
Spring Web Services Reference Documentation

2.2.3.RELEASE

Arjen Poutsma , Rick Evans , Tareq Abed Rabbo

Copyright © 2005-2014

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation ii

Table of Contents

Preface .. v
I. Introduction ... 1

1. What is Spring Web Services? ... 2
1.1. Introduction ... 2
1.2. Runtime environment ... 2
1.3. Supported standards ... 3

2. Why Contract First? ... 4
2.1. Introduction ... 4
2.2. Object/XML Impedance Mismatch .. 4

XSD extensions ... 4
Unportable types .. 4
Cyclic graphs ... 5

2.3. Contract-first versus Contract-last ... 6
Fragility .. 6
Performance .. 7
Reusability ... 7
Versioning .. 7

3. Writing Contract-First Web Services .. 8
3.1. Introduction ... 8
3.2. Messages ... 8

Holiday .. 8
Employee ... 8
HolidayRequest .. 9

3.3. Data Contract .. 9
3.4. Service contract ... 12
3.5. Creating the project ... 15
3.6. Implementing the Endpoint ... 16

Handling the XML Message .. 16
Routing the Message to the Endpoint .. 19
Providing the Service and Stub implementation .. 20

3.7. Publishing the WSDL ... 20
II. Reference .. 22

4. Shared components ... 23
4.1. Web service messages .. 23

WebServiceMessage .. 23
SoapMessage .. 23
Message Factories ... 23

SaajSoapMessageFactory .. 24
AxiomSoapMessageFactory .. 24
SOAP 1.1 or 1.2 .. 25

MessageContext .. 25
4.2. TransportContext ... 26
4.3. Handling XML With XPath .. 26

XPathExpression .. 26
XPathTemplate .. 28

4.4. Message Logging and Tracing ... 28
5. Creating a Web service with Spring-WS .. 30

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation iii

5.1. Introduction ... 30
5.2. The MessageDispatcher .. 30
5.3. Transports ... 31

MessageDispatcherServlet .. 31
Automatic WSDL exposure ... 33

Wiring up Spring-WS in a DispatcherServlet ... 35
JMS transport .. 36
Email transport ... 37
Embedded HTTP Server transport .. 38
XMPP transport .. 39
MTOM ... 40

5.4. Endpoints .. 40
@Endpoint handling methods .. 43

Handling method parameters .. 43
Handling method return types ... 46

5.5. Endpoint mappings .. 47
WS-Addressing .. 48

AnnotationActionEndpointMapping .. 49
Intercepting requests - the EndpointInterceptor interface 50

PayloadLoggingInterceptor and
SoapEnvelopeLoggingInterceptor .. 52
PayloadValidatingInterceptor .. 52
PayloadTransformingInterceptor .. 52

5.6. Handling Exceptions .. 53
SoapFaultMappingExceptionResolver .. 53
SoapFaultAnnotationExceptionResolver .. 54

5.7. Server-side testing ... 55
Writing server-side integration tests ... 55
RequestCreator and RequestCreators .. 58
ResponseMatcher and ResponseMatchers .. 58

6. Using Spring Web Services on the Client .. 60
6.1. Introduction ... 60
6.2. Using the client-side API .. 60

WebServiceTemplate .. 60
URIs and Transports .. 60
Message factories .. 64

Sending and receiving a WebServiceMessage .. 64
Sending and receiving POJOs - marshalling and unmarshalling 66
WebServiceMessageCallback ... 66

WS-Addressing .. 66
WebServiceMessageExtractor .. 67

6.3. Client-side testing .. 67
Writing client-side integration tests .. 67
RequestMatcher and RequestMatchers .. 70
ResponseCreator and ResponseCreators .. 71

7. Securing your Web services with Spring-WS .. 73
7.1. Introduction ... 73
7.2. XwsSecurityInterceptor .. 73

Keystores ... 74
KeyTool ... 74

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation iv

KeyStoreFactoryBean ... 75
KeyStoreCallbackHandler .. 75

Authentication .. 76
Plain Text Username Authentication .. 76
Digest Username Authentication .. 78
Certificate Authentication .. 79

Digital Signatures ... 82
Verifying Signatures .. 82
Signing Messages .. 83

Encryption and Decryption .. 84
Decryption .. 84
Encryption .. 84

Security Exception Handling ... 85
7.3. Wss4jSecurityInterceptor .. 85

Configuring Wss4jSecurityInterceptor ... 86
Handling Digital Certificates .. 86

CryptoFactoryBean ... 87
Authentication .. 87

Validating Username Token .. 87
Adding Username Token .. 88
Certificate Authentication .. 88

Security Timestamps .. 89
Validating Timestamps .. 89
Adding Timestamps .. 89

Digital Signatures ... 90
Verifying Signatures .. 90
Signing Messages .. 90
Signature Confirmation ... 91

Encryption and Decryption .. 91
Decryption .. 91
Encryption .. 92

Security Exception Handling ... 94
III. Other Resources ... 95

Bibliography ... 96

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation v

Preface
In the current age of Service Oriented Architectures, more and more people are using Web Services to
connect previously unconnected systems. Initially, Web services were considered to be just another way
to do a Remote Procedure Call (RPC). Over time however, people found out that there is a big difference
between RPCs and Web services. Especially when interoperability with other platforms is important,
it is often better to send encapsulated XML documents, containing all the data necessary to process
the request. Conceptually, XML-based Web services are better off being compared to message queues
rather than remoting solutions. Overall, XML should be considered the platform-neutral representation
of data, the interlingua of SOA. When developing or using Web services, the focus should be on this
XML, and not on Java.

Spring Web Services focuses on creating these document-driven Web services. Spring Web Services
facilitates contract-first SOAP service development, allowing for the creation of flexible web services
using one of the many ways to manipulate XML payloads. Spring-WS provides a powerful message
dispatching framework, a WS-Security solution that integrates with your existing application security
solution, and a Client-side API that follows the familiar Spring template pattern.

Part I. Introduction
This first part of the reference documentation is an overview of Spring Web Services and the
underlying concepts. Spring-WS is then introduced, and the concepts behind contract-first Web service
development are explained.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 2

1. What is Spring Web Services?

1.1 Introduction

Spring Web Services (Spring-WS) is a product of the Spring community focused on creating document-
driven Web services. Spring Web Services aims to facilitate contract-first SOAP service development,
allowing for the creation of flexible web services using one of the many ways to manipulate XML
payloads. The product is based on Spring itself, which means you can use the Spring concepts such
as dependency injection as an integral part of your Web service.

People use Spring-WS for many reasons, but most are drawn to it after finding alternative SOAP stacks
lacking when it comes to following Web service best practices. Spring-WS makes the best practice an
easy practice. This includes practices such as the WS-I basic profile, Contract-First development, and
having a loose coupling between contract and implementation. The other key features of Spring Web
services are:

Powerful mappings. You can distribute incoming XML requests to any object, depending on
message payload, SOAP Action header, or an XPath expression.

XML API support. Incoming XML messages can be handled not only with standard JAXP APIs such
as DOM, SAX, and StAX, but also JDOM, dom4j, XOM, or even marshalling technologies.

Flexible XML Marshalling. Spring Web Services builds on the Object/XML Mapping module in the
Spring Framework, which supports JAXB 1 and 2, Castor, XMLBeans, JiBX, and XStream.

Reuses your Spring expertise. Spring-WS uses Spring application contexts for all configuration,
which should help Spring developers get up-to-speed nice and quickly. Also, the architecture of Spring-
WS resembles that of Spring-MVC.

Supports WS-Security. WS-Security allows you to sign SOAP messages, encrypt and decrypt them,
or authenticate against them.

Integrates with Spring Security. The WS-Security implementation of Spring Web Services provides
integration with Spring Security. This means you can use your existing Spring Security configuration
for your SOAP service as well.

Apache license. You can confidently use Spring-WS in your project.

1.2 Runtime environment

Spring Web Services requires a standard Java 1.6 Runtime Environment. Java 1.7 and 1.8 are also
supported. Spring-WS also requires Spring 3.2 or higher.

Spring-WS consists of a number of modules, which are described in the remainder of this section.

• The XML module (spring-xml.jar) contains various XML support classes for Spring Web
Services. This module is mainly intended for the Spring-WS framework itself, and not a Web service
developers.

• The Core module (spring-ws-core.jar) is the central part of the Spring's Web services
functionality. It provides the central WebServiceMessage and SoapMessage interfaces, the server-
side framework, with powerful message dispatching, and the various support classes for implementing
Web service endpoints; and the client-side WebServiceTemplate.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 3

• The Support module (spring-ws-support.jar) contains additional transports (JMS, Email, and
others).

• The Security package (spring-ws-security.jar) provides a WS-Security implementation that
integrates with the core Web service package. It allows you to add principal tokens, sign, and decrypt
and encrypt SOAP messages. Additionally, it allows you to leverage your existing Spring Security
security implementation for authentication and authorization.

The following figure illustrates the Spring-WS modules and the dependencies between them. Arrows
indicate dependencies, i.e. Spring-WS Core depends on Spring-XML and the OXM module found in
Spring 3 and higher.

Dependencies between Spring-WS modules

1.3 Supported standards

Spring Web Services supports the following standards:

• SOAP 1.1 and 1.2

• WSDL 1.1 and 2.0 (XSD-based generation only supported for WSDL 1.1)

• WS-I Basic Profile 1.0, 1.1, 1.2 and 2.0

• WS-Addressing 1.0 and the August 2004 draft

• SOAP Message Security 1.1, Username Token Profile 1.1, X.509 Certificate Token Profile 1.1, SAML
Token Profile 1.1, Kerberos Token Profile 1.1, Basic Security Profile 1.1

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 4

2. Why Contract First?

2.1 Introduction

When creating Web services, there are two development styles: Contract Last and Contract First. When
using a contract-last approach, you start with the Java code, and let the Web service contract (WSDL,
see sidebar) be generated from that. When using contract-first, you start with the WSDL contract, and
use Java to implement said contract.

What is WSDL?

WSDL stands for Web Services Description Language. A WSDL file is an XML document that
describes a Web service. It specifies the location of the service and the operations (or methods)
the service exposes. For more information about WSDL, refer to the WSDL specification, or read
the WSDL tutorial

Spring-WS only supports the contract-first development style, and this section explains why.

2.2 Object/XML Impedance Mismatch

Similar to the field of ORM, where we have an Object/Relational impedance mismatch, there is a similar
problem when converting Java objects to XML. At first glance, the O/X mapping problem appears simple:
create an XML element for each Java object, converting all Java properties and fields to sub-elements or
attributes. However, things are not as simple as they appear: there is a fundamental difference between
hierarchical languages such as XML (and especially XSD) and the graph model of Java4.

XSD extensions

In Java, the only way to change the behavior of a class is to subclass it, adding the new behavior to that
subclass. In XSD, you can extend a data type by restricting it: that is, constraining the valid values for
the elements and attributes. For instance, consider the following example:

<simpleType name="AirportCode">

 <restriction base="string">

 <pattern value="[A-Z][A-Z][A-Z]"/>

 </restriction>

</simpleType>

This type restricts a XSD string by ways of a regular expression, allowing only three upper case letters.
If this type is converted to Java, we will end up with an ordinary java.lang.String; the regular
expression is lost in the conversion process, because Java does not allow for these sorts of extensions.

Unportable types

One of the most important goals of a Web service is to be interoperable: to support multiple platforms
such as Java, .NET, Python, etc. Because all of these languages have different class libraries, you must
use some common, interlingual format to communicate between them. That format is XML, which is
supported by all of these languages.

4Most of the contents in this section was inspired by [alpine] and [effective-enterprise-java].

http://www.w3.org/TR/wsdl
http://www.w3schools.com/wsdl/
http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 5

Because of this conversion, you must make sure that you use portable types in your service
implementation. Consider, for example, a service that returns a java.util.TreeMap, like so:

public Map getFlights() {

 // use a tree map, to make sure it's sorted

 TreeMap map = new TreeMap();

 map.put("KL1117", "Stockholm");

 ...

 return map;

}

Undoubtedly, the contents of this map can be converted into some sort of XML, but since there is
no standard way to describe a map in XML, it will be proprietary. Also, even if it can be converted
to XML, many platforms do not have a data structure similar to the TreeMap. So when a .NET client
accesses your Web service, it will probably end up with a System.Collections.Hashtable, which
has different semantics.

This problem is also present when working on the client side. Consider the following XSD snippet, which
describes a service contract:

<element name="GetFlightsRequest">

 <complexType>

 <all>

 <element name="departureDate" type="date"/>

 <element name="from" type="string"/>

 <element name="to" type="string"/>

 </all>

 </complexType>

</element>

This contract defines a request that takes an date, which is a XSD datatype representing a year,
month, and day. If we call this service from Java, we will probably use either a java.util.Date
or java.util.Calendar. However, both of these classes actually describe times, rather than
dates. So, we will actually end up sending data that represents the fourth of April 2007 at midnight
(2007-04-04T00:00:00), which is not the same as 2007-04-04.

Cyclic graphs

Imagine we have the following simple class structure:

public class Flight {

 private String number;

 private List<Passenger> passengers;

 // getters and setters omitted

}

public class Passenger {

 private String name;

 private Flight flight;

 // getters and setters omitted

}

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 6

This is a cyclic graph: the Flight refers to the Passenger, which refers to the Flight again. Cyclic
graphs like these are quite common in Java. If we took a naive approach to converting this to XML, we
will end up with something like:

<flight number="KL1117">

 <passengers>

 <passenger>

 <name>Arjen Poutsma</name>

 <flight number="KL1117">

 <passengers>

 <passenger>

 <name>Arjen Poutsma</name>

 <flight number="KL1117">

 <passengers>

 <passenger>

 <name>Arjen Poutsma</name>

 ...

which will take a pretty long time to finish, because there is no stop condition for this loop.

One way to solve this problem is to use references to objects that were already marshalled, like so:

<flight number="KL1117">

 <passengers>

 <passenger>

 <name>Arjen Poutsma</name>

 <flight href="KL1117" />

 </passenger>

 ...

 </passengers>

</flight>

This solves the recursiveness problem, but introduces new ones. For one, you cannot use an XML
validator to validate this structure. Another issue is that the standard way to use these references in
SOAP (RPC/encoded) has been deprecated in favor of document/literal (see WS-I Basic Profile).

These are just a few of the problems when dealing with O/X mapping. It is important to respect these
issues when writing Web services. The best way to respect them is to focus on the XML completely,
while using Java as an implementation language. This is what contract-first is all about.

2.3 Contract-first versus Contract-last

Besides the Object/XML Mapping issues mentioned in the previous section, there are other reasons for
preferring a contract-first development style.

Fragility

As mentioned earlier, the contract-last development style results in your web service contract (WSDL
and your XSD) being generated from your Java contract (usually an interface). If you are using this
approach, you will have no guarantee that the contract stays constant over time. Each time you change
your Java contract and redeploy it, there might be subsequent changes to the web service contract.

Aditionally, not all SOAP stacks generate the same web service contract from a Java contract. This
means changing your current SOAP stack for a different one (for whatever reason), might also change
your web service contract.

http://www.ws-i.org/Profiles/BasicProfile-1.1.html#SOAP_encodingStyle_Attribute

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 7

When a web service contract changes, users of the contract will have to be instructed to obtain the new
contract and potentially change their code to accommodate for any changes in the contract.

In order for a contract to be useful, it must remain constant for as long as possible. If a contract changes,
you will have to contact all of the users of your service, and instruct them to get the new version of
the contract.

Performance

When Java is automatically transformed into XML, there is no way to be sure as to what is sent across
the wire. An object might reference another object, which refers to another, etc. In the end, half of
the objects on the heap in your virtual machine might be converted into XML, which will result in slow
response times.

When using contract-first, you explicitly describe what XML is sent where, thus making sure that it is
exactly what you want.

Reusability

Defining your schema in a separate file allows you to reuse that file in different scenarios. If you define
an AirportCode in a file called airline.xsd, like so:

<simpleType name="AirportCode">

 <restriction base="string">

 <pattern value="[A-Z][A-Z][A-Z]"/>

 </restriction>

</simpleType>

You can reuse this definition in other schemas, or even WSDL files, using an import statement.

Versioning

Even though a contract must remain constant for as long as possible, they do need to be changed
sometimes. In Java, this typically results in a new Java interface, such as AirlineService2, and a
(new) implementation of that interface. Of course, the old service must be kept around, because there
might be clients who have not migrated yet.

If using contract-first, we can have a looser coupling between contract and implementation. Such a
looser coupling allows us to implement both versions of the contract in one class. We could, for instance,
use an XSLT stylesheet to convert any "old-style" messages to the "new-style" messages.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 8

3. Writing Contract-First Web Services

3.1 Introduction

This tutorial shows you how to write contract-first Web services, that is, developing web services that
start with the XML Schema/WSDL contract first followed by the Java code second. Spring-WS focuses
on this development style, and this tutorial will help you get started. Note that the first part of this tutorial
contains almost no Spring-WS specific information: it is mostly about XML, XSD, and WSDL. The second
part focuses on implementing this contract using Spring-WS .

The most important thing when doing contract-first Web service development is to try and think in terms
of XML. This means that Java-language concepts are of lesser importance. It is the XML that is sent
across the wire, and you should focus on that. The fact that Java is used to implement the Web service
is an implementation detail. An important detail, but a detail nonetheless.

In this tutorial, we will define a Web service that is created by a Human Resources department. Clients
can send holiday request forms to this service to book a holiday.

3.2 Messages

In this section, we will focus on the actual XML messages that are sent to and from the Web service.
We will start out by determining what these messages look like.

Holiday

In the scenario, we have to deal with holiday requests, so it makes sense to determine what a holiday
looks like in XML:

<Holiday xmlns="http://mycompany.com/hr/schemas">

 <StartDate>2006-07-03</StartDate>

 <EndDate>2006-07-07</EndDate>

</Holiday>

A holiday consists of a start date and an end date. We have also decided to use the standard ISO
8601 date format for the dates, because that will save a lot of parsing hassle. We have also added a
namespace to the element, to make sure our elements can used within other XML documents.

Employee

There is also the notion of an employee in the scenario. Here is what it looks like in XML:

<Employee xmlns="http://mycompany.com/hr/schemas">

 <Number>42</Number>

 <FirstName>Arjen</FirstName>

 <LastName>Poutsma</LastName>

</Employee>

We have used the same namespace as before. If this <Employee/> element could be used in other
scenarios, it might make sense to use a different namespace, such as http://mycompany.com/
employees/schemas.

http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 9

HolidayRequest

Both the holiday and employee element can be put in a <HolidayRequest/>:

<HolidayRequest xmlns="http://mycompany.com/hr/schemas">

 <Holiday>

 <StartDate>2006-07-03</StartDate>

 <EndDate>2006-07-07</EndDate>

 </Holiday>

 <Employee>

 <Number>42</Number>

 <FirstName>Arjen</FirstName>

 <LastName>Poutsma</LastName>

 </Employee>

</HolidayRequest>

The order of the two elements does not matter: <Employee/> could have been the first element just as
well. What is important is that all of the data is there. In fact, the data is the only thing that is important:
we are taking a data-driven approach.

3.3 Data Contract

Now that we have seen some examples of the XML data that we will use, it makes sense to formalize
this into a schema. This data contract defines the message format we accept. There are four different
ways of defining such a contract for XML:

• DTDs

• XML Schema (XSD)

• RELAX NG

• Schematron

DTDs have limited namespace support, so they are not suitable for Web services. Relax NG and
Schematron certainly are easier than XML Schema. Unfortunately, they are not so widely supported
across platforms. We will use XML Schema.

By far the easiest way to create an XSD is to infer it from sample documents. Any good XML editor or
Java IDE offers this functionality. Basically, these tools use some sample XML documents, and generate
a schema from it that validates them all. The end result certainly needs to be polished up, but it's a
great starting point.

Using the sample described above, we end up with the following generated schema:

http://www.w3.org/XML/Schema
http://www.relaxng.org/
http://www.schematron.com/

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 10

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 targetNamespace="http://mycompany.com/hr/schemas"

 xmlns:hr="http://mycompany.com/hr/schemas">

 <xs:element name="HolidayRequest">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="hr:Holiday"/>

 <xs:element ref="hr:Employee"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Holiday">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="hr:StartDate"/>

 <xs:element ref="hr:EndDate"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="StartDate" type="xs:NMTOKEN"/>

 <xs:element name="EndDate" type="xs:NMTOKEN"/>

 <xs:element name="Employee">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="hr:Number"/>

 <xs:element ref="hr:FirstName"/>

 <xs:element ref="hr:LastName"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Number" type="xs:integer"/>

 <xs:element name="FirstName" type="xs:NCName"/>

 <xs:element name="LastName" type="xs:NCName"/>

</xs:schema>

This generated schema obviously can be improved. The first thing to notice is that every type has a
root-level element declaration. This means that the Web service should be able to accept all of these
elements as data. This is not desirable: we only want to accept a <HolidayRequest/>. By removing
the wrapping element tags (thus keeping the types), and inlining the results, we can accomplish this.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 11

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:hr="http://mycompany.com/hr/schemas"

 elementFormDefault="qualified"

 targetNamespace="http://mycompany.com/hr/schemas">

 <xs:element name="HolidayRequest">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Holiday" type="hr:HolidayType"/>

 <xs:element name="Employee" type="hr:EmployeeType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="HolidayType">

 <xs:sequence>

 <xs:element name="StartDate" type="xs:NMTOKEN"/>

 <xs:element name="EndDate" type="xs:NMTOKEN"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="EmployeeType">

 <xs:sequence>

 <xs:element name="Number" type="xs:integer"/>

 <xs:element name="FirstName" type="xs:NCName"/>

 <xs:element name="LastName" type="xs:NCName"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

The schema still has one problem: with a schema like this, you can expect the following messages to
validate:

<HolidayRequest xmlns="http://mycompany.com/hr/schemas">

 <Holiday>

 <StartDate>this is not a date</StartDate>

 <EndDate>neither is this</EndDate>

 </Holiday>

 <!-- ... -->

</HolidayRequest>

Clearly, we must make sure that the start and end date are really dates. XML Schema has an excellent
built-in date type which we can use. We also change the NCNames to strings. Finally, we change the
sequence in <HolidayRequest/> to all. This tells the XML parser that the order of <Holiday/>
and <Employee/> is not significant. Our final XSD now looks like this:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 12

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:hr="http://mycompany.com/hr/schemas"

 elementFormDefault="qualified"

 targetNamespace="http://mycompany.com/hr/schemas">

 <xs:element name="HolidayRequest">

 <xs:complexType>

 <xs:all>

 <xs:element name="Holiday" type="hr:HolidayType"/> ❶

 <xs:element name="Employee" type="hr:EmployeeType"/>

 </xs:all>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="HolidayType">

 <xs:sequence>

 <xs:element name="StartDate" type="xs:date"/>

 <xs:element name="EndDate" type="xs:date"/> ❷

 </xs:sequence> ❷

 </xs:complexType>

 <xs:complexType name="EmployeeType">

 <xs:sequence>

 <xs:element name="Number" type="xs:integer"/>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="LastName" type="xs:string"/> ❸

 </xs:sequence> ❸

 </xs:complexType>

</xs:schema>

❶ all tells the XML parser that the order of <Holiday/> and <Employee/> is not significant.

❷ We use the xsd:date data type, which consist of a year, month, and day, for <StartDate/>
and <EndDate/>.

❸ xsd:string is used for the first and last name.

We store this file as hr.xsd.

3.4 Service contract

A service contract is generally expressed as a WSDL file. Note that in Spring-WS, writing the WSDL
by hand is not required. Based on the XSD and some conventions, Spring-WS can create the WSDL
for you, as explained in the section entitled Section 3.6, “Implementing the Endpoint”. You can skip
to the next section if you want to; the remainder of this section will show you how to write your own
WSDL by hand.

We start our WSDL with the standard preamble, and by importing our existing XSD. To separate the
schema from the definition, we will use a separate namespace for the WSDL definitions: http://
mycompany.com/hr/definitions.

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:schema="http://mycompany.com/hr/schemas"

 xmlns:tns="http://mycompany.com/hr/definitions"

 targetNamespace="http://mycompany.com/hr/definitions">

 <wsdl:types>

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace="http://mycompany.com/hr/schemas"

 schemaLocation="hr.xsd"/>

 </xsd:schema>

 </wsdl:types>

http://www.w3.org/TR/wsdl

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 13

Next, we add our messages based on the written schema types. We only have one message: one with
the <HolidayRequest/> we put in the schema:

 <wsdl:message name="HolidayRequest">

 <wsdl:part element="schema:HolidayRequest" name="HolidayRequest"/>

 </wsdl:message>

We add the message to a port type as an operation:

 <wsdl:portType name="HumanResource">

 <wsdl:operation name="Holiday">

 <wsdl:input message="tns:HolidayRequest" name="HolidayRequest"/>

 </wsdl:operation>

 </wsdl:portType>

That finished the abstract part of the WSDL (the interface, as it were), and leaves the concrete part.
The concrete part consists of a binding, which tells the client how to invoke the operations you've just
defined; and a service, which tells it where to invoke it.

Adding a concrete part is pretty standard: just refer to the abstract part you defined previously, make
sure you use document/literal for the soap:binding elements (rpc/encoded is deprecated), pick
a soapAction for the operation (in this case http://mycompany.com/RequestHoliday, but any
URI will do), and determine the location URL where you want request to come in (in this case
http://mycompany.com/humanresources):

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 14

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:schema="http://mycompany.com/hr/schemas"

 xmlns:tns="http://mycompany.com/hr/definitions"

 targetNamespace="http://mycompany.com/hr/definitions">

 <wsdl:types>

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace="http://mycompany.com/hr/schemas" ❶

 schemaLocation="hr.xsd"/>

 </xsd:schema>

 </wsdl:types>

 <wsdl:message name="HolidayRequest"> ❷

 <wsdl:part element="schema:HolidayRequest" name="HolidayRequest"/> ❸

 </wsdl:message>

 <wsdl:portType name="HumanResource"> ❹

 <wsdl:operation name="Holiday">

 <wsdl:input message="tns:HolidayRequest" name="HolidayRequest"/> ❷

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="HumanResourceBinding" type="tns:HumanResource">

 ❹❺

 <soap:binding style="document" ❻

 transport="http://schemas.xmlsoap.org/soap/http"/> ❼

 <wsdl:operation name="Holiday">

 <soap:operation soapAction="http://mycompany.com/RequestHoliday"/> ❽

 <wsdl:input name="HolidayRequest">

 <soap:body use="literal"/> ❻

 </wsdl:input>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="HumanResourceService">

 <wsdl:port binding="tns:HumanResourceBinding" name="HumanResourcePort"> ❺

 <soap:address location="http://localhost:8080/holidayService/"/> ❾

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

❶ We import the schema defined in Section 3.3, “Data Contract”.

❷ We define the HolidayRequest message, which gets used in the portType.

❸ The HolidayRequest type is defined in the schema.

❹ We define the HumanResource port type, which gets used in the binding.

❺ We define the HumanResourceBinding binding, which gets used in the port.

❻ We use a document/literal style.

❼ The literal http://schemas.xmlsoap.org/soap/http signifies a HTTP transport.

❽ The soapAction attribute signifies the SOAPAction HTTP header that will be sent with every
request.

❾ The http://localhost:8080/holidayService/ address is the URL where the Web service
can be invoked.

This is the final WSDL. We will describe how to implement the resulting schema and WSDL in the next
section.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 15

3.5 Creating the project

In this section, we will be using Maven3 to create the initial project structure for us. Doing so is not
required, but greatly reduces the amount of code we have to write to setup our HolidayService.

The following command creates a Maven3 web application project for us, using the Spring-WS archetype
(that is, project template)

mvn archetype:create -DarchetypeGroupId=org.springframework.ws \

 -DarchetypeArtifactId=spring-ws-archetype \

 -DarchetypeVersion= \

 -DgroupId=com.mycompany.hr \

 -DartifactId=holidayService

This command will create a new directory called holidayService. In this directory, there is a 'src/
main/webapp' directory, which will contain the root of the WAR file. You will find the standard
web application deployment descriptor 'WEB-INF/web.xml' here, which defines a Spring-WS
MessageDispatcherServlet and maps all incoming requests to this servlet.

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

 version="2.4">

 <display-name>MyCompany HR Holiday Service</display-name>

 <!-- take especial notice of the name of this servlet -->

 <servlet>

 <servlet-name>spring-ws</servlet-name>

 <servlet-class>org.springframework.ws.transport.http.MessageDispatcherServlet</

servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>spring-ws</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

In addition to the above 'WEB-INF/web.xml' file, you will also need another, Spring-WS-specific
configuration file, named 'WEB-INF/spring-ws-servlet.xml'. This file contains all of the Spring-
WS-specific beans such as EndPoints, WebServiceMessageReceivers, and suchlike, and is used
to create a new Spring container. The name of this file is derived from the name of the attendant
servlet (in this case 'spring-ws') with '-servlet.xml' appended to it. So if you defined a
MessageDispatcherServlet with the name 'dynamite', the name of the Spring-WS-specific
configuration file would be 'WEB-INF/dynamite-servlet.xml'.

(You can see the contents of the 'WEB-INF/spring-ws-servlet.xml' file for this example in ???.)

Once you had the project structure created, you can put the schema and wsdl from previous section
into 'WEB-INF/' folder.

http://maven.apache.org/

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 16

3.6 Implementing the Endpoint

In Spring-WS, you will implement Endpoints to handle incoming XML messages. An endpoint is typically
created by annotating a class with the @Endpoint annotation. In this endpoint class, you will create
one or more methods that handle incoming request. The method signatures can be quite flexible: you
can include just about any sort of parameter type related to the incoming XML message, as will be
explained later.

Handling the XML Message

In this sample application, we are going to use JDom 2 to handle the XML message. We are also using
XPath, because it allows us to select particular parts of the XML JDOM tree, without requiring strict
schema conformance.

http://www.jdom.org
http://www.w3schools.com/xpath/

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 17

package com.mycompany.hr.ws;

import java.text.ParseException;

import java.text.SimpleDateFormat;

import java.util.Arrays;

import java.util.Date;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.ws.server.endpoint.annotation.Endpoint;

import org.springframework.ws.server.endpoint.annotation.PayloadRoot;

import org.springframework.ws.server.endpoint.annotation.RequestPayload;

import com.mycompany.hr.service.HumanResourceService;

import org.jdom2.Element;

import org.jdom2.JDOMException;

import org.jdom2.Namespace;

import org.jdom2.filter.Filters;

import org.jdom2.xpath.XPathExpression;

import org.jdom2.xpath.XPathFactory;

@Endpoint ❶

public class HolidayEndpoint {

 private static final String NAMESPACE_URI = "http://mycompany.com/hr/schemas";

 private XPathExpression<Element> startDateExpression;

 private XPathExpression<Element> endDateExpression;

 private XPathExpression<Element> firstNameExpression;

 private XPathExpression<Element> lastNameExpression;

 private HumanResourceService humanResourceService;

 ❷

 @Autowired

 public HolidayEndpoint(HumanResourceService humanResourceService) throws JDOMException

 {

 this.humanResourceService = humanResourceService;

 Namespace namespace = Namespace.getNamespace("hr", NAMESPACE_URI);

 XPathFactory xPathFactory = XPathFactory.instance();

 startDateExpression = xPathFactory.compile("//hr:StartDate", Filters.element(),

 null, namespace);

 endDateExpression = xPathFactory.compile("//hr:EndDate", Filters.element(), null,

 namespace);

 firstNameExpression = xPathFactory.compile("//hr:FirstName", Filters.element(),

 null, namespace);

 lastNameExpression = xPathFactory.compile("//hr:LastName", Filters.element(),

 null, namespace);

 }

 @PayloadRoot(namespace = NAMESPACE_URI, localPart = "HolidayRequest") ❸

 public void handleHolidayRequest(@RequestPayload Element holidayRequest) throws

 Excep❹tion {

 Date startDate = parseDate(startDateExpression, holidayRequest);

 Date endDate = parseDate(endDateExpression, holidayRequest);

 String name = firstNameExpression.evaluateFirst(holidayRequest).getText() + " " +

 lastNameExpression.evaluateFirst(holidayRequest).getText();

 humanResourceService.bookHoliday(startDate, endDate, name);

 }

 private Date parseDate(XPathExpression<Element> expression, Element element) throws

 ParseException {

 Element result = expression.evaluateFirst(element);

 if (result != null) {

 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");

 return dateFormat.parse(result.getText());

 } else {

 throw new IllegalArgumentException("Could not evaluate [" + expression + "] on

 [" + element + "]");

 }

 }

}

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 18

❶ The HolidayEndpoint is annotated with @Endpoint. This marks the class as a special sort of
@Component, suitable for handling XML messages in Spring-WS, and also making it eligible for
suitable for component scanning.

❷ The HolidayEndpoint requires the HumanResourceService business service to operate, so
we inject the dependency via the constructor and annotate it with @Autowired.

Next, we set up XPath expressions using the JDOM2 API. There are four expressions: //
hr:StartDate for extracting the <StartDate> text value, //hr:EndDate for extracting the
end date and two for extracting the names of the employee.

❸ The @PayloadRoot annotation tells Spring-WS that the handleHolidayRequest method is
suitable for handling XML messages. The sort of message that this method can handle is indicated
by the annotation values, in this case, it can handle XML elements that have the HolidayRequest
local part and the http://mycompany.com/hr/schemas namespace.

More information about mapping messages to endpoints is provided in the next section.

❹ The handleHolidayRequest(..) method is the main handling method method, which
gets passed with the <HolidayRequest/> element from the incoming XML message. The
@RequestPayload annotation indicates that the holidayRequest parameter should be
mapped to the payload of the request message.

We use the XPath expressions to extract the string values from the XML messages, and convert
these values to Date objects using a SimpleDateFormat (the parseData method).

With these values, we invoke a method on the business service. Typically, this will result in a
database transaction being started, and some records being altered in the database.

Finally, we define a void return type, which indicates to Spring-WS that we do not want to send a
response message. If we wanted a response message, we could have returned a JDOM Element
that represents the payload of the response message.

Using JDOM is just one of the options to handle the XML: other options include DOM, dom4j, XOM,
SAX, and StAX, but also marshalling techniques like JAXB, Castor, XMLBeans, JiBX, and XStream,
as is explained in the next chapter. We chose JDOM because it gives us access to the raw XML, and
because it is based on classes (not interfaces and factory methods as with W3C DOM and dom4j), which
makes the code less verbose. We use XPath because it is less fragile than marshalling technologies:
we don't care for strict schema conformance, as long as we can find the dates and the name.

Because we use JDOM, we must add some dependencies to the Maven pom.xml, which is in the root
of our project directory. Here is the relevant section of the POM:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 19

<dependencies>

 <dependency>

 <groupId>org.springframework.ws</groupId>

 <artifactId>spring-ws-core</artifactId>

 <version></version>

 </dependency>

 <dependency>

 <groupId>jdom</groupId>

 <artifactId>jdom</artifactId>

 <version>2.0.1</version>

 </dependency>

 <dependency>

 <groupId>jaxen</groupId>

 <artifactId>jaxen</artifactId>

 <version>1.1</version>

 </dependency>

</dependencies>

Here is how we would configure these classes in our spring-ws-servlet.xml Spring XML
configuration file, by using component scanning. We also instruct Spring-WS to use annotation-driven
endpoints, with the <sws:annotation-driven> element.

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:sws="http://www.springframework.org/schema/web-services"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/web-services http://www.springframework.org/

schema/web-services/web-services-2.0.xsd

 http://www.springframework.org/schema/context http://www.springframework.org/schema/

context/spring-context-3.0.xsd">

 <context:component-scan base-package="com.mycompany.hr"/>

 <sws:annotation-driven/>

</beans>

Routing the Message to the Endpoint

As part of writing the endpoint, we also used the @PayloadRoot annotation to indicate which sort of
messages can be handled by the handleHolidayRequest method. In Spring-WS, this process is the
responsibility of an EndpointMapping. Here we route messages based on their content, by using a
PayloadRootAnnotationMethodEndpointMapping. The annotation used above:

@PayloadRoot(namespace = "http://mycompany.com/hr/schemas", localPart = "HolidayRequest")

basically means that whenever an XML message is received with the namespace http://
mycompany.com/hr/schemas and the HolidayRequest local name, it will be routed to the
handleHolidayRequest method. By using the <sws:annotation-driven> element in our
configuration, we enable the detection of the @PayloadRoot annotations. It is possible (and quite
common) to have multiple, related handling methods in an endpoint, each of them handling different
XML messages.

There are also other ways to map endpoints to XML messages, which will be described in the next
chapter.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 20

Providing the Service and Stub implementation

Now that we have the Endpoint, we need HumanResourceService and its implementation for use
by HolidayEndpoint.

package com.mycompany.hr.service;

import java.util.Date;

public interface HumanResourceService {

 void bookHoliday(Date startDate, Date endDate, String name);

}

For tutorial purposes, we will use a simple stub implementation of the HumanResourceService.

package com.mycompany.hr.service;

import java.util.Date;

import org.springframework.stereotype.Service;

@Service ❶

public class StubHumanResourceService implements HumanResourceService {

 public void bookHoliday(Date startDate, Date endDate, String name) {

 System.out.println("Booking holiday for [" + startDate + "-" + endDate + "] for ["

 + name + "] ");

 }

}

❶ The StubHumanResourceService is annotated with @Service. This marks the class
as a business facade, which makes this a candidate for injection by @Autowired in
HolidayEndpoint.

3.7 Publishing the WSDL

Finally, we need to publish the WSDL. As stated in Section 3.4, “Service contract”, we don't need to
write a WSDL ourselves; Spring-WS can generate one for us based on some conventions. Here is how
we define the generation:

<sws:dynamic-wsdl id="holiday" ❶

 portTypeName="HumanResource" ❸

 locationUri="/holidayService/" ❹

 targetNamespace="http://mycompany.com/hr/definitions"> ❺

 <sws:xsd location="/WEB-INF/hr.xsd"/> ❷

</sws:dynamic-wsdl>

❶ The id determines the URL where the WSDL can be retrieved. In this case, the id is holiday,
which means that the WSDL can be retrieved as holiday.wsdl in the servlet context. The full
URL will typically be http://localhost:8080/holidayService/holiday.wsdl.

❸ Next, we set the WSDL port type to be HumanResource.

❹ We set the location where the service can be reached: /holidayService/. We use a relative
URI and we instruct the framework to transform it dynamically to an absolute URI. Hence, if the
service is deployed to different contexts we don't have to change the URI manually. For more
information, please refer to the section called “Automatic WSDL exposure”

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 21

For the location transformation to work, we need to add an init parameter to spring-ws servlet
in web.xml:

<init-param>

 <param-name>transformWsdlLocations</param-name>

 <param-value>true</param-value>

</init-param>

❺ We define the target namespace for the WSDL definition itself. Setting this attribute is not required.
If not set, the WSDL will have the same namespace as the XSD schema.

❷ The xsd element refers to the human resource schema we defined in Section 3.3, “Data Contract”.
We simply placed the schema in the WEB-INF directory of the application.

You can create a WAR file using mvn install. If you deploy the application (to Tomcat, Jetty, etc.), and
point your browser at this location, you will see the generated WSDL. This WSDL is ready to be used
by clients, such as soapUI, or other SOAP frameworks.

That concludes this tutorial. The tutorial code can be found in the full distribution of Spring-WS. The
next step would be to look at the echo sample application that is part of the distribution. After that, look
at the airline sample, which is a bit more complicated, because it uses JAXB, WS-Security, Hibernate,
and a transactional service layer. Finally, you can read the rest of the reference documentation.

http://localhost:8080/holidayService/holiday.wsdl
http://www.soapui.org/

Part II. Reference
This part of the reference documentation details the various components that comprise Spring Web
Services. This includes a chapter that discusses the parts common to both client- and server-side WS, a
chapter devoted to the specifics of writing server-side Web services, a chapter about using Web services
on the client-side, and a chapters on using WS-Security.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 23

4. Shared components

In this chapter, we will explore the components which are shared between client- and server-side Spring-
WS development. These interfaces and classes represent the building blocks of Spring-WS, so it is
important to understand what they do, even if you do not use them directly.

4.1 Web service messages

WebServiceMessage

One of the core interfaces of Spring Web Services is the WebServiceMessage. This interface
represents a protocol-agnostic XML message. The interface contains methods that provide
access to the payload of the message, in the form of a javax.xml.transform.Source or a
javax.xml.transform.Result. Source and Result are tagging interfaces that represent an
abstraction over XML input and output. Concrete implementations wrap various XML representations,
as indicated in the following table.

Source/Result implementation Wraps XML representation

javax.xml.transform.dom.DOMSource org.w3c.dom.Node

javax.xml.transform.dom.DOMResult org.w3c.dom.Node

javax.xml.transform.sax.SAXSource org.xml.sax.InputSource and
org.xml.sax.XMLReader

javax.xml.transform.sax.SAXResult org.xml.sax.ContentHandler

javax.xml.transform.stream.StreamSourcejava.io.File, java.io.InputStream, or
java.io.Reader

javax.xml.transform.stream.StreamResultjava.io.File, java.io.OutputStream, or
java.io.Writer

In addition to reading from and writing to the payload, a Web service message can write itself to an
output stream.

SoapMessage

The SoapMessage is a subclass of WebServiceMessage. It contains SOAP-specific methods, such
as getting SOAP Headers, SOAP Faults, etc. Generally, your code should not be dependent on
SoapMessage, because the content of the SOAP Body (the payload of the message) can be obtained
via getPayloadSource() and getPayloadResult() in the WebServiceMessage. Only when it
is necessary to perform SOAP-specific actions, such as adding a header, getting an attachment, etc.,
should you need to cast WebServiceMessage to SoapMessage.

Message Factories

Concrete message implementations are created by a WebServiceMessageFactory. This factory
can create an empty message, or read a message based on an input stream. There are two
concrete implementations of WebServiceMessageFactory; one is based on SAAJ, the SOAP with
Attachments API for Java, the other based on Axis 2's AXIOM, the AXis Object Model.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 24

SaajSoapMessageFactory

The SaajSoapMessageFactory uses the SOAP with Attachments API for Java to create
SoapMessage implementations. SAAJ is part of J2EE 1.4, so it should be supported under most modern
application servers. Here is an overview of the SAAJ versions supplied by common application servers:

Application Server SAAJ Version

BEA WebLogic 8 1.1

BEA WebLogic 9 1.1/1.21

IBM WebSphere 6 1.2

SUN Glassfish 1 1.3
1 Weblogic 9 has a known bug in the SAAJ 1.2 implementation: it implement all the 1.2 interfaces, but throws a
UnsupportedOperationException when called. Spring Web Services has a workaround: it uses SAAJ 1.1 when operating
on WebLogic 9.

Additionally, Java SE 6 includes SAAJ 1.3. You wire up a SaajSoapMessageFactory like so:

<bean id="messageFactory"

 class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory" />

Note

SAAJ is based on DOM, the Document Object Model. This means that all SOAP messages are
stored in memory. For larger SOAP messages, this may not be very performant. In that case,
the AxiomSoapMessageFactory might be more applicable.

AxiomSoapMessageFactory

The AxiomSoapMessageFactory uses the AXis 2 Object Model to create SoapMessage
implementations. AXIOM is based on StAX, the Streaming API for XML. StAX provides a pull-based
mechanism for reading XML messages, which can be more efficient for larger messages.

To increase reading performance on the AxiomSoapMessageFactory, you can set the
payloadCaching property to false (default is true). This will read the contents of the SOAP body directly
from the socket stream. When this setting is enabled, the payload can only be read once. This means
that you have to make sure that any pre-processing (logging etc.) of the message does not consume it.

You use the AxiomSoapMessageFactory as follows:

<bean id="messageFactory"

 class="org.springframework.ws.soap.axiom.AxiomSoapMessageFactory">

 <property name="payloadCaching" value="true"/>

</bean>

In addition to payload caching, AXIOM also supports full streaming messages, as defined in the
StreamingWebServiceMessage. This means that the payload can be directly set on the response
message, rather than being written to a DOM tree or buffer.

Full streaming for AXIOM is used when a handler method returns a JAXB2-supported object. It will
automatically set this marshalled object into the response message, and write it out to the outgoing
socket stream when the response is going out.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 25

For more information about full streaming, refer to the class-level Javadoc for
StreamingWebServiceMessage and StreamingPayload.

SOAP 1.1 or 1.2

Both the SaajSoapMessageFactory and the AxiomSoapMessageFactory have a soapVersion
property, where you can inject a SoapVersion constant. By default, the version is 1.1, but you can
set it to 1.2 like so:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:util="http://www.springframework.org/schema/util"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://www.springframework.org/schema/util

 http://www.springframework.org/schema/util/spring-util-2.0.xsd">

 <bean id="messageFactory"

 class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory">

 <property name="soapVersion">

 <util:constant static-field="org.springframework.ws.soap.SoapVersion.SOAP_12"/

>

 </property>

 </bean>

</beans>

In the example above, we define a SaajSoapMessageFactory that only accepts SOAP 1.2 messages.

Caution

Even though both versions of SOAP are quite similar in format, the 1.2 version is not backwards
compatible with 1.1 because it uses a different XML namespace. Other major differences
between SOAP 1.1 and 1.2 include the different structure of a Fault, and the fact that
SOAPAction HTTP headers are effectively deprecated, thought they still work.

One important thing to note with SOAP version numbers, or WS-* specification version numbers
in general, is that the latest version of a specification is generally not the most popular version.
For SOAP, this means that currently, the best version to use is 1.1. Version 1.2 might become
more popular in the future, but currently 1.1 is the safest bet.

MessageContext

Typically, messages come in pairs: a request and a response. A request is created on the client-side,
which is sent over some transport to the server-side, where a response is generated. This response
gets sent back to the client, where it is read.

In Spring Web Services, such a conversation is contained in a MessageContext, which has properties
to get request and response messages. On the client-side, the message context is created by the
WebServiceTemplate. On the server-side, the message context is read from the transport-specific
input stream. For example, in HTTP, it is read from the HttpServletRequest and the response is
written back to the HttpServletResponse.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 26

4.2 TransportContext

One of the key properties of the SOAP protocol is that it tries to be transport-agnostic. This is why,
for instance, Spring-WS does not support mapping messages to endpoints by HTTP request URL, but
rather by mesage content.

However, sometimes it is necessary to get access to the underlying transport, either on the client or
server side. For this, Spring Web Services has the TransportContext. The transport context allows
access to the underlying WebServiceConnection, which typically is a HttpServletConnection
on the server side; or a HttpUrlConnection or CommonsHttpConnection on the client side. For
example, you can obtain the IP address of the current request in a server-side endpoint or interceptor
like so:

TransportContext context = TransportContextHolder.getTransportContext();

HttpServletConnection connection = (HttpServletConnection)context.getConnection();

HttpServletRequest request = connection.getHttpServletRequest();

String ipAddress = request.getRemoteAddr();

4.3 Handling XML With XPath

One of the best ways to handle XML is to use XPath. Quoting [effective-xml], item 35:

XPath is a fourth generation declarative language that allows you to specify which
nodes you want to process without specifying exactly how the processor is supposed
to navigate to those nodes. XPath's data model is very well designed to support
exactly what almost all developers want from XML. For instance, it merges all adjacent
text including that in CDATA sections, allows values to be calculated that skip over
comments and processing instructions` and include text from child and descendant
elements, and requires all external entity references to be resolved. In practice, XPath
expressions tend to be much more robust against unexpected but perhaps insignificant
changes in the input document.

—Elliotte Rusty Harold

Spring Web Services has two ways to use XPath within your application: the faster XPathExpression
or the more flexible XPathTemplate.

XPathExpression

The XPathExpression is an abstraction over a compiled XPath expression, such as the Java 5
javax.xml.xpath.XPathExpression, or the Jaxen XPath class. To construct an expression in an
application context, there is the XPathExpressionFactoryBean. Here is an example which uses
this factory bean:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 27

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

 <bean id="nameExpression"

 class="org.springframework.xml.xpath.XPathExpressionFactoryBean">

 <property name="expression" value="/Contacts/Contact/Name"/>

 </bean>

 <bean id="myEndpoint" class="sample.MyXPathClass">

 <constructor-arg ref="nameExpression"/>

 </bean>

</beans>

The expression above does not use namespaces, but we could set those using the namespaces
property of the factory bean. The expression can be used in the code as follows:

package sample;

public class MyXPathClass {

 private final XPathExpression nameExpression;

 public MyXPathClass(XPathExpression nameExpression) {

 this.nameExpression = nameExpression;

 }

 public void doXPath(Document document) {

 String name = nameExpression.evaluateAsString(document.getDocumentElement());

 System.out.println("Name: " + name);

 }

}

For a more flexible approach, you can use a NodeMapper, which is similar to the RowMapper in Spring's
JDBC support. The following example shows how we can use it:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 28

package sample;

public class MyXPathClass {

 private final XPathExpression contactExpression;

 public MyXPathClass(XPathExpression contactExpression) {

 this.contactExpression = contactExpression;

 }

 public void doXPath(Document document) {

 List contacts = contactExpression.evaluate(document,

 new NodeMapper() {

 public Object mapNode(Node node, int nodeNum) throws DOMException {

 Element contactElement = (Element) node;

 Element nameElement = (Element)

 contactElement.getElementsByTagName("Name").item(0);

 Element phoneElement = (Element)

 contactElement.getElementsByTagName("Phone").item(0);

 return new Contact(nameElement.getTextContent(),

 phoneElement.getTextContent());

 }

 });

 // do something with list of Contact objects

 }

}

Similar to mapping rows in Spring JDBC's RowMapper, each result node is mapped using an anonymous
inner class. In this case, we create a Contact object, which we use later on.

XPathTemplate

The XPathExpression only allows you to evaluate a single, pre-compiled expression. A more flexible,
though slower, alternative is the XpathTemplate. This class follows the common template pattern
used throughout Spring (JdbcTemplate, JmsTemplate, etc.). Here is an example:

package sample;

public class MyXPathClass {

 private XPathOperations template = new Jaxp13XPathTemplate();

 public void doXPath(Source source) {

 String name = template.evaluateAsString("/Contacts/Contact/Name", request);

 // do something with name

 }

}

4.4 Message Logging and Tracing

When developing or debugging a Web service, it can be quite useful to look at the content of a (SOAP)
message when it arrives, or just before it is sent. Spring Web Services offer this functionality, via the
standard Commons Logging interface.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 29

Caution

Make sure to use Commons Logging version 1.1 or higher. Earlier versions have class loading
issues, and do not integrate with the Log4J TRACE level.

To log all server-side messages, simply set the
org.springframework.ws.server.MessageTracing logger to level DEBUG or TRACE.
On the debug level, only the payload root element is logged; on the
TRACE level, the entire message content. If you only want to log sent
messages, use the org.springframework.ws.server.MessageTracing.sent logger; or
org.springframework.ws.server.MessageTracing.received to log received messages.

On the client-side, similar loggers exist:
org.springframework.ws.client.MessageTracing.sent and
org.springframework.ws.client.MessageTracing.received.

Here is an example log4j.properties configuration, logging the full content of sent messages on
the client side, and only the payload root element for client-side received messages. On the server-side,
the payload root is logged for both sent and received messages:

log4j.rootCategory=INFO, stdout

log4j.logger.org.springframework.ws.client.MessageTracing.sent=TRACE

log4j.logger.org.springframework.ws.client.MessageTracing.received=DEBUG

log4j.logger.org.springframework.ws.server.MessageTracing=DEBUG

log4j.appender.stdout=org.apache.log4j.ConsoleAppender

log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

log4j.appender.stdout.layout.ConversionPattern=%p [%c{3}] %m%n

With this configuration, a typical output will be:

TRACE [client.MessageTracing.sent] Sent request [<SOAP-ENV:Envelope xmlns:SOAP-ENV="...

DEBUG [server.MessageTracing.received] Received request [SaajSoapMessage {http://

example.com}request] ...

DEBUG [server.MessageTracing.sent] Sent response [SaajSoapMessage {http://

example.com}response] ...

DEBUG [client.MessageTracing.received] Received response [SaajSoapMessage {http://

example.com}response] ...

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 30

5. Creating a Web service with Spring-WS

5.1 Introduction

Spring-WS's server-side support is designed around a MessageDispatcher that dispatches incoming
messages to endpoints, with configurable endpoint mappings, response generation, and endpoint
interception. Endpoints are typically annotated with the @Endpoint annotation, and have one or more
handling methods. These methods handle incoming XML request messages by inspecting parts of the
message (typically the payload), and create some sort of response. You annotate the method with
another annotation, typically @PayloadRoot, to indicate what sort of messages it can handle.

Spring-WS's XML handling is extremely flexible. An endpoint can choose from a large amount of XML
handling libraries supported by Spring-WS, including the DOM family (W3C DOM, JDOM, dom4j, and
XOM), SAX or StAX for faster performance, XPath to extract information from the message, or even
marshalling techniques (JAXB, Castor, XMLBeans, JiBX, or XStream) to convert the XML to objects
and vice-versa.

5.2 The MessageDispatcher

The server-side of Spring-WS is designed around a central class that dispatches incoming XML
messages to endpoints. Spring-WS's MessageDispatcher is extremely flexible, allowing you to use
any sort of class as an endpoint, as long as it can be configured in the Spring IoC container. In a way, the
message dispatcher resembles Spring's DispatcherServlet, the “Front Controller” used in Spring
Web MVC.

The processing and dispatching flow of the MessageDispatcher is illustrated in the following
sequence diagram.

The request processing workflow in Spring Web Services

When a MessageDispatcher is set up for use and a request comes in for that specific dispatcher, said
MessageDispatcher starts processing the request. The list below describes the complete process a
request goes through when handled by a MessageDispatcher:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 31

1. An appropriate endpoint is searched for using the configured EndpointMapping(s). If an endpoint
is found, the invocation chain associated with the endpoint (pre-processors, post-processors, and
endpoints) will be executed in order to create a response.

2. An appropriate adapter is searched for the endpoint. The MessageDispatcher delegates to this
adapter to invoke the endpoint.

3. If a response is returned, it is sent on its way. If no response is returned (which could be due to a pre-
or post-processor intercepting the request, for example, for security reasons), no response is sent.

Exceptions that are thrown during handling of the request get picked up by any of the endpoint exception
resolvers that are declared in the application context. Using these exception resolvers allows you to
define custom behaviors (such as returning a SOAP Fault) in case such exceptions get thrown.

The MessageDispatcher has several properties, for setting endpoint adapters, mappings, exception
resolvers. However, setting these properties is not required, since the dispatcher will automatically
detect all of these types that are registered in the application context. Only when detection needs to be
overriden, should these properties be set.

The message dispatcher operates on a message context, and not transport-specific input stream
and output stream. As a result, transport specific requests need to read into a MessageContext.
For HTTP, this is done with a WebServiceMessageReceiverHandlerAdapter, which is a
Spring Web HandlerInterceptor, so that the MessageDispatcher can be wired in a standard
DispatcherServlet. There is a more convenient way to do this, however, which is shown in the
section called “MessageDispatcherServlet”.

5.3 Transports

Spring Web Services supports multiple transport protocols. The most common is the HTTP transport, for
which a custom servlet is supplied, but it is also possible to send messages over JMS, and even email.

MessageDispatcherServlet

The MessageDispatcherServlet is a standard Servlet which conveniently extends from the
standard Spring Web DispatcherServlet, and wraps a MessageDispatcher. As such, it combines
the attributes of these into one: as a MessageDispatcher, it follows the same request handling flow
as described in the previous section. As a servlet, the MessageDispatcherServlet is configured
in the web.xml of your web application. Requests that you want the MessageDispatcherServlet
to handle will have to be mapped using a URL mapping in the same web.xml file. This is standard
Java EE servlet configuration; an example of such a MessageDispatcherServlet declaration and
mapping can be found below.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 32

<web-app>

 <servlet>

 <servlet-name>spring-ws</servlet-name>

 <servlet-class>org.springframework.ws.transport.http.MessageDispatcherServlet</

servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>spring-ws</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

In the example above, all requests will be handled by the 'spring-ws'

MessageDispatcherServlet. This is only the first step in setting up Spring Web Services,
because the various component beans used by the Spring-WS framework also need to be
configured; this configuration consists of standard Spring XML <bean/> definitions. Because the
MessageDispatcherServlet is a standard Spring DispatcherServlet, it will look for a file named
[servlet-name]-servlet.xml in the WEB-INF directory of your web application and create the
beans defined there in a Spring container. In the example above, that means that it looks for '/WEB-
INF/spring-ws-servlet.xml'. This file will contain all of the Spring Web Services beans such as
endpoints, marshallers and suchlike.

As an alternative for web.xml, if you are running on a Servlet 3+ environment, you can configure
Spring-WS programmatically. For this purpose, Spring-WS provides a number of abstract base classes
that extend the WebApplicationInitializer interface found in the Spring Framework. If you
are also using @Configuration classes for your bean definitions, you are best of extending the
AbstractAnnotationConfigMessageDispatcherServletInitializer, like so:

public class MyServletInitializer

 extends AbstractAnnotationConfigMessageDispatcherServletInitializer {

 @Override

 protected Class<?>[] getRootConfigClasses() {

 return new Class[]{MyRootConfig.class};

 }

 @Override

 protected Class<?>[] getServletConfigClasses() {

 return new Class[]{MyEndpointConfig.class};

 }

}

In the example above, we tell Spring that endpoint bean definitions can be found
in the MyEndpointConfig class (which is a @Configuration class). Other bean
definitions (typically services, repositories, etc.) can be found in the MyRootConfig

class. By default, the AbstractAnnotationConfigMessageDispatcherServletInitializer
maps the servlet to two patterns: /services and *.wsdl, though this
can be changed by overriding the getServletMappings() method. For more
details on the programmatic configuration of the MessageDispatcherServlet,
refer to the Javadoc of AbstractMessageDispatcherServletInitializer and
AbstractAnnotationConfigMessageDispatcherServletInitializer.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 33

Automatic WSDL exposure

The MessageDispatcherServlet will automatically detect any WsdlDefinition beans defined in
it's Spring container. All such WsdlDefinition beans that are detected will also be exposed via a
WsdlDefinitionHandlerAdapter; this is a very convenient way to expose your WSDL to clients
simply by just defining some beans.

By way of an example, consider the following <static-wsdl>definition, defined in the Spring-WS
configuration file (/WEB-INF/[servlet-name]-servlet.xml). Take notice of the value of the 'id'
attribute, because this will be used when exposing the WSDL.

<sws:static-wsdl id="orders" location="orders.wsdl"/>

Or as @Bean method in a @Configuration class:

@Bean

public SimpleWsdl11Definition orders() {

 return new SimpleWsdl11Definition(new ClassPathResource("orders.xml"));

}

The WSDL defined in the 'orders.wsdl' file on the classpath can then be accessed via GET requests
to a URL of the following form (substitute the host, port and servlet context path as appropriate).

http://localhost:8080/spring-ws/orders.wsdl

Note

All WsdlDefinition bean definitions are exposed by the MessageDispatcherServlet
under their bean name with the suffix .wsdl. So if the bean name is echo, the host name
is "server", and the Servlet context (war name) is "spring-ws", the WSDL can be obtained via
http://server/spring-ws/echo.wsdl

Another nice feature of the MessageDispatcherServlet (or more correctly the
WsdlDefinitionHandlerAdapter) is that it is able to transform the value of the 'location' of all
the WSDL that it exposes to reflect the URL of the incoming request.

Please note that this 'location' transformation feature is off by default.To switch this feature on, you
just need to specify an initialization parameter to the MessageDispatcherServlet, like so:

<web-app>

 <servlet>

 <servlet-name>spring-ws</servlet-name>

 <servlet-class>org.springframework.ws.transport.http.MessageDispatcherServlet</

servlet-class>

 <init-param>

 <param-name>transformWsdlLocations</param-name>

 <param-value>true</param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>spring-ws</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 34

If you use the AbstractAnnotationConfigMessageDispatcherServletInitializer,
enabling transformation is as simple as overriding the isTransformWsdlLocations() method to
return true.

Consult the class-level Javadoc on the WsdlDefinitionHandlerAdapter class to learn more about
the whole transformation process.

As an alternative to writing the WSDL by hand, and exposing it with <static-wsdl>, Spring Web
Services can also generate a WSDL from an XSD schema. This is the approach shown in Section 3.7,
“Publishing the WSDL”. The next application context snippet shows how to create such a dynamic
WSDL file:

<sws:dynamic-wsdl id="orders"

 portTypeName="Orders"

 locationUri="http://localhost:8080/ordersService/">

 <sws:xsd location="Orders.xsd"/>

</sws:dynamic-wsdl>

Or, as @Bean method:

@Bean

public DefaultWsdl11Definition orders() {

 DefaultWsdl11Definition definition = new DefaultWsdl11Definition();

 definition.setPortTypeName("Orders");

 definition.setLocationUri("http://localhost:8080/ordersService/");

 definition.setSchema(new SimpleXsdSchema(new ClassPathResource("echo.xsd")));

 return definition;

}

The <dynamic-wsdl> element depends on the DefaultWsdl11Definition class. This definition
class uses WSDL providers in the org.springframework.ws.wsdl.wsdl11.provider package and the
ProviderBasedWsdl4jDefinition to generate a WSDL the first time it is requested. Refer to the
class-level Javadoc of these classes to see how you can extend this mechanism, if necessary.

The DefaultWsdl11Definition (and therefore, the <dynamic-wsdl> tag) builds a WSDL from a
XSD schema by using conventions. It iterates over all element elements found in the schema, and
creates a message for all elements. Next, it creates WSDL operation for all messages that end with
the defined request or response suffix. The default request suffix is Request; the default response suffix
is Response, though these can be changed by setting the requestSuffix and responseSuffix attributes
on <dynamic-wsdl />, respectively. It also builds a portType, binding, and service based on
the operations.

For instance, if our Orders.xsd schema defines the GetOrdersRequest and GetOrdersResponse
elements, <dynamic-wsdl> will create a GetOrdersRequest and GetOrdersResponse message,
and a GetOrders operation, which is put in a Orders port type.

If you want to use multiple schemas, either by includes or imports, you will want to put Commons
XMLSchema on the class path. If Commons XMLSchema is on the class path, the above <dynamic-
wsdl> element will follow all XSD imports and includes, and will inline them in the WSDL as a single
XSD. This greatly simplifies the deployment of the schemas, which still making it possible to edit them
separately.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 35

Caution

Even though it can be quite handy to create the WSDL at runtime from your XSDs, there are
a couple of drawbacks to this approach. First off, though we try to keep the WSDL generation
process consistent between releases, there is still the possibility that it changes (slightly).
Second, the generation is a bit slow, though once generated, the WSDL is cached for later
reference.

It is therefore recommended to only use <dynamic-wsdl> during the development stages of
your project. Then, we recommend to use your browser to download the generated WSDL, store
it in the project, and expose it with <static-wsdl>. This is the only way to be really sure that
the WSDL does not change over time.

Wiring up Spring-WS in a DispatcherServlet

As an alternative to the MessageDispatcherServlet, you can wire up a MessageDispatcher in
a standard, Spring-Web MVC DispatcherServlet. By default, the DispatcherServlet can only
delegate to Controllers, but we can instruct it to delegate to a MessageDispatcher by adding a
WebServiceMessageReceiverHandlerAdapter to the servlet's web application context:

<beans>

 <bean

 class="org.springframework.ws.transport.http.WebServiceMessageReceiverHandlerAdapter"/>

 <bean class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

 <property name="defaultHandler" ref="messageDispatcher"/>

 </bean

 <bean id="messageDispatcher"

 class="org.springframework.ws.soap.server.SoapMessageDispatcher"/>

 ...

 <bean

 class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter"/

>

</beans>

Note that by explicitly adding the WebServiceMessageReceiverHandlerAdapter, the dispatcher
servlet does not load the default adapters, and is unable to handle standard Spring-MVC
@Controllers. Therefore, we add the RequestMappingHandlerAdapter at the end.

In a similar fashion, you can wire up a WsdlDefinitionHandlerAdapter to make sure the
DispatcherServlet can handle implementations of the WsdlDefinition interface:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 36

<beans>

 <bean

 class="org.springframework.ws.transport.http.WebServiceMessageReceiverHandlerAdapter"/>

 <bean class="org.springframework.ws.transport.http.WsdlDefinitionHandlerAdapter"/>

 <bean class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

 <property name="mappings">

 <props>

 <prop key="*.wsdl">myServiceDefinition</prop>

 </props>

 </property>

 <property name="defaultHandler" ref="messageDispatcher"/>

 </bean>

 <bean id="messageDispatcher"

 class="org.springframework.ws.soap.server.SoapMessageDispatcher"/>

 <bean id="myServiceDefinition"

 class="org.springframework.ws.wsdl.wsdl11.SimpleWsdl11Definition">

 <prop name="wsdl" value="/WEB-INF/myServiceDefintion.wsdl"/>

 </bean>

 ...

</beans>

JMS transport

Spring Web Services supports server-side JMS handling through the JMS functionality provided in the
Spring framework. Spring Web Services provides the WebServiceMessageListener to plug in to a
MessageListenerContainer. This message listener requires a WebServiceMessageFactory to
and MessageDispatcher to operate. The following piece of configuration shows this:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 37

<beans>

 <bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">

 <property name="brokerURL" value="vm://localhost?broker.persistent=false"/>

 </bean>

 <bean id="messageFactory"

 class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

 <bean class="org.springframework.jms.listener.DefaultMessageListenerContainer">

 <property name="connectionFactory" ref="connectionFactory"/>

 <property name="destinationName" value="RequestQueue"/>

 <property name="messageListener">

 <bean class="org.springframework.ws.transport.jms.WebServiceMessageListener">

 <property name="messageFactory" ref="messageFactory"/>

 <property name="messageReceiver" ref="messageDispatcher"/>

 </bean>

 </property>

 </bean>

 <bean id="messageDispatcher"

 class="org.springframework.ws.soap.server.SoapMessageDispatcher">

 <property name="endpointMappings">

 <bean

 class="org.springframework.ws.server.endpoint.mapping.PayloadRootAnnotationMethodEndpointMapping">

 <property name="defaultEndpoint">

 <bean class="com.example.MyEndpoint"/>

 </property>

 </bean>

 </property>

 </bean>

</beans>

Email transport

In addition to HTTP and JMS, Spring Web Services also provides server-side email handling. This
functionality is provided through the MailMessageReceiver class. This class monitors a POP3 or
IMAP folder, converts the email to a WebServiceMessage, sends any response using SMTP. The host
names can be configured through the storeUri, which indicates the mail folder to monitor for requests
(typically a POP3 or IMAP folder), and a transportUri, which indicates the server to use for sending
responses (typically a SMTP server).

How the MailMessageReceiver monitors incoming messages can be configured with a pluggable
strategy: the MonitoringStrategy. By default, a polling strategy is used, where the incoming folder is
polled for new messages every five minutes. This interval can be changed by setting the pollingInterval
property on the strategy. By default, all MonitoringStrategy implementations delete the handled
messages; this can be changed by setting the deleteMessages property.

As an alternative to the polling approaches, which are quite inefficient, there is a monitoring strategy that
uses IMAP IDLE. The IDLE command is an optional expansion of the IMAP email protocol that allows the
mail server to send new message updates to the MailMessageReceiver asynchronously. If you use a
IMAP server that supports the IDLE command, you can plug in the ImapIdleMonitoringStrategy
into the monitoringStrategy property. In addition to a supporting server, you will need to use JavaMail
version 1.4.1 or higher.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 38

The following piece of configuration shows how to use the server-side email support, overiding the
default polling interval to a value which checks every 30 seconds (30.000 milliseconds):

<beans>

 <bean id="messageFactory"

 class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

 <bean id="messagingReceiver"

 class="org.springframework.ws.transport.mail.MailMessageReceiver">

 <property name="messageFactory" ref="messageFactory"/>

 <property name="from" value="Spring-WS SOAP Server <server@example.com>"/>

 <property name="storeUri" value="imap://server:s04p@imap.example.com/INBOX"/>

 <property name="transportUri" value="smtp://smtp.example.com"/>

 <property name="messageReceiver" ref="messageDispatcher"/>

 <property name="monitoringStrategy">

 <bean

 class="org.springframework.ws.transport.mail.monitor.PollingMonitoringStrategy">

 <property name="pollingInterval" value="30000"/>

 </bean>

 </property>

 </bean>

 <bean id="messageDispatcher"

 class="org.springframework.ws.soap.server.SoapMessageDispatcher">

 <property name="endpointMappings">

 <bean

 class="org.springframework.ws.server.endpoint.mapping.PayloadRootAnnotationMethodEndpointMapping">

 <property name="defaultEndpoint">

 <bean class="com.example.MyEndpoint"/>

 </property>

 </bean>

 </property>

 </bean>

</beans>

Embedded HTTP Server transport

Spring Web Services provides a transport based on Sun's JRE 1.6 HTTP server. The embedded
HTTP Server is a standalone server that is simple to configure. It lends itself to a lighter alternative to
conventional servlet containers.

When using the embedded HTTP server, no external deployment descriptor is needed (web.xml).
You only need to define an instance of the server and configure it to handle incoming requests. The
remoting module in the Core Spring Framework contains a convenient factory bean for the HTTP server:
the SimpleHttpServerFactoryBean. The most important property is contexts, which maps context
paths to corresponding HttpHandlers.

Spring Web Services provides 2 implementations of the HttpHandler interface:
WsdlDefinitionHttpHandler and WebServiceMessageReceiverHttpHandler. The former
maps an incoming GET request to a WsdlDefinition. The latter is responsible for handling
POST requests for web services messages and thus needs a WebServiceMessageFactory
(typically a SaajSoapMessageFactory) and a WebServiceMessageReceiver (typically the
SoapMessageDispatcher) to accomplish its task.

http://java.sun.com/javase/6/docs/jre/api/net/httpserver/spec/index.html

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 39

To draw parallels with the servlet world, the contexts property plays the role of servlet
mappings in web.xml and the WebServiceMessageReceiverHttpHandler is the equivalent of a
MessageDispatcherServlet.

The following snippet shows a simple configuration example of the HTTP server transport:

<beans>

 <bean id="messageFactory"

 class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

 <bean id="messageReceiver"

 class="org.springframework.ws.soap.server.SoapMessageDispatcher">

 <property name="endpointMappings" ref="endpointMapping"/>

 </bean>

 <bean id="endpointMapping"

 class="org.springframework.ws.server.endpoint.mapping.PayloadRootAnnotationMethodEndpointMapping">

 <property name="defaultEndpoint" ref="stockEndpoint"/>

 </bean>

 <bean id="httpServer"

 class="org.springframework.remoting.support.SimpleHttpServerFactoryBean">

 <property name="contexts">

 <map>

 <entry key="/StockService.wsdl" value-ref="wsdlHandler"/>

 <entry key="/StockService" value-ref="soapHandler"/>

 </map>

 </property>

 </bean>

 <bean id="soapHandler"

 class="org.springframework.ws.transport.http.WebServiceMessageReceiverHttpHandler">

 <property name="messageFactory" ref="messageFactory"/>

 <property name="messageReceiver" ref="messageReceiver"/>

 </bean>

 <bean id="wsdlHandler"

 class="org.springframework.ws.transport.http.WsdlDefinitionHttpHandler">

 <property name="definition" ref="wsdlDefinition"/>

 </bean>

</beans>

For more information on the SimpleHttpServerFactoryBean, refer to the Javadoc.

XMPP transport

Finally, Spring Web Services 2.0 introduced support for XMPP, otherwise known as Jabber. The support
is based on the Smack library.

Spring Web Services support for XMPP is very similar to the other transports: there is a a
XmppMessageSender for the WebServiceTemplate and and a XmppMessageReceiver to use with
the MessageDispatcher.

The following example shows how to set up the server-side XMPP components:

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/remoting/support/SimpleHttpServerFactoryBean.html
http://www.igniterealtime.org/projects/smack/index.jsp

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 40

<beans>

 <bean id="messageFactory"

 class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

 <bean id="connection"

 class="org.springframework.ws.transport.xmpp.support.XmppConnectionFactoryBean">

 <property name="host" value="jabber.org"/>

 <property name="username" value="username"/>

 <property name="password" value="password"/>

 </bean>

 <bean id="messagingReceiver"

 class="org.springframework.ws.transport.xmpp.XmppMessageReceiver">

 <property name="messageFactory" ref="messageFactory"/>

 <property name="connection" ref="connection"/>

 <property name="messageReceiver" ref="messageDispatcher"/>

 </bean>

 <bean id="messageDispatcher"

 class="org.springframework.ws.soap.server.SoapMessageDispatcher">

 <property name="endpointMappings">

 <bean

 class="org.springframework.ws.server.endpoint.mapping.PayloadRootAnnotationMethodEndpointMapping">

 <property name="defaultEndpoint">

 <bean class="com.example.MyEndpoint"/>

 </property>

 </bean>

 </property>

 </bean>

</beans>

MTOM

MTOM is the mechanism of sending binary data to and from Web Services. You can look at how to
implement this with Spring WS through the MTOM sample.

5.4 Endpoints

Endpoints are the central concept in Spring-WS's server-side support. Endpoints provide access to the
application behavior which is typically defined by a business service interface. An endpoint interprets
the XML request message and uses that input to invoke a method on the business service (typically).
The result of that service invocation is represented as a response message. Spring-WS has a wide
variety of endpoints, using various ways to handle the XML message, and to create a response.

You create an endpoint by annotating a class with the @Endpoint annotation. In the class, you define
one or more methods that handle the incoming XML request, by using a wide variety of parameter types
(such as DOM elements, JAXB2 objects, etc). You indicate the sort of messages a method can handle
by using another annotation (typically @PayloadRoot).

Consider the following sample endpoint:

https://en.wikipedia.org/wiki/Message_Transmission_Optimization_Mechanism
https://github.com/spring-projects/spring-ws-samples/tree/master/mtom

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 41

package samples;

import org.w3c.dom.Element;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.ws.server.endpoint.annotation.Endpoint;

import org.springframework.ws.server.endpoint.annotation.PayloadRoot;

import org.springframework.ws.soap.SoapHeader;

@Endpoint ❶

public class AnnotationOrderEndpoint {

 private final OrderService orderService;

 @Autowired ❷

 public AnnotationOrderEndpoint(OrderService orderService) {

 this.orderService = orderService;

 }

 @PayloadRoot(localPart = "order", namespace = "http://samples") ❺

 public void order(@RequestPayload Element orderElement) { ❸

 Order order = createOrder(orderElement);

 orderService.createOrder(order);

 }

 @PayloadRoot(localPart = "orderRequest", namespace = "http://samples") ❺

 @ResponsePayload

 public Order getOrder(@RequestPayload OrderRequest orderRequest, SoapHeader header) { ❹

 checkSoapHeaderForSomething(header);

 return orderService.getOrder(orderRequest.getId());

 }

 ...

}

❶ The class is annotated with @Endpoint, marking it as a Spring-WS endpoint.

❷ The constructor is marked with @Autowired, so that the OrderService business service is
injected into this endpoint.

❸ The order method takes a Element as a parameter, annotated with @RequestPayload. This
means that the payload of the message is passed on this method as a DOM element. The method
has a void return type, indicating that no response message is sent.

For more information about endpoint methods, refer to the section called “@Endpoint handling
methods”.

❹ The getOrder method takes a OrderRequest as a parameter, annotated with
@RequestPayload as well. This parameter is a JAXB2-supported object (it is annotated with
@XmlRootElement). This means that the payload of the message is passed on to this method as
a unmarshalled object. The SoapHeader type is also given as a parameter. On invocation, this
parameter will contain the SOAP header of the request message. The method is also annotated
with @ResponsePayload, indicating that the return value (the Order) is used as the payload of
the response message.

For more information about endpoint methods, refer to the section called “@Endpoint handling
methods”.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 42

❺ The two handling methods of this endpoint are marked with @PayloadRoot, indicating what sort
of request messages can be handled by the method: the getOrder method will be invoked for
requests with a orderRequest local name and a http://samples namespace URI; the order
method for requests with a order local name.

For more information about @PayloadRoot, refer to Section 5.5, “Endpoint mappings”.

To enable the support for @Endpoint and related Spring-WS annotations, you will need to add the
following to your Spring application context:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:sws="http://www.springframework.org/schema/web-services"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/web-services

 http://www.springframework.org/schema/web-services/web-services.xsd">

 <sws:annotation-driven />

</beans>

Or, if you are using @Configuration classes instead of Spring XML, you can annotate your
configuration class with @EnableWs, like so:

@EnableWs

@Configuration

public class EchoConfig {

 // @Bean definitions go here

}

To customize the @EnableWs configuration, you can implement WsConfigurer, or better yet extend
the WsConfigurerAdapter. For instance:

@Configuration

@EnableWs

@ComponentScan(basePackageClasses = { MyConfiguration.class })

public class MyConfiguration extends WsConfigurerAdapter {

 @Override

 public void addInterceptors(List<EndpointInterceptor> interceptors) {

 interceptors.add(new MyInterceptor());

 }

 @Override

 public void addArgumentResolvers(List<MethodArgumentResolver> argumentResolvers) {

 argumentResolvers.add(new MyArgumentResolver());

 }

 // More overridden methods ...

}

In the next couple of sections, a more elaborate description of the @Endpoint programming model
is given.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 43

Note

Endpoints, like any other Spring Bean, are scoped as a singleton by default, i.e. one instance of
the bean definition is created per container. Being a singleton implies that more than one thread
can use it at the same time, so the endpoint has to be thread safe. If you want to use a different
scope, such as prototype, refer to the Spring Reference documentation.

Note that all abstract base classes provided in Spring-WS are thread safe, unless otherwise
indicated in the class-level Javadoc.

@Endpoint handling methods

In order for an endpoint to actually handle incoming XML messages, it needs to have one or more
handling methods. Handling methods can take wide range of parameters and return types, but typically
they have one parameter that will contain the message payload, and they return the payload of the
response message (if any). You will learn which parameter and return types are supported in this section.

To indicate what sort of messages a method can handle, the method is typically annotated with either
the @PayloadRoot or @SoapAction annotation. You will learn more about these annotations in
Section 5.5, “Endpoint mappings”.

Here is an example of a handling method:

@PayloadRoot(localPart = "order", namespace = "http://samples")

public void order(@RequestPayload Element orderElement) {

 Order order = createOrder(orderElement);

 orderService.createOrder(order);

}

The order method takes a Element as a parameter, annotated with @RequestPayload. This means
that the payload of the message is passed on this method as a DOM element. The method has a void
return type, indicating that no response message is sent.

Handling method parameters

The handling method typically has one or more parameters that refer to various parts of the incoming
XML message. Most commonly, the handling method will have a single parameter that will map to the
payload of the message, but it is also possible to map to other parts of the request message, such
as a SOAP header. This section will describe the parameters you can use in your handling method
signatures.

To map a parameter to the payload of the request message, you will need to annotate this parameter
with the @RequestPayload annotation. This annotation tells Spring-WS that the parameter needs to
be bound to the request payload.

The following table describes the supported parameter types. It shows the supported types, whether
the parameter should be annotated with @RequestPayload, and any additional notes.

Name Supported parameter
types

@RequestPayload

required?
Additional notes

TrAX javax.xml.transform.Source

and sub-interfaces
(DOMSource,
SAXSource,

Yes Enabled by default.

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-scopes

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 44

Name Supported parameter
types

@RequestPayload

required?
Additional notes

StreamSource, and
StAXSource)

W3C DOM org.w3c.dom.Element Yes Enabled by default

dom4j org.dom4j.Element Yes Enabled when dom4j is
on the classpath.

JDOM org.jdom.Element Yes Enabled when JDOM is
on the classpath.

XOM nu.xom.Element Yes Enabled when XOM is
on the classpath.

StAX javax.xml.stream.XMLStreamReader

and
javax.xml.stream.XMLEventReader

Yes Enabled when StAX is
on the classpath.

XPath Any boolean, double,
String,
org.w3c.Node,
org.w3c.dom.NodeList,
or type that can
be converted from a
String by a Spring 3
conversion service, and
that is annotated with
@XPathParam.

No Enabled by default,
see the section called
“@XPathParam”.

Message context org.springframework.ws.context.MessageContextNo Enabled by default.

SOAP org.springframework.ws.soap.SoapMessage,
org.springframework.ws.soap.SoapBody,
org.springframework.ws.soap.SoapEnvelope,
org.springframework.ws.soap.SoapHeader,
and
org.springframework.ws.soap.SoapHeaderElements
when used in
combination with the
@SoapHeader

annotation.

No Enabled by default.

JAXB2 Any type that
is annotated with
javax.xml.bind.annotation.XmlRootElement,
and
javax.xml.bind.JAXBElement.

Yes Enabled when JAXB2 is
on the classpath.

OXM Any type supported
by a Spring OXM
Unmarshaller.

Yes Enabled when the
unmarshaller

attribute of

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26164

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 45

Name Supported parameter
types

@RequestPayload

required?
Additional notes

<sws:annotation-

driven/> is specified.

Here are some examples of possible method signatures:

• public void handle(@RequestPayload Element element)

This method will be invoked with the payload of the request message as a DOM
org.w3c.dom.Element.

• public void handle(@RequestPayload DOMSource domSource, SoapHeader header)

This method will be invoked with the payload of the request message as a
javax.xml.transform.dom.DOMSource. The header parameter will be bound to the SOAP
header of the request message.

• public void handle(@RequestPayload MyJaxb2Object requestObject, @RequestPayload Element

 element, Message messageContext)

This method will be invoked with the payload of the request message unmarshalled into a
MyJaxb2Object (which is annotated with @XmlRootElement). The payload of the message is also
given as a DOM Element. The whole message context is passed on as the third parameter.

As you can see, there are a lot of possibilities when it comes to defining handling method signatures. It
is even possible to extend this mechanism, and to support your own parameter types. Refer to the class-
level Javadoc of DefaultMethodEndpointAdapter and MethodArgumentResolver to see how.

@XPathParam

One parameter type needs some extra explanation: @XPathParam. The idea here is that you simply
annotate one or more method parameter with an XPath expression, and that each such annotated
parameter will be bound to the evaluation of the expression. Here is an example:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 46

package samples;

import javax.xml.transform.Source;

import org.springframework.ws.server.endpoint.annotation.Endpoint;

import org.springframework.ws.server.endpoint.annotation.Namespace;

import org.springframework.ws.server.endpoint.annotation.PayloadRoot;

import org.springframework.ws.server.endpoint.annotation.XPathParam;

@Endpoint

public class AnnotationOrderEndpoint {

 private final OrderService orderService;

 public AnnotationOrderEndpoint(OrderService orderService) {

 this.orderService = orderService;

 }

 @PayloadRoot(localPart = "orderRequest", namespace = "http://samples")

 @Namespace(prefix = "s", uri="http://samples")

 public Order getOrder(@XPathParam("/s:orderRequest/@id") int orderId) {

 Order order = orderService.getOrder(orderId);

 // create Source from order and return it

}

}

Since we use the prefix 's' in our XPath expression, we must bind it to the http://samples
namespace. This is accomplished with the @Namespace annotation. Alternatively, we could have placed
this annotation on the type-level to use the same namespace mapping for all handler methods, or even
the package-level (in package-info.java) to use it for multiple endpoints.

Using the @XPathParam, you can bind to all the data types supported by XPath:

• boolean or Boolean

• double or Double

• String

• Node

• NodeList

In addition to this list, you can use any type that can be converted from a String by a Spring 3
conversion service.

Handling method return types

To send a response message, the handling needs to specify a return type. If no response message is
required, the method can simply declare a void return type. Most commonly, the return type is used to
create the payload of the response message, but it is also possible to map to other parts of the response
message. This section will describe the return types you can use in your handling method signatures.

To map the return value to the payload of the response message, you will need to annotate the method
with the @ResponsePayload annotation. This annotation tells Spring-WS that the return value needs
to be bound to the response payload.

The following table describes the supported return types. It shows the supported types, whether the
parameter should be annotated with @ResponsePayload, and any additional notes.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 47

Name Supported return
types

@ResponsePayload

required?
Additional notes

No response void No Enabled by default.

TrAX javax.xml.transform.Source

and sub-interfaces
(DOMSource,
SAXSource,
StreamSource, and
StAXSource)

Yes Enabled by default.

W3C DOM org.w3c.dom.Element Yes Enabled by default

dom4j org.dom4j.Element Yes Enabled when dom4j is
on the classpath.

JDOM org.jdom.Element Yes Enabled when JDOM is
on the classpath.

XOM nu.xom.Element Yes Enabled when XOM is
on the classpath.

JAXB2 Any type that
is annotated with
javax.xml.bind.annotation.XmlRootElement,
and
javax.xml.bind.JAXBElement.

Yes Enabled when JAXB2 is
on the classpath.

OXM Any type supported
by a Spring OXM
Marshaller.

Yes Enabled when the
marshaller attribute
of
<sws:annotation-

driven/> is specified.

As you can see, there are a lot of possibilities when it comes to defining handling method signatures.
It is even possible to extend this mechanism, and to support your own parameter types. Refer to the
class-level Javadoc of DefaultMethodEndpointAdapter and MethodReturnValueHandler to
see how.

5.5 Endpoint mappings

The endpoint mapping is responsible for mapping incoming messages to appropriate
endpoints. There are some endpoint mappings that are enabled out of the
box, for example, the PayloadRootAnnotationMethodEndpointMapping or the
SoapActionAnnotationMethodEndpointMapping, but let's first examine the general concept of
an EndpointMapping.

An EndpointMapping delivers a EndpointInvocationChain, which contains the endpoint that
matches the incoming request, and may also contain a list of endpoint interceptors that will be
applied to the request and response. When a request comes in, the MessageDispatcher will
hand it over to the endpoint mapping to let it inspect the request and come up with an appropriate

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26096

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 48

EndpointInvocationChain. Then the MessageDispatcher will invoke the endpoint and any
interceptors in the chain.

The concept of configurable endpoint mappings that can optionally contain interceptors (which can
manipulate the request or the response, or both) is extremely powerful. A lot of supporting functionality
can be built into custom EndpointMappings. For example, there could be a custom endpoint mapping
that chooses an endpoint not only based on the contents of a message, but also on a specific SOAP
header (or indeed multiple SOAP headers).

Most endpoint mappings inherit from the AbstractEndpointMapping, which offers an 'interceptors'
property, which is the list of interceptors to use. EndpointInterceptors are discussed in the
section called “Intercepting requests - the EndpointInterceptor interface”. Additionally, there is the
'defaultEndpoint', which is the default endpoint to use when this endpoint mapping does not result in
a matching endpoint.

As explained in Section 5.4, “Endpoints”, the @Endpoint style allows you to handle multiple requests
in one endpoint class. This is the responsibility of the MethodEndpointMapping. This mapping
determines which method is to be invoked for an incoming request message.

There are two endpoint mappings that can direct requests
to methods: the PayloadRootAnnotationMethodEndpointMapping and the
SoapActionAnnotationMethodEndpointMapping, both of which are enabled by using
<sws:annotation-driven/> in your application context.

The PayloadRootAnnotationMethodEndpointMapping uses the @PayloadRoot annotation,
with the localPart and namespace elements, to mark methods with a particular qualified name.
Whenever a message comes in which has this qualified name for the payload root element, the method
will be invoked. For an example, see above.

Alternatively, the SoapActionAnnotationMethodEndpointMapping uses the @SoapAction
annotation to mark methods with a particular SOAP Action. Whenever a message comes in which has
this SOAPAction header, the method will be invoked.

WS-Addressing

WS-Addressing specifies a transport-neutral routing mechanism. It is based on a To and Action SOAP
header, which indicate the destination and intent of the SOAP message, respectively. Additionally,
WS-Addressing allows you to define a return address (for normal messages and for faults), and a
unique message identifier which can be used for correlation 11. Here is an example of a WS-Addressing
message:

11For more information on WS-Addressing, see http://en.wikipedia.org/wiki/WS-Addressing.

http://en.wikipedia.org/wiki/WS-Addressing

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 49

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <SOAP-ENV::Header>

 <wsa:MessageID>urn:uuid:21363e0d-2645-4eb7-8afd-2f5ee1bb25cf</wsa:MessageID>

 <wsa:ReplyTo>

 <wsa:Address>http://example.com/business/client1</wsa:Address>

 </wsa:ReplyTo>

 <wsa:To S:mustUnderstand="true">http://example/com/fabrikam</wsa:To>

 <wsa:Action>http://example.com/fabrikam/mail/Delete</wsa:Action>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <f:Delete xmlns:f="http://example.com/fabrikam">

 <f:maxCount>42</f:maxCount>

 </f:Delete>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

In this example, the destination is set to http://example/com/fabrikam, while the action is set
to http://example.com/fabrikam/mail/Delete. Additionally, there is a message identifier, and
an reply-to address. By default, this address is the "anonymous" address, indicating that a response
should be sent using the same channel as the request (i.e. the HTTP response), but it can also be
another address, as indicated in this example.

In Spring Web Services, WS-Addressing is implemented as an endpoint mapping.
Using this mapping, you associate WS-Addressing actions with endpoints, similar to the
SoapActionAnnotationMethodEndpointMapping described above.

AnnotationActionEndpointMapping

The AnnotationActionEndpointMapping is similar to the
SoapActionAnnotationMethodEndpointMapping, but uses WS-Addressing headers instead of
the SOAP Action transport header.

To use the AnnotationActionEndpointMapping, annotate the handling methods with the
@Action annotation, similar to the @PayloadRoot and @SoapAction annotations described in the
section called “@Endpoint handling methods” and Section 5.5, “Endpoint mappings”. Here is an
example:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 50

package samples;

import org.springframework.ws.server.endpoint.annotation.Endpoint;

import org.springframework.ws.soap.addressing.server.annotation.Action

@Endpoint

public class AnnotationOrderEndpoint {

 private final OrderService orderService;

 public AnnotationOrderEndpoint(OrderService orderService) {

 this.orderService = orderService;

 }

 @Action("http://samples/RequestOrder")

 public Order getOrder(OrderRequest orderRequest) {

 return orderService.getOrder(orderRequest.getId());

 }

 @Action("http://samples/CreateOrder")

 public void order(Order order) {

 orderService.createOrder(order);

 }

}

The mapping above routes requests which have a WS-Addressing Action of http://samples/
RequestOrder to the getOrder method. Requests with http://samples/CreateOrder will be
routed to the order method..

By default, the AnnotationActionEndpointMapping supports both the 1.0 (May 2006), and the
August 2004 editions of WS-Addressing. These two versions are most popular, and are interoperable
with Axis 1 and 2, JAX-WS, XFire, Windows Communication Foundation (WCF), and Windows Services
Enhancements (WSE) 3.0. If necessary, specific versions of the spec can be injected into the versions
property.

In addition to the @Action annotation, you can annotate the class with the @Address annotation. If
set, the value is compared to the To header property of the incoming message.

Finally, there is the messageSenders property, which is required for sending response messages to non-
anonymous, out-of-bound addresses. You can set MessageSender implementations in this property,
the same as you would on the WebServiceTemplate. See the section called “URIs and Transports”.

Intercepting requests - the EndpointInterceptor interface

The endpoint mapping mechanism has the notion of endpoint interceptors. These can be extremely
useful when you want to apply specific functionality to certain requests, for example, dealing with
security-related SOAP headers, or the logging of request and response message.

Endpoint interceptors are typically defined by using a <sws:interceptors> element in your
application context. In this element, you can simply define endpoint interceptor beans that apply to
all endpoints defined in that application context. Alternatively, you can use <sws:payloadRoot> or
<sws:soapAction> elements to specify for which payload root name or SOAP action the interceptor
should apply. For example:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 51

<sws:interceptors>

 <bean class="samples.MyGlobalInterceptor"/>

 <sws:payloadRoot namespaceUri="http://www.example.com">

 <bean class="samples.MyPayloadRootInterceptor"/>

 </sws:payloadRoot>

 <sws:soapAction value="http://www.example.com/SoapAction">

 <bean class="samples.MySoapActionInterceptor1"/>

 <ref bean="mySoapActionInterceptor2"/>

 </sws:soapAction>

</sws:interceptors>

<bean id="mySoapActionInterceptor2" class="samples.MySoapActionInterceptor2"/>

Here, we define one 'global' interceptor (MyGlobalInterceptor) that intercepts all request and
responses. We also define an interceptor that only applies to XML messages that have the http://
www.example.com as a payload root namespace. Here, we could have defined a localPart
attribute in addition to the namespaceUri to further limit the messages the interceptor applies to.
Finally, we define two interceptors that apply when the message has a http://www.example.com/
SoapAction SOAP action. Notice how the second interceptor is actually a reference to a bean
definition outside of the <interceptors> element. You can use bean references anywhere inside the
<interceptors> element.

When using @Configuration classes, you can extend from WsConfigurerAdapter to add
interceptors. Like so:

@Configuration

@EnableWs

public class MyWsConfiguration extends WsConfigurerAdapter {

 @Override

 public void addInterceptors(List<EndpointInterceptor> interceptors) {

 interceptors.add(new MyPayloadRootInterceptor());

 }

}

Interceptors must implement the EndpointInterceptor interface from the
org.springframework.ws.server package. This interface defines three methods, one that can be used
for handling the request message before the actual endpoint will be executed, one that can be used
for handling a normal response message, and one that can be used for handling fault messages, both
of which will be called after the endpoint is executed. These three methods should provide enough
flexibility to do all kinds of pre- and post-processing.

The handleRequest(..) method on the interceptor returns a boolean value. You can use this method
to interrupt or continue the processing of the invocation chain. When this method returns true, the
endpoint execution chain will continue, when it returns false, the MessageDispatcher interprets
this to mean that the interceptor itself has taken care of things and does not continue executing the
other interceptors and the actual endpoint in the invocation chain. The handleResponse(..) and
handleFault(..) methods also have a boolean return value. When these methods return false,
the response will not be sent back to the client.

There are a number of standard EndpointInterceptor implementations you can use in your Web
service. Additionally, there is the XwsSecurityInterceptor, which is described in Section 7.2, “
XwsSecurityInterceptor ”.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 52

PayloadLoggingInterceptor and SoapEnvelopeLoggingInterceptor

When developing a Web service, it can be useful to log the incoming and outgoing XML messages. SWS
facilitates this with the PayloadLoggingInterceptor and SoapEnvelopeLoggingInterceptor
classes. The former logs just the payload of the message to the Commons Logging Log; the latter logs
the entire SOAP envelope, including SOAP headers. The following example shows you how to define
them in an endpoint mapping:

 <sws:interceptors>

 <bean

 class="org.springframework.ws.server.endpoint.interceptor.PayloadLoggingInterceptor"/>

 </sws:interceptors>

Both of these interceptors have two properties: 'logRequest' and 'logResponse', which can be set to
false to disable logging for either request or response messages.

Of course, you could use the WsConfigurerAdapter approach, as described above, for the
PayloadLoggingInterceptor as well.

PayloadValidatingInterceptor

One of the benefits of using a contract-first development style is that we can use the
schema to validate incoming and outgoing XML messages. Spring-WS facilitates this with the
PayloadValidatingInterceptor. This interceptor requires a reference to one or more W3C XML
or RELAX NG schemas, and can be set to validate requests or responses, or both.

Note

Note that request validation may sound like a good idea, but makes the resulting Web service
very strict. Usually, it is not really important whether the request validates, only if the endpoint
can get sufficient information to fullfill a request. Validating the response is a good idea, because
the endpoint should adhere to its schema. Remember Postel's Law: “Be conservative in what
you do; be liberal in what you accept from others.”

Here is an example that uses the PayloadValidatingInterceptor; in this example, we use
the schema in /WEB-INF/orders.xsd to validate the response, but not the request. Note that the
PayloadValidatingInterceptor can also accept multiple schemas using the schemas property.

<bean id="validatingInterceptor"

 class="org.springframework.ws.soap.server.endpoint.interceptor.PayloadValidatingInterceptor">

 <property name="schema" value="/WEB-INF/orders.xsd"/>

 <property name="validateRequest" value="false"/>

 <property name="validateResponse" value="true"/>

</bean>

Of course, you could use the WsConfigurerAdapter approach, as described above, for the
PayloadValidatingInterceptor as well.

PayloadTransformingInterceptor

To transform the payload to another XML format, Spring Web Services offers the
PayloadTransformingInterceptor. This endpoint interceptor is based on XSLT style sheets,

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 53

and is especially useful when supporting multiple versions of a Web service: you can
transform the older message format to the newer format. Here is an example to use the
PayloadTransformingInterceptor:

<bean id="transformingInterceptor"

 class="org.springframework.ws.server.endpoint.interceptor.PayloadTransformingInterceptor">

 <property name="requestXslt" value="/WEB-INF/oldRequests.xslt"/>

 <property name="responseXslt" value="/WEB-INF/oldResponses.xslt"/>

</bean>

We are simply transforming requests using /WEB-INF/oldRequests.xslt, and response messages
using /WEB-INF/oldResponses.xslt. Note that, since endpoint interceptors are registered at the
endpoint mapping level, you can simply create a endpoint mapping that applies to the "old style"
messages, and add the interceptor to that mapping. Hence, the transformation will apply only to these
"old style" message.

Of course, you could use the WsConfigurerAdapter approach, as described above, for the
PayloadTransformingInterceptor as well.

5.6 Handling Exceptions

Spring-WS provides EndpointExceptionResolvers to ease the pain of unexpected exceptions
occurring while your message is being processed by an endpoint which matched the request. Endpoint
exception resolvers somewhat resemble the exception mappings that can be defined in the web
application descriptor web.xml. However, they provide a more flexible way to handle exceptions. They
provide information about what endpoint was invoked when the exception was thrown. Furthermore,
a programmatic way of handling exceptions gives you many more options for how to respond
appropriately. Rather than expose the innards of your application by giving an exception and stack trace,
you can handle the exception any way you want, for example by returning a SOAP fault with a specific
fault code and string.

Endpoint exception resolvers are automatically picked up by the MessageDispatcher, so no explicit
configuration is necessary.

Besides implementing the EndpointExceptionResolver interface, which is only a matter of
implementing the resolveException(MessageContext, endpoint, Exception) method,
you may also use one of the provided implementations. The simplest implementation is the
SimpleSoapExceptionResolver, which just creates a SOAP 1.1 Server or SOAP 1.2 Receiver
Fault, and uses the exception message as the fault string. The SimpleSoapExceptionResolver is
the default, but it can be overriden by explicitly adding another resolver.

SoapFaultMappingExceptionResolver

The SoapFaultMappingExceptionResolver is a more sophisticated implementation. This resolver
enables you to take the class name of any exception that might be thrown and map it to a SOAP Fault,
like so:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 54

<beans>

 <bean id="exceptionResolver"

 class="org.springframework.ws.soap.server.endpoint.SoapFaultMappingExceptionResolver">

 <property name="defaultFault" value="SERVER"/>

 <property name="exceptionMappings">

 <value>

 org.springframework.oxm.ValidationFailureException=CLIENT,Invalid request

 </value>

 </property>

 </bean>

</beans>

The key values and default endpoint use the format faultCode,faultString,locale, where
only the fault code is required. If the fault string is not set, it will default to the exception message.
If the language is not set, it will default to English. The above configuration will map exceptions of
type ValidationFailureException to a client-side SOAP Fault with a fault string "Invalid
request", as can be seen in the following response:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <SOAP-ENV:Fault>

 <faultcode>SOAP-ENV:Client</faultcode>

 <faultstring>Invalid request</faultstring>

 </SOAP-ENV:Fault>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If any other exception occurs, it will return the default fault: a server-side fault with the exception message
as fault string.

SoapFaultAnnotationExceptionResolver

Finally, it is also possible to annotate exception classes with the @SoapFault annotation, to indicate the
SOAP Fault that should be returned whenever that exception is thrown. In order for these annotations to
be picked up, you need to add the SoapFaultAnnotationExceptionResolver to your application
context. The elements of the annotation include a fault code enumeration, fault string or reason, and
language. Here is an example exception:

package samples;

import org.springframework.ws.soap.server.endpoint.annotation.FaultCode;

import org.springframework.ws.soap.server.endpoint.annotation.SoapFault;

@SoapFault(faultCode = FaultCode.SERVER)

public class MyBusinessException extends Exception {

 public MyClientException(String message) {

 super(message);

 }

}

Whenever the MyBusinessException is thrown with the constructor string "Oops!" during endpoint
invocation, it will result in the following response:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 55

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <SOAP-ENV:Fault>

 <faultcode>SOAP-ENV:Server</faultcode>

 <faultstring>Oops!</faultstring>

 </SOAP-ENV:Fault>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

5.7 Server-side testing

When it comes to testing your Web service endpoints, there are two possible approaches:

• Write Unit Tests, where you provide (mock) arguments for your endpoint to consume.

The advantage of this approach is that it's quite easy to accomplish (especially for classes annotated
with @Endpoint); the disadvantage is that you are not really testing the exact content of the XML
messages that are sent over the wire.

• Write Integrations Tests, which do test the contents of the message.

The first approach can easily be accomplished with mocking frameworks such as EasyMock, JMock,
etc. The next section will focus on writing integration tests, using the test features introduced in Spring
Web Services 2.0.

Writing server-side integration tests

Spring Web Services 2.0 introduced support for creating endpoint integration tests. In this context, an
endpoint is class handles (SOAP) messages (see Section 5.4, “Endpoints”).

The integration test support lives in the org.springframework.ws.test.server package. The core
class in that package is the MockWebServiceClient. The underlying idea is that this
client creates a request message, and then sends it over to the endpoint(s) that are
configured in a standard MessageDispatcherServlet application context (see the section called
“MessageDispatcherServlet”). These endpoints will handle the message, and create a response.
The client then receives this response, and verifies it against registered expectations.

The typical usage of the MockWebServiceClient is:

1. Create a MockWebServiceClient instance by calling
MockWebServiceClient.createClient(ApplicationContext) or
MockWebServiceClient.createClient(WebServiceMessageReceiver,

WebServiceMessageFactory).

2. Send request messages by calling sendRequest(RequestCreator), possibly by using the
default RequestCreator implementations provided in RequestCreators (which can be statically
imported).

3. Set up response expectations by calling andExpect(ResponseMatcher), possibly by
using the default ResponseMatcher implementations provided in ResponseMatchers

(which can be statically imported). Multiple expectations can be set up by chaining
andExpect(ResponseMatcher) calls.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 56

Note

Note that the MockWebServiceClient (and related classes) offers a 'fluent' API, so you can
typically use the Code Completion features (i.e. ctrl-space) in your IDE to guide you through the
process of setting up the mock server.

Note

Also note that you rely on the standard logging features available in Spring Web Services in
your unit tests. Sometimes it might be useful to inspect the request or response message to
find out why a particular tests failed. See Section 4.4, “Message Logging and Tracing” for more
information.

Consider, for example, this simple Web service endpoint class:

import org.springframework.ws.server.endpoint.annotation.Endpoint;

import org.springframework.ws.server.endpoint.annotation.RequestPayload;

import org.springframework.ws.server.endpoint.annotation.ResponsePayload;

@Endpoint ❶

public class CustomerEndpoint {

 @ResponsePayload ❷

 public CustomerCountResponse getCustomerCount(❷

 @RequestPayload CustomerCountRequest request) { ❷

 CustomerCountResponse response = new CustomerCountResponse();

 response.setCustomerCount(10);

 return response;

 }

}

❶ The CustomerEndpoint in annotated with @Endpoint. See Section 5.4, “Endpoints”.

❷ The getCustomerCount() method takes a CustomerCountRequest as argument, and returns
a CustomerCountResponse. Both of these classes are objects supported by a marshaller. For
instance, they can have a @XmlRootElement annotation to be supported by JAXB2.

A typical test for CustomerEndpoint would look like this:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 57

import javax.xml.transform.Source;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.ApplicationContext;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import org.springframework.xml.transform.StringSource;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.ws.test.server.MockWebServiceClient; ❶

import static org.springframework.ws.test.server.RequestCreators.*; ❶

import static org.springframework.ws.test.server.ResponseMatchers.*; ❶

@RunWith(SpringJUnit4ClassRunner.class) ❷

@ContextConfiguration("spring-ws-servlet.xml") ❷

public class CustomerEndpointIntegrationTest {

 @Autowired

 private ApplicationContext applicationContext; ❸

 private MockWebServiceClient mockClient;

 @Before

 public void createClient() {

 mockClient = MockWebServiceClient.createClient(applicationContext); ❹

 }

 @Test

 public void customerEndpoint() throws Exception {

 Source requestPayload = new StringSource(

 "<customerCountRequest xmlns='http://springframework.org/spring-ws'>" +

 "<customerName>John Doe</customerName>" +

 "</customerCountRequest>");

 Source responsePayload = new StringSource(

 "<customerCountResponse xmlns='http://springframework.org/spring-ws'>" +

 "<customerCount>10</customerCount>" +

 "</customerCountResponse>");

 mockClient.sendRequest(withPayload(requestPayload)). ❺

 andExpect(payload(responsePayload)); ❺

 }

}

❶ The CustomerEndpointIntegrationTest imports the MockWebServiceClient, and
statically imports RequestCreators and ResponseMatchers.

❷ This test uses the standard testing facilities provided in the Spring Framework. This is not required,
but is generally the easiest way to set up the test.

❸ The application context is a standard Spring-WS application context (see the section called
“MessageDispatcherServlet”), read from spring-ws-servlet.xml. In this case, the
application context will contain a bean definition for CustomerEndpoint (or a perhaps a
<context:component-scan /> is used).

❹ In a @Before method, we create a MockWebServiceClient by using the createClient
factory method.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 58

❺ We send a request by calling sendRequest() with a withPayload() RequestCreator
provided by the statically imported RequestCreators (see the section called “RequestCreator
and RequestCreators”).

We also set up response expectations by calling andExpect() with a payload()

ResponseMatcher provided by the statically imported ResponseMatchers (see the section
called “ResponseMatcher and ResponseMatchers”).

This part of the test might look a bit confusing, but the Code Completion features of your IDE are of
great help. After typing sendRequest(, simply type ctrl-space, and your IDE will provide you with
a list of possible request creating strategies, provided you statically imported RequestCreators.
The same applies to andExpect(, provided you statically imported ResponseMatchers.

RequestCreator and RequestCreators

Initially, the MockWebServiceClient will need to create a request message for the endpoint to
consume. The client uses the RequestCreator strategy interface for this purpose:

public interface RequestCreator {

 WebServiceMessage createRequest(WebServiceMessageFactory messageFactory)

 throws IOException;

}

You can write your own implementations of this interface, creating a request message by using the
message factory, but you certainly do not have to. The RequestCreators class provides a way to
create a RequestCreator based on a given payload in the withPayload() method. You will typically
statically import RequestCreators.

ResponseMatcher and ResponseMatchers

When the request message has been processed by the endpoint, and a response has been received,
the MockWebServiceClient can verify whether this response message meets certain expectations.
The client uses the ResponseMatcher strategy interface for this purpose:

public interface ResponseMatcher {

 void match(WebServiceMessage request,

 WebServiceMessage response)

 throws IOException, AssertionError;

}

Once again you can write your own implementations of this interface, throwing AssertionErrors
when the message does not meet your expectations, but you certainly do not have to, as the
ResponseMatchers class provides standard ResponseMatcher implementations for you to use in
your tests. You will typically statically import this class.

The ResponseMatchers class provides the following response matchers:

ResponseMatchers method Description

payload() Expects a given response payload.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 59

ResponseMatchers method Description

validPayload() Expects the response payload to validate against
given XSD schema(s).

xpath() Expects a given XPath expression to exist, not
exist, or evaluate to a given value.

soapHeader() Expects a given SOAP header to exist in the
response message.

noFault() Expects that the response message does not
contain a SOAP Fault.

mustUnderstandFault(),
clientOrSenderFault(),
serverOrReceiverFault(), and
versionMismatchFault()

Expects the response message to contain a
specific SOAP Fault.

You can set up multiple response expectations by chaining andExpect() calls, like so:

mockClient.sendRequest(...).

 andExpect(payload(expectedResponsePayload)).

 andExpect(validPayload(schemaResource));

For more information on the response matchers provided by ResponseMatchers, refer to the class
level Javadoc.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 60

6. Using Spring Web Services on the Client

6.1 Introduction

Spring-WS provides a client-side Web service API that allows for consistent, XML-driven access to Web
services. It also caters for the use of marshallers and unmarshallers so that your service tier code can
deal exclusively with Java objects.

The org.springframework.ws.client.core package provides the core functionality for using the client-side
access API. It contains template classes that simplify the use of Web services, much like the core Spring
JdbcTemplate does for JDBC. The design principle common to Spring template classes is to provide
helper methods to perform common operations, and for more sophisticated usage, delegate to user
implemented callback interfaces. The Web service template follows the same design. The classes offer
various convenience methods for the sending and receiving of XML messages, marshalling objects to
XML before sending, and allows for multiple transport options.

6.2 Using the client-side API

WebServiceTemplate

The WebServiceTemplate is the core class for client-side Web service access in Spring-WS. It
contains methods for sending Source objects, and receiving response messages as either Source
or Result. Additionally, it can marshal objects to XML before sending them across a transport, and
unmarshal any response XML into an object again.

URIs and Transports

The WebServiceTemplate class uses an URI as the message destination. You can either set a
defaultUri property on the template itself, or supply an URI explicitly when calling a method on the
template. The URI will be resolved into a WebServiceMessageSender, which is responsible for
sending the XML message across a transport layer. You can set one or more message senders using
the messageSender or messageSenders properties of the WebServiceTemplate class.

HTTP transports

There are two implementations of the WebServiceMessageSender interface for sending messages
via HTTP. The default implementation is the HttpUrlConnectionMessageSender, which uses the
facilities provided by Java itself. The alternative is the HttpComponentsMessageSender, which uses
the Apache HttpComponents HttpClient. Use the latter if you need more advanced and easy-to-use
functionality (such as authentication, HTTP connection pooling, and so forth).

To use the HTTP transport, either set the defaultUri to something like http://example.com/
services, or supply the uri parameter for one of the methods.

The following example shows how the default configuration can be used for HTTP transports:

http://hc.apache.org/httpcomponents-client-ga

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 61

<beans>

 <bean id="messageFactory"

 class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

 <bean id="webServiceTemplate"

 class="org.springframework.ws.client.core.WebServiceTemplate">

 <constructor-arg ref="messageFactory"/>

 <property name="defaultUri" value="http://example.com/WebService"/>

 </bean>

</beans>

The following example shows how override the default configuration, and to use Apache HttpClient to
authenticate using HTTP authentication:

<bean id="webServiceTemplate"

 class="org.springframework.ws.client.core.WebServiceTemplate">

 <constructor-arg ref="messageFactory"/>

 <property name="messageSender">

 <bean class="org.springframework.ws.transport.http.HttpComponentsMessageSender">

 <property name="credentials">

 <bean class="org.apache.http.auth.UsernamePasswordCredentials">

 <constructor-arg value="john:secret"/>

 </bean>

 </property>

 </bean>

 </property>

 <property name="defaultUri" value="http://example.com/WebService"/>

</bean>

JMS transport

For sending messages over JMS, Spring Web Services provides the JmsMessageSender. This class
uses the facilities of the Spring framework to transform the WebServiceMessage into a JMS Message,
send it on its way on a Queue or Topic, and receive a response (if any).

To use the JmsMessageSender, you need to set the defaultUri or uri parameter to a JMS URI,
which - at a minimum - consists of the jms: prefix and a destination name. Some examples of JMS
URIs are: jms:SomeQueue, jms:SomeTopic?priority=3&deliveryMode=NON_PERSISTENT,
and jms:RequestQueue?replyToName=ResponseName. For more information on this URI syntax,
refer to the class level Javadoc of the JmsMessageSender.

By default, the JmsMessageSender send JMS BytesMessage, but this can be overriden to
use TextMessages by using the messageType parameter on the JMS URI. For example:
jms:Queue?messageType=TEXT_MESSAGE. Note that BytesMessages are the preferred type,
because TextMessages do not support attachments and character encodings reliably.

The following example shows how to use the JMS transport in combination with an ActiceMQ connection
factory:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 62

<beans>

 <bean id="messageFactory"

 class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

 <bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">

 <property name="brokerURL" value="vm://localhost?broker.persistent=false"/>

 </bean>

 <bean id="webServiceTemplate"

 class="org.springframework.ws.client.core.WebServiceTemplate">

 <constructor-arg ref="messageFactory"/>

 <property name="messageSender">

 <bean class="org.springframework.ws.transport.jms.JmsMessageSender">

 <property name="connectionFactory" ref="connectionFactory"/>

 </bean>

 </property>

 <property name="defaultUri" value="jms:RequestQueue?deliveryMode=NON_PERSISTENT"/>

 </bean>

</beans>

Email transport

Spring Web Services also provides an email transport, which can be used to send web service
messages via SMTP, and retrieve them via either POP3 or IMAP. The client-side email functionality is
contained in the MailMessageSender class. This class creates an email message from the request
WebServiceMessage, and sends it via SMTP. It then waits for a response message to arrive in the
incoming POP3 or IMAP server.

To use the MailMessageSender, set the defaultUri or uri parameter to a mailto URI. Here are some
URI examples: mailto:john@example.com, and mailto:server@localhost?subject=SOAP
%20Test. Make sure that the message sender is properly configured with a transportUri, which indicates
the server to use for sending requests (typically a SMTP server), and a storeUri, which indicates the
server to poll for responses (typically a POP3 or IMAP server).

The following example shows how to use the email transport:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 63

<beans>

 <bean id="messageFactory"

 class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

 <bean id="webServiceTemplate"

 class="org.springframework.ws.client.core.WebServiceTemplate">

 <constructor-arg ref="messageFactory"/>

 <property name="messageSender">

 <bean class="org.springframework.ws.transport.mail.MailMessageSender">

 <property name="from" value="Spring-WS SOAP Client

 <client@example.com>"/>

 <property name="transportUri" value="smtp://client:s04p@smtp.example.com"/

>

 <property name="storeUri" value="imap://client:s04p@imap.example.com/

INBOX"/>

 </bean>

 </property>

 <property name="defaultUri" value="mailto:server@example.com?subject=SOAP%20Test"/

>

 </bean>

</beans>

XMPP transport

Spring Web Services 2.0 introduced an XMPP (Jabber) transport, which can be used to send
and receive web service messages via XMPP. The client-side XMPP functionality is contained
in the XmppMessageSender class. This class creates an XMPP message from the request
WebServiceMessage, and sends it via XMPP. It then listens for a response message to arrive.

To use the XmppMessageSender, set the defaultUri or uri parameter to a
xmpp URI, for example xmpp:johndoe@jabber.org. The sender also requires
an XMPPConnection to work, which can be conveniently created using the
org.springframework.ws.transport.xmpp.support.XmppConnectionFactoryBean.

The following example shows how to use the xmpp transport:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 64

<beans>

 <bean id="messageFactory"

 class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory"/>

 <bean id="connection"

 class="org.springframework.ws.transport.xmpp.support.XmppConnectionFactoryBean">

 <property name="host" value="jabber.org"/>

 <property name="username" value="username"/>

 <property name="password" value="password"/>

 </bean>

 <bean id="webServiceTemplate"

 class="org.springframework.ws.client.core.WebServiceTemplate">

 <constructor-arg ref="messageFactory"/>

 <property name="messageSender">

 <bean class="org.springframework.ws.transport.xmpp.XmppMessageSender">

 <property name="connection" ref="connection"/>

 </bean>

 </property>

 <property name="defaultUri" value="xmpp:user@jabber.org"/>

 </bean>

</beans>

Message factories

In addition to a message sender, the WebServiceTemplate requires a Web service
message factory. There are two message factories for SOAP: SaajSoapMessageFactory and
AxiomSoapMessageFactory. If no message factory is specified (via the messageFactory property),
Spring-WS will use the SaajSoapMessageFactory by default.

Sending and receiving a WebServiceMessage

The WebServiceTemplate contains many convenience methods to send and receive web service
messages. There are methods that accept and return a Source and those that return a Result.
Additionally, there are methods which marshal and unmarshal objects to XML. Here is an example that
sends a simple XML message to a Web service.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 65

import java.io.StringReader;

import javax.xml.transform.stream.StreamResult;

import javax.xml.transform.stream.StreamSource;

import org.springframework.ws.WebServiceMessageFactory;

import org.springframework.ws.client.core.WebServiceTemplate;

import org.springframework.ws.transport.WebServiceMessageSender;

public class WebServiceClient {

 private static final String MESSAGE =

 "<message xmlns=\"http://tempuri.org\">Hello Web Service World</message>";

 private final WebServiceTemplate webServiceTemplate = new WebServiceTemplate();

 public void setDefaultUri(String defaultUri) {

 webServiceTemplate.setDefaultUri(defaultUri);

 }

 // send to the configured default URI

 public void simpleSendAndReceive() {

 StreamSource source = new StreamSource(new StringReader(MESSAGE));

 StreamResult result = new StreamResult(System.out);

 webServiceTemplate.sendSourceAndReceiveToResult(source, result);

 }

 // send to an explicit URI

 public void customSendAndReceive() {

 StreamSource source = new StreamSource(new StringReader(MESSAGE));

 StreamResult result = new StreamResult(System.out);

 webServiceTemplate.sendSourceAndReceiveToResult("http://localhost:8080/

AnotherWebService",

 source, result);

 }

}

<beans xmlns="http://www.springframework.org/schema/beans">

 <bean id="webServiceClient" class="WebServiceClient">

 <property name="defaultUri" value="http://localhost:8080/WebService"/>

 </bean>

</beans>

The above example uses the WebServiceTemplate to send a hello world message to the web service
located at http://localhost:8080/WebService (in the case of the simpleSendAndReceive()
method), and writes the result to the console. The WebServiceTemplate is injected with the default
URI, which is used because no URI was supplied explicitly in the Java code.

Please note that the WebServiceTemplate class is thread-safe once configured (assuming that
all of it's dependencies are thread-safe too, which is the case for all of the dependencies that
ship with Spring-WS), and so multiple objects can use the same shared WebServiceTemplate
instance if so desired. The WebServiceTemplate exposes a zero argument constructor and
messageFactory/messageSender bean properties which can be used for constructing the instance
(using a Spring container or plain Java code). Alternatively, consider deriving from Spring-WS's
WebServiceGatewaySupport convenience base class, which exposes convenient bean properties to

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 66

enable easy configuration. (You do not have to extend this base class... it is provided as a convenience
class only.)

Sending and receiving POJOs - marshalling and unmarshalling

In order to facilitate the sending of plain Java objects, the WebServiceTemplate has a number of
send(..) methods that take an Object as an argument for a message's data content. The method
marshalSendAndReceive(..) in the WebServiceTemplate class delegates the conversion of the
request object to XML to a Marshaller, and the conversion of the response XML to an object to
an Unmarshaller. (For more information about marshalling and unmarshaller, refer to the Spring
documentation.) By using the marshallers, your application code can focus on the business object that
is being sent or received and not be concerned with the details of how it is represented as XML. In order
to use the marshalling functionality, you have to set a marshaller and unmarshaller with the marshaller/
unmarshaller properties of the WebServiceTemplate class.

WebServiceMessageCallback

To accommodate the setting of SOAP headers and other settings on the message, the
WebServiceMessageCallback interface gives you access to the message after it has been created,
but before it is sent. The example below demonstrates how to set the SOAP Action header on a message
that is created by marshalling an object.

public void marshalWithSoapActionHeader(MyObject o) {

 webServiceTemplate.marshalSendAndReceive(o, new WebServiceMessageCallback() {

 public void doWithMessage(WebServiceMessage message) {

 ((SoapMessage)message).setSoapAction("http://tempuri.org/Action");

 }

 });

}

Note

Note that you can also use the
org.springframework.ws.soap.client.core.SoapActionCallback to set the SOAP
Action header.

WS-Addressing

In addition to the server-side WS-Addressing support, Spring Web Services also has support for this
specification on the client-side.

For setting WS-Addressing headers on the client, you can use the
org.springframework.ws.soap.addressing.client.ActionCallback. This callback takes
the desired Action header as a parameter. It also has constructors for specifying the WS-Addressing
version, and a To header. If not specified, the To header will default to the URL of the connection being
made.

Here is an example of setting the Action header to http://samples/RequestOrder:

webServiceTemplate.marshalSendAndReceive(o, new ActionCallback("http://samples/

RequestOrder"));

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 67

WebServiceMessageExtractor

The WebServiceMessageExtractor interface is a low-level callback interface that allows you to
have full control over the process to extract an Object from a received WebServiceMessage.
The WebServiceTemplate will invoke the extractData(..) method on a supplied
WebServiceMessageExtractor while the underlying connection to the serving resource is still open.
The following example illustrates the WebServiceMessageExtractor in action:

public void marshalWithSoapActionHeader(final Source s) {

 final Transformer transformer = transformerFactory.newTransformer();

 webServiceTemplate.sendAndReceive(new WebServiceMessageCallback() {

 public void doWithMessage(WebServiceMessage message) {

 transformer.transform(s, message.getPayloadResult());

 },

 new WebServiceMessageExtractor() {

 public Object extractData(WebServiceMessage message) throws IOException

 // do your own transforms with message.getPayloadResult()

 // or message.getPayloadSource()

 }

 });

}

6.3 Client-side testing

When it comes to testing your Web service clients (i.e. classes that uses the WebServiceTemplate
to access a Web service), there are two possible approaches:

• Write Unit Tests, which simply mock away the WebServiceTemplate class,
WebServiceOperations interface, or the complete client class.

The advantage of this approach is that it's quite easy to accomplish; the disadvantage is that you are
not really testing the exact content of the XML messages that are sent over the wire, especially when
mocking out the entire client class.

• Write Integrations Tests, which do test the contents of the message.

The first approach can easily be accomplished with mocking frameworks such as EasyMock, JMock,
etc. The next section will focus on writing integration tests, using the test features introduced in Spring
Web Services 2.0.

Writing client-side integration tests

Spring Web Services 2.0 introduced support for creating Web service client integration tests. In this
context, a client is a class that uses the WebServiceTemplate to access a Web service.

The integration test support lives in the org.springframework.ws.test.client package. The core class in
that package is the MockWebServiceServer. The underlying idea is that the web service template
connects to this mock server, sends it request message, which the mock server then verifies against
the registered expectations. If the expectations are met, the mock server then prepares a response
message, which is send back to the template.

The typical usage of the MockWebServiceServer is:

1. Create a MockWebServiceServer instance by calling
MockWebServiceServer.createServer(WebServiceTemplate),

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 68

MockWebServiceServer.createServer(WebServiceGatewaySupport), or
MockWebServiceServer.createServer(ApplicationContext).

2. Set up request expectations by calling expect(RequestMatcher), possibly by using the default
RequestMatcher implementations provided in RequestMatchers (which can be statically
imported). Multiple expectations can be set up by chaining andExpect(RequestMatcher) calls.

3. Create an appropriate response message by calling andRespond(ResponseCreator), possibly
by using the default ResponseCreator implementations provided in ResponseCreators (which
can be statically imported).

4. Use the WebServiceTemplate as normal, either directly of through client code.

5. Call MockWebServiceServer.verify() to make sure that all expectations have been met.

Note

Note that the MockWebServiceServer (and related classes) offers a 'fluent' API, so you can
typically use the Code Completion features (i.e. ctrl-space) in your IDE to guide you through the
process of setting up the mock server.

Note

Also note that you rely on the standard logging features available in Spring Web Services in
your unit tests. Sometimes it might be useful to inspect the request or response message to
find out why a particular tests failed. See Section 4.4, “Message Logging and Tracing” for more
information.

Consider, for example, this Web service client class:

import org.springframework.ws.client.core.support.WebServiceGatewaySupport;

public class CustomerClient extends WebServiceGatewaySupport { ❶

 public int getCustomerCount() {

 CustomerCountRequest request = new CustomerCountRequest(); ❷

 request.setCustomerName("John Doe");

 CustomerCountResponse response =

 (CustomerCountResponse) getWebServiceTemplate().marshalSendAndReceive(request); ❸

 return response.getCustomerCount();

 }

}

❶ The CustomerClient extends WebServiceGatewaySupport, which provides it with a
webServiceTemplate property.

❷ CustomerCountRequest is an object supported by a marshaller. For instance, it can have a
@XmlRootElement annotation to be supported by JAXB2.

❸ The CustomerClient uses the WebServiceTemplate offered by
WebServiceGatewaySupport to marshal the request object into a SOAP message, and sends
that to the web service. The response object is unmarshalled into a CustomerCountResponse.

A typical test for CustomerClient would look like this:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 69

import javax.xml.transform.Source;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import org.springframework.xml.transform.StringSource;

import org.junit.Before;

import org.junit.Test;

import org.junit.runner.RunWith;

import static org.junit.Assert.assertEquals;

import org.springframework.ws.test.client.MockWebServiceServer; ❶

import static org.springframework.ws.test.client.RequestMatchers.*; ❶

import static org.springframework.ws.test.client.ResponseCreators.*; ❶

@RunWith(SpringJUnit4ClassRunner.class) ❷

@ContextConfiguration("integration-test.xml") ❷

public class CustomerClientIntegrationTest {

 @Autowired

 private CustomerClient client; ❸

 private MockWebServiceServer mockServer; ❹

 @Before

 public void createServer() throws Exception {

 mockServer = MockWebServiceServer.createServer(client);

 }

 @Test

 public void customerClient() throws Exception {

 Source requestPayload = new StringSource(

 "<customerCountRequest xmlns='http://springframework.org/spring-ws'>" +

 "<customerName>John Doe</customerName>" +

 "</customerCountRequest>");

 Source responsePayload = new StringSource(

 "<customerCountResponse xmlns='http://springframework.org/spring-ws'>" +

 "<customerCount>10</customerCount>" +

 "</customerCountResponse>");

 mockServer.expect(payload(requestPayload)).andRespond(withPayload(responsePayload)); ❺

 int result = client.getCustomerCount(); ❻

 assertEquals(10, result); ❻

 mockServer.verify(); ❼

 }

}

❶ The CustomerClientIntegrationTest imports the MockWebServiceServer, and statically
imports RequestMatchers and ResponseCreators.

❷ This test uses the standard testing facilities provided in the Spring Framework. This is not required,
but is generally the easiest way to set up the test.

❸ The CustomerClient is configured in integration-test.xml, and wired into this test using
@Autowired.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 70

❹ In a @Before method, we create a MockWebServiceServer by using the createServer
factory method.

❺ We define expectations by calling expect() with a payload() RequestMatcher provided
by the statically imported RequestMatchers (see the section called “RequestMatcher and
RequestMatchers”).

We also set up a response by calling andRespond() with a withPayload()

ResponseCreator provided by the statically imported ResponseCreators (see the section
called “ResponseCreator and ResponseCreators”).

This part of the test might look a bit confusing, but the Code Completion features of your IDE are
of great help. After typing expect(, simply type ctrl-space, and your IDE will provide you with a
list of possible request matching strategies, provided you statically imported RequestMatchers.
The same applies to andRespond(, provided you statically imported ResponseCreators.

❻ We call getCustomerCount() on the CustomerClient, thus using the
WebServiceTemplate. The template has been set up for 'testing mode' by now, so no real
(HTTP) connection is made by this method call. We also make some JUnit assertions based on
the result of the method call.

❼ We call verify() on the MockWebServiceServer, thus verifying that the expected message
was actually received.

RequestMatcher and RequestMatchers

To verify whether the request message meets certain expectations, the MockWebServiceServer uses
the RequestMatcher strategy interface. The contract defined by this interface is quite simple:

public interface RequestMatcher {

 void match(URI uri,

 WebServiceMessage request)

 throws IOException,

 AssertionError;

}

You can write your own implementations of this interface, throwing AssertionErrors when the
message does not meet your expectations, but you certainly do not have to. The RequestMatchers
class provides standard RequestMatcher implementations for you to use in your tests. You will
typically statically import this class.

The RequestMatchers class provides the following request matchers:

RequestMatchers method Description

anything() Expects any sort of request.

payload() Expects a given request payload.

validPayload() Expects the request payload to validate against
given XSD schema(s).

xpath() Expects a given XPath expression to exist, not
exist, or evaluate to a given value.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 71

RequestMatchers method Description

soapHeader() Expects a given SOAP header to exist in the
request message.

connectionTo() Expects a connection to the given URL.

You can set up multiple request expectations by chaining andExpect() calls, like so:

mockServer.expect(connectionTo("http://example.com")).

 andExpect(payload(expectedRequestPayload)).

 andExpect(validPayload(schemaResource)).

 andRespond(...);

For more information on the request matchers provided by RequestMatchers, refer to the class level
Javadoc.

ResponseCreator and ResponseCreators

When the request message has been verified and meets the defined expectations, the
MockWebServiceServer will create a response message for the WebServiceTemplate to
consume. The server uses the ResponseCreator strategy interface for this purpose:

public interface ResponseCreator {

 WebServiceMessage createResponse(URI uri,

 WebServiceMessage request,

 WebServiceMessageFactory messageFactory)

 throws IOException;

}

Once again you can write your own implementations of this interface, creating a response message by
using the message factory, but you certainly do not have to, as the ResponseCreators class provides
standard ResponseCreator implementations for you to use in your tests. You will typically statically
import this class.

The ResponseCreators class provides the following responses:

ResponseCreators method Description

withPayload() Creates a response message with a given
payload.

withError() Creates an error in the response connection. This
method gives you the opportunity to test your error
handling.

withException() Throws an exception when reading from the
response connection. This method gives you the
opportunity to test your exception handling.

withMustUnderstandFault(),
withClientOrSenderFault(),

Creates a response message with a given SOAP
fault. This method gives you the opportunity to test
your Fault handling.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 72

ResponseCreators method Description

withServerOrReceiverFault(), and
withVersionMismatchFault()

For more information on the request matchers provided by RequestMatchers, refer to the class level
Javadoc.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 73

7. Securing your Web services with Spring-WS

7.1 Introduction

This chapter explains how to add WS-Security aspects to your Web services. We will focus on the three
different areas of WS-Security, namely:

Authentication. This is the process of determining whether a principal is who they claim to be. In
this context, a "principal" generally means a user, device or some other system which can perform an
action in your application.

Digital signatures. The digital signature of a message is a piece of information based on both the
document and the signer's private key. It is created through the use of a hash function and a private
signing function (encrypting with the signer's private key).

Encryption and Decryption. Encryption is the process of transforming data into a form that is
impossible to read without the appropriate key. It is mainly used to keep information hidden from anyone
for whom it is not intended. Decryption is the reverse of encryption; it is the process of transforming of
encrypted data back into an readable form.

All of these three areas are implemented using the XwsSecurityInterceptor or
Wss4jSecurityInterceptor, which we will describe in Section 7.2, “ XwsSecurityInterceptor
” and Section 7.3, “ Wss4jSecurityInterceptor ”, respectively

Note

Note that WS-Security (especially encryption and signing) requires substantial amounts of
memory, and will also decrease performance. If performance is important to you, you might want
to consider not using WS-Security, or simply use HTTP-based security.

7.2 XwsSecurityInterceptor

The XwsSecurityInterceptor is an EndpointInterceptor (see the section called “Intercepting
requests - the EndpointInterceptor interface”) that is based on SUN's XML and Web Services
Security package (XWSS). This WS-Security implementation is part of the Java Web Services
Developer Pack (Java WSDP).

Like any other endpoint interceptor, it is defined in the endpoint mapping (see Section 5.5, “Endpoint
mappings”). This means that you can be selective about adding WS-Security support: some endpoint
mappings require it, while others do not.

Note

Note that XWSS requires both a SUN 1.5 JDK and the SUN SAAJ reference
implementation. The WSS4J interceptor does not have these requirements (see Section 7.3, “
Wss4jSecurityInterceptor ”).

The XwsSecurityInterceptor requires a security policy file to operate. This XML file tells the
interceptor what security aspects to require from incoming SOAP messages, and what aspects to add
to outgoing messages. The basic format of the policy file will be explained in the following sections,
but you can find a more in-depth tutorial here . You can set the policy with the policyConfiguration
property, which requires a Spring resource. The policy file can contain multiple elements, e.g.

http://java.sun.com/webservices/
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp564887

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 74

require a username token on incoming messages, and sign all outgoing messages. It contains a
SecurityConfiguration element as root (not a JAXRPCSecurity element).

Additionally, the security interceptor requires one or moreCallbackHandlers to operate. These
handlers are used to retrieve certificates, private keys, validate user credentials, etc. Spring-WS
offers handlers for most common security concerns, e.g. authenticating against a Spring Security
authentication manager, signing outgoing messages based on a X509 certificate. The following sections
will indicate what callback handler to use for which security concern. You can set the callback handlers
using the callbackHandler or callbackHandlers property.

Here is an example that shows how to wire the XwsSecurityInterceptor up:

<beans>

 <bean id="wsSecurityInterceptor"

 class="org.springframework.ws.soap.security.xwss.XwsSecurityInterceptor">

 <property name="policyConfiguration" value="classpath:securityPolicy.xml"/>

 <property name="callbackHandlers">

 <list>

 <ref bean="certificateHandler"/>

 <ref bean="authenticationHandler"/>

 </list>

 </property>

 </bean>

 ...

</beans>

This interceptor is configured using the securityPolicy.xml file on the classpath. It uses two
callback handlers which are defined further on in the file.

Keystores

For most cryptographic operations, you will use the standard java.security.KeyStore objects.
These operations include certificate verification, message signing, signature verification, and encryption,
but excludes username and time-stamp verification. This section aims to give you some background
knowledge on keystores, and the Java tools that you can use to store keys and certificates in a keystore
file. This information is mostly not related to Spring-WS, but to the general cryptographic features of
Java.

The java.security.KeyStore class represents a storage facility for cryptographic keys and
certificates. It can contain three different sort of elements:

Private Keys. These keys are used for self-authentication. The private key is accompanied by
certificate chain for the corresponding public key. Within the field of WS-Security, this accounts to
message signing and message decryption.

Symmetric Keys. Symmetric (or secret) keys are used for message encryption and decryption as
well. The difference being that both sides (sender and recipient) share the same, secret key.

Trusted certificates. These X509 certificates are called a trusted certificate because the keystore
owner trusts that the public key in the certificates indeed belong to the owner of the certificate. Within
WS-Security, these certificates are used for certificate validation, signature verification, and encryption.

KeyTool

Supplied with your Java Virtual Machine is the keytool program, a key and certificate management
utility. You can use this tool to create new keystores, add new private keys and certificates to them, etc.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 75

It is beyond the scope of this document to provide a full reference of the keytool command, but you can
find a reference here , or by giving the command keytool -help on the command line.

KeyStoreFactoryBean

To easily load a keystore using Spring configuration, you can use the KeyStoreFactoryBean. It has
a resource location property, which you can set to point to the path of the keystore to load. A password
may be given to check the integrity of the keystore data. If a password is not given, integrity checking
is not performed.

<bean id="keyStore"

 class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">

 <property name="password" value="password"/>

 <property name="location" value="classpath:org/springframework/ws/soap/security/xwss/

test-keystore.jks"/>

</bean>

Caution

If you don't specify the location property, a new, empty keystore will be created, which is most
likely not what you want.

KeyStoreCallbackHandler

To use the keystores within a XwsSecurityInterceptor, you will need to define
a KeyStoreCallbackHandler. This callback has three properties with type keystore:
(keyStore,trustStore, and symmetricStore). The exact stores used by the handler depend on
the cryptographic operations that are to be performed by this handler. For private key operation, the
keyStore is used, for symmetric key operations the symmetricStore, and for determining trust
relationships, the trustStore. The following table indicates this:

Cryptographic operation Keystore used

Certificate validation first thekeyStore, then the trustStore

Decryption based on private key keyStore

Decryption based on symmetric key symmetricStore

Encryption based on public key certificate trustStore

Encryption based on symmetric key symmetricStore

Signing keyStore

Signature verification trustStore

Additionally, the KeyStoreCallbackHandler has a privateKeyPassword property, which should
be set to unlock the private key(s) contained in thekeyStore.

If the symmetricStore is not set, it will default to the keyStore. If the key or trust store is not set, the
callback handler will use the standard Java mechanism to load or create it. Refer to the JavaDoc of the
KeyStoreCallbackHandler to know how this mechanism works.

For instance, if you want to use the KeyStoreCallbackHandler to validate incoming certificates or
signatures, you would use a trust store, like so:

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 76

<beans>

 <bean id="keyStoreHandler"

 class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

 <property name="trustStore" ref="trustStore"/>

 </bean>

 <bean id="trustStore"

 class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">

 <property name="location" value="classpath:truststore.jks"/>

 <property name="password" value="changeit"/>

 </bean>

</beans>

If you want to use it to decrypt incoming certificates or sign outgoing messages, you would use a key
store, like so:

<beans>

 <bean id="keyStoreHandler"

 class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

 <property name="keyStore" ref="keyStore"/>

 <property name="privateKeyPassword" value="changeit"/>

 </bean>

 <bean id="keyStore"

 class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">

 <property name="location" value="classpath:keystore.jks"/>

 <property name="password" value="changeit"/>

 </bean>

</beans>

The following sections will indicate where the KeyStoreCallbackHandler can be used, and which
properties to set for particular cryptographic operations.

Authentication

As stated in the introduction, authentication is the task of determining whether a principal is who they
claim to be. Within WS-Security, authentication can take two forms: using a username and password
token (using either a plain text password or a password digest), or using a X509 certificate.

Plain Text Username Authentication

The simplest form of username authentication usesplain text passwords. In this scenario, the SOAP
message will contain a UsernameToken element, which itself contains a Username element and a
Password element which contains the plain text password. Plain text authentication can be compared
to the Basic Authentication provided by HTTP servers.

Warning

Note that plain text passwords are not very secure. Therefore, you should always add additional
security measures to your transport layer if you are using them (using HTTPS instead of plain
HTTP, for instance).

To require that every incoming message contains a UsernameToken with a plain text
password, the security policy file should contain a RequireUsernameToken element, with the
passwordDigestRequired attribute set tofalse. You can find a reference of possible child elements
here .

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 77

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

 ...

 <xwss:RequireUsernameToken passwordDigestRequired="false" nonceRequired="false"/>

 ...

</xwss:SecurityConfiguration>

If the username token is not present, the XwsSecurityInterceptor will return a SOAP
Fault to the sender. If it is present, it will fire a PasswordValidationCallback with a
PlainTextPasswordRequest to the registered handlers. Within Spring-WS, there are three classes
which handle this particular callback.

SimplePasswordValidationCallbackHandler

The simplest password validation handler is the SimplePasswordValidationCallbackHandler.
This handler validates passwords against an in-memory Properties object, which you can specify
using the users property, like so:

<bean id="passwordValidationHandler"

 class="org.springframework.ws.soap.security.xwss.callback.SimplePasswordValidationCallbackHandler">

 <property name="users">

 <props>

 <prop key="Bert">Ernie</prop>

 </props>

 </property>

</bean>

In this case, we are only allowing the user "Bert" to log in using the password "Ernie".

SpringPlainTextPasswordValidationCallbackHandler

The SpringPlainTextPasswordValidationCallbackHandler uses Spring Security to
authenticate users. It is beyond the scope of this document to describe Spring Security, but suffice it
to say that it is a full-fledged security framework. You can read more about it in the Spring Security
reference documentation .

The SpringPlainTextPasswordValidationCallbackHandler requires an
AuthenticationManager to operate. It uses this manager to authenticate against a
UsernamePasswordAuthenticationToken that it creates. If authentication is successful, the token
is stored in the SecurityContextHolder. You can set the authentication manager using the
authenticationManagerproperty:

http://www.springframework.org/security
http://www.springframework.org/security
http://www.springframework.org/security

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 78

<beans>

 <bean id="springSecurityHandler"

 class="org.springframework.ws.soap.security.xwss.callback.SpringPlainTextPasswordValidationCallbackHandler">

 <property name="authenticationManager" ref="authenticationManager"/>

 </bean>

 <bean id="authenticationManager"

 class="org.springframework.security.providers.ProviderManager">

 <property name="providers">

 <bean

 class="org.springframework.security.providers.dao.DaoAuthenticationProvider">

 <property name="userDetailsService" ref="userDetailsService"/>

 </bean>

 </property>

 </bean>

 <bean id="userDetailsService" class="com.mycompany.app.dao.UserDetailService" />

 ...

</beans>

JaasPlainTextPasswordValidationCallbackHandler

The JaasPlainTextPasswordValidationCallbackHandler is based on the standard Java
Authentication and Authorization Service . It is beyond the scope of this document to provide a full
introduction into JAAS, but there is a good tutorial available.

The JaasPlainTextPasswordValidationCallbackHandler requires only a
loginContextName to operate. It creates a new JAAS LoginContext using this name, and handles
the standard JAAS NameCallback and PasswordCallback using the username and password
provided in the SOAP message. This means that this callback handler integrates with any JAAS
LoginModule that fires these callbacks during the login() phase, which is standard behavior.

You can wire up a JaasPlainTextPasswordValidationCallbackHandler as follows:

<bean id="jaasValidationHandler"

 class="org.springframework.ws.soap.security.xwss.callback.jaas.JaasPlainTextPasswordValidationCallbackHandler">

 <property name="loginContextName" value="MyLoginModule" />

</bean>

In this case, the callback handler uses the LoginContext named "MyLoginModule". This module
should be defined in your jaas.config file, as explained in the abovementioned tutorial.

Digest Username Authentication

When using password digests, the SOAP message also contains a UsernameToken element, which
itself contains a Username element and a Password element. The difference is that the password is
not sent as plain text, but as a digest. The recipient compares this digest to the digest he calculated
from the known password of the user, and if they are the same, the user is authenticated. It can be
compared to the Digest Authentication provided by HTTP servers.

To require that every incoming message contains a UsernameToken element with a password
digest, the security policy file should contain a RequireUsernameToken element, with the
passwordDigestRequired attribute set totrue. Additionally, the nonceRequired should be set
totrue: You can find a reference of possible child elements here .

http://java.sun.com/products/jaas/
http://java.sun.com/products/jaas/
http://www.javaworld.com/javaworld/jw-09-2002/jw-0913-jaas.html
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 79

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

 ...

 <xwss:RequireUsernameToken passwordDigestRequired="true" nonceRequired="true"/>

 ...

</xwss:SecurityConfiguration>

If the username token is not present, the XwsSecurityInterceptor will return a SOAP
Fault to the sender. If it is present, it will fire a PasswordValidationCallback with a
DigestPasswordRequest to the registered handlers. Within Spring-WS, there are two classes which
handle this particular callback.

SimplePasswordValidationCallbackHandler

The SimplePasswordValidationCallbackHandler can handle both plain text passwords as well
as password digests. It is described inthe section called “SimplePasswordValidationCallbackHandler”.

SpringDigestPasswordValidationCallbackHandler

The SpringDigestPasswordValidationCallbackHandler requires an Spring Security
UserDetailService to operate. It uses this service to retrieve the password of the user specified
in the token. The digest of the password contained in this details object is then compared with
the digest in the message. If they are equal, the user has successfully authenticated, and a
UsernamePasswordAuthenticationToken is stored in the SecurityContextHolder. You can
set the service using the userDetailsService. Additionally, you can set a userCache property, to
cache loaded user details.

<beans>

 <bean

 class="org.springframework.ws.soap.security.xwss.callback.SpringDigestPasswordValidationCallbackHandler">

 <property name="userDetailsService" ref="userDetailsService"/>

 </bean>

 <bean id="userDetailsService" class="com.mycompany.app.dao.UserDetailService" />

 ...

</beans>

Certificate Authentication

A more secure way of authentication uses X509 certificates. In this scenerario, the SOAP message
contains aBinarySecurityToken, which contains a Base 64-encoded version of a X509 certificate.
The certificate is used by the recipient to authenticate. The certificate stored in the message is also used
to sign the message (seethe section called “Verifying Signatures”).

To make sure that all incoming SOAP messages carry aBinarySecurityToken, the security policy
file should contain a RequireSignature element. This element can further carry other elements,
which will be covered inthe section called “Verifying Signatures”. You can find a reference of possible
child elements here .

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

 ...

 <xwss:RequireSignature requireTimestamp="false">

 ...

</xwss:SecurityConfiguration>

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 80

When a message arrives that carries no certificate, the XwsSecurityInterceptor will return a SOAP
Fault to the sender. If it is present, it will fire a CertificateValidationCallback. There are three
handlers within Spring-WS which handle this callback for authentication purposes.

Note

In most cases, certificate authentication should be preceded by certificate validation, since you
only want to authenticate against valid certificates. Invalid certificates such as certificates for
which the expiration date has passed, or which are not in your store of trusted certificates, should
be ignored.

In Spring-WS terms, this means that the
SpringCertificateValidationCallbackHandler or
JaasCertificateValidationCallbackHandler should be preceded by
KeyStoreCallbackHandler. This can be accomplished by setting the order of the
callbackHandlers property in the configuration of the XwsSecurityInterceptor:

<bean id="wsSecurityInterceptor"

 class="org.springframework.ws.soap.security.xwss.XwsSecurityInterceptor">

 <property name="policyConfiguration" value="classpath:securityPolicy.xml"/>

 <property name="callbackHandlers">

 <list>

 <ref bean="keyStoreHandler"/>

 <ref bean="springSecurityHandler"/>

 </list>

 </property>

</bean>

Using this setup, the interceptor will first determine if the certificate in the message is valid using
the keystore, and then authenticate against it.

KeyStoreCallbackHandler

The KeyStoreCallbackHandler uses a standard Java keystore to validate certificates. This
certificate validation process consists of the following steps:

1. First, the handler will check whether the certificate is in the private keyStore. If it is, it is valid.

2. If the certificate is not in the private keystore, the handler will check whether the current date and
time are within the validity period given in the certificate. If they are not, the certificate is invalid; if
it is, it will continue with the final step.

3. Finally, a certification path for the certificate is created. This basically means that the handler
will determine whether the certificate has been issued by any of the certificate authorities in
thetrustStore. If a certification path can be built successfully, the certificate is valid. Otherwise,
the certificate is not.

To use the KeyStoreCallbackHandler for certificate validation purposes, you will most likely set
only the trustStore property:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 81

<beans>

 <bean id="keyStoreHandler"

 class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

 <property name="trustStore" ref="trustStore"/>

 </bean>

 <bean id="trustStore"

 class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">

 <property name="location" value="classpath:truststore.jks"/>

 <property name="password" value="changeit"/>

 </bean>

</beans>

Using this setup, the certificate that is to be validated must either be in the trust store itself, or the trust
store must contain a certificate authority that issued the certificate.

SpringCertificateValidationCallbackHandler

The SpringCertificateValidationCallbackHandler requires an Spring Security
AuthenticationManager to operate. It uses this manager to authenticate against a
X509AuthenticationToken that it creates. The configured authentication manager is
expected to supply a provider which can handle this token (usually an instance of
X509AuthenticationProvider). If authentication is succesful, the token is stored in the
SecurityContextHolder. You can set the authentication manager using the authenticationManager
property:

<beans>

 <bean id="springSecurityCertificateHandler"

 class="org.springframework.ws.soap.security.xwss.callback.SpringCertificateValidationCallbackHandler">

 <property name="authenticationManager" ref="authenticationManager"/>

 </bean>

 <bean id="authenticationManager"

 class="org.springframework.security.providers.ProviderManager">

 <property name="providers">

 <bean

 class="org.springframework.ws.soap.security.x509.X509AuthenticationProvider">

 <property name="x509AuthoritiesPopulator">

 <bean

 class="org.springframework.ws.soap.security.x509.populator.DaoX509AuthoritiesPopulator">

 <property name="userDetailsService" ref="userDetailsService"/>

 </bean>

 </property>

 </bean>

 </property>

 </bean>

 <bean id="userDetailsService" class="com.mycompany.app.dao.UserDetailService" />

 ...

</beans>

In this case, we are using a custom user details service to obtain authentication details based on
the certificate. Refer to the Spring Security reference documentation for more information about
authentication against X509 certificates.

http://www.springframework.org/security

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 82

JaasCertificateValidationCallbackHandler

The JaasCertificateValidationCallbackHandler requires a loginContextName to operate.
It creates a new JAAS LoginContext using this name and with the X500Principal of the certificate.
This means that this callback handler integrates with any JAAS LoginModule that handles X500
principals.

You can wire up a JaasCertificateValidationCallbackHandler as follows:

<bean id="jaasValidationHandler"

 class="org.springframework.ws.soap.security.xwss.callback.jaas.JaasCertificateValidationCallbackHandler">

 <property name="loginContextName">MyLoginModule</property>

</bean>

In this case, the callback handler uses the LoginContext named "MyLoginModule". This module
should be defined in your jaas.config file, and should be able to authenticate against X500 principals.

Digital Signatures

The digital signature of a message is a piece of information based on both the document and the signer's
private key. There are two main tasks related to signatures in WS-Security: verifying signatures and
signing messages.

Verifying Signatures

Just likecertificate-based authentication, a signed message contains a BinarySecurityToken, which
contains the certificate used to sign the message. Additionally, it contains a SignedInfo block, which
indicates what part of the message was signed.

To make sure that all incoming SOAP messages carry aBinarySecurityToken, the security
policy file should contain a RequireSignature element. It can also contain a SignatureTarget
element, which specifies the target message part which was expected to be signed, and various other
subelements. You can also define the private key alias to use, whether to use a symmetric instead of a
private key, and many other properties. You can find a reference of possible child elements here .

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

 <xwss:RequireSignature requireTimestamp="false"/>

</xwss:SecurityConfiguration>

If the signature is not present, the XwsSecurityInterceptor will return a SOAP Fault to the
sender. If it is present, it will fire a SignatureVerificationKeyCallback to the registered
handlers. Within Spring-WS, there are is one class which handles this particular callback: the
KeyStoreCallbackHandler.

KeyStoreCallbackHandler

As described inthe section called “KeyStoreCallbackHandler”, the KeyStoreCallbackHandler
uses a java.security.KeyStore for handling various cryptographic callbacks, including signature
verification. For signature verification, the handler uses the trustStore property:

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 83

<beans>

 <bean id="keyStoreHandler"

 class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

 <property name="trustStore" ref="trustStore"/>

 </bean>

 <bean id="trustStore"

 class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">

 <property name="location" value="classpath:org/springframework/ws/soap/security/

xwss/test-truststore.jks"/>

 <property name="password" value="changeit"/>

 </bean>

</beans>

Signing Messages

When signing a message, the XwsSecurityInterceptor adds the BinarySecurityToken to the
message, and a SignedInfo block, which indicates what part of the message was signed.

To sign all outgoing SOAP messages, the security policy file should contain a Sign element. It can also
contain a SignatureTarget element, which specifies the target message part which was expected
to be signed, and various other subelements. You can also define the private key alias to use, whether
to use a symmetric instead of a private key, and many other properties. You can find a reference of
possible child elements here .

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

 <xwss:Sign includeTimestamp="false" />

</xwss:SecurityConfiguration>

The XwsSecurityInterceptor will fire a SignatureKeyCallback to the registered handlers.
Within Spring-WS, there are is one class which handles this particular callback: the
KeyStoreCallbackHandler.

KeyStoreCallbackHandler

As described inthe section called “KeyStoreCallbackHandler”, the KeyStoreCallbackHandler
uses a java.security.KeyStore for handling various cryptographic callbacks, including signing
messages. For adding signatures, the handler uses the keyStore property. Additionally, you must set
the privateKeyPassword property to unlock the private key used for signing.

<beans>

 <bean id="keyStoreHandler"

 class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

 <property name="keyStore" ref="keyStore"/>

 <property name="privateKeyPassword" value="changeit"/>

 </bean>

 <bean id="keyStore"

 class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">

 <property name="location" value="classpath:keystore.jks"/>

 <property name="password" value="changeit"/>

 </bean>

</beans>

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565497

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 84

Encryption and Decryption

When encrypting, the message is transformed into a form that can only be read with the appropriate
key. The message can be decrypted to reveal the original, readable message.

Decryption

To decrypt incoming SOAP messages, the security policy file should contain a RequireEncryption
element. This element can further carry a EncryptionTarget element which indicates which part of
the message should be encrypted, and a SymmetricKey to indicate that a shared secret instead of
the regular private key should be used to decrypt the message. You can read a description of the other
elements here .

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

 <xwss:RequireEncryption />

</xwss:SecurityConfiguration>

If an incoming message is not encrypted, the XwsSecurityInterceptor will return a SOAP Fault to
the sender. If it is present, it will fire a DecryptionKeyCallback to the registered handlers. Within
Spring-WS, there is one class which handled this particular callback: theKeyStoreCallbackHandler.

KeyStoreCallbackHandler

As described inthe section called “KeyStoreCallbackHandler”, the KeyStoreCallbackHandler uses
a java.security.KeyStore for handling various cryptographic callbacks, including decryption.
For decryption, the handler uses the keyStore property. Additionally, you must set the
privateKeyPassword property to unlock the private key used for decryption. For decryption based
on symmetric keys, it will use the symmetricStore.

<beans>

 <bean id="keyStoreHandler"

 class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

 <property name="keyStore" ref="keyStore"/>

 <property name="privateKeyPassword" value="changeit"/>

 </bean>

 <bean id="keyStore"

 class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">

 <property name="location" value="classpath:keystore.jks"/>

 <property name="password" value="changeit"/>

 </bean>

</beans>

Encryption

To encrypt outgoing SOAP messages, the security policy file should contain a Encrypt element. This
element can further carry a EncryptionTarget element which indicates which part of the message
should be encrypted, and a SymmetricKey to indicate that a shared secret instead of the regular public
key should be used to encrypt the message. You can read a description of the other elements here .

<xwss:SecurityConfiguration xmlns:xwss="http://java.sun.com/xml/ns/xwss/config">

 <xwss:Encrypt />

</xwss:SecurityConfiguration>

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 85

The XwsSecurityInterceptor will fire a EncryptionKeyCallback to the registered handlers in
order to retrieve the encryption information. Within Spring-WS, there is one class which handled this
particular callback: the KeyStoreCallbackHandler.

KeyStoreCallbackHandler

As described inthe section called “KeyStoreCallbackHandler”, the KeyStoreCallbackHandler uses
a java.security.KeyStore for handling various cryptographic callbacks, including encryption. For
encryption based on public keys, the handler uses the trustStore property. For encryption based on
symmetric keys, it will use thesymmetricStore.

<beans>

 <bean id="keyStoreHandler"

 class="org.springframework.ws.soap.security.xwss.callback.KeyStoreCallbackHandler">

 <property name="trustStore" ref="trustStore"/>

 </bean>

 <bean id="trustStore"

 class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">

 <property name="location" value="classpath:truststore.jks"/>

 <property name="password" value="changeit"/>

 </bean>

</beans>

Security Exception Handling

When an securement or validation action fails, the XwsSecurityInterceptor will throw a
WsSecuritySecurementException or WsSecurityValidationException respectively. These
exceptions bypass the standard exception handling mechanism, but are handled in the interceptor itself.

WsSecuritySecurementException exceptions are handled in the
handleSecurementException method of the XwsSecurityInterceptor. By default, this method
will simply log an error, and stop further processing of the message.

Similarly, WsSecurityValidationException exceptions are handled in the
handleValidationException method of the XwsSecurityInterceptor. By default, this method
will create a SOAP 1.1 Client or SOAP 1.2 Sender Fault, and send that back as a response.

Note

Both handleSecurementException and handleValidationException are protected
methods, which you can override to change their default behavior.

7.3 Wss4jSecurityInterceptor

The Wss4jSecurityInterceptor is an EndpointInterceptor (see the section called
“Intercepting requests - the EndpointInterceptor interface”) that is based on Apache's WSS4J.

WSS4J implements the following standards:

• OASIS Web Serives Security: SOAP Message Security 1.0 Standard 200401, March 2004

• Username Token profile V1.0

• X.509 Token Profile V1.0

http://ws.apache.org/wss4j/

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 86

This interceptor supports messages created by the AxiomSoapMessageFactory and the
SaajSoapMessageFactory.

Configuring Wss4jSecurityInterceptor

WSS4J uses no external configuration file; the interceptor is entirely configured by properties. The
validation and securement actions executed by this interceptor are specified via validationActions and
securementActions properties, respectively. Actions are passed as a space-separated strings. Here is
an example configuration:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="validationActions" value="UsernameToken Encrypt"/>

 ...

 <property name="securementActions" value="Encrypt"/>

 ...

</bean>

Validation actions are:

Validation action Description

UsernameToken Validates username token

Timestamp Validates the timestamp

Encrypt Decrypts the message

Signature Validates the signature

NoSecurity No action performed

Securement actions are:

Securement action Description

UsernameToken Adds a username token

UsernameTokenSignature Adds a username token and a signature
username token secret key

Timestamp Adds a timestamp

Encrypt Encrypts the response

Signature Signs the response

NoSecurity No action performed

The order of the actions is significant and is enforced by the interceptor. The interceptor will reject an
incoming SOAP message if its security actions were performed in a different order than the one specified
byvalidationActions.

Handling Digital Certificates

For cryptographic operations requiring interaction with a keystore or certificate
handling (signature, encryption and decryption operations), WSS4J requires an instance
oforg.apache.ws.security.components.crypto.Crypto.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 87

Crypto instances can be obtained from WSS4J's CryptoFactory or more conveniently with the
Spring-WSCryptoFactoryBean.

CryptoFactoryBean

Spring-WS provides a convenient factory bean, CryptoFactoryBean that constructs and configures
Crypto instances via strong-typed properties (prefered) or through a Properties object.

By default, CryptoFactoryBean returns instances of
org.apache.ws.security.components.crypto.Merlin. This can be changed by setting the
cryptoProvider property (or its equivalent org.apache.ws.security.crypto.provider string
property).

Here is a simple example configuration:

<bean class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">

 <property name="keyStorePassword" value="mypassword"/>

 <property name="keyStoreLocation" value="file:/path_to_keystore/keystore.jks"/>

</bean>

Authentication

Validating Username Token

Spring-WS provides a set of callback handlers to integrate with Spring Security. Additionally, a simple
callback handler SimplePasswordValidationCallbackHandler is provided to configure users
and passwords with an in-memory Properties object.

Callback handlers are configured via Wss4jSecurityInterceptor's validationCallbackHandler
property.

SimplePasswordValidationCallbackHandler

SimplePasswordValidationCallbackHandler validates plain text and digest username tokens
against an in-memory Properties object. It is configured as follows:

<bean id="callbackHandler"

 class="org.springframework.ws.soap.security.wss4j.callback.SimplePasswordValidationCallbackHandler">

 <property name="users">

 <props>

 <prop key="Bert">Ernie</prop>

 </props>

 </property>

</bean>

SpringSecurityPasswordValidationCallbackHandler

The SpringSecurityPasswordValidationCallbackHandler validates plain text and digest
passwords using a Spring Security UserDetailService to operate. It uses this service to retrieve
the (digest of) the password of the user specified in the token. The (digest of) the password contained
in this details object is then compared with the digest in the message. If they are equal, the user
has successfully authenticated, and a UsernamePasswordAuthenticationToken is stored in

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 88

theSecurityContextHolder. You can set the service using the userDetailsService. Additionally, you
can set a userCache property, to cache loaded user details.

<beans>

 <bean

 class="org.springframework.ws.soap.security.wss4j.callback.SpringDigestPasswordValidationCallbackHandler">

 <property name="userDetailsService" ref="userDetailsService"/>

 </bean>

 <bean id="userDetailsService" class="com.mycompany.app.dao.UserDetailService" />

 ...

</beans>

Adding Username Token

Adding a username token to an outgoing message is as simple as adding UsernameToken
to the securementActions property of the Wss4jSecurityInterceptor and specifying
securementUsername andsecurementPassword.

The password type can be set via the securementPasswordType property. Possible values are
PasswordText for plain text passwords or PasswordDigest for digest passwords, which is the
default.

The following example generates a username token with a digest password:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="securementActions" value="UsernameToken"/>

 <property name="securementUsername" value="Ernie"/>

 <property name="securementPassword" value="Bert"/>

</bean>

If plain text password type is chosen, it is possible to instruct the interceptor to add Nonce and/or
Created elements using the securementUsernameTokenElements property. The value must be a list
containing the desired elements' names separated by spaces (case sensitive).

The next example generates a username token with a plain text password, a Nonce and a Created
element:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="securementActions" value="UsernameToken"/>

 <property name="securementUsername" value="Ernie"/>

 <property name="securementPassword" value="Bert"/>

 <property name="securementPasswordType" value="PasswordText"/>

 <property name="securementUsernameTokenElements" value="Nonce Created"/>

</bean>

Certificate Authentication

As certificate authentication is akin to digital signatures, WSS4J handles it as part of the signature
validation and securement. Specifically, the securementSignatureKeyIdentifier property must be set
to DirectReference in order to instruct WSS4J to generate a BinarySecurityToken element
containing the X509 certificate and to include it in the outgoing message. The certificate's name
and password are passed through the securementUsername and securementPassword properties
respectively. See the next example:

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 89

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="securementActions" value="Signature"/>

 <property name="securementSignatureKeyIdentifier" value="DirectReference"/>

 <property name="securementUsername" value="mycert"/>

 <property name="securementPassword" value="certpass"/>

 <property name="securementSignatureCrypto">

 <bean class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">

 <property name="keyStorePassword" value="123456"/>

 <property name="keyStoreLocation" value="classpath:/keystore.jks"/>

 </bean>

 </property>

</bean>

For the certificate validation, regular signature validation applies:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="validationActions" value="Signature"/>

 <property name="validationSignatureCrypto">

 <bean class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">

 <property name="keyStorePassword" value="123456"/>

 <property name="keyStoreLocation" value="classpath:/keystore.jks"/>

 </bean>

 </property>

</bean>

At the end of the validation, the interceptor will automatically verify the validity of the certificate by
delegating to the default WSS4J implementation. If needed, this behavior can be changed by redefining
the verifyCertificateTrust method.

For more details, please refer tothe section called “Digital Signatures”.

Security Timestamps

This section describes the various timestamp options available in the Wss4jSecurityInterceptor.

Validating Timestamps

To validate timestamps add Timestamp to the validationActions property. It is possible to override
timestamp semantics specified by the initiator of the SOAP message by setting timestampStrict to true
and specifying a server-side time to live in seconds (defaults to 300) via the timeToLive property 17 .

In the following example, the interceptor will limit the timestamp validity window to 10 seconds, rejecting
any valid timestamp token outside that window:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="validationActions" value="Timestamp"/>

 <property name="timestampStrict" value="true"/>

 <property name="timeToLive" value="10"/>

</bean>

Adding Timestamps

Adding Timestamp to the securementActions property generates a timestamp header in outgoing
messages. The timestampPrecisionInMilliseconds property specifies whether the precision of the
generated timestamp is in milliseconds. The default value istrue.

17 The interceptor will always reject already expired timestamps whatever the value of timeToLive is.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 90

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="securementActions" value="Timestamp"/>

 <property name="timestampPrecisionInMilliseconds" value="true"/>

</bean>

Digital Signatures

This section describes the various signature options available in the Wss4jSecurityInterceptor.

Verifying Signatures

To instruct theWss4jSecurityInterceptor, validationActions must contain the Signature action.
Additionally, the validationSignatureCrypto property must point to the keystore containing the public
certificates of the initiator:

<bean id="wsSecurityInterceptor"

 class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="validationActions" value="Signature"/>

 <property name="validationSignatureCrypto">

 <bean

 class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">

 <property name="keyStorePassword" value="123456"/>

 <property name="keyStoreLocation" value="classpath:/keystore.jks"/>

 </bean>

 </property>

</bean>

Signing Messages

Signing outgoing messages is enabled by adding Signature action to thesecurementActions. The
alias and the password of the private key to use are specified by the securementUsername and
securementPassword properties respectively. securementSignatureCrypto must point to the keystore
containing the private key:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="securementActions" value="Signature"/>

 <property name="securementUsername" value="mykey"/>

 <property name="securementPassword" value="123456"/>

 <property name="securementSignatureCrypto">

 <bean

 class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">

 <property name="keyStorePassword" value="123456"/>

 <property name="keyStoreLocation" value="classpath:/keystore.jks"/>

 </bean>

 </property>

</bean>

Furthermore, the signature algorithm can be defined via the securementSignatureAlgorithm.

The key identifier type to use can be customized via the securementSignatureKeyIdentifier property.
Only IssuerSerial and DirectReference are valid for signature.

securementSignatureParts property controls which part of the message shall be signed. The value of
this property is a list of semi-colon separated element names that identify the elements to sign. The

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 91

general form of a signature part is {}{namespace}Element 18 . The default behavior is to sign the
SOAP body.

As an example, here is how to sign the echoResponse element in the Spring Web Services echo
sample:

<property name="securementSignatureParts"

 value="{}{http://www.springframework.org/spring-ws/samples/echo}echoResponse"/>

To specify an element without a namespace use the string Null as the namespace name (case
sensitive).

If there is no other element in the request with a local name of Body then the SOAP namespace identifier
can be empty ({}).

Signature Confirmation

Signature confirmation is enabled by setting enableSignatureConfirmation to true. Note that signature
confirmation action spans over the request and the response. This implies that secureResponse and
validateRequest must be set to true (which is the default value) even if there are no corresponding
security actions.

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="validationActions" value="Signature"/>

 <property name="enableSignatureConfirmation" value="true"/>

 <property name="validationSignatureCrypto">

 <bean

 class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">

 <property name="keyStorePassword" value="123456"/>

 <property name="keyStoreLocation" value="file:/keystore.jks"/>

 </bean>

 </property>

</bean>

Encryption and Decryption

This section describes the various encryption and descryption options available in the
Wss4jSecurityInterceptor.

Decryption

Decryption of incoming SOAP messages requires Encrypt action be added to the validationActions
property. The rest of the configuration depends on the key information that appears in the message 19 .

To decrypt messages with an embedded encypted symmetric key (xenc:EncryptedKey
element), validationDecryptionCrypto needs to point to a keystore containing the
decryption private key. Additionally, validationCallbackHandler has to be injected with a
org.springframework.ws.soap.security.wss4j.callback.KeyStoreCallbackHandler

specifying the key's password:

18 The first empty brackets are used for encryption parts only.
19 This is because WSS4J needs only a Crypto for encypted keys, whereas embedded key name validation is delegated to a
callback handler.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 92

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="validationActions" value="Encrypt"/>

 <property name="validationDecryptionCrypto">

 <bean

 class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">

 <property name="keyStorePassword" value="123456"/>

 <property name="keyStoreLocation" value="classpath:/keystore.jks"/>

 </bean>

 </property>

 <property name="validationCallbackHandler">

 <bean

 class="org.springframework.ws.soap.security.wss4j.callback.KeyStoreCallbackHandler">

 <property name="privateKeyPassword" value="mykeypass"/>

 </bean>

 </property>

</bean>

To support decryption of messages with an embedded key name (ds:KeyName element), configure a
KeyStoreCallbackHandler that points to the keystore with the symmetric secret key. The property
symmetricKeyPassword indicates the key's password, the key name being the one specified by
ds:KeyName element:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="validationActions" value="Encrypt"/>

 <property name="validationCallbackHandler">

 <bean

 class="org.springframework.ws.soap.security.wss4j.callback.KeyStoreCallbackHandler">

 <property name="keyStore">

 <bean

 class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">

 <property name="location" value="classpath:keystore.jks"/>

 <property name="type" value="JCEKS"/>

 <property name="password" value="123456"/>

 </bean>

 </property>

 <property name="symmetricKeyPassword" value="mykeypass"/>

 </bean>

 </property>

</bean>

Encryption

Adding Encrypt to the securementActions enables encryption of outgoing messages. The certifacte's
alias to use for the encryption is set via the securementEncryptionUser property. The keystore where
the certificate reside is accessed using the securementEncryptionCrypto property. As encryption relies
on public certificates, no password needs to be passed.

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="securementActions" value="Encrypt"/>

 <property name="securementEncryptionUser" value="mycert"/>

 <property name="securementEncryptionCrypto">

 <bean

 class="org.springframework.ws.soap.security.wss4j.support.CryptoFactoryBean">

 <property name="keyStorePassword" value="123456"/>

 <property name="keyStoreLocation" value="file:/keystore.jks"/>

 </bean>

 </property>

</bean>

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 93

Encryption can be customized in several ways: The key identifier type to use is defined
bysecurementEncryptionKeyIdentifier. Possible values areIssuerSerial,X509KeyIdentifier,
DirectReference,Thumbprint, SKIKeyIdentifier orEmbeddedKeyName.

If the EmbeddedKeyName type is chosen, you need to specify the secret key to use for the
encryption. The alias of the key is set via the securementEncryptionUser property just as for the
other key identifier types. However, WSS4J requires a callback handler to fetch the secret key.
Thus, securementCallbackHandler must be provided with a KeyStoreCallbackHandler pointing to
the appropriate keystore. By default, the ds:KeyName element in the resulting WS-Security header
takes the value of the securementEncryptionUser property. To indicate a different name, set the
securementEncryptionEmbeddedKeyName with the desired value. In the next example, the outgoing
message will be encrypted with a key aliased secretKey whereas myKey will appear in ds:KeyName
element:

<bean class="org.springframework.ws.soap.security.wss4j.Wss4jSecurityInterceptor">

 <property name="securementActions" value="Encrypt"/>

 <property name="securementEncryptionKeyIdentifier" value="EmbeddedKeyName"/>

 <property name="securementEncryptionUser" value="secretKey"/>

 <property name="securementEncryptionEmbeddedKeyName" value="myKey"/>

 <property name="securementCallbackHandler">

 <bean

 class="org.springframework.ws.soap.security.wss4j.callback.KeyStoreCallbackHandler">

 <property name="symmetricKeyPassword" value="keypass"/>

 <property name="keyStore">

 <bean

 class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">

 <property name="location" value="file:/keystore.jks"/>

 <property name="type" value="jceks"/>

 <property name="password" value="123456"/>

 </bean>

 </property>

 </bean>

 </property>

</bean>

The securementEncryptionKeyTransportAlgorithm property defines which algorithm to use to
encrypt the generated symmetric key. Supported values are http://www.w3.org/2001/04/
xmlenc#rsa-1_5, which is the default, and http://www.w3.org/2001/04/xmlenc#rsa-oaep-
mgf1p.

The symmetric encryption algorithm to use can be set via the
securementEncryptionSymAlgorithm property. Supported values are http://

www.w3.org/2001/04/xmlenc#aes128-cbc (default value), http://www.w3.org/2001/04/
xmlenc#tripledes-cbc, http://www.w3.org/2001/04/xmlenc#aes256-cbc, http://

www.w3.org/2001/04/xmlenc#aes192-cbc.

Finally, the securementEncryptionParts property defines which parts of the message will be encrypted.
The value of this property is a list of semi-colon separated element names that identify the elements
to encrypt. An encryption mode specifier and a namespace identification, each inside a pair of curly
brackets, may precede each element name. The encryption mode specifier is either {Content} or
{Element} 20 . The following example identifies the echoResponse from the echo sample:

<property name="securementEncryptionParts"

 value="{Content}{http://www.springframework.org/spring-ws/samples/echo}echoResponse"/>

20 Please refer to the W3C XML Encryption specification about the differences between Element and Content encryption.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 94

Be aware that the element name, the namespace identifier, and the encryption modifier are case
sensitive. The encryption modifier and the namespace identifier can be omitted. In this case the
encryption mode defaults to Content and the namespace is set to the SOAP namespace.

To specify an element without a namespace use the value Null as the namespace name (case
sensitive). If no list is specified, the handler encrypts the SOAP Body in Content mode by default.

Security Exception Handling

The exception handling of the Wss4jSecurityInterceptor is identical to that of the
XwsSecurityInterceptor. See the section called “Security Exception Handling” for more
information.

Part III. Other Resources
In addition to this reference documentation, there exist a number of other resources that may help you
learn how to use Spring Web Services. These additional, third-party resources are enumerated in this
section.

Spring Web Services

2.2.3.RELEASE
Spring Web Services

Reference Documentation 96

Bibliography
[waldo-94] Jim Waldo, Ann Wollrath, and Sam Kendall. A Note on Distributed Computing. Springer

Verlag. 1994.

[alpine] Steve Loughran and Edmund Smith. Rethinking the Java SOAP Stack. May 17, 2005.
Copyright © 2005 IEEE Telephone Laboratories, Inc..

[effective-enterprise-java] Ted Neward. Scott Meyers. Effective Enterprise Java. Addison-Wesley.
2004.

[effective-xml] Elliotte Rusty Harold. Scott Meyers. Effective XML. Addison-Wesley. 2004.

	Spring Web Services Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. What is Spring Web Services?
	1.1 Introduction
	1.2 Runtime environment
	1.3 Supported standards

	2. Why Contract First?
	2.1 Introduction
	2.2 Object/XML Impedance Mismatch
	XSD extensions
	Unportable types
	Cyclic graphs

	2.3 Contract-first versus Contract-last
	Fragility
	Performance
	Reusability
	Versioning

	3. Writing Contract-First Web Services
	3.1 Introduction
	3.2 Messages
	Holiday
	Employee
	HolidayRequest

	3.3 Data Contract
	3.4 Service contract
	3.5 Creating the project
	3.6 Implementing the Endpoint
	Handling the XML Message
	Routing the Message to the Endpoint
	Providing the Service and Stub implementation

	3.7 Publishing the WSDL

	Part II. Reference
	4. Shared components
	4.1 Web service messages
	WebServiceMessage
	SoapMessage
	Message Factories
	SaajSoapMessageFactory
	AxiomSoapMessageFactory
	SOAP 1.1 or 1.2

	MessageContext

	4.2 TransportContext
	4.3 Handling XML With XPath
	XPathExpression
	XPathTemplate

	4.4 Message Logging and Tracing

	5. Creating a Web service with Spring-WS
	5.1 Introduction
	5.2 The MessageDispatcher
	5.3 Transports
	MessageDispatcherServlet
	Automatic WSDL exposure

	Wiring up Spring-WS in a DispatcherServlet
	JMS transport
	Email transport
	Embedded HTTP Server transport
	XMPP transport
	MTOM

	5.4 Endpoints
	@Endpoint handling methods
	Handling method parameters
	@XPathParam

	Handling method return types

	5.5 Endpoint mappings
	WS-Addressing
	AnnotationActionEndpointMapping

	Intercepting requests - the EndpointInterceptor interface
	PayloadLoggingInterceptor and SoapEnvelopeLoggingInterceptor
	PayloadValidatingInterceptor
	PayloadTransformingInterceptor

	5.6 Handling Exceptions
	SoapFaultMappingExceptionResolver
	SoapFaultAnnotationExceptionResolver

	5.7 Server-side testing
	Writing server-side integration tests
	RequestCreator and RequestCreators
	ResponseMatcher and ResponseMatchers

	6. Using Spring Web Services on the Client
	6.1 Introduction
	6.2 Using the client-side API
	WebServiceTemplate
	URIs and Transports
	HTTP transports
	JMS transport
	Email transport
	XMPP transport

	Message factories

	Sending and receiving a WebServiceMessage
	Sending and receiving POJOs - marshalling and unmarshalling
	WebServiceMessageCallback
	WS-Addressing

	WebServiceMessageExtractor

	6.3 Client-side testing
	Writing client-side integration tests
	RequestMatcher and RequestMatchers
	ResponseCreator and ResponseCreators

	7. Securing your Web services with Spring-WS
	7.1 Introduction
	7.2 XwsSecurityInterceptor
	Keystores
	KeyTool
	KeyStoreFactoryBean
	KeyStoreCallbackHandler

	Authentication
	Plain Text Username Authentication
	SimplePasswordValidationCallbackHandler
	SpringPlainTextPasswordValidationCallbackHandler
	JaasPlainTextPasswordValidationCallbackHandler

	Digest Username Authentication
	SimplePasswordValidationCallbackHandler
	SpringDigestPasswordValidationCallbackHandler

	Certificate Authentication
	KeyStoreCallbackHandler
	SpringCertificateValidationCallbackHandler
	JaasCertificateValidationCallbackHandler

	Digital Signatures
	Verifying Signatures
	KeyStoreCallbackHandler

	Signing Messages
	KeyStoreCallbackHandler

	Encryption and Decryption
	Decryption
	KeyStoreCallbackHandler

	Encryption
	KeyStoreCallbackHandler

	Security Exception Handling

	7.3 Wss4jSecurityInterceptor
	Configuring Wss4jSecurityInterceptor
	Handling Digital Certificates
	CryptoFactoryBean

	Authentication
	Validating Username Token
	SimplePasswordValidationCallbackHandler
	SpringSecurityPasswordValidationCallbackHandler

	Adding Username Token
	Certificate Authentication

	Security Timestamps
	Validating Timestamps
	Adding Timestamps

	Digital Signatures
	Verifying Signatures
	Signing Messages
	Signature Confirmation

	Encryption and Decryption
	Decryption
	Encryption

	Security Exception Handling

	Part III. Other Resources
	Bibliography

