to which the calling flow can refer within an outcome
transition as follows:

<transition on="guestCreated" to="reviewBooking">

 <evaluate expression="booking.guests.add(currentEvent.attributes.guest)" />

</transition>

In the above example, guest is the name of an output attribute returned by the guestCreated
outcome.

Checkpoint: calling subflows

Now review the sample booking flow calling a subflow:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 16

<flow xmlns="http://www.springframework.org/schema/webflow"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/webflow

 http://www.springframework.org/schema/webflow/spring-webflow.xsd">

 <input name="hotelId" />

 <on-start>

 <evaluate expression="bookingService.createBooking(hotelId, currentUser.name)"

 result="flowScope.booking" />

 </on-start>

 <view-state id="enterBookingDetails">

 <transition on="submit" to="reviewBooking" />

 </view-state>

 <view-state id="reviewBooking">

 <transition on="addGuest" to="addGuest" />

 <transition on="confirm" to="bookingConfirmed" />

 <transition on="revise" to="enterBookingDetails" />

 <transition on="cancel" to="bookingCancelled" />

 </view-state>

 <subflow-state id="addGuest" subflow="createGuest">

 <transition on="guestCreated" to="reviewBooking">

 <evaluate expression="booking.guests.add(currentEvent.attributes.guest)" />

 </transition>

 <transition on="creationCancelled" to="reviewBooking" />

 </subflow-state>

 <end-state id="bookingConfirmed" >

 <output name="bookingId" value="booking.id" />

 </end-state>

 <end-state id="bookingCancelled" />

</flow>

The flow now calls a createGuest subflow to add a new guest to the guest list.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 17

4. Expression Language (EL)

4.1. Introduction

Web Flow uses EL to access its data model and to invoke actions. This chapter will familiarize you with
EL syntax, configuration, and special EL variables you can reference from your flow definition.

EL is used for many things within a flow including:

1. Access client data such as declaring flow inputs or referencing request parameters.

2. Access data in Web Flow's RequestContext such as flowScope or currentEvent.

3. Invoke methods on Spring-managed objects through actions.

4. Resolve expressions such as state transition criteria, subflow ids, and view names.

EL is also used to bind form parameters to model objects and reversely to render formatted form fields
from the properties of a model object. That however does not apply when using Web Flow with JSF in
which case the standard JSF component lifecyle applies.

Expression types

An important concept to understand is there are two types of expressions in Web Flow: standard
expressions and template expressions.

Standard Expressions

The first and most common type of expression is the standard expression. Such expressions are
evaluated directly by the EL and need not be enclosed in delimiters like #{}. For example:

<evaluate expression="searchCriteria.nextPage()" />

The expression above is a standard expression that invokes the nextPage method on the
searchCriteria variable when evaluated. If you attempt to enclose this expression in a special
delimiter like #{} you will get an IllegalArgumentException. In this context the delimiter is seen
as redundant. The only acceptable value for the expression attribute is an single expression string.

Template expressions

The second type of expression is a template expression. A template expression allows mixing of literal
text with one or more standard expressions. Each standard expression block is explicitly surrounded
with the #{} delimiters. For example:

<view-state id="error" view="error-#{externalContext.locale}.xhtml" />

The expression above is a template expression. The result of evaluation will be a string
that concatenates literal text such as error- and .xhtml with the result of evaluating
externalContext.locale. As you can see, explicit delimiters are necessary here to demarcate
standard expression blocks within the template.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 18

Note

See the Web Flow XML schema for a complete listing of those XML attributes that accept standard
expressions and those that accept template expressions. You can also use F2 in Eclipse (or
equivalent shortcut in other IDEs) to access available documentation when typing out specific
flow definition attributes.

4.2. EL Implementations

Spring EL

Web Flow uses the Spring Expression Language (Spring EL). Spring EL was created to provide a single,
well-supported expression language for use across all the products in the Spring portfolio. It is distributed
as a separate jar org.springframework.expression in the Spring Framework.

Unified EL

Use of Unified EL also implies a dependency on el-api although that is typically provided by your
web container. Although Spring EL is the default and recommended expression language to use, it is
possible to replace it with Unified EL if you wish to do so. You need the following Spring configuration
to plug in the WebFlowELExpressionParser to the flow-builder-services:

<webflow:flow-builder-services expression-parser="expressionParser"/>

<bean id="expressionParser" class="org.springframework.webflow.expression.el.WebFlowELExpressionParser">

 <constructor-arg>

 <bean class="org.jboss.el.ExpressionFactoryImpl" />

 </constructor-arg>

</bean>

Note that if your application is registering custom converters it's important to ensure the
WebFlowELExpressionParser is configured with the conversion service that has those custom
converters.

<webflow:flow-builder-services expression-parser="expressionParser" conversion-

service="conversionService"/>

<bean id="expressionParser" class="org.springframework.webflow.expression.el.WebFlowELExpressionParser">

 <constructor-arg>

 <bean class="org.jboss.el.ExpressionFactoryImpl" />

 </constructor-arg>

 <property name="conversionService" ref="conversionService"/>

</bean>

<bean id="conversionService" class="somepackage.ApplicationConversionService"/>

4.3. EL portability

In general, you will find Spring EL and Unified EL to have a very similar syntax.

Note however there are some advantages to Spring EL. For example Spring EL is closely integrated with
the type conversion of Spring 3 and that allows you to take full advantage of its features. Specifically the
automatic detection of generic types as well as the use of formatting annotations is currently supported
with Spring EL only.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://en.wikipedia.org/wiki/Unified_Expression_Language

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 19

There are some minor changes to keep in mind when upgrading to Spring EL from Unified EL as follows:

1. Expressions deliniated with ${} in flow definitions must be changed to #{}.

2. Expressions testing the current event #{currentEvent == 'submit'} must be changed to
#{currentEvent.id == 'submit'}.

3. Resolving properties such as #{currentUser.name} may cause NullPointerException without any
checks such as #{currentUser != null ? currentUser.name : null}. A much better
alternative though is the safe navigation operator #{currentUser?.name}.

For more information on Spring EL syntax please refer to the Language Reference section in the Spring
Documentation.

4.4. Special EL variables

There are several implicit variables you may reference from within a flow. These variables are discussed
in this section.

Keep in mind this general rule. Variables referring to data scopes (flowScope, viewScope,
requestScope, etc.) should only be used when assigning a new variable to one of the scopes.

For example when assigning the result of the call to
bookingService.findHotels(searchCriteria) to a new variable called "hotels" you must
prefix it with a scope variable in order to let Web Flow know where you want it stored:

<?xml version="1.0" encoding="UTF-8"?>

<flow xmlns="http://www.springframework.org/schema/webflow" ... >

 <var name="searchCriteria" class="org.springframework.webflow.samples.booking.SearchCriteria" />

 <view-state id="reviewHotels">

 <on-render>

 <evaluate expression="bookingService.findHotels(searchCriteria)" result="viewScope.hotels" />

 </on-render>

 </view-state>

</flow>

However when setting an existing variable such as "searchCriteria" in the example below, you reference
the variable directly without prefixing it with any scope variables:

<?xml version="1.0" encoding="UTF-8"?>

<flow xmlns="http://www.springframework.org/schema/webflow" ... >

 <var name="searchCriteria" class="org.springframework.webflow.samples.booking.SearchCriteria" />

 <view-state id="reviewHotels">

 <transition on="sort">

 <set name="searchCriteria.sortBy" value="requestParameters.sortBy" />

 </transition>

 </view-state>

</flow>

The following is the list of implicit variables you can reference within a flow definition:

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-language-ref

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 20

flowScope

Use flowScope to assign a flow variable. Flow scope gets allocated when a flow starts and destroyed
when the flow ends. With the default implementation, any objects stored in flow scope need to be
Serializable.

<evaluate expression="searchService.findHotel(hotelId)" result="flowScope.hotel" />

viewScope

Use viewScope to assign a view variable. View scope gets allocated when a view-state enters and
destroyed when the state exits. View scope is only referenceable from within a view-state. With the
default implementation, any objects stored in view scope need to be Serializable.

<on-render>

 <evaluate expression="searchService.findHotels(searchCriteria)" result="viewScope.hotels"

 result-type="dataModel" />

</on-render>

requestScope

Use requestScope to assign a request variable. Request scope gets allocated when a flow is called
and destroyed when the flow returns.

<set name="requestScope.hotelId" value="requestParameters.id" type="long" />

flashScope

Use flashScope to assign a flash variable. Flash scope gets allocated when a flow starts, cleared
after every view render, and destroyed when the flow ends. With the default implementation, any objects
stored in flash scope need to be Serializable.

<set name="flashScope.statusMessage" value="'Booking confirmed'" />

conversationScope

Use conversationScope to assign a conversation variable. Conversation scope gets allocated when
a top-level flow starts and destroyed when the top-level flow ends. Conversation scope is shared by
a top-level flow and all of its subflows. With the default implementation, conversation scoped objects
are stored in the HTTP session and should generally be Serializable to account for typical session
replication.

<evaluate expression="searchService.findHotel(hotelId)" result="conversationScope.hotel" />

requestParameters

Use requestParameters to access a client request parameter:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 21

<set name="requestScope.hotelId" value="requestParameters.id" type="long" />

currentEvent

Use currentEvent to access attributes of the current Event:

<evaluate expression="booking.guests.add(currentEvent.attributes.guest)" />

currentUser

Use currentUser to access the authenticated Principal:

<evaluate expression="bookingService.createBooking(hotelId, currentUser.name)"

 result="flowScope.booking" />

messageContext

Use messageContext to access a context for retrieving and creating flow execution messages,
including error and success messages. See the MessageContext Javadocs for more information.

<evaluate expression="bookingValidator.validate(booking, messageContext)" />

resourceBundle

Use resourceBundle to access a message resource.

<set name="flashScope.successMessage" value="resourceBundle.successMessage" />

flowRequestContext

Use flowRequestContext to access the RequestContext API, which is a representation of the
current flow request. See the API Javadocs for more information.

flowExecutionContext

Use flowExecutionContext to access the FlowExecutionContext API, which is a representation
of the current flow state. See the API Javadocs for more information.

flowExecutionUrl

Use flowExecutionUrl to access the context-relative URI for the current flow execution view-state.

externalContext

Use externalContext to access the client environment, including user session attributes. See the
ExternalContext API JavaDocs for more information.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 22

<evaluate expression="searchService.suggestHotels(externalContext.sessionMap.userProfile)"

 result="viewScope.hotels" />

4.5. Scope searching algorithm

As mentioned earlier in this section when assigning a variable in one of the flow scopes, referencing
that scope is required. For example:

<set name="requestScope.hotelId" value="requestParameters.id" type="long" />

When simply accessing a variable in one of the scopes, referencing the scope is optional. For example:

<evaluate expression="entityManager.persist(booking)" />

When no scope is specified, like in the use of booking above, a scope searching algorithm is used.
The algorithm will look in request, flash, view, flow, and conversation scope for the variable. If no such
variable is found, an EvaluationException will be thrown.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 23

5. Rendering views

5.1. Introduction

This chapter shows you how to use the view-state element to render views within a flow.

5.2. Defining view states

Use the view-state element to define a step of the flow that renders a view and waits for a user
event to resume:

<view-state id="enterBookingDetails">

 <transition on="submit" to="reviewBooking" />

</view-state>

By convention, a view-state maps its id to a view template in the directory where the
flow is located. For example, the state above might render /WEB-INF/hotels/booking/
enterBookingDetails.xhtml if the flow itself was located in the /WEB-INF/hotels/booking
directory.

Below is a sample directory structure showing views and other resources like message bundles co-
located with their flow definition:

Flow Packaging

5.3. Specifying view identifiers

Use the view attribute to specify the id of the view to render explicitly.

Flow relative view ids

The view id may be a relative path to view resource in the flow's working directory:

<view-state id="enterBookingDetails" view="bookingDetails.xhtml">

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 24

Absolute view ids

The view id may be a absolute path to a view resource in the webapp root directory:

<view-state id="enterBookingDetails" view="/WEB-INF/hotels/booking/bookingDetails.xhtml">

Logical view ids

With some view frameworks, such as Spring MVC's view framework, the view id may also be a logical
identifier resolved by the framework:

<view-state id="enterBookingDetails" view="bookingDetails">

See the Spring MVC integration section for more information on how to integrate with the MVC
ViewResolver infrastructure.

5.4. View scope

A view-state allocates a new viewScope when it enters. This scope may be referenced within the view-
state to assign variables that should live for the duration of the state. This scope is useful for manipulating
objects over a series of requests from the same view, often Ajax requests. A view-state destroys its
viewScope when it exits.

Allocating view variables

Use the var tag to declare a view variable. Like a flow variable, any @Autowired references are
automatically restored when the view state resumes.

<var name="searchCriteria" class="com.mycompany.myapp.hotels.SearchCriteria" />

Assigning a viewScope variable

Use the on-render tag to assign a variable from an action result before the view renders:

<on-render>

 <evaluate expression="bookingService.findHotels(searchCriteria)" result="viewScope.hotels" />

</on-render>

Manipulating objects in view scope

Objects in view scope are often manipulated over a series of requests from the same view. The following
example pages through a search results list. The list is updated in view scope before each render.
Asynchronous event handlers modify the current data page, then request re-rendering of the search
results fragment.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 25

<view-state id="searchResults">

 <on-render>

 <evaluate expression="bookingService.findHotels(searchCriteria)"

 result="viewScope.hotels" />

 </on-render>

 <transition on="next">

 <evaluate expression="searchCriteria.nextPage()" />

 <render fragments="searchResultsFragment" />

 </transition>

 <transition on="previous">

 <evaluate expression="searchCriteria.previousPage()" />

 <render fragments="searchResultsFragment" />

 </transition>

</view-state>

5.5. Executing render actions

Use the on-render element to execute one or more actions before view rendering. Render actions are
executed on the initial render as well as any subsequent refreshes, including any partial re-renderings
of the view.

<on-render>

 <evaluate expression="bookingService.findHotels(searchCriteria)" result="viewScope.hotels" />

</on-render>

5.6. Binding to a model

Use the model attribute to declare a model object the view binds to. This attribute is typically used
in conjunction with views that render data controls, such as forms. It enables form data binding and
validation behaviors to be driven from metadata on your model object.

The following example declares an enterBookingDetails state manipulates the booking model:

<view-state id="enterBookingDetails" model="booking">

The model may be an object in any accessible scope, such as flowScope or viewScope. Specifying
a model triggers the following behavior when a view event occurs:

1. View-to-model binding. On view postback, user input values are bound to model object properties
for you.

2. Model validation. After binding, if the model object requires validation that validation logic will be
invoked.

For a flow event to be generated that can drive a view state transition, model binding must complete
successfully. If model binding fails, the view is re-rendered to allow the user to revise their edits.

5.7. Performing type conversion

When request parameters are used to populate the model (commonly referred to as data binding),
type conversion is required to parse String-based request parameter values before setting target

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 26

model properties. Default type conversion is available for many common Java types such as numbers,
primitives, enums, and Dates. Users also have the ability to register their own type conversion logic for
user-defined types, and to override the default Converters.

Type Conversion Options

Starting with version 2.1 Spring Web Flow uses the type conversion and formatting system
introduced in Spring 3 for nearly all type conversion needs. Previously Web Flow applications used
a type conversion mechanism that was different from the one in Spring MVC, which relied on the
java.beans.PropertyEditor abstraction. Spring 3 offers a modern type conversion alternative to
PropertyEditors that was actually influenced by Web Flow's own type conversion system. Hence Web
Flow users should find it natural to work with the new Spring 3 type conversion. Another obvious and
very important benefit of this change is that a single type conversion mechanism can now be used
across Spring MVC And Spring Web Flow.

Upgrading to Spring 3 Type Conversion And Formatting

What does this practically mean for existing applications? Existing applications are likely registering their
own converters of type org.springframework.binding.convert.converters.Converter
through a sub-class of DefaultConversionService available in Spring Binding. Those converters
can continue to be registered as before. They will be adapted as Spring 3 GenericConverter types
and registered with a Spring 3 org.springframework.core.convert.ConversionService
instance. In other words existing converters will be invoked through Spring's type conversion service.

The only exception to this rule are named converters, which can be referenced from a binding element
in a view-state:

public class ApplicationConversionService extends DefaultConversionService {

 public ApplicationConversionService() {

 addDefaultConverters();

 addDefaultAliases();

 addConverter("customConverter", new CustomConverter());

 }

}

<view-state id="enterBookingDetails" model="booking">

 <binder>

 <binding property="checkinDate" required="true" converter="customConverter" />

 </binder>

</view-state>

Named converters are not supported and cannot be used with the type conversion service available
in Spring 3. Therefore such converters will not be adapted and will continue to work as before, i.e. will
not involve the Spring 3 type conversion. However, this mechanism is deprecated and applications are
encouraged to favor Spring 3 type conversion and formatting features.

Also note that the existing Spring Binding DefaultConversionService no longer registers any
default converters. Instead Web Flow now relies on the default type converters and formatters in Spring
3.

In summary the Spring 3 type conversion and formatting is now used almost exclusively in Web Flow.
Although existing applications will work without any changes, we encourage moving towards unifying
the type conversion needs of Spring MVC and Spring Web Flow parts of applications.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#format

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 27

Configuring Type Conversion and Formatting

In Spring MVC an instance of a FormattingConversionService is created automatically through
the custom MVC namespace:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:mvc="http://www.springframework.org/schema/mvc"

 xsi:schemaLocation="

 http://www.springframework.org/schema/mvc

 http://www.springframework.org/schema/mvc/spring-mvc.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <mvc:annotation-driven/>

Internally that is done with the help of FormattingConversionServiceFactoryBean, which
registers a default set of converters and formatters. You can customize the conversion service instance
used in Spring MVC through the conversion-service attribute:

<mvc:annotation-driven conversion-service="applicationConversionService" />

In Web Flow an instance of a Spring Binding DefaultConversionService is created
automatically, which does not register any converters. Instead it delegates to a
FormattingConversionService instance for all type conversion needs. By default this is not the
same FormattingConversionService instance as the one used in Spring 3. However that won't
make a practical difference until you start registering your own formatters.

The DefaultConversionService used in Web Flow can be customized through the flow-builder-
services element:

<webflow:flow-builder-services id="flowBuilderServices" conversion-service="defaultConversionService" />

Connecting the dots in order to register your own formatters for use in both Spring MVC and in Spring
Web Flow you can do the following. Create a class to register your custom formatters:

public class ApplicationConversionServiceFactoryBean extends FormattingConversionServiceFactoryBean {

 @Override

 protected void installFormatters(FormatterRegistry registry) {

 // ...

 }

}

Configure it for use in Spring MVC:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 28

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:mvc="http://www.springframework.org/schema/mvc"

 xsi:schemaLocation="

 http://www.springframework.org/schema/mvc

 http://www.springframework.org/schema/mvc/spring-mvc.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <mvc:annotation-driven conversion-service="applicationConversionService" />

 <!--

 Alternatively if you prefer annotations for DI:

 1. Add @Component to the factory bean.

 2. Add a component-scan element (from the context custom namespace) here.

 3. Remove XML bean declaration below.

 -->

 <bean id="applicationConversionService" class="somepackage.ApplicationConversionServiceFactoryBean">

Connection the Web Flow DefaultConversionService to the same "applicationConversionService"
bean used in Spring MVC:

 <webflow:flow-registry id="flowRegistry" flow-builder-services="flowBuilderServices" ... />

 <webflow:flow-builder-services id="flowBuilderServices" conversion-

service="defaultConversionService" ... />

 <bean id="defaultConversionService" class="org.springframework.binding.convert.service.DefaultConversionService">

 <constructor-arg ref="applicationConversionSevice"/>

 </bean>

Of course it is also possible to mix and match. Register new Spring 3 Formatter types through
the "applicationConversionService". Register existing Spring Binding Converter types through the
"defaultConversionService".

Working With Spring 3 Type Conversion And Formatting

An important concept to understand is the difference between type converters and formatters.

Type converters in Spring 3, provided in org.springframework.core, are for general-purpose type
conversion between any two object types. In addition to the most simple Converter type, two other
interfaces are ConverterFactory and GenericConverter.

Formatters in Spring 3, provided in org.springframework.context, have the more specialized
purpose of representing Objects as Strings. The Formatter interface extends the Printer and
Parser interfaces for converting an Object to a String and turning a String into an Object.

Web developers will find the Formatter interface most relevant because it fits the needs of web
applications for type conversion.

Note

An important point to be made is that Object-to-Object conversion is a generalization of the
more specific Object-to-String conversion. In fact in the end Formatters are reigstered as

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 29

GenericConverter types with Spring's GenericConversionService making them equal to
any other converter.

Formatting Annotations

One of the best features of the new type conversion is the ability to use annotations for a better control
over formatting in a concise manner. Annotations can be placed on model attributes and on arguments
of @Controller methods that are mapped to requests. Out of the box Spring provides two annotations
NumberFormat and DateTimeFormat but you can create your own and have them registered along
with the associated formatting logic. You can see examples of the DateTimeFormat annotation in the
Spring Travel and in the Petcare along with other samples in the Spring Samples repository.

Working With Dates

The DateTimeFormat annotation implies use of Joda Time. If that is present on the classpath the
use of this annotation is enabled automatically. By default neither Spring MVC nor Web Flow register
any other date formatters or converters. Therefore it is important for applications to register a custom
formatter to specify the default way for printing and parsing dates. The DateTimeFormat annotation
on the other hand provides more fine-grained control where it is necessary to deviate from the default.

For more information on working with Spring 3 type conversion and formatting please refer to the relevant
sections of the Spring documentation.

5.8. Suppressing binding

Use the bind attribute to suppress model binding and validation for particular view events. The following
example suppresses binding when the cancel event occurs:

<view-state id="enterBookingDetails" model="booking">

 <transition on="proceed" to="reviewBooking">

 <transition on="cancel" to="bookingCancelled" bind="false" />

</view-state>

5.9. Specifying bindings explicitly

Use the binder element to configure the exact set of model bindings usable by the view. This is
particularly useful in a Spring MVC environment for restricting the set of "allowed fields" per view.

<view-state id="enterBookingDetails" model="booking">

 <binder>

 <binding property="creditCard" />

 <binding property="creditCardName" />

 <binding property="creditCardExpiryMonth" />

 <binding property="creditCardExpiryYear" />

 </binder>

 <transition on="proceed" to="reviewBooking" />

 <transition on="cancel" to="cancel" bind="false" />

</view-state>

If the binder element is not specified, all public properties of the model are eligible for binding by the
view. With the binder element specified, only the explicitly configured bindings are allowed.

https://src.springframework.org/svn/spring-samples/travel
https://src.springframework.org/svn/spring-samples/petcare
https://src.springframework.org/svn/spring-samples
http://joda-time.sourceforge.net/
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/index.html

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 30

Each binding may also apply a converter to format the model property value for display in a custom
manner. If no converter is specified, the default converter for the model property's type will be used.

<view-state id="enterBookingDetails" model="booking">

 <binder>

 <binding property="checkinDate" converter="shortDate" />

 <binding property="checkoutDate" converter="shortDate" />

 <binding property="creditCard" />

 <binding property="creditCardName" />

 <binding property="creditCardExpiryMonth" />

 <binding property="creditCardExpiryYear" />

 </binder>

 <transition on="proceed" to="reviewBooking" />

 <transition on="cancel" to="cancel" bind="false" />

</view-state>

In the example above, the shortDate converter is bound to the checkinDate and checkoutDate
properties. Custom converters may be registered with the application's ConversionService.

Each binding may also apply a required check that will generate a validation error if the user provided
value is null on form postback:

<view-state id="enterBookingDetails" model="booking">

 <binder>

 <binding property="checkinDate" converter="shortDate" required="true" />

 <binding property="checkoutDate" converter="shortDate" required="true" />

 <binding property="creditCard" required="true" />

 <binding property="creditCardName" required="true" />

 <binding property="creditCardExpiryMonth" required="true" />

 <binding property="creditCardExpiryYear" required="true" />

 </binder>

 <transition on="proceed" to="reviewBooking">

 <transition on="cancel" to="bookingCancelled" bind="false" />

</view-state>

In the example above, all of the bindings are required. If one or more blank input values are bound,
validation errors will be generated and the view will re-render with those errors.

5.10. Validating a model

Model validation is driven by constraints specified against a model object. Web Flow supports enforcing
such constraints programatically as well as declaratively with JSR-303 Bean Validation annotations.

JSR-303 Bean Validation

Web Flow provides built-in support for the JSR-303 Bean Validation API building on equivalent support
available in Spring MVC. To enable JSR-303 validation configure the flow-builder-services with Spring
MVC's LocalValidatorFactoryBean:

<webflow:flow-registry flow-builder-services="flowBuilderServices" />

<webflow:flow-builder-services id="flowBuilderServices" validator="validator" />

<bean id="validator" class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean" />

With the above in place, the configured validator will be applied to all model attributes after data binding.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 31

Note that JSR-303 bean validation and validation by convention (explained in the next section) are not
mutually exclusive. In other words Web Flow will apply all available validation mechanisms.

Partial Validation

JSR-303 Bean Validation supports partial validation through validation groups. For example:

@NotNull

@Size(min = 2, max = 30, groups = State1.class)

private String name;

In a flow definition you can specify validation hints on a view state or on a transition and those will be
resolved to validation groups. For example:

<view-state id="state1" model="myModel" validation-hints="'group1,group2'">

The validation-hints attribute is an expression that in the above example resolves to a comma-delimited
String consisting of the hints "group1" and "group2". A ValidationHintResolver is used to resolve
these hints. The BeanValidationHintResolver used by default tries to resolve these strings to
Class-based bean validation groups. To do that it looks for matching inner types in the model or its
parent.

For example given org.example.MyModel with inner types Group1 and Group2 it is sufficient to
supply the simple type names, i.e. "group1" and "group2". You can also provide fully qualified type
names.

A hint with the value "default" has a special meaning and is translated to the default validation group in
Bean Validation javax.validation.groups.Default.

A custom ValidationHintResolver can be configured if necessary through the
validationHintResolver property of the flow-builder-services element:

<webflow:flow-registry flow-builder-services="flowBuilderServices" />

<webflow:flow-builder-services id="flowBuilderServices" validator=".." validation-hint-resolver=".." />

Programmatic validation

There are two ways to perform model validation programatically. The first is to implement validation
logic in your model object. The second is to implement an external Validator. Both ways provide you
with a ValidationContext to record error messages and access information about the current user.

Implementing a model validate method

Defining validation logic in your model object is the simplest way to validate its state. Once such logic
is structured according to Web Flow conventions, Web Flow will automatically invoke that logic during
the view-state postback lifecycle. Web Flow conventions have you structure model validation logic by
view-state, allowing you to easily validate the subset of model properties that are editable on that view.
To do this, simply create a public method with the name validate${state}, where ${state} is the
id of your view-state where you want validation to run. For example:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 32

public class Booking {

 private Date checkinDate;

 private Date checkoutDate;

 ...

 public void validateEnterBookingDetails(ValidationContext context) {

 MessageContext messages = context.getMessageContext();

 if (checkinDate.before(today())) {

 messages.addMessage(new MessageBuilder().error().source("checkinDate").

 defaultText("Check in date must be a future date").build());

 } else if (!checkinDate.before(checkoutDate)) {

 messages.addMessage(new MessageBuilder().error().source("checkoutDate").

 defaultText("Check out date must be later than check in date").build());

 }

 }

}

In the example above, when a transition is triggered in a enterBookingDetails

view-state that is editing a Booking model, Web Flow will invoke the
validateEnterBookingDetails(ValidationContext) method automatically unless validation
has been suppressed for that transition. An example of such a view-state is shown below:

<view-state id="enterBookingDetails" model="booking">

 <transition on="proceed" to="reviewBooking">

</view-state>

Any number of validation methods are defined. Generally, a flow edits a model over a series of views.
In that case, a validate method would be defined for each view-state where validation needs to run.

Implementing a Validator

The second way is to define a separate object, called a Validator, which validates your model object.
To do this, first create a class whose name has the pattern ${model}Validator, where ${model} is the
capitialized form of the model expression, such as booking. Then define a public method with the name
validate${state}, where ${state} is the id of your view-state, such as enterBookingDetails.
The class should then be deployed as a Spring bean. Any number of validation methods can be defined.
For example:

@Component

public class BookingValidator {

 public void validateEnterBookingDetails(Booking booking, ValidationContext context) {

 MessageContext messages = context.getMessageContext();

 if (booking.getCheckinDate().before(today())) {

 messages.addMessage(new MessageBuilder().error().source("checkinDate").

 defaultText("Check in date must be a future date").build());

 } else if (!booking.getCheckinDate().before(booking.getCheckoutDate())) {

 messages.addMessage(new MessageBuilder().error().source("checkoutDate").

 defaultText("Check out date must be later than check in date").build());

 }

 }

}

In the example above, when a transition is triggered in a enterBookingDetails view-state that is
editing a Booking model, Web Flow will invoke the validateEnterBookingDetails(Booking,
ValidationContext) method automatically unless validation has been suppressed for that transition.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 33

A Validator can also accept a Spring MVC Errors object, which is required for invoking existing Spring
Validators.

Validators must be registered as Spring beans employing the naming convention
${model}Validator to be detected and invoked automatically. In the example above, Spring
2.5 classpath-scanning would detect the @Component and automatically register it as a bean with
the name bookingValidator. Then, anytime the booking model needs to be validated, this
bookingValidator instance would be invoked for you.

Default validate method

A Validator class can also define a method called validate not associated (by convention) with any
specific view-state.

@Component

public class BookingValidator {

 public void validate(Booking booking, ValidationContext context) {

 //...

 }

}

In the above code sample the method validate will be called every time a Model of type Booking is
validated (unless validation has been suppressed for that transition). If needed the default method can
also be called in addition to an existing state-specific method. Consider the following example:

@Component

public class BookingValidator {

 public void validate(Booking booking, ValidationContext context) {

 //...

 }

 public void validateEnterBookingDetails(Booking booking, ValidationContext context) {

 //...

 }

}

In above code sample the method validateEnterBookingDetails will be called first. The default
validate method will be called next.

ValidationContext

A ValidationContext allows you to obtain a MessageContext to record messages during validation. It
also exposes information about the current user, such as the signaled userEvent and the current user's
Principal identity. This information can be used to customize validation logic based on what button or
link was activated in the UI, or who is authenticated. See the API Javadocs for ValidationContext
for more information.

5.11. Suppressing validation

Use the validate attribute to suppress model validation for particular view events:

<view-state id="chooseAmenities" model="booking">

 <transition on="proceed" to="reviewBooking">

 <transition on="back" to="enterBookingDetails" validate="false" />

</view-state>

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 34

In this example, data binding will still occur on back but validation will be suppressed.

5.12. Executing view transitions

Define one or more transition elements to handle user events that may occur on the view. A
transition may take the user to another view, or it may simply execute an action and re-render the current
view. A transition may also request the rendering of parts of a view called "fragments" when handling
an Ajax event. Finally, "global" transitions that are shared across all views may also be defined.

Implementing view transitions is illustrated in the following sections.

Transition actions

A view-state transition can execute one or more actions before executing. These actions may return an
error result to prevent the transition from exiting the current view-state. If an error result occurs, the view
will re-render and should display an appropriate message to the user.

If the transition action invokes a plain Java method, the invoked method may return false to prevent
the transition from executing. This technique can be used to handle exceptions thrown by service-layer
methods. The example below invokes an action that calls a service and handles an exceptional situation:

<transition on="submit" to="bookingConfirmed">

 <evaluate expression="bookingAction.makeBooking(booking, messageContext)" />

</transition>

public class BookingAction {

 public boolean makeBooking(Booking booking, MessageContext context) {

 try {

 bookingService.make(booking);

 return true;

 } catch (RoomNotAvailableException e) {

 context.addMessage(new MessageBuilder().error().

 .defaultText("No room is available at this hotel").build());

 return false;

 }

 }

}

Note

When there is more than one action defined on a transition, if one returns an error result the
remaining actions in the set will not be executed. If you need to ensure one transition action's result
cannot impact the execution of another, define a single transition action that invokes a method
that encapsulates all the action logic.

Global transitions

Use the flow's global-transitions element to create transitions that apply across all views. Global-
transitions are often used to handle global menu links that are part of the layout.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 35

<global-transitions>

 <transition on="login" to="login" />

 <transition on="logout" to="logout" />

</global-transitions>

Event handlers

From a view-state, transitions without targets can also be defined. Such transitions are called "event
handlers":

<transition on="event">

 <!-- Handle event -->

</transition>

These event handlers do not change the state of the flow. They simply execute their actions and re-
render the current view or one or more fragments of the current view.

Rendering fragments

Use the render element within a transition to request partial re-rendering of the current view after
handling the event:

<transition on="next">

 <evaluate expression="searchCriteria.nextPage()" />

 <render fragments="searchResultsFragment" />

</transition>

The fragments attribute should reference the id(s) of the view element(s) you wish to re-render. Specify
multiple elements to re-render by separating them with a comma delimiter.

Such partial rendering is often used with events signaled by Ajax to update a specific zone of the view.

5.13. Working with messages

Spring Web Flow's MessageContext is an API for recording messages during the course of flow
executions. Plain text messages can be added to the context, as well as internationalized messages
resolved by a Spring MessageSource. Messages are renderable by views and automatically survive
flow execution redirects. Three distinct message severities are provided: info, warning, and error.
In addition, a convenient MessageBuilder exists for fluently constructing messages.

Adding plain text messages

MessageContext context = ...

MessageBuilder builder = new MessageBuilder();

context.addMessage(builder.error().source("checkinDate")

 .defaultText("Check in date must be a future date").build());

context.addMessage(builder.warn().source("smoking")

 .defaultText("Smoking is bad for your health").build());

context.addMessage(builder.info()

 .defaultText("We have processed your reservation - thank you and enjoy your stay").build());

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 36

Adding internationalized messages

MessageContext context = ...

MessageBuilder builder = new MessageBuilder();

context.addMessage(builder.error().source("checkinDate").code("checkinDate.notFuture").build());

context.addMessage(builder.warn().source("smoking").code("notHealthy")

 .resolvableArg("smoking").build());

context.addMessage(builder.info().code("reservationConfirmation").build());

Using message bundles

Internationalized messages are defined in message bundles accessed by a Spring MessageSource.
To create a flow-specific message bundle, simply define messages.properties file(s) in your flow's
directory. Create a default messages.properties file and a .properties file for each additional
Locale you need to support.

#messages.properties

checkinDate=Check in date must be a future date

notHealthy={0} is bad for your health

reservationConfirmation=We have processed your reservation - thank you and enjoy your stay

From within a view or a flow, you may also access message resources using the resourceBundle
EL variable:

<h:outputText value="#{resourceBundle.reservationConfirmation}" />

Understanding system generated messages

There are several places where Web Flow itself will generate messages to display to the user. One
important place this occurs is during view-to-model data binding. When a binding error occurs, such as
a type conversion error, Web Flow will map that error to a message retrieved from your resource bundle
automatically. To lookup the message to display, Web Flow tries resource keys that contain the binding
error code and target property name.

As an example, consider a binding to a checkinDate property of a Booking object. Suppose the user
typed in a alphabetic string. In this case, a type conversion error will be raised. Web Flow will map the
'typeMismatch' error code to a message by first querying your resource bundle for a message with the
following key:

booking.checkinDate.typeMismatch

The first part of the key is the model class's short name. The second part of the key is the property
name. The third part is the error code. This allows for the lookup of a unique message to display to the
user when a binding fails on a model property. Such a message might say:

booking.checkinDate.typeMismatch=The check in date must be in the format yyyy-mm-dd.

If no such resource key can be found of that form, a more generic key will be tried. This key is simply
the error code. The field name of the property is provided as a message argument.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 37

typeMismatch=The {0} field is of the wrong type.

5.14. Displaying popups

Use the popup attribute to render a view in a modal popup dialog:

<view-state id="changeSearchCriteria" view="enterSearchCriteria.xhtml" popup="true">

When using Web Flow with the Spring Javascript, no client side code is necessary for the popup to
display. Web Flow will send a response to the client requesting a redirect to the view from a popup,
and the client will honor the request.

5.15. View backtracking

By default, when you exit a view state and transition to a new view state, you can go back to the previous
state using the browser back button. These view state history policies are configurable on a per-transition
basis by using the history attribute.

Discarding history

Set the history attribute to discard to prevent backtracking to a view:

<transition on="cancel" to="bookingCancelled" history="discard">

Invalidating history

Set the history attribute to invalidate to prevent backtracking to a view as well all previously displayed
views:

<transition on="confirm" to="bookingConfirmed" history="invalidate">

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 38

6. Executing actions

6.1. Introduction

This chapter shows you how to use the action-state element to control the execution of an action
at a point within a flow. It will also show how to use the decision-state element to make a flow
routing decision. Finally, several examples of invoking actions from the various points possible within
a flow will be discussed.

6.2. Defining action states

Use the action-state element when you wish to invoke an action, then transition to another state
based on the action's outcome:

<action-state id="moreAnswersNeeded">

 <evaluate expression="interview.moreAnswersNeeded()" />

 <transition on="yes" to="answerQuestions" />

 <transition on="no" to="finish" />

</action-state>

The full example below illustrates a interview flow that uses the action-state above to determine if more
answers are needed to complete the interview:

<flow xmlns="http://www.springframework.org/schema/webflow"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/webflow

 http://www.springframework.org/schema/webflow/spring-webflow.xsd">

 <on-start>

 <evaluate expression="interviewFactory.createInterview()" result="flowScope.interview" />

 </on-start>

 <view-state id="answerQuestions" model="questionSet">

 <on-entry>

 <evaluate expression="interview.getNextQuestionSet()" result="viewScope.questionSet" />

 </on-entry>

 <transition on="submitAnswers" to="moreAnswersNeeded">

 <evaluate expression="interview.recordAnswers(questionSet)" />

 </transition>

 </view-state>

 <action-state id="moreAnswersNeeded">

 <evaluate expression="interview.moreAnswersNeeded()" />

 <transition on="yes" to="answerQuestions" />

 <transition on="no" to="finish" />

 </action-state>

 <end-state id="finish" />

</flow>

After the execution of each action, the action-state checks the result to see if matches a declared
transition to another state. That means if more than one action is configured they are executed in an
ordered chain until one returns a result event that matches a state transition out of the action-state while
the rest are ignored. This is a form of the Chain of Responsibility (CoR) pattern.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 39

The result of an action's execution is typically the criteria for a transition out of this state. Additional
information in the current RequestContext may also be tested as part of custom transitional criteria
allowing for sophisticated transition expressions that reason on contextual state.

Note also that an action-state just like any other state can have one more on-entry actions that are
executed as a list from start to end.

6.3. Defining decision states

Use the decision-state element as an alternative to the action-state to make a routing decision
using a convenient if/else syntax. The example below shows the moreAnswersNeeded state above
now implemented as a decision state instead of an action-state:

<decision-state id="moreAnswersNeeded">

 <if test="interview.moreAnswersNeeded()" then="answerQuestions" else="finish" />

</decision-state>

6.4. Action outcome event mappings

Actions often invoke methods on plain Java objects. When called from action-states and decision-states,
these method return values can be used to drive state transitions. Since transitions are triggered by
events, a method return value must first be mapped to an Event object. The following table describes
how common return value types are mapped to Event objects:

Table 6.1. Action method return value to event id mappings

Method return type Mapped Event identifier expression

java.lang.String the String value

java.lang.Boolean yes (for true), no (for false)

java.lang.Enum the Enum name

any other type success

This is illustrated in the example action state below, which invokes a method that returns a boolean
value:

<action-state id="moreAnswersNeeded">

 <evaluate expression="interview.moreAnswersNeeded()" />

 <transition on="yes" to="answerQuestions" />

 <transition on="no" to="finish" />

</action-state>

6.5. Action implementations

While writing action code as POJO logic is the most common, there are several other action
implementation options. Sometimes you need to write action code that needs access to the flow context.
You can always invoke a POJO and pass it the flowRequestContext as an EL variable. Alternatively,
you may implement the Action interface or extend from the MultiAction base class. These options
provide stronger type safety when you have a natural coupling between your action code and Spring
Web Flow APIs. Examples of each of these approaches are shown below.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 40

Invoking a POJO action

<evaluate expression="pojoAction.method(flowRequestContext)" />

public class PojoAction {

 public String method(RequestContext context) {

 ...

 }

}

Invoking a custom Action implementation

<evaluate expression="customAction" />

public class CustomAction implements Action {

 public Event execute(RequestContext context) {

 ...

 }

}

Invoking a MultiAction implementation

<evaluate expression="multiAction.actionMethod1" />

public class CustomMultiAction extends MultiAction {

 public Event actionMethod1(RequestContext context) {

 ...

 }

 public Event actionMethod2(RequestContext context) {

 ...

 }

 ...

}

6.6. Action exceptions

Actions often invoke services that encapsulate complex business logic. These services may throw
business exceptions that the action code should handle.

Handling a business exception with a POJO action

The following example invokes an action that catches a business exception, adds a error message to
the context, and returns a result event identifier. The result is treated as a flow event which the calling
flow can then respond to.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 41

<evaluate expression="bookingAction.makeBooking(booking, flowRequestContext)" />

public class BookingAction {

public String makeBooking(Booking booking, RequestContext context) {

 try {

 BookingConfirmation confirmation = bookingService.make(booking);

 context.getFlowScope().put("confirmation", confirmation);

 return "success";

 } catch (RoomNotAvailableException e) {

 context.addMessage(new MessageBuilder().error().

 .defaultText("No room is available at this hotel").build());

 return "error";

 }

}

}

Handling a business exception with a MultiAction

The following example is functionally equivlant to the last, but implemented as a MultiAction instead
of a POJO action. The MultiAction requires its action methods to be of the signature Event
${methodName}(RequestContext), providing stronger type safety, while a POJO action allows for
more freedom.

<evaluate expression="bookingAction.makeBooking" />

public class BookingAction extends MultiAction {

public Event makeBooking(RequestContext context) {

 try {

 Booking booking = (Booking) context.getFlowScope().get("booking");

 BookingConfirmation confirmation = bookingService.make(booking);

 context.getFlowScope().put("confirmation", confirmation);

 return success();

 } catch (RoomNotAvailableException e) {

 context.getMessageContext().addMessage(new MessageBuilder().error().

 .defaultText("No room is available at this hotel").build());

 return error();

 }

}

}

Using an exception-handler element

In general it is recommended to catch exceptions in actions and return result events that drive
standard transitions, it is also possible to add an exception-handler sub-element to any state
type with a bean attribute referencing a bean of type FlowExecutionExceptionHandler. This is
an advanced option that if used incorrectly can leave the flow execution in an invalid state. Consider
the build-in TransitionExecutingFlowExecutionExceptionHandler as example of a correct
implementation.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 42

6.7. Other Action execution examples

on-start

The following example shows an action that creates a new Booking object by invoking a method on
a service:

<flow xmlns="http://www.springframework.org/schema/webflow"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/webflow

 http://www.springframework.org/schema/webflow/spring-webflow.xsd">

 <input name="hotelId" />

 <on-start>

 <evaluate expression="bookingService.createBooking(hotelId, currentUser.name)"

 result="flowScope.booking" />

 </on-start>

</flow>

on-entry

The following example shows a state entry action that sets the special fragments variable that causes
the view-state to render a partial fragment of its view:

<view-state id="changeSearchCriteria" view="enterSearchCriteria.xhtml" popup="true">

 <on-entry>

 <render fragments="hotelSearchForm" />

 </on-entry>

</view-state>

on-exit

The following example shows a state exit action that releases a lock on a record being edited:

<view-state id="editOrder">

 <on-entry>

 <evaluate expression="orderService.selectForUpdate(orderId, currentUser)"

 result="viewScope.order" />

 </on-entry>

 <transition on="save" to="finish">

 <evaluate expression="orderService.update(order, currentUser)" />

 </transition>

 <on-exit>

 <evaluate expression="orderService.releaseLock(order, currentUser)" />

 </on-exit>

</view-state>

on-end

The following example shows the equivalent object locking behavior using flow start and end actions:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 43

<flow xmlns="http://www.springframework.org/schema/webflow"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/webflow

 http://www.springframework.org/schema/webflow/spring-webflow.xsd">

 <input name="orderId" />

 <on-start>

 <evaluate expression="orderService.selectForUpdate(orderId, currentUser)"

 result="flowScope.order" />

 </on-start>

 <view-state id="editOrder">

 <transition on="save" to="finish">

 <evaluate expression="orderService.update(order, currentUser)" />

 </transition>

 </view-state>

 <on-end>

 <evaluate expression="orderService.releaseLock(order, currentUser)" />

 </on-end>

</flow>

on-render

The following example shows a render action that loads a list of hotels to display before the view is
rendered:

<view-state id="reviewHotels">

 <on-render>

 <evaluate expression="bookingService.findHotels(searchCriteria)"

 result="viewScope.hotels" result-type="dataModel" />

 </on-render>

 <transition on="select" to="reviewHotel">

 <set name="flowScope.hotel" value="hotels.selectedRow" />

 </transition>

</view-state>

on-transition

The following example shows a transition action adds a subflow outcome event attribute to a collection:

<subflow-state id="addGuest" subflow="createGuest">

 <transition on="guestCreated" to="reviewBooking">

 <evaluate expression="booking.guestList.add(currentEvent.attributes.newGuest)" />

 </transition>

</subfow-state>

Named actions

The following example shows how to execute a chain of actions in an action-state. The name of each
action becomes a qualifier for the action's result event.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 44

<action-state id="doTwoThings">

 <evaluate expression="service.thingOne()">

 <attribute name="name" value="thingOne" />

 </evaluate>

 <evaluate expression="service.thingTwo()">

 <attribute name="name" value="thingTwo" />

 </evaluate>

 <transition on="thingTwo.success" to="showResults" />

</action-state>

In this example, the flow will transition to showResults when thingTwo completes successfully.

Streaming actions

Sometimes an Action needs to stream a custom response back to the client. An example might be
a flow that renders a PDF document when handling a print event. This can be achieved by having
the action stream the content then record "Response Complete" status on the ExternalContext. The
responseComplete flag tells the pausing view-state not to render the response because another object
has taken care of it.

<view-state id="reviewItinerary">

 <transition on="print">

 <evaluate expression="printBoardingPassAction" />

 </transition>

</view-state>

public class PrintBoardingPassAction extends AbstractAction {

 public Event doExecute(RequestContext context) {

 // stream PDF content here...

 // - Access HttpServletResponse by calling context.getExternalContext().getNativeResponse();

 // - Mark response complete by calling context.getExternalContext().recordResponseComplete();

 return success();

 }

}

In this example, when the print event is raised the flow will call the printBoardingPassAction. The action
will render the PDF then mark the response as complete.

Handling File Uploads

Another common task is to use Web Flow to handle multipart file uploads in combination with Spring
MVC's MultipartResolver. Once the resolver is set up correctly as described here and the
submitting HTML form is configured with enctype="multipart/form-data", you can easily handle
the file upload in a transition action.

Note

The file upload example below below is not relevant when using Web Flow with JSF. See
Section 13.8, “Handling File Uploads with JSF” for details of how to upload files using JSF.

Given a form such as:

http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 45

<form:form modelAttribute="fileUploadHandler" enctype="multipart/form-data">

 Select file: <input type="file" name="file"/>

 <input type="submit" name="_eventId_upload" value="Upload" />

</form:form>

and a backing object for handling the upload such as:

package org.springframework.webflow.samples.booking;

import org.springframework.web.multipart.MultipartFile;

public class FileUploadHandler {

 private transient MultipartFile file;

 public void processFile() {

 //Do something with the MultipartFile here

 }

 public void setFile(MultipartFile file) {

 this.file = file;

 }

}

you can process the upload using a transition action as in the following example:

<view-state id="uploadFile" model="uploadFileHandler">

 <var name="fileUploadHandler" class="org.springframework.webflow.samples.booking.FileUploadHandler" />

 <transition on="upload" to="finish" >

 <evaluate expression="fileUploadHandler.processFile()"/>

 </transition>

 <transition on="cancel" to="finish" bind="false"/>

</view-state>

The MultipartFile will be bound to the FileUploadHandler bean as part of the normal form
binding process so that it will be available to process during the execution of the transition action.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 46

7. Flow Managed Persistence

7.1. Introduction

Most applications access data in some way. Many modify data shared by multiple users and therefore
require transactional data access properties. They often transform relational data sets into domain
objects to support application processing. Web Flow offers "flow managed persistence" where a flow
can create, commit, and close a object persistence context for you. Web Flow integrates both Hibernate
and JPA object persistence technologies.

Apart from flow-managed persistence, there is the pattern of fully encapsulating PersistenceContext
management within the service layer of your application. In that case, the web layer does not get involved
with persistence, instead it works entirely with detached objects that are passed to and returned by
your service layer. This chapter will focus on the flow-managed persistence, exploring how and when
to use this feature.

7.2. FlowScoped PersistenceContext

This pattern creates a PersistenceContext in flowScope on flow startup, uses that context for data
access during the course of flow execution, and commits changes made to persistent entities at the
end. This pattern provides isolation of intermediate edits by only committing changes to the database at
the end of flow execution. This pattern is often used in conjunction with an optimistic locking strategy to
protect the integrity of data modified in parallel by multiple users. To support saving and restarting the
progress of a flow over an extended period of time, a durable store for flow state must be used. If a save
and restart capability is not required, standard HTTP session-based storage of flow state is sufficient. In
that case, session expiration or termination before commit could potentially result in changes being lost.

To use the FlowScoped PersistenceContext pattern, first mark your flow as a persistence-context:

<?xml version="1.0" encoding="UTF-8"?>

<flow xmlns="http://www.springframework.org/schema/webflow"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/webflow

 http://www.springframework.org/schema/webflow/spring-webflow.xsd">

 <persistence-context />

</flow>

Then configure the correct FlowExecutionListener to apply this pattern to your flow. If
using Hibernate, register the HibernateFlowExecutionListener. If using JPA, register the
JpaFlowExecutionListener.

<webflow:flow-executor id="flowExecutor" flow-registry="flowRegistry">

 <webflow:flow-execution-listeners>

 <webflow:listener ref="jpaFlowExecutionListener" />

 </webflow:flow-execution-listeners>

</webflow:flow-executor>

<bean id="jpaFlowExecutionListener"

 class="org.springframework.webflow.persistence.JpaFlowExecutionListener">

 <constructor-arg ref="entityManagerFactory" />

 <constructor-arg ref="transactionManager" />

</bean>

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 47

To trigger a commit at the end, annotate your end-state with the commit attribute:

<end-state id="bookingConfirmed" commit="true" />

That is it. When your flow starts, the listener will handle allocating a new EntityManager in
flowScope. Reference this EntityManager at anytime from within your flow by using the special
persistenceContext variable. In addition, any data access that occurs using a Spring managed data
access object will use this EntityManager automatically. Such data access operations should always
execute non transactionally or in read-only transactions to maintain isolation of intermediate edits.

7.3. Flow Managed Persistence And Sub-Flows

A flow managed PersistenceContext is automatically extended (propagated) to subflows assuming
the subflow also has the <perstistence-context/> variable. When a subflow re-uses the
PersistenceContext started by its parent it ignores commit flags when an end state is reached
thereby deferring the final decision (to commit or not) to its parent.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 48

8. Securing Flows

8.1. Introduction

Security is an important concept for any application. End users should not be able to access any portion
of a site simply by guessing the URL. Areas of a site that are sensitive must ensure that only authorized
requests are processed. Spring Security is a proven security platform that can integrate with your
application at multiple levels. This section will focus on securing flow execution.

8.2. How do I secure a flow?

Securing flow execution is a three step process:

• Configure Spring Security with authentication and authorization rules

• Annotate the flow definition with the secured element to define the security rules

• Add the SecurityFlowExecutionListener to process the security rules.

Each of these steps must be completed or else flow security rules will not be applied.

8.3. The secured element

The secured element designates that its containing element should apply the authorization check before
fully entering. This may not occur more then once per stage of the flow execution that is secured.

Three phases of flow execution can be secured: flows, states and transitions. In each case the syntax
for the secured element is identical. The secured element is located inside the element it is securing.
For example, to secure a state the secured element occurs directly inside that state:

<view-state id="secured-view">

 <secured attributes="ROLE_USER" />

 ...

</view-state>

Security attributes

The attributes attribute is a comma separated list of Spring Security authorization attributes. Often,
these are specific security roles. The attributes are compared against the user's granted attributes by
a Spring Security access decision manager.

<secured attributes="ROLE_USER" />

By default, a role based access decision manager is used to determine if the user is allowed access.
This will need to be overridden if your application is not using authorization roles.

Matching type

There are two types of matching available: any and all. Any, allows access if at least one of the
required security attributes is granted to the user. All, allows access only if each of the required security
attributes are granted to the user.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 49

<secured attributes="ROLE_USER, ROLE_ANONYMOUS" match="any" />

This attribute is optional. If not defined, the default value is any.

The match attribute will only be respected if the default access decision manager is used.

8.4. The SecurityFlowExecutionListener

Defining security rules in the flow by themselves will not protect the flow execution. A
SecurityFlowExecutionListener must also be defined in the webflow configuration and applied
to the flow executor.

<webflow:flow-executor id="flowExecutor" flow-registry="flowRegistry">

 <webflow:flow-execution-listeners>

 <webflow:listener ref="securityFlowExecutionListener" />

 </webflow:flow-execution-listeners>

</webflow:flow-executor>

<bean id="securityFlowExecutionListener"

 class="org.springframework.webflow.security.SecurityFlowExecutionListener" />

If access is denied to a portion of the application an AccessDeniedException will be thrown. This
exception will later be caught by Spring Security and used to prompt the user to authenticate. It is
important that this exception be allowed to travel up the execution stack uninhibited, otherwise the end
user may not be prompted to authenticate.

Custom Access Decision Managers

If your application is using authorities that are not role based, you will need to configure a
custom AccessDecisionManager. You can override the default decision manager by setting the
accessDecisionManager property on the security listener. Please consult the Spring Security
reference documentation to learn more about decision managers.

<bean id="securityFlowExecutionListener"

 class="org.springframework.webflow.security.SecurityFlowExecutionListener">

 <property name="accessDecisionManager" ref="myCustomAccessDecisionManager" />

</bean>

8.5. Configuring Spring Security

Spring Security has robust configuration options available. As every application and environment has
its own security requirements, the Spring Security reference documentation is the best place to learn
the available options.

Both the booking-faces and booking-mvc sample applications are configured to use Spring
Security. Configuration is needed at both the Spring and web.xml levels.

Spring configuration

The Spring configuration defines http specifics (such as protected URLs and login/logout mechanics)
and the authentication-provider. For the sample applications, a local authentication provider is
configured.

http://static.springframework.org/spring-security/site/reference.html
http://static.springframework.org/spring-security/site/reference.html
http://static.springframework.org/spring-security/site/reference.html

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 50

<security:http auto-config="true">

 <security:form-login login-page="/spring/login"

 login-processing-url="/spring/loginProcess"

 default-target-url="/spring/main"

 authentication-failure-url="/spring/login?login_error=1" />

 <security:logout logout-url="/spring/logout" logout-success-url="/spring/logout-success" />

</security:http>

<security:authentication-provider>

 <security:password-encoder hash="md5" />

 <security:user-service>

 <security:user name="keith" password="417c7382b16c395bc25b5da1398cf076"

 authorities="ROLE_USER,ROLE_SUPERVISOR" />

 <security:user name="erwin" password="12430911a8af075c6f41c6976af22b09"

 authorities="ROLE_USER,ROLE_SUPERVISOR" />

 <security:user name="jeremy" password="57c6cbff0d421449be820763f03139eb"

 authorities="ROLE_USER" />

 <security:user name="scott" password="942f2339bf50796de535a384f0d1af3e"

 authorities="ROLE_USER" />

 </security:user-service>

</security:authentication-provider>

web.xml Configuration

In the web.xml file, a filter is defined to intercept all requests. This filter will listen for login/logout
requests and process them accordingly. It will also catch AccesDeniedExceptions and redirect the
user to the login page.

<filter>

 <filter-name>springSecurityFilterChain</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

 <filter-name>springSecurityFilterChain</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 51

9. Flow Inheritance

9.1. Introduction

Flow inheritance allows one flow to inherit the configuration of another flow. Inheritance can occur at
both the flow and state levels. A common use case is for a parent flow to define global transitions and
exception handlers, then each child flow can inherit those settings.

In order for a parent flow to be found, it must be added to the flow-registry just like any other flow.

9.2. Is flow inheritance like Java inheritance?

Flow inheritance is similar to Java inheritance in that elements defined in a parent are exposed via the
child, however, there are key differences.

A child flow cannot override an element from a parent flow. Similar elements between the parent and
child flows will be merged. Unique elements in the parent flow will be added to the child.

A child flow can inherit from multiple parent flows. Java inheritance is limited to a single class.

9.3. Types of Flow Inheritance

Flow level inheritance

Flow level inheritance is defined by the parent attribute on the flow element. The attribute contains
a comma separated list of flow identifiers to inherit from. The child flow will inherit from each parent in
the order it is listed adding elements and content to the resulting flow. The resulting flow from the first
merge will be considered the child in the second merge, and so on.

<flow parent="common-transitions, common-states">

State level inheritance

State level inheritance is similar to flow level inheritance, except only one state inherits from the parent,
instead of the entire flow.

Unlike flow inheritance, only a single parent is allowed. Additionally, the identifier of the flow state to
inherit from must also be defined. The identifiers for the flow and the state within that flow are separated
by a #.

The parent and child states must be of the same type. For instance a view-state cannot inherit from an
end-state, only another view-state.

<view-state id="child-state" parent="parent-flow#parent-view-state">

Note

The intent for flow-level inheritance is to define common states to be added to and shared among
multiple flow definitions while the intent for state-level inheritance is to extend from and merge with

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 52

a single parent state. Flow-level inheritance is a good fit for composition and multiple inheritance
but at the state level you can still only inherit from a single parent state.

9.4. Abstract flows

Often parent flows are not designed to be executed directly. In order to protect these flows from running,
they can be marked as abstract. If an abstract flow attempts to run, a FlowBuilderException
will be thrown.

<flow abstract="true">

9.5. Inheritance Algorithm

When a child flow inherits from it's parent, essentially what happens is that the parent and child are
merged together to create a new flow. There are rules for every element in the Web Flow definition
language that govern how that particular element is merged.

There are two types of elements: mergeable and non-mergeable. Mergeable elements will always
attempt to merge together if the elements are similar. Non-mergeable elements in a parent or child
flow will always be contained in the resulting flow intact. They will not be modified as part of the merge
process.

Note

Paths to external resources in the parent flow should be absolute. Relative paths will break when
the two flows are merged unless the parent and child flow are in the same directory. Once merged,
all relative paths in the parent flow will become relative to the child flow.

Mergeable Elements

If the elements are of the same type and their keyed attribute are identical, the content of the parent
element will be merged with the child element. The merge algorithm will continue to merge each sub-
element of the merging parent and child. Otherwise the parent element is added as a new element to
the child.

In most cases, elements from a parent flow that are added will be added after elements in the child flow.
Exceptions to this rule include action elements (evaluate, render and set) which will be added at the
beginning. This allows for the results of parent actions to be used by child actions.

Mergeable elements are:

• action-state: id

• attribute: name

• decision-state: id

• end-state: id

• flow: always merges

• if: test

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 53

• on-end: always merges

• on-entry: always merges

• on-exit: always merges

• on-render: always merges

• on-start: always merges

• input: name

• output: name

• secured: attributes

• subflow-state: id

• transition: on and on-exception

• view-state: id

Non-mergeable Elements

Non-mergeable elements are:

• bean-import

• evaluate

• exception-handler

• persistence-context

• render

• set

• var

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 54

10. System Setup

10.1. Introduction

This chapter shows you how to setup the Web Flow system for use in any web environment.

10.2. Java Config and XML Namespace

Web Flow provides dedicated configuration support for both Java and XML-based configuration.

To get started with XML based configuration declare the webflow config XML namespace:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:webflow="http://www.springframework.org/schema/webflow-config"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/webflow-config

 http://www.springframework.org/schema/webflow-config/spring-webflow-config.xsd">

 <!-- Setup Web Flow here -->

</beans>

To get started with Java configuration extend AbstractFlowConfiguration in an
@Configuration class:

import org.springframework.context.annotation.Configuration;

import org.springframework.webflow.config.AbstractFlowConfiguration;

@Configuration

public class WebFlowConfig extends AbstractFlowConfiguration {

}

10.3. Basic system configuration

The next section shows the minimal configuration required to set up the Web Flow system in your
application.

FlowRegistry

Register your flows in a FlowRegistry in XML:

<webflow:flow-registry id="flowRegistry">

 <webflow:flow-location path="/WEB-INF/flows/booking/booking.xml" />

</webflow:flow-registry>

Register your flows in a FlowRegistry in Java:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 55

@Bean

public FlowDefinitionRegistry flowRegistry() {

 return getFlowDefinitionRegistryBuilder()

 .addFlowLocation("/WEB-INF/flows/booking/booking.xml")

 .build();

}

FlowExecutor

Deploy a FlowExecutor, the central service for executing flows in XML:

<webflow:flow-executor id="flowExecutor" />

Deploy a FlowExecutor, the central service for executing flows in Java:

@Bean

public FlowExecutor flowExecutor() {

 return getFlowExecutorBuilder(flowRegistry()).build();

}

See the Spring MVC and Spring Faces sections of this guide on how to integrate the Web Flow system
with the MVC and JSF environment, respectively.

10.4. flow-registry options

This section explores flow-registry configuration options.

Specifying flow locations

Use the location element to specify paths to flow definitions to register. By default, flows will be
assigned registry identifiers equal to their filenames minus the file extension, unless a registry bath path
is defined.

In XML:

<webflow:flow-location path="/WEB-INF/flows/booking/booking.xml" />

In Java:

return getFlowDefinitionRegistryBuilder()

 .addFlowLocation("/WEB-INF/flows/booking/booking.xml")

 .build();

Assigning custom flow identifiers

Specify an id to assign a custom registry identifier to a flow in XML:

<webflow:flow-location path="/WEB-INF/flows/booking/booking.xml" id="bookHotel" />

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 56

Specify an id to assign a custom registry identifier to a flow in Java:

return getFlowDefinitionRegistryBuilder()

 .addFlowLocation("/WEB-INF/flows/booking/booking.xml", "bookHotel")

 .build();

Assigning flow meta-attributes

Use the flow-definition-attributes element to assign custom meta-attributes to a registered
flow.

In XML:

<webflow:flow-location path="/WEB-INF/flows/booking/booking.xml">

 <webflow:flow-definition-attributes>

 <webflow:attribute name="caption" value="Books a hotel" />

 </webflow:flow-definition-attributes>

</webflow:flow-location>

In Java:

Map<String, Object> attrs = ... ;

return getFlowDefinitionRegistryBuilder()

 .addFlowLocation("/WEB-INF/flows/booking/booking.xml", null, attrs)

 .build();

Registering flows using a location pattern

Use the flow-location-patterns element to register flows that match a specific resource location
pattern:

In XML:

<webflow:flow-location-pattern value="/WEB-INF/flows/**/*-flow.xml" />

In Java:

return getFlowDefinitionRegistryBuilder()

 .addFlowLocationPattern("/WEB-INF/flows/**/*-flow.xml")

 .build();

Flow location base path

Use the base-path attribute to define a base location for all flows in the application. All flow locations
are then relative to the base path. The base path can be a resource path such as '/WEB-INF' or a
location on the classpath like 'classpath:org/springframework/webflow/samples'.

In XML:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 57

<webflow:flow-registry id="flowRegistry" base-path="/WEB-INF">

 <webflow:flow-location path="/hotels/booking/booking.xml" />

</webflow:flow-registry>

In Java:

return getFlowDefinitionRegistryBuilder()

 .setBasePath("/WEB-INF")

 .addFlowLocationPattern("/hotels/booking/booking.xml")

 .build();

With a base path defined, the algorithm that assigns flow identifiers changes slightly. Flows will now be
assigned registry identifiers equal to the the path segment between their base path and file name. For
example, if a flow definition is located at '/WEB-INF/hotels/booking/booking-flow.xml' and the base path
is '/WEB-INF' the remaining path to this flow is 'hotels/booking' which becomes the flow id.

Directory per flow definition

Recall it is a best practice to package each flow definition in a unique directory. This improves
modularity, allowing dependent resources to be packaged with the flow definition. It also prevents
two flows from having the same identifiers when using the convention.

If no base path is not specified or if the flow definition is directly on the base path, flow id assignment
from the filename (minus the extension) is used. For example, if a flow definition file is 'booking.xml',
the flow identifier is simply 'booking'.

Location patterns are particularly powerful when combined with a registry base path. Instead of the flow
identifiers becoming '*-flow', they will be based on the directory path. For example in XML:

<webflow:flow-registry id="flowRegistry" base-path="/WEB-INF">

 <webflow:flow-location-pattern value="/**/*-flow.xml" />

</webflow:flow-registry>

In Java:

return getFlowDefinitionRegistryBuilder()

 .setBasePath("/WEB-INF")

 .addFlowLocationPattern("/**/*-flow.xml")

 .build();

In the above example, suppose you had flows located in /user/login, /user/registration, /
hotels/booking, and /flights/booking directories within WEB-INF, you'd end up with flow ids
of user/login, user/registration, hotels/booking, and flights/booking, respectively.

Configuring FlowRegistry hierarchies

Use the parent attribute to link two flow registries together in a hierarchy. When the child registry is
queried, if it cannot find the requested flow it will delegate to its parent.

In XML:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 58

<!-- my-system-config.xml -->

<webflow:flow-registry id="flowRegistry" parent="sharedFlowRegistry">

 <webflow:flow-location path="/WEB-INF/flows/booking/booking.xml" />

</webflow:flow-registry>

<!-- shared-config.xml -->

<webflow:flow-registry id="sharedFlowRegistry">

 <!-- Global flows shared by several applications -->

</webflow:flow-registry>

In Java:

@Configuration

public class WebFlowConfig extends AbstractFlowConfiguration {

 @Autowired

 private SharedConfig sharedConfig;

 @Bean

 public FlowDefinitionRegistry flowRegistry() {

 return getFlowDefinitionRegistryBuilder()

 .setParent(this.sharedConfig.sharedFlowRegistry())

 .addFlowLocation("/WEB-INF/flows/booking/booking.xml")

 .build();

 }

}

@Configuration

public class SharedConfig extends AbstractFlowConfiguration {

 @Bean

 public FlowDefinitionRegistry sharedFlowRegistry() {

 return getFlowDefinitionRegistryBuilder()

 .addFlowLocation("/WEB-INF/flows/shared.xml")

 .build();

 }

}

Configuring custom FlowBuilder services

Use the flow-builder-services attribute to customize the services and settings used to build flows
in a flow-registry. If no flow-builder-services tag is specified, the default service implementations are
used. When the tag is defined, you only need to reference the services you want to customize.

In XML:

<webflow:flow-registry id="flowRegistry" flow-builder-services="flowBuilderServices">

 <webflow:flow-location path="/WEB-INF/flows/booking/booking.xml" />

</webflow:flow-registry>

<webflow:flow-builder-services id="flowBuilderServices" />

In Java:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 59

@Bean

public FlowDefinitionRegistry flowRegistry() {

 return getFlowDefinitionRegistryBuilder(flowBuilderServices())

 .addFlowLocation("/WEB-INF/flows/booking/booking.xml")

 .build();

}

@Bean

public FlowBuilderServices flowBuilderServices() {

 return getFlowBuilderServicesBuilder().build();

}

The configurable services are the conversion-service, expression-parser, and view-
factory-creator. These services are configured by referencing custom beans you define.

For example in XML:

<webflow:flow-builder-services id="flowBuilderServices"

 conversion-service="conversionService"

 expression-parser="expressionParser"

 view-factory-creator="viewFactoryCreator" />

<bean id="conversionService" class="..." />

<bean id="expressionParser" class="..." />

<bean id="viewFactoryCreator" class="..." />

In Java:

@Bean

public FlowBuilderServices flowBuilderServices() {

 return getFlowBuilderServicesBuilder()

 .setConversionService(conversionService())

 .setExpressionParser(expressionParser)

 .setViewFactoryCreator(mvcViewFactoryCreator())

 .build();

}

@Bean

public ConversionService conversionService() {

 // ...

}

@Bean

public ExpressionParser expressionParser() {

 // ...

}

@Bean

public ViewFactoryCreator viewFactoryCreator() {

 // ...

}

conversion-service

Use the conversion-service attribute to customize the ConversionService used by the Web
Flow system. Type conversion is used to convert from one type to another when required during flow
execution such as when processing request parameters, invoking actions, and so on. Many common
object types such as numbers, classes, and enums are supported. However you'll probably need to
provide your own type conversion and formatting logic for custom data types. Please read Section 5.7,
“Performing type conversion” for important information on how to provide custom type conversion logic.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 60

expression-parser

Use the expression-parser attribute to customize the ExpressionParser used by the Web Flow
system. The default ExpressionParser uses the Unified EL if available on the classpath, otherwise Spring
EL is used.

view-factory-creator

Use the view-factory-creator attribute to customize the ViewFactoryCreator used by the
Web Flow system. The default ViewFactoryCreator produces Spring MVC ViewFactories capable of
rendering JSP, Velocity, and Freemarker views.

The configurable settings are development. These settings are global configuration attributes that can
be applied during the flow construction process.

development

Set this to true to switch on flow development mode. Development mode switches on hot-reloading of
flow definition changes, including changes to dependent flow resources such as message bundles.

10.5. flow-executor options

This section explores flow-executor configuration options.

Attaching flow execution listeners

Use the flow-execution-listeners element to register listeners that observe the lifecycle of flow
executions. For example in XML:

<webflow:flow-execution-listeners>

 <webflow:listener ref="securityListener"/>

 <webflow:listener ref="persistenceListener"/>

</webflow:flow-execution-listeners>

In Java:

@Bean

public FlowExecutor flowExecutor() {

 return getFlowExecutorBuilder(flowRegistry())

 .addFlowExecutionListener(securityListener())

 .addFlowExecutionListener(persistenceListener())

 .build();

}

You may also configure a listener to observe only certain flows. For example in XML:

<webflow:listener ref="securityListener" criteria="securedFlow1,securedFlow2"/>

In Java:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 61

@Bean

public FlowExecutor flowExecutor() {

 return getFlowExecutorBuilder(flowRegistry())

 .addFlowExecutionListener(securityListener(), "securedFlow1,securedFlow2")

 .build();

}

Tuning FlowExecution persistence

Use the flow-execution-repository element to tune flow execution persistence settings. For
example in XML:

<webflow:flow-executor id="flowExecutor" flow-registry="flowRegistry">

 <webflow:flow-execution-repository max-executions="5" max-execution-snapshots="30" />

</webflow:flow-executor>

In Java:

@Bean

public FlowExecutor flowExecutor() {

 return getFlowExecutorBuilder(flowRegistry())

 .setMaxFlowExecutions(5)

 .setMaxFlowExecutionSnapshots(30)

 .build();

}

max-executions

Tune the max-executions attribute to place a cap on the number of flow executions that can be
created per user session. When the maximum number of executions is exceeded, the oldest execution
is removed.

Note

The max-executions attribute is per user session, i.e. it works across instances of any flow
definition.

max-execution-snapshots

Tune the max-execution-snapshots attribute to place a cap on the number of history snapshots
that can be taken per flow execution. To disable snapshotting, set this value to 0. To enable an unlimited
number of snapshots, set this value to -1.

Note

History snapshots enable browser back button support. When snapshotting is disabled pressing
the browser back button will not work. It will result in using an execution key that points to a
snapshot that has not be recorded.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 62

11. Spring MVC Integration

11.1. Introduction

This chapter shows how to integrate Web Flow into a Spring MVC web application. The booking-mvc
sample application is a good reference for Spring MVC with Web Flow. This application is a simplified
travel site that allows users to search for and book hotel rooms.

11.2. Configuring web.xml

The first step to using Spring MVC is to configure the DispatcherServlet in web.xml. You typically
do this once per web application.

The example below maps all requests that begin with /spring/ to the DispatcherServlet. An init-
param is used to provide the contextConfigLocation. This is the configuration file for the web
application.

<servlet>

 <servlet-name>Spring MVC Dispatcher Servlet</servlet-name>

 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

 <init-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>/WEB-INF/web-application-config.xml</param-value>

 </init-param>

</servlet>

<servlet-mapping>

 <servlet-name>Spring MVC Dispatcher Servlet</servlet-name>

 <url-pattern>/spring/*</url-pattern>

</servlet-mapping>

11.3. Dispatching to flows

The DispatcherServlet maps requests for application resources to handlers. A flow is one type of
handler.

Registering the FlowHandlerAdapter

The first step to dispatching requests to flows is to enable flow handling within Spring MVC. To this,
install the FlowHandlerAdapter:

<!-- Enables FlowHandler URL mapping -->

<bean class="org.springframework.webflow.mvc.servlet.FlowHandlerAdapter">

 <property name="flowExecutor" ref="flowExecutor" />

</bean>

Defining flow mappings

Once flow handling is enabled, the next step is to map specific application resources to your flows. The
simplest way to do this is to define a FlowHandlerMapping:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 63

<!-- Maps request paths to flows in the flowRegistry;

 e.g. a path of /hotels/booking looks for a flow with id "hotels/booking" -->

<bean class="org.springframework.webflow.mvc.servlet.FlowHandlerMapping">

 <property name="flowRegistry" ref="flowRegistry"/>

 <property name="order" value="0"/>

</bean>

Configuring this mapping allows the Dispatcher to map application resource paths to flows in a flow
registry. For example, accessing the resource path /hotels/booking would result in a registry query
for the flow with id hotels/booking. If a flow is found with that id, that flow will handle the request.
If no flow is found, the next handler mapping in the Dispatcher's ordered chain will be queried or a
"noHandlerFound" response will be returned.

Flow handling workflow

When a valid flow mapping is found, the FlowHandlerAdapter figures out whether to start a new
execution of that flow or resume an existing execution based on information present the HTTP request.
There are a number of defaults related to starting and resuming flow executions the adapter employs:

• HTTP request parameters are made available in the input map of all starting flow executions.

• When a flow execution ends without sending a final response, the default handler will attempt to start
a new execution in the same request.

• Unhandled exceptions are propagated to the Dispatcher unless the exception is a
NoSuchFlowExecutionException. The default handler will attempt to recover from a
NoSuchFlowExecutionException by starting over a new execution.

Consult the API documentation for FlowHandlerAdapter for more information. You may override
these defaults by subclassing or by implementing your own FlowHandler, discussed in the next section.

11.4. Implementing custom FlowHandlers

FlowHandler is the extension point that can be used to customize how flows are executed in a HTTP
servlet environment. A FlowHandler is used by the FlowHandlerAdapter and is responsible for:

• Returning the id of a flow definition to execute

• Creating the input to pass new executions of that flow as they are started

• Handling outcomes returned by executions of that flow as they end

• Handling any exceptions thrown by executions of that flow as they occur

These responsibilities are illustrated in the definition of the
org.springframework.mvc.servlet.FlowHandler interface:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 64

public interface FlowHandler {

 public String getFlowId();

 public MutableAttributeMap createExecutionInputMap(HttpServletRequest request);

 public String handleExecutionOutcome(FlowExecutionOutcome outcome,

 HttpServletRequest request, HttpServletResponse response);

 public String handleException(FlowException e,

 HttpServletRequest request, HttpServletResponse response);

}

To implement a FlowHandler, subclass AbstractFlowHandler. All these operations are optional,
and if not implemented the defaults will apply. You only need to override the methods that you need.
Specifically:

• Override getFlowId(HttpServletRequest) when the id of your flow cannot be directly derived
from the HTTP request. By default, the id of the flow to execute is derived from the pathInfo portion of
the request URI. For example, http://localhost/app/hotels/booking?hotelId=1 results
in a flow id of hotels/booking by default.

• Override createExecutionInputMap(HttpServletRequest) when you need fine-grained
control over extracting flow input parameters from the HttpServletRequest. By default, all request
parameters are treated as flow input parameters.

• Override handleExecutionOutcome when you need to handle specific flow execution outcomes
in a custom manner. The default behavior sends a redirect to the ended flow's URL to restart a new
execution of the flow.

• Override handleException when you need fine-grained control over unhandled flow exceptions.
The default behavior attempts to restart the flow when a client attempts to access an ended or expired
flow execution. Any other exception is rethrown to the Spring MVC ExceptionResolver infrastructure
by default.

Example FlowHandler

A common interaction pattern between Spring MVC And Web Flow is for a Flow to redirect to a
@Controller when it ends. FlowHandlers allow this to be done without coupling the flow definition itself
with a specific controller URL. An example FlowHandler that redirects to a Spring MVC Controller is
shown below:

public class BookingFlowHandler extends AbstractFlowHandler {

 public String handleExecutionOutcome(FlowExecutionOutcome outcome,

 HttpServletRequest request, HttpServletResponse response) {

 if (outcome.getId().equals("bookingConfirmed")) {

 return "/booking/show?bookingId=" + outcome.getOutput().get("bookingId");

 } else {

 return "/hotels/index";

 }

 }

}

Since this handler only needs to handle flow execution outcomes in a custom manner, nothing else is
overridden. The bookingConfirmed outcome will result in a redirect to show the new booking. Any
other outcome will redirect back to the hotels index page.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 65

Deploying a custom FlowHandler

To install a custom FlowHandler, simply deploy it as a bean. The bean name must match the id of the
flow the handler should apply to.

<bean name="hotels/booking" class="org.springframework.webflow.samples.booking.BookingFlowHandler" />

With this configuration, accessing the resource /hotels/booking will launch the hotels/booking
flow using the custom BookingFlowHandler. When the booking flow ends, the FlowHandler will process
the flow execution outcome and redirect to the appropriate controller.

FlowHandler Redirects

A FlowHandler handling a FlowExecutionOutcome or FlowException returns a String to indicate the
resource to redirect to after handling. In the previous example, the BookingFlowHandler redirects
to the booking/show resource URI for bookingConfirmed outcomes, and the hotels/index
resource URI for all other outcomes.

By default, returned resource locations are relative to the current servlet mapping. This allows for a flow
handler to redirect to other Controllers in the application using relative paths. In addition, explicit redirect
prefixes are supported for cases where more control is needed.

The explicit redirect prefixes supported are:

• servletRelative: - redirect to a resource relative to the current servlet

• contextRelative: - redirect to a resource relative to the current web application context path

• serverRelative: - redirect to a resource relative to the server root

• http:// or https:// - redirect to a fully-qualified resource URI

These same redirect prefixes are also supported within a flow definition when using the
externalRedirect: directive in conjunction with a view-state or end-state; for example,
view="externalRedirect:http://springframework.org"

11.5. View Resolution

Web Flow 2 maps selected view identifiers to files located within the flow's working directory unless
otherwise specified. For existing Spring MVC + Web Flow applications, an external ViewResolver
is likely already handling this mapping for you. Therefore, to continue using that resolver and to avoid
having to change how your existing flow views are packaged, configure Web Flow as follows:

<webflow:flow-registry id="flowRegistry" flow-builder-services="flowBuilderServices">

 <webflow:location path="/WEB-INF/hotels/booking/booking.xml" />

</webflow:flow-registry>

<webflow:flow-builder-services id="flowBuilderServices" view-factory-creator="mvcViewFactoryCreator"/>

<bean id="mvcViewFactoryCreator" class="org.springframework.webflow.mvc.builder.MvcViewFactoryCreator">

 <property name="viewResolvers" ref="myExistingViewResolverToUseForFlows"/>

</bean>

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 66

The MvcViewFactoryCreator is the factory that allows you to configure how the Spring MVC view system
is used inside Spring Web Flow. Use it to configure existing ViewResolvers, as well as other services
such as a custom MessageCodesResolver. You may also enable data binding use Spring MVC's native
BeanWrapper by setting the useSpringBinding flag to true. This is an alternative to using the Unified
EL for view-to-model data binding. See the JavaDoc API of this class for more information.

11.6. Signaling an event from a View

When a flow enters a view-state it pauses, redirects the user to its execution URL, and waits for a
user event to resume. Events are generally signaled by activating buttons, links, or other user interface
commands. How events are decoded server-side is specific to the view technology in use. This section
shows how to trigger events from HTML-based views generated by templating engines such as JSP,
Velocity, or Freemarker.

Using a named HTML button to signal an event

The example below shows two buttons on the same form that signal proceed and cancel events
when clicked, respectively.

<input type="submit" name="_eventId_proceed" value="Proceed" />

<input type="submit" name="_eventId_cancel" value="Cancel" />

When a button is pressed Web Flow finds a request parameter name beginning with _eventId_ and
treats the remaining substring as the event id. So in this example, submitting _eventId_proceed
becomes proceed. This style should be considered when there are several different events that can
be signaled from the same form.

Using a hidden HTML form parameter to signal an event

The example below shows a form that signals the proceed event when submitted:

<input type="submit" value="Proceed" />

<input type="hidden" name="_eventId" value="proceed" />

Here, Web Flow simply detects the special _eventId parameter and uses its value as the event id.
This style should only be considered when there is one event that can be signaled on the form.

Using a HTML link to signal an event

The example below shows a link that signals the cancel event when activated:

Cancel

Firing an event results in a HTTP request being sent back to the server. On the server-side, the flow
handles decoding the event from within its current view-state. How this decoding process works is
specific to the view implementation. Recall a Spring MVC view implementation simply looks for a request
parameter named _eventId. If no _eventId parameter is found, the view will look for a parameter
that starts with _eventId_ and will use the remaining substring as the event id. If neither cases exist,
no flow event is triggered.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 67

11.7. Embedding A Flow On A Page

By default when a flow enters a view state, it executes a client-side redirect before rendering the
view. This approach is known as POST-REDIRECT-GET. It has the advantage of separating the form
processing for one view from the rendering of the next view. As a result the browser Back and Refresh
buttons work seamlessly without causing any browser warnings.

Normally the client-side redirect is transparent from a user's perspective. However, there are situations
where POST-REDIRECT-GET may not bring the same benefits. For example a flow may be embedded
on a page and driven via Ajax requests refreshing only the area of the page that belongs to the flow.
Not only is it unnecessary to use client-side redirects in this case, it is also not the desired behavior with
regards to keeping the surrounding content of the page intact.

The Section 12.5, “Handling Ajax Requests” explains how to do partial rendering during Ajax requests.
The focus of this section is to explain how to control flow execution redirect behavior during Ajax
requests. To indicate a flow should execute in "page embedded" mode all you need to do is append an
extra parameter when launching the flow:

/hotels/booking?mode=embedded

When launched in "page embedded" mode a flow will not issue flow execution redirects during Ajax
requests. The mode=embedded parameter only needs to be passed when launching the flow. Your only
other concern is to use Ajax requests and to render only the content required to update the portion of
the page displaying the flow.

Embedded Mode Vs Default Redirect Behavior

By default Web Flow does a client-side redirect upon entering every view state. However if you remain
in the same view state -- for example a transition without a "to" attribute -- during an Ajax request there
will not be a client-side redirect. This behavior should be quite familiar to Spring Web Flow 2 users. It is
appropriate for a top-level flow that supports the browser back button while still taking advantage of Ajax
and partial rendering for use cases where you remain in the same view such as form validation, paging
trough search results, and others. However transitions to a new view state are always followed with a
client-side redirect. That makes it impossible to embed a flow on a page or within a modal dialog and
execute more than one view state without causing a full-page refresh. Hence if your use case requires
embedding a flow you can launch it in "embedded" mode.

Embedded Flow Examples

If you'd like to see examples of a flow embedded on a page and within a modal dialog please refer to the
webflow-showcase project. You can check out the source code locally, build it as you would a Maven
project, and import it into Eclipse:

cd some-directory

svn co https://src.springframework.org/svn/spring-samples/webflow-showcase

cd webflow-showcase

mvn package

import into Eclipse

11.8. Saving Flow Output to MVC Flash Scope

Flow output can be automatically saved to MVC flash scope when an end-state performs
an internal redirect. This is particularly useful when displaying a summary screen at the

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 68

end of a flow. For backwards compatibility this feature is disabled by default, to enable set
saveOutputToFlashScopeOnRedirect on your FlowHandlerAdapter to true.

<!-- Enables FlowHandler URL mapping -->

<bean class="org.springframework.webflow.mvc.servlet.FlowHandlerAdapter">

 <property name="flowExecutor" ref="flowExecutor" />

 <property name="saveOutputToFlashScopeOnRedirect" value="true" />

</bean>

The following example will add confirmationNumber to the MVC flash scope before redirecting to
the summary screen.

<end-state id="finish" view="externalRedirect:summary">

 <output name="confirmationNumber" value="booking.confirmationNumber" />

</end-state>

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 69

12. Spring JavaScript Quick Reference

12.1. Introduction

The spring-js-resources module is a legacy module that is no longer recommended for use but is
provided still as an optional module for backwards compatibility. Its original aim is to provide a client-
side programming model for progressively enhancing a web page with behavior and Ajax remoting.

Use of the Spring JS API is demonstrated in the samples repository.

12.2. Serving Javascript Resources

The Spring Framework provides a mechanism for serving static resources. See the Spring Framework
documentation). With the new <mvc:resources> element resource requests (.js, .css) are handled by
theDispatcherSevlet. Here is example configuration in XML (Java config is also available):

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:mvc="http://www.springframework.org/schema/mvc"

 xsi:schemaLocation="http://www.springframework.org/schema/mvc http://www.springframework.org/schema/

mvc/spring-mvc.xsd

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-

beans.xsd">

 <mvc:annotation-driven/>

 <mvc:resources mapping="/resources/**" location="/, classpath:/META-INF/web-resources/" />

 ...

</beans>

This incoming maps requests for /resources to resources found under /META-INF/web-
resources on the classpath. That's where Spring JavaScript resources are bundled. However, you can
modify the location attribute in the above configuration in order to serve resources from any classpath
or web application relative location.

Note that the full resource URL depends on how your DispatcherServlet is mapped. In the mvc-booking
sample we've chosen to map it with the default servlet mapping '/':

<servlet>

 <servlet-name>DispatcherServlet</servlet-name>

 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>DispatcherServlet</servlet-name>

 <url-pattern>/</url-pattern>

</servlet-mapping>

That means the full URL to load Spring.js is /myapp/resources/spring/Spring.js. If your
DispatcherServlet was instead mapped to /main/* then the full URL would be /myapp/main/
resources/spring/Spring.js.

https://github.com/spring-projects/spring-webflow-samples
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-config-static-resources
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-config-static-resources

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 70

When using of the default servlet mapping it is also recommended to add this to your Spring MVC
configuration, which ensures that any resource requests not handled by your Spring MVC mappings
will be delegated back to the Servlet container.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:mvc="http://www.springframework.org/schema/mvc"

 xsi:schemaLocation="http://www.springframework.org/schema/mvc http://www.springframework.org/schema/

mvc/spring-mvc.xsd

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-

beans.xsd">

 ...

 <mvc:default-servlet-handler />

</beans>

12.3. Including Spring Javascript in a Page

Spring JS is designed such that an implementation of its API can be built for any of the popular Javascript
toolkits. The initial implementation of Spring.js builds on the Dojo toolkit.

Using Spring Javascript in a page requires including the underlying toolkit as normal, the Spring.js
base interface file, and the Spring-(library implementation).js file for the underlying
toolkit. As an example, the following includes obtain the Dojo implementation of Spring.js using the
ResourceServlet:

<script type="text/javascript" src="<c:url value="/resources/dojo/dojo.js" />"> </script>

<script type="text/javascript" src="<c:url value="/resources/spring/Spring.js" />"> </script>

<script type="text/javascript" src="<c:url value="/resources/spring/Spring-Dojo.js" />"> </script>

When using the widget system of an underlying library, typically you must also include some CSS
resources to obtain the desired look and feel. For the booking-mvc reference application, Dojo's
tundra.css is included:

<link type="text/css" rel="stylesheet" href="<c:url value="/resources/dijit/themes/tundra/tundra.css" /

>" />

12.4. Spring Javascript Decorations

A central concept in Spring Javascript is the notion of applying decorations to existing DOM nodes. This
technique is used to progressively enhance a web page such that the page will still be functional in a
less capable browser. The addDecoration method is used to apply decorations.

The following example illustrates enhancing a Spring MVC <form:input> tag with rich suggestion
behavior:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 71

<form:input id="searchString" path="searchString"/>

<script type="text/javascript">

 Spring.addDecoration(new Spring.ElementDecoration({

 elementId: "searchString",

 widgetType: "dijit.form.ValidationTextBox",

 widgetAttrs: { promptMessage : "Search hotels by name, address, city, or zip." }}));

</script>

The ElementDecoration is used to apply rich widget behavior to an existing DOM node. This
decoration type does not aim to completely hide the underlying toolkit, so the toolkit's native widget
type and attributes are used directly. This approach allows you to use a common decoration model
to integrate any widget from the underlying toolkit in a consistent manner. See the booking-mvc
reference application for more examples of applying decorations to do things from suggestions to client-
side validation.

When using the ElementDecoration to apply widgets that have rich validation behavior, a common
need is to prevent the form from being submitted to the server until validation passes. This can be done
with the ValidateAllDecoration:

<input type="submit" id="proceed" name="_eventId_proceed" value="Proceed" />

<script type="text/javascript">

 Spring.addDecoration(new Spring.ValidateAllDecoration({ elementId:'proceed', event:'onclick' }));

</script>

This decorates the "Proceed" button with a special onclick event handler that fires the client side
validators and does not allow the form to submit until they pass successfully.

An AjaxEventDecoration applies a client-side event listener that fires a remote Ajax request to the
server. It also auto-registers a callback function to link in the response:

<a id="prevLink" href="search?searchString=${criteria.searchString}&page=${criteria.page -

 1}">Previous

<script type="text/javascript">

 Spring.addDecoration(new Spring.AjaxEventDecoration({

 elementId: "prevLink",

 event: "onclick",

 params: { fragments: "body" }

 }));

</script>

This decorates the onclick event of the "Previous Results" link with an Ajax call, passing along a special
parameter that specifies the fragment to be re-rendered in the response. Note that this link would still be
fully functional if Javascript was unavailable in the client. (See Section 12.5, “Handling Ajax Requests”
for details on how this request is handled on the server.)

It is also possible to apply more than one decoration to an element. The following example shows a
button being decorated with Ajax and validate-all submit suppression:

<input type="submit" id="proceed" name="_eventId_proceed" value="Proceed" />

<script type="text/javascript">

 Spring.addDecoration(new Spring.ValidateAllDecoration({elementId:'proceed', event:'onclick'}));

 Spring.addDecoration(new Spring.AjaxEventDecoration({elementId:'proceed',

 event:'onclick',formId:'booking', params:{fragments:'messages'}}));

</script>

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 72

It is also possible to apply a decoration to multiple elements in a single statement using Dojo's query
API. The following example decorates a set of checkbox elements as Dojo Checkbox widgets:

<div id="amenities">

<form:checkbox path="amenities" value="OCEAN_VIEW" label="Ocean View" />

<form:checkbox path="amenities" value="LATE_CHECKOUT" label="Late Checkout" />

<form:checkbox path="amenities" value="MINIBAR" label="Minibar" />

<script type="text/javascript">

 dojo.query("#amenities input[type='checkbox']").forEach(function(element) {

 Spring.addDecoration(new Spring.ElementDecoration({

 elementId: element.id,

 widgetType : "dijit.form.CheckBox",

 widgetAttrs : { checked : element.checked }

 }));

 });

</script>

</div>

12.5. Handling Ajax Requests

Spring Javascript's client-side Ajax response handling is built upon the notion of receiving "fragments"
back from the server. These fragments are just standard HTML that is meant to replace portions of the
existing page. The key piece needed on the server is a way to determine which pieces of a full response
need to be pulled out for partial rendering.

In order to be able to render partial fragments of a full response, the full response must be built using
a templating technology that allows the use of composition for constructing the response, and for the
member parts of the composition to be referenced and rendered individually. Spring Javascript provides
some simple Spring MVC extensions that make use of Tiles to achieve this. The same technique could
theoretically be used with any templating system supporting composition.

Spring Javascript's Ajax remoting functionality is built upon the notion that the core handling code for an
Ajax request should not differ from a standard browser request, thus no special knowledge of an Ajax
request is needed directly in the code and the same hanlder can be used for both styles of request.

Providing a Library-Specific AjaxHandler

The key interface for integrating various Ajax libraries with the Ajax-aware behavior of Web Flow
(such as not redirecting for a partial page update) is org.springframework.js.AjaxHandler.
A SpringJavascriptAjaxHandler is configured by default that is able to detect an Ajax request
submitted via the Spring JS client-side API and can respond appropriately in the case where a redirect
is required. In order to integrate a different Ajax library (be it a pure JavaScript library, or a higher-level
abstraction such as an Ajax-capable JSF component library), a custom AjaxHandler can be injected
into the FlowHandlerAdapter or FlowController.

Handling Ajax Requests with Spring MVC Controllers

In order to handle Ajax requests with Spring MVC controllers, all that is needed is the configuration of the
provided Spring MVC extensions in your Spring application context for rendering the partial response
(note that these extensions require the use of Tiles for templating):

<bean id="tilesViewResolver" class="org.springframework.webflow.mvc.view.AjaxUrlBasedViewResolver">

 <property name="viewClass" value="org.springframework.webflow.mvc.view.FlowAjaxTiles3View"/>

</bean>

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 73

This configures the AjaxUrlBasedViewResolver which in turn interprets Ajax requests and
creates FlowAjaxTilesView objects to handle rendering of the appropriate fragments. Note that
FlowAjaxTilesView is capable of handling the rendering for both Web Flow and pure Spring MVC
requests. The fragments correspond to individual attributes of a Tiles view definition. For example, take
the following Tiles view definition:

<definition name="hotels/index" extends="standardLayout">

 <put-attribute name="body" value="index.body" />

</definition>

<definition name="index.body" template="/WEB-INF/hotels/index.jsp">

 <put-attribute name="hotelSearchForm" value="/WEB-INF/hotels/hotelSearchForm.jsp" />

 <put-attribute name="bookingsTable" value="/WEB-INF/hotels/bookingsTable.jsp" />

</definition>

An Ajax request could specify the "body", "hotelSearchForm" or "bookingsTable" to be rendered as
fragments in the request.

Handling Ajax Requests with Spring MVC + Spring Web Flow

Spring Web Flow handles the optional rendering of fragments directly in the flow definition language
through use of the render element. The benefit of this approach is that the selection of fragments is
completely decoupled from client-side code, such that no special parameters need to be passed with
the request the way they currently must be with the pure Spring MVC controller approach. For example,
if you wanted to render the "hotelSearchForm" fragment from the previous example Tiles view into a
rich Javascript popup:

<view-state id="changeSearchCriteria" view="enterSearchCriteria.xhtml" popup="true">

 <on-entry>

 <render fragments="hotelSearchForm" />

 </on-entry>

 <transition on="search" to="reviewHotels">

 <evaluate expression="searchCriteria.resetPage()"/>

 </transition>

</view-state>

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 74

13. JSF Integration

13.1. Introduction

Spring Web Flow provides a JSF integration that lets you use the JSF UI Component Model with Spring
Web Flow controllers. Web Flow also provides a Spring Security tag library for use in JSF environments,
see Section 13.9, “Using the Spring Security Facelets Tag Library” for more details.

Spring Web Flow 2.5 requires JSF 2.2 or higher.

13.2. Configuring web.xml

The first step is to route requests to the DispatcherServlet in the web.xml file. In this example, we
map all URLs that begin with /spring/ to the servlet. The servlet needs to be configured. An init-
param is used in the servlet to pass the contextConfigLocation. This is the location of the Spring
configuration for your web application.

<servlet>

 <servlet-name>Spring MVC Dispatcher Servlet</servlet-name>

 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

 <init-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>/WEB-INF/web-application-config.xml</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>Spring MVC Dispatcher Servlet</servlet-name>

 <url-pattern>/spring/*</url-pattern>

</servlet-mapping>

In order for JSF to bootstrap correctly, the FacesServlet must be configured in web.xml as it normally
would even though you generally will not need to route requests through it at all when using JSF with
Spring Web Flow.

<!-- Just here so the JSF implementation can initialize, *not* used at runtime -->

<servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<!-- Just here so the JSF implementation can initialize -->

<servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.faces</url-pattern>

</servlet-mapping>

The use of Facelets instead of JSP typically requires this in web.xml:

!-- Use JSF view templates saved as *.xhtml, for use with Facelets -->

<context-param>

 <param-name>javax.faces.DEFAULT_SUFFIX</param-name>

 <param-value>.xhtml</param-value>

</context-param>

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 75

13.3. Configuring Web Flow for use with JSF

This section explains how to configure Web Flow with JSF. Both Java and XML style configuration are
supported. The following is sample configuration for Web Flow and JSF in XML:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:webflow="http://www.springframework.org/schema/webflow-config"

 xmlns:faces="http://www.springframework.org/schema/faces"

 si:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/webflow-config

 http://www.springframework.org/schema/webflow-config/spring-webflow-config.xsd

 http://www.springframework.org/schema/faces

 http://www.springframework.org/schema/faces/spring-faces.xsd">

 <!-- Executes flows: the central entry point into the Spring Web Flow system -->

 <webflow:flow-executor id="flowExecutor">

 <webflow:flow-execution-listeners>

 <webflow:listener ref="facesContextListener"/>

 </webflow:flow-execution-listeners>

 </webflow:flow-executor>

 <!-- The registry of executable flow definitions -->

 <webflow:flow-registry id="flowRegistry" flow-builder-services="flowBuilderServices" base-path="/WEB-

INF">

 <webflow:flow-location-pattern value="**/*-flow.xml" />

 </webflow:flow-registry>

 <!-- Configures the Spring Web Flow JSF integration -->

 <faces:flow-builder-services id="flowBuilderServices" />

 <!-- A listener maintain one FacesContext instance per Web Flow request. -->

 <bean id="facesContextListener"

 class="org.springframework.faces.webflow.FlowFacesContextLifecycleListener" />

</beans>

The following is an example of the same in Java configuration:

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.faces.config.*;

@Configuration

public class WebFlowConfig extends AbstractFacesFlowConfiguration {

 @Bean

 public FlowExecutor flowExecutor() {

 return getFlowExecutorBuilder(flowRegistry())

 .addFlowExecutionListener(new FlowFacesContextLifecycleListener())

 .build();

 }

 @Bean

 public FlowDefinitionRegistry flowRegistry() {

 return getFlowDefinitionRegistryBuilder()

 .setBasePath("/WEB-INF")

 .addFlowLocationPattern("**/*-flow.xml").build();

}

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 76

The main points are the installation of a FlowFacesContextLifecycleListener that manages
a single FacesContext for the duration of Web Flow request and the use of the flow-builder-
services element from the faces custom namespace to configure rendering for a JSF environment.

In a JSF environment you'll also need this Spring MVC related configuration:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:faces="http://www.springframework.org/schema/faces"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/faces

 http://www.springframework.org/schema/faces/spring-faces.xsd">

 <faces:resources />

 <bean class="org.springframework.faces.webflow.JsfFlowHandlerAdapter">

 <property name="flowExecutor" ref="flowExecutor" />

 </bean>

</beans>

The resources custom namespace element delegates JSF resource requests to the JSF resource
API. The JsfFlowHandlerAdapter is a replacement for the FlowHandlerAdapter normally
used with Web Flow. This adapter initializes itself with a JsfAjaxHandler instead of the
SpringJavaSciprtAjaxHandler.

When using Java config, the AbstractFacesFlowConfiguration base class automatically
registers JsfResourceRequestHandler so there is nothing further to do.

13.4. Replacing the JSF Managed Bean Facility

When using JSF with Spring Web Flow you can completely replace the JSF managed bean facility with a
combination of Web Flow managed variables and Spring managed beans. It gives you a good deal more
control over the lifecycle of your managed objects with well-defined hooks for initialization and execution
of your domain model. Additionally, since you are presumably already using Spring for your business
layer, it reduces the conceptual overhead of having to maintain two different managed bean models.

In doing pure JSF development, you will quickly find that request scope is not long-lived enough for
storing conversational model objects that drive complex event-driven views. In JSF the usual option is to
begin putting things into session scope, with the extra burden of needing to clean the objects up before
progressing to another view or functional area of the application. What is really needed is a managed
scope that is somewhere between request and session scope. JSF provides flash and view scopes that
can be accessed programmatically via UIViewRoot.getViewMap(). Spring Web Flow provides access
to flash, view, flow, and conversation scopes. These scopes are seamlessly integrated through JSF
variable resolvers and work the same in all JSF applications.

Using Flow Variables

The easiest and most natural way to declare and manage the model is through the use of flow variables.
You can declare these variables at the beginning of the flow:

<var name="searchCriteria" class="com.mycompany.myapp.hotels.search.SearchCriteria"/>

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 77

and then reference this variable in one of the flow's JSF view templates through EL:

<h:inputText id="searchString" value="#{searchCriteria.searchString}"/>

Note that you do not need to prefix the variable with its scope when referencing it from the template
(though you can do so if you need to be more specific). As with standard JSF beans, all available scopes
will be searched for a matching variable, so you could change the scope of the variable in your flow
definition without having to modify the EL expressions that reference it.

You can also define view instance variables that are scoped to the current view and get cleaned
up automatically upon transitioning to another view. This is quite useful with JSF as views are often
constructed to handle multiple in-page events across many requests before transitioning to another view.

To define a view instance variable, you can use the var element inside a view-state definition:

<view-state id="enterSearchCriteria">

 <var name="searchCriteria" class="com.mycompany.myapp.hotels.search.SearchCriteria"/>

</view-state>

Using Scoped Spring Beans

Though defining autowired flow instance variables provides nice modularization and readability,
occasions may arise where you want to utilize the other capabilities of the Spring container such as
AOP. In these cases, you can define a bean in your Spring ApplicationContext and give it a specific
web flow scope:

<bean id="searchCriteria" class="com.mycompany.myapp.hotels.search.SearchCriteria" scope="flow"/>

The major difference with this approach is that the bean will not be fully initialized until it is first accessed
via an EL expression. This sort of lazy instantiation via EL is quite similar to how JSF managed beans
are typically allocated.

Manipulating The Model

The need to initialize the model before view rendering (such as by loading persistent entities from
a database) is quite common, but JSF by itself does not provide any convenient hooks for such
initialization. The flow definition language provides a natural facility for this through its Actions . Spring
Web Flow provides some extra conveniences for converting the outcome of an action into a JSF-specific
data structure. For example:

<on-render>

 <evaluate expression="bookingService.findBookings(currentUser.name)"

 result="viewScope.bookings" result-type="dataModel" />

</on-render>

This will take the result of the bookingService.findBookings method an wrap it in a custom JSF
DataModel so that the list can be used in a standard JSF DataTable component:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 78

<h:dataTable id="bookings" styleClass="summary" value="#{bookings}" var="booking"

 rendered="#{bookings.rowCount > 0}">

 <h:column>

 <f:facet name="header">Name</f:facet>

 #{booking.hotel.name}

 </h:column>

 <h:column>

 <f:facet name="header">Confirmation number</f:facet>

 #{booking.id}

 </h:column>

 <h:column>

 <f:facet name="header">Action</f:facet>

 <h:commandLink id="cancel" value="Cancel" action="cancelBooking" />

 </h:column>

</h:dataTable>

Data Model Implementations

In the example above result-type="dataModel" results in the wrapping of List<Booking> with custom
DataModel type. The custom DataModel provides extra conveniences such as being serializable for
storage beyond request scope as well as access to the currently selected row in EL expressions. For
example, on postback from a view where the action event was fired by a component within a DataTable,
you can take action on the selected row's model instance:

<transition on="cancelBooking">

 <evaluate expression="bookingService.cancelBooking(bookings.selectedRow)" />

</transition>

Spring Web Flow provides two custom DataModel types: OneSelectionTrackingListDataModel
and ManySelectionTrackingListDataModel. As the names indicate they keep track of one
or multiple selected rows. This is done with the help of a SelectionTrackingActionListener
listener, which responds to JSF action events and invokes the appopriate methods on the
SelectinAware data models to record the currently clicked row.

To understand how this is configured, keep in mind the FacesConversionService registers a
DataModelConverter against the alias "dataModel" on startup. When result-type="dataModel" is
used in a flow definition it causes the DataModelConverter to be used. The converter then
wraps the given List with an instance of OneSelectionTrackingListDataModel. To use the
ManySelectionTrackingListDataModel you will need to register your own custom converter.

13.5. Handling JSF Events With Spring Web Flow

Spring Web Flow allows you to handle JSF action events in a decoupled way, requiring no direct
dependencies in your Java code on JSF API's. In fact, these events can often be handled completely
in the flow definiton language without requiring any custom Java action code at all. This allows for a
more agile development process since the artifacts being manipulated in wiring up events (JSF view
templates and SWF flow definitions) are instantly refreshable without requiring a build and re-deploy
of the whole application.

Handling JSF In-page Action Events

A simple but common case in JSF is the need to signal an event that causes manipulation of the model
in some way and then redisplays the same view to reflect the changed state of the model. The flow
definition language has special support for this in the transition element.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 79

A good example of this is a table of paged list results. Suppose you want to be able to load and display
only a portion of a large result list, and allow the user to page through the results. The initial view-
state definition to load and display the list would be:

<view-state id="reviewHotels">

 <on-render>

 <evaluate expression="bookingService.findHotels(searchCriteria)"

 result="viewScope.hotels" result-type="dataModel" />

 </on-render>

</view-state>

You construct a JSF DataTable that displays the current hotels list, and then place a "More Results"
link below the table:

<h:commandLink id="nextPageLink" value="More Results" action="next"/>

This commandLink signals a "next" event from its action attribute. You can then handle the event by
adding to the view-state definition:

<view-state id="reviewHotels">

 <on-render>

 <evaluate expression="bookingService.findHotels(searchCriteria)"

 result="viewScope.hotels" result-type="dataModel" />

 </on-render>

 <transition on="next">

 <evaluate expression="searchCriteria.nextPage()" />

 </transition>

</view-state>

Here you handle the "next" event by incrementing the page count on the searchCriteria instance. The
on-render action is then called again with the updated criteria, which causes the next page of results
to be loaded into the DataModel. The same view is re-rendered since there was no to attribute on the
transition element, and the changes in the model are reflected in the view.

Handling JSF Action Events

The next logical level beyond in-page events are events that require navigation to another view, with
some manipulation of the model along the way. Achieving this with pure JSF would require adding a
navigation rule to faces-config.xml and likely some intermediary Java code in a JSF managed bean (both
tasks requiring a re-deploy). With the flow defintion language, you can handle such a case concisely in
one place in a quite similar way to how in-page events are handled.

Continuing on with our use case of manipulating a paged list of results, suppose we want each row in
the displayed DataTable to contain a link to a detail page for that row instance. You can add a column
to the table containing the following commandLink component:

<h:commandLink id="viewHotelLink" value="View Hotel" action="select"/>

This raises the "select" event which you can then handle by adding another transition element to
the existing view-state :

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 80

<view-state id="reviewHotels">

 <on-render>

 <evaluate expression="bookingService.findHotels(searchCriteria)"

 result="viewScope.hotels" result-type="dataModel" />

 </on-render>

 <transition on="next">

 <evaluate expression="searchCriteria.nextPage()" />

 </transition>

 <transition on="select" to="reviewHotel">

 <set name="flowScope.hotel" value="hotels.selectedRow" />

 </transition>

</view-state>

Here the "select" event is handled by pushing the currently selected hotel instance from the DataTable
into flow scope, so that it may be referenced by the "reviewHotel" view-state .

Performing Model Validation

JSF provides useful facilities for validating input at field-level before changes are applied to the model,
but when you need to then perform more complex validation at the model-level after the updates have
been applied, you are generally left with having to add more custom code to your JSF action methods
in the managed bean. Validation of this sort is something that is generally a responsibility of the domain
model itself, but it is difficult to get any error messages propagated back to the view without introducing
an undesirable dependency on the JSF API in your domain layer.

With Web Flow, you can utilize the generic and low-level MessageContext in your business code and
any messages added there will then be available to the FacesContext at render time.

For example, suppose you have a view where the user enters the necessary details to complete a hotel
booking, and you need to ensure the Check In and Check Out dates adhere to a given set of business
rules. You can invoke such model-level validation from a transition element:

<view-state id="enterBookingDetails">

 <transition on="proceed" to="reviewBooking">

 <evaluate expression="booking.validateEnterBookingDetails(messageContext)" />

 </transition>

</view-state>

Here the "proceed" event is handled by invoking a model-level validation method on the booking
instance, passing the generic MessageContext instance so that messages may be recorded. The
messages can then be displayed along with any other JSF messages with the h:messages component,

Handling Ajax Events In JSF

JSF provides built-in support for sending Ajax requests and performing partial processing and rendering
on the server-side. You can specify a list of id's for partial rendering through the <f:ajax> facelets tag.

In Spring Web Flow you also have the option to specify the ids to use for partial rendering on the server
side with the render action:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 81

<view-state id="reviewHotels">

 <on-render>

 <evaluate expression="bookingService.findHotels(searchCriteria)"

 result="viewScope.hotels" result-type="dataModel" />

 </on-render>

 <transition on="next">

 <evaluate expression="searchCriteria.nextPage()" />

 <render fragments="hotels:searchResultsFragment" />

 </transition>

</view-state>

13.6. Embedding a Flow On a Page

By default when a flow enters a view state, it executes a client-side redirect before rendering the
view. This approach is known as POST-REDIRECT-GET. It has the advantage of separating the form
processing for one view from the rendering of the next view. As a result the browser Back and Refresh
buttons work seamlessly without causing any browser warnings.

Normally the client-side redirect is transparent from a user's perspective. However, there are situations
where POST-REDIRECT-GET may not bring the same benefits. For example sometimes it may be
useful to embed a flow on a page and drive it via Ajax requests refreshing only the area of the page
where the flow is rendered. Not only is it unnecessary to use client-side redirects in this case, it is also
not the desired behavior with regards to keeping the surrounding content of the page intact.

To indicate a flow should execute in "page embedded" mode all you need to do is pass an extra flow
input attribute called "mode" with a value of "embedded". Below is an example of a top-level container
flow invoking a sub-flow in an embedded mode:

<subflow-state id="bookHotel" subflow="booking">

 <input name="mode" value="'embedded'"/>

</subflow-state>

When launched in "page embedded" mode the sub-flow will not issue flow execution redirects during
Ajax requests.

If you'd like to see examples of an embedded flow please refer to the webflow-primefaces-showcase
project. You can check out the source code locally, build it as you would a Maven project, and import
it into Eclipse:

cd some-directory

svn co https://src.springframework.org/svn/spring-samples/webflow-primefaces-showcase

cd webflow-primefaces-showcase

mvn package

import into Eclipse

The specific example you need to look at is under the "Advanced Ajax" tab and is called "Top Flow with
Embedded Sub-Flow".

13.7. Redirect In Same State

By default Web Flow does a client-side redirect even it it remains in the same view state as long as the
current request is not an Ajax request. This is quite useful after form validation failures for example. If

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 82

the user hits Refresh or Back they won't see any browser warnings. They would if the Web Flow didn't
do a redirect.

This can lead to a problem specific to JSF environments where a specific Sun Mojarra listener
component caches the FacesContext assuming the same instance is available throughout the JSF
lifecycle. In Web Flow however the render phase is temporarily put on hold and a client-side redirect
executed.

The default behavior of Web Flow is desirable and it is unlikely JSF applications will experience the
issue. This is because Ajax is often enabled the default in JSF component libraries and Web Flow
does not redirect during Ajax requests. However if you experience this issue you can disable client-side
redirects within the same view as follows:

<webflow:flow-executor id="flowExecutor">

 <webflow:flow-execution-attributes>

 <webflow:redirect-in-same-state value="false"/>

 </webflow:flow-execution-attributes>

</webflow:flow-executor>

13.8. Handling File Uploads with JSF

Most JSF component providers include some form of 'file upload' component. Generally when working
with these components JSF must take complete control of parsing multi-part requests and Spring MVC's
MultipartResolver cannot be used.

Spring Web Flow has been tested with file upload components from PrimeFaces. Check the
documentation of your JSF component library for other providers to see how to configure file upload.

File Uploads with PrimeFaces

PrimeFaces provides a <p:fileUpload> component for uploading files. In order to use the component
you need to configure the org.primefaces.webapp.filter.FileUploadFilter servlet filter.
The filter needs to be configured against Spring MVC's DispatcherServlet in your web.xml:

<filter>

 <filter-name>PrimeFaces FileUpload Filter</filter-name>

 <filter-class>org.primefaces.webapp.filter.FileUploadFilter</filter-class>

</filter>

<filter-mapping>

 <filter-name>PrimeFaces FileUpload Filter</filter-name>

 <servlet-name>Spring MVC Dispatcher Servlet</servlet-name>

</filter-mapping>

<context-param>

 <param-name>primefaces.UPLOADER</param-name>

 <param-value>commons</param-value>

</context-param>

For more details refer to the PrimeFaces documentation.

13.9. Using the Spring Security Facelets Tag Library

To use the library you'll need to create a .taglib.xml file and register it in web.xml.

Create the file /WEB-INF/springsecurity.taglib.xml with the following content:

http://primefaces.org/documentation.html

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 83

<?xml version="1.0"?>

<!DOCTYPE facelet-taglib PUBLIC

"-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"

"http://java.sun.com/dtd/facelet-taglib_1_0.dtd">

<facelet-taglib>

 <namespace>http://www.springframework.org/security/tags</namespace>

 <tag>

 <tag-name>authorize</tag-name>

 <handler-class>org.springframework.faces.security.FaceletsAuthorizeTagHandler</handler-class>

 </tag>

 <function>

 <function-name>areAllGranted</function-name>

 <function-class>org.springframework.faces.security.FaceletsAuthorizeTagUtils</function-class>

 <function-signature>boolean areAllGranted(java.lang.String)</function-signature>

 </function>

 <function>

 <function-name>areAnyGranted</function-name>

 <function-class>org.springframework.faces.security.FaceletsAuthorizeTagUtils</function-class>

 <function-signature>boolean areAnyGranted(java.lang.String)</function-signature>

 </function>

 <function>

 <function-name>areNotGranted</function-name>

 <function-class>org.springframework.faces.security.FaceletsAuthorizeTagUtils</function-class>

 <function-signature>boolean areNotGranted(java.lang.String)</function-signature>

 </function>

 <function>

 <function-name>isAllowed</function-name>

 <function-class>org.springframework.faces.security.FaceletsAuthorizeTagUtils</function-class>

 <function-signature>boolean isAllowed(java.lang.String, java.lang.String)</function-signature>

 </function>

</facelet-taglib>

Next, register the above file taglib in web.xml:

<context-param>

 <param-name>javax.faces.FACELETS_LIBRARIES</param-name>

 <param-value>/WEB-INF/springsecurity.taglib.xml</param-value>

</context-param>

Now you are ready to use the tag library in your views. You can use the authorize tag to include nested
content conditionally:

<!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/

xhtml1-transitional.dtd">

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:sec="http://www.springframework.org/security/tags">

 <sec:authorize ifAllGranted="ROLE_FOO, ROLE_BAR">

 Lorem ipsum dolor sit amet

 </sec:authorize>

 <sec:authorize ifNotGranted="ROLE_FOO, ROLE_BAR">

 Lorem ipsum dolor sit amet

 </sec:authorize>

 <sec:authorize ifAnyGranted="ROLE_FOO, ROLE_BAR">

 Lorem ipsum dolor sit amet

 </sec:authorize>

</ui:composition>

You can also use one of several EL functions in the rendered or other attribute of any JSF component:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 84

<!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/

xhtml1-transitional.dtd">

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:h="http://java.sun.com/jsf/html"

 xmlns:sec="http://www.springframework.org/security/tags">

 <!-- Rendered only if user has all of the listed roles -->

 <h:outputText value="Lorem ipsum dolor sit amet" rendered="#{sec:areAllGranted('ROLE_FOO, ROLE_BAR')}"/

>

 <!-- Rendered only if user does not have any of the listed roles -->

 <h:outputText value="Lorem ipsum dolor sit amet" rendered="#{sec:areNotGranted('ROLE_FOO, ROLE_BAR')}"/

>

 <!-- Rendered only if user has any of the listed roles -->

 <h:outputText value="Lorem ipsum dolor sit amet" rendered="#{sec:areAnyGranted('ROLE_FOO, ROLE_BAR')}"/

>

 <!-- Rendered only if user has access to given HTTP method/URL as defined in Spring Security

 configuration -->

 <h:outputText value="Lorem ipsum dolor sit amet" rendered="#{sec:isAllowed('/secured/foo', 'POST')}"/>

</ui:composition>

13.10. Third-Party Component Library Integration

The Spring Web Flow JSF integration strives to be compatible with any third-party JSF component
library. By honoring all of the standard semantics of the JSF specification within the SWF-driven
JSF lifecycle, third-party libraries in general should "just work". The main thing to remember is that
configuration in web.xml will change slightly since Web Flow requests are not routed through the
standard FacesServlet. Typically, anything that is traditionally mapped to the FacesServlet should be
mapped to the Spring DispatcherServlet instead. (You can also map to both if for example you are
migrating a legacy JSF application page-by-page.).

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 85

14. Testing flows

14.1. Introduction

This chapter shows you how to test flows.

14.2. Extending AbstractXmlFlowExecutionTests

To test the execution of a XML-based flow definition, extend AbstractXmlFlowExecutionTests:

public class BookingFlowExecutionTests extends AbstractXmlFlowExecutionTests {

}

14.3. Specifying the path to the flow to test

At a minimum, you must override getResource(FlowDefinitionResourceFactory) to return the
path to the flow you wish to test:

@Override

protected FlowDefinitionResource getResource(FlowDefinitionResourceFactory resourceFactory) {

 return resourceFactory.createFileResource("src/main/webapp/WEB-INF/hotels/booking/booking.xml");

}

14.4. Registering flow dependencies

If your flow has dependencies on externally managed services, also override
configureFlowBuilderContext(MockFlowBuilderContext) to register stubs or mocks of
those services:

@Override

protected void configureFlowBuilderContext(MockFlowBuilderContext builderContext) {

 builderContext.registerBean("bookingService", new StubBookingService());

}

If your flow extends from another flow, or has states that extend other states, also override
getModelResources(FlowDefinitionResourceFactory) to return the path to the parent flows.

@Override

protected FlowDefinitionResource[] getModelResources(FlowDefinitionResourceFactory resourceFactory) {

return new FlowDefinitionResource[] {

 resourceFactory.createFileResource("src/main/webapp/WEB-INF/common/common.xml")

};

}

14.5. Testing flow startup

Have your first test exercise the startup of your flow:

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 86

public void testStartBookingFlow() {

 Booking booking = createTestBooking();

 MutableAttributeMap input = new LocalAttributeMap();

 input.put("hotelId", "1");

 MockExternalContext context = new MockExternalContext();

 context.setCurrentUser("keith");

 startFlow(input, context);

 assertCurrentStateEquals("enterBookingDetails");

 assertTrue(getRequiredFlowAttribute("booking") instanceof Booking);

}

Assertions generally verify the flow is in the correct state you expect.

14.6. Testing flow event handling

Define additional tests to exercise flow event handling behavior. You goal should be to exercise all paths
through the flow. You can use the convenient setCurrentState(String) method to jump to the
flow state where you wish to begin your test.

public void testEnterBookingDetails_Proceed() {

 setCurrentState("enterBookingDetails");

 getFlowScope().put("booking", createTestBooking());

 MockExternalContext context = new MockExternalContext();

 context.setEventId("proceed");

 resumeFlow(context);

 assertCurrentStateEquals("reviewBooking");

}

14.7. Mocking a subflow

To test calling a subflow, register a mock implementation of the subflow that asserts input was passed
in correctly and returns the correct outcome for your test scenario.

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 87

public void testBookHotel() {

 setCurrentState("reviewHotel");

 Hotel hotel = new Hotel();

 hotel.setId(1L);

 hotel.setName("Jameson Inn");

 getFlowScope().put("hotel", hotel);

 getFlowDefinitionRegistry().registerFlowDefinition(createMockBookingSubflow());

 MockExternalContext context = new MockExternalContext();

 context.setEventId("book");

 resumeFlow(context);

 // verify flow ends on 'bookingConfirmed'

 assertFlowExecutionEnded();

 assertFlowExecutionOutcomeEquals("finish");

}

public Flow createMockBookingSubflow() {

 Flow mockBookingFlow = new Flow("booking");

 mockBookingFlow.setInputMapper(new Mapper() {

 public MappingResults map(Object source, Object target) {

 // assert that 1L was passed in as input

 assertEquals(1L, ((AttributeMap) source).get("hotelId"));

 return null;

 }

 });

 // immediately return the bookingConfirmed outcome so the caller can respond

 new EndState(mockBookingFlow, "bookingConfirmed");

 return mockBookingFlow;

}

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 88

Appendix A. Flow Definition
Language 1.0 to 2.0 Mappings
The flow definition language has changed since the 1.0 release. This is a listing of the language elements
in the 1.0 release, and how they map to elements in the 2.0 release. While most of the changes are
semantic, there are a few structural changes. Please see the upgrade guide for more details about
changes between Web Flow 1.0 and 2.0.

Table A.1. Mappings

SWF 1.0 SWF 2.0 Comments

action * use <evaluate />

bean *

name *

method *

action-state action-state

id id

* parent

argument * use <evaluate expression="func(arg1,
arg2, ...)"/>

expression

parameter-type

attribute attribute

name name

type type

value value

attribute-mapper * input and output elements can be in flows or
subflows directly

bean * now subflow-attribute-mapper attribute on
subflow-state

bean-action * use <evaluate />

bean *

name *

method *

decision-state decision-state

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 89

SWF 1.0 SWF 2.0 Comments

id id

* parent

end-actions on-end

end-state end-state

id id

view view

* parent

* commit

entry-actions on-entry

evaluate-action evaluate

expression expression

name * use <evaluate ...> <attribute name=”name”
value="..." /> </evaluate>

* result

* result-type

evaluation-result * use <evaluate result="..." />

name *

scope *

exception-handler exception-handler

bean bean

exit-actions on-exit

flow flow

* start-state

* parent

* abstract

global-transitions global-transitions

if if

test test

then then

else else

import bean-import

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 90

SWF 1.0 SWF 2.0 Comments

resource resource

inline-flow * convert to new top-level flow

id *

input-attribute input

name name

scope * prefix name with scope <input
name="flowScope.foo" />

required required

* type

* value

input-mapper * inputs can be in flows and subflows directly

mapping input or output

source name or value name when in flow element, value when in
subflow-state element

target name or value value when in flow element, name when in
subflow-state element

target-collection * no longer supported

from * detected automatically

to type

required required

method-argument * use <evaluate expression="func(arg1,
arg2, ...)"/>

method-result * use <evaluate result="..." />

name *

scope *

output-attribute output

name name

scope * prefix name with scope <output
name="flowScope.foo" />

required required

* type

* value

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 91

SWF 1.0 SWF 2.0 Comments

output-mapper * output can be in flows and subflows directly

render-actions on-render

set set

attribute name

scope * prefix name with scope <set
name="flowScope.foo" />

value value

name * use <set ...> <attribute name=”name”
value="..." /> </set>

* type

start-actions on-start

start-state * now <flow start-state="...">, or defaults to the
first state in the flow

idref *

subflow-state subflow-state

id id

flow subflow

* parent

* subflow-attribute-
mapper

transition transition

on on

on-exception on-exception

to to

* bind

* validate

* history

value value

var var

name name

class class

scope * always flow scope

Spring Web Flow Reference Guide

Version 2.5.0.RELEASE Spring Web Flow 92

SWF 1.0 SWF 2.0 Comments

bean * all Spring beans can be resolved with EL

view-state view-state

id id

view view

* parent

* redirect

* popup

* model

* history

* persistence-context

* render

* fragments

* secured

* attributes

* match

	Spring Web Flow Reference Guide
	Table of Contents
	Preface
	1. Introduction
	1.1. What this guide covers
	1.2. What Web Flow requires to run
	1.3. Resources
	1.4. How to access Web Flow artifacts from Maven Central
	1.5. How to access nightly builds and milestone releases
	Accessing snapshots and milestones with Maven

	2. What's New
	2.1. Spring Web Flow 2.5
	2.2. Spring Web Flow 2.4
	Java-based Configuration
	Spring MVC Flash Scope Integration
	Partial JSR-303 Bean Validation
	Hibernate Support
	Tiles 3 Support
	Minimum JSF 2.0 Requirement
	Portlet API 2.0 and JSF 2.0 support
	Deprecations

	2.3. Spring Web Flow 2.3
	Embedding A Flow On A Page
	Support For JSR-303 Bean Validation
	Flow-Managed Persistence Context Propagation
	Portlet 2.0 Resource Requests
	Custom ConversationManager
	Redirect In Same State
	Samples

	2.4. Spring Web Flow 2.2
	JSF 2 Support
	Comprehensive JSF 2 Support
	Travel Sample With the PrimeFaces Components

	Spring Security Facelets Tag Library
	Spring JavaScript Updates
	Deprecated ResourcesServlet
	Dojo 1.5 and dojox
	Two Spring JS artifacts
	Client resources moved into META-INF/web-resources

	JSF Portlet Support
	Portlet API 2.0 and JSF 1.2 support

	3. Defining Flows
	3.1. Introduction
	3.2. What is a flow?
	3.3. What is the makeup of a typical flow?
	3.4. How are flows authored?
	3.5. Essential language elements
	flow
	view-state
	transition
	end-state
	Checkpoint: Essential language elements

	3.6. Actions
	evaluate
	Assigning an evaluate result
	Converting an evaluate result

	Checkpoint: flow actions

	3.7. Input/Output Mapping
	input
	Declaring an input type
	Assigning an input value
	Marking an input as required

	output
	Specifying the source of an output value

	Checkpoint: input/output mapping

	3.8. Variables
	var

	3.9. Variable Scopes
	Flow Scope
	View Scope
	Request Scope
	Flash Scope
	Conversation Scope

	3.10. Calling subflows
	subflow-state
	Passing a subflow input
	Mapping subflow output

	Checkpoint: calling subflows

	4. Expression Language (EL)
	4.1. Introduction
	Expression types
	Standard Expressions
	Template expressions

	4.2. EL Implementations
	Spring EL
	Unified EL

	4.3. EL portability
	4.4. Special EL variables
	flowScope
	viewScope
	requestScope
	flashScope
	conversationScope
	requestParameters
	currentEvent
	currentUser
	messageContext
	resourceBundle
	flowRequestContext
	flowExecutionContext
	flowExecutionUrl
	externalContext

	4.5. Scope searching algorithm

	5. Rendering views
	5.1. Introduction
	5.2. Defining view states
	5.3. Specifying view identifiers
	Flow relative view ids
	Absolute view ids
	Logical view ids

	5.4. View scope
	Allocating view variables
	Assigning a viewScope variable
	Manipulating objects in view scope

	5.5. Executing render actions
	5.6. Binding to a model
	5.7. Performing type conversion
	Type Conversion Options
	Upgrading to Spring 3 Type Conversion And Formatting
	Configuring Type Conversion and Formatting
	Working With Spring 3 Type Conversion And Formatting
	Formatting Annotations
	Working With Dates

	5.8. Suppressing binding
	5.9. Specifying bindings explicitly
	5.10. Validating a model
	JSR-303 Bean Validation
	Partial Validation

	Programmatic validation
	Implementing a model validate method
	Implementing a Validator
	Default validate method

	ValidationContext

	5.11. Suppressing validation
	5.12. Executing view transitions
	Transition actions
	Global transitions
	Event handlers
	Rendering fragments

	5.13. Working with messages
	Adding plain text messages
	Adding internationalized messages
	Using message bundles
	Understanding system generated messages

	5.14. Displaying popups
	5.15. View backtracking
	Discarding history
	Invalidating history

	6. Executing actions
	6.1. Introduction
	6.2. Defining action states
	6.3. Defining decision states
	6.4. Action outcome event mappings
	6.5. Action implementations
	Invoking a POJO action
	Invoking a custom Action implementation
	Invoking a MultiAction implementation

	6.6. Action exceptions
	Handling a business exception with a POJO action
	Handling a business exception with a MultiAction
	Using an exception-handler element

	6.7. Other Action execution examples
	on-start
	on-entry
	on-exit
	on-end
	on-render
	on-transition
	Named actions
	Streaming actions
	Handling File Uploads

	7. Flow Managed Persistence
	7.1. Introduction
	7.2. FlowScoped PersistenceContext
	7.3. Flow Managed Persistence And Sub-Flows

	8. Securing Flows
	8.1. Introduction
	8.2. How do I secure a flow?
	8.3. The secured element
	Security attributes
	Matching type

	8.4. The SecurityFlowExecutionListener
	Custom Access Decision Managers

	8.5. Configuring Spring Security
	Spring configuration
	web.xml Configuration

	9. Flow Inheritance
	9.1. Introduction
	9.2. Is flow inheritance like Java inheritance?
	9.3. Types of Flow Inheritance
	Flow level inheritance
	State level inheritance

	9.4. Abstract flows
	9.5. Inheritance Algorithm
	Mergeable Elements
	Non-mergeable Elements

	10. System Setup
	10.1. Introduction
	10.2. Java Config and XML Namespace
	10.3. Basic system configuration
	FlowRegistry
	FlowExecutor

	10.4. flow-registry options
	Specifying flow locations
	Assigning custom flow identifiers
	Assigning flow meta-attributes
	Registering flows using a location pattern
	Flow location base path
	Configuring FlowRegistry hierarchies
	Configuring custom FlowBuilder services
	conversion-service
	expression-parser
	view-factory-creator
	development

	10.5. flow-executor options
	Attaching flow execution listeners
	Tuning FlowExecution persistence
	max-executions
	max-execution-snapshots

	11. Spring MVC Integration
	11.1. Introduction
	11.2. Configuring web.xml
	11.3. Dispatching to flows
	Registering the FlowHandlerAdapter
	Defining flow mappings
	Flow handling workflow

	11.4. Implementing custom FlowHandlers
	Example FlowHandler
	Deploying a custom FlowHandler
	FlowHandler Redirects

	11.5. View Resolution
	11.6. Signaling an event from a View
	Using a named HTML button to signal an event
	Using a hidden HTML form parameter to signal an event
	Using a HTML link to signal an event

	11.7. Embedding A Flow On A Page
	Embedded Mode Vs Default Redirect Behavior
	Embedded Flow Examples

	11.8. Saving Flow Output to MVC Flash Scope

	12. Spring JavaScript Quick Reference
	12.1. Introduction
	12.2. Serving Javascript Resources
	12.3. Including Spring Javascript in a Page
	12.4. Spring Javascript Decorations
	12.5. Handling Ajax Requests
	Providing a Library-Specific AjaxHandler
	Handling Ajax Requests with Spring MVC Controllers
	Handling Ajax Requests with Spring MVC + Spring Web Flow

	13. JSF Integration
	13.1. Introduction
	13.2. Configuring web.xml
	13.3. Configuring Web Flow for use with JSF
	13.4. Replacing the JSF Managed Bean Facility
	Using Flow Variables
	Using Scoped Spring Beans
	Manipulating The Model
	Data Model Implementations

	13.5. Handling JSF Events With Spring Web Flow
	Handling JSF In-page Action Events
	Handling JSF Action Events
	Performing Model Validation
	Handling Ajax Events In JSF

	13.6. Embedding a Flow On a Page
	13.7. Redirect In Same State
	13.8. Handling File Uploads with JSF
	File Uploads with PrimeFaces

	13.9. Using the Spring Security Facelets Tag Library
	13.10. Third-Party Component Library Integration

	14. Testing flows
	14.1. Introduction
	14.2. Extending AbstractXmlFlowExecutionTests
	14.3. Specifying the path to the flow to test
	14.4. Registering flow dependencies
	14.5. Testing flow startup
	14.6. Testing flow event handling
	14.7. Mocking a subflow

	Appendix A. Flow Definition Language 1.0 to 2.0 Mappings

