Spring Web Flow Reference Guide

Version 2.5.1.RELEASE

Keith Donald , Erwin Vervaet , Jeremy Grelle , Scott Andrews , Rossen Stoyanchev , Phillip Webb

Copyright ©

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Web Flow Reference Guide

Table of Contents

L 1= 7= Lo iX
I 191 (oo 18 ot o o KPP PSP PP PRPP 1
1.1. What thiS QUIAE COVEIS ...ttt ettt e et e et e a et e e e e eenas 1

1.2. What Web FIOW reqUIreS t0 FUNiiiiiiiiiii et e e e e 1

1.3, RESOUICES ...ciiiiiiiiii e e r e e e e s e eaa e 1

1.4. How to access Web Flow artifacts from Maven Centralccoooiiiiiiiiiiiiiiiiieeis 1

1.5. How to access nightly builds and milestone releasesc.cceveveiiiviiiiiiii i, 1
Accessing snapshots and milestones with Mavenc..ccoovviiiiiiicin i, 2

AT F= LR N = PP 3
2.1, SPring WED FIOW 2.5 ..ot 3

2.2. SPriNG WED FIOW 2.4 ..ot e e e e e e e e e 3
Java-based ConfiguIation ... e 3

Spring MVC Flash Scope INtegrationuovieiiiiiiiiiii e 3

Partial JSR-303 Bean Validationuuuuiiiieiiiiiiiiii e 3

HIDErNAte SUPPOIT ... e e et e e e eens 3

LIRS U o] o Lo] £ APPSR 3

Minimum JSF 2.0 REQUIFEMENT ...uuiiii i e e e e e e e e e e e e e e e e e eeaes 3

Portlet API 2.0 and JSF 2.0 SUPPOIT «..cuuuiiii ettt e e e e e eenns 4

(D=7 o] =To= 11 o] 0 LT PP 4

2.3. SPriNG WED FIOW 2.3 ..ottt e e e e e e e et e e e e e e ean s 4
Embedding A FIOW ON A PAgecouuiiiiiiiiiieei e e e e e 4

Support For JSR-303 Bean Validationooiiieuiiiiiiii e 4
Flow-Managed Persistence Context Propagationccceeuiieiiiieiiiieiiii e eceeee e, 4

Portlet 2.0 RESOUICE REQUESEScuiiiiiieiie et aeees 4

Custom ConVersatioNMANEAGETocieuuu et 4

RedireCt IN SAME SEALEcovviiiiii e e 5

S T= 1001 o] 1= 2SS PP 5

2.4, SPriNg WED FIOW 2.2 ..ot 5

JSOF 2 SUP PO et 5
Comprehensive JSF 2 SUPPOIT ...t e e e e e 5

Travel Sample With the PrimeFaces COMPONENLScocuvvieiiiiiiiiiiiiinieeeiineeeees 5

Spring Security Facelets Tag LIDraryoooeeiiiiiicii e e 6

Spring JavaSCript UPAALESoeuniiiiieii et e e e e e e eens 6
Deprecated RESOUICESSEIVIELccouuiiiiiii i 6

[oo T R ST T To o (o] [0)R PP 6

TWO SPring JS @rtifaClS ...oeuuieiiiiii e 6

Client resources moved into META-INF/Web-reSourcescc.oeoveviiieeiiiinneeiinnnnnn. 6

ST o 1 1= ST U]] o o (P 6

Portlet API 2.0 and JSF 1.2 SUPPOITeeuniiiieieeei e 6

3. DEfINING FIOWS ...eiieii e ettt e et e et e et e e e e 7
K0 I [011 o Yo [F T 1o o PP P PP R 7

3.2, WRAL IS @ fIOW? e et et aas 7

3.3. What is the makeup of @ typical fIOW?oiiiiiiiiiii e 7

3.4. How are flows @UthOred?uuiiiiiiiiiii e 8

3.5. Essential [anguage €lemMENTS ... i 8
1101 8
VIBW=STALE ...ttt ettt e e e e e eean 9

Version 2.5.1.RELEASE Spring Web Flow iii

Spring Web Flow Reference Guide

L7z 1T [o o PP PRRPPPPPPTPIN 9
ENA-STALE ...iiett it 9
Checkpoint: Essential language elementscouiiiiiiiiiiiiiii e 9

BB, ACHIONS ...ttt et 10
EVAIUBLE ...ttt 10
AsSIgNINg an evaluate reSUILiviiiiii e 10
Converting an evaluate reSuUltooiiiiiiiiii e 11
Checkpoint: fIOW ACHONSiiiie e 11

3.7. INPU/OULPUL MBPPING .enieieiiiee ettt ettt e et e e e et eeeaaa s 11
] 1] U 12
Declaring an iNPUL TYPEcuuii et 12

ASSIgNING an INPUL VAIUEiiiiiii e 12

Marking an iNPUt @S rEQUITEAuiiiinieiiiieee e e e e e e e e e e e 12

Lo 011 11 | PP UPTTPT 12
Specifying the source of an output valuecooviiiiiiiiiiiiii e, 13
Checkpoint: inpUt/OULPUL MAPPING .vvuiiiiiee e e e e e e ea e eees 13

3.8, VArIADIES ..o 13
AT L PP PP TPPRUPTPPR 13

3.9. VaAriable SCOPES ...iiiiiiii et 14
FIOW SCOPE ..ottt e e e ea e 14
VIBW SO ..ttt ettt e et e et e e et ettt a e 14
LS 8 =TS A Yoo] L= 14
FlaSN SCOPE oo e 14
CONVEISALION SCOPE ..iiiiieiiiti ettt ettt ettt et a et eb e et eeb e e e erb e e e enanns 14
3.10. Calling SUDFIOWSuiiiiici e e e e e 14
SUDTIOW-STALE ..ot 14
Passing a SUBFIOW INPUL ... 15

Mapping SUBfIOW OULPULcoeeii e e e 15
Checkpoint: calling SUBTIOWS ... e 15

4. EXPression Language (EL)oooeeiiiiiiiiie et 17
I 11 (0o 18 o4 o o PP 17
EXPIESSION TYPES ..ottt ettt et eaa s 17
Standard EXPIrESSIONS ...c.uuuiiiiiin ittt e et e e et e et e eeeab e e ea e e e e eee 17

BT 0] o] Fo G =D o] (=SS (o] 1 17

4.2. EL IMPIEMENTALIONSieiiiiiiiit ettt et e e et et e et e e eb e e e aeaes 18
SPIING EL oot s 18
UNIfIEA EL ettt 18

4.3, EL POADIITY ..oeniee e e aa e 18
4.4, Special EL variables ... 19
L1017 o7 0 o 1= PP 20
VTS Tole] o U PP 20

[0 [T RS o] oL PP 20

11 TS 1S Yoo o= 20

[o10] 01V /=T 6= 11 (o] g STl o[PP P UPTRPPTR 20
FEQUESTPAIAMEIEIS ...ttt et 20
CUITENEEVENT ..o et e r e e ennes 21

(o1U =T 110] PPN 21
MESSAGECONTEXE ..ottt ettt ettt ettt et e r et e e e e et e e e e 21
FESOUICEBUNGAIE ...eiiei e et e e 21
FIOWREQUESTCONTEXE ...ttt et e e e e et e e e e ean s 21

Version 2.5.1.RELEASE Spring Web Flow iv

Spring Web Flow Reference Guide

FIOWEXECULIONCONIEXE ...ttt et e e et e e e e e s 21
FIOWEXECULIONUIT ... et et e e e e e 21

() =] = 1 (O] 1 1= SR 21

4.5. Scope searching algorithmiiiiii e 22
5. RENAEIING VIBWS ..ottt e et et e e et et et e e et e e et e e et e e et e e ean e eeanaeeens 23
S0 I 11 o o 11 o3 1T o I PPN 23
5.2. DEfiNING VIBW STALES ...ivtiiiii i et e e e e e e e e et e e e e e ean s 23
5.3. Specifying VIEW IdEeNLIIEISiiii e 23
FIOW relatiVe VIEW 1US ...oeeiiiiiiei e e e e e e e e e e e e ean e 23
ADSOIULE VIBW 1US ..t e et e et e e e eaa e e e eanas 24
LOGICAI VIEW TS ..ottt ettt et e e et e et e eaa e ees 24

B VIBW SCOPE ittt ettt ettt e ettt e ettt e e et et e e et et e e et ettt e e e ab e aenes 24
Allocating VIEW Variablesccouiiiiiiiii e 24
Assigning a viewScope variable ... 24
Manipulating ObJeCtS IN VIEW SCOPEuiiiiiiiieiiiii et 24

5.5. EXECULING reNAEr ACONSuuiiiiiieii et ee e e e e e e e e e e e e e et e e e e e eanns 25
5.6. BINAING 10 @ MOTEIiiiie e e e e e 25
5.7. Performing type CONVEISIONcoouuiiiiiiii ettt e e 25
Type CoNVErSION OPLIONSiiiiieiii et e e e e e e e e e e e e e e e e et e e ean e ennas 26
Upgrading to Spring 3 Type Conversion And FOrmattingccooveivniiiiniiiiniiineeeines 26
Configuring Type Conversion and FOrmattingccccooveiiiiiiiiiiiiine e 27
Working With Spring 3 Type Conversion And Formattingcccoveviieviiieiiinieiineennnn, 28
Formatting ANNOTALIONSicueiiiiie i e et e e e e e 29
WOTKING WIth DAEScoeuiiiiiii e et e et e et e eeeees 29

5.8. SUPPressing DINGINGooeeiii e 29
5.9. Specifying bindings eXPliCitlyooouiiiii e 29
5.10. Validating @ MOTEIiiiiiiii e 30
JSR-303 Bean Validationoociiiiiiiiiiii e e 30
Partial Validationcoouiiii e e 31
Programmatic ValidatioNcoouuuiiiiiiii e 31
Implementing a model validate methodcccoiiiiiiiiin 31
Implementing @ Validatorco.uiiiiiiii e 32

Default validate method ..o 33

RV £z T F= LT 4 O 0] o1 1= APPSR 33
5.11. Suppressing Validationooouuiiiiiii e 33
5.12. EXECULiING VIEW traNSITIONSceiiviiieiiiiii ettt e 34
L= a1 [o] =T o PRSPPI 34
GlODAI TrANSITIONS ...t ettt et e et et e e et e e e ean e eaes 34
LY=o o = Vg | 1= PP 35
ReNdEring fragMeNTSccouiiii e e 35
5.13. WOrking WIith MESSAGESuiiiiiiiiiiiii et e e eaans 35
Adding Plain tEXE MESSAYES .. .ccvvuuiiiiii ettt et e 35
Adding internationalized MESSAGESccuuuiiiiniiiiiiee e 36
Using Message BUNAIES ... e 36
Understanding system generated MESSATESuvvvvuiiunieiinieiiiieeeaereieeeieeeiaeeeiaeeannnns 36
N S B 1T o F= Y g o T o L] o1 1 37
5.15. View DaCKIraCKinNgo..iiiiiii e e 37
DISCArdiNg NISTOMY ...eeiiii e ettt e e e e 37
TNV 11 To F= L o T 11 (o 37

6. EXECULING ACLIONS ...ttt ettt ettt e et e e et e et e et e e et e e et e e et e e abeeeaeaeanns 38

Version 2.5.1.RELEASE Spring Web Flow v

Spring Web Flow Reference Guide

L 1 (o To [11 o] o F PRSP 38
6.2. DefiNiNg ACtiON STALES ... c..uiiit et e e e e e 38
6.3. Defining deCISION STAESiiiiiiiiieiiii e et e e 39
6.4. Action OULCOME EVENE MAPPINGS tvuurernieii et et e et e e e e e e e e e e et e et e et e e e e aeanaaes 39
6.5. ACION IMPIEMENTALIONS ...t ettt e e et e e et e e e eanaaees 39
INVOKING 8 POJO ACHON ...coiitiiiiiiii e e s 40
Invoking a custom Action implementationccoceueiiiiieiii e 40
Invoking a MultiAction implementationcoooeuiiiiiiiii e 40

B.6. ACHON EXCEPLIONS ..ottt e e e et et e e et et e e e e et e e e eeraaeaeees 40
Handling a business exception with a POJO actionccccciveiiiiiiiiiieiiiec e 40
Handling a business exception with a MUIIACHONcooiiiiiiiiiiii e, 41
Using an exception-handler elementcoouiiiiiiiiii e 41

6.7. Other Action execution eXamPlesoiviiiiiiiiiii e 42
(o] B = | A TP PP 42

0T R =T 11 PP 42

o] 0= OSSP 42

(o] BT= o [o IR PP TPPTRUPRRRPIN 42

(o =T T[T PP 43

(o] g B =1 0 £ 1T I PP 43

N F= T g [=To [F= ol 1o o TP UPTRPPP 43
SrEAMING ACHONSiiitie et e e e et e e e e e s 44
Handling File UPIOAdSccovuniiiiiei e e e et e e e e eaes 44

7. Flow Managed PerSISIEINCEiiiuiiiiiiiii ettt e e e e et e e e e e eees 46
4% T 11 o o 15 o3 1T o I PPN 46
7.2. FlowScoped PersistENCECONTEXEccuuiiiiiieiie e e e e e e e e e e e e 46
7.3. Flow Managed Persistence And SUD-FIOWSccouiiiiiiiiiiii e a7
8. SECUNNG FIOWS ...eeiiiiii ettt e et et e et e et e e e ee b e e e eebeaeaees 48
S A [11 (o To [1 X 1o] o F PSPPI 48
8.2. HOW d0 | SECUIE @ flOW? ..oeee et e 48
8.3. The SECUred EIEBMENT ... e e e e e e e e e e e e ean s 48
Y=o U] A= L1] o 11 (=P 48
MALCRING TYPE et ettt e et e e e e ea e 48

8.4. The SecurityFIOWEXECULIONLISIENETuuiiiiiiiee e 49
Custom Access DeCiSION MANAGEISvveunieiiieiii e e e e e e e e e e e ean s 49

8.5. Configuring SPriNg SECUILYuiiuuiiii ettt e e e e e eaaa e 49
SPriNG CONfIGUIALIONeeueiiiii ettt e e 49
Web.XMI CONfIQUIALIONiiit e e e e e e e e et e e eanaeee 50

9. FIOW INNEIIEANCE ... et e ettt e e et e et e e et e e e e e e e ean s 51
LS 0 I 11 o o 11 o3 1 T o I PPN 51
9.2. Is flow inheritance like Java INNErtanCe?oiviiiiiiiiiii e 51
9.3. Types of FIOW INNEMIANCEoiiiiie e e 51
FIOW leVel INNEIEANCEuuiiiii e e e e eanas 51
State level INNEIMEANCEoiii e 51

9.4, ADSIIACTE TIOWS ...t ettt et e e e eees 52
9.5. Inheritance AIGOMTRIM ... e e e e e eens 52
Mergeable EIBMENTSiiii i 52
Non-mergeable EIBMENTS ... e 53

O V1 (=] ST =] (U PRSPPI 54
I 254 O [o T [o 1 o o I PP 54
10.2. Java Config and XML NAMESPACEuoiiuuiiiiiiaiiie ittt eaa e eees 54

Version 2.5.1.RELEASE Spring Web Flow Vi

Spring Web Flow Reference Guide

10.3. Basic system CONfIQUIALIONcouuiiiiiiiii e e e e e e e e eanns 54
FIOWREBGISIIY ..ttt et et e et e e e e eaans 54

L 01T U o S 55
O oYV = To T 1S 1 VA o] o] 1o o <P 55
Specifying flow I0CAtIONScouiii e 55
Assigning custom flow IdENTIfIErSuiiiiiii e 55
Assigning flow meta-attribDULESoovuiiiii e 56
Registering flows using a location Patterncooooeiiiiiiiiiiie e 56
Flow location Dase Pathcoouuiiiiiiiii e 56
Configuring FlowRegistry hierarChi€scooveiiiiii e 57
Configuring custom FIOWBUIIAEr SEIVICESviiuiiiiiiiiii e 58

(o10] 01V 1= 6] [0 g B Y= Y o = P 59
EXPIESSION-PAISEL ..ueituetiteeeteeet e ettt e et e eat e eet e et e aetn e eaneeataeetn e eanaeeanaeeaneeanns 60
VIEW-TACTONY-CrEALON it 60
EVEIOPIMENT ...ttt e e e 60

10.5. flOW-EXECULOI OPLIONS ..ovuiiiiieiiiee et e e e e e e e e e e e e et e e et e e aaneeeens 60
Attaching flow execution lISTENEIScoiiuiiiii e 60
Tuning FIOWEXECULION PEISISIENCEcciiviiieiiiiii e e e eees 61
MAX-EXECULIONS ...eittieeeitt ettt e e ettt e e ettt e e e e et e e e et e e e e et e e e eete e e e eetn e eeeetanaeeenes 61
MAaX-eXeCUtioN-SNAPSNOLScouiii e 61

11. SPriNG MVC INEGIALIONciieieieeeiii et ettt ettt e e e et e e et eeeba s 62
5 00 O 1o T [o 1 o o I PP 62
11.2. Configuring WED.XMI ..o e 62
11.3. Dispatching t0 fIOWScoouiiiiiii e 62
Registering the FIOWHaNdIErAAPLErccouniiiiieei e e e e 62
Defining flow MapPINgS ... ooeniii et 62
Flow handling WOTKFIOWiiiii e 63
11.4. Implementing custom FIOWHANAIEISooeiiiiiiii e e 63
Example FIOWHANAIEE ... oo e 64
Deploying a custom FIOWHANAIEEoouuiiiiiiiii e 65
FlIOWHANAIEr REAITECSuuiiiiii et e e e eanes 65
11.5. VIEW RESOIULION ..eiiiiiii ettt ettt e e et e et e e e e e e aanaaes 65
11.6. Signaling an event from @ VIBWooiiiuiiiiiii e 66
Using a named HTML button to signal an eventccooviiiiiiiiiii e 66
Using a hidden HTML form parameter to signal an eventcccoocoeveeeiniiiiieiiineeennnn. 66
Using a HTML link to Signal @an @VENTiiiiiiiiiiciii e 66
11.7. Embedding A FIOW ON A PAgE ...couuiiiiiiiei ettt e e e e e e e e e e e e e e eeen 67
Embedded Mode Vs Default Redirect Behaviorooooiiiiiiiiiiii e, 67
Embedded FIOW EXAMPIEScoouuniiiiiiieiee e 67
11.8. Saving Flow Output to MVC Flash SCOPEc.oiviiiiiiiiiiiiee e 67
12. Spring JavaScript QUICK REFEIENCEiiiiiii e e 69
2 I [1o T [T o) o S 69
12.2. Serving JavasCliPt RESOUICESc.uuiiieieiiiieeeiee e e e e et e e e e e e et e e e e e e et e e e eanes 69
12.3. Including Spring Javascript iN @ PAgEcouuiiiiiiii e 70
12.4. Spring JavascCript DECOTALIONScc.uuuiieiitiiieeeii ettt e e e et e e eea e eees 70
12.5. Handling AjaX REQUESESuuiiiiiiii e e e e e e e e et e e et e e e e e e eeens 72
Providing a Library-Specific AjaxHandlercooooiiiiiii e 72
Handling Ajax Requests with Spring MVC Controllersccooveviiiniiiiiiinieieecinn 72
Handling Ajax Requests with Spring MVC + Spring Web Flowccoooviiiiiiiin, 73

RS BN Y el [01 (Yo | = Vo o LTS UPPRPP 74

Version 2.5.1.RELEASE Spring Web Flow Vii

Spring Web Flow Reference Guide

IR 700 O 1o T [o 1 o o I PP 74
13.2. Configuring WED.XMIee e 74
13.3. Configuring Web Flow for use With JSF ... 75
13.4. Replacing the JSF Managed Bean Facilityccooeviiiiiiiiiin e 76
USING FIOW VariabIes 76
Using Scoped SPring BEANSiiiiiiiiiiiiii e 77
Manipulating The MOGEIiii e e e r e 77
Data Model ImpIeMENLAtiONSoiiuniiiiii e 78
13.5. Handling JSF Events With Spring Web FIOWcoouiiiiiiiiiiiicc e 78
Handling JSF In-page ACtion EVENLSccouiiiiiiii e 78
Handling JSF ACLON EVENLSocuiiiiiiiieei ettt e e e e e ean s 79
Performing Model Validationcooouuiiiiiii e 80
Handling Ajax EVENLS IN IS ... e eaa s 80
13.6. Embedding a FIOW ON @ Pageoiiiiiiiiii et 81
13.7. RedireCt IN SAME STALEiiii i e 81
13.8. Handling File Uploads With JSFccoiiiii e e 82
File Uploads with PrimMEFACESooouiiiiiiiii e 82
13.9. Using the Spring Security Facelets Tag Libraryc.ocoiiiiiiiiiieeieees 82
13.10. Third-Party Component Library INtegrationccccevoviiiiiiiiiiii e 84
T4, TeSHNG FIOWS ..o ettt e et et e e e e et e e et e eaaaaees 85
I R 1o T [T o) o S 85
14.2. Extending AbstractXmIFIOWEXECULIONTESEScuuiviiieiiiiiii e ee e e e e 85
14.3. Specifying the path to the flow 10 teStcoeiiiii e 85
14.4. Registering flow depPendenCIESocieuuiiiiiiii et 85
T =T o T 01T VA = L (U] o 85
14.6. Testing flow event handling ... 86
14.7. MOCKING @ SUDFIOW ...t enees 86
A. Flow Definition Language 1.0 t0 2.0 MaPPINGSccuueriinieeieeeiierieeeseeeeireeaaesansesaineeaneeennes 88

Version 2.5.1.RELEASE Spring Web Flow viii

Spring Web Flow Reference Guide

Preface

Many web applications require the same sequence of steps to execute in different contexts. Often these
sequences are merely components of a larger task the user is trying to accomplish. Such a reusable
sequence is called a flow.

Consider a typical shopping cart application. User registration, login, and cart checkout are all examples
of flows that can be invoked from several places in this type of application.

Spring Web Flow is the module of Spring for implementing flows. The Web Flow engine plugs into
the Spring Web MVC platform and provides declarative flow definition language. This reference guide
shows you how to use and extend Spring Web Flow.

Version 2.5.1.RELEASE Spring Web Flow ix

Spring Web Flow Reference Guide

1. Introduction

1.1. What this guide covers

This guide covers all aspects of Spring Web Flow. It covers implementing flows in end-user applications
and working with the feature set. It also covers extending the framework and the overall architectural
model.

1.2. What Web Flow requires to run
Java 1.8 or higher.

Spring 5.0 or higher.

1.3. Resources

You can ask questions and interact on StackOverflow using the designated tags, see Spring at
StackOverflow.

Report bugs and make requests using the Spring Issue Tracker.

Submit pull requests and work with the source code , see Web Flow on Github.

1.4. How to access Web Flow artifacts from Maven Central

Each jar in the Web Flow distribution is available in the Maven Central Repository. This allows you to
easily integrate Web Flow into your application if you are already using Maven as the build system for
your web development project.

To access Web Flow jars from Maven Central, declare the following dependency in your pom:

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>spring-webflow</artifactld>

<version>x.y.z. RELEASE</ versi on>
</ dependency>

If using JavaServer Faces, declare the following dependency in your pom (includes transitive
dependencies "spring-binding", "spring-webflow"):

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>spring-faces</artifactld>

<ver si on>x. Y. z. RELEASE</ ver si on>
</ dependency>

1.5. How to access nightly builds and milestone releases

Nightly snapshots of Web Flow development branches are available using Maven. These snapshot
builds are useful for testing out fixes you depend on in advance of the next release, and provide a
convenient way for you to provide feedback about whether a fix meets your needs.

Version 2.5.1.RELEASE Spring Web Flow 1

https://spring.io/questions
https://spring.io/questions
http://jira.spring.io
https://github.com/spring-projects/spring-webflow
http://search.maven.org

Spring Web Flow Reference Guide

Accessing snapshots and milestones with Maven

For milestones and snhapshots you'll need to use the SpringSource repository. Add the following
repository to your Maven pom.xmil:

<repository>

<i d>spring</id>

<nanme>Spring Repository</nane>

<url >http://repo.spring.iol/snapshot</url >
</repository>

Then declare the following dependencies:

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>spring-webflow</artifactld>
<versi on>x.y. z. BUl LD- SNAPSHOT</ ver si on>

</ dependency>

And if using JSF:

<dependency>
<groupl d>or g. spri ngf ramewor k. webf | ow</ gr oupl d>
<artifactld>spring-faces</artifactld>
<versi on>x.y. z. BUl LD- SNAPSHOT</ ver si on>

</ dependency>

Version 2.5.1.RELEASE Spring Web Flow 2

Spring Web Flow Reference Guide

2. What's New
2.1. Spring Web Flow 2.5

This release provides an upgrade path to Spring Framework 5 that in turn requires Java 8+, Servlet 3.1,
Hibernate 5, Tiles 3. See the Spring Framework wiki for more details. The samples repository has been
upgraded to Spring Web Flow 2.5.

As of 2.5 there is no longer a spring-js module. The classes from that module have been kept but
moved to new packages in the spring-webflow module. The spring-js-resources module is available as
an optional module that must be included explicitly.

This release requires JSF 2.2 or higher.

2.2. Spring Web Flow 2.4

This release requires JDK 1.6.

Java-based Configuration

Web Flow now supports a Java-based alternative for its system configuration. See the updated
Chapter 10, System Setup.

Also see the booking-mvc and booking-faces samples that have been updated to use all Java config.

Spring MVC Flash Scope Integration

When a flow ends it can now redirect to a Spring MVC controller after saving attributes in Spring MVC's
flash scope for the controller to access.

See Section 11.8, “Saving Flow Output to MVC Flash Scope”.
Partial JSR-303 Bean Validation

A flow definition can apply partial validation on the model through the validation-hints attribute supported
on view state and transition elements.

See the section called “Partial Validation”.

Hibernate Support

The Hi ber nat eFl owExecut i onLi st ener now supports Hibernate 4 in addition to Hibernate 3.
As of 2.4.4 the Hi ber nat eFl owExecut i onLi st ener also works with Hibernate 5.

Tiles 3 Support

The Aj axTi | esVi ewnow supports Tiles 3 in addition to Tiles 2.2.

Minimum JSF 2.0 Requirement

Java ServerFaces version 1.2 and earlier are no longer supported by Spring Web Flow, if you have not
done so already you will need to upgrade to JSF 2.0 or above. In addition the Spring Faces components
that were previously provided with JSF 1.2 for progressive AJAX enhancements have been removed
in this release.

Version 2.5.1.RELEASE Spring Web Flow 3

https://github.com/spring-projects/spring-framework/wiki/What%27s-New-in-Spring-Framework-5.x
https://github.com/spring-projects/spring-webflow-samples
https://github.com/spring-projects/spring-webflow-samples/tree/master/booking-mvc
https://github.com/spring-projects/spring-webflow-samples/tree/master/booking-faces

Spring Web Flow Reference Guide

See 77?77,
Portlet API 2.0 and JSF 2.0 support

The internal Portlet integration introduced in Spring Web Flow 2.2 has been upgraded for JSF 2.0
compatibility. Some of the more advanced JSF 2.0 features, such as partial state saving, are not
supported in a Portlet environment, however, existing application can now upgrade to the minimum
required JSF version. Upgraded projects will need to ensure that the <f aces: r esour ces> elements
is included as part of their Spring configuration.

Deprecations

This release deprecates Spring.js. The deprecation includes the entire spring-js-resources module
including Spring.js and Spring-Dojo.js and the bundled Dojo and CSS Framework. Also deprecated
is the SpringJavascri pt Aj axHandl er from the spring-js module. The rest of spring-js, e.g.
Aj axHandl er, Aj axTi | esVi ew, will be folded into spring-webflow in a future release.

OGNL support is now deprecated.

2.3. Spring Web Flow 2.3

Embedding A Flow On A Page

By default Web Flow does a client-side redirect upon entering every view state. That makes it impossible
to embed a flow on a page or within a modal dialog and execute more than one view state without
causing a full-page refresh. Web Flow now supports launching a flow in "embedded" mode. In this
mode a flow can transition to other view states without a client-side redirect during Ajax requests. See
Section 11.7, “Embedding A Flow On A Page” and Section 13.6, “Embedding a Flow On a Page”.

Support For JSR-303 Bean Validation

Support for the JSR-303 Bean Validation API is now available building on equivalent support available
in Spring MVC. See Section 5.10, “Validating a model” for more details.

Flow-Managed Persistence Context Propagation

Starting with Web Flow 2.3 a flow managed Per si st enceCont ext is automatically extended
(propagated) to sub-flows assuming the subflow also has the feature enabled as well. See Section 7.3,
“Flow Managed Persistence And Sub-Flows”.

Portlet 2.0 Resource Requests

Support for Portlet 2.0 resource requests has now been added enabling Ajax requests with partial
rendering. URLs for such requests can be prepared with the <port| et: resour ceURL> tag in JSP
pages. Server-side processing is similar to a combined an action and a render requests but combined
in a single request. Unlike a render request, the response from a resource request includes content
from the target portlet only.

Custom ConversationManager

The <fl ow executi on-repository> element now provides a conversation-manager attribute
accepting a reference to a ConversationManager instance.

Version 2.5.1.RELEASE Spring Web Flow 4

Spring Web Flow Reference Guide

Redirect In Same State

By default Web Flow does a client-side redirect when remaining in the same view state as long as the
current request is not an Ajax request. This is useful after form validation failure. Hitting Refresh or
Back won't result in browser warnings. Hence this behavior is usually desirable. However a new flow
execution attribute makes it possible to disable it and that may also be necessary in some cases specific
to JSF applications. See Section 13.7, “Redirect In Same State”.

Samples

The process for building the samples included with the distribution has been simplified. Maven can
be used to build all samples in one step. Eclipse settings include source code references to simplify
debugging.

Additional samples can be accessed as follows:

nkdi r spring-sanples

cd spring-sanpl es

svn co https://src.springframework. org/svn/spring-sanpl es/ webf| ow pri mef aces- showcase
cd webfl ow pri mef aces- showcase

mvn package

inport into Eclipse

nmkdi r spring-sanpl es

cd spring-sanpl es

svn co https://src.springframework. org/svn/spring-sanpl es/ webf | ow showcase
cd webf | ow showcase

mvn package

inport into Eclipse

2.4. Spring Web Flow 2.2

JSF 2 Support

Comprehensive JSF 2 Support

Building on 2.1, Spring Web Flow version 2.2 adds support for core JSF 2 features The following features
that were not supported in 2.1 are now available: partial state saving, JSF 2 resource request, handling,
and JSF 2 Ajax requests. At this point support for JSF 2 is considered comprehensive although not
covering every JSF 2 feature -- excluded are mostly features that overlap with the core value Web Flow
provides such as those relating to navigation and state management.

See Section 13.3, “Configuring Web Flow for use with JSF” for important configuration changes. Note
that partial state saving is only supported with Sun Mojarra 2.0.3 or later. It is not yet supported with
Apache MyFaces. This is due to the fact MyFaces was not as easy to customize with regards to how
component state is stored. We will work with Apache MyFaces to provide this support. In the mean time
you will need to use the j avax. f aces. PARTI AL_STATE_SAVI NG context parameter in web. xnl to
disable partial state saving with Apache MyFaces.

Travel Sample With the PrimeFaces Components

The main Spring Travel sample demonstrating Spring Web Flow and JSF support is now built on JSF 2
and components from the PrimeFaces component library. Please check out the booking-faces sample
in the distribution.

Additional samples can be found at the Spring Web Flow - Prime Faces Showcase, an SVN repository
within the spring-samples repository. Use these commands to check out and build:

Version 2.5.1.RELEASE Spring Web Flow 5

https://src.springframework.org/svn/spring-samples/webflow-primefaces-showcase
https://src.springframework.org/svn/spring-samples

Spring Web Flow Reference Guide

svn co https://src.springframework. org/svn/spring-sanpl es/ webfl ow pri mef aces- showcase
cd webfl ow pri mef aces- showcase
m/n package

Spring Security Facelets Tag Library

A new Spring Security tag library is available for use with with JSF 2.0 or with JSF 1.2 Facelets views.
It provides an <authorize> tag as well as several EL functions. See Section 13.9, “Using the Spring
Security Facelets Tag Library” for more details.

Spring JavaScript Updates
Deprecated ResourcesServlet

Starting with Spring 3.0.4, the Spring Framework includes a replacement for the ResourcesServlet.
Please see the Spring Framework documentation for details on the custom mvc namespace, specifically
the new "resources" element.

Dojo 1.5 and dojox
The bundled custom Dojo build is upgraded to version 1.5. It now includes dojox.

Note that applications are generally encouraged to prepare their own custom Dojo build for optimized
performance depending on what parts of Dojo are commonly used together. For examples see the
scripts used by Spring Web Flow to prepare its own custom Dojo build.

Two Spring JS artifacts

The spri ng-j s artifact has been split in two -- the new artifact (spri ng-j s-resour ces) contains
client side resource (.js, .css, etc.) while the existing artifact (spri ng-j s) contains server-side Java
code only.

Applications preparing their own custom Dojo build have an option now to avoid including spri ng-j s-
resour ces and put Spri ng. j s and Spri ng- Doj o. j s directly under the root of their web application.

Client resources moved into META-INF/web-resources

Bundled client resources (.js, .css, etc.) have been moved to META- | NF/ web- r esour ces from their
previous location under META- | NF. This change is transparent for applications but will result in simpler
and safer configuration when using the new resource handling mechanism available in Spring 3.0.4.

JSF Portlet Support

Portlet APl 2.0 and JSF 1.2 support

In previous versions of Spring Web Flow support for JSF Portlets relied on a Portlet Bridge for JSF
implementation and was considered experimental. Spring Web Flow 2.2 adds support for JSF Portlets
based on its own internal Portlet integration targeting Portlet APl 2.0 and JSF 1.2 environments. See
?2?? for more details. The Spring Web Flow Travel JSF Portlets sample has been successfully tested
on the Apache Pluto portal container.

Version 2.5.1.RELEASE Spring Web Flow 6

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/mvc.html#mvc-static-resources
https://src.springframework.org/svn/spring-webflow/branches/spring-webflow-2.2-maintenance/spring-js-resources/scripts/dojo

Spring Web Flow Reference Guide

3. Defining Flows

3.1. Introduction

This chapter begins the Users Section. It shows how to implement flows using the flow definition
language. By the end of this chapter you should have a good understanding of language constructs,
and be capable of authoring a flow definition.

3.2. What is a flow?

A flow encapsulates a reusable sequence of steps that can execute in different contexts. Below is a
Garrett Information Architecture diagram illustrating a reference to a flow that encapsulates the steps
of a hotel booking process:

A *,
Hotels Site

- SearchCriterla

SearchResults

—
socurad

BookHote

[EES U U -

Site Map illustrating a reference to a flow

3.3. What is the makeup of a typical flow?

In Spring Web Flow, a flow consists of a series of steps called "states". Entering a state typically results
in a view being displayed to the user. On that view, user events occur that are handled by the state.
These events can trigger transitions to other states which result in view navigations.

Version 2.5.1.RELEASE Spring Web Flow 7

http://www.jjg.net/ia/visvocab/

Spring Web Flow Reference Guide

The example below shows the structure of the book hotel flow referenced in the previous diagram:

d ~,
Book Hotel
| |
entry polnt; > BookingDetalls
SearchPesults
| |
BookingContirmation
™~ /
Y
| |
axit point;
HotelSearch

Flow diagram

3.4. How are flows authored?

Flows are authored by web application developers using a simple XML-based flow definition language.
The next steps of this guide will walk you through the elements of this language.

3.5. Essential language elements

flow

Every flow begins with the following root element:

<?xm version="1.0" encodi ng="UTF-8"?>
<fl ow xm ns="http://ww. spri ngfranmewor k. or g/ schema/ webf | ow"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xsi : schemalLocati on="http://ww. spri ngfranmewor k. or g/ schema/ webf | ow
http://ww. spri ngfranewor k. or g/ schema/ webf | ow spri ng-webf | ow. xsd" >

</ fl ow>

All states of the flow are defined within this element. The first state defined becomes the flow's starting
point.

Version 2.5.1.RELEASE Spring Web Flow 8

Spring Web Flow Reference Guide

view-state

Use the vi ew st at e element to define a step of the flow that renders a view:

<vi ew state id="enterBooki ngDetails" />

By convention, a view-state maps its id to a view template in the directory where the
flow is located. For example, the state above might render /WEB-1 NF/ hot el s/ booki ng/
ent er Booki ngDet ai | s. xht m if the flow itself was located in the / VEB- | NF/ hot el s/ booki ng
directory.

transition

Use the t r ansi t i on element to handle events that occur within a state:

<vi ew state id="enterBooki ngDetails">
<transition on="submt" to="revi ewBooking" />
</ vi ew st at e>

These transitions drive view navigations.

end-state

Use the end- st at e element to define a flow outcome:

<end-state i d="booki ngCancel | ed" />

When a flow transitions to a end-state it terminates and the outcome is returned.
Checkpoint: Essential language elements

With the three elements vi ew- st at e, transi ti on, and end- st at e, you can quickly express your
view navigation logic. Teams often do this before adding flow behaviors so they can focus on developing
the user interface of the application with end users first. Below is a sample flow that implements its view
navigation logic using these elements:

Version 2.5.1.RELEASE Spring Web Flow 9

Spring Web Flow Reference Guide

<fl ow xm ns="http://ww. spri ngfranmewor k. or g/ schema/ webf | ow'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schena/ webf | ow
http://ww. spri ngfranewor k. or g/ schema/ webf | ow spri ng-webf | ow. xsd" >

<vi ew st at e i d="ent er Booki ngDet ai | s" >
<transition on="submt" to="revi emBooki ng" />
</ vi ew st at e>

<vi ew state id="revi enBooki ng">
<transition on="confirn to="bookingConfirmed" />
<transition on="revi se" to="enterBooki ngDetails" />
<transition on="cancel" to="booki ngCancelled" />

</ vi ew st at e>

<end- st at e i d="booki ngConfirmed" />

<end- st at e i d="booki ngCancel | ed" />

</ flow>

3.6. Actions

Most flows need to express more than just view navigation logic. Typically they also need to invoke
business services of the application or other actions.

Within a flow, there are several points where you can execute actions. These points are:
» On flow start

¢ On state entry

* On view render

» On transition execution

+ On state exit

» On flow end

Actions are defined using a concise expression language. Spring Web Flow uses the Unified EL by
default. The next few sections will cover the essential language elements for defining actions.

evaluate

The action element you will use most often is the eval uat e element. Use the eval uat e element to
evaluate an expression at a point within your flow. With this single tag you can invoke methods on Spring
beans or any other flow variable. For example:

<eval uat e expressi on="entityManager. persi st (booking)" />

Assigning an evaluate result

If the expression returns a value, that value can be saved in the flow's data model called f | owScope:

<eval uat e expressi on="booki ngServi ce. findHotel s(searchCriteria)" result="fl owScope. hotel s" />

Version 2.5.1.RELEASE Spring Web Flow 10

Spring Web Flow Reference Guide

Converting an evaluate result

If the expression returns a value that may need to be converted, specify the desired type using the
resul t -type attribute:

<eval uat e expressi on="booki ngServi ce. findHot el s(searchCriteria)" result="fl owScope. hot el s"
resul t-type="dat aMbdel "/ >

Checkpoint: flow actions

Now review the sample booking flow with actions added:

<fl ow xm ns="http://ww. springfranmewor k. or g/ schema/ webf | ow"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ scherma/ webf | ow
http://ww. spri ngfranewor k. or g/ schena/ webf | ow spri ng-webf | ow. xsd" >

<i nput name="hotel | d" />

<on-start>
<eval uat e expressi on="booki ngServi ce. cr eat eBooki ng(hotel Id, currentUser.nane)"
resul t ="fl owScope. booki ng" />
</on-start>

<vi ew st at e i d="ent er Booki ngDet ai | s" >
<transition on="submt" to="revi ewBooking" />
</ vi ew st at e>

<vi ewstate id="revi enBooki ng">
<transition on="confirm' to="booki ngConfirmed" />
<transition on="revise" to="enterBooki ngDetails" />
<transition on="cancel" to="bookingCancelled" />

</ vi ew st at e>

<end- st at e i d="booki ngConfirmed" />

<end- st at e i d="booki ngCancel | ed" />

</ fl ow>

This flow now creates a Booking object in flow scope when it starts. The id of the hotel to book is obtained
from a flow input attribute.

3.7. Input/Output Mapping

Each flow has a well-defined input/output contract. Flows can be passed input attributes when they start,
and can return output attributes when they end. In this respect, calling a flow is conceptually similar to
calling a method with the following signature:

Fl owQut cone flow d(Map<String, Object> inputAttributes);

... where a FI owQut con®e has the following signature:

Version 2.5.1.RELEASE Spring Web Flow 11

Spring Web Flow Reference Guide

public interface Fl owCQutcone {
public String getNane();
public Map<String, Cbject> getQutputAttributes();

input

Use the i nput element to declare a flow input attribute:

<i nput name="hotel | d" />

Input values are saved in flow scope under the name of the attribute. For example, the input above
would be saved under the name hot el | d.

Declaring an input type

Use the t ype attribute to declare the input attribute's type:

<i nput name="hotel | d" type="long" />

If an input value does not match the declared type, a type conversion will be attempted.
Assigning an input value

Use the val ue attribute to specify an expression to assign the input value to:

<i nput nanme="hotel I d* val ue="fl owScope. nyPar anet er Cbj ect. hotel I d" />

If the expression's value type can be determined, that metadata will be used for type coersion if no
t ype attribute is specified.

Marking an input as required

Use the r equi r ed attribute to enforce the input is not null or empty:

<i nput nanme="hotel | d" type="long" val ue="fl owScope. hotel I d" required="true" />

output

Use the out put element to declare a flow output attribute. Output attributes are declared within end-
states that represent specific flow outcomes.

<end-state id="booki ngConfirmed">
<out put name="booki ngl d" />
</ end- st at e>

Output values are obtained from flow scope under the name of the attribute. For example, the output
above would be assigned the value of the booki ngl d variable.

Version 2.5.1.RELEASE Spring Web Flow 12

Spring Web Flow Reference Guide

Specifying the source of an output value

Use the val ue attribute to denote a specific output value expression:

<out put name="confirmati onNunber" val ue="booki ng. confi rmati onNunber" />

Checkpoint: input/output mapping

Now review the sample booking flow with input/output mapping:

<fl ow xm ns="http://ww. spri ngfranmewor k. or g/ schema/ webf | ow'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. spri ngfranmewor k. or g/ schena/ webf | ow
ht t p: // www. spri ngf ramewor k. or g/ schenma/ webf | ow spri ng- webf | ow. xsd" >

<i nput nanme="hotel Id" />

<on-start>
<eval uat e expressi on="booki ngServi ce. cr eat eBooki ng(hotel I d, currentUser.nnane)"
resul t ="f| owScope. booki ng" />
</on-start>

<vi ew st at e i d="ent er Booki ngDet ai | s" >
<transition on="submt" to="revi emBooki ng" />
</ vi ew st at e>

<vi ew state id="revi enBooki ng">
<transition on="confirnm' to="booki ngConfirmed" />
<transition on="revise" to="enterBooki ngDetails" />
<transition on="cancel" to="booki ngCancelled" />

</ vi ew st at e>

<end- st at e i d="booki ngConfirnmed" >
<out put name="booki ngl d" val ue="booki ng.id"/>
</ end- st at e>

<end- st at e i d="booki ngCancel | ed" />

</ fl ow>

The flow now accepts a hot el | d input attribute and returns a booki ngl d output attribute when a new
booking is confirmed.

3.8. Variables

A flow may declare one or more instance variables. These variables are allocated when the flow starts.
Any @\ut owi r ed transient references the variable holds are also rewired when the flow resumes.

var

Use the var element to declare a flow variable:

<var name="searchCriteria" class="com nyconpany. nyapp. hotel s. search. SearchCriteria"/>

Make sure your variable's class implements j ava. i 0. Seri al i zabl e, as the instance state is saved
between flow requests.

Version 2.5.1.RELEASE Spring Web Flow 13

Spring Web Flow Reference Guide

3.9. Variable Scopes
Web Flow can store variables in one of several scopes:

Flow Scope

Flow scope gets allocated when a flow starts and destroyed when the flow ends. With the default
implementation, any objects stored in flow scope need to be Serializable.

View Scope

View scope gets allocated when a vi ew st at e enters and destroyed when the state exits. View scope
is only referenceable from within a vi ew- st at e. With the default implementation, any objects stored
in view scope need to be Serializable.

Request Scope

Request scope gets allocated when a flow is called and destroyed when the flow returns.

Flash Scope

Flash scope gets allocated when a flow starts, cleared after every view render, and destroyed when the
flow ends. With the default implementation, any objects stored in flash scope need to be Serializable.

Conversation Scope

Conversation scope gets allocated when a top-level flow starts and destroyed when the top-level
flow ends. Conversation scope is shared by a top-level flow and all of its subflows. With the default
implementation, conversation scoped objects are stored in the HTTP session and should generally be
Serializable to account for typical session replication.

The scope to use is often determined contextually, for example depending on where a variable is defined
-- at the start of the flow definition (flow scope), inside a a view state (view scope), etc. In other cases,
for example in EL expressions and Java code, it needs to be specified explicitly. Subsequent sections
explain how this is done.

3.10. Calling subflows

A flow may call another flow as a subflow. The flow will wait until the subflow returns, then respond to
the subflow outcome.

subflow-state

Use the subf | ow st at e element to call another flow as a subflow:

<subfl owstate id="addGuest" subflow="createCuest">
<transition on="guestCreated" to="revi enBooking">
<eval uat e expressi on="booki ng. guests. add(current Event.attributes. guest)" />
</transition>
<transition on="creationCancel |l ed" to="revi enBooki ng" />
</ subf | ow st at e>

Version 2.5.1.RELEASE Spring Web Flow 14

Spring Web Flow Reference Guide

The above example calls the cr eat eGuest flow, then waits for it to return. When the flow returns with
a guest Cr eat ed outcome, the new guest is added to the booking's guest list.

Passing a subflow input

Use the i nput element to pass input to the subflow:

<subfl owstate id="addGuest" subflow="createCuest">
<i nput nanme="booki ng" />
<transition to="revi enBooki ng" />

</ subf | ow st at e>

Mapping subflow output

When a subflow completes, its end-state id is returned to the calling flow as the event to use to continue
navigation.

The subflow can also create output attributes to which the calling flow can refer within an outcome
transition as follows:

<transition on="guestCreated" to="revi enBooking">
<eval uat e expressi on="booki ng. guests. add(current Event.attributes. guest)" />
</transition>

In the above example, guest is the name of an output attribute returned by the guest Cr eat ed
outcome.

Checkpoint: calling subflows

Now review the sample booking flow calling a subflow:

Version 2.5.1.RELEASE Spring Web Flow 15

Spring Web Flow Reference Guide

<fl ow xm ns="http://ww. spri ngfranmewor k. or g/ schema/ webf | ow'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xsi : schemalLocati on="http://ww. spri ngfranmewor k. or g/ schema/ webf | ow
http://ww. spri ngfranewor k. or g/ schena/ webf | ow spri ng-webf | ow. xsd" >

<i nput name="hotel | d" />

<on-start>
<eval uat e expressi on="booki ngServi ce. cr eat eBooki ng(hotel Id, currentUser.nane)"
resul t ="f | owScope. booki ng" />
</on-start>

<vi ew st at e i d="ent er Booki ngDet ai | s" >
<transition on="submt" to="revi emBooki ng" />
</ vi ew st at e>

<view state id="revi ewBooki ng">
<transition on="addGuest" to="addCuest" />
<transition on="confirm' to="booki ngConfirnmed" />
<transition on="revise" to="enterBooki ngDetails" />
<transition on="cancel" to="bookingCancelled" />

</ vi ew st at e>

<subfl ow state i d="addGuest" subfl ow="creat eCuest">
<transition on="guestCreated" to="revi enBooki ng">
<eval uat e expressi on="booki ng. guests. add(current Event. attributes. guest)" />
</transition>
<transition on="creati onCancel | ed" to="revi ewBooki ng" />
</ subf | ow st at e>

<end- st at e i d="booki ngConfirmed" >
<out put name="booki ngl d" val ue="booking.id" />
</ end- st at e>

<end- st at e i d="booki ngCancel | ed" />

</ fl ow>

The flow now calls a cr eat eGuest subflow to add a new guest to the guest list.

Version 2.5.1.RELEASE Spring Web Flow

16

Spring Web Flow Reference Guide

4. Expression Language (EL)

4.1. Introduction

Web Flow uses EL to access its data model and to invoke actions. This chapter will familiarize you with
EL syntax, configuration, and special EL variables you can reference from your flow definition.

EL is used for many things within a flow including:

1. Access client data such as declaring flow inputs or referencing request parameters.

2. Access data in Web Flow's Request Cont ext such as f | owScope or current Event .
3. Invoke methods on Spring-managed objects through actions.

4. Resolve expressions such as state transition criteria, subflow ids, and view names.

EL is also used to bind form parameters to model objects and reversely to render formatted form fields
from the properties of a model object. That however does not apply when using Web Flow with JSF in
which case the standard JSF component lifecyle applies.

Expression types

An important concept to understand is there are two types of expressions in Web Flow: standard
expressions and template expressions.

Standard Expressions

The first and most common type of expression is the standard expression. Such expressions are
evaluated directly by the EL and need not be enclosed in delimiters like #{} . For example:

<eval uat e expression="searchCriteria.nextPage()" />

The expression above is a standard expression that invokes the next Page method on the
searchCriteri a variable when evaluated. If you attempt to enclose this expression in a special
delimiter like #{} you will get an | | | egal Ar gunent Except i on. In this context the delimiter is seen
as redundant. The only acceptable value for the expr essi on attribute is an single expression string.

Template expressions

The second type of expression is a template expression. A template expression allows mixing of literal
text with one or more standard expressions. Each standard expression block is explicitly surrounded
with the #{} delimiters. For example:

<viewstate id="error" view="error-#{external Context.|ocal e}.xhtm" />

The expression above is a template expression. The result of evaluation will be a string
that concatenates literal text such as error- and .xhtm with the result of evaluating
ext ernal Cont ext .| ocal e. As you can see, explicit delimiters are necessary here to demarcate
standard expression blocks within the template.

Version 2.5.1.RELEASE Spring Web Flow 17

Spring Web Flow Reference Guide

Note

See the Web Flow XML schema for a complete listing of those XML attributes that accept standard
expressions and those that accept template expressions. You can also use F2 in Eclipse (or
equivalent shortcut in other IDES) to access available documentation when typing out specific
flow definition attributes.

4.2. EL Implementations
Spring EL

Web Flow uses the Spring Expression Language (Spring EL). Spring EL was created to provide a single,
well-supported expression language for use across all the products in the Spring portfolio. It is distributed
as a separate jar or g. spri ngf ramewor k. expr essi on in the Spring Framework.

Unified EL

Use of Unified EL also implies a dependency on el - api although that is typically provided by your
web container. Although Spring EL is the default and recommended expression language to use, it is
possible to replace it with Unified EL if you wish to do so. You need the following Spring configuration
to plug in the WebFI owELEXxpr essi onPar ser to the f | ow bui | der - servi ces:

<webf | ow: f | ow bui | der-services expression-parser="expressi onParser"/>

<bean id="expressi onParser" class="org.springfranmework. webfl ow. expressi on. el . WebFl owELExpr essi onPar ser " >
<constructor-arg>
<bean cl ass="org.j boss. el . Expressi onFactorylnpl" />
</ constructor-arg>
</ bean>

Note that if your application is registering custom converters it's important to ensure the
WebFlowELExpressionParser is configured with the conversion service that has those custom
converters.

<webf | ow: f| ow bui | der - servi ces expressi on- par ser =" expr essi onParser" conversi on-
servi ce="conver si onServi ce"/ >

<bean id="expressi onParser" class="org.springframework. webf| ow. expressi on. el . WebFI owELEXpr essi onPar ser " >
<constructor-arg>
<bean cl ass="org.] boss. el . Expressi onFactorylnmpl" />
</ constructor-arg>
<property nanme="conversi onServi ce" ref="conversionService"/>
</ bean>

<bean id="conversi onServi ce" cl ass="sonepackage. Appl i cati onConversi onServi ce"/>

4.3. EL portability

In general, you will find Spring EL and Unified EL to have a very similar syntax.

Note however there are some advantages to Spring EL. For example Spring EL is closely integrated with
the type conversion of Spring 3 and that allows you to take full advantage of its features. Specifically the
automatic detection of generic types as well as the use of formatting annotations is currently supported
with Spring EL only.

Version 2.5.1.RELEASE Spring Web Flow 18

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://en.wikipedia.org/wiki/Unified_Expression_Language

Spring Web Flow Reference Guide

There are some minor changes to keep in mind when upgrading to Spring EL from Unified EL as follows:
1. Expressions deliniated with ${} in flow definitions must be changed to #{ } .

2. Expressions testing the current event #{ current Event == 'subnit'} must be changed to
#{currentEvent.id == 'submit'}.

3. Resolving properties such as #{ cur r ent User . nane} may cause NullPointerException without any
checks such as #{currentUser != null ? currentUser.nane : null}.A much better
alternative though is the safe navigation operator #{ cur r ent User ?. nane}.

For more information on Spring EL syntax please refer to the Language Reference section in the Spring

Documentation.

4.4. Special EL variables

There are several implicit variables you may reference from within a flow. These variables are discussed
in this section.

Keep in mind this general rule. Variables referring to data scopes (flowScope, viewScope,
requestScope, etc.) should only be used when assigning a new variable to one of the scopes.

For example when assigning the result of the call to
booki ngServi ce. fi ndHot el s(searchCriteria) to a new variable called "hotels" you must
prefix it with a scope variable in order to let Web Flow know where you want it stored:

<?xm version="1.0" encodi ng="UTF-8"?>
<fl ow xm ns="http://ww. spri ngfranmework. or g/ schema/ webfl ow' ... >

<var nanme="searchCriteria" class="org.springframework. webf| ow. sanpl es. booki ng. SearchCriteria" />

<viewstate id="revi ewHotel s">
<on-render >
<eval uat e expressi on="booki ngServi ce. findHotel s(searchCriteria)" result="vi enScope. hotel s" />
</ on-render >
</ vi ew st at e>

</ fl ow>

However when setting an existing variable such as "searchCriteria" in the example below, you reference
the variable directly without prefixing it with any scope variables:

<?xm version="1.0" encodi ng="UTF-8"?>
<flow xm ns="http://ww. springfranework. or g/ schema/ webflow' ... >

<var nane="searchCriteria" class="org.springfranmework. webfl ow sanpl es. booki ng. SearchCriteria" />

<viewstate id="revi ewHotel s">
<transition on="sort">
<set nane="searchCriteria.sortBy" val ue="requestParaneters.sortBy" />
</transition>
</ vi ew st at e>

</ fl ow>

The following is the list of implicit variables you can reference within a flow definition:

Version 2.5.1.RELEASE Spring Web Flow 19

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-language-ref

Spring Web Flow Reference Guide

flowScope

Use f | owScope to assign a flow variable. Flow scope gets allocated when a flow starts and destroyed
when the flow ends. With the default implementation, any objects stored in flow scope need to be
Serializable.

<eval uat e expressi on="searchService.findHotel (hotelld)" result="fl owScope. hotel" />

viewScope

Use vi ewScope to assign a view variable. View scope gets allocated when avi ew st at e enters and
destroyed when the state exits. View scope is only referenceable from within a vi ew st at e. With the
default implementation, any objects stored in view scope need to be Serializable.

<on-render >
<eval uat e expressi on="searchService.findHotel s(searchCriteria)" result="vi enScope. hot el s"
resul t-type="dat avbdel " />
</ on-render >

requestScope

Use r equest Scope to assign a request variable. Request scope gets allocated when a flow is called
and destroyed when the flow returns.

<set nanme="request Scope. hotel | d" val ue="request Paraneters.id" type="long" />

flashScope

Use f |l ashScope to assign a flash variable. Flash scope gets allocated when a flow starts, cleared
after every view render, and destroyed when the flow ends. With the default implementation, any objects
stored in flash scope need to be Serializable.

<set nane="fl ashScope. st at usMessage" val ue="' Booki ng confirmed " />

conversationScope

Use conver sat i onScope to assign a conversation variable. Conversation scope gets allocated when
a top-level flow starts and destroyed when the top-level flow ends. Conversation scope is shared by
a top-level flow and all of its subflows. With the default implementation, conversation scoped objects
are stored in the HTTP session and should generally be Serializable to account for typical session
replication.

<eval uat e expressi on="searchService.findHotel (hotelld)" result="conversati onScope. hotel" />

requestParameters

Use r equest Par anet er s to access a client request parameter:

Version 2.5.1.RELEASE Spring Web Flow 20

Spring Web Flow Reference Guide

<set nanme="request Scope. hotel | d" val ue="request Paraneters.id" type="long" />

currentEvent

Use curr ent Event to access attributes of the current Event :

<eval uat e expressi on="booki ng. guests. add(current Event.attributes. guest)" />

currentUser

Use current User to access the authenticated Pri nci pal :

<eval uat e expressi on="booki ngServi ce. cr eat eBooki ng(hotel Id, currentUser.nane)"
resul t="f| owScope. booki ng" />

messageContext

Use nmessageCont ext to access a context for retrieving and creating flow execution messages,
including error and success messages. See the MessageCont ext Javadocs for more information.

<eval uat e expressi on="booki ngVal i dat or . val i dat e(booki ng, nessageContext)" />

resourceBundle

Use r esour ceBundl e to access a message resource.

<set nanme="fl ashScope. successMessage" val ue="resour ceBundl e. successMessage" />

flowRequestContext

Use f | owRequest Cont ext to access the Request Cont ext API, which is a representation of the
current flow request. See the API Javadocs for more information.

flowExecutionContext

Usef | owExecut i onCont ext toaccessthe Fl owExecut i onCont ext API, which is arepresentation
of the current flow state. See the API Javadocs for more information.

flowExecutionUrl
Use f | owExecut i onUr | to access the context-relative URI for the current flow execution view-state.
externalContext

Use ext er nal Cont ext to access the client environment, including user session attributes. See the
Ext er nal Cont ext API JavaDocs for more information.

Version 2.5.1.RELEASE Spring Web Flow 21

Spring Web Flow Reference Guide

<eval uat e expressi on="sear chServi ce. suggest Hot el s(ext er nal Cont ext. sessi onMap. userProfile)"
resul t ="vi ewScope. hotel s" />

4.5. Scope searching algorithm

As mentioned earlier in this section when assigning a variable in one of the flow scopes, referencing
that scope is required. For example:

<set nanme="request Scope. hotel | d" val ue="request Paraneters.id" type="long" />

When simply accessing a variable in one of the scopes, referencing the scope is optional. For example:

<eval uat e expressi on="entityManager. persi st (booking)" />

When no scope is specified, like in the use of booki ng above, a scope searching algorithm is used.
The algorithm will look in request, flash, view, flow, and conversation scope for the variable. If no such
variable is found, an Eval uat i onExcept i on will be thrown.

Version 2.5.1.RELEASE Spring Web Flow 22

Spring Web Flow Reference Guide

5. Rendering views

5.1. Introduction

This chapter shows you how to use the vi ew st at e element to render views within a flow.

5.2. Defining view states

Use the vi ew st at e element to define a step of the flow that renders a view and waits for a user
event to resume:

<vi ew st at e i d="ent er Booki ngDet ai | s">
<transition on="submt" to="revi ewBooking" />
</ vi ew st at e>

By convention, a view-state maps its id to a view template in the directory where the
flow is located. For example, the state above might render /WEB- | NF/ hot el s/ booki ng/
ent er Booki ngDet ai | s. xht m if the flow itself was located in the / VEB- | NF/ hot el s/ booki ng
directory.

Below is a sample directory structure showing views and other resources like message bundles co-
located with their flow definition:

¥ (=% > webapp 11642
b [css 11640
b (=% images 11188
b =% META-INF 8740
¥ (=% > WEB-INF 11642
b [} classes 11188
¥ [hotels 11623
¥ (=% booking 11623
(¥3 booking.xml 11563
D, enterBookingDetails .jsp 11623
EE, messages.properties 11623
D, reviewBooking.jsp 11424

Flow Packaging
5.3. Specifying view identifiers
Use the vi ew attribute to specify the id of the view to render explicitly.

Flow relative view ids

The view id may be a relative path to view resource in the flow's working directory:

<vi ew state id="enterBooki ngDetails" view="bookingDetails.xhtm ">

Version 2.5.1.RELEASE Spring Web Flow 23

Spring Web Flow Reference Guide

Absolute view ids

The view id may be a absolute path to a view resource in the webapp root directory:

<vi ew state id="enterBooki ngDetails" view="/WEB-|NF hotel s/ booki ng/ booki ngDetai | s. xhtm ">

Logical view ids

With some view frameworks, such as Spring MVC's view framework, the view id may also be a logical
identifier resolved by the framework:

<vi ewstate id="enterBooki ngDetails" view="bookingDetails">

See the Spring MVC integration section for more information on how to integrate with the MVC
Vi ewResol ver infrastructure.

5.4. View scope

A view-state allocates a new vi ewScope when it enters. This scope may be referenced within the view-
state to assign variables that should live for the duration of the state. This scope is useful for manipulating
objects over a series of requests from the same view, often Ajax requests. A view-state destroys its
viewScope when it exits.

Allocating view variables

Use the var tag to declare a view variable. Like a flow variable, any @\ut owi r ed references are
automatically restored when the view state resumes.

<var nanme="searchCriteria" class="com myconpany. nyapp. hotels. SearchCriteria" />

Assigning a viewScope variable

Use the on- r ender tag to assign a variable from an action result before the view renders:

<on-render >
<eval uat e expressi on="booki ngServi ce. findHot el s(searchCriteria)" result="vi ewScope. hotel s" />
</ on-render >

Manipulating objects in view scope

Objects in view scope are often manipulated over a series of requests from the same view. The following
example pages through a search results list. The list is updated in view scope before each render.
Asynchronous event handlers modify the current data page, then request re-rendering of the search
results fragment.

Version 2.5.1.RELEASE Spring Web Flow 24

Spring Web Flow Reference Guide

<view state id="searchResults">
<on-render >
<eval uat e expressi on="booki ngServi ce. findHot el s(searchCriteria)"
resul t ="vi ewScope. hotel s" />
</ on-render >
<transition on="next">
<eval uat e expressi on="searchCriteria.nextPage()" />
<render fragments="searchResul tsFragnment" />
</transition>
<transition on="previous">
<eval uate expression="searchCriteria. previ ousPage()" />
<render fragnments="searchResul tsFragnment" />
</transition>
</ vi ew st at e>

5.5. Executing render actions

Use the on- r ender element to execute one or more actions before view rendering. Render actions are
executed on the initial render as well as any subsequent refreshes, including any partial re-renderings
of the view.

<on-render >
<eval uat e expressi on="booki ngServi ce. findHot el s(searchCriteria)" result="vi ewScope. hotel s" />
</ on-render >

5.6. Binding to a model

Use the nodel attribute to declare a model object the view binds to. This attribute is typically used
in conjunction with views that render data controls, such as forms. It enables form data binding and
validation behaviors to be driven from metadata on your model object.

The following example declares an ent er Booki ngDet ai | s state manipulates the booki ng model:

<vi ew st ate id="enterBooki ngDetails" nodel ="booki ng">
The model may be an object in any accessible scope, such as f | owScope or vi ewScope. Specifying
a nodel triggers the following behavior when a view event occurs:

1. View-to-model binding. On view postback, user input values are bound to model object properties
for you.

2. Model validation. After binding, if the model object requires validation that validation logic will be
invoked.

For a flow event to be generated that can drive a view state transition, model binding must complete
successfully. If model binding fails, the view is re-rendered to allow the user to revise their edits.

5.7. Performing type conversion

When request parameters are used to populate the model (commonly referred to as data binding),
type conversion is required to parse String-based request parameter values before setting target

Version 2.5.1.RELEASE Spring Web Flow 25

Spring Web Flow Reference Guide

model properties. Default type conversion is available for many common Java types such as numbers,
primitives, enums, and Dates. Users also have the ability to register their own type conversion logic for
user-defined types, and to override the default Converters.

Type Conversion Options

Starting with version 2.1 Spring Web Flow uses the type conversion and formatting system
introduced in Spring 3 for nearly all type conversion needs. Previously Web Flow applications used
a type conversion mechanism that was different from the one in Spring MVC, which relied on the
j ava. beans. Propert yEdi t or abstraction. Spring 3 offers a modern type conversion alternative to
PropertyEditors that was actually influenced by Web Flow's own type conversion system. Hence Web
Flow users should find it natural to work with the new Spring 3 type conversion. Another obvious and
very important benefit of this change is that a single type conversion mechanism can now be used
across Spring MVC And Spring Web Flow.

Upgrading to Spring 3 Type Conversion And Formatting

What does this practically mean for existing applications? Existing applications are likely registering their
own converters of type org. spri ngfranewor k. bi ndi ng. convert. converters. Converter
through a sub-class of Def aul t Conver si onSer vi ce available in Spring Binding. Those converters
can continue to be registered as before. They will be adapted as Spring 3 Generi cConverter types
and registered with a Spring 3 or g. spri ngf ramewor k. core. convert. Conver si onServi ce
instance. In other words existing converters will be invoked through Spring's type conversion service.

The only exception to this rule are named converters, which can be referenced from a bi ndi ng element
inavi ew st ate:

public class ApplicationConversionService extends DefaultConversionService {
public ApplicationConversionService() {
addDef aul t Converters();
addDef aul t Al i ases();
addConverter ("custonConverter”, new CustonConverter());

<vi ew state id="enterBooki ngDetails" nodel ="booki ng">

<bi nder >
<bi ndi ng property="checki nDate" required="true" converter="custonConverter" />
</ bi nder >

</ vi ew st at e>

Named converters are not supported and cannot be used with the type conversion service available
in Spring 3. Therefore such converters will not be adapted and will continue to work as before, i.e. will
not involve the Spring 3 type conversion. However, this mechanism is deprecated and applications are
encouraged to favor Spring 3 type conversion and formatting features.

Also note that the existing Spring Binding Def aul t Conver si onSer vi ce no longer registers any
default converters. Instead Web Flow now relies on the default type converters and formatters in Spring
3.

In summary the Spring 3 type conversion and formatting is now used almost exclusively in Web Flow.
Although existing applications will work without any changes, we encourage moving towards unifying
the type conversion needs of Spring MVC and Spring Web Flow parts of applications.

Version 2.5.1.RELEASE Spring Web Flow 26

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#format

Spring Web Flow Reference Guide

Configuring Type Conversion and Formatting

In Spring MVC an instance of a For nat t i ngConver si onSer vi ce is created automatically through
the custom MVC namespace:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: mve="http://ww. spri ngfranmewor k. or g/ schema/ nvc"
xsi : schemalLocati on="
http://ww. springframewor k. or g/ schema/ mvc
ht t p: // www. spri ngf ramewor k. or g/ schema/ nvc/ spri ng- nvc. xsd
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans
http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans. xsd" >

<mvc: annot ati on-driven/ >

Internally that is done with the help of Formatti ngConver si onServi ceFact or yBean, which
registers a default set of converters and formatters. You can customize the conversion service instance
used in Spring MVC through the conver si on- ser vi ce attribute:

<mvc:annotation-driven conversion-service="applicationConversionService" />

In Web Flow an instance of a Spring Binding Def aul t Conversi onService is created
automatically, which does not register any converters. Instead it delegates to a
Format t i ngConver si onSer vi ce instance for all type conversion needs. By default this is not the
same For mat t i ngConver si onSer vi ce instance as the one used in Spring 3. However that won't
make a practical difference until you start registering your own formatters.

The Def aul t Conver si onSer vi ce used in Web Flow can be customized through the flow-builder-
services element:

<webf | ow: f | ow bui | der - servi ces id="fl owBui | der Servi ces" conversi on-servi ce="def aul t Conver si onServi ce" />

Connecting the dots in order to register your own formatters for use in both Spring MVC and in Spring
Web Flow you can do the following. Create a class to register your custom formatters:

public class ApplicationConversionServiceFactoryBean extends FormattingConversi onServi ceFact oryBean {

@verride
protected void install Fornmatters(FornmatterRegistry registry) {
Il

}

Configure it for use in Spring MVC:

Version 2.5.1.RELEASE Spring Web Flow 27

Spring Web Flow Reference Guide

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: mve="http://ww. springfranmework. org/ schema/ m/c"
xsi : schemaLocat i on="
http://ww. spri ngfranmewor k. or g/ schema/ mvc
http://ww. springfranework. org/ schema/ mvc/ spri ng-nmvc. xsd
http://ww. springfranmewor k. or g/ schema/ beans
ht t p: / / www. spri ngf ramewor k. or g/ schenma/ beans/ spri ng- beans. xsd" >

<mvc:annotation-driven conversion-service="applicationConversionService" />

SR
Alternatively if you prefer annotations for Dl:
1. Add @onponent to the factory bean.
2. Add a conponent-scan el enent (fromthe context custom nanespace) here.
3. Renpbve XM. bean decl aration bel ow.
So s

<bean id="applicati onConversi onServi ce" cl ass="sonepackage. Appl i cati onConver si onServi ceFact or yBean">

Connection the Web Flow Def aul t Conver si onSer vi ce to the same "applicationConversionService"
bean used in Spring MVC:

<webfl ow fl owregistry id="fl owRegi stry" flow buil der-services="fl owBuil der Services" ... />

<webf | ow: f | ow bui | der - servi ces id="fl owBui | der Servi ces" conversion-
servi ce="def aul t Conver si onService" ... />

<bean id="def aul t Conver si onServi ce" class="org. springfranmework. bi ndi ng. convert. servi ce. Def aul t Conver si onServi ce" >
<constructor-arg ref="applicati onConversi onSevi ce"/ >
</ bean>

Of course it is also possible to mix and match. Register new Spring 3 For matt er types through
the "applicationConversionService". Register existing Spring Binding Convert er types through the
"defaultConversionService".

Working With Spring 3 Type Conversion And Formatting
An important concept to understand is the difference between type converters and formatters.

Type converters in Spring 3, provided in or g. spri ngf r anewor k. cor e, are for general-purpose type
conversion between any two object types. In addition to the most simple Convert er type, two other
interfaces are Convert er Fact ory and Generi cConverter.

Formatters in Spring 3, provided in or g. spri ngf r amewor k. cont ext , have the more specialized
purpose of representing Objects as Strings. The Fornmatt er interface extends the Printer and
Par ser interfaces for converting an Object to a String and turning a String into an Object.

Web developers will find the For mat t er interface most relevant because it fits the needs of web
applications for type conversion.

Note

An important point to be made is that Object-to-Object conversion is a generalization of the
more specific Object-to-String conversion. In fact in the end For matt ers are reigstered as

Version 2.5.1.RELEASE Spring Web Flow 28

Spring Web Flow Reference Guide

CGeneri cConvert er types with Spring's Gener i cConver si onSer vi ce making them equal to
any other converter.

Formatting Annotations

One of the best features of the new type conversion is the ability to use annotations for a better control
over formatting in a concise manner. Annotations can be placed on model attributes and on arguments
of @Controller methods that are mapped to requests. Out of the box Spring provides two annotations
Nunber For mat and Dat eTi neFor mat but you can create your own and have them registered along
with the associated formatting logic. You can see examples of the Dat eTi neFor mat annotation in the
Spring Travel and in the Petcare along with other samples in the Spring Samples repository.

Working With Dates

The Dat eTi meFor mat annotation implies use of Joda Time. If that is present on the classpath the
use of this annotation is enabled automatically. By default neither Spring MVC nor Web Flow register
any other date formatters or converters. Therefore it is important for applications to register a custom
formatter to specify the default way for printing and parsing dates. The Dat eTi meFor mat annotation
on the other hand provides more fine-grained control where it is necessary to deviate from the default.

For more information on working with Spring 3 type conversion and formatting please refer to the relevant
sections of the Spring documentation.

5.8. Suppressing binding

Use the bi nd attribute to suppress model binding and validation for particular view events. The following
example suppresses binding when the cancel event occurs:

<vi ew state id="enterBooki ngDetails" nodel ="booki ng">

<transition on="proceed" to="revi ewBooki ng">

<transition on="cancel" to="bookingCancelled" bind="false" />
</ vi ew st at e>

5.9. Specifying bindings explicitly

Use the bi nder element to configure the exact set of model properties to apply data binding to. This
is useful to restrict the set of "allowed fields" per view. Not using this could lead to a security issue,
depending on the application domain and actual users, since by default if the binder element is not
specified all public properties of the model are eligible for data binding by the view. By contrast when the
bi nder element is specified, only the explicitly configured bindings are allowed. Below is an example:

<vi ew state id="enterBooki ngDetails" npdel ="booki ng">
<bi nder >
<bi ndi ng property="creditCard" />
<bi ndi ng property="creditCardNanme" />
<bi ndi ng property="creditCardExpi ryMonth" />
<bi ndi ng property="creditCardExpiryYear" />
</ bi nder >
<transition on="proceed" to="revi ewBooki ng" />
<transition on="cancel" to="cancel" bind="false" />
</ vi ew st at e>

Version 2.5.1.RELEASE Spring Web Flow 29

https://src.springframework.org/svn/spring-samples/travel
https://src.springframework.org/svn/spring-samples/petcare
https://src.springframework.org/svn/spring-samples
http://joda-time.sourceforge.net/
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/index.html

Spring Web Flow Reference Guide

Each binding may also apply a converter to format the model property value for display in a custom
manner. If no converter is specified, the default converter for the model property's type will be used.

<vi ew state id="enterBooki ngDetails" nodel ="booki ng">
<bi nder >
<bi ndi ng property="checki nDate" converter="shortDate" />
<bi ndi ng property="checkout Date" converter="shortDate" />
<bi ndi ng property="creditCard" />
<bi ndi ng property="creditCardNanme" />
<bi ndi ng property="creditCardExpi ryMonth" />
<bi ndi ng property="creditCardExpiryYear" />
</ bi nder >
<transition on="proceed" to="reviewBooking" />
<transition on="cancel" to="cancel" bind="false" />
</ vi ew st at e>

In the example above, the shor t Dat e converter is bound to the checki nDat e and checkout Dat e
properties. Custom converters may be registered with the application's ConversionService.

Each binding may also apply a required check that will generate a validation error if the user provided
value is null on form postback:

<vi ew state id="enterBooki ngDetails" nodel ="booki ng">
<bi nder >
<bi ndi ng property="checki nDate" converter="shortDate" required="true" />
<bi ndi ng property="checkout Date" converter="shortDate" required="true" />
<bi ndi ng property="creditCard" required="true" />
<bi ndi ng property="creditCardNane" required="true" />
<bi ndi ng property="creditCardExpi ryMonth" required="true" />
<bi ndi ng property="creditCardExpiryYear" required="true" />
</ bi nder >
<transition on="proceed" to="reviewBooking">
<transition on="cancel" to="bookingCancelled" bind="fal se" />
</ vi ew st at e>

In the example above, all of the bindings are required. If one or more blank input values are bound,
validation errors will be generated and the view will re-render with those errors.

5.10. Validating a model

Model validation is driven by constraints specified against a model object. Web Flow supports enforcing
such constraints programatically as well as declaratively with JSR-303 Bean Validation annotations.

JSR-303 Bean Validation

Web Flow provides built-in support for the JSR-303 Bean Validation API building on equivalent support
available in Spring MVC. To enable JSR-303 validation configure the flow-builder-services with Spring
MVC's Local Val i dat or Fact or yBean:

<webf | ow: f|l owregi stry fl ow buil der-servi ces="fl owBui | der Servi ces" />
<webf | ow: f| ow bui | der-services id="fl owBui | der Servi ces" validator="validator" />

<bean id="validator" class="org.springframework.validation.beanvalidation.Local Val i dat or Fact oryBean" />

With the above in place, the configured validator will be applied to all model attributes after data binding.

Version 2.5.1.RELEASE Spring Web Flow 30

Spring Web Flow Reference Guide

Note that JSR-303 bean validation and validation by convention (explained in the next section) are not
mutually exclusive. In other words Web Flow will apply all available validation mechanisms.

Partial Validation

JSR-303 Bean Validation supports partial validation through validation groups. For example:

@\Not Nul |
@i ze(mn = 2, max = 30, groups = Statel. cl ass)
private String nane;

In a flow definition you can specify validation hints on a view state or on a transition and those will be
resolved to validation groups. For example:

<view state id="statel" nodel ="nyMdel " validation-hints=""'groupl, group2' ">

The validation-hints attribute is an expression that in the above example resolves to a comma-delimited
String consisting of the hints "groupl1" and "group2". A Val i dat i onHi nt Resol ver is used to resolve
these hints. The BeanVal i dati onHi nt Resol ver used by default tries to resolve these strings to
Class-based bean validation groups. To do that it looks for matching inner types in the model or its
parent.

For example given or g. exanpl e. MyModel with inner types G- oupl and G oup2 it is sufficient to
supply the simple type names, i.e. "groupl” and "group2". You can also provide fully qualified type
names.

A hint with the value "default" has a special meaning and is translated to the default validation group in
Bean Validation j avax. val i dati on. groups. Def aul t.

A custom ValidationHi ntResol ver can be configured if necessary through the
validationHintResolver property of the flow-builder-services element:

<webf |l ow: fl owregi stry fl ow buil der-servi ces="fl owBui | der Servi ces" />

<webf | ow. f | ow bui | der-services id="fl owBui | der Servi ces" validator=".." validation-hint-resolver=".." />

Programmatic validation

There are two ways to perform model validation programatically. The first is to implement validation
logic in your model object. The second is to implement an external Val i dat or . Both ways provide you
with a Val i dat i onCont ext to record error messages and access information about the current user.

Implementing a model validate method

Defining validation logic in your model object is the simplest way to validate its state. Once such logic
is structured according to Web Flow conventions, Web Flow will automatically invoke that logic during
the view-state postback lifecycle. Web Flow conventions have you structure model validation logic by
view-state, allowing you to easily validate the subset of model properties that are editable on that view.
To do this, simply create a public method with the name val i dat e${ st at e}, where ${ st at e} is the
id of your view-state where you want validation to run. For example:

Version 2.5.1.RELEASE Spring Web Flow 31

Spring Web Flow Reference Guide

public class Booking {
private Date checki nDat e;
private Date checkout Date;

public void validat eEnt er Booki ngDet ai | s(Val i dati onCont ext context) {
MessageCont ext nessages = context.get MessageCont ext () ;
i f (checkinDate. before(today())) {
nessages. addMessage(new MessageBuil der().error().source("checkinDate").
def aul t Text (" Check in date nust be a future date").build());
} else if (!checkinDate.before(checkoutDate)) {
messages. addMessage(new MessageBuil der (). error().source("checkoutDate").
def aul t Text (" Check out date nust be later than check in date").build());

In the example above, when a transition is triggered in a enterBookingDetails
view-state that is editing a Booking model, Web Flow wil invoke the
val i dat eEnt er Booki ngDet ai | s(Val i dati onCont ext) method automatically unless validation
has been suppressed for that transition. An example of such a view-state is shown below:

<vi ew state id="enterBooki ngDetails" nodel ="booki ng">
<transition on="proceed" to="revi ewBooki ng">
</ vi ew st at e>

Any number of validation methods are defined. Generally, a flow edits a model over a series of views.
In that case, a validate method would be defined for each view-state where validation needs to run.

Implementing a Validator

The second way is to define a separate object, called a Validator, which validates your model object.
To do this, first create a class whose name has the pattern ${model}Validator, where ${ nodel } is the
capitialized form of the model expression, such as booki ng. Then define a public method with the name
val i dat e${ st at e}, where ${ st at e} is the id of your view-state, such as ent er Booki ngDet ai | s.
The class should then be deployed as a Spring bean. Any number of validation methods can be defined.
For example:

@Conponent
public class Booki ngVal i dator {
public void val i dat eEnt er Booki ngDet ai | s(Booki ng booki ng, ValidationContext context) {
MessageCont ext nmessages = context.get MessageContext ();
i f (booki ng. get Checki nDat e() . before(today())) {
nmessages. addMessage(new MessageBui | der (). error().source("checkinDate").
def aul t Text (" Check in date nust be a future date").build());
} else if (!booking.getChecki nDate(). before(booking. get CheckoutDate())) {
messages. addMessage(new MessageBui |l der (). error().source("checkoutDate").
def aul t Text (" Check out date nust be later than check in date").build());

In the example above, when a transition is triggered in a ent er Booki ngDet ai | s view-state that is
editing a Booki ng model, Web Flow will invoke the val i dat eEnt er Booki ngDet ai | s(Booki ng,
Val i dat i onCont ext) method automatically unless validation has been suppressed for that transition.

Version 2.5.1.RELEASE Spring Web Flow 32

Spring Web Flow Reference Guide

A Validator can also accept a Spring MVC Er r or s object, which is required for invoking existing Spring
Validators.

Validators must be registered as Spring beans employing the naming convention
${nodel } Val i dat or to be detected and invoked automatically. In the example above, Spring
2.5 classpath-scanning would detect the @onponent and automatically register it as a bean with
the name booki ngVal i dat or. Then, anytime the booki ng model needs to be validated, this
booki ngVal i dat or instance would be invoked for you.

Default validate method

A Validator class can also define a method called val i dat e not associated (by convention) with any
specific view-state.

@onponent
public class BookingValidator {
public void vali dat e(Booki ng booki ng, ValidationContext context) {
/1. ..
}

In the above code sample the method val i dat e will be called every time a Model of type Booki ng is
validated (unless validation has been suppressed for that transition). If needed the default method can
also be called in addition to an existing state-specific method. Consider the following example:

@onponent
public class BookingValidator {
public void validate(Booki ng booki ng, ValidationContext context) {
/...
}
public void vali dat eEnt er Booki ngDet ai | s(Booki ng booki ng, ValidationContext context) {
/1. ..
}

In above code sample the method val i dat eEnt er Booki ngDet ai | s will be called first. The default
val i dat e method will be called next.

ValidationContext

A ValidationContext allows you to obtain a MessageCont ext to record messages during validation. It
also exposes information about the current user, such as the signaled user Event and the current user's
Pri nci pal identity. This information can be used to customize validation logic based on what button or
link was activated in the Ul, or who is authenticated. See the API Javadocs for Val i dat i onCont ext
for more information.

5.11. Suppressing validation

Use the val i dat e attribute to suppress model validation for particular view events:

<vi ewstate id="chooseAnenities" nodel ="booki ng">

<transition on="proceed" to="revi ewBooki ng">

<transition on="back" to="enterBooki ngDetails" validate="fal se" />
</ vi ew st at e>

Version 2.5.1.RELEASE Spring Web Flow 33

Spring Web Flow Reference Guide

In this example, data binding will still occur on back but validation will be suppressed.

5.12. Executing view transitions

Define one or more transition elements to handle user events that may occur on the view. A
transition may take the user to another view, or it may simply execute an action and re-render the current
view. A transition may also request the rendering of parts of a view called "fragments" when handling
an Ajax event. Finally, "global" transitions that are shared across all views may also be defined.

Implementing view transitions is illustrated in the following sections.
Transition actions

A view-state transition can execute one or more actions before executing. These actions may return an
error result to prevent the transition from exiting the current view-state. If an error result occurs, the view
will re-render and should display an appropriate message to the user.

If the transition action invokes a plain Java method, the invoked method may return a boolean whose
value, true or false, indicates whether the transition should take place or be prevented from executing. A
method may also return a String where the literal values "success", "yes", or "true" indicate the transition
should occur, and any other value means the opposite. This technique can be used to handle exceptions
thrown by service-layer methods. The example below invokes an action that calls a service and handles

an exceptional situation:

<transition on="submt" to="booki ngConfirnmed">
<eval uat e expressi on="booki ngActi on. makeBooki ng(booki ng, nessageContext)" />
</transition>

public class Booki ngAction {
publ i c bool ean makeBooki ng(Booki ng booki ng, MessageCont ext context) {

try {
booki ngSer vi ce. make(booki ng) ;
return true;

} catch (RoonNot Avai | abl eException e) {
cont ext. addMessage(new MessageBui |l der().error().

.defaul t Text ("No roomis available at this hotel™).build());

return fal se;

When there is more than one action defined on a transition, if one returns an error result the remaining
actions in the set will not be executed. If you need to ensure one transition action's result cannot impact
the execution of another, define a single transition action that invokes a method that encapsulates all
the action logic.

Global transitions

Use the flow's gl obal -t ransi t i ons element to create transitions that apply across all views. Global-
transitions are often used to handle global menu links that are part of the layout.

Version 2.5.1.RELEASE Spring Web Flow 34

Spring Web Flow Reference Guide

<gl obal -transi ti ons>
<transition on="login" to="login" />
<transition on="logout" to="l|ogout" />
</ gl obal -transitions>

Event handlers

From a view-state, transitions without targets can also be defined. Such transitions are called "event
handlers":

<transition on="event">
<!-- Handl e event -->
</transition>

These event handlers do not change the state of the flow. They simply execute their actions and re-
render the current view or one or more fragments of the current view.

Rendering fragments

Use the r ender element within a transition to request partial re-rendering of the current view after
handling the event:

<transition on="next">
<eval uate expressi on="searchCriteria. nextPage()" />
<render fragnments="searchResul tsFragnent" />
</transition>

The fragments attribute should reference the id(s) of the view element(s) you wish to re-render. Specify
multiple elements to re-render by separating them with a comma delimiter.

Such partial rendering is often used with events signaled by Ajax to update a specific zone of the view.

5.13. Working with messages

Spring Web Flow's MessageCont ext is an API for recording messages during the course of flow
executions. Plain text messages can be added to the context, as well as internationalized messages
resolved by a Spring MessageSour ce. Messages are renderable by views and automatically survive
flow execution redirects. Three distinct message severities are provided: i nf o, war ni ng, and err or.
In addition, a convenient MessageBui | der exists for fluently constructing messages.

Adding plain text messages

MessageCont ext context = ...
MessageBui | der builder = new MessageBuil der();
cont ext . addMessage(bui | der. error().source("checki nDate")
.defaul t Text ("Check in date nust be a future date").build());
cont ext. addMessage(bui | der. warn(). sour ce("snoki ng")
.defaul t Text ("Snoking is bad for your health").build());
cont ext. addMessage(bui | der. i nfo()
.defaul t Text ("We have processed your reservation - thank you and enjoy your stay").build());

Version 2.5.1.RELEASE Spring Web Flow 35

Spring Web Flow Reference Guide

Adding internationalized messages

MessageCont ext context = ...
MessageBui | der buil der = new MessageBui | der () ;
cont ext . addMessage(bui | der. error().source("checki nDate").code("checkinDate.notFuture").build());
cont ext . addMessage(bui | der. warn() . source("snoki ng"). code("not Heal t hy")
.resol vabl eArg("snoking").build());
cont ext. addMessage(buil der.info().code("reservationConfirmation").build());

Using message bundles

Internationalized messages are defined in message bundles accessed by a Spring MessageSour ce.
To create a flow-specific message bundle, simply define messages. properti es file(s) in your flow's
directory. Create a default nessages. properti es file and a .properties file for each additional
Local e you need to support.

#nmessages. properties

checki nDat e=Check in date nust be a future date

not Heal t hy={0} is bad for your health

reservationConfirmati on=W have processed your reservation - thank you and enjoy your stay

From within a view or a flow, you may also access message resources using the r esour ceBundl e
EL variable:

<h: out put Text val ue="#{resourceBundl e. reservati onConfirmation}" />

Understanding system generated messages

There are several places where Web Flow itself will generate messages to display to the user. One
important place this occurs is during view-to-model data binding. When a binding error occurs, such as
a type conversion error, Web Flow will map that error to a message retrieved from your resource bundle
automatically. To lookup the message to display, Web Flow tries resource keys that contain the binding
error code and target property name.

As an example, consider a binding to a checki nDat e property of a Booki ng object. Suppose the user
typed in a alphabetic string. In this case, a type conversion error will be raised. Web Flow will map the
‘typeMismatch' error code to a message by first querying your resource bundle for a message with the
following key:

booki ng. checki nDat e. t ypeM smat ch

The first part of the key is the model class's short name. The second part of the key is the property
name. The third part is the error code. This allows for the lookup of a uniqgue message to display to the
user when a binding fails on a model property. Such a message might say:

booki ng. checki nDat e. t ypeM smat ch=The check in date nust be in the format yyyy-nmmdd.

If no such resource key can be found of that form, a more generic key will be tried. This key is simply
the error code. The field name of the property is provided as a message argument.

Version 2.5.1.RELEASE Spring Web Flow 36

Spring Web Flow Reference Guide

typeM snat ch=The {0} field is of the wong type.

5.14. Displaying popups

Use the popup attribute to render a view in a modal popup dialog:

<vi ewstate id="changeSearchCriteria" view"enterSearchCriteria.xhtm" popup="true">

When using Web Flow with the Spring Javascript, no client side code is necessary for the popup to
display. Web Flow will send a response to the client requesting a redirect to the view from a popup,
and the client will honor the request.

5.15. View backtracking

By default, when you exit a view state and transition to a new view state, you can go back to the previous
state using the browser back button. These view state history policies are configurable on a per-transition
basis by using the hi st ory attribute.

Discarding history

Set the history attribute to di scar d to prevent backtracking to a view:

<transition on="cancel" to="bookingCancelled" history="discard">

Invalidating history

Set the history attribute to i nval i dat e to prevent backtracking to a view as well all previously displayed
views:

<transition on="confirn' to="booki ngConfirmed" history="invalidate">

Version 2.5.1.RELEASE Spring Web Flow 37

Spring Web Flow Reference Guide

6. Executing actions

6.1. Introduction

This chapter shows you how to use the acti on- st at e element to control the execution of an action
at a point within a flow. It will also show how to use the deci si on- st at e element to make a flow
routing decision. Finally, several examples of invoking actions from the various points possible within
a flow will be discussed.

6.2. Defining action states

Use the act i on- st at e element when you wish to invoke an action, then transition to another state
based on the action's outcome:

<action-state id="noreAnswer sNeeded" >
<eval uat e expression="intervi ew. nor eAnswer sNeeded()" />
<transition on="yes" to="answerQuestions" />
<transition on="no" to="finish" />

</ acti on- st at e>

The full example below illustrates a interview flow that uses the action-state above to determine if more
answers are needed to complete the interview:

<fl ow xm ns="http://ww. springfranmework. or g/ schema/ webf | ow"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngframewor k. or g/ schema/ webf | ow
ht t p: // www. spri ngf ramewor k. or g/ schenma/ webf | ow spri ng- webf | ow. xsd" >

<on-start>
<eval uat e expression="intervi ewFactory.createlnterview)" result="fl owScope.interview' />
</on-start>

<view state id="answer Questions" nodel ="questionSet">
<on-entry>
<eval uat e expression="intervi ew. get Next QuestionSet ()" result="vi ewScope. questi onSet" />
</ on-entry>
<transition on="subm t Answers" to="noreAnswer sNeeded" >
<eval uat e expression="intervi ew. recordAnswers(questionSet)" />
</transition>
</ vi ew st at e>

<action-state id="noreAnswer sNeeded">
<eval uat e expressi on="intervi ew. nor eAnswer sNeeded()" />
<transition on="yes" to="answer Questions" />
<transition on="no" to="finish" />

</ action- st at e>

<end-state id="finish" />

</flow>

After the execution of each action, the action-state checks the result to see if matches a declared
transition to another state. That means if more than one action is configured they are executed in an
ordered chain until one returns a result event that matches a state transition out of the action-state while
the rest are ignored. This is a form of the Chain of Responsibility (CoR) pattern.

Version 2.5.1.RELEASE Spring Web Flow 38

Spring Web Flow Reference Guide

The result of an action's execution is typically the criteria for a transition out of this state. Additional
information in the current RequestContext may also be tested as part of custom transitional criteria
allowing for sophisticated transition expressions that reason on contextual state.

Note also that an action-state just like any other state can have one more on-entry actions that are
executed as a list from start to end.

6.3. Defining decision states

Use the deci si on- st at e element as an alternative to the action-state to make a routing decision
using a convenient if/else syntax. The example below shows the nor eAnswer sNeeded state above
now implemented as a decision state instead of an action-state:

<deci si on-state id="noreAnswer sNeeded" >
<if test="intervi ew noreAnswersNeeded()" then="answer Questions" el se="finish" />
</ deci si on- st at e>

6.4. Action outcome event mappings

Actions often invoke methods on plain Java objects. When called from action-states and decision-states,
these method return values can be used to drive state transitions. Since transitions are triggered by
events, a method return value must first be mapped to an Event object. The following table describes
how common return value types are mapped to Event objects:

Table 6.1. Action method return value to event id mappings

Method return type Mapped Event identifier expression
java.lang.String the String value

java.lang.Boolean yes (for true), no (for false)
java.lang.Enum the Enum name

any other type success

This is illustrated in the example action state below, which invokes a method that returns a boolean
value:

<action-state id="noreAnswer sNeeded" >

<eval uat e expressi on="intervi ew. nor eAnswer sNeeded()" />
<transition on="yes" to="answer Questions" />
<transition on="no" to="finish" />

</ action-stat e>

6.5. Action implementations

While writing action code as POJO logic is the most common, there are several other action
implementation options. Sometimes you need to write action code that needs access to the flow context.
You can always invoke a POJO and pass it the flowRequestContext as an EL variable. Alternatively,
you may implement the Act i on interface or extend from the Mul ti Act i on base class. These options
provide stronger type safety when you have a natural coupling between your action code and Spring
Web Flow APls. Examples of each of these approaches are shown below.

Version 2.5.1.RELEASE Spring Web Flow 39

Spring Web Flow Reference Guide

Invoking a POJO action

<eval uat e expressi on="poj oActi on. net hod(fl owRequest Context)" />

public class PojoAction {
public String nethod(Request Context context) {

}
}

Invoking a custom Action implementation

<eval uat e expressi on="customAction" />

public class CustomAction inplenents Action {
public Event execute(Request Context context) {

}
}

Invoking a MultiAction implementation

<eval uat e expressi on="nul ti Acti on. acti onMet hod1" />

public class CustomMul ti Action extends MiltiAction {
public Event acti onMethodl(Request Context context) {

}

public Event actionMet hod2(Request Context context) {

}

6.6. Action exceptions

Actions often invoke services that encapsulate complex business logic. These services may throw

business exceptions that the action code should handle.

Handling a business exception with a POJO action

The following example invokes an action that catches a business exception, adds a error message to
the context, and returns a result event identifier. The result is treated as a flow event which the calling

flow can then respond to.

Version 2.5.1.RELEASE Spring Web Flow

Spring Web Flow Reference Guide

<eval uat e expressi on="booki ngActi on. makeBooki ng(booki ng, fl owRequest Context)"

/>

public class BookingAction {
public String nakeBooki ng(Booki ng booki ng, Request Context context) {
try {
Booki ngConfirmati on confirmati on = booki ngServi ce. make(booki ng) ;
cont ext . get Fl owScope() . put ("confirmation", confirmation);
return "success";
} catch (RoomNot Avai | abl eException e) {
cont ext . addMessage(new MessageBuil der().error().
.defaul t Text ("No roomis available at this hotel™).build());
return "error";

}

Handling a business exception with a MultiAction

The following example is functionally equivlant to the last, but implemented as a MultiAction instead
of a POJO action. The MultiAction requires its action methods to be of the signature Event
${ net hodNane} (Request Cont ext), providing stronger type safety, while a POJO action allows for

more freedom.

<eval uat e expressi on="booki ngActi on. makeBooki ng" />

public class Booki ngAction extends MiltiAction {
publ i c Event makeBooki ng(Request Cont ext context) {
try {
Booki ng booki ng = (Booki ng) context.getFl owScope(). get ("booking");
Booki ngConfirmati on confirmation = booki ngServi ce. make(booki ng);
cont ext . get Fl owScope(). put ("confirmation", confirmation);
return success();
} catch (RoomNot Avai | abl eException e) {
cont ext . get MessageCont ext () . addMessage(new MessageBui |l der().error().
.defaul t Text ("No roomis available at this hotel™).build());
return error();

}

Using an exception-handler element

In general it is recommended to catch exceptions in actions and return result events that drive
standard transitions, it is also possible to add an excepti on- handl er sub-element to any state
type with a bean attribute referencing a bean of type FI owExecut i onExcept i onHandl er. This is
an advanced option that if used incorrectly can leave the flow execution in an invalid state. Consider
the build-in Transi ti onExecut i ngFl owExecut i onExcept i onHandl er as example of a correct

implementation.

Version 2.5.1.RELEASE Spring Web Flow

41

Spring Web Flow Reference Guide

6.7. Other Action execution examples

on-start

The following example shows an action that creates a new Booking object by invoking a method on
a service:

<fl ow xm ns="http://ww. spri ngfranmewor k. or g/ schema/ webf | ow'
xm ns: xsi ="http://ww. wW3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ webf | ow
ht t p: // www. spri ngf ramewor k. or g/ schenma/ webf | ow spri ng- webf | ow. xsd" >

<i nput name="hotel I d" />
<on-start>
<eval uat e expressi on="booki ngServi ce. cr eat eBooki ng(hotel I d, currentUser.nane)"
resul t ="f| owScope. booki ng" />

</on-start>

</ fl ow>

on-entry

The following example shows a state entry action that sets the special f r agment s variable that causes
the view-state to render a partial fragment of its view:

<vi ew state id="changeSearchCriteria" view="enterSearchCriteria.xhtm" popup="true">
<on-entry>
<render fragnments="hotel SearchFornm' />
</on-entry>
</ vi ew st at e>

on-exit

The following example shows a state exit action that releases a lock on a record being edited:

<viewstate id="editOrder">
<on-entry>
<eval uat e expressi on="or der Servi ce. sel ect For Updat e(orderld, currentUser)
resul t="vi ewScope. order" />
</on-entry>
<transition on="save" to="finish">
<eval uat e expressi on="order Servi ce. updat e(order, currentUser)" />
</transition>
<on-exit>
<eval uat e expressi on="order Servi ce.rel easeLock(order, currentUser)" />
</on-exit>
</ vi ew st at e>

on-end

The following example shows the equivalent object locking behavior using flow start and end actions:

Version 2.5.1.RELEASE Spring Web Flow 42

Spring Web Flow Reference Guide

<fl ow xm ns="http://ww. spri ngfranmewor k. or g/ schema/ webf | ow'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://ww. spri ngfranmework. or g/ schema/ webf | ow
http: //wwv. spri ngfranewor k. or g/ schena/ webf | ow spri ng-webf | ow. xsd" >

<i nput name="orderld" />

<on-start>
<eval uat e expressi on="order Servi ce. sel ect For Updat e(orderld, currentUser)"
resul t="fl owScope. order" />
</on-start>

<view state id="editOrder">
<transition on="save" to="finish">
<eval uat e expressi on="order Servi ce. update(order, currentUser)" />
</transition>
</ vi ew st at e>

<on- end>
<eval uat e expressi on="order Servi ce. rel easeLock(order, currentUser)" />

</ on- end>

</flow>

on-render

The following example shows a render action that loads a list of hotels to display before the view is
rendered:

<view state id="revi ewHot el s" >
<on-render >
<eval uat e expressi on="booki ngServi ce. findHot el s(searchCriteria)"
resul t ="vi ewScope. hotel s" result-type="dat aMbdel " />
</ on-render >
<transition on="select" to="reviewHotel ">
<set nanme="fl owScope. hotel " val ue="hotel s. sel ect edRow' />
</transition>
</ vi ew st at e>

on-transition

The following example shows a transition action adds a subflow outcome event attribute to a collection:

<subfl owstate id="addGuest" subflow="createCuest">
<transition on="guest Created" to="revi ewBooki ng">
<eval uat e expressi on="booki ng. guest Li st. add(current Event. attri butes. newGuest)" />
</transition>
</ subf ow st at e>

Named actions

The following example shows how to execute a chain of actions in an action-state. The name of each
action becomes a qualifier for the action's result event.

Version 2.5.1.RELEASE Spring Web Flow 43

Spring Web Flow Reference Guide

<action-state id="doTwoThi ngs">
<eval uat e expression="service.thingOne()">
<attribute nanme="nane" val ue="thi ngOne" />
</ eval uat e>
<eval uat e expression="service.thingTwo()">
<attribute name="nanme" val ue="thi ngTwo" />
</ eval uat e>
<transition on="thi ngTwo. success" to="showResults" />
</ action-state>

In this example, the flow will transition to showResul t s when t hi ngTwo completes successfully.

Streaming actions

Sometimes an Action needs to stream a custom response back to the client. An example might be
a flow that renders a PDF document when handling a print event. This can be achieved by having
the action stream the content then record "Response Complete" status on the ExternalContext. The
responseComplete flag tells the pausing view-state not to render the response because another object
has taken care of it.

<viewstate id="reviewtinerary">
<transition on="print">
<eval uat e expressi on="print Boar di ngPassActi on" />
</transition>
</ vi ew st at e>

public class PrintBoardi ngPassActi on extends AbstractAction {
public Event doExecute(Request Context context) {
/| stream PDF content here...
/'l - Access HttpServl et Response by calling context.getExternal Context().getNativeResponse();
/1 - Mark response conplete by calling context.get External Context().recordResponseConpl ete();
return success();
}
}

In this example, when the print event is raised the flow will call the printBoardingPassAction. The action
will render the PDF then mark the response as complete.

Handling File Uploads

Another common task is to use Web Flow to handle multipart file uploads in combination with Spring
MVC's Mul ti part Resol ver. Once the resolver is set up correctly as described here and the
submitting HTML form is configured with enct ype="rmul ti part/f or m dat a", you can easily handle
the file upload in a transition action.

Note

The file upload example below below is not relevant when using Web Flow with JSF. See
Section 13.8, “Handling File Uploads with JSF” for details of how to upload files using JSF.

Given a form such as:

Version 2.5.1.RELEASE Spring Web Flow 44

http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart

Spring Web Flow Reference Guide

<form form nodel Attribute="fil eUpl oadHandl er" enctype="nultipart/formdata">
Select file: <input type="file" name="file"/>
<input type="submt" name="_event|d_upl oad" val ue="Upl oad" />

</formfornme

and a backing object for handling the upload such as:

package org. springfranmewor k. webf | ow. sanpl es. booki ng;
i nport org.springfranmework.web. nultipart. MultipartFile;
public class Fil eUpl oadHandl er {

private transient MiltipartFile file;

public void processFile() {
// Do something with the MultipartFile here

}

public void setFile(MiltipartFile file) {
this.file = file;

}

}

you can process the upload using a transition action as in the following example:

<vi ew state id="upl oadFi |l e" nodel ="upl oadFi | eHandl er" >
<var nane="fil eUpl oadHandl er" cl ass="org. spri ngfranmewor k. webf | ow. sanpl es. booki ng. Fi | eUpl oadHandl er" />
<transition on="upl oad" to="finish" >
<eval uat e expressi on="fil eUpl oadHandl er. processFile()"/>
</transition>
<transition on="cancel" to="finish" bind="false"/>
</ vi ew st at e>

The Mul ti partFi | e will be bound to the Fi | eUpl oadHandl er bean as part of the normal form
binding process so that it will be available to process during the execution of the transition action.

Version 2.5.1.RELEASE Spring Web Flow 45

Spring Web Flow Reference Guide

7. Flow Managed Persistence

7.1. Introduction

Most applications access data in some way. Many modify data shared by multiple users and therefore
require transactional data access properties. They often transform relational data sets into domain
objects to support application processing. Web Flow offers "flow managed persistence" where a flow
can create, commit, and close a object persistence context for you. Web Flow integrates both Hibernate
and JPA obiject persistence technologies.

Apart from flow-managed persistence, there is the pattern of fully encapsulating PersistenceContext
management within the service layer of your application. In that case, the web layer does not get involved
with persistence, instead it works entirely with detached objects that are passed to and returned by
your service layer. This chapter will focus on the flow-managed persistence, exploring how and when
to use this feature.

7.2. FlowScoped PersistenceContext

This pattern creates a Per si st enceCont ext inf | owScope on flow startup, uses that context for data
access during the course of flow execution, and commits changes made to persistent entities at the
end. This pattern provides isolation of intermediate edits by only committing changes to the database at
the end of flow execution. This pattern is often used in conjunction with an optimistic locking strategy to
protect the integrity of data modified in parallel by multiple users. To support saving and restarting the
progress of a flow over an extended period of time, a durable store for flow state must be used. If a save
and restart capability is not required, standard HTTP session-based storage of flow state is sufficient. In
that case, session expiration or termination before commit could potentially result in changes being lost.

To use the FlowScoped PersistenceContext pattern, first mark your flow as a per si st ence- cont ext :

<?xm version="1.0" encodi ng="UTF-8"?>
<flow xm ns="http://ww. springfranmework. or g/ schema/ webf | ow'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schena/ webf | ow
http://ww. springfranmework. or g/ schema/ webf | ow spri ng-webf| ow. xsd" >

<per si st ence- cont ext />

</ fl ow>

Then configure the correct FI owExecuti onLi stener to apply this pattern to your flow. If
using Hibernate, register the Hi ber nat eFl owExecuti onLi st ener. If using JPA, register the
JpaFl owExecuti onLi st ener.

<webf | ow: f| ow execut or id="fl owExecutor" flowregistry="fl owRegistry">
<webf | ow: f| ow execution-1i steners>
<webf | ow: | i st ener ref="jpaFl owExecuti onLi stener" />
</ webf | ow. f| ow executi on-1|i steners>
</ webf | ow: f | ow execut or >

<bean id="j paFl owExecuti onLi st ener"
cl ass="org. springframewor k. webf | ow. per si st ence. JpaFl owExecuti onLi st ener">
<constructor-arg ref="entityManagerFactory" />
<constructor-arg ref="transacti onManager" />
</ bean>

Version 2.5.1.RELEASE Spring Web Flow 46

Spring Web Flow Reference Guide

To trigger a commit at the end, annotate your end-state with the commit attribute:

<end-state id="booki ngConfirmed" comm t="true" />

That is it. When your flow starts, the listener will handle allocating a new EntityManager in
f I owScope. Reference this EntityManager at anytime from within your flow by using the special
per si st enceCont ext variable. In addition, any data access that occurs using a Spring managed data
access object will use this EntityManager automatically. Such data access operations should always
execute non transactionally or in read-only transactions to maintain isolation of intermediate edits.

7.3. Flow Managed Persistence And Sub-Flows

A flow managed Per si st enceCont ext is automatically extended (propagated) to subflows assuming
the subflow also has the <persti stence-context/> variable. When a subflow re-uses the
Per si st enceCont ext started by its parent it ignores commit flags when an end state is reached
thereby deferring the final decision (to commit or not) to its parent.

Version 2.5.1.RELEASE Spring Web Flow 47

Spring Web Flow Reference Guide

8. Securing Flows

8.1. Introduction

Security is an important concept for any application. End users should not be able to access any portion
of a site simply by guessing the URL. Areas of a site that are sensitive must ensure that only authorized
requests are processed. Spring Security is a proven security platform that can integrate with your
application at multiple levels. This section will focus on securing flow execution.

8.2. How do | secure a flow?

Securing flow execution is a three step process:

» Configure Spring Security with authentication and authorization rules

» Annotate the flow definition with the secured element to define the security rules
» Add the SecurityFlowExecutionListener to process the security rules.

Each of these steps must be completed or else flow security rules will not be applied.

8.3. The secured element

The secured element designates that its containing element should apply the authorization check before
fully entering. This may not occur more then once per stage of the flow execution that is secured.

Three phases of flow execution can be secured: flows, states and transitions. In each case the syntax
for the secured element is identical. The secured element is located inside the element it is securing.
For example, to secure a state the secured element occurs directly inside that state:

<vi ewstate id="secured-view'>
<secured attributes="ROLE_USER' />

</ vi ew st at e>

Security attributes

The at t ri but es attribute is a comma separated list of Spring Security authorization attributes. Often,
these are specific security roles. The attributes are compared against the user's granted attributes by
a Spring Security access decision manager.

<secured attributes="ROLE USER' />

By default, a role based access decision manager is used to determine if the user is allowed access.
This will need to be overridden if your application is not using authorization roles.

Matching type

There are two types of matching available: any and al | . Any, allows access if at least one of the
required security attributes is granted to the user. All, allows access only if each of the required security
attributes are granted to the user.

Version 2.5.1.RELEASE Spring Web Flow 48

Spring Web Flow Reference Guide

<secured attributes="ROLE _USER, ROLE_ANONYMOUS' match="any" />

This attribute is optional. If not defined, the default value is any.

The mat ch attribute will only be respected if the default access decision manager is used.

8.4. The SecurityFlowExecutionListener

Defining security rules in the flow by themselves will not protect the flow execution. A
Securit yFl owExecut i onLi st ener must also be defined in the webflow configuration and applied
to the flow executor.

<webf | ow: f| ow execut or id="fl owExecutor" flowregistry="fl owRegistry">
<webf | ow: f | ow execution-1i steners>
<webfl ow i stener ref="securityFl owExecutionListener" />
</ webf | ow: f | ow executi on-1i steners>
</ webf | ow: f| ow execut or >

<bean id="securityFl owExecuti onLi stener"
cl ass="org. spri ngfranmewor k. webf | ow. security. SecurityFl owExecuti onLi stener" />

If access is denied to a portion of the application an AccessDeni edExcept i on will be thrown. This
exception will later be caught by Spring Security and used to prompt the user to authenticate. It is
important that this exception be allowed to travel up the execution stack uninhibited, otherwise the end
user may not be prompted to authenticate.

Custom Access Decision Managers

If your application is using authorities that are not role based, you will need to configure a
custom AccessDeci si onManager. You can override the default decision manager by setting the
accessDeci si onManager property on the security listener. Please consult the Spring Security
reference documentation to learn more about decision managers.

<bean id="securityFl owExecuti onLi stener"
cl ass="org. spri ngfranmewor k. webf | ow. security. SecurityFl owExecuti onLi stener">
<property name="accessDeci si onManager" ref="nyCust omAccessDeci si onManager" />
</ bean>

8.5. Configuring Spring Security

Spring Security has robust configuration options available. As every application and environment has
its own security requirements, the Spring Security reference documentation is the best place to learn
the available options.

Both the booki ng-faces and booki ng- mvc sample applications are configured to use Spring
Security. Configuration is needed at both the Spring and web.xml levels.

Spring configuration

The Spring configuration defines ht t p specifics (such as protected URLs and login/logout mechanics)
and the aut henti cati on- provi der . For the sample applications, a local authentication provider is
configured.

Version 2.5.1.RELEASE Spring Web Flow 49

http://static.springframework.org/spring-security/site/reference.html
http://static.springframework.org/spring-security/site/reference.html
http://static.springframework.org/spring-security/site/reference.html

Spring Web Flow Reference Guide

<security:http auto-config="true">
<security:formlogin |ogin-page="/spring/login"
| ogi n- processi ng-url ="/spring/| ogi nProcess"
defaul t-target-url ="/spring/ nmain"
aut hentication-failure-url="/spring/login?login_error=1" />
<security:logout |ogout-url="/spring/logout" |ogout-success-url="/spring/logout-success" />
</security: http>

<security:aut hentication-provi der>
<security: passwor d- encoder hash="nd5" />
<security:user-service>
<security:user name="keith" password="417c¢7382b16c395bc25b5dal1398cf 076"
aut hori ti es="ROLE_USER, ROLE_SUPERVI SOR" />
<security:user name="erw n" password="12430911a8af 075c6f41c6976af 22b09"
aut hori ti es=" ROLE_USER, ROLE_SUPERVI SOR"' />
<security:user name="jereny" password="57c6cbff0d421449be820763f 03139eb"
aut hori ti es="ROLE_USER" />
<security:user name="scott" password="942f 2339bf 50796de535a384f 0dlaf 3e"
aut horiti es="ROLE_USER"' />
</security: user-service>
</security:authentication-provider>

web.xml Configuration

In the web. xm file, afilter is defined to intercept all requests. This filter will listen for login/logout
requests and process them accordingly. It will also catch AccesDeni edExcept i ons and redirect the
user to the login page.

<filter>
<filter-name>springSecurityFilterChain</filter-nanme>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>
<filter-name>springSecurityFilterChain</filter-nane>
<url -pattern>/*</url -pattern>

</filter-mappi ng>

Version 2.5.1.RELEASE Spring Web Flow 50

Spring Web Flow Reference Guide

9. Flow Inheritance

9.1. Introduction

Flow inheritance allows one flow to inherit the configuration of another flow. Inheritance can occur at
both the flow and state levels. A common use case is for a parent flow to define global transitions and
exception handlers, then each child flow can inherit those settings.

In order for a parent flow to be found, it must be added to the f | ow- r egi st ry just like any other flow.

9.2.Is flow inheritance like Java inheritance?

Flow inheritance is similar to Java inheritance in that elements defined in a parent are exposed via the
child, however, there are key differences.

A child flow cannot override an element from a parent flow. Similar elements between the parent and
child flows will be merged. Unique elements in the parent flow will be added to the child.

A child flow can inherit from multiple parent flows. Java inheritance is limited to a single class.

9.3. Types of Flow Inheritance

Flow level inheritance

Flow level inheritance is defined by the par ent attribute on the f | ow element. The attribute contains
a comma separated list of flow identifiers to inherit from. The child flow will inherit from each parent in
the order it is listed adding elements and content to the resulting flow. The resulting flow from the first
merge will be considered the child in the second merge, and so on.

<f| ow parent="common-transitions, conmmon-states">

State level inheritance

State level inheritance is similar to flow level inheritance, except only one state inherits from the parent,
instead of the entire flow.

Unlike flow inheritance, only a single parent is allowed. Additionally, the identifier of the flow state to
inherit from must also be defined. The identifiers for the flow and the state within that flow are separated
by a #.

The parent and child states must be of the same type. For instance a view-state cannot inherit from an
end-state, only another view-state.

<viewstate id="child-state" parent="parent-fl ow#parent-viewstate">

Note

The intent for flow-level inheritance is to define common states to be added to and shared among
multiple flow definitions while the intent for state-level inheritance is to extend from and merge with

Version 2.5.1.RELEASE Spring Web Flow 51

Spring Web Flow Reference Guide

a single parent state. Flow-level inheritance is a good fit for composition and multiple inheritance
but at the state level you can still only inherit from a single parent state.

9.4. Abstract flows

Often parent flows are not designed to be executed directly. In order to protect these flows from running,
they can be marked as abstract . If an abstract flow attempts to run, a Fl owBui | der Excepti on
will be thrown.

<fl ow abstract="true">

9.5. Inheritance Algorithm

When a child flow inherits from it's parent, essentially what happens is that the parent and child are
merged together to create a new flow. There are rules for every element in the Web Flow definition
language that govern how that particular element is merged.

There are two types of elements: mergeable and non-mergeable. Mergeable elements will always
attempt to merge together if the elements are similar. Non-mergeable elements in a parent or child
flow will always be contained in the resulting flow intact. They will not be modified as part of the merge
process.

Note

Paths to external resources in the parent flow should be absolute. Relative paths will break when
the two flows are merged unless the parent and child flow are in the same directory. Once merged,
all relative paths in the parent flow will become relative to the child flow.

Mergeable Elements

If the elements are of the same type and their keyed attribute are identical, the content of the parent
element will be merged with the child element. The merge algorithm will continue to merge each sub-
element of the merging parent and child. Otherwise the parent element is added as a new element to
the child.

In most cases, elements from a parent flow that are added will be added after elements in the child flow.
Exceptions to this rule include action elements (evaluate, render and set) which will be added at the
beginning. This allows for the results of parent actions to be used by child actions.

Mergeable elements are:
* action-state: id

* attribute: name

* decision-state: id

» end-state: id

« flow: always merges

o if: test

Version 2.5.1.RELEASE Spring Web Flow 52

Spring Web Flow Reference Guide

» on-end: always merges

« on-entry: always merges

e on-exit: always merges

e on-render: always merges
 on-start: always merges
 input: name

 output: name

» secured: attributes

* subflow-state: id

* transition: on and on-exception
 view-state: id
Non-mergeable Elements
Non-mergeable elements are:

* bean-import

* evaluate

» exception-handler

* persistence-context

* render

* set

e var

Version 2.5.1.RELEASE

Spring Web Flow

53

Spring Web Flow Reference Guide

10. System Setup

10.1. Introduction

This chapter shows you how to setup the Web Flow system for use in any web environment.

10.2. Java Config and XML Namespace

Web Flow provides dedicated configuration support for both Java and XML-based configuration.

To get started with XML based configuration declare the webflow config XML namespace:

<beans xm ns="http://ww. spri ngframework. or g/ schenma/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: webf | ow="ht t p: / / www. spri ngf ramewor k. or g/ schema/ webf | ow confi g"

xsi : schemaLocat i on="
htt p: // ww. spri ngf ramewor k. or g/ schema/ beans
http://ww. spri ngf ranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ webf | ow confi g
http://ww. springframewor k. or g/ schema/ webf | ow confi g/ spri ng- webf | ow confi g. xsd" >

<l-- Setup Wb Flow here -->

</ beans>

To get started with Java configuration extend AbstractFl owConfiguration in an
@confi gurati on class:

i mport org.springframework. cont ext.annot ati on. Confi gurati on;
i nport org.springfranewor k. webfl ow. confi g. Abstract Fl owConfi guration;

@onfi guration
public class WebFl owConfi g extends AbstractFl owConfiguration {

}

10.3. Basic system configuration

The next section shows the minimal configuration required to set up the Web Flow system in your
application.

FlowRegistry

Register your flows in a Fl owRegi st ry in XML:

<webfl ow fl owregistry id="fl owRegi stry">
<webf | ow f | ow| ocation path="/WEB-I| NF/fl ows/ booki ng/ booki ng. xm " />
</ webf | ow: f1 owregi stry>

Register your flows in a Fl owRegi st ry in Java:

Version 2.5.1.RELEASE Spring Web Flow 54

Spring Web Flow Reference Guide

@Bean
public Fl owDefinitionRegistry flowRegistry() {
return get Fl owDefi niti onRegi stryBuilder()
. addFl owLocat i on("/WEB- | NF/ f | ows/ booki ng/ booki ng. xm ")
Lbuild();

FlowExecutor

Deploy a FlowExecutor, the central service for executing flows in XML:

<webf | ow: f | ow execut or i d="fl owExecutor" />

Deploy a FlowExecutor, the central service for executing flows in Java:

@Bean
publ i c Fl owExecutor flowExecutor () {
return getFl owExecut or Bui | der (fl owRegi stry()).build();

}

See the Spring MVC and Spring Faces sections of this guide on how to integrate the Web Flow system
with the MVC and JSF environment, respectively.

10.4. flow-registry options
This section explores flow-registry configuration options.
Specifying flow locations

Use the | ocati on element to specify paths to flow definitions to register. By default, flows will be
assigned registry identifiers equal to their filenames minus the file extension, unless a registry bath path
is defined.

In XML:

<webf | ow fl ow | ocati on path="/WEB-I| NF/fl ows/ booki ng/ booki ng. xm " />

In Java:

return get Fl owDefi niti onRegi stryBuil der()
. addFl owLocati on("/WEB- | NF/ f | ows/ booki ng/ booki ng. xm ")
Lbui I d();

Assigning custom flow identifiers

Specify an id to assign a custom registry identifier to a flow in XML:

<webfl ow f | ow | ocation path="/WEB-I| NF/fl ows/ booki ng/ booki ng. xm " i d="bookHotel " />

Version 2.5.1.RELEASE Spring Web Flow 55

Spring Web Flow Reference Guide

Specify an id to assign a custom registry identifier to a flow in Java:

return get Fl owDefi nitionRegi stryBuil der()
. addFl owLocati on("/WEB- | NF/ f | ows/ booki ng/ booki ng. xm ", "bookHotel")
Lbuild();

Assigning flow meta-attributes

Use the fl owdefinition-attributes elementto assign custom meta-attributes to a registered
flow.

In XML:

<webf | ow: fl ow | ocati on path="/WEB-| NF/ f| ows/ booki ng/ booki ng. xm ">
<webf | ow: f| ow definition-attributes>
<webf | ow attribute name="capti on" val ue="Books a hotel" />
</ webf | ow f| owdefinition-attributes>
</ webf | ow f| ow | ocati on>

In Java:

Map<String, Cbject> attrs = ...

return getFl owDefi niti onRegi stryBuil der()
. addFl owLocati on("/WEB- | NF/ f | ows/ booki ng/ booki ng. xm ", null, attrs)
.bui 1 d();

Registering flows using a location pattern

Use thefl ow| ocati on- patt er ns element to register flows that match a specific resource location
pattern:

In XML:

<webf | ow: f| ow| ocati on-pattern val ue="/WEB-| NF/fl ows/**/*-fl ow. xm " />

In Java:

return get Fl owDefi niti onRegi stryBuil der()
. addFl owLocat i onPattern("/WEB-| NF/ fl ows/**/*-f| ow. xm ")
Lbuild();

Flow location base path

Use the base- pat h attribute to define a base location for all flows in the application. All flow locations
are then relative to the base path. The base path can be a resource path such as /WEB-INF' or a
location on the classpath like ‘classpath:org/springframework/webflow/samples'.

In XML:

Version 2.5.1.RELEASE Spring Web Flow 56

Spring Web Flow Reference Guide

<webfl ow fl owregistry id="fl owRegi stry" base- pat h="/WEB- | NF" >
<webf | ow. f| ow| ocati on pat h="/hot el s/ booki ng/ booki ng. xm " />
</ webf | ow. f| owregi stry>

In Java:

return get Fl owDefi niti onRegi stryBuil der()
. set BasePat h("/ WEB- | NF")
. addFl owLocat i onPattern("/hotel s/ booki ng/ booki ng. xm ")
.build();

With a base path defined, the algorithm that assigns flow identifiers changes slightly. Flows will now be
assigned registry identifiers equal to the the path segment between their base path and file name. For
example, if a flow definition is located at '/WEB-INF/hotels/booking/booking-flow.xml" and the base path
is '/WEB-INF' the remaining path to this flow is 'hotels/booking' which becomes the flow id.

Directory per flow definition

Recall it is a best practice to package each flow definition in a unique directory. This improves
modularity, allowing dependent resources to be packaged with the flow definition. It also prevents
two flows from having the same identifiers when using the convention.

If no base path is not specified or if the flow definition is directly on the base path, flow id assignment
from the filename (minus the extension) is used. For example, if a flow definition file is 'booking.xml’,
the flow identifier is simply 'booking'.

Location patterns are particularly powerful when combined with a registry base path. Instead of the flow
identifiers becoming "*-flow', they will be based on the directory path. For example in XML:

<webfl ow fl owregistry id="fl owRegi stry" base- pat h="/WEB- | NF">
<webf | ow: f| ow-| ocati on-pattern val ue="/**/*-flow. xm" />
</ webf | ow: f| owregi stry>

In Java:

return get Fl owDefi niti onRegi stryBuil der()
. set BasePat h("/VEB- | NF")
. addFl owLocationPattern("/**/*-fl ow xm ")
.bui 1 d();

In the above example, suppose you had flows located in / user/| ogi n, /user/regi stration,/
hot el s/ booki ng, and / f 1 i ght s/ booki ng directories within WEB- | NF, you'd end up with flow ids
of user/I ogi n,user/regi stration, hot el s/ booki ng, and f | i ght s/ booki ng, respectively.

Configuring FlowRegistry hierarchies

Use the par ent attribute to link two flow registries together in a hierarchy. When the child registry is
queried, if it cannot find the requested flow it will delegate to its parent.

In XML:

Version 2.5.1.RELEASE Spring Web Flow 57

Spring Web Flow Reference Guide

<l-- ny-systemconfig.xm -->

<webfl ow fl owregistry id="fl owRegi stry" parent="sharedFl owRegi stry">
<webfl ow f | ow| ocation path="/WEB-I| NF/fl ows/ booki ng/ booki ng. xm " />

</ webf | ow: f| owregi stry>

<l-- shared-config.xm -->
<webf | ow: fl owregi stry i d="shar edFl owRegi stry">
<l-- Gobal flows shared by several applications -->

</ webf | ow: f| owregi stry>

In Java:

@onfiguration
public class WebFl owConfi g extends AbstractFl owConfiguration {

@\ut owi r ed
private SharedConfig sharedConfig;

@Bean
public FlowDefinitionRegistry flowRegistry() {
return getFl owDefinitionRegi stryBuilder()
.set Parent (this. sharedConfi g. shar edFl owRegi stry())
. addFl owLocat i on("/VEB- | NF/ f | ows/ booki ng/ booki ng. xm ")
Lbuild();

}

@onfi guration
public class SharedConfig extends AbstractFl owConfiguration {

@Bean
public FlowDefinitionRegistry sharedFl owRegi stry() {
return getFl owDefinitionRegi stryBuilder()
. addFl owLocat i on("/VEB- | NF/ f | ows/ shar ed. xm ")
Lbuild();

Configuring custom FlowBuilder services

Use the f| ow bui | der - ser vi ces attribute to customize the services and settings used to build flows
in a flow-registry. If no flow-builder-services tag is specified, the default service implementations are
used. When the tag is defined, you only need to reference the services you want to customize.

In XML:

<webfl ow fl owregistry id="fl owRegi stry" flow builder-services="fl owBuil der Servi ces">
<webfl ow fl ow | ocation path="/WEB-I|NF/fl ows/booki ng/ booki ng. xm " />
</ webf | ow fl owregi stry>

<webf | ow: f | ow bui | der-servi ces id="fl owBui | der Servi ces" />

In Java:

Version 2.5.1.RELEASE Spring Web Flow 58

Spring Web Flow Reference Guide

@Bean
public Fl owDefinitionRegistry flowRegistry() {
return get Fl owDefinitionRegi stryBuilder(flowBuil derServices())
. addFl owLocat i on("/WEB- | NF/ f | ows/ booki ng/ booki ng. xm ")
Lbuild();
}

@Bean
public Fl owBui | der Servi ces fl owBuil derServices() {
return get Fl owBui | der Ser vi cesBui | der (). bui | d();

}

The configurable services are the conversion-service, expressi on-parser, and vi ew
factory-creat or. These services are configured by referencing custom beans you define.

For example in XML:

<webf | ow: f| ow bui | der-servi ces id="fl owBui | der Servi ces"
conver si on- servi ce="conver si onServi ce"
expr essi on- par ser =" expr essi onPar ser"
vi ewfactory-creator="vi enFactoryCreator" />

<bean id="conversionService" class="..." />

<bean id="expressionParser" class="..." />

<bean id="vi ewFactoryCreator" class="..." />
In Java:

@Bean

publ i c Fl owBui | der Servi ces flowBuil der Services() {
return getFl owBui | der Servi cesBui | der ()
. set Conver si onSer vi ce(conver si onServi ce())
. set Expr essi onPar ser (expr essi onPar ser)
. set Vi ewFact or yCr eat or (mvcVi ewFact oryCreator())
Lbuild();

}

@ean
publ i c ConversionServi ce conversionService() {
/1

}

@Bean
publ i ¢ Expressi onParser expressionParser() {
/1

}

@Bean
public Vi ewFactoryCreator viewractoryCreator() {
/1

}

conversion-service

Use the conver si on- ser vi ce attribute to customize the Conver si onSer vi ce used by the Web
Flow system. Type conversion is used to convert from one type to another when required during flow
execution such as when processing request parameters, invoking actions, and so on. Many common
object types such as numbers, classes, and enums are supported. However you'll probably need to
provide your own type conversion and formatting logic for custom data types. Please read Section 5.7,
“Performing type conversion” for important information on how to provide custom type conversion logic.

Version 2.5.1.RELEASE Spring Web Flow 59

Spring Web Flow Reference Guide

expression-parser

Use the expr essi on- par ser attribute to customize the Expr essi onPar ser used by the Web Flow
system. The default ExpressionParser uses the Unified EL if available on the classpath, otherwise Spring
EL is used.

view-factory-creator

Use the vi ewfact ory-creat or attribute to customize the Vi ewFact or yCr eat or used by the
Web Flow system. The default ViewFactoryCreator produces Spring MVC ViewFactories capable of
rendering JSP, Velocity, and Freemarker views.

The configurable settings are devel opnent . These settings are global configuration attributes that can
be applied during the flow construction process.

development

Set this to t r ue to switch on flow development mode. Development mode switches on hot-reloading of
flow definition changes, including changes to dependent flow resources such as message bundles.

10.5. flow-executor options
This section explores flow-executor configuration options.
Attaching flow execution listeners

Use the f | ow executi on-1i st eners element to register listeners that observe the lifecycle of flow
executions. For example in XML:

<webf | ow: f | ow execution-1i steners>
<webfl ow | i stener ref="securityListener"/>
<webfl ow i stener ref="persistenceListener"/>
</ webf | ow: f| ow executi on-1i steners>

In Java:

@Bean
public Fl owExecutor flowExecutor () {
return get Fl owExecut or Bui | der (f| owRegi stry())
. addFl owExecut i onLi st ener (securityListener())
. addFl owExecut i onLi st ener (persi st enceLi stener())
Lbui I d();

You may also configure a listener to observe only certain flows. For example in XML

<webfl ow | i stener ref="securityListener" criteria="securedFl owl, securedFl ow2"/ >

In Java:

Version 2.5.1.RELEASE Spring Web Flow 60

Spring Web Flow Reference Guide

@Bean
publ i c Fl owexecutor flowExecutor () {
return getFl owExecut or Bui | der (f| owRegi stry())
. addFl owExecut i onLi st ener (securitylistener(), "securedFl owl, securedFl ow2")
Lbuild();

Tuning FlowExecution persistence

Use the fl ow executi on-repository element to tune flow execution persistence settings. For
example in XML:

<webf | ow f | ow executor id="fl owExecutor" flowregistry="fl owRegistry">
<webf | ow: f | ow executi on-repository max-executions="5" max-execution-snapshots="30" />
</ webf | ow: f| ow execut or >

In Java:

@Bean
publ i c Fl owExecutor flowExecutor () {
return getFl owExecut or Bui | der (f| owRegi stry())
. set MaxFl owExecut i ons(5)
. set MaxFl owExecut i onSnapshot s(30)
Lbuild();

max-executions

Tune the max- execut i ons attribute to place a cap on the number of flow executions that can be
created per user session. When the maximum number of executions is exceeded, the oldest execution
is removed.

Note

The max- executi ons attribute is per user session, i.e. it works across instances of any flow
definition.

max-execution-snapshots

Tune the max- executi on- snapshot s attribute to place a cap on the number of history snapshots
that can be taken per flow execution. To disable snapshotting, set this value to 0. To enable an unlimited
number of snapshots, set this value to -1.

Note

History snapshots enable browser back button support. When snapshotting is disabled pressing
the browser back button will not work. It will result in using an execution key that points to a
snapshot that has not be recorded.

Version 2.5.1.RELEASE Spring Web Flow 61

Spring Web Flow Reference Guide

11. Spring MVC Integration

11.1. Introduction

This chapter shows how to integrate Web Flow into a Spring MVC web application. The booki ng- nvc
sample application is a good reference for Spring MVC with Web Flow. This application is a simplified
travel site that allows users to search for and book hotel rooms.

11.2. Configuring web.xml

The first step to using Spring MVC is to configure the Di spat cher Ser vl et inweb. xm . You typically
do this once per web application.

The example below maps all requests that begin with / spri ng/ to the DispatcherServlet. Aninit -
par amis used to provide the cont ext Confi gLocat i on. This is the configuration file for the web
application.

<servl et >
<servl et-nanme>Spring WC Di spatcher Servlet</servlet-nane>
<servl et-cl ass>org. spri ngframewor k. web. servl et. Di spat cherServl et </servlet-class>
<init-paran>
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>/ WEB- | NF/ web- appl i cati on- confi g. xm </ par am val ue>
</init-paran>
</ servl et >

<servl et - mappi ng>
<servl et -nanme>Spri ng MC Di spat cher Servl et </servl et -nane>
<url-pattern>/spring/*</url-pattern>

</ servl et - mappi ng>

11.3. Dispatching to flows

The Di spat cher Ser vl et maps requests for application resources to handlers. A flow is one type of
handler.

Registering the FlowHandlerAdapter

The first step to dispatching requests to flows is to enable flow handling within Spring MVC. To this,
install the FI owHandl er Adapt er:

<!-- Enabl es Fl owHandl er URL mapping -->

<bean cl ass="org. spri ngframewor k. webf| ow. mnvc. servl et. Fl owHandl er Adapt er " >
<property name="fl owExecutor" ref="fl owExecutor" />

</ bean>

Defining flow mappings

Once flow handling is enabled, the next step is to map specific application resources to your flows. The
simplest way to do this is to define a FI owHandl er Mappi ng:

Version 2.5.1.RELEASE Spring Web Flow 62

Spring Web Flow Reference Guide

<l-- Maps request paths to flows in the fl owRegistry;
e.g. a path of /hotels/booking |ooks for a flowwth id "hotel s/booking" -->
<bean cl ass="org. spri ngframewor k. webf | ow. nvc. servl et. Fl owHand| er Mappi ng" >
<property nanme="fl owRegi stry" ref="fl owRegi stry"/>
<property name="order" val ue="0"/>
</ bean>

Configuring this mapping allows the Dispatcher to map application resource paths to flows in a flow
registry. For example, accessing the resource path / hot el s/ booki ng would result in a registry query
for the flow with id hot el s/ booki ng. If a flow is found with that id, that flow will handle the request.
If no flow is found, the next handler mapping in the Dispatcher's ordered chain will be queried or a
"noHandlerFound" response will be returned.

Flow handling workflow

When a valid flow mapping is found, the FI owHand!| er Adapt er figures out whether to start a new
execution of that flow or resume an existing execution based on information present the HTTP request.
There are a number of defaults related to starting and resuming flow executions the adapter employs:

* HTTP request parameters are made available in the input map of all starting flow executions.

* When a flow execution ends without sending a final response, the default handler will attempt to start
a new execution in the same request.

* Unhandled exceptions are propagated to the Dispatcher unless the exception is a
NoSuchFlowExecutionException. The default handler will attempt to recover from a
NoSuchFlowExecutionException by starting over a new execution.

Consult the API documentation for Fl owHandl er Adapt er for more information. You may override
these defaults by subclassing or by implementing your own FlowHandler, discussed in the next section.

11.4. Implementing custom FlowHandlers

Fl owHandl er is the extension point that can be used to customize how flows are executed in a HTTP
servlet environment. A Fl owHandl er is used by the FI owHandl er Adapt er and is responsible for:

Returning the i d of a flow definition to execute

Creating the input to pass new executions of that flow as they are started

Handling outcomes returned by executions of that flow as they end
» Handling any exceptions thrown by executions of that flow as they occur

These responsibilities are illustrated in the definition of the
org. springframewor k. mvc. servl et. Fl owHandl er interface:

Version 2.5.1.RELEASE Spring Web Flow 63

Spring Web Flow Reference Guide

public interface FlowHandl er {
public String getFlowd();
public Mitabl eAttributeMap creat eExecuti onl nput Map(Htt pServl et Request request);

public String handl eExecuti onQut come(Fl owExecuti onQut come out cone,
Ht t pSer vl et Request request, HttpServl et Response response);

public String handl eExcepti on(Fl owException e,
Ht t pSer vl et Request request, HttpServl et Response response);
}

To implement a FlowHandler, subclass Abst r act FI owHandl| er . All these operations are optional,
and if not implemented the defaults will apply. You only need to override the methods that you need.
Specifically:

Override get Fl om d(Ht t pSer vl et Request) when the id of your flow cannot be directly derived
from the HTTP request. By default, the id of the flow to execute is derived from the pathinfo portion of
the request URI. For example, htt p: / /| ocal host / app/ hot el s/ booki ng?hot el | d=1 results
in a flow id of hot el s/ booki ng by default.

Override creat eExecuti onl nput Map(Htt pServl et Request) when you need fine-grained
control over extracting flow input parameters from the HttpServletRequest. By default, all request
parameters are treated as flow input parameters.

Override handl eExecut i onQut conme when you need to handle specific flow execution outcomes
in a custom manner. The default behavior sends a redirect to the ended flow's URL to restart a new
execution of the flow.

Override handl eExcept i on when you need fine-grained control over unhandled flow exceptions.
The default behavior attempts to restart the flow when a client attempts to access an ended or expired
flow execution. Any other exception is rethrown to the Spring MVC ExceptionResolver infrastructure
by default.

Example FlowHandler

A common interaction pattern between Spring MVC And Web Flow is for a Flow to redirect to a
@Controller when it ends. FlowHandlers allow this to be done without coupling the flow definition itself
with a specific controller URL. An example FlowHandler that redirects to a Spring MVC Controller is
shown below:

public class Booki ngFl owHandl er extends Abstract Fl onHandl er {
public String handl eExecuti onQut come(Fl owExecuti onQut cone out cone,
Ht t pSer vl et Request request, HttpServl et Response response) {
i f (outcone.getld().equal s("bookingConfirned")) {
return "/booki ng/ show?booki ngl d=" + out cone. get Qut put (). get ("booki ngl d");
} else {
return "/ hotel s/index";
}
}
}

Since this handler only needs to handle flow execution outcomes in a custom manner, nothing else is
overridden. The booki ngConfi r med outcome will result in a redirect to show the new booking. Any
other outcome will redirect back to the hotels index page.

Version 2.5.1.RELEASE Spring Web Flow 64

Spring Web Flow Reference Guide

Deploying a custom FlowHandler

To install a custom FlowHandler, simply deploy it as a bean. The bean name must match the id of the
flow the handler should apply to.

<bean nane="hot el s/ booki ng" cl ass="org. spri ngframewor k. webf | ow. sanpl es. booki ng. Booki ngFl owHand! er" />

With this configuration, accessing the resource / hot el s/ booki ng will launch the hot el s/ booki ng
flow using the custom BookingFlowHandler. When the booking flow ends, the FlowHandler will process
the flow execution outcome and redirect to the appropriate controller.

FlowHandler Redirects

A FlowHandler handling a FlowExecutionOutcome or FlowException returns a St r i ng to indicate the
resource to redirect to after handling. In the previous example, the Booki ngFl owHand! er redirects
to the booki ng/ show resource URI for booki ngConfi r med outcomes, and the hot el s/ i ndex
resource URI for all other outcomes.

By default, returned resource locations are relative to the current servlet mapping. This allows for a flow
handler to redirect to other Controllers in the application using relative paths. In addition, explicit redirect
prefixes are supported for cases where more control is needed.

The explicit redirect prefixes supported are:

servl et Rel ati ve: -redirect to a resource relative to the current servlet

» context Rel ati ve: -redirectto a resource relative to the current web application context path
» serverRel ative: -redirect to a resource relative to the server root

« http:// orhttps:// -redirectto a fully-qualified resource URI

These same redirect prefixes are also supported within a flow definition when using the
ext ernal Redi rect: directive in conjunction with a view-state or end-state; for example,
vi ew="ext ernal Redi rect: http://springframework. org"

11.5. View Resolution

Web Flow 2 maps selected view identifiers to files located within the flow's working directory unless
otherwise specified. For existing Spring MVC + Web Flow applications, an external Vi ewResol ver
is likely already handling this mapping for you. Therefore, to continue using that resolver and to avoid
having to change how your existing flow views are packaged, configure Web Flow as follows:

<webfl ow fl owregistry id="fl owRegi stry" fl ow buil der-servi ces="fl owBui | der Servi ces">
<webf | ow | ocati on pat h="/WEB- | NF/ hot el s/ booki ng/ booki ng. xm " />
</ webf | ow. f| owregi stry>

<webf | ow: f | ow bui | der-services id="fl owBuil der Servi ces" viewfactory-creator="nmvcVi ewFactoryCreator"/>
<bean id="nmvcVi ewFactoryCreator" class="org.springfranmework.webfl ow. mvc. bui | der. MrcVi ewFact or yCr eat or " >

<property name="vi ewResol vers" ref="nyExi stingVi ewResol ver ToUseFor Fl ows"/ >
</ bean>

Version 2.5.1.RELEASE Spring Web Flow 65

Spring Web Flow Reference Guide

The MvcViewFactoryCreator is the factory that allows you to configure how the Spring MVC view system
is used inside Spring Web Flow. Use it to configure existing ViewResolvers, as well as other services
such as a custom MessageCodesResolver. You may also enable data binding use Spring MVC's native
BeanWrapper by setting the useSpr i ngBi ndi ng flag to true. This is an alternative to using the Unified
EL for view-to-model data binding. See the JavaDoc API of this class for more information.

11.6. Signaling an event from a View

When a flow enters a view-state it pauses, redirects the user to its execution URL, and waits for a
user event to resume. Events are generally signaled by activating buttons, links, or other user interface
commands. How events are decoded server-side is specific to the view technology in use. This section
shows how to trigger events from HTML-based views generated by templating engines such as JSP,
Velocity, or Freemarker.

Using a named HTML button to signal an event

The example below shows two buttons on the same form that signal pr oceed and cancel events
when clicked, respectively.

<input type="submit" name="_event|d_proceed" val ue="Proceed" />
<i nput type="subnmit" nane="_eventl|d_cancel" val ue="Cancel" />

When a button is pressed Web Flow finds a request parameter name beginning with _event | d_ and
treats the remaining substring as the event id. So in this example, submitting _event | d_pr oceed
becomes pr oceed. This style should be considered when there are several different events that can
be signaled from the same form.

Using a hidden HTML form parameter to signal an event

The example below shows a form that signals the pr oceed event when submitted:

<input type="submt" val ue="Proceed" />
<i nput type="hi dden" nanme="_eventld" val ue="proceed" />

Here, Web Flow simply detects the special _event | d parameter and uses its value as the event id.
This style should only be considered when there is one event that can be signaled on the form.

Using a HTML link to signal an event

The example below shows a link that signals the cancel event when activated:

Cancel </ a>

Firing an event results in a HTTP request being sent back to the server. On the server-side, the flow
handles decoding the event from within its current view-state. How this decoding process works is
specific to the view implementation. Recall a Spring MVC view implementation simply looks for a request
parameter named _event | d. If no _event | d parameter is found, the view will look for a parameter
that starts with _event | d_ and will use the remaining substring as the event id. If neither cases exist,
no flow event is triggered.

Version 2.5.1.RELEASE Spring Web Flow 66

Spring Web Flow Reference Guide

11.7. Embedding A Flow On A Page

By default when a flow enters a view state, it executes a client-side redirect before rendering the
view. This approach is known as POST-REDIRECT-GET. It has the advantage of separating the form
processing for one view from the rendering of the next view. As a result the browser Back and Refresh
buttons work seamlessly without causing any browser warnings.

Normally the client-side redirect is transparent from a user's perspective. However, there are situations
where POST-REDIRECT-GET may not bring the same benefits. For example a flow may be embedded
on a page and driven via Ajax requests refreshing only the area of the page that belongs to the flow.
Not only is it unnecessary to use client-side redirects in this case, it is also not the desired behavior with
regards to keeping the surrounding content of the page intact.

The Section 12.5, “Handling Ajax Requests” explains how to do partial rendering during Ajax requests.
The focus of this section is to explain how to control flow execution redirect behavior during Ajax
requests. To indicate a flow should execute in "page embedded" mode all you need to do is append an
extra parameter when launching the flow:

/ hot el s/ booki ng?node=enbedded

When launched in "page embedded" mode a flow will not issue flow execution redirects during Ajax
requests. The mode=embedded parameter only needs to be passed when launching the flow. Your only
other concern is to use Ajax requests and to render only the content required to update the portion of
the page displaying the flow.

Embedded Mode Vs Default Redirect Behavior

By default Web Flow does a client-side redirect upon entering every view state. However if you remain
in the same view state -- for example a transition without a "to" attribute -- during an Ajax request there
will not be a client-side redirect. This behavior should be quite familiar to Spring Web Flow 2 users. It is
appropriate for a top-level flow that supports the browser back button while still taking advantage of Ajax
and partial rendering for use cases where you remain in the same view such as form validation, paging
trough search results, and others. However transitions to a new view state are always followed with a
client-side redirect. That makes it impossible to embed a flow on a page or within a modal dialog and
execute more than one view state without causing a full-page refresh. Hence if your use case requires
embedding a flow you can launch it in "embedded" mode.

Embedded Flow Examples

If you'd like to see examples of a flow embedded on a page and within a modal dialog please refer to the
webflow-showcase project. You can check out the source code locally, build it as you would a Maven
project, and import it into Eclipse:

cd sonme-directory

svn co https://src.springframework. org/svn/spring-sanpl es/ webf | ow showcase
cd webf | ow showcase

mvn package

inport into Eclipse

11.8. Saving Flow Output to MVC Flash Scope

Flow output can be automatically saved to MVC flash scope when an end-state performs
an internal redirect. This is particularly useful when displaying a summary screen at the

Version 2.5.1.RELEASE Spring Web Flow 67

Spring Web Flow Reference Guide

end of a flow. For backwards compatibility this feature is disabled by default, to enable set
saveQut put ToFl ashScopeOnRedi r ect on your Fl owHand!| er Adapt er totr ue.

<!-- Enabl es Fl owHandl er URL mapping -->

<bean cl ass="org. spri ngfranmewor k. webf | ow. mvc. servl et. Fl owHand| er Adapt er" >
<property name="fl owExecutor" ref="fl owExecutor" />
<property name="saveQut put ToFl ashScopeOnRedirect" val ue="true" />

</ bean>

The following example will add conf i r mat i onNunber to the MVC flash scope before redirecting to
the sunmrar y screen.

<end-state id="finish" view="external Redirect: summary">
<out put nanme="confirmati onNunber" val ue="booki ng. confirmati onNunber" />
</ end- st at e>

Version 2.5.1.RELEASE Spring Web Flow 68

Spring Web Flow Reference Guide

12. Spring JavaScript Quick Reference

12.1. Introduction

The spring-js-resources module is a legacy module that is no longer recommended for use but is
provided still as an optional module for backwards compatibility. Its original aim is to provide a client-
side programming model for progressively enhancing a web page with behavior and Ajax remoting.

Use of the Spring JS API is demonstrated in the samples repository.

12.2. Serving Javascript Resources

The Spring Framework provides a mechanism for serving static resources. See the Spring Framework
documentation). With the new <mvc:resources> element resource requests (.js, .css) are handled by
theDi spat cher Sevl et . Here is example configuration in XML (Java config is also available):

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schenma/ beans"

xm ns: xsi ="http://ww. wW3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: mve="http://wwm. springframework. or g/ schema/ nvc"

xsi : schemalLocati on="http://ww. spri ngframework. org/ schema/ nvc http://ww. springfranmework. or g/ schema/
mvc/ spring-mvc. xsd

http://ww. springfranework. org/ schena/ beans http://ww. springfranework. org/ schena/ beans/ spri ng-

beans. xsd" >

<mvc: annot ati on-driven/ >

<nmvc:resources mappi ng="/resources/**" |ocation="/, classpath:/META-|1NF/ web-resources/" />

</ beans>

This incoming maps requests for /resources to resources found under / META-| NF/ web-
r esour ces on the classpath. That's where Spring JavaScript resources are bundled. However, you can
modify the location attribute in the above configuration in order to serve resources from any classpath
or web application relative location.

Note that the full resource URL depends on how your DispatcherServlet is mapped. In the mvc-booking
sample we've chosen to map it with the default servlet mapping '/":

<servl et >

<servl et - nanme>Di spat cher Ser vl et </ ser vl et - nane>

<servl et -cl ass>org. springframewor k. web. servl et. Di spat cher Servl et </ servl et-cl ass>
</ servl et>

<servl et - mappi ng>
<servl et - nanme>Di spat cher Servl et </ ser vl et - nane>
<url-pattern>/</url-pattern>

</ servl et - mappi ng>

That means the full URL to load Spring.js is/ nyapp/ resources/spring/ Spring.js. If your
Di spat cher Ser vl et was instead mapped to / mai n/ * then the full URL would be / nyapp/ mai n/
resources/ spring/ Spring.js.

Version 2.5.1.RELEASE Spring Web Flow 69

https://github.com/spring-projects/spring-webflow-samples
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-config-static-resources
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-config-static-resources

Spring Web Flow Reference Guide

When using of the default servlet mapping it is also recommended to add this to your Spring MVC
configuration, which ensures that any resource requests not handled by your Spring MVC mappings
will be delegated back to the Servlet container.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: mve="ht t p: // ww. spri ngframewor k. or g/ schena/ mvc"

xsi : schemaLocati on="htt p://ww. spri ngframewor k. or g/ schema/ nvc http://ww. spri ngframewor k. or g/ schema/
mvc/ spring- mvc. xsd

http://ww. spri ngfranework. org/ schena/ beans http://ww. springfranework. org/ schena/ beans/ spri ng-

beans. xsd" >

<nvc: def aul t-servl et-handl er />

</ beans>

12.3. Including Spring Javascript in a Page

Spring JS is designed such that an implementation of its API can be built for any of the popular Javascript
toolkits. The initial implementation of Spring.js builds on the Dojo toolkit.

Using Spring Javascript in a page requires including the underlying toolkit as normal, the Spring. j s
base interface file, and the Spring-(library inplenentation).js file for the underlying
toolkit. As an example, the following includes obtain the Dojo implementation of Spring.js using the
Resour ceServl et :

<script type="text/javascript" src="<c:url value="/resources/dojo/dojo.js" />"> </script>
<script type="text/javascript" src="<c:url value="/resources/spring/Spring.js" />"> </script>
<script type="text/javascript" src="<c:url value="/resources/spring/Spring-Dojo.js" />"> </script>

When using the widget system of an underlying library, typically you must also include some CSS
resources to obtain the desired look and feel. For the booking-mvc reference application, Dojo's
t undr a. css is included:

<link type="text/css" rel="stylesheet" href="<c:url value="/resources/dijit/themes/tundral/tundra.css" /
>t >

12.4. Spring Javascript Decorations

A central concept in Spring Javascript is the notion of applying decorations to existing DOM nodes. This
technique is used to progressively enhance a web page such that the page will still be functional in a
less capable browser. The addDecor at i on method is used to apply decorations.

The following example illustrates enhancing a Spring MVC <f or m i nput > tag with rich suggestion
behavior:

Version 2.5.1.RELEASE Spring Web Flow 70

Spring Web Flow Reference Guide

<forminput id="searchString" path="searchString"/>
<script type="text/javascript">
Spri ng. addDecor ati on(new Spri ng. El ement Decor ati on({
el ementld: "searchString",
wi dget Type: "dijit.form ValidationText Box",
wi dget Attrs: { pronpt Message : "Search hotels by nane, address, city, or zip." }}));
</script>

The El ement Decor ati on is used to apply rich widget behavior to an existing DOM node. This
decoration type does not aim to completely hide the underlying toolkit, so the toolkit's native widget
type and attributes are used directly. This approach allows you to use a common decoration model
to integrate any widget from the underlying toolkit in a consistent manner. See the booki ng- mvc
reference application for more examples of applying decorations to do things from suggestions to client-
side validation.

When using the El ement Decor at i on to apply widgets that have rich validation behavior, a common
need is to prevent the form from being submitted to the server until validation passes. This can be done
with the Val i dat eAl | Decor at i on:

<input type="submt" id="proceed" name="_event|d_proceed" val ue="Proceed" />
<script type="text/javascript">

Spri ng. addDecor ati on(new Spring. Val i dat eAl | Decoration({ elenentld:"'proceed', event:'onclick' }));
</script>

This decorates the "Proceed" button with a special onclick event handler that fires the client side
validators and does not allow the form to submit until they pass successfully.

An Aj axEvent Decor at i on applies a client-side event listener that fires a remote Ajax request to the
server. It also auto-registers a callback function to link in the response:

<a id="prevLi nk" href="search?searchString=${criteria.searchString}&page=%${criteria.page -
1}" >Previ ous</ a>
<script type="text/javascript">
Spri ng. addDecor ati on(new Spri ng. Aj axEvent Decor ati on({
el enentld: "prevLink",
event: "onclick",
paranms: { fragnments: "body" }

D)

</script>

This decorates the onclick event of the "Previous Results" link with an Ajax call, passing along a special
parameter that specifies the fragment to be re-rendered in the response. Note that this link would still be
fully functional if Javascript was unavailable in the client. (See Section 12.5, “Handling Ajax Requests”
for details on how this request is handled on the server.)

It is also possible to apply more than one decoration to an element. The following example shows a
button being decorated with Ajax and validate-all submit suppression:

<input type="submt" id="proceed" name="_event|d_proceed" val ue="Proceed" />

<script type="text/javascript">
Spri ng. addDecor ati on(new Spring. Val i dat eAl | Decor ati on({el enmentld:' proceed', event:'onclick'}));
Spri ng. addDecor ati on(new Spring. Aj axEvent Decor ati on({el enmentld:' proceed',
event:'onclick',form d:"'booking', parans:{fragments:' messages'}}));

</script>

Version 2.5.1.RELEASE Spring Web Flow 71

Spring Web Flow Reference Guide

It is also possible to apply a decoration to multiple elements in a single statement using Dojo's query
API. The following example decorates a set of checkbox elements as Dojo Checkbox widgets:

<div id="amenities">
<form checkbox path="amenities" val ue="OCEAN_VI EW | abel ="Ccean View' /></|i>
<form checkbox path="amenities" val ue="LATE _CHECKOUT" | abel ="Late Checkout" /></|i>
<f orm checkbox path="anenities" val ue="M NI BAR' | abel ="M ni bar" /></1i>
<script type="text/javascript">
doj 0. query("#anmeni ties input[type='checkbox']").forEach(function(el ement) {
Spring. addDecor ati on(new Spring. El ement Decor ati on({
elementld: elenent.id,
wi dget Type : "dijit.form CheckBox",
wi dget Attrs : { checked : el enent.checked }
b))
b
</script>
</ di v>

12.5. Handling Ajax Requests

Spring Javascript's client-side Ajax response handling is built upon the notion of receiving "fragments”
back from the server. These fragments are just standard HTML that is meant to replace portions of the
existing page. The key piece needed on the server is a way to determine which pieces of a full response
need to be pulled out for partial rendering.

In order to be able to render partial fragments of a full response, the full response must be built using
a templating technology that allows the use of composition for constructing the response, and for the
member parts of the composition to be referenced and rendered individually. Spring Javascript provides
some simple Spring MVC extensions that make use of Tiles to achieve this. The same technique could
theoretically be used with any templating system supporting composition.

Spring Javascript's Ajax remoting functionality is built upon the notion that the core handling code for an
Ajax request should not differ from a standard browser request, thus no special knowledge of an Ajax
request is needed directly in the code and the same hanlder can be used for both styles of request.

Providing a Library-Specific AjaxHandler

The key interface for integrating various Ajax libraries with the Ajax-aware behavior of Web Flow
(such as not redirecting for a partial page update) is or g. spri ngf ramework. j s. Aj axHandl er.
A SpringJavascri pt Aj axHandl er is configured by default that is able to detect an Ajax request
submitted via the Spring JS client-side API and can respond appropriately in the case where a redirect
is required. In order to integrate a different Ajax library (be it a pure JavaScript library, or a higher-level
abstraction such as an Ajax-capable JSF component library), a custom Aj axHandl er can be injected
into the FI owHandl er Adapt er or Fl onControl | er.

Handling Ajax Requests with Spring MVC Controllers

In order to handle Ajax requests with Spring MVC controllers, all that is needed is the configuration of the
provided Spring MVC extensions in your Spring application context for rendering the partial response
(note that these extensions require the use of Tiles for templating):

<bean id="til esVi ewResol ver" cl ass="org. spri ngfranmewor k. webfl ow. mvc. vi ew. Aj axUr | BasedVi ewResol ver" >
<property name="vi ewC ass" val ue="org. spri ngf ramewor k. webf | ow. mvc. vi ew. Fl owAj axTi | es3Vi ew'/ >
</ bean>

Version 2.5.1.RELEASE Spring Web Flow 72

Spring Web Flow Reference Guide

This configures the Aj axUr| BasedVi ewResol ver which in turn interprets Ajax requests and
creates FI owAj axTi | esVi ew objects to handle rendering of the appropriate fragments. Note that
Fl owAj axTi | esVi ewis capable of handling the rendering for both Web Flow and pure Spring MVC
requests. The fragments correspond to individual attributes of a Tiles view definition. For example, take
the following Tiles view definition:

<definition name="hotel s/index" extends="standardLayout">
<put-attribute name="body" val ue="i ndex. body" />
</ definition>

<definition name="index. body" tenplate="/WEB-I|NF/ hotel s/index.]jsp">
<put-attribute name="hot el Sear chForni" val ue="/WEB- | NF/ hot el s/ hot el Sear chForm j sp" />

<put-attribute name="booki ngsTabl e" val ue="/WEB- | NF/ hot el s/ booki ngsTabl e. jsp" />
</ definition>

An Ajax request could specify the "body", "hotelSearchForm" or "bookingsTable" to be rendered as
fragments in the request.

Handling Ajax Requests with Spring MVC + Spring Web Flow

Spring Web Flow handles the optional rendering of fragments directly in the flow definition language
through use of the r ender element. The benefit of this approach is that the selection of fragments is
completely decoupled from client-side code, such that no special parameters need to be passed with
the request the way they currently must be with the pure Spring MVC controller approach. For example,
if you wanted to render the "hotelSearchForm" fragment from the previous example Tiles view into a
rich Javascript popup:

<vi ew state id="changeSearchCriteria" view="enterSearchCriteria.xhtm" popup="true">
<on-entry>
<render fragnents="hotel SearchFornm' />
</on-entry>
<transition on="search" to="revi ewHotel s">
<eval uat e expression="searchCriteria.resetPage()"/>
</transition>
</ vi ew st at e>

Version 2.5.1.RELEASE Spring Web Flow 73

Spring Web Flow Reference Guide

13. JSF Integration

13.1. Introduction

Spring Web Flow provides a JSF integration that lets you use the JSF Ul Component Model with Spring
Web Flow controllers. Web Flow also provides a Spring Security tag library for use in JSF environments,
see Section 13.9, “Using the Spring Security Facelets Tag Library” for more details.

Spring Web Flow 2.5 requires JSF 2.2 or higher.

13.2. Configuring web.xml

The first step is to route requests to the Di spat cher Ser vl et inthe web. xni file. In this example, we
map all URLSs that begin with / spri ng/ to the servlet. The servlet needs to be configured. Ani ni t -
par amis used in the servlet to pass the cont ext Confi gLocat i on. This is the location of the Spring
configuration for your web application.

<servl et >
<servl et - name>Spri ng M/C Di spat cher Servl et </servl et-nane>
<servl et-cl ass>org. spri ngframewor k. web. servl et. Di spat cherServl et</servlet-class>
<init-paran>
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>/ WWEB- | NF/ web- appl i cati on- confi g. xm </ par am val ue>
</init-paran>
<l oad- on- st art up>1</| oad- on- st art up>
</ servl et>

<servl et - mappi ng>
<servl et -name>Spri ng MC Di spat cher Servl et </servl et-nane>
<url-pattern>/spring/*</url-pattern>

</ servl et - mappi ng>

In order for JSF to bootstrap correctly, the FacesSer vl et must be configured inweb. xm as it normally
would even though you generally will not need to route requests through it at all when using JSF with
Spring Web Flow.

<l-- Just here so the JSF inplenentation can initialize, *not* used at runtine -->
<servl et>

<servl et - name>Faces Servl et </servl et -name>

<servl et -cl ass>j avax. f aces. webapp. FacesSer vl et </ servl et - cl ass>

<l oad- on- st art up>1</| oad- on- st art up>
</ servl et>

<l-- Just here so the JSF inplenmentation can initialize -->
<servl et - mappi ng>
<servl et - name>Faces Servl et </servl et -name>
<url-pattern>*.faces</url-pattern>
</ servl et - mappi ng>

The use of Facelets instead of JSP typically requires this in web.xml:

1-- Use JSF view tenpl ates saved as *.xhtm, for use with Facelets -->
<cont ext - par an»

<par am nane>j avax. f aces. DEFAULT_SUFFI X</ par am nane>

<par am val ue>. xht m </ par am val ue>
</ cont ext - par an>

Version 2.5.1.RELEASE Spring Web Flow 74

Spring Web Flow Reference Guide

13.3. Configuring Web Flow for use with JSF

This section explains how to configure Web Flow with JSF. Both Java and XML style configuration are
supported. The following is sample configuration for Web Flow and JSF in XML:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. wW3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: webf | ow="ht t p: / / www. spri ngframewor k. or g/ schema/ webf | ow confi g"
xm ns: faces="http://ww. springfranmework. org/ schema/ f aces"
si : schemalLocati on="
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schema/ webf | ow confi g
http://ww. spri ngfranmework. or g/ schema/ webf | ow confi g/ spri ng- webf | ow confi g. xsd
ht t p: / / www. spri ngf ramewor k. or g/ schena/ f aces
http://ww. springfranework. org/ schena/ f aces/ spri ng-faces. xsd" >

<l-- Executes flows: the central entry point into the Spring Wb Fl ow system -->
<webf | ow f | ow execut or id="fl owExecutor">
<webf | ow: f | ow execution-1i steners>
<webflow |istener ref="facesContextListener"/>
</ webf | ow: f| ow executi on-1i steners>
</ webf | ow: f | ow execut or >

<l-- The registry of executable flow definitions -->
<webf |l ow flowregistry id="fl owRegistry" flow buil der-services="fl owBui |l der Servi ces" base-pat h="/WEB-
I NF" >
<webfl ow fl ow | ocation-pattern value="**/*-flow. xm" />
</ webf | ow: fl owregistry>

<!-- Configures the Spring Web Flow JSF integration -->
<faces: fl ow bui |l der-services id="fl owBui | der Servi ces" />

<l-- Alistener maintain one FacesContext instance per Wb Fl ow request. -->
<bean i d="facesCont ext Li stener"

cl ass="org. springframewor k. f aces. webf | ow. Fl onFacesCont ext Li f ecycl eLi stener" />

</ beans>

The following is an example of the same in Java configuration:

i nport org.springfranmework. cont ext.annot ati on. Bean;
i nport org.springfranmework. cont ext.annotation. Configuration;
inport org.springfranework. faces. config.*;

@onfiguration
public class WebFl owConfig extends AbstractFacesFl owConfiguration {

@Bean
public Fl owExecutor flowExecutor() {
return getFl owExecut or Bui | der (f| owRegi stry())
. addFl owExecut i onLi st ener (new Fl owFacesCont ext Li f ecycl eLi st ener ())
Lbuild();

@Bean
public FlowbDefinitionRegistry flowRegistry() {
return get Fl owDefinitionRegi stryBuil der()
. set BasePat h("/VEB- | NF")
.addFl owLocationPattern("**/*-flow xm "). build();

Version 2.5.1.RELEASE Spring Web Flow 75

Spring Web Flow Reference Guide

The main points are the installation of a Fl owFacesCont ext Li f ecycl eLi st ener that manages
a single FacesContext for the duration of Web Flow request and the use of the f| ow- bui | der -
servi ces element from the f aces custom namespace to configure rendering for a JSF environment.

In a JSF environment you'll also need this Spring MVC related configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"
xm ns: faces="http://ww. spri ngframework. or g/ schenma/ f aces"
xsi : schemaLocat i on="
http://ww. springfranmewor k. or g/ schema/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
ht t p: / / www. spri ngf ramewor k. or g/ schena/ f aces
ht t p: // www. spri ngf ramewor k. or g/ schena/ f aces/ spri ng- f aces. xsd" >

<faces: resources />
<bean cl ass="org. springframework. faces. webf | ow. Jsf Fl owHand| er Adapt er" >
<property name="fl| owExecutor" ref="fl owExecutor" />

</ bean>

</ beans>

The r esour ces custom namespace element delegates JSF resource requests to the JSF resource
API. The Jsf Fl owHandl| er Adapt er is a replacement for the FI owHandl er Adapt er normally
used with Web Flow. This adapter initializes itself with a Jsf Aj axHandl er instead of the
SpringJavaSci prt Aj axHandl er .

When using Java config, the Abstract FacesFl owConfi gurati on base class automatically
registers Jsf Resour ceRequest Handl er so there is nothing further to do.

13.4. Replacing the JSF Managed Bean Facility

When using JSF with Spring Web Flow you can completely replace the JSF managed bean facility with a
combination of Web Flow managed variables and Spring managed beans. It gives you a good deal more
control over the lifecycle of your managed objects with well-defined hooks for initialization and execution
of your domain model. Additionally, since you are presumably already using Spring for your business
layer, it reduces the conceptual overhead of having to maintain two different managed bean models.

In doing pure JSF development, you will quickly find that request scope is not long-lived enough for
storing conversational model objects that drive complex event-driven views. In JSF the usual option is to
begin putting things into session scope, with the extra burden of needing to clean the objects up before
progressing to another view or functional area of the application. What is really needed is a managed
scope that is somewhere between request and session scope. JSF provides flash and view scopes that
can be accessed programmatically via UlViewRoot.getViewMap(). Spring Web Flow provides access
to flash, view, flow, and conversation scopes. These scopes are seamlessly integrated through JSF
variable resolvers and work the same in all JSF applications.

Using Flow Variables

The easiest and most natural way to declare and manage the model is through the use of flow variables.
You can declare these variables at the beginning of the flow:

<var nanme="searchCriteria" class="com myconpany. nmyapp. hotel s.search. SearchCriteria"/>

Version 2.5.1.RELEASE Spring Web Flow 76

Spring Web Flow Reference Guide

and then reference this variable in one of the flow's JSF view templates through EL:

<h:input Text id="searchString" value="#{searchCriteria.searchString}"/>

Note that you do not need to prefix the variable with its scope when referencing it from the template
(though you can do so if you need to be more specific). As with standard JSF beans, all available scopes
will be searched for a matching variable, so you could change the scope of the variable in your flow
definition without having to modify the EL expressions that reference it.

You can also define view instance variables that are scoped to the current view and get cleaned
up automatically upon transitioning to another view. This is quite useful with JSF as views are often
constructed to handle multiple in-page events across many requests before transitioning to another view.

To define a view instance variable, you can use the var element inside a vi ew st at e definition:

<viewstate id="enterSearchCriteria">
<var nane="searchCriteria" class="com nyconpany. nyapp. hotel s. search. SearchCriteria"/>
</ vi ew st at e>

Using Scoped Spring Beans

Though defining autowired flow instance variables provides nice modularization and readability,
occasions may arise where you want to utilize the other capabilities of the Spring container such as
AOP. In these cases, you can define a bean in your Spring ApplicationContext and give it a specific
web flow scope:

<bean id="searchCriteria" class="com nyconpany. nyapp. hotel s. search. SearchCriteria" scope="flow'/>

The major difference with this approach is that the bean will not be fully initialized until it is first accessed
via an EL expression. This sort of lazy instantiation via EL is quite similar to how JSF managed beans
are typically allocated.

Manipulating The Model

The need to initialize the model before view rendering (such as by loading persistent entities from
a database) is quite common, but JSF by itself does not provide any convenient hooks for such
initialization. The flow definition language provides a natural facility for this through its Actions . Spring
Web Flow provides some extra conveniences for converting the outcome of an action into a JSF-specific
data structure. For example:

<on-render >
<eval uat e expressi on="booki ngServi ce. fi ndBooki ngs(current User. nane)"
resul t ="vi ewScope. booki ngs" result-type="dat aMbdel " />
</ on-render >

This will take the result of the booki ngSer vi ce. f i ndBooki ngs method an wrap it in a custom JSF
DataModel so that the list can be used in a standard JSF DataTable component:

Version 2.5.1.RELEASE Spring Web Flow 77

Spring Web Flow Reference Guide

<h: dat aTabl e i d="booki ngs" styl eC ass="summary" val ue="#{booki ngs}" var="booki ng"
render ed="#{ booki ngs. rowCount > 0}">
<h: col um>
<f:facet nanme="header">Nane</f:facet>
#{ booki ng. hot el . nane}
</ h: col uim>
<h: col um>
<f:facet name="header">Confirmation nunber</f:facet>
#{ booki ng. i d}
</ h: col um>
<h: col umm>
<f:facet name="header">Action</f:facet>
<h: commandLi nk id="cancel" val ue="Cancel " acti on="cancel Booki ng" />
</ h: col utm>
</ h: dat aTabl e>

Data Model Implementations

In the example above result-type="dataModel" results in the wrapping of List<Booking> with custom
Dat aMbdel type. The custom Dat aMbdel provides extra conveniences such as being serializable for
storage beyond request scope as well as access to the currently selected row in EL expressions. For
example, on postback from a view where the action event was fired by a component within a DataTable,
you can take action on the selected row's model instance:

<transition on="cancel Booki ng">
<eval uat e expressi on="booki ngSer vi ce. cancel Booki ng(booki ngs. sel ect edRow) " />
</transition>

Spring Web Flow provides two custom DataModel types: OneSel ect i onTr acki ngLi st Dat aMbdel
and ManySel ecti onTr acki nglLi st Dat aMbdel . As the names indicate they keep track of one
or multiple selected rows. This is done with the help of a Sel ecti onTr acki ngActi onLi st ener
listener, which responds to JSF action events and invokes the appopriate methods on the
Sel ecti nAwar e data models to record the currently clicked row.

To understand how this is configured, keep in mind the FacesConver si onSer vi ce registers a
Dat aMbdel Convert er against the alias "dataModel” on startup. When result-type="dataModel" is
used in a flow definition it causes the Dat aMbdel Converter to be used. The converter then
wraps the given List with an instance of OneSel ecti onTr acki ngLi st Dat aMbdel . To use the
ManySel ecti onTr acki ngLi st Dat aModel you will need to register your own custom converter.

13.5. Handling JSF Events With Spring Web Flow

Spring Web Flow allows you to handle JSF action events in a decoupled way, requiring no direct
dependencies in your Java code on JSF API's. In fact, these events can often be handled completely
in the flow definiton language without requiring any custom Java action code at all. This allows for a
more agile development process since the artifacts being manipulated in wiring up events (JSF view
templates and SWF flow definitions) are instantly refreshable without requiring a build and re-deploy
of the whole application.

Handling JSF In-page Action Events

A simple but common case in JSF is the need to signal an event that causes manipulation of the model
in some way and then redisplays the same view to reflect the changed state of the model. The flow
definition language has special support for this in the t r ansi ti on element.

Version 2.5.1.RELEASE Spring Web Flow 78

Spring Web Flow Reference Guide

A good example of this is a table of paged list results. Suppose you want to be able to load and display
only a portion of a large result list, and allow the user to page through the results. The initial vi ew
st at e definition to load and display the list would be:

<view state id="revi enHot el s">
<on-render >
<eval uat e expressi on="booki ngServi ce. findHot el s(searchCriteria)"
resul t ="vi ewScope. hot el s" result-type="dataMdel" />
</ on-render >
</ vi ew st at e>

You construct a JSF DataTable that displays the current hot el s list, and then place a "More Results"
link below the table:

<h: commandLi nk i d="next PageLi nk" val ue="More Results" action="next"/>

This commandLink signals a "next" event from its action attribute. You can then handle the event by
adding to the vi ew- st at e definition:

<viewstate id="revi ewHot el s">
<on-r ender >
<eval uat e expressi on="booki ngServi ce. findHot el s(searchCriteria)"
resul t ="vi ewScope. hot el s" result-type="dat aMbdel " />
</ on-render >
<transition on="next">
<eval uat e expressi on="searchCriteria.nextPage()" />
</transition>
</ vi ew st at e>

Here you handle the "next" event by incrementing the page count on the searchCriteria instance. The
on-render action is then called again with the updated criteria, which causes the next page of results
to be loaded into the DataModel. The same view is re-rendered since there was no t o attribute on the
transi ti on element, and the changes in the model are reflected in the view.

Handling JSF Action Events

The next logical level beyond in-page events are events that require navigation to another view, with
some manipulation of the model along the way. Achieving this with pure JSF would require adding a
navigation rule to faces-config.xml and likely some intermediary Java code in a JSF managed bean (both
tasks requiring a re-deploy). With the flow defintion language, you can handle such a case concisely in
one place in a quite similar way to how in-page events are handled.

Continuing on with our use case of manipulating a paged list of results, suppose we want each row in
the displayed DataTable to contain a link to a detail page for that row instance. You can add a column
to the table containing the following commandLi nk component:

<h: commandLi nk i d="vi ewHot el Li nk" val ue="Vi ew Hotel " action="sel ect"/>

This raises the "select" event which you can then handle by adding another t r ansi ti on element to
the existing vi ew- st at e :

Version 2.5.1.RELEASE Spring Web Flow 79

Spring Web Flow Reference Guide

<viewstate id="revi ewHot el s">
<on-r ender >
<eval uat e expressi on="booki ngServi ce. findHotel s(searchCriteria)"
resul t ="vi ewScope. hot el s" result-type="dataMobdel " />
</ on-render >
<transition on="next">
<eval uat e expressi on="searchCriteria.nextPage()" />
</transition>
<transition on="select" to="reviewHotel ">
<set nanme="fl owScope. hotel" val ue="hot el s. sel ect edRow' />
</transition>
</ vi ew st at e>

Here the "select" event is handled by pushing the currently selected hotel instance from the DataTable
into flow scope, so that it may be referenced by the "reviewHotel" vi ew st at e .

Performing Model Validation

JSF provides useful facilities for validating input at field-level before changes are applied to the model,
but when you need to then perform more complex validation at the model-level after the updates have
been applied, you are generally left with having to add more custom code to your JSF action methods
in the managed bean. Validation of this sort is something that is generally a responsibility of the domain
model itself, but it is difficult to get any error messages propagated back to the view without introducing
an undesirable dependency on the JSF API in your domain layer.

With Web Flow, you can utilize the generic and low-level MessageCont ext in your business code and
any messages added there will then be available to the FacesCont ext at render time.

For example, suppose you have a view where the user enters the necessary details to complete a hotel
booking, and you need to ensure the Check In and Check Out dates adhere to a given set of business
rules. You can invoke such model-level validation from at r ansi ti on element:

<vi ew st at e i d="ent er Booki ngDet ai | s" >
<transition on="proceed" to="revi ewBooki ng">
<eval uat e expressi on="booki ng. val i dat eEnt er Booki ngDet ai | s(messageContext)" />
</transition>
</ vi ew st at e>

Here the "proceed" event is handled by invoking a model-level validation method on the booking
instance, passing the generic MessageCont ext instance so that messages may be recorded. The
messages can then be displayed along with any other JSF messages with the h: messages component,

Handling Ajax Events In JSF

JSF provides built-in support for sending Ajax requests and performing partial processing and rendering
on the server-side. You can specify a list of id's for partial rendering through the <f:ajax> facelets tag.

In Spring Web Flow you also have the option to specify the ids to use for partial rendering on the server
side with the render action:

Version 2.5.1.RELEASE Spring Web Flow 80

Spring Web Flow Reference Guide

<view state id="revi ewHot el s">
<on-r ender >
<eval uat e expressi on="booki ngServi ce. findHotel s(searchCriteria)"
resul t ="vi ewScope. hot el s" result-type="dataModel " />
</ on-render >
<transition on="next">
<eval uat e expressi on="searchCriteria.nextPage()" />
<render fragments="hotels:searchResul t sFragment" />
</transition>
</ vi ew st at e>

13.6. Embedding a Flow On a Page

By default when a flow enters a view state, it executes a client-side redirect before rendering the
view. This approach is known as POST-REDIRECT-GET. It has the advantage of separating the form
processing for one view from the rendering of the next view. As a result the browser Back and Refresh
buttons work seamlessly without causing any browser warnings.

Normally the client-side redirect is transparent from a user's perspective. However, there are situations
where POST-REDIRECT-GET may not bring the same benefits. For example sometimes it may be
useful to embed a flow on a page and drive it via Ajax requests refreshing only the area of the page
where the flow is rendered. Not only is it unnecessary to use client-side redirects in this case, it is also
not the desired behavior with regards to keeping the surrounding content of the page intact.

To indicate a flow should execute in "page embedded” mode all you need to do is pass an extra flow
input attribute called "mode" with a value of "embedded". Below is an example of a top-level container
flow invoking a sub-flow in an embedded mode:

<subfl owstate id="bookHotel" subfl ow="booking">
<i nput name="node" val ue=""'enbedded' "/ >
</ subf | ow st at e>

When launched in "page embedded" mode the sub-flow will not issue flow execution redirects during
Ajax requests.

If you'd like to see examples of an embedded flow please refer to the webflow-primefaces-showcase
project. You can check out the source code locally, build it as you would a Maven project, and import
it into Eclipse:

cd sone-directory

svn co https://src.springframework. org/svn/spring-sanpl es/ webf| ow pri nef aces- showcase
cd webfl ow pri mef aces- showcase

mvn package

inport into Eclipse

The specific example you need to look at is under the "Advanced Ajax" tab and is called "Top Flow with
Embedded Sub-Flow".

13.7. Redirect In Same State

By default Web Flow does a client-side redirect even it it remains in the same view state as long as the
current request is not an Ajax request. This is quite useful after form validation failures for example. If

Version 2.5.1.RELEASE Spring Web Flow 81

Spring Web Flow Reference Guide

the user hits Refresh or Back they won't see any browser warnings. They would if the Web Flow didn't
do a redirect.

This can lead to a problem specific to JSF environments where a specific Sun Mojarra listener
component caches the FacesContext assuming the same instance is available throughout the JSF
lifecycle. In Web Flow however the render phase is temporarily put on hold and a client-side redirect
executed.

The default behavior of Web Flow is desirable and it is unlikely JSF applications will experience the
issue. This is because Ajax is often enabled the default in JSF component libraries and Web Flow
does not redirect during Ajax requests. However if you experience this issue you can disable client-side
redirects within the same view as follows:

<webf | ow: f | ow executor id="fl owExecutor">
<webf | ow: f| ow execution-attributes>
<webf | ow: redirect-in-sanme-state val ue="fal se"/>
</ webf | ow fl ow execution-attributes>
</ webf | ow: f | ow execut or >

13.8. Handling File Uploads with JSF

Most JSF component providers include some form of 'file upload' component. Generally when working
with these components JSF must take complete control of parsing multi-part requests and Spring MVC's
Mul ti part Resol ver cannot be used.

Spring Web Flow has been tested with file upload components from PrimeFaces. Check the
documentation of your JSF component library for other providers to see how to configure file upload.

File Uploads with PrimeFaces

PrimeFaces provides a<p: fi | eUpl oad>component for uploading files. In order to use the component
you need to configure the or g. pri nef aces. webapp. filter. Fil eUpl oadFi | t er servlet filter.
The filter needs to be configured against Spring MVC's Di spat cher Ser vl et in your web. xm :

<filter>
<filter-name>PrimeFaces FileUpload Filter</filter-nanme>
<filter-class>org. primefaces.webapp.filter.FileUploadFilter</filter-class>
</filter>
<filter-mppi ng>
<filter-nanme>Pri meFaces FileUpload Filter</filter-nane>
<servl et -name>Spri ng MC Di spat cher Servl et </servl et-nanme>
</filter-mappi ng>

<cont ext - par an»
<par am nane>pri mef aces. UPLOADER</ par am nane>
<par am val ue>commons</ par am val ue>

</ cont ext - par an>

For more details refer to the PrimeFaces documentation.

13.9. Using the Spring Security Facelets Tag Library

To use the library you'll need to create a . t agl i b. xm file and register it in web. xmi .

Create the file / VEB- | NF/ spri ngsecurity.taglib.xm with the following content:

Version 2.5.1.RELEASE Spring Web Flow 82

http://primefaces.org/documentation.html

Spring Web Flow Reference Guide

<?xm version="1.0"?>
<! DOCTYPE f acel et-taglib PUBLIC
"-//Sun Mcrosystens, Inc.//DTD Facelet Taglib 1.0//EN'
"http://java.sun.com dtd/facelet-taglib_1_0.dtd">
<facel et-taglib>
<namespace>http://ww. springfranmewor k. or g/ security/tags</nanespace>
<t ag>
<t ag- nane>aut hori ze</ t ag- nane>
<handl er-cl ass>org. spri ngframewor k. f aces. securi ty. Facel et sAut hori zeTagHandl er </ hand| er-cl ass>
</tag>
<function>
<function-nanme>areAl | G anted</functi on-name>
<function-cl ass>org. springframework. faces. security. Facel et sAut hori zeTagUtil s</function-cl ass>
<function-signature>bool ean areAl | Granted(java.lang. String)</function-signature>
</function>
<function>
<function-nanme>ar eAnyG ant ed</ f uncti on- name>
<function-cl ass>org. springframework. faces. security. Facel et sAut hori zeTagWil s</function-cl ass>
<function-si gnat ure>bool ean areAnyG anted(java.lang. String)</function-signature>
</ function>
<function>
<function-nanme>ar eNot G ant ed</ f uncti on- nane>
<function-cl ass>org. springframework. faces. security. Facel et sAut hori zeTagUt il s</function-class>
<function-si gnat ure>bool ean areNot Grant ed(j ava.l ang. String)</function-signature>
</ function>
<function>
<function- name>i sAl | owed</ functi on- nane>
<function-cl ass>org. springframework. faces. security. Facel et sAut hori zeTagUtil s</function-class>
<function-signature>bool ean i sAl |l owed(java.lang. String, java.lang.String)</function-signature>
</ function>
</facel et-taglib>

Next, register the above file taglib in web.xml:

<cont ext - par an»

<par am nane>j avax. f aces. FACELETS_ LI BRARI ES</ par am nane>

<par am val ue>/ EB- | NF/ springsecurity.taglib.xm </ param val ue>
</ cont ext - par an>

Now you are ready to use the tag library in your views. You can use the authorize tag to include nested
content conditionally:

<! DOCTYPE conposition PUBLIC "-//WBC//DTD XHTM. 1.0 Transitional//EN' "http://ww.w3. org/ TR xht m 1/ DTD/
xhtm 1-transitional.dtd">
<ui : conposi tion xm ns="http://ww.w3. org/ 1999/ xhtm "

xm ns:ui ="http://java. sun. conlj sf/facel ets"

xm ns: h="http://java. sun.com jsf/htm"

xm ns: sec="http://ww. springframework. org/security/tags">

<sec:authorize ifA | Ganted="ROLE_FOO, ROLE_BAR'>
Lorem i psum dol or sit anet
</ sec: aut hori ze>

<sec: aut hori ze ifNot Granted="ROLE_FOO, ROLE BAR'>
Lorem i psumdol or sit anet
</ sec: aut hori ze>

<sec:aut horize ifAnyG anted="ROLE FOO, ROLE BAR'>
Lorem i psum dol or sit anet

</ sec: aut hori ze>

</ ui : conposi ti on>

You can also use one of several EL functions in the rendered or other attribute of any JSF component:

Version 2.5.1.RELEASE Spring Web Flow 83

Spring Web Flow Reference Guide

<! DOCTYPE conposition PUBLIC "-//WBC//DTD XHTM. 1.0 Transitional //EN'" "http://ww. w3. org/ TR/ xht m 1/ DTD/
xhtm 1-transitional.dtd">
<ui : conposi tion xm ns="http://ww.w3. org/ 1999/ xhtm "

xm ns: ui ="http://java. sun. conj sf/facel ets"”

xm ns: h="http://java.sun.com jsf/htm"

xm ns: sec="http://www. springframework. org/security/tags">

<!-- Rendered only if user has all of the listed roles -->

<h: out put Text val ue="Lorem i psum dol or sit amet" rendered="#{sec: areAl | Ganted(' ROLE_FOO, ROLE BAR)}"/
>

<l-- Rendered only if user does not have any of the listed roles -->

<h: out put Text val ue="Lorem i psum dol or sit anmet" rendered="#{sec: areNot Granted(' ROLE_FOO, ROLE BAR)}"/
>

<!-- Rendered only if user has any of the |listed roles -->
<h: out put Text val ue="Lorem i psum dolor sit anet" rendered="#{sec: areAnyG anted(' ROLE_FOO, ROLE_BAR)}"/
>

<!-- Rendered only if user has access to given HTTP nethod/ URL as defined in Spring Security
configuration -->
<h: out put Text val ue="Lorem i psumdolor sit anmet" rendered="#{sec:isAl | owed('/secured/foo', 'POST')}"/>

</ ui : conposi ti on>

13.10. Third-Party Component Library Integration

The Spring Web Flow JSF integration strives to be compatible with any third-party JSF component
library. By honoring all of the standard semantics of the JSF specification within the SWF-driven
JSF lifecycle, third-party libraries in general should "just work". The main thing to remember is that
configuration in web.xml will change slightly since Web Flow requests are not routed through the
standard FacesServlet. Typically, anything that is traditionally mapped to the FacesServlet should be
mapped to the Spring DispatcherServlet instead. (You can also map to both if for example you are
migrating a legacy JSF application page-by-page.).

Version 2.5.1.RELEASE Spring Web Flow 84

Spring Web Flow Reference Guide

14. Testing flows

14.1. Introduction

This chapter shows you how to test flows.

14.2. Extending AbstractXmlFlowExecutionTests

To test the execution of a XML-based flow definition, extend Abst r act Xml FI owExecuti onTest s:

public class Booki ngFl owExecuti onTests extends Abstract Xm Fl owExecuti onTests {

}

14.3. Specifying the path to the flow to test

At a minimum, you must override get Resour ce(Fl owDef i ni t i onResour ceFact ory) to returnthe
path to the flow you wish to test:

@verride
protected Fl owDefinitionResource get Resource(Fl owDefi nitionResourceFactory resourceFactory) {
return resourceFactory. createFi | eResource("src/ mai n/ webapp/ V\EEB- | NF/ hot el s/ booki ng/ booki ng. xm ") ;

}

14.4. Registering flow dependencies

If your flow has dependencies on externally managed services, also override
confi gur eFl owBui | der Cont ext (MockFl owBui | der Cont ext) to register stubs or mocks of
those services:

@verride
protected void confi gureFl owBui | der Cont ext (MbockFI owBui | der Cont ext bui | der Cont ext) {
bui | der Cont ext . r egi st er Bean(" booki ngServi ce", new St ubBooki ngService());

}

If your flow extends from another flow, or has states that extend other states, also override
get Model Resour ces(Fl owDef i ni ti onResour ceFact ory) to return the path to the parent flows.

@verride
protected Fl owDefinitionResource[] getMddel Resources(Fl owDefi nitionResourceFactory resourceFactory) {
return new Fl owDefinitionResource[] {
resour ceFactory. creat eFi | eResour ce("src/ mai n/ webapp/ VEEB- | NF/ conmon/ conmon. xm ")
ba
}

14.5. Testing flow startup

Have your first test exercise the startup of your flow:

Version 2.5.1.RELEASE Spring Web Flow 85

Spring Web Flow Reference Guide

public void testStartBooki ngFl ow() {
Booki ng booki ng = creat eTest Booki ng();

Mit abl eAttri buteMap i nput = new Local AttributeMap();
input.put("hotelld", "1");

MockExt er nal Cont ext context = new MdckExt er nal Cont ext ();
cont ext.set Current User ("keith");

start Fl ow(i nput, context);

assert Current St at eEqual s("ent er Booki ngDet ai | s");
assert True(get Requi redFl owAt t ri but e("booki ng") instanceof Booking);
}

Assertions generally verify the flow is in the correct state you expect.

14.6. Testing flow event handling

Define additional tests to exercise flow event handling behavior. You goal should be to exercise all paths
through the flow. You can use the convenient set Current St at e(St ri ng) method to jump to the
flow state where you wish to begin your test.

public void testEnterBookingDetails_Proceed() {
set Current St at e(" ent er Booki ngDetai |l s");
get Fl owScope() . put (" booki ng", createTestBooking());
MbckExt er nal Cont ext context = new MbckExt ernal Cont ext ();
cont ext.set Event1d("proceed");

resumeFl ow cont ext) ;

assert Current St at eEqual s("revi ewBooki ng");

}

14.7. Mocking a subflow

To test calling a subflow, register a mock implementation of the subflow that asserts input was passed
in correctly and returns the correct outcome for your test scenario.

Version 2.5.1.RELEASE Spring Web Flow 86

Spring Web Flow Reference Guide

public void testBookHotel () {
setCurrent State("revi ewHotel ");

Hotel hotel = new Hotel ();

hotel . set1d(1L);

hot el . set Name("Janeson | nn");

get Fl owScope() . put ("hotel ", hotel);

get Fl owDef i ni ti onRegi stry().registerFl owDefinition(createMckBooki ngSubflow));

MockExt er nal Cont ext context = new MdckExt er nal Cont ext ();
cont ext. set Event | d("book");
resumeFl ow cont ext) ;

/1 verify flow ends on 'booki ngConfirmed'
assert Fl owExecut i onEnded() ;
assert Fl owExecuti onQut comeEqual s("finish");

public Fl ow creat eMockBooki ngSubflow() {
FI ow nmockBooki ngFl ow = new Fl ow(" booki ng");
nockBooki ngFl ow. set | nput Mapper (new Mapper () {
publ i c Mappi ngResul ts map(Obj ect source, Object target) {
/1 assert that 1L was passed in as input
assert Equal s(1L, ((AttributeMap) source).get("hotelld"));
return null;
}
s

/1 imediately return the booki ngConfirned outcone so the caller can respond
new EndSt at e(nrockBooki ngFl ow, "booki ngConfirnmed");
return nockBooki ngFl ow;

Version 2.5.1.RELEASE Spring Web Flow

87

Spring Web Flow Reference Guide

Appendix A. Flow Definition
Language 1.0 to 2.0 Mappings

The flow definition language has changed since the 1.0 release. This is a listing of the language elements
in the 1.0 release, and how they map to elements in the 2.0 release. While most of the changes are
semantic, there are a few structural changes. Please see the upgrade guide for more details about
changes between Web Flow 1.0 and 2.0.

Table A.1. Mappings

SWF 1.0 SWF 2.0 Comments
action * use <evaluate />
bean *
name *
method *
action-state action-state
id id
* parent
argument * use <evaluate expression="func(argl,
argz, ...)"/>
expression
parameter-type
attribute attribute
name name
type type
value value
attribute-mapper * input and output elements can be in flows or
subflows directly
bean * now subflow-attribute-mapper attribute on
subflow-state
bean-action * use <evaluate />
bean *
name *
method *
decision-state decision-state

Version 2.5.1.RELEASE Spring Web Flow 88

Spring Web Flow Reference Guide

SWF 1.0 SWF 2.0 Comments
id id
* parent
end-actions on-end
end-state end-state
id id
view view
* parent
* commit
entry-actions on-entry
evaluate-action evaluate
expression expression
name * use <evaluate ...> <attribute name="name”
value="..." /> </evaluate>
* result
* result-type
evaluation-result * use <evaluate result="..." />

name

scope

exception-handler

exception-handler

bean

bean

exit-actions

on-exit

flow

flow

global-transitions

if

start-state

parent

abstract
global-transitions

if

test test

then then

else else
import bean-import

Version 2.5.1.RELEASE

Spring Web Flow

Spring Web Flow Reference Guide

SWF 1.0 SWF 2.0 Comments
resource resource
inline-flow * convert to new top-level flow
id *
input-attribute input
name name
scope * prefix name with scope <input
name="flowScope.foo" />
required required
* type
* value

input-mapper

mapping

source

target

input or output

name or value

name or value

inputs can be in flows and subflows directly

name when in flow element, value when in
subflow-state element

value when in flow element, name when in
subflow-state element

target-collection

no longer supported

from * detected automatically
to type
required required
method-argument * use <evaluate expression="func(argl,
arg2, ...)"/>
method-result * use <evaluate result="..." />
name *
scope *
output-attribute output
name name
scope * prefix name with scope <output
name="flowScope.foo" />
required required
* type
* value
Version 2.5.1.RELEASE Spring Web Flow 90

Spring Web Flow Reference Guide

SWF 1.0 SWF 2.0 Comments
output-mapper * output can be in flows and subflows directly
render-actions on-render
set set
attribute name
scope * prefix name with scope <set
name="flowScope.foo" />
value value
name * use <set ..> <attribute name="name”
value="..." /> </set>
* type
start-actions on-start

start-state

*

now <flow start-state=
first state in the flow

...">, or defaults to the

idref

subflow-state

subflow-state

id id
flow subflow
* parent
* subflow-attribute-
mapper
transition transition
on on

on-exception

on-exception

to to
* bind
* validate
* history
value value
var var
name name
class class
scope * always flow scope

Version 2.5.1.RELEASE

Spring Web Flow

91

Spring Web Flow Reference Guide

SWF 1.0 SWF 2.0 Comments
bean * all Spring beans can be resolved with EL
view-state view-state
id id
view view
* parent
* redirect
* popup
* model
* history
* persistence-context
* render
* fragments
* secured
* attributes
* match

Version 2.5.1.RELEASE Spring Web Flow

	Spring Web Flow Reference Guide
	Table of Contents
	Preface
	1. Introduction
	1.1. What this guide covers
	1.2. What Web Flow requires to run
	1.3. Resources
	1.4. How to access Web Flow artifacts from Maven Central
	1.5. How to access nightly builds and milestone releases
	Accessing snapshots and milestones with Maven

	2. What's New
	2.1. Spring Web Flow 2.5
	2.2. Spring Web Flow 2.4
	Java-based Configuration
	Spring MVC Flash Scope Integration
	Partial JSR-303 Bean Validation
	Hibernate Support
	Tiles 3 Support
	Minimum JSF 2.0 Requirement
	Portlet API 2.0 and JSF 2.0 support
	Deprecations

	2.3. Spring Web Flow 2.3
	Embedding A Flow On A Page
	Support For JSR-303 Bean Validation
	Flow-Managed Persistence Context Propagation
	Portlet 2.0 Resource Requests
	Custom ConversationManager
	Redirect In Same State
	Samples

	2.4. Spring Web Flow 2.2
	JSF 2 Support
	Comprehensive JSF 2 Support
	Travel Sample With the PrimeFaces Components

	Spring Security Facelets Tag Library
	Spring JavaScript Updates
	Deprecated ResourcesServlet
	Dojo 1.5 and dojox
	Two Spring JS artifacts
	Client resources moved into META-INF/web-resources

	JSF Portlet Support
	Portlet API 2.0 and JSF 1.2 support

	3. Defining Flows
	3.1. Introduction
	3.2. What is a flow?
	3.3. What is the makeup of a typical flow?
	3.4. How are flows authored?
	3.5. Essential language elements
	flow
	view-state
	transition
	end-state
	Checkpoint: Essential language elements

	3.6. Actions
	evaluate
	Assigning an evaluate result
	Converting an evaluate result

	Checkpoint: flow actions

	3.7. Input/Output Mapping
	input
	Declaring an input type
	Assigning an input value
	Marking an input as required

	output
	Specifying the source of an output value

	Checkpoint: input/output mapping

	3.8. Variables
	var

	3.9. Variable Scopes
	Flow Scope
	View Scope
	Request Scope
	Flash Scope
	Conversation Scope

	3.10. Calling subflows
	subflow-state
	Passing a subflow input
	Mapping subflow output

	Checkpoint: calling subflows

	4. Expression Language (EL)
	4.1. Introduction
	Expression types
	Standard Expressions
	Template expressions

	4.2. EL Implementations
	Spring EL
	Unified EL

	4.3. EL portability
	4.4. Special EL variables
	flowScope
	viewScope
	requestScope
	flashScope
	conversationScope
	requestParameters
	currentEvent
	currentUser
	messageContext
	resourceBundle
	flowRequestContext
	flowExecutionContext
	flowExecutionUrl
	externalContext

	4.5. Scope searching algorithm

	5. Rendering views
	5.1. Introduction
	5.2. Defining view states
	5.3. Specifying view identifiers
	Flow relative view ids
	Absolute view ids
	Logical view ids

	5.4. View scope
	Allocating view variables
	Assigning a viewScope variable
	Manipulating objects in view scope

	5.5. Executing render actions
	5.6. Binding to a model
	5.7. Performing type conversion
	Type Conversion Options
	Upgrading to Spring 3 Type Conversion And Formatting
	Configuring Type Conversion and Formatting
	Working With Spring 3 Type Conversion And Formatting
	Formatting Annotations
	Working With Dates

	5.8. Suppressing binding
	5.9. Specifying bindings explicitly
	5.10. Validating a model
	JSR-303 Bean Validation
	Partial Validation

	Programmatic validation
	Implementing a model validate method
	Implementing a Validator
	Default validate method

	ValidationContext

	5.11. Suppressing validation
	5.12. Executing view transitions
	Transition actions
	Global transitions
	Event handlers
	Rendering fragments

	5.13. Working with messages
	Adding plain text messages
	Adding internationalized messages
	Using message bundles
	Understanding system generated messages

	5.14. Displaying popups
	5.15. View backtracking
	Discarding history
	Invalidating history

	6. Executing actions
	6.1. Introduction
	6.2. Defining action states
	6.3. Defining decision states
	6.4. Action outcome event mappings
	6.5. Action implementations
	Invoking a POJO action
	Invoking a custom Action implementation
	Invoking a MultiAction implementation

	6.6. Action exceptions
	Handling a business exception with a POJO action
	Handling a business exception with a MultiAction
	Using an exception-handler element

	6.7. Other Action execution examples
	on-start
	on-entry
	on-exit
	on-end
	on-render
	on-transition
	Named actions
	Streaming actions
	Handling File Uploads

	7. Flow Managed Persistence
	7.1. Introduction
	7.2. FlowScoped PersistenceContext
	7.3. Flow Managed Persistence And Sub-Flows

	8. Securing Flows
	8.1. Introduction
	8.2. How do I secure a flow?
	8.3. The secured element
	Security attributes
	Matching type

	8.4. The SecurityFlowExecutionListener
	Custom Access Decision Managers

	8.5. Configuring Spring Security
	Spring configuration
	web.xml Configuration

	9. Flow Inheritance
	9.1. Introduction
	9.2. Is flow inheritance like Java inheritance?
	9.3. Types of Flow Inheritance
	Flow level inheritance
	State level inheritance

	9.4. Abstract flows
	9.5. Inheritance Algorithm
	Mergeable Elements
	Non-mergeable Elements

	10. System Setup
	10.1. Introduction
	10.2. Java Config and XML Namespace
	10.3. Basic system configuration
	FlowRegistry
	FlowExecutor

	10.4. flow-registry options
	Specifying flow locations
	Assigning custom flow identifiers
	Assigning flow meta-attributes
	Registering flows using a location pattern
	Flow location base path
	Configuring FlowRegistry hierarchies
	Configuring custom FlowBuilder services
	conversion-service
	expression-parser
	view-factory-creator
	development

	10.5. flow-executor options
	Attaching flow execution listeners
	Tuning FlowExecution persistence
	max-executions
	max-execution-snapshots

	11. Spring MVC Integration
	11.1. Introduction
	11.2. Configuring web.xml
	11.3. Dispatching to flows
	Registering the FlowHandlerAdapter
	Defining flow mappings
	Flow handling workflow

	11.4. Implementing custom FlowHandlers
	Example FlowHandler
	Deploying a custom FlowHandler
	FlowHandler Redirects

	11.5. View Resolution
	11.6. Signaling an event from a View
	Using a named HTML button to signal an event
	Using a hidden HTML form parameter to signal an event
	Using a HTML link to signal an event

	11.7. Embedding A Flow On A Page
	Embedded Mode Vs Default Redirect Behavior
	Embedded Flow Examples

	11.8. Saving Flow Output to MVC Flash Scope

	12. Spring JavaScript Quick Reference
	12.1. Introduction
	12.2. Serving Javascript Resources
	12.3. Including Spring Javascript in a Page
	12.4. Spring Javascript Decorations
	12.5. Handling Ajax Requests
	Providing a Library-Specific AjaxHandler
	Handling Ajax Requests with Spring MVC Controllers
	Handling Ajax Requests with Spring MVC + Spring Web Flow

	13. JSF Integration
	13.1. Introduction
	13.2. Configuring web.xml
	13.3. Configuring Web Flow for use with JSF
	13.4. Replacing the JSF Managed Bean Facility
	Using Flow Variables
	Using Scoped Spring Beans
	Manipulating The Model
	Data Model Implementations

	13.5. Handling JSF Events With Spring Web Flow
	Handling JSF In-page Action Events
	Handling JSF Action Events
	Performing Model Validation
	Handling Ajax Events In JSF

	13.6. Embedding a Flow On a Page
	13.7. Redirect In Same State
	13.8. Handling File Uploads with JSF
	File Uploads with PrimeFaces

	13.9. Using the Spring Security Facelets Tag Library
	13.10. Third-Party Component Library Integration

	14. Testing flows
	14.1. Introduction
	14.2. Extending AbstractXmlFlowExecutionTests
	14.3. Specifying the path to the flow to test
	14.4. Registering flow dependencies
	14.5. Testing flow startup
	14.6. Testing flow event handling
	14.7. Mocking a subflow

	Appendix A. Flow Definition Language 1.0 to 2.0 Mappings

