Spring Web Services Reference Documentation

2.3.1.RELEASE

Arjen Poutsma , Rick Evans , Tareq Abed Rabbo

Copyright © 2005-2014

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Web Services Reference Documentation

Table of Contents

L 1= 7= Lo Vi
I 01 oo [N o1 o] o H PP PSPPSR 1
1. What is SPring WED SEIVICES?cuuiiiieii et eans 2
R 11 o o VT 1T o 2

1.2. RUNLIME ENVIFONMIENT ..ottt ettt e e e e e e e e e e eennees 2

1.3. SUPPOrted StANAANTSc..iiiiiiii et e e et e e e e 3

2. WhHY CONLFACE FIFSE? ...ttt et e et e e e et e e eeta e eees 4
P20 I [0 1o Yo [U T 1o o TSP PSPPPPPPIN 4

2.2. Object/XML Impedance MiSmMatChooiiiiiiiiii e 4
D] = 1= 1] T 1SS 4

L0 g o o] =1 o] L=T £ 1= 4

CYClIC GraphS ... e 5

2.3. Contract-first versus Contract-lastoooveuiiiiiiiiii e 6

[T 1111/ 6
PerfOrMANCE ..o et e 7
REUSADIIITY ..o 7

RV 2T £ T o113 T R 7

3. Writing Contract-First Webh ServiCeso e 8
K 70 T 1o o 11 od 1T o I N 8

B J R |V LSS T = PP PP 8

[(0] 1o £ Y PP UPPTRUPIN 8

EMIDIOYEE e e 8

[(0] 0 Fo Y7 = =T 0T PP 8

TR T B L= = B O10] o1 = o AT 9

I Y=Y oV o7 =T ot 11 - Vo] A 11

3.5. Creating the PrOJECTiii e e e 13

3.6. Implementing the ENAPOINToouiiiii e e 14
Handling the XML MESSAQTEcccuuuuiiiiiiiiei et e s 14

Routing the Message to the ENdpointcc.oooviiiiiiiii e, 17

Providing the Service and Stub implementationc...cooiiiiiiiiinii e 17

3.7. PUDIIShING the WSDLciiiiiiiiiii et et e e 18

1 = =T (=T o Tor TP SURPPPPPPTTIN 20
4. Shared COMPONENTSc.uuiii ittt e et et et e e et e e et e e e ta e eaa e aat e aetnaeeanaaes 21
4. 1. WED SEIVICE MESSAUES . .eevtuiiiiiii ettt e et e e et e ettt e ettt e e e et e e e eatn e e eentnaeaaes 21

VD SEI Vi CEMESSAGE iivniiii ittt e et e e e e e e e e e e e e e e 21

STe =T 011V T3 T T PP PT PP UPTRPTRR 21

MESSAQGE FACIOMES ..ottt 21

Saaj S0apMeSSAgEFACT OFY ..iviiiiiiii e 22

AXi 0mB0apMesSSageRaCt Or'Y ... 22

SOAP L1 OF L2 e 23

MBS S A CONT BXE ittt 23

4.2, TranSPOrt CONE EXE ottt e et e et e e e e aens 23

4.3. Handling XML With XPathoiiiiiiiiii e 24
D= Ll g1 g o =YY= o] o 24

XPAt NTEMPI AL € .o e 25

4.4, Message Logging and TracCingveeeuuuniereiuieiieii et e et e e e eaai e eeeeans 26

5. Creating a Web service With SPring-WS ... 27

2.3.1.RELEASE Spring Web Services iii

Spring Web Services Reference Documentation

I I o To [F T o] HR TP 27
5.2. The MessageDi Spat Cher ... 27
TR T I =14 K] oo £ TP 28
MessageDi spat Cher Servl €t oo 28
AULOMALIC WSDL ©XPOSUIEuiiiieiiie et 29
Wiring up Spring-WS in a Di spat cher Servl etccooooiiiiiiiii 31
1T 1 =V] 0T o 32
EMail trANSPOIT ... e 33
Embedded HTTP Server tranSPOrtooovuuiieiiiiieeeeei e 34
DAY 1>] T o 35
IMTOM ettt et e e e e ettt bbb e e e e et e et tn b a e e e aeeeenne 36
5.4, ENUPOINTS ..ttt et 36
@ndpoi nt handling Methodscooviiiiii e 39
Handling method Parametersoviiuiiiiiiiii e 39
Handling method return tYPesoouu i 42
LTSI = T [oToTT o1 a3 F= T o] o1V 1= 43
WS-AAAIESSING ..ttt ettt et e et e e e e e e e e et e e e eaas 43
Annot at i onAct i onEndpoi nt MBPPi NG .ooeevvniiiiiii e 44
Intercepting requests - the Endpoi nt | nt er cept or interfacecccoeeveenen. 45

Payl oadLoggi ngl nt er cept or and
SoapEnvel opelLoggi NGl Nt er CEPt OFvuiiiiiiiiiiiiii e 46
Payl cadVal i datinglntercept orocoveveiiiiiiiii e a7
Payl oadTr ansform ngl Nt €r Cept OFoiiviiiiiiiii e a7
5.6. Handling EXCEPLIONSiiiiiiiiiiiii et 48
SoapFaul t Mappi ngEXcepti 0NREeSOI VeI ..oivviiiiii i, 48
SoapFaul t Annot at i onExcepti 0NReSOl Ver ... 49
5.7. SErver-Side tESHNGiiiiiii e e 49
Writing server-side integration tEStScccuiiiiiiiii e 50
Request Creat or and ReqUEST Cr €At OF'S ...iivuiiiiiiiiiiieeii e 53
ResponseMat cher and ResponseMat Chers ..., 53
6. Using Spring Web Services on the Clientcooviiiiiii e, 55
(S0 I [V o o [Fod 1] o R PP P TP 55
6.2. Using the client-side AP ... e 55
VEDSEr Vi CETEMPI @ € oovieeiii e 55
URIS @nd TraNSPOITS ...euuiiieiiii ettt e e e e eeans 55
MESSAQE TACLOMIESiiiiiiii e 58
Sending and receiving a WebSer Vi CEMESSAQE ..ovvviviiieiiiiiii e 58
Sending and receiving POJOs - marshalling and unmarshalling 60
WebSer vi ceMessageCal | Dack ..o 60
RTAT A B AN [0 1SS T 60
WehSer vi CeMBSSAQEEXT I QCt OF oouiiiiii e 60
6.3. ClIeNt-Side TESHNG ...vuiiiiii et e e e e eaaes 61
Writing client-side integration tESIScc.iiiii i 61
Request Mat cher and Request Mt Chers ... 64
ResponseCreat or and ResponsSeCr €at OF'Svvvviiviiiiiiiiieiie e 65
7. Securing your Web services with Spring-WS ... 66
4% T [o o [Fod 1 o] o R PP TUPTRUPTR 66
7.2. XWSSECUN i t Yl NEEIr CEPL OF it 66
23S 0 = 67
KBYTOON .t 67

2.3.1.RELEASE Spring Web Services iv

Spring Web Services Reference Documentation

TS o] =] o= Toa (0] Y == -V o 68
KeyStoreCallbackHandler ..o 68

F 0 11 0TS o[> o T o 69
Plain Text Username Authenticationcccoooiiiiiiiiiiii e, 69
Digest Username AUthentiCationco.iiiiiiiiiiniiiie e 71
Certificate AUthentiCationoooviiiiiiii e 72
Digital SIgNATUIES ... cveniiii e e e e e e e 74
Verifying SIGNALUIESiiii e 74
SIGNING MESSAGES ...vuneiiiiiiei ittt e et et e ettt e e et e e eeta e eees 75
ENncryption and DeCIYPLIONiiiiiiiiiici e e e e e e e e 76
(D] To oY/ o] 1o o KN PP PTPPT 76
ENCIYPLON oo 77
Security Exception Handlingcc.uveviioiiiii e 77
7.3. VBS4] SeCUri tYI Nt Er CEPLOr o 78
Configuring VWs4j Securityl Nt erCept or ..ooooiiiiiiiiiiiei e 78
Handling Digital CertifiCatesccviiiiiiiiiii e e 79
CryptoFaCtOrYBEANcieiiiiei et 79

F 0 11 0TS o[> o T o P 79
Validating Username TOKENcocuuiiiiieiiie e e e e e e e 79
Adding Username TOKENoiiiuiiiiiii e e 80
Certificate AUthentiCationoooiiiiiiiii e 80
Y=o U A I 1= 5] 2= U] 81
Validating TiMeSAMPS ... ccuuiiiiiei et eens 81
AddING TIMESTAMPS ...ciiiiiiee et e e e e e e e eee 81
Digital SIgNATUIEScveniii e e e e e e e e 82
Verifying SIGNALUIES ... e 82
SIGNING MESSAGES ...vtneiiiiiiiei ittt e et e et e e et e ettt e e eebiaeeees 82
Signature ConfirMationcccouiiiiiiiii e 83
Encryption and DeCrYPLIONocouuiiiiiii e 83
[D]=Tod 4V o] (o] o H PP PPPPTRRPPIN 83

[] 1 o1 1o) o R 84
Security Exception Handlingc..ooiiiiiiie e 85
LTI 1 T g = Lo T Yo U o = PP 86
(23] 0] [0 [ir= o])Y/ N 87

2.3.1.RELEASE Spring Web Services v

Spring Web Services Reference Documentation

Preface

In the current age of Service Oriented Architectures, more and more people are using Web Services to
connect previously unconnected systems. Initially, Web services were considered to be just another way
to do a Remote Procedure Call (RPC). Over time however, people found out that there is a big difference
between RPCs and Web services. Especially when interoperability with other platforms is important,
it is often better to send encapsulated XML documents, containing all the data necessary to process
the request. Conceptually, XML-based Web services are better off being compared to message queues
rather than remoting solutions. Overall, XML should be considered the platform-neutral representation
of data, the interlingua of SOA. When developing or using Web services, the focus should be on this
XML, and not on Java.

Spring Web Services focuses on creating these document-driven Web services. Spring Web Services
facilitates contract-first SOAP service development, allowing for the creation of flexible web services
using one of the many ways to manipulate XML payloads. Spring-WS provides a powerful message
dispatching framework, a WS-Security solution that integrates with your existing application security
solution, and a Client-side API that follows the familiar Spring template pattern.

2.3.1.RELEASE Spring Web Services Vi

Part I. Introduction

This first part of the reference documentation is an overview of Spring Web Services and the
underlying concepts. Spring-WS is then introduced, and the concepts behind contract-first Web service
development are explained.

Spring Web Services Reference Documentation

1. What is Spring Web Services?

1.1 Introduction

Spring Web Services (Spring-WS) is a product of the Spring community focused on creating document-
driven Web services. Spring Web Services aims to facilitate contract-first SOAP service development,
allowing for the creation of flexible web services using one of the many ways to manipulate XML
payloads. The product is based on Spring itself, which means you can use the Spring concepts such
as dependency injection as an integral part of your Web service.

People use Spring-WS for many reasons, but most are drawn to it after finding alternative SOAP stacks
lacking when it comes to following Web service best practices. Spring-WS makes the best practice an
easy practice. This includes practices such as the WS-I basic profile, Contract-First development, and
having a loose coupling between contract and implementation. The other key features of Spring Web
services are:

Powerful mappings. You can distribute incoming XML requests to any object, depending on
message payload, SOAP Action header, or an XPath expression.

XML APl support. Incoming XML messages can be handled not only with standard JAXP APIs such
as DOM, SAX, and StAX, but also JDOM, dom4j, XOM, or even marshalling technologies.

Flexible XML Marshalling. Spring Web Services builds on the Object/XML Mapping module in the
Spring Framework, which supports JAXB 1 and 2, Castor, XMLBeans, JiBX, and XStream.

Reuses your Spring expertise. Spring-WS uses Spring application contexts for all configuration,
which should help Spring developers get up-to-speed nice and quickly. Also, the architecture of Spring-
WS resembles that of Spring-MVC.

Supports WS-Security. WS-Security allows you to sign SOAP messages, encrypt and decrypt them,
or authenticate against them.

Integrates with Spring Security. The WS-Security implementation of Spring Web Services provides
integration with Spring Security. This means you can use your existing Spring Security configuration
for your SOAP service as well.

Apache license. You can confidently use Spring-WS in your project.

1.2 Runtime environment

Spring Web Services requires a standard Java 7 Runtime Environment. Java 8 is also supported. Spring-
WS is built on Spring Framework 4.0.9, but higher versions are supported.

Spring-WS consists of a number of modules, which are described in the remainder of this section.

 The XML module (spring-xm .jar) contains various XML support classes for Spring Web
Services. This module is mainly intended for the Spring-WS framework itself, and not a Web service
developers.

e The Core module (spring-ws-core.jar) is the central part of the Spring's Web services
functionality. It provides the central \ebSer vi ceMessage and SoapMessage interfaces, the server-
side framework, with powerful message dispatching, and the various support classes for implementing
Web service endpoints; and the client-side WebSer vi ceTenpl at e.

2.3.1.RELEASE Spring Web Services 2

Spring Web Services Reference Documentation

e The Support module (spri ng-ws- support. j ar) contains additional transports (JMS, Email, and
others).

» The Security package (spri ng-ws-security.jar) provides a WS-Security implementation that
integrates with the core Web service package. It allows you to add principal tokens, sign, and decrypt
and encrypt SOAP messages. Additionally, it allows you to leverage your existing Spring Security
security implementation for authentication and authorization.

The following figure illustrates the Spring-WS modules and the dependencies between them. Arrows
indicate dependencies, i.e. Spring-WS Core depends on Spring-XML and the OXM module found in
Spring 3 and higher.

Spring Spring-Ws
O Support
Spring-W5
Core
Spring Spring-wWs
XML Security

Dependencies between Spring-WS modules

1.3 Supported standards

Spring Web Services supports the following standards:

* SOAP11and 1.2

* WSDL 1.1 and 2.0 (XSD-based generation only supported for WSDL 1.1)
* WS-I Basic Profile 1.0, 1.1, 1.2 and 2.0

» WS-Addressing 1.0 and the August 2004 draft

» SOAP Message Security 1.1, Username Token Profile 1.1, X.509 Certificate Token Profile 1.1, SAML
Token Profile 1.1, Kerberos Token Profile 1.1, Basic Security Profile 1.1

2.3.1.RELEASE Spring Web Services 3

Spring Web Services Reference Documentation

2. Why Contract First?

2.1 Introduction

When creating Web services, there are two development styles: Contract Last and Contract First. When
using a contract-last approach, you start with the Java code, and let the Web service contract (WSDL,
see sidebar) be generated from that. When using contract-first, you start with the WSDL contract, and
use Java to implement said contract.

What is WSDL?

WSDL stands for Web Services Description Language. A WSDL file is an XML document that
describes a Web service. It specifies the location of the service and the operations (or methods)
the service exposes. For more information about WSDL, refer to the WSDL specification.

Spring-WS only supports the contract-first development style, and this section explains why.

2.2 Object/XML Impedance Mismatch

Similar to the field of ORM, where we have an Object/Relational impedance mismatch, there is a similar
problem when converting Java objects to XML. At first glance, the O/X mapping problem appears simple:
create an XML element for each Java object, converting all Java properties and fields to sub-elements or
attributes. However, things are not as simple as they appear: there is a fundamental difference between
hierarchical languages such as XML (and especially XSD) and the graph model of Java®,

XSD extensions

In Java, the only way to change the behavior of a class is to subclass it, adding the new behavior to that
subclass. In XSD, you can extend a data type by restricting it: that is, constraining the valid values for
the elements and attributes. For instance, consider the following example:

<si npl eType nanme="Ai r port Code" >
<restriction base="string">
<pattern value="[A-Z][A-Z][A-Z]"/>
</restriction>
</ si npl eType>

This type restricts a XSD string by ways of a regular expression, allowing only three upper case letters.
If this type is converted to Java, we will end up with an ordinary j ava. | ang. Stri ng; the regular
expression is lost in the conversion process, because Java does not allow for these sorts of extensions.

Unportable types

One of the most important goals of a Web service is to be interoperable: to support multiple platforms
such as Java, .NET, Python, etc. Because all of these languages have different class libraries, you must
use some common, interlingual format to communicate between them. That format is XML, which is
supported by all of these languages.

Because of this conversion, you must make sure that you use portable types in your service
implementation. Consider, for example, a service that returns a j ava. uti |l . Tr eeMap, like so:

3Most of the contents in this section was inspired by [alpine] and [effective-enterprise-java].

2.3.1.RELEASE Spring Web Services 4

http://www.w3.org/TR/wsdl
http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch

Spring Web Services Reference Documentation

public Map getFlights() {
/1 use a tree nmap, to nake sure it's sorted
TreeMap map = new TreeMap();
map. put ("KL1117", "Stockhol m');

return map,

}

Undoubtedly, the contents of this map can be converted into some sort of XML, but since there is
no standard way to describe a map in XML, it will be proprietary. Also, even if it can be converted
to XML, many platforms do not have a data structure similar to the Tr eeMap. So when a .NET client
accesses your Web service, it will probably end up with a Syst em Col | ecti ons. Hasht abl e, which
has different semantics.

This problem is also present when working on the client side. Consider the following XSD snippet, which
describes a service contract:

<el ement nane="GCet Fl i ght sRequest ">
<conpl exType>
<al | >
<el ement nanme="departureDate" type="date"/>
<el ement nanme="fronl' type="string"/>
<el ement name="to" type="string"/>
<lall>
</ conpl exType>
</ el ement >

This contract defines a request that takes an date, which is a XSD datatype representing a year,
month, and day. If we call this service from Java, we will probably use either a j ava. util. Date
or java. util . Cal endar. However, both of these classes actually describe times, rather than
dates. So, we will actually end up sending data that represents the fourth of April 2007 at midnight
(2007- 04- 04T00: 00: 00), which is not the same as 2007- 04- 04.

Cyclic graphs

Imagine we have the following simple class structure:

public class Flight {
private String nunber;
private List<Passenger> passengers;

/1l getters and setters omtted

}

public class Passenger {
private String nane;
private Flight flight;

/1l getters and setters omtted

}

This is a cyclic graph: the FI i ght refers to the Passenger , which refers to the Fl i ght again. Cyclic
graphs like these are quite common in Java. If we took a naive approach to converting this to XML, we
will end up with something like:

2.3.1.RELEASE Spring Web Services 5

Spring Web Services Reference Documentation

<flight nunmber="KL1117">
<passenger s>
<passenger >
<nanme>Arj en Pout sma</ nanme>
<flight nunmber="KL1117">
<passenger s>
<passenger >
<name>Arj en Pout sma</ name>
<flight nurmber="KL1117">
<passenger s>
<passenger >
<name>Arj en Pout sma</ name>

which will take a pretty long time to finish, because there is no stop condition for this loop.

One way to solve this problem is to use references to objects that were already marshalled, like so:

<flight nurmber="KL1117">
<passenger s>
<passenger >
<nanme>Arj en Pout sma</ nanme>
<flight href="KL1117" />
</ passenger >

</ passenger s>
</flight>

This solves the recursiveness problem, but introduces new ones. For one, you cannot use an XML
validator to validate this structure. Another issue is that the standard way to use these references in
SOAP (RPC/encoded) has been deprecated in favor of document/literal (see WS-1 Basic Profile).

These are just a few of the problems when dealing with O/X mapping. It is important to respect these
issues when writing Web services. The best way to respect them is to focus on the XML completely,
while using Java as an implementation language. This is what contract-first is all about.

2.3 Contract-first versus Contract-last

Besides the Object/XML Mapping issues mentioned in the previous section, there are other reasons for
preferring a contract-first development style.

Fragility

As mentioned earlier, the contract-last development style results in your web service contract (WSDL
and your XSD) being generated from your Java contract (usually an interface). If you are using this
approach, you will have no guarantee that the contract stays constant over time. Each time you change
your Java contract and redeploy it, there might be subsequent changes to the web service contract.

Aditionally, not all SOAP stacks generate the same web service contract from a Java contract. This
means changing your current SOAP stack for a different one (for whatever reason), might also change
your web service contract.

When a web service contract changes, users of the contract will have to be instructed to obtain the new
contract and potentially change their code to accommodate for any changes in the contract.

In order for a contract to be useful, it must remain constant for as long as possible. If a contract changes,
you will have to contact all of the users of your service, and instruct them to get the new version of
the contract.

2.3.1.RELEASE Spring Web Services 6

http://www.ws-i.org/Profiles/BasicProfile-1.1.html#SOAP_encodingStyle_Attribute

Spring Web Services Reference Documentation

Performance

When Java is automatically transformed into XML, there is no way to be sure as to what is sent across
the wire. An object might reference another object, which refers to another, etc. In the end, half of
the objects on the heap in your virtual machine might be converted into XML, which will result in slow
response times.

When using contract-first, you explicitly describe what XML is sent where, thus making sure that it is
exactly what you want.

Reusability

Defining your schema in a separate file allows you to reuse that file in different scenarios. If you define
an AirportCode in a file called ai r | i ne. xsd, like so:

<si npl eType nane="Ai r port Code" >
<restriction base="string">
<pattern value="[A-Z][A-Z][A-Z]"/>
</restriction>
</ si npl eType>

You can reuse this definition in other schemas, or even WSDL files, using an i nport statement.
Versioning

Even though a contract must remain constant for as long as possible, they do need to be changed
sometimes. In Java, this typically results in a new Java interface, such as Ai rl i neSer vi ce2, and a
(new) implementation of that interface. Of course, the old service must be kept around, because there
might be clients who have not migrated yet.

If using contract-first, we can have a looser coupling between contract and implementation. Such a
looser coupling allows us to implement both versions of the contract in one class. We could, for instance,
use an XSLT stylesheet to convert any "old-style” messages to the "new-style" messages.

2.3.1.RELEASE Spring Web Services 7

Spring Web Services Reference Documentation

3. Writing Contract-First Web Services

3.1 Introduction

This tutorial shows you how to write contract-first Web services, that is, developing web services that
start with the XML Schema/WSDL contract first followed by the Java code second. Spring-WS focuses
on this development style, and this tutorial will help you get started. Note that the first part of this tutorial
contains almost no Spring-WS specific information: it is mostly about XML, XSD, and WSDL. The second
part focuses on implementing this contract using Spring-Ws .

The most important thing when doing contract-first Web service development is to try and think in terms
of XML. This means that Java-language concepts are of lesser importance. It is the XML that is sent
across the wire, and you should focus on that. The fact that Java is used to implement the Web service
is an implementation detail. An important detail, but a detail nonetheless.

In this tutorial, we will define a Web service that is created by a Human Resources department. Clients
can send holiday request forms to this service to book a holiday.

3.2 Messages

In this section, we will focus on the actual XML messages that are sent to and from the Web service.
We will start out by determining what these messages look like.

Holiday

In the scenario, we have to deal with holiday requests, so it makes sense to determine what a holiday
looks like in XML:

<Hol i day xm ns="http://nmyconpany. con hr/schemas" >
<St art Dat e>2006- 07- 03</ St ar t Dat e>
<EndDat €>2006- 07- 07</ EndDat e>

</ Hol i day>

A holiday consists of a start date and an end date. We have also decided to use the standard ISO
8601 date format for the dates, because that will save a lot of parsing hassle. We have also added a
namespace to the element, to make sure our elements can used within other XML documents.

Employee

There is also the notion of an employee in the scenario. Here is what it looks like in XML:

<Enpl oyee xm ns="http:// myconpany. conf hr/schemas" >
<Nunber >42</ Nurrber >
<Fi r st Name>Arj en</ Fi r st Nane>
<Last Nane>Pout sma</ Last Nane>

</ Enpl oyee>

We have used the same namespace as before. If this <Enpl oyee/ > element could be used in other
scenarios, it might make sense to use a different namespace, such as http:// myconpany. com
enpl oyees/ schenas.

HolidayRequest

Both the holiday and employee element can be put in a <Hol i dayRequest / >:

2.3.1.RELEASE Spring Web Services 8

http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html

Spring Web Services Reference Documentation

<Hol i dayRequest xm ns="http:// myconpany. conf hr/schemas">
<Hol i day>
<St art Dat e>2006- 07- 03</ St ar t Dat e>
<EndDat €>2006- 07- 07</ EndDat e>
</ Hol i day>
<Enpl oyee>
<Nunber >42</ Nurmber >
<Fi r st Name>Ar | en</ Fi r st Name>
<Last Nane>Pout sma</ Last Nane>
</ Enpl oyee>
</ Hol i dayRequest >

The order of the two elements does not matter: <Enpl oyee/ > could have been the first element just as
well. What is important is that all of the data is there. In fact, the data is the only thing that is important:
we are taking a data-driven approach.

3.3 Data Contract

Now that we have seen some examples of the XML data that we will use, it makes sense to formalize
this into a schema. This data contract defines the message format we accept. There are four different
ways of defining such a contract for XML.:

 DTDs

XML Schema (XSD)

RELAX NG
* Schematron

DTDs have limited namespace support, so they are not suitable for Web services. Relax NG and
Schematron certainly are easier than XML Schema. Unfortunately, they are not so widely supported
across platforms. We will use XML Schema.

By far the easiest way to create an XSD is to infer it from sample documents. Any good XML editor or
Java IDE offers this functionality. Basically, these tools use some sample XML documents, and generate
a schema from it that validates them all. The end result certainly needs to be polished up, but it's a
great starting point.

Using the sample described above, we end up with the following generated schema:

2.3.1.RELEASE Spring Web Services 9

http://www.w3.org/XML/Schema
http://www.relaxng.org/
http://www.schematron.com/

Spring Web Services Reference Documentation

<xs:schema xm ns: xs="http://ww. w3.

el ement For nDef aul t =" qual i f
tar get Nanespace="http://nyc
xm ns: hr="http://nyconpany
<xs: el ement nanme="Hol i dayReques
<xs: conpl exType>
<XS:sequence>
<xs:el ement ref="hr

<xs:el ement ref="hr:

</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs: el ement nane="Hol i day" >
<xs: conpl exType>
<xs:sequence>

<xs: el ement ref="hr:
<xs: el ement ref="hr:

</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
<xs:el ement name="StartDate" ty
<xs: el enent nane="EndDate" type
<xs: el ement nane="Enpl oyee" >
<xs: conpl exType>
<XS:sequence>
<xs:el ement ref="hr
<xs:el ement ref="hr
<xs: el enent ref="hr
</ xs: sequence>
</ xs: conpl exType>
</ xs: el emrent >
<xs: el ement name="Nunber" type=
<xs: el ement name="FirstName" ty
<xs: el ement nane="Last Name" typ

</ xs: schema>

or g/ 2001/ XM_Schema"
ed"
onmpany. com hr/schemas”
cont hr/schemas" >

tr>
i Hol i day" />
Enpl oyee"/ >

StartDate"/>
EndDat e"/ >

pe="xs: NMTOKEN'/ >
="xs: NMTOKEN" / >

: Nunber "/ >
. First Nane"/>
: Last Name"/ >

"xs:integer"/>
pe="xs: NCNane"/ >
e="xs: NCNane" />

This generated schema obviously can be improved. The first thing to notice is that every type has a

root-level element declaration. This means that the Web service should be able to accept all of these
elements as data. This is not desirable: we only want to accept a <Hol i dayRequest / >. By removing

the wrapping element tags (thus keeping the types), and inlining the results, we can accomplish this.

<xs: conpl exType>
<xs:sequence>

</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >

<xs:sequence>
</ xs: sequence>
</ xs: conpl exType>

<XS:sequence>

</ xs: sequence>
</ xs: conpl exType>
</ xs: schema>

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: hr="http://nyconpany. cont hr/ schemas"
el ement For nDef aul t =" qual i fi ed"
t ar get Nanespace="htt p: // myconpany. cont hr/ schemas" >
<xs: el ement nanme="Hol i dayRequest ">

<xs: el ement nane="Hol i day" type="hr: HolidayType"/>
<xs: el ement nanme="Enpl oyee" type="hr: Enpl oyeeType"/>

<xs: conpl exType nanme="Hol i dayType" >
<xs: el ement nane="StartDate" type="xs: NMTOKEN'/ >
<xs: el ement nane="EndDate" type="xs: NMTOKEN'/ >
<xs: conpl exType name="Enpl oyeeType" >
<xs: el ement nanme="Nunber" type="xs:integer"/>

<xs: el ement name="First Nane" type="xs: NCNane"/ >
<xs: el enent nane="Last Nane" type="xs: NCNanme"/>

2.3.1.RELEASE

Spring Web Services

10

Spring Web Services Reference Documentation

The schema still has one problem: with a schema like this, you can expect the following messages to
validate:

<Hol i dayRequest xm ns="http://myconpany. con hr/schemas">
<Hol i day>
<StartDate>this is not a date</Start Date>
<EndDat e>nei ther is this</EndDate>
</ Hol i day>
<l-- ... -->
</ Hol i dayRequest >

Clearly, we must make sure that the start and end date are really dates. XML Schema has an excellent
built-in dat e type which we can use. We also change the NCNanes to st r i ngs. Finally, we change the
sequence in <Hol i dayRequest/ > to al | . This tells the XML parser that the order of <Hol i day/ >
and <Enpl oyee/ > is not significant. Our final XSD now looks like this:

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: hr="http:// nyconpany. com hr/ schenas"
el ement For nDef aul t =" qual i fi ed"
t ar get Namespace="htt p: // myconpany. conf hr/ schemas" >
<xs: el ement nane="Hol i dayRequest ">
<xs: conpl exType>

<xs:all >
<xs: el ement nane="Hol i day" type="hr: HolidayType"/> O
<xs: el ement nanme="Enpl oyee" type="hr:Enpl oyeeType"/>

</xs:all>

</ xs: conpl exType>
</ xs: el enent >
<xs: conpl exType nanme="Hol i dayType" >
<xs:sequence>
<xs: el ement nane="StartDate" type="xs:date"/>
<xs: el ement nane="EndDate" type="xs:date"/> O
</ xs: sequence> O
</ xs: conpl exType>
<xs: conpl exType name="Enpl oyeeType" >
<xs:sequence>
<xs: el ement nane="Nunber" type="xs:integer"/>
<xs: el ement name="First Nanme" type="xs:string"/>
<xs: el enent nane="Last Name" type="xs:string"/> O
</ xs: sequence> O
</ xs: conpl exType>
</ xs: schenma>

O all tellsthe XML parser that the order of <Hol i day/ > and <Enpl oyee/ > is not significant.

O We use the xsd: dat e data type, which consist of a year, month, and day, for <St art Dat e/ >
and <EndDat e/ >.

0 xsd: stringis used for the first and last name.

We store this file as hr . xsd.

3.4 Service contract

A service contract is generally expressed as a WSDL file. Note that in Spring-WS, writing the WSDL
by hand is not required. Based on the XSD and some conventions, Spring-WS can create the WSDL
for you, as explained in the section entitled Section 3.6, “Implementing the Endpoint”. You can skip
to the next section if you want to; the remainder of this section will show you how to write your own
WSDL by hand.

2.3.1.RELEASE Spring Web Services 11

http://www.w3.org/TR/wsdl

Spring Web Services Reference Documentation

We start our WSDL with the standard preamble, and by importing our existing XSD. To separate the
schema from the definition, we will use a separate namespace for the WSDL definitions: htt p://
myconpany. com hr/ definitions.

<wsdl : definitions xm ns:wsdl ="http://schemas. xn soap. org/ wsdl /"
xm ns: soap="http://schenas. xnl soap. or g/ wsdl / soap/ "
xm ns: schema="ht t p: // nyconpany. conl hr/ schenas"
xm ns: tns="http://myconpany. cont hr/ defi nitions"
t ar get Namespace="htt p: // myconpany. conf hr/definitions">
<wsdl : t ypes>
<xsd: schema xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >
<xsd:inmport namespace="http:// myconpany.con hr/schemas" schemaLocati on="hr.xsd"/>
</ xsd: schema>
</wsdl : types>

Next, we add our messages based on the written schema types. We only have one message: one with
the <Hol i dayRequest / > we put in the schema:

<wsdl : ressage nane="Hol i dayRequest ">
<wsdl : part el enent ="schema: Hol i dayRequest” nane="Hol i dayRequest"/>
</ wsdl : ressage>

We add the message to a port type as an operation:

<wsdl : port Type name="HumanResource">
<wsdl : operati on name="Hol i day" >
<wsdl : i nput nmessage="tns: Hol i dayRequest" nane="Hol i dayRequest"/>
</ wsdl : oper ati on>
</ wsdl : port Type>

That finished the abstract part of the WSDL (the interface, as it were), and leaves the concrete part.
The concrete part consists of a bi ndi ng, which tells the client how to invoke the operations you've just
defined; and a ser vi ce, which tells it where to invoke it.

Adding a concrete part is pretty standard: just refer to the abstract part you defined previously, make
sure you use document/literal for the soap: bi ndi ng elements (r pc/ encoded is deprecated), pick
a soapAct i on for the operation (in this case htt p: // nyconpany. com Request Hol i day, but any
URI will do), and determine the | ocati on URL where you want request to come in (in this case
http:// nyconpany. com humanr esour ces):

2.3.1.RELEASE Spring Web Services 12

Spring Web Services Reference Documentation

<wsdl : definitions xm ns:wsdl ="http://schemas. xm soap. org/ wsdl /"
xm ns: soap="http://schenas. xnl soap. or g/ wsdl / soap/ "
xm ns: schema="http: // nyconpany. conl hr/ schemas"
xm ns: tns="http://myconpany. com hr/definitions"
t ar get Nanespace="htt p: // myconpany. cont hr/ def i ni ti ons">
<wsdl : types>
<xsd: schema xm ns: xsd="htt p: //ww. w3. or g/ 2001/ XM_Schema" >
<xsd: i nport nanmespace="http://myconpany. conf hr/schemas" 0
schemaLocati on="hr. xsd"/ >
</ xsd: schema>
</wsdl : types>

<wsdl : ressage nane="Hol i dayRequest "> O
<wsdl : part el enent ="schema: Hol i dayRequest" nanme="Hol i dayRequest"/ > O
</ wsdl : nessage>
<wsdl : port Type name="HumanResour ce"> O
<wsdl : operation name="Hol i day" >
<wsdl : i nput message="tns: Hol i dayRequest" nane="Hol i dayRequest"/> O

</ wsdl : operati on>
</ wsdl : port Type>

<wsdl : bi ndi ng name="HumanResour ceBi ndi ng" type="tns: HumanResour ce" > oo
<soap: bi ndi ng styl e="docunent” O
transport="http://schenmas. xnl soap. or g/ soap/ http"/> 0
<wsdl : operati on name="Hol i day" >
<soap: operation soapActi on="http://myconpany. conl Request Hol i day"/ > 0

<wsdl : i nput nane="Hol i dayRequest ">
<soap: body use="literal"/> O
</wsdl : i nput >
</ wsdl : operati on>
</ wsdl : bi ndi ng>
<wsdl : servi ce name="HumanResour ceServi ce">
<wsdl : port bindi ng="tns: HumanResour ceBi ndi ng" name="HumanResour cePort" > 0
<soap: address | ocation="http://|ocal host: 8080/ hol i dayService/"/> O
</ wsdl : port>
</ wsdl : servi ce>
</wsdl : definitions>

O We import the schema defined in Section 3.3, “Data Contract”.

0 We define the Hol i dayRequest message, which gets used in the port Type.

O The Hol i dayRequest type is defined in the schema.

O We define the HumanResour ce port type, which gets used in the bi ndi ng.

O We define the HumanResour ceBi ndi ng binding, which gets used in the port .

0 We use a document/literal style.

0 Theliteralhttp://schenmas. xnm soap. or g/ soap/ ht t p signifies a HTTP transport.

O The soapActi on attribute signifies the SOAPAct i on HTTP header that will be sent with every
request.

O Thehttp://1ocal host: 8080/ hol i dayServi ce/ address isthe URL where the Web service

can be invoked.

This is the final WSDL. We will describe how to implement the resulting schema and WSDL in the next
section.

3.5 Creating the project

In this section, we will be using Maven3 to create the initial project structure for us. Doing so is not
required, but greatly reduces the amount of code we have to write to setup our HolidayService.

The following command creates a Maven3 web application project for us, using the Spring-WS archetype
(that is, project template)

2.3.1.RELEASE Spring Web Services 13

http://maven.apache.org/

Spring Web Services Reference Documentation

nvn archetype: create - DarchetypeG oupl d=or g. spri ngf ranmewor k. ws \
- DarchetypeArtifactld=spring-ws-archetype \
- Dar chet ypeVer si on= \
- Dgr oupl d=com nyconpany. hr \
-Dartifactld=holidayService

This command will create a new directory called hol i daySer vi ce. In this directory, thereisa' src/
mai n/ webapp' directory, which will contain the root of the WAR file. You will find the standard
web application deployment descriptor ' WEB- | NF/ web. xm ' here, which defines a Spring-WS
MessageDi spat cher Ser vl et and maps all incoming requests to this servlet.

<web- app xm ns="http://java. sun. conf xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocation="http://java.sun.com xm /ns/j 2ee
http://java. sun. coml xm / ns/j 2ee/ web- app_2_4. xsd"
version="2.4">

<di spl ay- name>MyConpany HR Hol i day Servi ce</di spl ay- name>
play M Conpany y play

<!-- take especial notice of the name of this servliet -->
<servl et>

<servl et - name>spri ng- ws</ servl et - name>

<servl et-cl ass>org. springframework. ws. transport. http. MessageDi spat cher Servl et </ servl et -cl ass>
</ servlet>

<servl et - mappi ng>
<servl et - nanme>spri ng- ws</ ser vl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

In addition to the above ' VEB- | NF/ web. xm ' file, you will also need another, Spring-WS-specific
configuration file, named ' VEB- | NF/ spri ng-ws-servl et. xm ' . This file contains all of the Spring-
WS-specific beans such as EndPoi nt s, WebSer vi ceMessageRecei ver s, and suchlike, and is used
to create a new Spring container. The name of this file is derived from the name of the attendant
servlet (in this case ' spring-ws') with ' -servl et.xm ' appended to it. So if you defined a
MessageDi spat cher Ser vl et with the name ' dynami te', the name of the Spring-WS-specific
configuration file would be ' VEB- | NF/ dynani t e-servl et. xm ' .

(You can see the contents of the " WEB- | NF/ spri ng-ws-servl et.xmn ' file for this example in ???.)

Once you had the project structure created, you can put the schema and wsdl from previous section
into ' VEB- | NF/ ' folder.

3.6 Implementing the Endpoint

In Spring-WS, you will implement Endpoints to handle incoming XML messages. An endpoint is typically
created by annotating a class with the @ndpoi nt annotation. In this endpoint class, you will create
one or more methods that handle incoming request. The method signatures can be quite flexible: you
can include just about any sort of parameter type related to the incoming XML message, as will be
explained later.

Handling the XML Message

In this sample application, we are going to use JDom 2 to handle the XML message. We are also using
XPath, because it allows us to select particular parts of the XML JDOM tree, without requiring strict
schema conformance.

2.3.1.RELEASE Spring Web Services 14

http://www.jdom.org
https://www.w3.org/TR/xpath20/

Spring Web Services Reference Documentation

package com myconpany. hr.ws;

inmport java.text.ParseException;
inport java.text.Sinpl eDat eFor mat ;
inport java.util.Arrays;

inport java.util.Date;

import org.springframework. beans. factory. annot ati on. Aut ow r ed;

inmport org.springframework.ws. server. endpoi nt. annot ati on. Endpoi nt ;
inport org.springframework.ws. server. endpoi nt. annot ati on. Payl oadRoot ;
inport org.springfranmework.ws. server. endpoi nt. annot ati on. Request Payl oad;

i mport com nyconpany. hr. servi ce. HumanResour ceSer vi ce;
inmport org.]jdonR. El enent;

inmport org.jdon2. JDOVEXcepti on;

inport org.jdonR. Nanespace;

inport org.jdonR.filter.Filters;

inport org.jdonR. xpat h. XPat hExpr essi on;

import org.jdonR. xpat h. XPat hFact ory;

@Endpoi nt 0
public class HolidayEndpoi nt {

private static final String NAMESPACE URI = "http://myconpany. con hr/schemas";
private XPat hExpressi on<El enent > st art Dat eExpr essi on;

private XPat hExpressi on<El enment > endDat eExpr essi on;

private XPat hExpressi on<El ement > first NameExpressi on;

private XPat hExpressi on<El enent > | ast NaneExpr essi on;

private HumanResour ceServi ce humanResour ceServi ce;
O
@Aut owi r ed
publi ¢ Hol i dayEndpoi nt (HumanResour ceServi ce humanResour ceServi ce) throws JDOVException {
t hi s. humanResour ceServi ce = hunmanResour ceSer vi ce;

Nanmespace nanespace = Nanespace. get Nanmespace("hr", NAMESPACE_URI);

XPat hFact ory xPathFactory = XPat hFactory.instance();

st art Dat eExpressi on = xPat hFactory. conpile("//hr:StartDate", Filters.elenment(), null,
nanmespace) ;

endDat eExpr essi on = xPat hFactory. conpile("//hr:EndDate", Filters.elenment(), null, nanmespace);

firstNaneExpressi on = xPat hFactory. conpile("//hr:FirstName", Filters.elenment(), null,
nanmespace) ;

| ast NameExpr essi on = xPat hFactory. conpil e("//hr:Last Name", Filters.elerment(), null, nanespace);

@ayl oadRoot (namespace = NAMESPACE URI, |ocal Part = "Hol i dayRequest™") O
public voi d handl eHol i dayRequest (@Request Payl oad El enment hol i dayRequest) throws ExcepOtion {
Date startDate = parseDate(start Dat eExpression, holidayRequest);
Dat e endDate = parseDat e(endDat eExpressi on, hol i dayRequest);
String nanme = firstNaneExpression. eval uat eFi rst(hol i dayRequest).getText() + " " +
| ast NameExpr essi on. eval uat eFi r st (hol i dayRequest). get Text () ;

humanResour ceSer vi ce. bookHol i day(start Date, endDate, nane);

private Date parseDate(XPat hExpressi on<El ement > expression, Elenent el ement) throws ParseException {
El enent result = expression. eval uat eFirst (el enent);
if (result '=null) {
Si npl eDat eFor mat dat eFor mat = new Si npl eDat eFor mat ("yyyy- Mt dd") ;
return dateFormat. parse(result.getText());
} else {
throw new ||| egal Argunent Excepti on("Could not evaluate [" + expression + "] on [" + el enent
+ 1)
}

2.3.1.RELEASE Spring Web Services

Spring Web Services Reference Documentation

0 The Hol i dayEndpoi nt is annotated with @ndpoi nt . This marks the class as a special sort of
@onponent , suitable for handling XML messages in Spring-WS, and also making it eligible for
suitable for component scanning.

0 The Hol i dayEndpoi nt requires the HumanResour ceSer vi ce business service to operate, so
we inject the dependency via the constructor and annotate it with @\ut owi r ed.

Next, we set up XPath expressions using the JDOM2 API. There are four expressions: //
hr: St art Dat e for extracting the <St art Dat e> text value, / / hr : EndDat e for extracting the
end date and two for extracting the names of the employee.

0 The @ayl oadRoot annotation tells Spring-WS that the handl eHol i dayRequest method is
suitable for handling XML messages. The sort of message that this method can handle is indicated
by the annotation values, in this case, it can handle XML elements that have the Hol i dayRequest
local part and the ht t p: / / myconpany. coni hr/ schemas namespace.

More information about mapping messages to endpoints is provided in the next section.

0 The handl eHol i dayRequest (..) method is the main handling method method, which
gets passed with the <Hol i dayRequest/ > element from the incoming XML message. The
@request Payl oad annotation indicates that the hol i dayRequest parameter should be
mapped to the payload of the request message.

We use the XPath expressions to extract the string values from the XML messages, and convert
these values to Dat e objects using a Si npl eDat eFor mat (the par seDat a method).

With these values, we invoke a method on the business service. Typically, this will result in a
database transaction being started, and some records being altered in the database.

Finally, we define a voi d return type, which indicates to Spring-WS that we do not want to send a
response message. If we wanted a response message, we could have returned a JDOM Element
that represents the payload of the response message.

Using JDOM is just one of the options to handle the XML: other options include DOM, dom4j, XOM,
SAX, and StAX, but also marshalling techniques like JAXB, Castor, XMLBeans, JiBX, and XStream,
as is explained in the next chapter. We chose JDOM because it gives us access to the raw XML, and
because itis based on classes (not interfaces and factory methods as with W3C DOM and dom4j), which
makes the code less verbose. We use XPath because it is less fragile than marshalling technologies:
we don't care for strict schema conformance, as long as we can find the dates and the name.

Because we use JDOM, we must add some dependencies to the Maven pom xm , which is in the root
of our project directory. Here is the relevant section of the POM:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. ws</ gr oupl d>
<artifactld>spring-ws-core</artifactld>
<ver si on></ ver si on>
</ dependency>
<dependency>
<groupl d>j donx/ gr oupl d>
<artifactld> donk/artifactld>
<versi on>2. 0. 1</ ver si on>
</ dependency>
<dependency>
<gr oupl d>j axen</ gr oupl d>
<artifactld> axen</artifactld>
<versi on>1. 1</ ver si on>
</ dependency>
</ dependenci es>

2.3.1.RELEASE Spring Web Services 16

Spring Web Services Reference Documentation

Here is how we would configure these classes in our spring-ws-servlet.xm Spring XML
configuration file, by using component scanning. We also instruct Spring-WS to use annotation-driven
endpoints, with the <sws: annot ati on- dri ven> element.

<beans xm ns="http://ww. spri ngfranmework. or g/ schenma/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: cont ext ="http://ww. spri ngframewor k. or g/ schema/ cont ext "

xm ns: sws="http://ww. springfranmework. or g/ schena/ web- servi ces"

xsi : schemalLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans http://wwm spri ngframework. or g/ schena/
beans/ spri ng- beans- 3. 0. xsd

ht t p: // www. spri ngf ramewor k. or g/ schenma/ web- servi ces http://ww. springfranmework. or g/ scherma/ web- servi ces/
web- servi ces- 2. 0. xsd

http://ww. springfranework. org/ schema/ context http://ww. springfranework. org/ schena/ cont ext/ spri ng-
cont ext - 3. 0. xsd" >

<cont ext : conponent - scan base- package="com myconpany. hr"/>
<sws: annot ati on-driven/>

</ beans>

Routing the Message to the Endpoint

As part of writing the endpoint, we also used the @ayl oadRoot annotation to indicate which sort of
messages can be handled by the handl eHol i dayRequest method. In Spring-WS, this process is the
responsibility of an Endpoi nt Mappi ng. Here we route messages based on their content, by using a
Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng. The annotation used above:

@Pay| oadRoot (nanespace = "http://nmyconpany. conl hr/schemas", |ocal Part = "Hol i dayRequest")

basically means that whenever an XML message is received with the namespace http://
nmyconpany. com hr/schenmas and the Hol i dayRequest local name, it will be routed to the
handl eHol i dayRequest method. By using the <sws: annotation-driven> element in our
configuration, we enable the detection of the @ayl oadRoot annotations. It is possible (and quite
common) to have multiple, related handling methods in an endpoint, each of them handling different
XML messages.

There are also other ways to map endpoints to XML messages, which will be described in the next
chapter.

Providing the Service and Stub implementation

Now that we have the Endpoint, we need HunanResour ceSer vi ce and its implementation for use
by Hol i dayEndpoi nt .

package com nyconpany. hr. servi ce;
inport java.util.Date;
public interface HumanResourceService {

voi d bookHol i day(Date startDate, Date endDate, String nane);
}

For tutorial purposes, we will use a simple stub implementation of the HunanResour ceSer vi ce.

2.3.1.RELEASE Spring Web Services 17

Spring Web Services Reference Documentation

package com nyconpany. hr. servi ce;

inmport java.util.Date;

import org.springfranmework. stereotype. Servi ce;

@er vi ce m]
public class StubHumanResourceService inpl enents HunmanResour ceService {

public void bookHol i day(Date startDate, Date endDate, String nanme) {
System out. println("Booking holiday for [" + startDate + "-" + endDate + "] for [" + name + "]

O The StubHumanResourceService is annotated with @bervi ce. This marks the class
as a business facade, which makes this a candidate for injection by @Autowired in
Hol i dayEndpoi nt .

3.7 Publishing the WSDL

Finally, we need to publish the WSDL. As stated in Section 3.4, “Service contract”, we don't need to
write a WSDL ourselves; Spring-WS can generate one for us based on some conventions. Here is how
we define the generation:

<sws: dynam c-wsdl id="holiday"
port TypeNanme="HumanResour ce"
| ocati onUri ="/hol i dayService/"
t ar get Nanespace="ht t p: // myconpany. cont hr/ def i ni ti ons">
<sws: xsd | ocation="/WEB-| NF/ hr. xsd"/ >
</ sws: dynami c- wsdl >

O 0Oo0oodg

0 The id determines the URL where the WSDL can be retrieved. In this case, the id is hol i day,
which means that the WSDL can be retrieved as hol i day. wsdl in the servlet context. The full
URL will typically be ht t p: / /| ocal host : 8080/ hol i daySer vi ce/ hol i day. wsdl .

O Next, we set the WSDL port type to be HunanResour ce.

O We set the location where the service can be reached: / hol i daySer vi ce/ . We use a relative
URI and we instruct the framework to transform it dynamically to an absolute URI. Hence, if the
service is deployed to different contexts we don't have to change the URI manually. For more
information, please refer to the section called “Automatic WSDL exposure”

For the location transformation to work, we need to add an init parameter to spri ng- ws servlet
inweb. xm :

<init-paranm>
<par am name>t r ansf or MAédl Locat i ons</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-paranmp
0 We define the target namespace for the WSDL definition itself. Setting this attribute is not required.
If not set, the WSDL will have the same namespace as the XSD schema.
0 The xsd element refers to the human resource schema we defined in Section 3.3, “Data Contract”.

We simply placed the schema in the VEB- | NF directory of the application.

You can create a WAR file using mvn install. If you deploy the application (to Tomcat, Jetty, etc.), and
point your browser at this location, you will see the generated WSDL. This WSDL is ready to be used
by clients, such as soapUl, or other SOAP frameworks.

That concludes this tutorial. The tutorial code can be found in the full distribution of Spring-WS. The
next step would be to look at the echo sample application that is part of the distribution. After that, look

2.3.1.RELEASE Spring Web Services 18

http://localhost:8080/holidayService/holiday.wsdl
http://www.soapui.org/

Spring Web Services Reference Documentation

at the airline sample, which is a bit more complicated, because it uses JAXB, WS-Security, Hibernate,
and a transactional service layer. Finally, you can read the rest of the reference documentation.

2.3.1.RELEASE Spring Web Services 19

Part Il. Reference

This part of the reference documentation details the various components that comprise Spring Web
Services. This includes a chapter that discusses the parts common to both client- and server-side WS, a
chapter devoted to the specifics of writing server-side Web services, a chapter about using Web services
on the client-side, and a chapters on using WS-Security.

Spring Web Services Reference Documentation

4. Shared components

In this chapter, we will explore the components which are shared between client- and server-side Spring-
WS development. These interfaces and classes represent the building blocks of Spring-WS, so it is
important to understand what they do, even if you do not use them directly.

4.1 Web service messages

WebSer vi ceMessage

One of the core interfaces of Spring Web Services is the WebSer vi ceMessage. This interface
represents a protocol-agnostic XML message. The interface contains methods that provide
access to the payload of the message, in the form of a javax. xnl .transform Source or a
javax.xm . transform Resul t. Source and Resul t are tagging interfaces that represent an
abstraction over XML input and output. Concrete implementations wrap various XML representations,
as indicated in the following table.

Source/Result implementation Wraps XML representation

j avax. xm . transf orm dom DOVSour ce or g. wdc. dom Node

javax. xm . transf orm dom DOVResul t or g. wdc. dom Node

javax. xm . transf orm sax. SAXSour ce org. xm . sax. | nput Sour ce and

org. xm . sax. XM_Reader

javax. xm . transform sax. SAXResul t org. xm . sax. Cont ent Handl er

javax.xm . transform stream StreanSourdeava.io. File, java.io.lnputStream or
j ava. i o. Reader

javax. xm . transform stream StreanResuljtava.io. File, java.io. Qut put Stream or
java.io.Witer

In addition to reading from and writing to the payload, a Web service message can write itself to an
output stream.

SoapMessage

The SoapMessage is a subclass of WebSer vi ceMessage. It contains SOAP-specific methods, such
as getting SOAP Headers, SOAP Faults, etc. Generally, your code should not be dependent on
SoapMessage, because the content of the SOAP Body (the payload of the message) can be obtained
via get Payl oadSour ce() and get Payl oadResul t () in the WebSer vi ceMessage. Only when it
is necessary to perform SOAP-specific actions, such as adding a header, getting an attachment, etc.,
should you need to cast WebSer vi ceMessage to SoapMessage.

Message Factories

Concrete message implementations are created by a WebSer vi ceMessageFact ory. This factory
can create an empty message, or read a message based on an input stream. There are two
concrete implementations of WebSer vi ceMessageFact or y; one is based on SAAJ, the SOAP with
Attachments API for Java, the other based on Axis 2's AXIOM, the AXis Object Model.

2.3.1.RELEASE Spring Web Services 21

Spring Web Services Reference Documentation

Saaj SoapMessageFact ory

The Saaj SoapMessageFactory uses the SOAP with Attachments APl for Java to create
SoapMessage implementations. SAAJ is part of J2EE 1.4, so it should be supported under most modern
application servers. Here is an overview of the SAAJ versions supplied by common application servers:

Application Server SAAJ Version
BEA WebLogic 8 1.1

BEA WebLogic 9 1.1/1.2

IBM WebSphere 6 1.2

SUN Glassfish 1 1.3

! Weblogic 9 has a known bug in the SAAJ 1.2 implementation: it implement all the 1.2 interfaces, but throws a
Unsupport edOper at i onExcept i on when called. Spring Web Services has a workaround: it uses SAAJ 1.1 when operating
on WebLogic 9.

Additionally, Java SE 6 includes SAAJ 1.3. You wire up a Saaj SoapMessageFact ory like so:

<bean i d="nessageFactory" cl ass="org. springfranmework. ws. soap. saaj . Saaj SoapMessageFactory" />

Note

SAAJ is based on DOM, the Document Object Model. This means that all SOAP messages are
stored in memory. For larger SOAP messages, this may not be very performant. In that case, the
Axi onmSoapMessageFact or y might be more applicable.

Axi onSoapMessageFact ory

The Axi onSoapMessageFactory uses the AXis 2 Object Model to create SoapMessage
implementations. AXIOM is based on StAX, the Streaming API for XML. StAX provides a pull-based
mechanism for reading XML messages, which can be more efficient for larger messages.

To increase reading performance on the Axi onSoapMessageFactory, you can set the
payloadCaching property to false (default is true). This will read the contents of the SOAP body directly
from the socket stream. When this setting is enabled, the payload can only be read once. This means
that you have to make sure that any pre-processing (logging etc.) of the message does not consume it.

You use the Axi onSoapMessageFact ory as follows:

<bean id="nmessageFactory" class="org. springframework.ws. soap. axi om Axi onSoapMessageFact ory" >
<property nanme="payl oadCachi ng" val ue="true"/>
</ bean>

In addition to payload caching, AXIOM also supports full streaming messages, as defined in the
St r eam ngWebSer vi ceMessage. This means that the payload can be directly set on the response
message, rather than being written to a DOM tree or buffer.

Full streaming for AXIOM is used when a handler method returns a JAXB2-supported object. It will
automatically set this marshalled object into the response message, and write it out to the outgoing
socket stream when the response is going out.

2.3.1.RELEASE Spring Web Services 22

Spring Web Services Reference Documentation

For more information about full streaming, refer to the class-level Javadoc for
St r eam ngWebSer vi ceMessage and St r eam ngPayl oad.

SOAP 1.1o0r1.2

Both the Saaj SoapMessageFact ory and the Axi onSoapMessageFact ory have a soapVersion
property, where you can inject a SoapVer si on constant. By default, the version is 1.1, but you can
set it to 1.2 like so:

<beans xm ns="http://ww. spri ngframework. or g/ schena/ beans"
xm ns:util="http://ww.springfranework. org/schena/util"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://ww. springframework. org/ schema/ uti
http://ww. springframework. org/ schema/ util/spring-util-2.0.xsd">

<bean i d="nessageFactory" cl ass="org. springfranmework.ws. soap. saaj . Saaj SoapMessageFact ory" >
<property nane="soapVersion">
<util:constant static-field="org.springframework.ws.soap. SoapVersi on. SOAP_12"/ >
</ property>
</ bean>

</ beans>

Inthe example above, we define a Saaj SoapMessageFact or y that only accepts SOAP 1.2 messages.

Caution

Even though both versions of SOAP are quite similar in format, the 1.2 version is not backwards
compatible with 1.1 because it uses a different XML namespace. Other major differences between
SOAP 1.1 and 1.2 include the different structure of a Fault, and the fact that SOAPAct i on HTTP
headers are effectively deprecated, thought they still work.

One important thing to note with SOAP version numbers, or WS-* specification version numbers
in general, is that the latest version of a specification is generally not the most popular version.
For SOAP, this means that currently, the best version to use is 1.1. Version 1.2 might become
more popular in the future, but currently 1.1 is the safest bet.

MessageCont ext

Typically, messages come in pairs: a request and a response. A request is created on the client-side,
which is sent over some transport to the server-side, where a response is generated. This response
gets sent back to the client, where it is read.

In Spring Web Services, such a conversation is contained in a MessageCont ext , which has properties
to get request and response messages. On the client-side, the message context is created by the
WebSer vi ceTenpl at e. On the server-side, the message context is read from the transport-specific
input stream. For example, in HTTP, it is read from the Ht t pSer vl et Request and the response is
written back to the Ht t pSer vl et Response.

4.2 Tr ansport Cont ext

One of the key properties of the SOAP protocol is that it tries to be transport-agnostic. This is why,
for instance, Spring-WS does not support mapping messages to endpoints by HTTP request URL, but
rather by mesage content.

2.3.1.RELEASE Spring Web Services 23

Spring Web Services Reference Documentation

However, sometimes it is necessary to get access to the underlying transport, either on the client or
server side. For this, Spring Web Services has the Tr anspor t Cont ext . The transport context allows
access to the underlying WebSer vi ceConnect i on, which typically is a Ht t pSer vl et Connecti on
on the server side; or a Ht t pUr | Connecti on or CommonsHt t pConnect i on on the client side. For
example, you can obtain the IP address of the current request in a server-side endpoint or interceptor
like so:

Transpor t Cont ext context = Transport Cont ext Hol der . get Tr ansport Cont ext () ;

Ht t pSer vl et Connecti on connection = (HttpServletConnection)context.getConnection();
Ht t pSer vl et Request request = connection. get HttpServl et Request ();

String i pAddress = request. get Renot eAddr () ;

4.3 Handling XML With XPath

One of the best ways to handle XML is to use XPath. Quoting [effective-xml], item 35:

XPath is a fourth generation declarative language that allows you to specify which
nodes you want to process without specifying exactly how the processor is supposed
to navigate to those nodes. XPath's data model is very well designed to support
exactly what almost all developers want from XML. For instance, it merges all adjacent
text including that in CDATA sections, allows values to be calculated that skip over
comments and processing instructions™ and include text from child and descendant
elements, and requires all external entity references to be resolved. In practice, XPath
expressions tend to be much more robust against unexpected but perhaps insignificant
changes in the input document.

—Elliotte Rusty Harold

Spring Web Services has two ways to use XPath within your application: the faster XPat hExpr essi on
or the more flexible XPat hTenpl at e.

XPat hExpr essi on

The XPat hExpr essi on is an abstraction over a compiled XPath expression, such as the Java 5
j avax. xm . xpat h. XPat hExpr essi on, or the Jaxen XPat h class. To construct an expression in an
application context, there is the XPat hExpr essi onFact or yBean. Here is an example which uses
this factory bean:

<beans xml ns="http://wwm. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ schenma/ beans
http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans- 2. 0. xsd" >

<bean i d="nameExpressi on" cl ass="org. springframework. xm . xpat h. XPat hExpr essi onFact or yBean" >
<property name="expressi on" val ue="/Cont act s/ Cont act/ Nane"/ >
</ bean>

<bean i d="nyEndpoi nt" cl ass="sanpl e. \yXPat hCl ass" >
<constructor-arg ref="nameExpression"/>

</ bean>

</ beans>

The expression above does not use namespaces, but we could set those using the namespaces
property of the factory bean. The expression can be used in the code as follows:

2.3.1.RELEASE Spring Web Services 24

Spring Web Services Reference Documentation

package sanpl e;
public class MyXPat hCl ass {
private final XPathExpressi on nanmeExpression;

publ i c MyXPat hCl ass(XPat hExpr essi on nanmeExpressi on) {
t hi s. naneExpr essi on = nanmeExpr essi on;

}

public voi d doXPat h(Docunent docunent) {
String name = nanmeExpression. eval uat eAsStri ng(docunent. get Docunent El ement ()) ;
System out. println("Name: " + nane);

For a more flexible approach, you can use a NodeMapper , which is similar to the Rowiapper in Spring's
JDBC support. The following example shows how we can use it:

package sanpl e;
public class MyXPathCl ass {
private final XPathExpression contact Expression;

publ i ¢ MyXPat hCl ass(XPat hExpr essi on cont act Expressi on) {
t hi s. cont act Expressi on = cont act Expr essi on;

}

public voi d doXPat h(Docunent docurent) {
Li st contacts = contact Expressi on. eval uat e(docunent,
new NodeMapper () {
public Object mapNode(Node node, int nodeNun) throws DOVException {
El ement contact El enent = (El ement) node;
El ement naneEl enent = (El enent) contact El enent . get El ement sByTagNanme(" Nane").iten(0);
El ement phoneEl ement = (El ement) contact El enent . get El enent sByTagNane(" Phone").item(0);
return new Cont act (naneEl enent . get Text Cont ent (), phoneEl enent . get Text Content ());
}
5D

/1 do sonmething with l'ist of Contact objects

Similar to mapping rows in Spring JDBC's RowiVapper , each result node is mapped using an anonymous
inner class. In this case, we create a Cont act object, which we use later on.

XPat hTenpl at e

The XPat hExpr essi on only allows you to evaluate a single, pre-compiled expression. A more flexible,
though slower, alternative is the Xpat hTenpl at e. This class follows the common template pattern
used throughout Spring (JdbcTemplate, JImsTemplate, etc.). Here is an example:

package sanpl e;

public class MyXPat hCl ass {
private XPathOperations tenplate = new Jaxpl3XPat hTenpl ate();
public void doXPat h(Source source) {

String name = tenpl ate. eval uat eAsString("/ Cont act s/ Contact/Name", request);
/1 do sonething with nane

2.3.1.RELEASE Spring Web Services 25

Spring Web Services Reference Documentation

4.4 Message Logging and Tracing

When developing or debugging a Web service, it can be quite useful to look at the content of a (SOAP)
message when it arrives, or just before it is sent. Spring Web Services offer this functionality, via the
standard Commons Logging interface.

Caution

Make sure to use Commons Logging version 1.1 or higher. Earlier versions have class loading
issues, and do not integrate with the Log4J TRACE level.

To log all server-side messages, simply set the
org. springframework. ws. server. MessageTraci ng logger to level DEBUG or TRACE.
On the debug level, only the ©payload root element is logged; on the
TRACE level, the entire message content. If you only want to log sent
messages, use the org. springframework. ws. server. MessageTr aci ng. sent logger; or
org. springframewor k. ws. server. MessageTraci ng. r ecei ved to log received messages.

On the client-side, similar loggers exist:
org. springframework. ws. client. MessageTraci ng. sent and
org. springframework. ws. client. MessageTraci ng. recei ved.

Here is an example | og4j . pr operti es configuration, logging the full content of sent messages on
the client side, and only the payload root element for client-side received messages. On the server-side,
the payload root is logged for both sent and received messages:

| 0g4j . r oot Cat egory=I NFO, st dout

1 0g4j . 1 ogger. org. spri ngfranmework. ws. cl i ent. MessageTraci ng. sent =TRACE
| 0g4j . | ogger. org. springframewor k. ws. cl i ent. MessageTr aci ng. r ecei ved=DEBUG

| og4j . | ogger. org. springframewor k. ws. server. MessageTr aci ng=DEBUG
| og4j . appender . st dout =or g. apache. | og4j . Consol eAppender

| 0og4j . appender . st dout . | ayout =or g. apache. | og4j . Patt er nLayout
| 0g4j . appender. st dout . | ayout. Conversi onPattern=% [%{3}] % &

With this configuration, a typical output will be:

TRACE [client. MessageTraci ng. sent] Sent request [<SOAP- ENV: Envel ope xnil ns: SOAP- ENV=". ..

DEBUG [server. MessageTr aci ng. recei ved] Recei ved request [Saaj SoapMessage {http://

exanpl e. con} r equest]

DEBUG [server. MessageTraci ng. sent] Sent response [Saaj SoapMessage {http://exanpl e. con}response]
DEBUG [cl i ent. MessageTraci ng. recei ved] Recei ved response [Saaj SoapMessage {http://

exanpl e. cont response]

2.3.1.RELEASE Spring Web Services 26

Spring Web Services Reference Documentation

5. Creating a Web service with Spring-WS

5.1 Introduction

Spring-WS's server-side support is designed around a MessageDi spat cher that dispatches incoming
messages to endpoints, with configurable endpoint mappings, response generation, and endpoint
interception. Endpoints are typically annotated with the @ndpoi nt annotation, and have one or more
handling methods. These methods handle incoming XML request messages by inspecting parts of the
message (typically the payload), and create some sort of response. You annotate the method with
another annotation, typically @ayl oadRoot , to indicate what sort of messages it can handle.

Spring-WS's XML handling is extremely flexible. An endpoint can choose from a large amount of XML
handling libraries supported by Spring-WS, including the DOM family (W3C DOM, JDOM, dom4j, and
XOM), SAX or StAX for faster performance, XPath to extract information from the message, or even
marshalling techniques (JAXB, Castor, XMLBeans, JiBX, or XStream) to convert the XML to objects
and vice-versa.

5.2 The MessageDi spat cher

The server-side of Spring-WS is designed around a central class that dispatches incoming XML
messages to endpoints. Spring-WS's MessageDi spat cher is extremely flexible, allowing you to use
any sort of class as an endpoint, as long as it can be configured in the Spring 1oC container. In a way, the
message dispatcher resembles Spring's Di spat cher Ser vl et , the “Front Controller” used in Spring
Web MVC.

The processing and dispatching flow of the MessageDi spat cher is illustrated in the following
sequence diagram.

response

‘MessageDispatcher| .EndpointMapping EndpointAdapter endpoint
dispatch{request) E E E :
gelEndpoint{request) ' : :
___endpoint | i
supportsiendpaint) - i |
______ invoke(request, endpoint) | |
' invoke(request) |
response

The request processing workflow in Spring Web Services

When a MessageDi spat cher is set up for use and a request comes in for that specific dispatcher, said
MessageDi spat cher starts processing the request. The list below describes the complete process a
request goes through when handled by a MessageDi spat cher:

2.3.1.RELEASE Spring Web Services 27

Spring Web Services Reference Documentation

1. An appropriate endpoint is searched for using the configured Endpoi nt Mappi ng(s) . If an endpoint
is found, the invocation chain associated with the endpoint (pre-processors, post-processors, and
endpoints) will be executed in order to create a response.

2. An appropriate adapter is searched for the endpoint. The MessageDi spat cher delegates to this
adapter to invoke the endpoint.

3. Ifaresponse is returned, it is sent on its way. If no response is returned (which could be due to a pre-
or post-processor intercepting the request, for example, for security reasons), no response is sent.

Exceptions that are thrown during handling of the request get picked up by any of the endpoint exception
resolvers that are declared in the application context. Using these exception resolvers allows you to
define custom behaviors (such as returning a SOAP Fault) in case such exceptions get thrown.

The MessageDi spat cher has several properties, for setting endpoint adapters, mappings, exception
resolvers. However, setting these properties is not required, since the dispatcher will automatically
detect all of these types that are registered in the application context. Only when detection needs to be
overriden, should these properties be set.

The message dispatcher operates on a message context, and not transport-specific input stream
and output stream. As a result, transport specific requests need to read into a MessageCont ext .
For HTTP, this is done with a WebSer vi ceMessageRecei ver Handl er Adapt er, which is a
Spring Web Handl er | nt er cept or, so that the MessageDi spat cher can be wired in a standard
Di spat cher Servl et. There is a more convenient way to do this, however, which is shown in the
section called “MessageDi spat cher Ser vl et .

5.3 Transports

Spring Web Services supports multiple transport protocols. The most common is the HTTP transport, for
which a custom servlet is supplied, but it is also possible to send messages over JMS, and even email.

MessageDi spat cher Ser vl et

The MessageDi spat cher Servl et is a standard Ser vl et which conveniently extends from the
standard Spring Web Di spat cher Ser vl et , and wraps a MessageDi spat cher . As such, itcombines
the attributes of these into one: as a MessageDi spat cher , it follows the same request handling flow
as described in the previous section. As a servlet, the MessageDi spat cher Ser vl et is configured
in the web. xm of your web application. Requests that you want the MessageDi spat cher Ser vl et
to handle will have to be mapped using a URL mapping in the same web. xm file. This is standard
Java EE servlet configuration; an example of such a MessageDi spat cher Ser vl et declaration and
mapping can be found below.

<web- app>

<servl et>
<servl et - name>spri ng- ws</ servl et - name>
<servl et-cl ass>org. springframework. ws. transport.http. MessageDi spat cher Servl et </ servl et -cl ass>
<l oad- on- st art up>1</1| oad- on- st art up>

</servlet>

<servl et - mappi ng>
<servl et - name>spri ng- ws</ servl et - name>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

2.3.1.RELEASE Spring Web Services 28

Spring Web Services Reference Documentation

In the example above, all requests will be handled by the 'spring-ws'
MessageDi spat cher Servl et. This is only the first step in setting up Spring Web Services,
because the various component beans used by the Spring-WS framework also need to be
configured; this configuration consists of standard Spring XML <bean/ > definitions. Because the
MessageDi spat cher Ser vl et is a standard Spring Di spat cher Ser vl et , it will look for a file named
[servlet-nane] -servl et.xm in the WEB- | NF directory of your web application and create the
beans defined there in a Spring container. In the example above, that means that it looks for '/ V\EB-
I NF/ spring-ws-servl et.xm". This file will contain all of the Spring Web Services beans such as
endpoints, marshallers and suchlike.

As an alternative for web. xni , if you are running on a Servlet 3+ environment, you can configure
Spring-WS programmatically. For this purpose, Spring-WS provides a number of abstract base classes
that extend the WebApplicationlnitializer interface found in the Spring Framework. If you
are also using @onfi gurati on classes for your bean definitions, you are best of extending the
Abst ract Annot at i onConf i gMessageDi spat cher Servletlnitializer, like so:

public class MyServletlnitializer
ext ends Abstract Annot ati onConfi gMessageDi spatcherServletlnitializer {

@verride
protected C ass<?>[] get Root ConfigCl asses() {
return new Cl ass[]{ M/Root Confi g. cl ass};

}

@verride
protected C ass<?>[] get Servl et Confi gC asses() {
return new C ass[]{ M/Endpoi nt Confi g. cl ass};

}

In the example above, we tell Spring that endpoint bean definitions can be found
in the MEndpointConfig class (which is a @onfiguration class). Other bean
definitions (typically services, repositories, etc.) can be found in the MRootConfig
class. By default, the Abst ract Annot at i onConf i gMessageDi spat cher Servl etlnitializer
maps the servlet to two patterns: /services and *.wsdl, though this
can be changed by overriding the getServletMappings() method. For more
details on the programmatic configuration of the MessageDi spatcher Servlet,
refer to the Javadoc of AbstractMessageDi spatcherServletlnitializer and
Abst ract Annot ati onConfi gMessageDi spat cher Servletlnitializer.

Automatic WSDL exposure

The MessageDi spat cher Ser vl et will automatically detect any WedI Def i ni t i on beans defined in
it's Spring container. All such Wsdl Def i ni ti on beans that are detected will also be exposed via a
Wsdl Defi ni ti onHandl er Adapt er ; this is a very convenient way to expose your WSDL to clients
simply by just defining some beans.

By way of an example, consider the following <st at i ¢c- wsdl >definition, defined in the Spring-WS
configuration file (/ VEB- | NF/ [ser vl et - nane] - ser vl et . xnl). Take notice of the value of the 'i d'
attribute, because this will be used when exposing the WSDL.

<sws:static-wsdl id="orders" |ocation="orders.wsdl"/>

Or as @ean method in a @onfi gur ati on class:

2.3.1.RELEASE Spring Web Services 29

Spring Web Services Reference Documentation

@Bean
public SinpleWdl 11Definition orders() {
return new Si npl eWsdl 11Defi ni ti on(new Cl assPat hResour ce("orders.xm "));

}

The WSDL defined in the 'or der s. wsdl ' file on the classpath can then be accessed via GET requests
to a URL of the following form (substitute the host, port and servlet context path as appropriate).

http:/ /1 ocal host: 8080/ spri ng-ws/ orders. wsdl

Note

All W&dI Definition bean definitions are exposed by the MessageDi spat cher Ser vl et
under their bean name with the suffix . wsdl . So if the bean name is echo, the host name
is "server”, and the Servlet context (war name) is "spring-ws", the WSDL can be obtained via
http://server/spring-ws/echo. wsdl

Another nice feature of the MessageDi spatcherServlet (or more correctly the
Wsdl Defi ni ti onHandl er Adapt er) is that it is able to transform the value of the 'l ocati on' of all
the WSDL that it exposes to reflect the URL of the incoming request.

Please note that this 'l ocat i on' transformation feature is off by default.To switch this feature on, you
just need to specify an initialization parameter to the MessageDi spat cher Ser vl et like so:

<web- app>

<servl et >
<servl et - name>spri ng- ws</ servl et - nane>
<servl et-cl ass>org. springframework.ws. transport.http. MessageDi spat cher Servl et </ servl et-cl ass>
<i ni t - paran
<par am nane>t r ansf or Médl Locat i ons</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-paranp
</servlet>

<servl et - mappi ng>
<servl et - name>spri ng- ws</ servl et - name>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

If you use the AbstractAnnotationConfigMessageDi spatcherServlietlnitializer,
enabling transformation is as simple as overriding the i sTr ansf or MAédl Locat i ons() method to
returntrue.

Consult the class-level Javadoc on the WsdI Def i ni ti onHandl er Adapt er class to learn more about
the whole transformation process.

As an alternative to writing the WSDL by hand, and exposing it with <st ati c- wsdl >, Spring Web
Services can also generate a WSDL from an XSD schema. This is the approach shown in Section 3.7,
“Publishing the WSDL". The next application context snippet shows how to create such a dynamic
WSDL file:

<sws: dynami c-wsdl id="orders"
port TypeNanme="Or der s"
l ocationUri="http://1ocal host: 8080/ or der sServi ce/ ">
<sws: xsd | ocati on="0Orders. xsd"/>
</ sws: dynami c- wsdl >

2.3.1.RELEASE Spring Web Services 30

Spring Web Services Reference Documentation

Or, as @ean method:

@Bean

publ i c Defaul t\Wsdl 11Definiti on orders() {
Def aul t Wedl 11Definition definition = new Defaul t Wdl 11Definition();
definition.setPortTypeNane("Orders");
definition.setLocationUi("http://1ocal host: 8080/ ordersServicel/");
definition.set Schema(new Si npl eXsdSchema(new Cl assPat hResour ce("echo. xsd")));

return definition;

The <dynam c- wsdl > element depends on the Def aul t Wsdl 11Def i ni ti on class. This definition
class uses WSDL providers in the org.springframework.ws.wsdl.wsdl11.provider package and the
Provi der BasedWsdl 4] Def i ni ti on to generate a WSDL the first time it is requested. Refer to the
class-level Javadoc of these classes to see how you can extend this mechanism, if necessary.

The Def aul t W&dl 11Def i ni ti on (and therefore, the <dynami c- wsdl > tag) builds a WSDL from a
XSD schema by using conventions. It iterates over all el ement elements found in the schema, and
creates a nessage for all elements. Next, it creates WSDL oper at i on for all messages that end with
the defined request or response suffix. The default request suffix is Request ; the default response suffix
is Response, though these can be changed by setting the requestSuffix and responseSuffix attributes
on <dynani c-wsdl />, respectively. It also builds a port Type, bi ndi ng, and ser vi ce based on
the operations.

For instance, if our Or der s. xsd schema defines the Get Or der sRequest and Get Or der sResponse
elements, <dynam c- wsdl > will create a Get Or der sRequest and Get Or der sResponse message,
and a Get Or der s operation, which is put in a Or der s port type.

If you want to use multiple schemas, either by includes or imports, you will want to put Commons
XMLSchema on the class path. If Commons XMLSchema is on the class path, the above <dynani c-
wsdl > element will follow all XSD imports and includes, and will inline them in the WSDL as a single
XSD. This greatly simplifies the deployment of the schemas, which still making it possible to edit them
separately.

Caution

Even though it can be quite handy to create the WSDL at runtime from your XSDs, there are
a couple of drawbacks to this approach. First off, though we try to keep the WSDL generation
process consistent between releases, there is still the possibility that it changes (slightly). Second,
the generation is a bit slow, though once generated, the WSDL is cached for later reference.

It is therefore recommended to only use <dynani c- wsdl > during the development stages of
your project. Then, we recommend to use your browser to download the generated WSDL, store
it in the project, and expose it with <st at i c- wsdl >. This is the only way to be really sure that
the WSDL does not change over time.

Wiring up Spring-WS in a Di spat cher Ser vl et

As an alternative to the MessageDi spat cher Ser vl et , you can wire up a MessageDi spat cher in
a standard, Spring-Web MVC Di spat cher Ser vl et . By default, the Di spat cher Ser vl et can only
delegate to Cont r ol | er s, but we can instruct it to delegate to a MessageDi spat cher by adding a
WebSer vi ceMessageRecei ver Handl er Adapt er to the servlet's web application context:

2.3.1.RELEASE Spring Web Services 31

Spring Web Services Reference Documentation

<beans>
<bean cl ass="org. springframework.ws.transport.http. WbServi ceMessageRecei ver Handl er Adapt er"/ >
<bean cl ass="org. spri ngfranewor k. web. servl et . handl er. Si npl eUr | Handl er Mappi ng" >
<property nanme="def aul t Handl er" ref="nessageD spatcher"/>

</ bean

<bean i d="nmessageDi spatcher" cl ass="org. spri ngframework.ws. soap. server. SoapMessageDi spat cher"/>

<bean cl ass="org. spri ngframewor k. web. servl et. nvc. met hod. annot ati on. Request Mappi ngHandl er Adapt er"/ >

</ beans>

Note that by explicitly adding the WebSer vi ceMessageRecei ver Handl er Adapt er, the dispatcher
servlet does not load the default adapters, and is unable to handle standard Spring-MVC
@control | ers. Therefore, we add the Request Mappi ngHandl er Adapt er at the end.

In a similar fashion, you can wire up a Wsdl Defi ni ti onHandl er Adapt er to make sure the
Di spat cher Ser vl et can handle implementations of the WsdI Def i ni ti on interface:

<beans>
<bean cl ass="org. springfranmework.ws. transport. http. WbServi ceMessageRecei ver Handl er Adapter "/ >
<bean cl ass="org. spri ngfranmework.ws. transport. http.Wdl DefinitionHandl er Adapter"/>

<bean cl ass="org. spri ngfranewor k. web. servl et . handl er. Si npl eUr | Handl er Mappi ng" >
<property nanme="neppi ngs">
<pr ops>
<prop key="*.wsdl ">myServi ceDefi nition</prop>
</ props>
</ property>
<property nanme="def aul t Handl er" ref="nessageD spatcher"/>
</ bean>

<bean i d="nmessageDi spatcher" cl ass="org. springframework.ws. soap. server. SoapMessageDi spat cher"/>
<bean id="nyServiceDefinition" class="org.springfranmework.ws.wsdl .wsdl 11. Si npl eWsdl 11Defi ni ti on">

<prop name="wsdl " val ue="/WEB- | NF/ mySer vi ceDefi nti on.wsdl "/>
</ bean>

</ beans>

JMS transport

Spring Web Services supports server-side JMS handling through the JMS functionality provided in the
Spring framework. Spring Web Services provides the WebSer vi ceMessageli st ener to pluginto a
Messageli st ener Cont ai ner . This message listener requires a WebSer vi ceMessageFact ory to
and MessageDi spat cher to operate. The following piece of configuration shows this:

2.3.1.RELEASE Spring Web Services 32

Spring Web Services Reference Documentation

<beans>

<bean i d="connecti onFactory" cl ass="org. apache. activeny. Acti veMXonnecti onFact ory">
<property name="broker URL" val ue="vm//I| ocal host ?br oker. persi stent =fal se"/>
</ bean>

<bean i d="nmessageFactory" cl ass="org. springframework.ws. soap. saaj . Saaj SoapMessageFactory"/>

<bean cl ass="org. springframework.jms.|istener. Defaul t MessagelLi st ener Cont ai ner">
<property name="connecti onFactory" ref="connecti onFactory"/>
<property nanme="desti nati onNane" val ue="Request Queue"/>
<property nanme="nessageli stener">
<bean cl ass="org. springfranmework.ws.transport.jnms. WbServi ceMessageli st ener">
<property name="nessageFactory" ref="nessageFactory"/>
<property name="nmessageRecei ver" ref="nmessageD spatcher"/>
</ bean>
</ property>
</ bean>

<bean i d="nmessageDi spatcher" cl ass="org. springfranmework. ws. soap. server. SoapMessageDi spat cher">
<property name="endpoi nt Mappi ngs" >
<bean

cl ass="org. springfranmework.ws. server. endpoi nt. mappi ng. Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng" >
<property nanme="def aul t Endpoi nt">
<bean cl ass="com exanpl e. \y/Endpoi nt"/ >
</ property>
</ bean>
</ property>
</ bean>
</ beans>

Email transport

In addition to HTTP and JMS, Spring Web Services also provides server-side email handling. This
functionality is provided through the Mai | MessageRecei ver class. This class monitors a POP3 or
IMAP folder, converts the email to a WebSer vi ceMessage, sends any response using SMTP. The host
names can be configured through the storeUri, which indicates the mail folder to monitor for requests
(typically a POP3 or IMAP folder), and a transportUri, which indicates the server to use for sending
responses (typically a SMTP server).

How the Mai | MessageRecei ver monitors incoming messages can be configured with a pluggable
strategy: the Moni t ori ngSt r at egy. By default, a polling strategy is used, where the incoming folder is
polled for new messages every five minutes. This interval can be changed by setting the pollinginterval
property on the strategy. By default, all Moni t ori ngSt r at egy implementations delete the handled
messages; this can be changed by setting the deleteMessages property.

As an alternative to the polling approaches, which are quite inefficient, there is a monitoring strategy that
uses IMAP IDLE. The IDLE command is an optional expansion of the IMAP email protocol that allows the
mail server to send new message updates to the Mai | MessageRecei ver asynchronously. If you use a
IMAP server that supports the IDLE command, you can plug in the | mapl dl eMoni t ori ngSt r at egy
into the monitoringStrategy property. In addition to a supporting server, you will need to use JavaMail
version 1.4.1 or higher.

The following piece of configuration shows how to use the server-side email support, overiding the
default polling interval to a value which checks every 30 seconds (30.000 milliseconds):

2.3.1.RELEASE Spring Web Services 33

Spring Web Services Reference Documentation

<beans>
<bean i d="nmessageFactory" class="org.springframework.ws. soap. saaj . Saaj SoapMessageFact ory"/>

<bean i d="nessagi ngRecei ver" cl ass="org. springfranmework.ws.transport. nmail.Mil MessageRecei ver">
<property name="nessageFactory" ref="nessageFactory"/>
<property name="fronl' val ue="Spring-W5 SOAP Server &l t;server@xanple.comigt;"/>
<property name="storeUri" val ue="imap://server:s04p@ map. exanpl e. conf | NBOX"/ >
<property name="transportUri" val ue="sntp://sntp.exanple.coni/>
<property name="nessageRecei ver" ref="nessageDi spatcher"/>
<property nanme="nonitoringStrategy">
<bean cl ass="org. springframework.ws.transport. mail.nonitor.PollingMnitoringStrategy">
<property name="pol linglnterval" val ue="30000"/>
</ bean>
</ property>
</ bean>

<bean i d="nessageDi spat cher" cl ass="org. spri ngframework. ws. soap. server. SoapMessageDi spat cher">
<property nanme="endpoi nt Mappi ngs" >
<bean

class="org. springfranmewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot Annot ati onMet hodEndpoi nt Mappi ng" >
<property nanme="def aul t Endpoi nt">
<bean cl ass="com exanpl e. MyEndpoi nt"/ >
</ property>
</ bean>
</ property>
</ bean>
</ beans>

Embedded HTTP Server transport

Spring Web Services provides a transport based on Sun's JRE 1.6 HTTP server. The embedded
HTTP Server is a standalone server that is simple to configure. It lends itself to a lighter alternative to
conventional servlet containers.

When using the embedded HTTP server, no external deployment descriptor is needed (web. xm).
You only need to define an instance of the server and configure it to handle incoming requests. The
remoting module in the Core Spring Framework contains a convenient factory bean for the HTTP server:
the Si npl eHt t pSer ver Fact or yBean. The most important property is contexts, which maps context
paths to corresponding Ht t pHandl er s.

Spring Web Services provides 2 implementations of the HttpHandler interface:
Wsdl DefinitionHt pHandl er and WebSer vi ceMessageRecei ver Ht t pHandl er. The former
maps an incoming GET request to a Wsdl Defi ni ti on. The latter is responsible for handling
POST requests for web services messages and thus needs a WebServi ceMessageFact ory
(typically a Saaj SoapMessageFactory) and a WebServi ceMessageRecei ver (typically the
SoapMessageDi spat cher) to accomplish its task.

To draw parallels with the servlet world, the contexts property plays the role of serviet
mappings in web. xm and the WebSer vi ceMessageRecei ver Ht t pHandl er is the equivalent of a
MessageDi spat cher Ser vl et .

The following snippet shows a simple configuration example of the HTTP server transport:

2.3.1.RELEASE Spring Web Services 34

http://java.sun.com/javase/6/docs/jre/api/net/httpserver/spec/index.html

Spring Web Services Reference Documentation

<beans>
<bean i d="nmessageFactory" class="org.springframework.ws. soap. saaj . Saaj SoapMessageFact ory"/>

<bean i d="nessageRecei ver" cl ass="org. springfranmework. ws. soap. server. SoapMessageDi spat cher">
<property nanme="endpoi nt Mappi ngs" ref="endpoi nt Mappi ng"/ >
</ bean>

<bean i d="endpoi nt Mappi ng"
cl ass="org. springfranmewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot Annot ati onMet hodEndpoi nt Mappi ng" >
<property nanme="def aul t Endpoi nt" ref="stockEndpoint"/>
</ bean>

<bean id="httpServer" class="org.springframework.renoting.support.Sinpl eHt tpServer Fact or yBean" >
<property name="contexts">
<map>
<entry key="/StockService.wsdl " val ue-ref="wsdl Handl er"/ >
<entry key="/StockService" val ue-ref="soapHandl er"/>
</ map>
</ property>
</ bean>

<bean i d="soapHandl er"
class="org. springframework. ws. transport. http. WbServi ceMessageRecei ver Ht t pHandl er ">
<property nane="nessageFactory" ref="nessageFactory"/>
<property name="nmessageRecei ver" ref="nmessageReceiver"/>
</ bean>

<bean i d="wsdl Handl er" cl ass="org. spri ngframework.ws.transport.http.Wdl DefinitionHttpHandl er">
<property name="definition" ref="wsdl Definition"/>
</ bean>
</ beans>

For more information on the Si npl eHt t pSer ver Fact or yBean, refer to the Javadoc.

XMPP transport

Finally, Spring Web Services 2.0 introduced support for XMPP, otherwise known as Jabber. The support
is based on the Smack library.

Spring Web Services support for XMPP is very similar to the other transports: there is a a
XmppMessageSender forthe WebSer vi ceTenpl at e and and a XnppMessageRecei ver to use with
the MessageDi spat cher.

The following example shows how to set up the server-side XMPP components:

2.3.1.RELEASE Spring Web Services 35

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/remoting/support/SimpleHttpServerFactoryBean.html
http://www.igniterealtime.org/projects/smack/index.jsp

Spring Web Services Reference Documentation

<beans>
<bean i d="nmessageFactory" class="org.springframework.ws. soap. saaj . Saaj SoapMessageFact ory"/>

<bean id="connection"
class="org. springfranmework.ws. transport.xnmpp. support. XmppConnect i onFact or yBean" >
<property name="host" val ue="j abber.org"/>
<property nanme="usernane" val ue="user name"/>
<property name="password" val ue="password"/>
</ bean>

<bean i d="nessagi ngRecei ver" cl ass="org. spri ngframework.ws.transport.xnmpp. XnppMessageRecei ver">
<property nanme="nessageFactory" ref="nessageFactory"/>
<property name="connection" ref="connection"/>
<property name="nmessageRecei ver" ref="nmessageD spatcher"/>

</ bean>

<bean i d="nessageDi spat cher" cl ass="org. spri ngframework. ws. soap. server. SoapMessageDi spat cher">
<property nanme="endpoi nt Mappi ngs" >
<bean

class="org. springfranmewor k. ws. server. endpoi nt. mappi ng. Payl oadRoot Annot ati onMet hodEndpoi nt Mappi ng" >
<property nanme="def aul t Endpoi nt">
<bean cl ass="com exanpl e. MyEndpoi nt"/ >
</ property>
</ bean>
</ property>
</ bean>

</ beans>

MTOM

MTOM is the mechanism of sending binary data to and from Web Services. You can look at how to
implement this with Spring WS through the MTOM sample.

5.4 Endpoints

Endpoints are the central concept in Spring-WS's server-side support. Endpoints provide access to the
application behavior which is typically defined by a business service interface. An endpoint interprets
the XML request message and uses that input to invoke a method on the business service (typically).
The result of that service invocation is represented as a response message. Spring-WS has a wide
variety of endpoints, using various ways to handle the XML message, and to create a response.

You create an endpoint by annotating a class with the @ndpoi nt annotation. In the class, you define
one or more methods that handle the incoming XML request, by using a wide variety of parameter types
(such as DOM elements, JAXB2 objects, etc). You indicate the sort of messages a method can handle
by using another annotation (typically @Payl oadRoot).

Consider the following sample endpoint:

2.3.1.RELEASE Spring Web Services 36

https://en.wikipedia.org/wiki/Message_Transmission_Optimization_Mechanism
https://github.com/spring-projects/spring-ws-samples/tree/master/mtom

Spring Web Services Reference Documentation

package sanpl es;
inmport org.w3c.dom El enent ;

inport org.springfranmework. beans. factory. annot ati on. Aut owi r ed;

inmport org.springframework.ws. server. endpoi nt. annot ati on. Endpoi nt ;
import org.springframework. ws. server. endpoi nt. annot ati on. Payl oadRoot ;
import org.springframework. ws. soap. SoapHeader ;

@Endpoi nt O
public class Annotati onOr der Endpoi nt {

private final OrderService orderService;

@\ut owi r ed O
publ i c Annot ati onOr der Endpoi nt (Order Servi ce order Service) {
this.orderService = order Service;

}

@ayl oadRoot (| ocal Part = "order", nanespace = "http://sanples") O
public void order(@Request Payl oad El ement orderEl enent) { O
O der order = createOrder(orderEl ement);
order Servi ce. createOrder (order);

}

@Pay| oadRoot (| ocal Part = "order Request", nanmespace = "http://sanples") O
@responsePayl oad
public O der getO der(@Request Payl oad O der Request order Request, SoapHeader header) { O
checkSoapHeader For Sonet hi ng(header) ;
return order Service. get O der (order Request.getld());
}

O The class is annotated with @ndpoi nt , marking it as a Spring-WS endpoint.

O The constructor is marked with @\ut owi r ed, so that the Or der Ser vi ce business service is
injected into this endpoint.

O The order method takes a El enment as a parameter, annotated with @Request Payl oad. This
means that the payload of the message is passed on this method as a DOM element. The method
has a voi d return type, indicating that no response message is sent.

For more information about endpoint methods, refer to the section called “@ndpoi nt handling
methods”.

O The getOrder method takes a OrderRequest as a parameter, annotated with
@request Payl oad as well. This parameter is a JAXB2-supported object (it is annotated with
@M Root El enent). This means that the payload of the message is passed on to this method as
a unmarshalled object. The SoapHeader type is also given as a parameter. On invocation, this
parameter will contain the SOAP header of the request message. The method is also annotated
with @ResponsePayl oad, indicating that the return value (the Or der) is used as the payload of
the response message.

For more information about endpoint methods, refer to the section called “@ndpoi nt handling
methods”.

O The two handling methods of this endpoint are marked with @ay| oadRoot , indicating what sort
of request messages can be handled by the method: the get Or der method will be invoked for
requests with a or der Request localname andahtt p: // sanpl es namespace URI; the or der
method for requests with a or der local name.

2.3.1.RELEASE Spring Web Services 37

Spring Web Services Reference Documentation

For more information about @ay| oadRoot , refer to Section 5.5, “Endpoint mappings”.

To enable the support for @ndpoi nt and related Spring-WS annotations, you will need to add the

following to your Spring application context:

<beans xm ns="http://ww. spri ngframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: sws="http://wmv. spri ngframework. or g/ scherma/ web- servi ces"
xsi : schemaLocat i on="htt p://ww. spri ngframewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schema/ web- servi ces
http://ww. spri ngfranmewor k. or g/ schema/ web- servi ces/ web- servi ces. xsd" >

<sws: annot ati on-driven />

</ beans>

Or, if you are using @onfi guration classes instead of Spring XML, you can annotate your

configuration class with @nabl eWs, like so:

@nabl eV
@onfiguration
public class EchoConfig {

/1 @Bean definitions go here

To customize the @nabl eWs configuration, you can implement W Conf i gur er, or better yet extend

the W6 Conf i gur er Adapt er . For instance:

@configuration

@nabl eV

@onponent Scan(basePackageC asses = { MyConfiguration.class })
public class MyConfiguration extends WConfi gurerAdapter {

@verride

public void addl nterceptors(Li st<Endpointlnterceptor> interceptors) {
interceptors.add(new Myl nterceptor());

}

@verride
public void addAr gunent Resol ver s(Li st <Met hodAr gument Resol ver > ar gunent Resol vers) {

ar gurent Resol vers. add(new MyAr gunent Resol ver());

}

/1 More overridden nethods ...

In the next couple of sections, a more elaborate description of the @ndpoi nt programming model

is given.

Note

Endpoints, like any other Spring Bean, are scoped as a singleton by default, i.e. one instance of
the bean definition is created per container. Being a singleton implies that more than one thread
can use it at the same time, so the endpoint has to be thread safe. If you want to use a different
scope, such as prototype, refer to the Spring Reference documentation.

Note that all abstract base classes provided in Spring-WS are thread safe, unless otherwise
indicated in the class-level Javadoc.

2.3.1.RELEASE Spring Web Services

38

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-scopes

Spring Web Services Reference Documentation

@tndpoi nt handling methods

In order for an endpoint to actually handle incoming XML messages, it needs to have one or more
handling methods. Handling methods can take wide range of parameters and return types, but typically
they have one parameter that will contain the message payload, and they return the payload of the
response message (if any). You will learn which parameter and return types are supported in this section.

To indicate what sort of messages a method can handle, the method is typically annotated with either
the @ayl oadRoot or @oapActi on annotation. You will learn more about these annotations in
Section 5.5, “Endpoint mappings”.

Here is an example of a handling method:

@Payl oadRoot (I ocal Part = "order", nanespace = "http://sanpl es")
public void order(@Request Payl oad El enent orderEl enent) {

Order order = createOrder(orderEl enment);

order Servi ce. creat eOr der (order);

}
The or der method takes a El enrent as a parameter, annotated with @Request Payl oad. This means
that the payload of the message is passed on this method as a DOM element. The method has avoi d
return type, indicating that no response message is sent.

Handling method parameters

The handling method typically has one or more parameters that refer to various parts of the incoming
XML message. Most commonly, the handling method will have a single parameter that will map to the
payload of the message, but it is also possible to map to other parts of the request message, such
as a SOAP header. This section will describe the parameters you can use in your handling method
signatures.

To map a parameter to the payload of the request message, you will need to annotate this parameter
with the @Request Payl oad annotation. This annotation tells Spring-WS that the parameter needs to
be bound to the request payload.

The following table describes the supported parameter types. It shows the supported types, whether
the parameter should be annotated with @Request Payl oad, and any additional notes.

Name Supported parameter @Request Payl oad Additional notes

types required?

TrAX javax. xm . transform SourceYes Enabled by default.
and sub-interfaces
(DOVBour ce,
SAXSour ce,
St reantSour ce, and
St AXSour ce)

W3C DOM org. w3c. dom El enent Yes Enabled by default
dom4;j org. domdj . El ement Yes Enabled when dom4j is

on the classpath.

JDOM org.jdom El enent Yes Enabled when JDOM is
on the classpath.

2.3.1.RELEASE Spring Web Services 39

Spring Web Services Reference Documentation

Name Supported parameter @Request Payl oad Additional notes
types required?

XOM nu. xom El enent Yes Enabled when XOM is

on the classpath.

StAX javax. xm . stream XMLSt r eanfReader Enabled when StAX is
and on the classpath.
javax. xm . stream XM_Event Reader

XPath Any boolean, double, No Enabled by default,

String,

or g. w3c. Node,

or g. w3c. dom NodelLi st
or type that can

be converted from a
String by a Spring 3
conversion service, and
that is annotated with
@XPat hPar am

see the section called
“@XPat hPar anf.

Message context or g. spri ngframewor k. ws. contNxt . Messagdtiatiled by default.
SOAP or g. spri ngframewor k. ws. soapN&GoapMessadgenabled by default.
org. spri ngframewor k. ws. soap. SoapBody,
or g. spri ngframewor k. ws. soap. SoapEnvel ope,
org. spri ngframewor k. ws. soap. SoapHeader ,
and
or g. spri ngframewor k. ws. soap. SoapHeader El enent s
when used in
combination with the
@oapHeader
annotation.
JAXB2 Any type that Yes Enabled when JAXB2 is
is annotated with on the classpath.
j avax. xm . bi nd. annot at i on. Xm Root El enent,
and
j avax. xm . bi nd. JAXBEl erent .
OXM Any type supported Yes Enabled when the
by a Spring OXM unmar shal | er
Unnmar shal | er. attribute of

Here are some examples of possible method signatures:

* public void handl e(@Request Payl oad El ement el enent)

This method will be invoked with the payload of the
org.w3c. dom El enent .

request

® public voi d handl e(@Request Payl oad DOMSour ce donSource, SoapHeader header)

<sws: annot at i on-
dri ven/ > is specified.

message as a DOM

2.3.1.RELEASE Spring Web Services

40

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26164

Spring Web Services Reference Documentation

This method will be invoked with the payload of the request message as a
j avax. xm . transf orm dom DOVSour ce. The header parameter will be bound to the SOAP
header of the request message.

® public void handl e(@equest Payl oad MyJaxb2bj ect request Cbj ect, @Request Payl oad El ement el enent,
Message nessageCont ext)
This method will be invoked with the payload of the request message unmarshalled into a
MyJaxb2Chj ect (which is annotated with @Xml Root El enent). The payload of the message is also
given as a DOM El enent . The whole message context is passed on as the third parameter.
As you can see, there are a lot of possibilities when it comes to defining handling method signatures. It
is even possible to extend this mechanism, and to support your own parameter types. Refer to the class-
level Javadoc of Def aul t Met hodEndpoi nt Adapt er and Met hodAr gunrent Resol ver to see how.

@XPat hPar am

One parameter type needs some extra explanation: @XPat hPar am The idea here is that you simply
annotate one or more method parameter with an XPath expression, and that each such annotated
parameter will be bound to the evaluation of the expression. Here is an example:

package sanpl es;
inport javax.xnl.transform Source;

inmport org.springfraneworKk.
import org.springfranmework.
import org.springfranmework.
import org.springframework.

Ws. server. endpoi nt. annot ati on. Endpoi nt;
wWs. server . endpoi nt . annot at i on. Nanespace;
ws. server . endpoi nt . annot at i on. Payl oadRoot ;
ws. server . endpoi nt . annot at i on. XPat hPar am
@Endpoi nt

public class AnnotationOr der Endpoi nt {

private final O derService orderService;

publ i c Annot ati onOr der Endpoi nt (Or der Servi ce order Service) {
this.orderService = order Service;

}

@Pay| oadRoot (|1 ocal Part = "orderRequest", nanespace = "http://sanples")
@Nanespace(prefix = "s", uri="http://sanples")
public Order getOrder(@XPat hParan("/s:orderRequest/@d") int orderld) {
O der order = orderService. get Order(orderld);
// create Source fromorder and return it

Since we use the prefix 's' in our XPath expression, we must bind it to the http://sanpl es
namespace. This is accomplished with the @Nanespace annotation. Alternatively, we could have placed
this annotation on the type-level to use the same namespace mapping for all handler methods, or even
the package-level (in package-i nf 0. j ava) to use it for multiple endpoints.

Using the @XPat hPar am you can bind to all the data types supported by XPath:

» boolean or Bool ean

double or Doubl e
* String

* Node

2.3.1.RELEASE Spring Web Services 41

Spring Web Services Reference Documentation

* NodelLi st
In addition to this list, you can use any type that can be converted from a Stri ng by a Spring 3
conversion service.

Handling method return types

To send a response message, the handling needs to specify a return type. If no response message is
required, the method can simply declare a voi d return type. Most commonly, the return type is used to
create the payload of the response message, but itis also possible to map to other parts of the response
message. This section will describe the return types you can use in your handling method signatures.

To map the return value to the payload of the response message, you will need to annotate the method
with the @ResponsePayl| oad annotation. This annotation tells Spring-WS that the return value needs
to be bound to the response payload.

The following table describes the supported return types. It shows the supported types, whether the
parameter should be annotated with @ResponsePayl| oad, and any additional notes.

Name Supported return @ResponsePayl oad Additional notes
types required?
No response voi d No Enabled by default.
TrAX javax. xm . transf orm SourceYes Enabled by default.
and sub-interfaces
(DOVBour ce,
SAXSour ce,
St reantour ce, and
St AXSour ce)
W3C DOM org. w3c. dom El enent Yes Enabled by default
domd4;j org. domdj . El ement Yes Enabled when dom4j is

on the classpath.

JDOM org. j dom El enent Yes Enabled when JDOM is
on the classpath.

XOM nu. xom El enent Yes Enabled when XOM is
on the classpath.

JAXB2 Any type that Yes Enabled when JAXB2 is
is annotated with on the classpath.
j avax. xm . bi nd. annot at i on. Xm Root El enent
and

j avax. xm . bi nd. JAXBE! erent .

OXM Any type supported Yes Enabled when the
by a Spring OXM mar shal | er attribute
Mar shal | er. of

<sws: annot ati on-
dri ven/ > is specified.

As you can see, there are a lot of possibilities when it comes to defining handling method signatures.
It is even possible to extend this mechanism, and to support your own parameter types. Refer to the

2.3.1.RELEASE Spring Web Services 42

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html#d0e26096

Spring Web Services Reference Documentation

class-level Javadoc of Def aul t Met hodEndpoi nt Adapt er and Met hodRet ur nVal ueHandl er to
see how.

5.5 Endpoint mappings

The endpoint mapping is responsible for mapping incoming messages to appropriate
endpoints. There are some endpoint mappings that are enabled out of the
box, for example, the Payl oadRoot Annot ati onMet hodEndpoi nt Mapping or the
SoapAct i onAnnot at i onMet hodEndpoi nt Mappi ng, but let's first examine the general concept of
an Endpoi nt Mappi ng.

An Endpoi nt Mappi ng delivers a Endpoi nt | nvocat i onChai n, which contains the endpoint that
matches the incoming request, and may also contain a list of endpoint interceptors that will be
applied to the request and response. When a request comes in, the MessageDi spat cher will
hand it over to the endpoint mapping to let it inspect the request and come up with an appropriate
Endpoi nt I nvocat i onChai n. Then the MessageDi spat cher will invoke the endpoint and any
interceptors in the chain.

The concept of configurable endpoint mappings that can optionally contain interceptors (which can
manipulate the request or the response, or both) is extremely powerful. A lot of supporting functionality
can be built into custom Endpoi nt Mappi ngs. For example, there could be a custom endpoint mapping
that chooses an endpoint not only based on the contents of a message, but also on a specific SOAP
header (or indeed multiple SOAP headers).

Most endpoint mappings inherit from the Abst r act Endpoi nt Mappi ng, which offers an 'interceptors'
property, which is the list of interceptors to use. Endpoi nt | nt er cept ors are discussed in the
section called “Intercepting requests - the Endpoi nt | nt er cept or interface”. Additionally, there is the
'defaultEndpoint’, which is the default endpoint to use when this endpoint mapping does not result in
a matching endpoint.

As explained in Section 5.4, “Endpoints”, the @ndpoi nt style allows you to handle multiple requests
in one endpoint class. This is the responsibility of the Met hodEndpoi nt Mappi ng. This mapping
determines which method is to be invoked for an incoming request message.

There are two endpoint mappings that can direct requests
to methods: the Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng and the
SoapAct i onAnnot at i onMet hodEndpoi nt Mappi ng, both of which are enabled by using
<sws: annot at i on-dri ven/ > in your application context.

The Payl oadRoot Annot at i onMet hodEndpoi nt Mappi ng uses the @ayl oadRoot annotation,
with the | ocal Part and nanespace elements, to mark methods with a particular qualified name.
Whenever a message comes in which has this qualified name for the payload root element, the method
will be invoked. For an example, see above.

Alternatively, the SoapActi onAnnot ati onMet hodEndpoi nt Mappi ng uses the @oapActi on
annotation to mark methods with a particular SOAP Action. Whenever a message comes in which has
this SOAPAct i on header, the method will be invoked.

WS-Addressing

WS-Addressing specifies a transport-neutral routing mechanism. It is based on a To and Act i on SOAP
header, which indicate the destination and intent of the SOAP message, respectively. Additionally,

2.3.1.RELEASE Spring Web Services 43

Spring Web Services Reference Documentation

WS-Addressing allows you to define a return address (for normal messages and for faults), and a
unigue message identifier which can be used for correlation " Hereisan example of a WS-Addressing
message:

<SOAP- ENV: Envel ope xml ns: SOAP- ENV="ht t p: / / www. wW3. or g/ 2003/ 05/ soap- envel ope"
xm ns: wsa="http://ww. w3. or g/ 2005/ 08/ addr essi ng" >
<SOAP- ENV: : Header >
<wsa: Messagel D>ur n: uui d: 21363e0d- 2645- 4eb7- 8af d- 2f 5eelbb25cf </ wsa: Messagel D>
<wsa: Repl yTo>
<wsa: Addr ess>htt p: // exanpl e. conl busi ness/ cl i ent 1</ wsa: Addr ess>
</ wsa: Repl yTo>
<wsa: To S: nust Under st and="true">http://exanpl e/ conl f abri kan</ wsa: To>
<wsa: Action>http://exanpl e. coni f abri kanm mai | / Del et e</ wsa: Acti on>
</ SOAP- ENV: Header >
<SOAP- ENV: Body>
<f:Del ete xm ns:f="http://exanpl e. coni fabri kan'>
<f : maxCount >42</ f : maxCount >
</f:Del ete>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

In this example, the destination is set to htt p: / / exanpl e/ com f abr i kam while the action is set
tohttp://exanpl e. conl fabri kam nmai | / Del et e. Additionally, there is a message identifier, and
an reply-to address. By default, this address is the "anonymous" address, indicating that a response
should be sent using the same channel as the request (i.e. the HTTP response), but it can also be
another address, as indicated in this example.

In Spring Web Services, WS-Addressing is implemented as an endpoint mapping.
Using this mapping, you associate WS-Addressing actions with endpoints, similar to the
SoapAct i onAnnot at i onMet hodEndpoi nt Mappi ng described above.

Annot at i onAct i onEndpoi nt Mappi ng

The Annot at i onAct i onEndpoi nt Mappi ng is similar to the
SoapAct i onAnnot at i onMet hodEndpoi nt Mappi ng, but uses WS-Addressing headers instead of
the SOAP Action transport header.

To use the Annotati onActi onEndpoi nt Mappi ng, annotate the handling methods with the
@\ct i on annotation, similar to the @ayl oadRoot and @oapAct i on annotations described in the
section called “@ndpoi nt handling methods” and Section 5.5, “Endpoint mappings”. Here is an
example:

MEor more information on WS-Addressing, see http://en.wikipedia.org/wiki/WS-Addressing.

2.3.1.RELEASE Spring Web Services 44

http://en.wikipedia.org/wiki/WS-Addressing

Spring Web Services Reference Documentation

package sanpl es;

inmport org.springframework.ws. server. endpoi nt. annot ati on. Endpoi nt ;
inport org.springframewor k. ws. soap. addr essi ng. server. annot ati on. Acti on

@Endpoi nt
public class AnnotationOr der Endpoi nt {
private final O derService orderService;

public Annot ati onOr der Endpoi nt (Or der Servi ce order Service) {
this.orderService = order Service;

}

@A\ction("http://sanpl es/ Request O der")

public O der get Order(O der Request order Request) {
return order Service. get Order (order Request.getld());

}

@\ction("http://sanpl es/ CreateOrder")
public void order(Order order) {
order Servi ce. creat eOr der (order);

}

The mapping above routes requests which have a WS-Addressing Acti on of http://sanpl es/
Request Or der to the get Or der method. Requests with htt p: / / sanpl es/ Cr eat eOr der will be
routed to the or der method..

By default, the Annot at i onAct i onEndpoi nt Mappi ng supports both the 1.0 (May 2006), and the
August 2004 editions of WS-Addressing. These two versions are most popular, and are interoperable
with Axis 1 and 2, JAX-WS, XFire, Windows Communication Foundation (WCF), and Windows Services
Enhancements (WSE) 3.0. If necessary, specific versions of the spec can be injected into the versions

property.

In addition to the @Act i on annotation, you can annotate the class with the @\ddr ess annotation. If
set, the value is compared to the To header property of the incoming message.

Finally, there is the messageSenders property, which is required for sending response messages to non-
anonymous, out-of-bound addresses. You can set MessageSender implementations in this property,
the same as you would on the WebSer vi ceTenpl at e. See the section called “URIs and Transports”.

Intercepting requests - the Endpoi nt | nt er cept or interface

The endpoint mapping mechanism has the notion of endpoint interceptors. These can be extremely
useful when you want to apply specific functionality to certain requests, for example, dealing with
security-related SOAP headers, or the logging of request and response message.

Endpoint interceptors are typically defined by using a <sws:i nterceptors> element in your
application context. In this element, you can simply define endpoint interceptor beans that apply to
all endpoints defined in that application context. Alternatively, you can use <sws: payl| oadRoot > or
<sws: soapAct i on> elements to specify for which payload root name or SOAP action the interceptor
should apply. For example:

2.3.1.RELEASE Spring Web Services 45

Spring Web Services Reference Documentation

<sws: i nterceptors>
<bean cl ass="sanpl es. \yG obal | nterceptor"/>
<sws: payl oadRoot nanespaceUri ="http://ww. exanpl e. coni >
<bean cl ass="sanpl es. MyPayl oadRoot I nt er ceptor"/ >
</ sws: payl oadRoot >
<sws: soapAction val ue="http://ww. exanpl e. com’ SoapActi on">
<bean cl ass="sanpl es. MySoapActi onl nterceptor1"/>
<ref bean="nySoapActi onl nterceptor2"/>
</ sws: soapActi on>
</ sws:interceptors>

<bean i d="nmySoapActi onl nterceptor2" class="sanpl es. MySoapActi onl nt erceptor2"/>

Here, we define one 'global' interceptor (Myd obal | nt er cept or) that intercepts all request and
responses. We also define an interceptor that only applies to XML messages that have the http://
www. exanpl e. com as a payload root namespace. Here, we could have defined a | ocal Part
attribute in addition to the nanespaceUri to further limit the messages the interceptor applies to.
Finally, we define two interceptors that apply when the message has a htt p: / / www. exanpl e. com
SoapActi on SOAP action. Notice how the second interceptor is actually a reference to a bean
definition outside of the <i nt er cept or s> element. You can use bean references anywhere inside the
<i nt er cept or s> element.

When using @onfi guration classes, you can extend from WsConfi gur er Adapter to add
interceptors. Like so:

@onfiguration
@nabl eV
public class MyWConfiguration extends WConfigurerAdapter {

@verride
public void addl nterceptors(Li st<Endpointlnterceptor> interceptors) {
interceptors. add(new MyPayl oadRoot I nterceptor());

}

Interceptors must implement the Endpoi nt | nt er cept or interface from the
org.springframework.ws.server package. This interface defines three methods, one that can be used
for handling the request message before the actual endpoint will be executed, one that can be used
for handling a normal response message, and one that can be used for handling fault messages, both
of which will be called after the endpoint is executed. These three methods should provide enough
flexibility to do all kinds of pre- and post-processing.

The handl eRequest (. .) method on the interceptor returns a boolean value. You can use this method
to interrupt or continue the processing of the invocation chain. When this method returns t r ue, the
endpoint execution chain will continue, when it returns f al se, the MessageDi spat cher interprets
this to mean that the interceptor itself has taken care of things and does not continue executing the
other interceptors and the actual endpoint in the invocation chain. The handl eResponse(..) and
handl eFaul t (. .) methods also have a boolean return value. When these methods return f al se,
the response will not be sent back to the client.

There are a number of standard Endpoi nt | nt er cept or implementations you can use in your Web
service. Additionally, there is the XwsSecuri t yl nt er cept or, which is described in Section 7.2, “
XwsSecuritylnterceptor”

Payl oadLoggi ngl nt er cept or and SoapEnvel opelLoggi ngl nt er cept or

When developing a Web service, it can be useful to log the incoming and outgoing XML messages. SWS
facilitates this with the Payl oadLoggi ngl nt er cept or and SoapEnvel opelLoggi ngl nt er cept or

2.3.1.RELEASE Spring Web Services 46

Spring Web Services Reference Documentation

classes. The former logs just the payload of the message to the Commons Logging Log; the latter logs
the entire SOAP envelope, including SOAP headers. The following example shows you how to define
them in an endpoint mapping:

<sws: i nterceptors>
<bean cl ass="org. spri ngframework. ws. server. endpoi nt.interceptor. Payl oadLoggi ngl nterceptor"/>
</ sws:interceptors>

Both of these interceptors have two properties: 'logRequest' and 'logResponse’, which can be set to
f al se to disable logging for either request or response messages.

Of course, you could use the WsConfi gur er Adapt er approach, as described above, for the
Payl oadLoggi ngl nt er cept or as well.

Payl oadVal i dat i ngl nt er cept or

One of the benefits of using a contract-first development style is that we can use the
schema to validate incoming and outgoing XML messages. Spring-WS facilitates this with the
Payl oadVal i dat i ngl nt er cept or . This interceptor requires a reference to one or more W3C XML
or RELAX NG schemas, and can be set to validate requests or responses, or both.

Note

Note that request validation may sound like a good idea, but makes the resulting Web service
very strict. Usually, it is not really important whether the request validates, only if the endpoint can
get sufficient information to fullfill a request. Validating the response is a good idea, because the
endpoint should adhere to its schema. Remember Postel's Law: “Be conservative in what you do;
be liberal in what you accept from others.”

Here is an example that uses the Payl oadVal i dati ngl nt er cept or; in this example, we use
the schema in / VEB- | NF/ or der s. xsd to validate the response, but not the request. Note that the
Payl oadVal i dat i ngl nt er cept or can also accept multiple schemas using the schemas property.

<bean id="validatinglnterceptor"
cl ass="org. springframewor k. ws. soap. server. endpoi nt. i nterceptor. Payl oadVal i dati ngl nterceptor">
<property nanme="schenma" val ue="/WEB-| NF/ orders. xsd"/>
<property nane="val i dat eRequest" val ue="fal se"/>
<property nanme="val i dat eResponse" val ue="true"/>
</ bean>

Of course, you could use the WsConfi gur er Adapt er approach, as described above, for the
Payl oadVal i dat i ngl nt er cept or as well.

Payl oadTr ansf or m ngl nt er cept or

To transform the payload to another XML format, Spring Web Services offers the
Payl oadTr ansf or m ngl nt er cept or. This endpoint interceptor is based on XSLT style sheets,
and is especially useful when supporting multiple versions of a Web service: you can
transform the older message format to the newer format. Here is an example to use the
Payl oadTr ansf or mi ngl nt erceptor:

<bean i d="transform nglnterceptor"
cl ass="org. springframewor k. ws. server. endpoi nt. i ntercept or. Payl oadTr ansf or m ngl nt er cept or ">
<property name="request Xslt" val ue="/WEB- | NF/ ol dRequests. xslt"/>
<property name="responseXslt" val ue="/WEB- | NF/ ol dResponses. xslt"/>
</ bean>

2.3.1.RELEASE Spring Web Services 47

Spring Web Services Reference Documentation

We are simply transforming requests using / EB- | NF/ ol dRequest s. xsl t, and response messages
using / VEB- | NF/ ol dResponses. xsl t. Note that, since endpoint interceptors are registered at the
endpoint mapping level, you can simply create a endpoint mapping that applies to the "old style"
messages, and add the interceptor to that mapping. Hence, the transformation will apply only to these
"old style" message.

Of course, you could use the WsConfi gur er Adapt er approach, as described above, for the
Payl oadTr ansf or mi ngl nt er cept or as well.

5.6 Handling Exceptions

Spring-WS provides Endpoi nt Except i onResol ver s to ease the pain of unexpected exceptions
occurring while your message is being processed by an endpoint which matched the request. Endpoint
exception resolvers somewhat resemble the exception mappings that can be defined in the web
application descriptor web. xm . However, they provide a more flexible way to handle exceptions. They
provide information about what endpoint was invoked when the exception was thrown. Furthermore,
a programmatic way of handling exceptions gives you many more options for how to respond
appropriately. Rather than expose the innards of your application by giving an exception and stack trace,
you can handle the exception any way you want, for example by returning a SOAP fault with a specific
fault code and string.

Endpoint exception resolvers are automatically picked up by the MessageDi spat cher, so no explicit
configuration is necessary.

Besides implementing the Endpoi nt Excepti onResol ver interface, which is only a matter of
implementing the resol veExcepti on(MessageCont ext, endpoint, Exception) method,
you may also use one of the provided implementations. The simplest implementation is the
Si npl eSoapExcept i onResol ver, which just creates a SOAP 1.1 Server or SOAP 1.2 Receiver
Fault, and uses the exception message as the fault string. The Si npl eSoapExcepti onResol ver is
the default, but it can be overriden by explicitly adding another resolver.

SoapFaul t Mappi ngExcept i onResol ver
The SoapFaul t Mappi ngExcept i onResol ver is a more sophisticated implementation. This resolver

enables you to take the class hame of any exception that might be thrown and map it to a SOAP Fault,
like so:

<beans>
<bean i d="exceptionResol ver"
cl ass="org. spri ngfranmewor k. ws. soap. server. endpoi nt. SoapFaul t Mappi ngExcept i onResol ver">
<property nanme="defaul t Faul t" val ue="SERVER'/ >
<property name="excepti onMappi ngs" >
<val ue>
or g. springframewor k. oxm Val i dati onFai | ur eExcepti on=CLI ENT, | nval i d request
</ val ue>
</ property>
</ bean>
</ beans>

The key values and default endpoint use the format f aul t Code, fault String, | ocal e, where
only the fault code is required. If the fault string is not set, it will default to the exception message.
If the language is not set, it will default to English. The above configuration will map exceptions of
type Val i dati onFai | ureException to a client-side SOAP Fault with a fault string "I nvalid
request"”, as can be seen in the following response:

2.3.1.RELEASE Spring Web Services 48

Spring Web Services Reference Documentation

<SOAP- ENV: Envel ope xml ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Body>
<SOAP- ENV: Faul t >
<faul t code>SOAP- ENV: O i ent </ f aul t code>
<faul tstring>lnvalid request</faul tstring>
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

If any other exception occurs, it will return the default fault: a server-side fault with the exception message
as fault string.

SoapFaul t Annot at i onExcept i onResol ver

Finally, it is also possible to annotate exception classes with the @soapFaul t annotation, to indicate the
SOAP Fault that should be returned whenever that exception is thrown. In order for these annotations to
be picked up, you need to add the SoapFaul t Annot ati onExcepti onResol ver to your application
context. The elements of the annotation include a fault code enumeration, fault string or reason, and
language. Here is an example exception:

package sanpl es;

import org.springframework. ws. soap. server. endpoi nt. annot ati on. Faul t Code;
i nport org.springfranmework. ws. soap. server. endpoi nt. annot ati on. SoapFaul t;

@soapFaul t (faul t Code = Faul t Code. SERVER)
public class MyBusi nessExcepti on extends Exception {

public MyClientException(String nmessage) {
super (nessage) ;

}

Whenever the MyBusi nessExcept i on is thrown with the constructor string " Cops! " during endpoint
invocation, it will result in the following response:

<SOAP- ENV: Envel ope xm ns: SOAP- ENV="ht t p: / / schemas. xm soap. or g/ soap/ envel ope/ ">
<SOAP- ENV: Body>
<SOAP- ENV: Faul t >
<f aul t code>SOAP- ENV: Ser ver </ f aul t code>
<faul tstring>Cops! </faul tstring>
</ SOAP- ENV: Faul t >
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

5.7 Server-side testing

When it comes to testing your Web service endpoints, there are two possible approaches:
» Write Unit Tests, where you provide (mock) arguments for your endpoint to consume.

The advantage of this approach is that it's quite easy to accomplish (especially for classes annotated
with @ndpoi nt); the disadvantage is that you are not really testing the exact content of the XML
messages that are sent over the wire.

» Write Integrations Tests, which do test the contents of the message.

The first approach can easily be accomplished with mocking frameworks such as EasyMock, JMock,
etc. The next section will focus on writing integration tests, using the test features introduced in Spring
Web Services 2.0.

2.3.1.RELEASE Spring Web Services 49

Spring Web Services Reference Documentation

Writing server-side integration tests

Spring Web Services 2.0 introduced support for creating endpoint integration tests. In this context, an
endpoint is class handles (SOAP) messages (see Section 5.4, “Endpoints”).

The integration test support lives in the org.springframework.ws.test.server package. The core
class in that package is the MyckWebServiceC ient. The underlying idea is that this
client creates a request message, and then sends it over to the endpoint(s) that are
configured in a standard MessageDi spat cher Ser vl et application context (see the section called
“MessageDi spat cher Ser vl et). These endpoints will handle the message, and create a response.
The client then receives this response, and verifies it against registered expectations.

The typical usage of the MockWebSer vi ceC i ent is:

1. Create a MockWebServi ced i ent instance by calling
MockWebServi ceCl i ent. created i ent (Applicati onContext) or
MockWebServi ced i ent. createCd i ent (WebServi ceMessageRecei ver,

WebSer vi ceMessageFact ory) .

2. Send request messages by calling sendRequest (Request Cr eat or), possibly by using the
default Request Cr eat or implementations provided in Request Cr eat or s (which can be statically
imported).

3. Set up response expectations by calling andExpect (ResponseMat cher), possibly by
using the default ResponseMat cher implementations provided in ResponseMat chers
(which can be statically imported). Multiple expectations can be set up by chaining
andExpect (ResponseMat cher) calls.

Note

Note that the MockWebSer vi ceC i ent (and related classes) offers a 'fluent’ API, so you can
typically use the Code Completion features (i.e. ctrl-space) in your IDE to guide you through the
process of setting up the mock server.

Note

Also note that you rely on the standard logging features available in Spring Web Services in your
unit tests. Sometimes it might be useful to inspect the request or response message to find out why
a particular tests failed. See Section 4.4, “Message Logging and Tracing” for more information.

Consider, for example, this simple Web service endpoint class:

2.3.1.RELEASE Spring Web Services 50

Spring Web Services Reference Documentation

inmport org.springframework.ws. server. endpoi nt. annot ati on. Endpoi nt ;
inmport org.springframework.ws. server. endpoi nt. annot ati on. Request Payl oad;
import org.springframework.ws. server. endpoi nt. annot ati on. ResponsePayl oad;

@Endpoi nt O
public class CustonerEndpoint {

@ResponsePayl oad O
publ i ¢ Cust omer Count Response get Cust oner Count (O
@Request Payl oad Cust oner Count Request request) { O

Cust onmer Count Response response = new Cust onmer Count Response() ;
response. set Cust omer Count (10) ;
return response;

0 The Cust orer Endpoi nt in annotated with @ndpoi nt . See Section 5.4, “Endpoints”.

0 Theget Cust oner Count () method takes a Cust oner Count Request as argument, and returns
a Cust orrer Count Response. Both of these classes are objects supported by a marshaller. For

instance, they can have a @Xm Root El enent annotation to be supported by JAXB2.

A typical test for Cust oner Endpoi nt would look like this:

2.3.1.RELEASE Spring Web Services

51

Spring Web Services Reference Documentation

inmport javax.xml .transform Source;

import org.springframework. beans. factory. annot ati on. Aut ow r ed;

import org.springframework. context. Applicati onCont ext;

inport org.springfranmework. test.context.ContextConfiguration;

inmport org.springframework.test.context.junit4.SpringJUnit4C assRunner;
import org.springframework. xm . transform StringSource;

inmport org.junit.Before;
inmport org.junit. Test;
inport org.junit.runner. RunWth;

inmport org.springframework.ws.test.server. MockWebServi ceClient; O
inport static org.springframework.ws.test.server. Request Creators. *; O
inport static org.springfranmework.ws.test.server. RResponseMat chers. *; O
@RunW t h(Spri ngJUni t 40 assRunner . cl ass) O
@cont ext Confi guration("spring-ws-servlet.xm") O

public class CustonerEndpointlntegrati onTest {

@\ut owi r ed
private Applicati onContext applicati onContext; O

private MockWebServi ceCient nockCient;

@Bef or e
public void createCient() {
nockCl i ent = MockWebServiceC ient.createCient(applicationContext); O
}
@est

public void customerEndpoint() throws Exception {
Sour ce request Payl oad = new StringSource(
"<cust onmer Count Request xm ns="http://springframework. org/spring-ws'>" +
"<cust oner Nane>John Doe</ cust onmer Name>" +
"</ cust oner Count Request >") ;
Sour ce responsePayl oad = new StringSource(
"<cust onmer Count Response xm ns="http://springframework. org/spring-ws'>" +
"<cust omer Count >10</ cust oner Count >" +
"</ cust oner Count Response>");

nockd i ent . sendRequest (wi t hPayl oad(r equest Payl oad)) . 0
andExpect (payl oad(responsePayl oad)) ; 0

0 The Custoner Endpoi ntlntegrati onTest imports the MockWbServi cedient, and
statically imports Request Cr eat or s and Responselat chers.

0 Thistest uses the standard testing facilities provided in the Spring Framework. This is not required,
but is generally the easiest way to set up the test.

O The application context is a standard Spring-WS application context (see the section called
“MessageDi spat cher Servl et”), read from spring-ws-servlet.xm . In this case, the
application context will contain a bean definition for Cust ormer Endpoi nt (or a perhaps a
<cont ext : conponent - scan /> is used).

O In a @ef ore method, we create a MockWebSer vi ceCl i ent by using the created i ent
factory method.

O We send a request by calling sendRequest () with a wi t hPayl oad() Request Creat or
provided by the statically imported Request Cr eat or s (see the section called “Request Cr eat or
and Request Cr eat or s”).

We also set up response expectations by calling andExpect() with a payl oad()
ResponseMat cher provided by the statically imported ResponseMat cher s (see the section
called “Responseiat cher and ResponseMat cher s”).

2.3.1.RELEASE Spring Web Services 52

Spring Web Services Reference Documentation

This part of the test might look a bit confusing, but the Code Completion features of your IDE are of
great help. After typing sendRequest (, simply type ctrl-space, and your IDE will provide you with
a list of possible request creating strategies, provided you statically imported Request Cr eat or s.
The same applies to andExpect (, provided you statically imported ResponseMat cher s.

Request Cr eat or and Request Creators

Initially, the MockWebSer vi ceC i ent will need to create a request message for the endpoint to
consume. The client uses the Request Cr eat or strategy interface for this purpose:

public interface RequestCreator {

WebSer vi ceMessage creat eRequest (WebSer vi ceMessageFact ory nessageFact ory)
throws | OException;

You can write your own implementations of this interface, creating a request message by using the
message factory, but you certainly do not have to. The Request Cr eat or s class provides a way to
create a Request Cr eat or based on a given payload inthew t hPayl oad() method. You will typically
statically import Request Cr eat or s.

ResponseMat cher and ResponseMat chers

When the request message has been processed by the endpoint, and a response has been received,
the MockWebSer vi ceC i ent can verify whether this response message meets certain expectations.
The client uses the ResponseMat cher strategy interface for this purpose:

public interface ResponseMatcher {

voi d mat ch(WebServi ceMessage request,
WebSer vi ceMessage response)
throws | CException, AssertionError;

Once again you can write your own implementations of this interface, throwing Asserti onErrors
when the message does not meet your expectations, but you certainly do not have to, as the
ResponseMat cher s class provides standard ResponseMat cher implementations for you to use in
your tests. You will typically statically import this class.

The ResponseMat cher s class provides the following response matchers:

ResponseMat cher s method Description
payl oad() Expects a given response payload.
val i dPayl oad() Expects the response payload to validate against

given XSD schema(s).

xpat h() Expects a given XPath expression to exist, not
exist, or evaluate to a given value.

soapHeader () Expects a given SOAP header to exist in the
response message.

2.3.1.RELEASE Spring Web Services 53

Spring Web Services Reference Documentation

ResponseMat cher s method Description

noFaul t () Expects that the response message does not
contain a SOAP Fault.

nmust Under st andFaul t (), Expects the response message to contain a
clientOrSender Faul t (), specific SOAP Fault.
server Or Recei verFaul t (), and

ver si onM smat chFaul t ()

You can set up multiple response expectations by chaining andExpect () calls, like so:

nmockC i ent. sendRequest (...).
andExpect (payl oad(expect edResponsePayl oad)) .
andExpect (val i dPayl oad(schenmaResource));

For more information on the response matchers provided by ResponseMat cher s, refer to the class

level Javadoc.

2.3.1.RELEASE Spring Web Services

54

Spring Web Services Reference Documentation

6. Using Spring Web Services on the Client

6.1 Introduction

Spring-WS provides a client-side Web service API that allows for consistent, XML-driven access to Web
services. It also caters for the use of marshallers and unmarshallers so that your service tier code can
deal exclusively with Java objects.

The org.springframework.ws.client.core package provides the core functionality for using the client-side
access API. It contains template classes that simplify the use of Web services, much like the core Spring
JdbcTenpl at e does for JDBC. The design principle common to Spring template classes is to provide
helper methods to perform common operations, and for more sophisticated usage, delegate to user
implemented callback interfaces. The Web service template follows the same design. The classes offer
various convenience methods for the sending and receiving of XML messages, marshalling objects to
XML before sending, and allows for multiple transport options.

6.2 Using the client-side API

WebSer vi ceTenpl at e

The WebSer vi ceTenpl at e is the core class for client-side Web service access in Spring-WS. It
contains methods for sending Sour ce objects, and receiving response messages as either Sour ce
or Resul t . Additionally, it can marshal objects to XML before sending them across a transport, and
unmarshal any response XML into an object again.

URIs and Transports

The WebSer vi ceTenpl at e class uses an URI as the message destination. You can either set a
defaultUri property on the template itself, or supply an URI explicitly when calling a method on the
template. The URI will be resolved into a WebSer vi ceMessageSender, which is responsible for
sending the XML message across a transport layer. You can set one or more message senders using
the messageSender or messageSenders properties of the WebSer vi ceTenpl at e class.

HTTP transports

There are two implementations of the WebSer vi ceMessageSender interface for sending messages
via HTTP. The default implementation is the Ht t pUr | Connect i onMessageSender , which uses the
facilities provided by Java itself. The alternative is the Ht t pConponent sMessageSender , which uses
the Apache HttpComponents HttpClient. Use the latter if you need more advanced and easy-to-use
functionality (such as authentication, HTTP connection pooling, and so forth).

To use the HTTP transport, either set the defaultUri to something like htt p://exanpl e. com
servi ces, or supply the uri parameter for one of the methods.

The following example shows how the default configuration can be used for HTTP transports:

<beans>
<bean i d="nmessageFactory" class="org.springframework.ws. soap. saaj . Saaj SoapMessageFact ory"/>
<bean i d="webServi ceTenpl ate" cl ass="org. spri ngfranmework.ws. client.core. WbServi ceTenpl ate">
<constructor-arg ref="nmessageFactory"/>
<property name="defaul tUri" val ue="http://exanpl e. com WebServi ce"/>

</ bean>

</ beans>

2.3.1.RELEASE Spring Web Services 55

http://hc.apache.org/httpcomponents-client-ga

Spring Web Services Reference Documentation

The following example shows how override the default configuration, and to use Apache HttpClient to
authenticate using HTTP authentication:

<bean i d="webServi ceTenpl ate" cl ass="org. springframework.ws. client.core. WbServi ceTenpl ate">
<constructor-arg ref="nmessageFactory"/>
<property name="nessageSender" >
<bean cl ass="org. springfranmework.ws. transport. http. H t pConponent sMessageSender " >
<property name="credential s">
<bean cl ass="org. apache. http. aut h. User namePasswor dCr edenti al s" >
<constructor-arg val ue="john: secret"/>
</ bean>
</ property>
</ bean>
</ property>
<property name="defaul tUri" val ue="http://exanpl e.com WebServi ce"/>
</ bean>

JMS transport

For sending messages over JMS, Spring Web Services provides the Jns MessageSender . This class
uses the facilities of the Spring framework to transform the WebSer vi ceMessage into a JMS Message,
send it on its way on a Queue or Topi ¢, and receive a response (if any).

To use the JnsMessageSender, you need to set the defaultUri or uri parameter to a JMS URI,
which - at a minimum - consists of the j ms: prefix and a destination name. Some examples of JMS
URIs are: j ns: SoneQueue, j ns: SomeTopi c?priority=3&del i ver yMode=NON_PERSI STENT,
and j ms: Request Queue?r epl yToNane=ResponseNane. For more information on this URI syntax,
refer to the class level Javadoc of the Jns MessageSender .

By default, the JnmsMessageSender send JMS Byt esMessage, but this can be overriden to
use Text Messages by using the nessageType parameter on the JMS URI. For example:
j ms: Queue?nessageType=TEXT_MESSACGE. Note that Byt esMessages are the preferred type,
because Text Messages do not support attachments and character encodings reliably.

The following example shows how to use the JMS transport in combination with an ActiceMQ connection
factory:

<beans>
<bean id="nmessageFactory" class="org. springframework.ws. soap. saaj . Saaj SoapMessageFactory"/ >

<bean id="connecti onFactory" class="org.apache. acti veng. Acti veMQConnecti onFact ory">
<property name="broker URL" val ue="vm//| ocal host ?br oker. persi stent =fal se"/>
</ bean>

<bean id="webServi ceTenpl ate" class="org. springfranmework.ws.client.core. WbServi ceTenpl ate">
<constructor-arg ref="nmessageFactory"/>
<property nanme="nessageSender" >
<bean cl ass="org. springframework.ws. transport.jnms.JnmsMssageSender ">
<property name="connectionFactory" ref="connectionFactory"/>
</ bean>
</ property>
<property name="defaul tUri" val ue="j ms: Request Queue?del i ver yMode=NON_PERSI STENT"/ >
</ bean>

</ beans>

Email transport

Spring Web Services also provides an email transport, which can be used to send web service
messages via SMTP, and retrieve them via either POP3 or IMAP. The client-side email functionality is

2.3.1.RELEASE Spring Web Services 56

Spring Web Services Reference Documentation

contained in the Mai | MessageSender class. This class creates an email message from the request
WebSer vi ceMessage, and sends it via SMTP. It then waits for a response message to arrive in the
incoming POP3 or IMAP server.

Tousethe Mai | MessageSender , set the defaultUri or ur i parameterto anai | t o URI. Here are some
URI examples: mai | t 0: j ohn@xanpl e. com and nai | t o: server @ ocal host ?subj ect =SOAP
%20Test . Make sure that the message sender is properly configured with a transportUri, which indicates
the server to use for sending requests (typically a SMTP server), and a storeUri, which indicates the
server to poll for responses (typically a POP3 or IMAP server).

The following example shows how to use the email transport:

<beans>
<bean i d="nmessageFactory" cl ass="org.springframework.ws. soap. saaj . Saaj SoapMessageFactory"/>

<bean id="webServi ceTenpl ate" class="org. springfranmework.ws.client.core. WbServi ceTenpl ate">
<constructor-arg ref="nessageFactory"/>
<property nanme="nessageSender">
<bean cl ass="org. springframework.ws. transport. mail.Miil MessageSender ">
<property name="fron' val ue="Spring-W5 SOAP Client & t;client@xanple.com>"/>
<property name="transportUri" value="sntp://client:s04p@ntp. exanpl e. cont'/ >
<property name="storeUri" val ue="imap://client:s04p@ map. exanpl e. con’ | NBOX"/ >
</ bean>
</ property>
<property nanme="defaul tUri" val ue="mailto: server @xanpl e. con?subj ect =SOAP%20Test "/ >
</ bean>

</ beans>

XMPP transport

Spring Web Services 2.0 introduced an XMPP (Jabber) transport, which can be used to send
and receive web service messages via XMPP. The client-side XMPP functionality is contained
in the XnppMessageSender class. This class creates an XMPP message from the request
WebSer vi ceMessage, and sends it via XMPP. It then listens for a response message to arrive.

To wuse the XnppMessageSender, set the defaultUri or wuri parameter to a
xmpp URI, for example xnpp:johndoe@ abber.org. The sender also requires
an XMPPConnection to work, which can be conveniently created using the
org. springframework. ws. transport. xnpp. support. XnmppConnect i onFact or yBean.

The following example shows how to use the xmpp transport:

2.3.1.RELEASE Spring Web Services 57

Spring Web Services Reference Documentation

<beans>
<bean i d="nmessageFactory" class="org.springframework.ws. soap. saaj . Saaj SoapMessageFact ory"/>

<bean id="connection"
class="org. springfranmework.ws. transport.xnmpp. support. XmppConnect i onFact or yBean" >
<property name="host" val ue="j abber.org"/>
<property nanme="usernane" val ue="user name"/>
<property name="password" val ue="password"/>
</ bean>

<bean i d="webServi ceTenpl ate" cl ass="org. spri ngframework.ws. client.core. WbServi ceTenpl ate">
<constructor-arg ref="nessageFactory"/>
<property name="nmessageSender" >
<bean cl ass="org. springframework.ws. transport.xnmpp. XnppMessageSender ">
<property name="connection" ref="connection"/>
</ bean>
</ property>
<property name="defaul tUri" val ue="xnpp: user @ abber.org"/>
</ bean>

</ beans>

Message factories

In addition to a message sender, the WebServiceTenpl ate requires a Web service
message factory. There are two message factories for SOAP: Saaj SoapMessageFact ory and
Axi omSoapMessageFact ory. If no message factory is specified (via the messageFactory property),
Spring-WS will use the Saaj SoapMessageFact ory by default.

Sending and receiving a WebSer vi ceMessage

The WebSer vi ceTenpl at e contains many convenience methods to send and receive web service
messages. There are methods that accept and return a Sour ce and those that return a Resul t.
Additionally, there are methods which marshal and unmarshal objects to XML. Here is an example that
sends a simple XML message to a Web service.

2.3.1.RELEASE Spring Web Services 58

Spring Web Services Reference Documentation

inmport java.io.StringReader;
inmport javax.xm .transform stream StreanResul t;
inport javax.xnl.transform stream StreanSource;

inmport org.springframework. ws. WebSer vi ceMessageFact ory;
inmport org.springframework.ws. client.core. WbServi ceTenpl at e;
import org.springframework.ws. transport.WbServi ceMessageSender ;

public class WbServicedient {

private static final String MESSACE =
"<message xm ns=\"http://tenpuri.org\">Hell o Wb Servi ce Worl d</ mnessage>";

private final WebServiceTenpl ate webServi ceTenpl ate = new WebServi ceTenpl ate();

public void setDefaul tUri (String defaul tUri) {
webSer vi ceTenpl ate. set Defaul t Uri (defaul tUri);
}

/1 send to the configured default URI

public void sinpl eSendAndRecei ve() {
St reanBour ce source = new StreanBSource(new StringReader (MESSAGE)) ;
StreanResult result = new StreanResult(Systemout);
webSer vi ceTenpl at e. sendSour ceAndRecei veToResul t (source, result);

}

/1 send to an explicit URI
public void custonBSendAndRecei ve() {
St reanSour ce source = new StreanfSour ce(new StringReader (MESSAGE)) ;
StreanResult result = new StreanResult(System out);
webSer vi ceTenpl at e. sendSour ceAndRecei veToResul t ("http://1 ocal host : 8080/ Anot her WebSer vi ce",
source, result);

<beans xm ns="http://wwm. spri ngframework. or g/ schema/ beans" >
<bean id="webServicedient" class="WbServicedient">
<property name="defaul tUri" value="http://|ocal host: 8080/ WbService"/>

</ bean>

</ beans>

The above example uses the WebSer vi ceTenpl at e to send a hello world message to the web service
located athtt p: / /| ocal host : 8080/ WebSer vi ce (in the case of the si npl eSendAndRecei ve()
method), and writes the result to the console. The WebSer vi ceTenpl at e is injected with the default
URI, which is used because no URI was supplied explicitly in the Java code.

Please note that the WebSer vi ceTenpl at e class is thread-safe once configured (assuming that
all of it's dependencies are thread-safe too, which is the case for all of the dependencies that
ship with Spring-WS), and so multiple objects can use the same shared WebSer vi ceTenpl at e
instance if so desired. The WebServi ceTenpl at e exposes a zero argument constructor and
messageFactory/messageSender bean properties which can be used for constructing the instance
(using a Spring container or plain Java code). Alternatively, consider deriving from Spring-WS's
WebSer vi ceGat eway Support convenience base class, which exposes convenient bean properties to
enable easy configuration. (You do not have to extend this base class... it is provided as a convenience
class only.)

2.3.1.RELEASE Spring Web Services 59

Spring Web Services Reference Documentation

Sending and receiving POJOs - marshalling and unmarshalling

In order to facilitate the sending of plain Java objects, the WebSer vi ceTenpl at e has a number of
send(..) methods that take an Obj ect as an argument for a message's data content. The method
mar shal SendAndRecei ve(. .) inthe WebSer vi ceTenpl at e class delegates the conversion of the
request object to XML to a Marshal | er, and the conversion of the response XML to an object to
an Unmar shal | er. (For more information about marshalling and unmarshaller, refer to the Spring
documentation.) By using the marshallers, your application code can focus on the business object that
is being sent or received and not be concerned with the details of how it is represented as XML. In order
to use the marshalling functionality, you have to set a marshaller and unmarshaller with the marshaller/
unmarshaller properties of the WebSer vi ceTenpl at e class.

WebSer vi ceMessageCal | back

To accommodate the setting of SOAP headers and other settings on the message, the
WebSer vi ceMessageCal | back interface gives you access to the message after it has been created,
but before it is sent. The example below demonstrates how to set the SOAP Action header on a message
that is created by marshalling an object.

public void marshal Wt hSoapActi onHeader (MyObj ect 0) {
webSer vi ceTenpl at e. mar shal SendAndRecei ve(o, new WebServi ceMessageCal | back() {

public void doWthMessage(WbServi ceMessage nessage) {
((SoapMessage) nessage) . set SoapAction("http://tenpuri.org/ Action");
}
b))

Note

Note that you can also use the
org. springframewor k. ws. soap. cli ent. core. SoapActi onCal | back to set the SOAP
Action header.

WS-Addressing

In addition to the server-side WS-Addressing support, Spring Web Services also has support for this
specification on the client-side.

For setting WS-Addressing headers on the client, you can use the
org. springframewor k. ws. soap. addr essi ng. cli ent. Acti onCal | back. This callback takes
the desired Action header as a parameter. It also has constructors for specifying the WS-Addressing
version, and a To header. If not specified, the To header will default to the URL of the connection being
made.

Here is an example of setting the Act i on headerto htt p: // sanpl es/ Request O der :

webSer vi ceTenpl at e. mar shal SendAndRecei ve(o, new ActionCal | back("http://sanpl es/ Request Order"));

WebSer vi ceMessageExt r act or

The WebSer vi ceMessageExt r act or interface is a low-level callback interface that allows you to
have full control over the process to extract an Obj ect from a received WebSer vi ceMessage.

2.3.1.RELEASE Spring Web Services 60

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html

Spring Web Services Reference Documentation

The WebServiceTenpl ate will invoke the extractData(..) method on a supplied
WebSer vi ceMessageExt r act or while the underlying connection to the serving resource is still open.
The following example illustrates the WebSer vi ceMessageExt r act or in action:

public void marshal WthSoapActi onHeader (final Source s) {
final Transfornmer transformer = transfornerFactory. newlransforner();
webSer vi ceTenpl at e. sendAndRecei ve(new WebSer vi ceMessageCal | back() {
public void doWthMessage(WbServi ceMessage nessage) {
transforner.transfornm(s, nessage.getPayl oadResult());
}
new WebServi ceMessageExtractor () {
public Object extractData(WbServi ceMessage nessage) throws | OException
/1 do your own transfornms w th nessage. get Payl oadResul t ()
I or nessage. get Payl oadSour ce()

1)

6.3 Client-side testing

When it comes to testing your Web service clients (i.e. classes that uses the WebSer vi ceTenpl at e
to access a Web service), there are two possible approaches:

e Write Unit Tests, which simply mock away the WebServiceTenplate class,
WebSer vi ceQper at i ons interface, or the complete client class.

The advantage of this approach is that it's quite easy to accomplish; the disadvantage is that you are
not really testing the exact content of the XML messages that are sent over the wire, especially when
mocking out the entire client class.

» Write Integrations Tests, which do test the contents of the message.

The first approach can easily be accomplished with mocking frameworks such as EasyMock, JMock,
etc. The next section will focus on writing integration tests, using the test features introduced in Spring
Web Services 2.0.

Writing client-side integration tests

Spring Web Services 2.0 introduced support for creating Web service client integration tests. In this
context, a client is a class that uses the WebSer vi ceTenpl at e to access a Web service.

The integration test support lives in the org.springframework.ws.test.client package. The core class in
that package is the MockWebSer vi ceSer ver . The underlying idea is that the web service template
connects to this mock server, sends it request message, which the mock server then verifies against
the registered expectations. If the expectations are met, the mock server then prepares a response
message, which is send back to the template.

The typical usage of the MockWebSer vi ceSer ver is:

1. Create a MockWebSer vi ceSer ver instance by calling
MockWebSer vi ceServer. creat eServer (\WebSer vi ceTenpl at e),
MockWebSer vi ceSer ver. creat eSer ver (\WebSer vi ceGat ewaySupport), or

MockWebSer vi ceServer. creat eServer (Appl i cati onCont ext) .

2. Set up request expectations by calling expect (Request Mat cher), possibly by using the default
Request Mat cher implementations provided in Request Mat chers (which can be statically
imported). Multiple expectations can be set up by chaining andExpect (Request Mat cher) calls.

2.3.1.RELEASE Spring Web Services 61

Spring Web Services Reference Documentation

3. Create an appropriate response message by calling andRespond(ResponseCr eat or), possibly
by using the default ResponseCr eat or implementations provided in ResponseCr eat or s (which

can be statically imported).
4. Use the WebSer vi ceTenpl at e as normal, either directly of through client code.

5. Call MockWebSer vi ceSer ver . veri fy() to make sure that all expectations have been met.

Note

Note that the MockWebSer vi ceSer ver (and related classes) offers a 'fluent’ API, so you can
typically use the Code Completion features (i.e. ctrl-space) in your IDE to guide you through the
process of setting up the mock server.

Note

Also note that you rely on the standard logging features available in Spring Web Services in your
unit tests. Sometimes it might be useful to inspect the request or response message to find out why
a particular tests failed. See Section 4.4, “Message Logging and Tracing” for more information.

Consider, for example, this Web service client class:
inmport org.springframework.ws. client.core.support.WbServi ceGat ewaySupport ;
public class Custonmerdient extends WebServi ceGat ewaySupport { O
public int getCustonerCount() {
Cust onmer Count Request request = new Cust onmer Count Request () ; O

request . set Cust omrer Nane(" John Doe");

Cust omer Count Response response =
(Cust onmer Count Response) get WebSer vi ceTenpl at e() . mar shal SendAndRecei ve(request); O

return response. get Cust oner Count () ;

0 The Custonerdient extends WebServi ceGat ewaySupport, which provides it with a

webServiceTemplate property.

O Customer Count Request is an object supported by a marshaller. For instance, it can have a

@Xm Root El ement annotation to be supported by JAXB2.
O The Custonerd i ent uses the WebSer vi ceTenpl at e offered

by

WebSer vi ceGat eway Support to marshal the request object into a SOAP message, and sends
that to the web service. The response object is unmarshalled into a Cust orrer Count Response.

A typical test for Cust oner Cl i ent would look like this:

2.3.1.RELEASE Spring Web Services

62

Spring Web Services Reference Documentation

inmport javax.xml .transform Source;

import org.springframework. beans. factory. annot ati on. Aut ow r ed;

inmport org.springframework.test.context. ContextConfiguration;

inport org.springframework.test.context.junit4.SpringJUnit4C assRunner;
import org.springframework. xm . transform StringSource;

inmport org.junit.Before;
inmport org.junit. Test;
inmport org.junit.runner. RunWth;

inport static org.junit.Assert.assertEquals;

inport org.springframework.ws.test.client. MckWbServi ceServer; O
inmport static org.springframework.ws.test.client.RequestMatchers. *; O
inport static org.springframework.ws.test.client.ResponseCreators.*; O
@RunW t h(Spri ngJUni t 4Cl assRunner. cl ass) O
@Cont ext Confi guration("integration-test.xm") O

public class CustonmerClientlntegrati onTest {

@\ut owi r ed

private CustonmerClient client; O
private MockWebServi ceServer nockServer; O
@Bef ore

public void createServer() throws Exception {
nockServer = MockWebServi ceServer. createServer(client);

}

@est
public void customerClient() throws Exception {
Sour ce request Payl oad = new StringSource(
"<cust oner Count Request xm ns="http://springframework. org/spring-ws'>" +
"<cust oner Name>John Doe</ cust onmer Name>" +
"</ cust oner Count Request >") ;
Sour ce responsePayl oad = new StringSource(
"<cust omer Count Response xm ns='http://springframework. org/spring-ws'>" +
"<cust onmer Count >10</ cust oner Count >" +
"</ cust oner Count Response>") ;

nmockSer ver . expect (payl oad(r equest Payl oad)) . andRespond(w t hPayl oad(r esponsePayl oad)); O

int result = client.getCustonerCount(); O
assert Equal s(10, result); O
nockServer. verify(); O

0 TheCustonerdientlntegrati onTest importsthe MockWebSer vi ceSer ver , and statically
imports Request Mat cher s and ResponseCr eat or s.

0 Thistest uses the standard testing facilities provided in the Spring Framework. This is not required,
but is generally the easiest way to set up the test.

O The Custonerdient is configuredini ntegration-test.xm , and wired into this test using
@\ut owi r ed.

O In a @ef ore method, we create a MockWebSer vi ceSer ver by using the creat eServer
factory method.

0 We define expectations by calling expect () with a payl oad() Request Mat cher provided
by the statically imported Request Mat cher s (see the section called “Request Mat cher and
Request Mat cher s”).

2.3.1.RELEASE Spring Web Services 63

Spring Web Services Reference Documentation

We also set up a response by calling andRespond() with a wi thPayl oad()
ResponseCr eat or provided by the statically imported ResponseCr eat or s (see the section
called “ResponseCr eat or and ResponseCr eat or s”).

This part of the test might look a bit confusing, but the Code Completion features of your IDE are
of great help. After typing expect (, simply type ctrl-space, and your IDE will provide you with a
list of possible request matching strategies, provided you statically imported Request Mat cher s.
The same applies to andRespond(, provided you statically imported ResponseCr eat or s.

0 We call getCustonerCount() on the Custonerdient, thus using the
WebSer vi ceTenpl at e. The template has been set up for 'testing mode' by now, so no real
(HTTP) connection is made by this method call. We also make some JUnit assertions based on
the result of the method call.

O Wecallverify() onthe MockWebSer vi ceSer ver, thus verifying that the expected message
was actually received.

Request Mat cher and Request Mat cher s

To verify whether the request message meets certain expectations, the MockWebSer vi ceSer ver uses
the Request Mat cher strategy interface. The contract defined by this interface is quite simple:

public interface RequestMatcher {

void match(URI wuri,
WebSer vi ceMessage request)
throws | CExcepti on,
AssertionError;

You can write your own implementations of this interface, throwing Asserti onErrors when the
message does not meet your expectations, but you certainly do not have to. The Request Mat cher s
class provides standard Request Mat cher implementations for you to use in your tests. You will
typically statically import this class.

The Request Mat cher s class provides the following request matchers:

Request Mat cher s method Description

anyt hi ng() Expects any sort of request.

payl oad() Expects a given request payload.

val i dPayl oad() Expects the request payload to validate against

given XSD schema(s).

xpat h() Expects a given XPath expression to exist, not
exist, or evaluate to a given value.

soapHeader () Expects a given SOAP header to exist in the
request message.

connectionTo() Expects a connection to the given URL.

You can set up multiple request expectations by chaining andExpect () calls, like so:

2.3.1.RELEASE Spring Web Services 64

Spring Web Services Reference Documentation

nmockSer ver . expect (connecti onTo("http://exanple.cont)).
andExpect (payl oad(expect edRequest Payl oad)) .
andExpect (val i dPayl oad(schemaResource)).
andRespond(...);

For more information on the request matchers provided by Request Mat cher s, refer to the class level
Javadoc.

ResponseCr eat or and ResponseCr eat ors

When the request message has been verified and meets the defined expectations, the
MockWebSer vi ceServer will create a response message for the WebServi ceTenpl ate to
consume. The server uses the ResponseCr eat or strategy interface for this purpose:

public interface ResponseCreator {

WebSer vi ceMessage creat eResponse(URI uri,
WebSer vi ceMessage request,
WebSer vi ceMessageFact ory nmessageFactory)
t hrows | CExcepti on;

Once again you can write your own implementations of this interface, creating a response message by
using the message factory, but you certainly do not have to, as the ResponseCr eat or s class provides
standard ResponseCr eat or implementations for you to use in your tests. You will typically statically
import this class.

The ResponseCr eat or s class provides the following responses:

ResponseCr eat or s method Description

wi t hPayl oad() Creates a response message with a given
payload.

wi t hError () Creates an error in the response connection. This
method gives you the opportunity to test your error
handling.

wi t hExcepti on() Throws an exception when reading from the

response connection. This method gives you the
opportunity to test your exception handling.

wi t hMust Under st andFaul t (), Creates a response message with a given SOAP
wi t hd i ent Or Sender Faul t (), fault. This method gives you the opportunity to test
wi t hServer Or Recei ver Faul t (), and your Fault handling.

wi t hVer si onM smat chFaul t ()

For more information on the request matchers provided by Request Mat cher s, refer to the class level
Javadoc.

2.3.1.RELEASE Spring Web Services 65

Spring Web Services Reference Documentation

7. Securing your Web services with Spring-WS

7.1 Introduction

This chapter explains how to add WS-Security aspects to your Web services. We will focus on the three
different areas of WS-Security, namely:

Authentication. This is the process of determining whether a principal is who they claim to be. In
this context, a "principal" generally means a user, device or some other system which can perform an
action in your application.

Digital signatures. The digital signature of a message is a piece of information based on both the
document and the signer's private key. It is created through the use of a hash function and a private
signing function (encrypting with the signer's private key).

Encryption and Decryption. Encryption is the process of transforming data into a form that is
impossible to read without the appropriate key. It is mainly used to keep information hidden from anyone
for whom it is not intended. Decryption is the reverse of encryption; it is the process of transforming of
encrypted data back into an readable form.

All of these three areas are implemented using the XwsSecuritylnterceptor or
Wss4j Securi tyl nt ercept or, which we will describe in Section 7.2, “ XwsSecuri tyl nt er cept or
"and Section 7.3, “Wss4j Securityl nt erceptor ”, respectively

Note

Note that WS-Security (especially encryption and signing) requires substantial amounts of
memory, and will also decrease performance. If performance is important to you, you might want
to consider not using WS-Security, or simply use HTTP-based security.

7.2 XwsSecuritylnterceptor

The XwsSecuri tyl nt er cept or is an Endpoi nt | nt er cept or (see the section called “Intercepting
requests - the Endpoi nt | nt er cept or interface”) that is based on SUN's XML and Web Services
Security package (XWSS). This WS-Security implementation is part of the Java Web Services
Developer Pack (Java WSDP).

Like any other endpoint interceptor, it is defined in the endpoint mapping (see Section 5.5, “Endpoint
mappings”). This means that you can be selective about adding WS-Security support: some endpoint
mappings require it, while others do not.

Note

Note that XWSS requires both a SUN 1.5 JDK and the SUN SAAJ reference
implementation. The WSS4J interceptor does not have these requirements (see Section 7.3, “
Wss4j Securityl nterceptor).

The XwsSecurityl nterceptor requires a security policy file to operate. This XML file tells the
interceptor what security aspects to require from incoming SOAP messages, and what aspects to add
to outgoing messages. The basic format of the policy file will be explained in the following sections,
but you can find a more in-depth tutorial _here . You can set the policy with the policyConfiguration

2.3.1.RELEASE Spring Web Services 66

http://java.sun.com/webservices/
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp564887

Spring Web Services Reference Documentation

property, which requires a Spring resource. The policy file can contain multiple elements, e.g.
require a username token on incoming messages, and sign all outgoing messages. It contains a
Securi tyConfi gurati on element as root (not a JAXRPCSecuri ty element).

Additionally, the security interceptor requires one or moreCal | backHandl er s to operate. These
handlers are used to retrieve certificates, private keys, validate user credentials, etc. Spring-WS
offers handlers for most common security concerns, e.g. authenticating against a Spring Security
authentication manager, signing outgoing messages based on a X509 certificate. The following sections
will indicate what callback handler to use for which security concern. You can set the callback handlers
using the callbackHandler or callbackHandlers property.

Here is an example that shows how to wire the XwsSecuri tyl nt er cept or up:

<beans>
<bean id="wsSecuritylnterceptor"
cl ass="org. spri ngfranmewor k. ws. soap. security.xwss. XwsSecurityl nterceptor">
<property nanme="policyConfiguration" val ue="cl asspat h: securityPolicy.xm"/>
<property nanme="cal | backHandl ers" >
<list>
<ref bean="certificateHandl er"/>
<ref bean="aut henticati onHandl er"/>
</list>
</ property>
</ bean>

</ beans>

This interceptor is configured using the securityPolicy.xm file on the classpath. It uses two
callback handlers which are defined further on in the file.

Keystores

For most cryptographic operations, you will use the standard j ava. security. KeySt or e objects.
These operations include certificate verification, message signing, signature verification, and encryption,
but excludes username and time-stamp verification. This section aims to give you some background
knowledge on keystores, and the Java tools that you can use to store keys and certificates in a keystore
file. This information is mostly not related to Spring-WS, but to the general cryptographic features of
Java.

The java. security. KeyStore class represents a storage facility for cryptographic keys and
certificates. It can contain three different sort of elements:

Private Keys. These keys are used for self-authentication. The private key is accompanied by
certificate chain for the corresponding public key. Within the field of WS-Security, this accounts to
message signing and message decryption.

Symmetric Keys. Symmetric (or secret) keys are used for message encryption and decryption as
well. The difference being that both sides (sender and recipient) share the same, secret key.

Trusted certificates. These X509 certificates are called a trusted certificate because the keystore
owner trusts that the public key in the certificates indeed belong to the owner of the certificate. Within
WS-Security, these certificates are used for certificate validation, signature verification, and encryption.

KeyTool

Supplied with your Java Virtual Machine is the keytool program, a key and certificate management
utility. You can use this tool to create new keystores, add new private keys and certificates to them, etc.

2.3.1.RELEASE Spring Web Services 67

Spring Web Services Reference Documentation

It is beyond the scope of this document to provide a full reference of the keytool command, but you can
find a reference _here , or by giving the command keyt ool - hel p on the command line.

KeyStoreFactoryBean

To easily load a keystore using Spring configuration, you can use the Key St or eFact or yBean. It has
a resource location property, which you can set to point to the path of the keystore to load. A password
may be given to check the integrity of the keystore data. If a password is not given, integrity checking
is not performed.

<bean id="keyStore" class="org.springframework.ws. soap. security. support.KeyStoreFact oryBean">
<property name="password" val ue="password"/>
<property name="| ocation" val ue="cl asspat h: or g/ spri ngf ramewor k/ ws/ soap/ securi ty/ xwss/test -
keystore.jks"/>
</ bean>

Caution

If you don't specify the location property, a new, empty keystore will be created, which is most
likely not what you want.

KeyStoreCallbackHandler

To use the keystores within a XwsSecuritylnterceptor, you wil need to define
a KeyStoreCall backHandl er. This callback has three properties with type keystore:
(keySt ore,trust Store, and symmet ri cSt or e). The exact stores used by the handler depend on
the cryptographic operations that are to be performed by this handler. For private key operation, the
keySt or e is used, for symmetric key operations the synmet ri cSt or e, and for determining trust
relationships, the t r ust St or e. The following table indicates this:

Cryptographic operation Keystore used

Certificate validation first thekey St or e, then the t rust St or e
Decryption based on private key keySt ore

Decryption based on symmetric key synmetricStore

Encryption based on public key certificate trustStore

Encryption based on symmetric key synmetricStore

Signing keySt ore

Signature verification trustStore

Additionally, the Key St or eCal | backHandl er has a pri vat eKeyPasswor d property, which should
be set to unlock the private key(s) contained in thekey St or e.

If the syrmet ri ¢St or e is not set, it will default to the key St or e. If the key or trust store is not set, the
callback handler will use the standard Java mechanism to load or create it. Refer to the JavaDoc of the
KeySt or eCal | backHandl er to know how this mechanism works.

For instance, if you want to use the Key St or eCal | backHandl er to validate incoming certificates or
signatures, you would use a trust store, like so:

2.3.1.RELEASE Spring Web Services 68

http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html

Spring Web Services Reference Documentation

<beans>
<bean i d="keySt or eHandl er"
cl ass="org. springfranmewor k. ws. soap. security.xwss. cal | back. KeySt or eCal | backHandl er ">
<property name="trustStore" ref="trustStore"/>
</ bean>

<bean id="trustStore" class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="| ocati on" val ue="cl asspath:truststore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

If you want to use it to decrypt incoming certificates or sign outgoing messages, you would use a key
store, like so:

<beans>
<bean i d="keySt or eHand! er"
cl ass="org. spri ngframewor k. ws. soap. security.xwss. cal | back. KeySt or eCal | backHandl er ">
<property name="keyStore" ref="keyStore"/>
<property name="privat eKeyPassword" val ue="changeit"/>
</ bean>

<bean id="keyStore" class="org.springframework.ws. soap. security.support.KeyStoreFactoryBean">
<property nanme="l|ocati on" val ue="cl asspat h: keystore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

The following sections will indicate where the Key St or eCal | backHandl er can be used, and which
properties to set for particular cryptographic operations.

Authentication

As stated in the introduction, authentication is the task of determining whether a principal is who they
claim to be. Within WS-Security, authentication can take two forms: using a username and password
token (using either a plain text password or a password digest), or using a X509 certificate.

Plain Text Username Authentication

The simplest form of username authentication usesplain text passwords. In this scenario, the SOAP
message will contain a User naneToken element, which itself contains a User nane element and a
Passwor d element which contains the plain text password. Plain text authentication can be compared
to the Basic Authentication provided by HTTP servers.

Warning

Note that plain text passwords are not very secure. Therefore, you should always add additional
security measures to your transport layer if you are using them (using HTTPS instead of plain
HTTP, for instance).

To require that every incoming message contains a UsernaneToken with a plain text
password, the security policy file should contain a RequireUser naneToken element, with the
passwor dDi gest Requi r ed attribute set tof al se. You can find a reference of possible child elements
here .

2.3.1.RELEASE Spring Web Services 69

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459

Spring Web Services Reference Documentation

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Requi r eUser naneToken passwor dDi gest Requi red="fal se" nonceRequired="fal se"/>
</ xwss: SecurityConfiguration>
If the username token is not present, the XwsSecuritylnterceptor wil return a SOAP
Fault to the sender. If it is present, it will fire a PasswordValidationCal |l back with a

Pl ai nText Passwor dRequest to the registered handlers. Within Spring-WS, there are three classes
which handle this particular callback.

SimplePasswordValidationCallbackHandler

The simplest password validation handler is the Si npl ePasswor dVal i dati onCal | backHandl er.
This handler validates passwords against an in-memory Pr operti es object, which you can specify
using the user s property, like so:

<bean i d="passwor dVal i dati onHandl er"
cl ass="org. spri ngfranmewor k. ws. soap. security. xwss. cal | back. Si npl ePasswor dVal i dati onCal | backHand! er" >
<property nanme="users">
<pr ops>
<prop key="Bert">Erni e</prop>
</ pr ops>
</ property>
</ bean>

In this case, we are only allowing the user "Bert" to log in using the password "Ernie".

SpringPlainTextPasswordValidationCallbackHandler

The SpringPl ai nText Passwor dVal i dati onCal | backHandl er uses Spring Security to
authenticate users. It is beyond the scope of this document to describe Spring Security, but suffice it
to say that it is a full-fledged security framework. You can read more about it in the _Spring Security
reference documentation .

The Spri ngPl ai nText Passwor dVal i dati onCal | backHandl er requires an
Aut hent i cati onManager to operate. It uses this manager to authenticate against a
User namePasswor dAut hent i cat i onToken that it creates. If authentication is successful, the token
is stored in the SecurityCont ext Hol der. You can set the authentication manager using the
aut henti cat i onManager property:

<beans>
<bean id="springSecurityHandl er"

cl ass="org. spri ngframewor k. ws. soap. security. xwss. cal | back. Spri ngPl ai nText Passwor dVal i dati onCal | backHandl er" >
<property nanme="aut henti cati onManager" ref="authenticati onManager"/>
</ bean>

<bean i d="aut henti cati onManager" cl ass="org. springfranmework. security. providers. Provi der Manager ">
<property name="provi ders">
<bean cl ass="org. springframework. security. provi ders. dao. DaoAut henti cati onProvi der">
<property nanme="user Detail sService" ref="userDetail sService"/>
</ bean>
</ property>
</ bean>

<bean i d="userDetail sService" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

2.3.1.RELEASE Spring Web Services 70

http://www.springframework.org/security
http://www.springframework.org/security
http://www.springframework.org/security

Spring Web Services Reference Documentation

JaasPlainTextPasswordValidationCallbackHandler

The JaasPl ai nText Passwor dVal i dati onCal | backHandl er is based on the standard _Java
Authentication and Authorization Service . It is beyond the scope of this document to provide a full
introduction into JAAS, but there is a _good tutorial available.

The JaasPIl ai nText Passwor dVal i dati onCal | backHandl er requires only a
| ogi nCont ext Name to operate. It creates a new JAAS Logi nCont ext using this name, and handles
the standard JAAS NaneCal | back and Passwor dCal | back using the username and password
provided in the SOAP message. This means that this callback handler integrates with any JAAS
Logi nMbdul e that fires these callbacks during the | ogi n() phase, which is standard behavior.

You can wire up a JaasPl ai nText Passwor dVal i dat i onCal | backHandl er as follows:

<bean id="j aasVal i dati onHandl er"

class="org. springframework. ws. soap. security.xwss. cal | back. j aas. JaasPl ai nText Passwor dVal i dati onCal | backHandl er ">
<property name="| ogi nCont ext Name" val ue="M/Logi nModul e" />
</ bean>

In this case, the callback handler uses the Logi nCont ext named "MyLoginModule". This module
should be defined in your j aas. confi g file, as explained in the abovementioned tutorial.

Digest Username Authentication

When using password digests, the SOAP message also contains a User nanmeToken element, which
itself contains a User nane element and a Passwor d element. The difference is that the password is
not sent as plain text, but as a digest. The recipient compares this digest to the digest he calculated
from the known password of the user, and if they are the same, the user is authenticated. It can be
compared to the Digest Authentication provided by HTTP servers.

To require that every incoming message contains a User nameToken element with a password
digest, the security policy file should contain a RequireUser nameToken element, with the
passwor dDi gest Requi r ed attribute set tot r ue. Additionally, the nonceRequi r ed should be set
tot r ue: You can find a reference of possible child elements here .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Requi r eUser naneToken passwor dDi gest Requi red="true" nonceRequired="true"/>

</ xwss: SecurityConfiguration>

If the username token is not present, the XwsSecuritylnterceptor wil return a SOAP
Fault to the sender. If it is present, it will fire a PasswordVali dationCal |l back with a
Di gest Passwor dRequest to the registered handlers. Within Spring-WS, there are two classes which
handle this particular callback.

SimplePasswordValidationCallbackHandler

The Si npl ePasswor dVal i dat i onCal | backHandl er can handle both plain text passwords as well
as password digests. It is described inthe section called “SimplePasswordValidationCallbackHandler”.

SpringDigestPasswordValidationCallbackHandler

The SpringDi gest PasswordVal i dati onCal | backHandl er requires an Spring Security
User Det ai | Ser vi ce to operate. It uses this service to retrieve the password of the user specified

2.3.1.RELEASE Spring Web Services 71

http://java.sun.com/products/jaas/
http://java.sun.com/products/jaas/
http://www.javaworld.com/javaworld/jw-09-2002/jw-0913-jaas.html
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp567459

Spring Web Services Reference Documentation

in the token. The digest of the password contained in this details object is then compared with
the digest in the message. If they are equal, the user has successfully authenticated, and a
User nanmePasswor dAut hent i cati onToken is stored in the Secur i t yCont ext Hol der. You can
set the service using the user Det ai | sSer vi ce. Additionally, you can set a user Cache property, to
cache loaded user details.

<beans>
<bean
cl ass="org. spri ngframewor k. ws. soap. security.xwss. cal | back. Spri ngDi gest Passwor dVal i dati onCal | backHandl er " >
<property nanme="userDetail sServi ce" ref="userDetail sService"/>
</ bean>

<bean i d="userDetail sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

Certificate Authentication

A more secure way of authentication uses X509 certificates. In this scenerario, the SOAP message
contains aBi nar ySecuri t yToken, which contains a Base 64-encoded version of a X509 certificate.
The certificate is used by the recipient to authenticate. The certificate stored in the message is also used
to sign the message (seethe section called “Verifying Signatures”).

To make sure that all incoming SOAP messages carry aBi nar ySecuri t yToken, the security policy
file should contain a Requi r eSi gnat ur e element. This element can further carry other elements,
which will be covered inthe section called “Verifying Signatures”. You can find a reference of possible
child elements here .

<xwss: SecurityConfiguration xm ns:xwss="http://java. sun. com xm / ns/ xwss/ confi g">
<xwss: Requi reSi gnature requireTi mestanp="fal se">

</ xwss: SecurityConfiguration>

When a message arrives that carries no certificate, the XwsSecur i t yl nt er cept or will return a SOAP
Fault to the sender. If it is present, it will fire a Certi fi cat eVal i dati onCal | back. There are three
handlers within Spring-WS which handle this callback for authentication purposes.

Note

In most cases, certificate authentication should be preceded by certificate validation, since you
only want to authenticate against valid certificates. Invalid certificates such as certificates for which
the expiration date has passed, or which are not in your store of trusted certificates, should be
ignored.

In Spring-WS terms, this means that the
SpringCertificateValidationCall backHandl er or
JaasCertificateValidationCall backHandl er should be preceded by
KeySt or eCal | backHandl er. This can be accomplished by setting the order of the
cal | backHandl er s property in the configuration of the XwsSecuri tyl nt er cept or:

2.3.1.RELEASE Spring Web Services 72

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769

Spring Web Services Reference Documentation

<bean id="wsSecuritylnterceptor"
cl ass="org. springframework. ws. soap. security.xwss. XwsSecuritylnterceptor">
<property name="policyConfiguration" val ue="cl asspath: securityPolicy.xm"/>
<property nane="cal | backHandl ers" >
<list>
<ref bean="keyStoreHandl er"/>
<ref bean="springSecurityHandl er"/>
</list>
</ property>
</ bean>

Using this setup, the interceptor will first determine if the certificate in the message is valid using
the keystore, and then authenticate against it.

KeyStoreCallbackHandler

The KeySt or eCal | backHandl er uses a standard Java keystore to validate certificates. This
certificate validation process consists of the following steps:

1. First, the handler will check whether the certificate is in the private keySt or e. If it is, it is valid.

2. If the certificate is not in the private keystore, the handler will check whether the current date and
time are within the validity period given in the certificate. If they are not, the certificate is invalid; if
it is, it will continue with the final step.

3. Finally, a certification path for the certificate is created. This basically means that the handler
will determine whether the certificate has been issued by any of the certificate authorities in
thet r ust St or e. If a certification path can be built successfully, the certificate is valid. Otherwise,
the certificate is not.

To use the Key St or eCal | backHandl er for certificate validation purposes, you will most likely set
only the t r ust St or e property:

<beans>
<bean i d="keySt or eHand! er"
class="org. springfranmewor k. ws. soap. security.xwss. cal | back. KeySt or eCal | backHandl er ">
<property name="trustStore" ref="trustStore"/>
</ bean>

<bean id="trustStore" class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="| ocation" val ue="cl asspath:truststore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

Using this setup, the certificate that is to be validated must either be in the trust store itself, or the trust
store must contain a certificate authority that issued the certificate.

SpringCertificateValidationCallbackHandler

The SpringCertificateValidationCallbackHandl er requires an Spring Security
Aut hent i cati onManager to operate. It uses this manager to authenticate against a
X509Aut hent i cati onToken that it creates. The configured authentication manager is
expected to supply a provider which can handle this token (usually an instance of
X509Aut henti cati onProvi der). If authentication is succesful, the token is stored in the
Securi t yCont ext Hol der . You can set the authentication manager using the authenticationManager

property:

2.3.1.RELEASE Spring Web Services 73

Spring Web Services Reference Documentation

<beans>
<bean id="springSecurityCertificateHandl er"

cl ass="org. spri ngframewor k. ws. soap. security. xwss. cal | back. Spri ngCertificateValidationCall backHandl er">
<property nanme="aut henti cati onManager" ref="authenticati onManager"/>
</ bean>

<bean i d="aut henti cati onManager"
cl ass="org. spri ngfranmewor k. security. provi ders. Provi der Manager " >
<property nanme="provi ders">
<bean cl ass="org. spri ngframewor k. ws. soap. security.x509. X509Aut henti cati onProvi der">
<property name="x509Aut horitiesPopul at or">
<bean
cl ass="org. spri ngframewor k. ws. soap. security.x509. popul at or. DaoX509Aut hori ti esPopul at or ">
<property name="user Detail sService" ref="userDetail sService"/>
</ bean>
</ property>
</ bean>
</ property>
</ bean>

<bean i d="userDetail sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

In this case, we are using a custom user details service to obtain authentication details based on
the certificate. Refer to the _Spring Security reference documentation for more information about
authentication against X509 certificates.

JaasCertificateValidationCallbackHandler

The JaasCertificateValidationCal |l backHandl er requiresal ogi nCont ext Nane to operate.
It creates a new JAAS Logi nCont ext using this name and with the X500Pr i nci pal of the certificate.
This means that this callback handler integrates with any JAAS Logi nMbdul e that handles X500
principals.

You can wire up a JaasCerti ficateValidationCal |l backHandl er as follows:

<bean i d="j aasVal i dati onHandl er"

cl ass="org. springfranmewor k. ws. soap. security.xwss. cal | back. j aas. JaasCertificateValidationCall backHandl er">
<property name="| ogi nCont ext Name" >MyLogi nMbdul e</ property>
</ bean>

In this case, the callback handler uses the Logi nCont ext named "MyLoginModule". This module
should be defined inyourj aas. confi g file, and should be able to authenticate against X500 principals.

Digital Signatures

The digital signature of a message is a piece of information based on both the document and the signer's
private key. There are two main tasks related to signatures in WS-Security: verifying signatures and
signing messages.

Verifying Signatures

Just likecertificate-based authentication, a signed message contains a Bi nar ySecur i t yToken, which
contains the certificate used to sign the message. Additionally, it contains a Si gnedI nf o block, which
indicates what part of the message was signed.

2.3.1.RELEASE Spring Web Services 74

http://www.springframework.org/security

Spring Web Services Reference Documentation

To make sure that all incoming SOAP messages carry aBi narySecurityToken, the security
policy file should contain a Requi r eSi gnat ur e element. It can also contain a Si gnat ur eTar get
element, which specifies the target message part which was expected to be signed, and various other
subelements. You can also define the private key alias to use, whether to use a symmetric instead of a
private key, and many other properties. You can find a reference of possible child elements _here .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. comf xm / ns/ xwss/ confi g">
<xwss: Requi r eSi gnat ure requireTi nestanp="fal se"/>
</ xwss: SecurityConfiguration>

If the signature is not present, the XwsSecurityl nterceptor will return a SOAP Fault to the
sender. If it is present, it will fire a Si gnatureVerificationKeyCal |l back to the registered
handlers. Within Spring-WS, there are is one class which handles this particular callback: the
KeySt or eCal | backHandl er.

KeyStoreCallbackHandler

As described inthe section called “KeyStoreCallbackHandler”, the KeySt or eCal | backHandl er
uses aj ava. security. KeySt or e for handling various cryptographic callbacks, including signature
verification. For signature verification, the handler uses the t r ust St or e property:

<beans>
<bean i d="keySt or eHandl er"
cl ass="org. spri ngframewor k. ws. soap. security. xwss. cal | back. KeySt or eCal | backHandl er ">
<property name="trustStore" ref="trustStore"/>
</ bean>

<bean id="trustStore" class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property nanme="l ocati on" val ue="cl asspat h: or g/ spri ngf r amewor k/ ws/ soap/ security/ xwss/test -
truststore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

Signing Messages

When signing a message, the XwsSecuri t yl nt er cept or adds the Bi nar ySecuri t yToken to the
message, and a Si gnedl nf o block, which indicates what part of the message was signed.

To sign all outgoing SOAP messages, the security policy file should contain a Si gn element. It can also
contain a Si gnat ur eTar get element, which specifies the target message part which was expected
to be signed, and various other subelements. You can also define the private key alias to use, whether
to use a symmetric instead of a private key, and many other properties. You can find a reference of
possible child elements _here .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Si gn includeTi nestanmp="fal se" />
</ xwss: SecurityConfiguration>

The XwsSecuritylnterceptor will fire a Si gnat ureKeyCal | back to the registered handlers.
Within Spring-WS, there are is one class which handles this particular callback: the
KeySt or eCal | backHandl er .

KeyStoreCallbackHandler

As described inthe section called “KeyStoreCallbackHandler”, the KeySt or eCal | backHandl er
uses a j ava. security. KeySt ore for handling various cryptographic callbacks, including signing

2.3.1.RELEASE Spring Web Services 75

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565769
http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565497

Spring Web Services Reference Documentation

messages. For adding signatures, the handler uses the key St or e property. Additionally, you must set
the pri vat eKeyPasswor d property to unlock the private key used for signing.

<beans>
<bean id="keySt or eHandl er"
cl ass="org. spri ngframewor k. ws. soap. security.xwss. cal | back. KeySt or eCal | backHandl er ">
<property nanme="keyStore" ref="keyStore"/>
<property name="privat eKeyPassword" val ue="changeit"/>
</ bean>

<bean id="keyStore" class="org.springframework.ws. soap. security.support.KeyStoreFactoryBean">
<property nane="|ocati on" val ue="cl asspat h: keystore.jks"/>
<property nanme="password" val ue="changeit"/>
</ bean>
</ beans>

Encryption and Decryption

When encrypting, the message is transformed into a form that can only be read with the appropriate
key. The message can be decrypted to reveal the original, readable message.

Decryption

To decrypt incoming SOAP messages, the security policy file should contain a Requi r eEncrypti on
element. This element can further carry a Encr ypt i onTar get element which indicates which part of
the message should be encrypted, and a Symmet ri cKey to indicate that a shared secret instead of
the regular private key should be used to decrypt the message. You can read a description of the other
elements here .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. conf xm / ns/ xwss/ confi g">
<xwss: Requi reEncryption />
</ xwss: SecurityConfi gurati on>

If an incoming message is not encrypted, the XwsSecur i t yl nt er cept or will return a SOAP Fault to
the sender. If it is present, it will fire a Decr ypt i onKeyCal | back to the registered handlers. Within
Spring-WS, there is one class which handled this particular callback: theKey St or eCal | backHandl er .

KeyStoreCallbackHandler

As described inthe section called “KeyStoreCallbackHandler”, the Key St or eCal | backHandl er uses
a java. security. KeySt ore for handling various cryptographic callbacks, including decryption.
For decryption, the handler uses the keyStore property. Additionally, you must set the
pri vat eKeyPasswor d property to unlock the private key used for decryption. For decryption based
on symmetric keys, it will use the synmet ri cSt or e.

<beans>
<bean i d="keySt or eHandl er"
cl ass="org. spri ngframewor k. ws. soap. security. xwss. cal | back. KeySt or eCal | backHandl er ">
<property name="keyStore" ref="keyStore"/>
<property nanme="privat eKeyPassword" val ue="changeit"/>
</ bean>

<bean i d="keyStore" class="org.springframework.ws.soap.security.support.KeyStoreFactoryBean">
<property name="| ocati on" val ue="cl asspat h: keystore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

2.3.1.RELEASE Spring Web Services 76

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951

Spring Web Services Reference Documentation

Encryption

To encrypt outgoing SOAP messages, the security policy file should contain a Encr ypt element. This
element can further carry a Encrypti onTar get element which indicates which part of the message
should be encrypted, and a Symmet r i cKey to indicate that a shared secret instead of the regular public
key should be used to encrypt the message. You can read a description of the other elements here .

<xwss: SecurityConfiguration xm ns: xwss="http://java. sun. comf xm / ns/ xwss/ confi g">
<xwss: Encrypt />
</ xwss: SecurityConfiguration>

The XwsSecuri tyl nt er cept or will fire a Encrypti onKeyCal | back to the registered handlers in
order to retrieve the encryption information. Within Spring-WS, there is one class which handled this
particular callback: the Key St or eCal | backHandl er .

KeyStoreCallbackHandler

As described inthe section called “KeyStoreCallbackHandler”, the Key St or eCal | backHandl er uses
ajava. security. KeySt or e for handling various cryptographic callbacks, including encryption. For
encryption based on public keys, the handler uses the t r ust St or e property. For encryption based on
symmetric keys, it will use thesymrmet ri cSt or e.

<beans>
<bean i d="keySt or eHandl er"
cl ass="org. spri ngframewor k. ws. soap. security.xwss. cal | back. KeySt or eCal | backHandl er ">
<property name="trustStore" ref="trustStore"/>
</ bean>

<bean id="trustStore" class="org.springframewrk.ws.soap.security.support.KeyStoreFactoryBean">
<property nanme="| ocati on" val ue="cl asspath:truststore.jks"/>
<property name="password" val ue="changeit"/>
</ bean>
</ beans>

Security Exception Handling

When an securement or validation action fails, the XwsSecurityl nterceptor will throw a
WsSecurit ySecur enent Excepti on or WsSecuri tyVal i dati onExcepti on respectively. These
exceptions bypass the standard exception handling mechanism, but are handled in the interceptor itself.

WsSecur it ySecur enent Excepti on exceptions are handled in the
handl eSecur enent Except i on method of the XwsSecur i t yl nt er cept or . By default, this method
will simply log an error, and stop further processing of the message.

Similarly, WsSecurityVal i dati onExcepti on exceptions are handled in the
handl eVal i dat i onExcept i on method of the XwsSecur i t yl nt er cept or . By default, this method
will create a SOAP 1.1 Client or SOAP 1.2 Sender Fault, and send that back as a response.

Note

Both handl eSecur ement Excepti on and handl eVal i dati onExcepti on are protected
methods, which you can override to change their default behavior.

2.3.1.RELEASE Spring Web Services 77

http://java.sun.com/webservices/docs/1.6/tutorial/doc/XWS-SecurityIntro4.html#wp565951

Spring Web Services Reference Documentation

7.3 Wss4j Securitylnterceptor

The Ws4j Securitylnterceptor is an Endpointlnterceptor (see the section called
“Intercepting requests - the Endpoi nt | nt er cept or interface”) that is based on Apache's WSS4J.

WSS4J implements the following standards:

» OASIS Web Serives Security: SOAP Message Security 1.0 Standard 200401, March 2004
» Username Token profile V1.0

* X.509 Token Profile V1.0

This interceptor supports messages created by the Axi onSoapMessageFactory and the
Saaj SoapMessageFactory.

Configuring Ws4j Securi tyl nt er cept or

WSS4J uses no external configuration file; the interceptor is entirely configured by properties. The
validation and securement actions executed by this interceptor are specified via validationActions and
securementActions properties, respectively. Actions are passed as a space-separated strings. Here is
an example configuration:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dati onActi ons" val ue="User naneToken Encrypt"/>

<property name="securenent Acti ons" val ue="Encrypt"/>

</ bean>

Validation actions are:

Validation action Description

User nameToken Validates username token
Ti mest anp Validates the timestamp
Encrypt Decrypts the message

Si gnature Validates the signature
NoSecurity No action performed

Securement actions are:

Securement action Description
User nanmeToken Adds a username token
User nameTokenSi gnat ur e Adds a username token and a signature

username token secret key

Ti mest anp Adds a timestamp
Encrypt Encrypts the response
Si gnature Signs the response
NoSecurity No action performed

2.3.1.RELEASE Spring Web Services 78

http://ws.apache.org/wss4j/

Spring Web Services Reference Documentation

The order of the actions is significant and is enforced by the interceptor. The interceptor will reject an
incoming SOAP message if its security actions were performed in a different order than the one specified
byval i dati onActi ons.

Handling Digital Certificates

For cryptographic operations requiring interaction with a keystore or certificate
handling (signature, encryption and decryption operations), WSS4J requires an instance
ofor g. apache. ws. security. conponents. crypto. Crypt o.

Crypt o instances can be obtained from WSS4J's Cr ypt oFact ory or more conveniently with the
Spring-WSCr ypt oFact or yBean.

CryptoFactoryBean

Spring-WS provides a convenient factory bean, Cr ypt oFact or yBean that constructs and configures
Cr ypt o instances via strong-typed properties (prefered) or through a Pr operti es object.

By default, Crypt oFact or yBean returns instances of
or g. apache. ws. security. conmponents. crypto. Merlin. This can be changed by setting the
cryptoProvider property (or its equivalent or g. apache. ws. security. crypto. provi der string

property).

Here is a simple example configuration:

<bean cl ass="org. springfranmewor k. ws. soap. security.wss4j. support. CryptoFact or yBean">
<property name="keySt or ePassword" val ue="nypassword"/>
<property name="keyStoreLocation" value="file:/path_to_keystore/keystore.jks"/>
</ bean>

Authentication
Validating Username Token

Spring-WS provides a set of callback handlers to integrate with Spring Security. Additionally, a simple
callback handler Si npl ePasswor dVal i dati onCal | backHandl er is provided to configure users
and passwords with an in-memory Pr operti es object.

Callback handlers are configured via Wss4j Securityl nterceptor's validationCallbackHandler
property.

SimplePasswordValidationCallbackHandler

Si npl ePasswor dVal i dat i onCal | backHandl er validates plain text and digest username tokens
against an in-memory Pr operti es object. It is configured as follows:

<bean id="cal | backHandl er"
cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.cal | back. Si npl ePasswor dVal i dati onCal | backHandl er ">
<property nanme="users">
<pr ops>
<prop key="Bert">Erni e</ prop>
</ pr ops>
</ property>
</ bean>

2.3.1.RELEASE Spring Web Services 79

Spring Web Services Reference Documentation

SpringSecurityPasswordValidationCallbackHandler

The SpringSecurityPasswordVal i dati onCal | backHandl er validates plain text and digest
passwords using a Spring Security User Det ai | Ser vi ce to operate. It uses this service to retrieve
the (digest of) the password of the user specified in the token. The (digest of) the password contained
in this details object is then compared with the digest in the message. If they are equal, the user
has successfully authenticated, and a User nanePasswor dAut henti cati onToken is stored in
theSecuri t yCont ext Hol der . You can set the service using the userDetailsService. Additionally, you
can set a userCache property, to cache loaded user details.

<beans>
<bean
cl ass="org. springfranmewor k. ws. soap. security.wss4j.cal | back. Spri ngDi gest Passwor dVal i dati onCal | backHandl er" >
<property nanme="userDetail sServi ce" ref="userDetail sService"/>
</ bean>

<bean i d="userDetail sServi ce" class="com nyconpany. app. dao. User Det ai | Servi ce" />

</ beans>

Adding Username Token

Adding a username token to an outgoing message is as simple as adding User nameToken
to the securementActions property of the Wss4j Securitylnterceptor and specifying
securementUsername andsecurementPassword.

The password type can be set via the securementPasswordType property. Possible values are
Passwor dText for plain text passwords or Passwor dDi gest for digest passwords, which is the
default.

The following example generates a username token with a digest password:

<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Acti ons" val ue="User nanmeToken"/>
<property name="securenent User nane" val ue="Ernie"/>
<property name="securenent Password" val ue="Bert"/>

</ bean>

If plain text password type is chosen, it is possible to instruct the interceptor to add Nonce and/or
Cr eat ed elements using the securementUsernameTokenElements property. The value must be a list
containing the desired elements' names separated by spaces (case sensitive).

The next example generates a username token with a plain text password, a Nonce and a Cr eat ed
element:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="securenent Acti ons" val ue="User naneToken"/ >
<property nanme="securenent User nane" val ue="Ernie"/>
<property name="securenent Password" val ue="Bert"/>
<property name="secur ement Passwor dType" val ue="Passwor dText"/>
<property name="securenent User naneTokenEl ements" val ue="Nonce Created"/>
</ bean>

Certificate Authentication

As certificate authentication is akin to digital signatures, WSS4J handles it as part of the signature
validation and securement. Specifically, the securementSignatureKeyldentifier property must be set
to Di rect Ref erence in order to instruct WSS4J to generate a Bi narySecurityToken element
containing the X509 certificate and to include it in the outgoing message. The certificate's name

2.3.1.RELEASE Spring Web Services 80

Spring Web Services Reference Documentation

and password are passed through the securementUsername and securementPassword properties
respectively. See the next example:

<bean cl ass="org. spri ngframework. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Acti ons" val ue="Si gnature"/>
<property name="securenent Si gnat ureKeyl dentifier" val ue="DirectReference"/>
<property nanme="securenent User nane" val ue="nycert"/>
<property nanme="securenent Password" val ue="certpass"/>
<property nanme="securenent Si gnat ur eCrypt 0" >
<bean cl ass="org. spri ngframework. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property name="keySt or ePassword" val ue="123456"/>
<property name="keyStoreLocati on" val ue="cl asspat h:/keystore.jks"/>
</ bean>
</ property>
</ bean>

For the certificate validation, regular signature validation applies:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dati onActi ons" val ue="Si gnature"/>
<property nanme="val i dati onSi gnat ureCrypto">
<bean cl ass="org. spri ngframework.ws. soap. security.wss4j.support.CryptoFact oryBean">
<property nanme="keyStor ePassword" val ue="123456"/>
<property name="keyStoreLocati on" val ue="cl asspat h:/keystore.jks"/>
</ bean>
</ property>
</ bean>

At the end of the validation, the interceptor will automatically verify the validity of the certificate by
delegating to the default WSS4J implementation. If needed, this behavior can be changed by redefining
theverifyCertificateTrust method.

For more details, please refer tothe section called “Digital Signatures”.
Security Timestamps

This section describes the various timestamp options available in the Wss4j Securi tyl nt er cept or.
Validating Timestamps

To validate timestamps add Ti nest anp to the validationActions property. It is possible to override
timestamp semantics specified by the initiator of the SOAP message by setting timestampStricttot r ue
and specifying a server-side time to live in seconds (defaults to 300) via the timeToLive property s

In the following example, the interceptor will limit the timestamp validity window to 10 seconds, rejecting
any valid timestamp token outside that window:

<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nanme="val i dati onActions" val ue="Ti nestanp"/>
<property name="tinmestanpStrict" val ue="true"/>
<property name="ti meToLi ve" val ue="10"/>

</ bean>

Adding Timestamps

Adding Ti nest anp to the securementActions property generates a timestamp header in outgoing
messages. The timestampPrecisionIinMilliseconds property specifies whether the precision of the
generated timestamp is in milliseconds. The default value ist r ue.

Y The interceptor will always reject already expired timestamps whatever the value of timeToLive is.

2.3.1.RELEASE Spring Web Services 81

Spring Web Services Reference Documentation

<bean cl ass="org. spri ngframework. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Acti ons" val ue="Ti nestanp"/>
<property name="timestanpPrecisionlnMI|liseconds" val ue="true"/>

</ bean>

Digital Signatures
This section describes the various signature options available in the Wss4) Securi tyl nt er cept or.
Verifying Signatures

To instruct theWss4j Securi t yl nt er cept or, validationActions must contain the Si gnat ur e action.
Additionally, the validationSignatureCrypto property must point to the keystore containing the public
certificates of the initiator:

<bean id="wsSecuritylnterceptor"
cl ass="org. spri ngframewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="val i dati onActi ons" val ue="Si gnature"/>
<property nanme="val i dati onSi gnat ureCrypto">
<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property nanme="keySt orePassword" val ue="123456"/>
<property nanme="keyStoreLocati on" val ue="cl asspat h: / keystore.jks"/>
</ bean>
</ property>
</ bean>

Signing Messages

Signing outgoing messages is enabled by adding Si gnat ur e action to thesecurementActions. The
alias and the password of the private key to use are specified by the securementUsername and
securementPassword properties respectively. securementSignatureCrypto must point to the keystore
containing the private key:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Acti ons" val ue="Si gnature"/>
<property nanme="securenent User nane" val ue="nykey"/>
<property name="securenment Password" val ue="123456"/>
<property nanme="securenent Si gnat ur eCrypto">
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.support. CryptoFact or yBean">
<property nanme="keySt orePassword" val ue="123456"/>
<property nanme="keyStoreLocati on" val ue="cl asspat h: / keystore.jks"/>
</ bean>
</ property>
</ bean>

Furthermore, the signature algorithm can be defined via the securementSignatureAlgorithm.

The key identifier type to use can be customized via the securementSignatureKeyldentifier property.
Only I ssuer Seri al and Di r ect Ref er ence are valid for signature.

securementSignatureParts property controls which part of the message shall be signed. The value of
this property is a list of semi-colon separated element names that identify the elements to sign. The
general form of a signature part is { } { nanmespace} El enent 18 The default behavior is to sign the
SOAP body.

As an example, here is how to sign the echoResponse element in the Spring Web Services echo
sample:

18 The first empty brackets are used for encryption parts only.

2.3.1.RELEASE Spring Web Services 82

Spring Web Services Reference Documentation

<property nanme="securenent Si gnatureParts"
val ue="{}{http://ww. springfranmework. org/ spring-ws/ sanpl es/ echo} echoResponse"/ >

To specify an element without a namespace use the string Nul | as the namespace name (case
sensitive).

If there is no other element in the request with a local name of Body then the SOAP namespace identifier
can be empty ({}).

Signature Confirmation

Signature confirmation is enabled by setting enableSignatureConfirmation to t r ue. Note that signature
confirmation action spans over the request and the response. This implies that secur eResponse and
val i dat eRequest must be set to true (which is the default value) even if there are no corresponding
security actions.

<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="val i dati onActi ons" val ue="Si gnature"/>
<property nanme="enabl eSi gnat ureConfirnmation" val ue="true"/>
<property nanme="val i dati onSi gnat ureCrypto">
<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property nanme="keySt orePassword" val ue="123456"/>
<property nanme="keyStoreLocation" value="file:/keystore.jks"/>
</ bean>
</ property>
</ bean>

Encryption and Decryption

This section describes the various encryption and descryption options available in the
Wss4j Securitylnterceptor.

Decryption

Decryption of incoming SOAP messages requires Encr ypt action be added to the validationActions
property. The rest of the configuration depends on the key information that appears in the message 19

To decrypt messages with an embedded encypted symmetric key (xenc: Encrypt edKey
element), validationDecryptionCrypto needs to point to a keystore containing the
decryption private key. Additionally, validationCallbackHandler has to be injected with a
org. springfranmewor k. ws. soap. security.wss4j.cal |l back. KeySt oreCal | backHandl er
specifying the key's password:

<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="val i dati onActi ons" val ue="Encrypt"/>
<property name="val i dati onDecrypti onCrypto">
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.support. CryptoFact or yBean">
<property nane="keySt orePassword" val ue="123456"/>
<property nanme="keyStoreLocati on" val ue="cl asspat h: / keystore.jks"/>
</ bean>
</ property>
<property nanme="val i dati onCal | backHandl er" >
<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.cal | back. KeySt or eCal | backHandl er " >
<property nanme="privat eKeyPassword" val ue="nykeypass"/>
</ bean>
</ property>
</ bean>

19 This is because WSS4J needs only a Crypto for encypted keys, whereas embedded key name validation is delegated to a
callback handler.

2.3.1.RELEASE Spring Web Services 83

Spring Web Services Reference Documentation

To support decryption of messages with an embedded key name (ds: KeyNane element), configure a
KeySt or eCal | backHandl er that points to the keystore with the symmetric secret key. The property
symmetricKeyPassword indicates the key's password, the key name being the one specified by
ds: KeyNane element:

<bean cl ass="org. spri ngfranmewor k. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property nane="val i dati onActi ons" val ue="Encrypt"/>
<property nanme="val i dati onCal | backHandl er " >
<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j. cal | back. KeySt or eCal | backHandl er ">
<property name="keyStore">
<bean cl ass="org. spri ngframework.ws. soap. security. support.KeySt oreFact oryBean" >
<property name="| ocation" val ue="cl asspat h: keystore.j ks"/>
<property nanme="type" val ue="JCEKS"/>
<property nanme="password" val ue="123456"/>
</ bean>
</ property>
<property name="symmetri cKeyPassword" val ue="nykeypass"/>
</ bean>
</ property>
</ bean>

Encryption

Adding Encr ypt to the securementActions enables encryption of outgoing messages. The certifacte's
alias to use for the encryption is set via the securementEncryptionUser property. The keystore where
the certificate reside is accessed using the securementEncryptionCrypto property. As encryption relies
on public certificates, no password needs to be passed.

<bean cl ass="org. spri ngframework. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenment Acti ons" val ue="Encrypt"/>
<property name="securenent EncryptionUser" val ue="nycert"/>
<property nanme="securenent Encrypti onCrypto">
<bean cl ass="org. spri ngframework. ws. soap. security.wss4j.support.CryptoFact oryBean">
<property name="keySt or ePassword" val ue="123456"/>
<property name="keyStoreLocati on" val ue="file:/keystore.jks"/>
</ bean>
</ property>
</ bean>

Encryption can be customized in several ways: The key identifier type to use is defined
bysecurementEncryptionKeyldentifier. Possible values arel ssuer Seri al ,X509Keyl dentifi er,
Di rect Ref erence,Thunbpri nt, SKI Keyl denti fi er orEnbeddedKeyNane.

If the EnbeddedKeyNane type is chosen, you need to specify the secret key to use for the
encryption. The alias of the key is set via the securementEncryptionUser property just as for the
other key identifier types. However, WSS4J requires a callback handler to fetch the secret key.
Thus, securementCallbackHandler must be provided with a Key St or eCal | backHandl er pointing to
the appropriate keystore. By default, the ds: KeyNane element in the resulting WS-Security header
takes the value of the securementEncryptionUser property. To indicate a different name, set the
securementEncryptionEmbeddedKeyName with the desired value. In the next example, the outgoing
message will be encrypted with a key aliased secr et Key whereas nmyKey will appear in ds: KeyNane
element:

2.3.1.RELEASE Spring Web Services 84

Spring Web Services Reference Documentation

<bean cl ass="org. spri ngframework. ws. soap. security.wss4j.Ws4j Securitylnterceptor">
<property name="securenent Acti ons" val ue="Encrypt"/>
<property name="securemnment Encrypti onKeyl dentifier" val ue="EnbeddedKeyNane"/>
<property name="securenent EncryptionUser" val ue="secretKey"/>
<property nanme="securenent Encrypti onEnbeddedKeyNane" val ue="nyKey"/ >
<property nanme="secur enment Cal | backHandl er " >
<bean cl ass="org. spri ngframewor k. ws. soap. security.wss4j. cal | back. KeySt or eCal | backHandl er ">
<property name="symmetri cKeyPassword" val ue="keypass"/>
<property name="keyStore">
<bean cl ass="org. spri ngfranmewor k. ws. soap. security. support. KeySt or eFact or yBean" >
<property nanme="location" value="file:/keystore.jks"/>
<property nanme="type" val ue="jceks"/>
<property name="password" val ue="123456"/>
</ bean>
</ property>
</ bean>
</ property>
</ bean>

The securementEncryptionKeyTransportAlgorithm property defines which algorithm to use to
encrypt the generated symmetric key. Supported values are http://ww. w3. or g/ 2001/ 04/
xm enc#r sa-1_5, which is the default, and ht t p: / / www. W3. or g/ 2001/ 04/ xm enc#r sa- oaep-

ngf 1p.

The symmetric encryption algorithm to use can be set via the
securementEncryptionSymAlgorithm property. Supported values are http://
www. W3. or g/ 2001/ 04/ xm enc#aes128- cbc (default value), http: //ww. w3. or g/ 2001/ 04/
xm enc#tri pl edes-cbc, http://ww. w3. org/ 2001/ 04/ xm enc#aes256-cbc, http://
www. W3. or g/ 2001/ 04/ xm enc#aes192- cbc.

Finally, the securementEncryptionParts property defines which parts of the message will be encrypted.
The value of this property is a list of semi-colon separated element names that identify the elements
to encrypt. An encryption mode specifier and a namespace identification, each inside a pair of curly
brackets, may precede each element name. The encryption mode specifier is either { Cont ent} or
{El ement } 2 The following example identifies the echoResponse from the echo sample:

<property name="secur enent Encrypti onParts"
val ue="{Content}{http://ww. springfranmework. org/spring-ws/sanpl es/ echo}echoResponse"/>

Be aware that the element name, the namespace identifier, and the encryption modifier are case
sensitive. The encryption modifier and the namespace identifier can be omitted. In this case the
encryption mode defaults to Cont ent and the namespace is set to the SOAP namespace.

To specify an element without a namespace use the value Nul | as the namespace name (case
sensitive). If no list is specified, the handler encrypts the SOAP Body in Cont ent mode by default.

Security Exception Handling

The exception handling of the Wss4j Securitylnterceptor is identical to that of the
XwsSecuritylnterceptor. See the section called “Security Exception Handling” for more
information.

20 please refer to the W3C XML Encryption specification about the differences between Element and Content encryption.

2.3.1.RELEASE Spring Web Services 85

Part Ill. Other Resources

In addition to this reference documentation, there exist a number of other resources that may help you
learn how to use Spring Web Services. These additional, third-party resources are enumerated in this
section.

Spring Web Services Reference Documentation

Bibliography
[waldo-94] Jim Waldo, Ann Wollrath, and Sam Kendall. A Note on Distributed Computing. Springer

Verlag. 1994.

[alpine] Steve Loughran and Edmund Smith. Rethinking the Java SOAP Stack. May 17, 2005.
Copyright © 2005 IEEE Telephone Laboratories, Inc..

[effective-enterprise-java] Ted Neward. Scott Meyers. Effective Enterprise Java. Addison-Wesley.
2004.

[effective-xml] Elliotte Rusty Harold. Scott Meyers. Effective XML. Addison-Wesley. 2004.

2.3.1.RELEASE Spring Web Services 87

	Spring Web Services Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. What is Spring Web Services?
	1.1 Introduction
	1.2 Runtime environment
	1.3 Supported standards

	2. Why Contract First?
	2.1 Introduction
	2.2 Object/XML Impedance Mismatch
	XSD extensions
	Unportable types
	Cyclic graphs

	2.3 Contract-first versus Contract-last
	Fragility
	Performance
	Reusability
	Versioning

	3. Writing Contract-First Web Services
	3.1 Introduction
	3.2 Messages
	Holiday
	Employee
	HolidayRequest

	3.3 Data Contract
	3.4 Service contract
	3.5 Creating the project
	3.6 Implementing the Endpoint
	Handling the XML Message
	Routing the Message to the Endpoint
	Providing the Service and Stub implementation

	3.7 Publishing the WSDL

	Part II. Reference
	4. Shared components
	4.1 Web service messages
	WebServiceMessage
	SoapMessage
	Message Factories
	SaajSoapMessageFactory
	AxiomSoapMessageFactory
	SOAP 1.1 or 1.2

	MessageContext

	4.2 TransportContext
	4.3 Handling XML With XPath
	XPathExpression
	XPathTemplate

	4.4 Message Logging and Tracing

	5. Creating a Web service with Spring-WS
	5.1 Introduction
	5.2 The MessageDispatcher
	5.3 Transports
	MessageDispatcherServlet
	Automatic WSDL exposure

	Wiring up Spring-WS in a DispatcherServlet
	JMS transport
	Email transport
	Embedded HTTP Server transport
	XMPP transport
	MTOM

	5.4 Endpoints
	@Endpoint handling methods
	Handling method parameters
	@XPathParam

	Handling method return types

	5.5 Endpoint mappings
	WS-Addressing
	AnnotationActionEndpointMapping

	Intercepting requests - the EndpointInterceptor interface
	PayloadLoggingInterceptor and SoapEnvelopeLoggingInterceptor
	PayloadValidatingInterceptor
	PayloadTransformingInterceptor

	5.6 Handling Exceptions
	SoapFaultMappingExceptionResolver
	SoapFaultAnnotationExceptionResolver

	5.7 Server-side testing
	Writing server-side integration tests
	RequestCreator and RequestCreators
	ResponseMatcher and ResponseMatchers

	6. Using Spring Web Services on the Client
	6.1 Introduction
	6.2 Using the client-side API
	WebServiceTemplate
	URIs and Transports
	HTTP transports
	JMS transport
	Email transport
	XMPP transport

	Message factories

	Sending and receiving a WebServiceMessage
	Sending and receiving POJOs - marshalling and unmarshalling
	WebServiceMessageCallback
	WS-Addressing

	WebServiceMessageExtractor

	6.3 Client-side testing
	Writing client-side integration tests
	RequestMatcher and RequestMatchers
	ResponseCreator and ResponseCreators

	7. Securing your Web services with Spring-WS
	7.1 Introduction
	7.2 XwsSecurityInterceptor
	Keystores
	KeyTool
	KeyStoreFactoryBean
	KeyStoreCallbackHandler

	Authentication
	Plain Text Username Authentication
	SimplePasswordValidationCallbackHandler
	SpringPlainTextPasswordValidationCallbackHandler
	JaasPlainTextPasswordValidationCallbackHandler

	Digest Username Authentication
	SimplePasswordValidationCallbackHandler
	SpringDigestPasswordValidationCallbackHandler

	Certificate Authentication
	KeyStoreCallbackHandler
	SpringCertificateValidationCallbackHandler
	JaasCertificateValidationCallbackHandler

	Digital Signatures
	Verifying Signatures
	KeyStoreCallbackHandler

	Signing Messages
	KeyStoreCallbackHandler

	Encryption and Decryption
	Decryption
	KeyStoreCallbackHandler

	Encryption
	KeyStoreCallbackHandler

	Security Exception Handling

	7.3 Wss4jSecurityInterceptor
	Configuring Wss4jSecurityInterceptor
	Handling Digital Certificates
	CryptoFactoryBean

	Authentication
	Validating Username Token
	SimplePasswordValidationCallbackHandler
	SpringSecurityPasswordValidationCallbackHandler

	Adding Username Token
	Certificate Authentication

	Security Timestamps
	Validating Timestamps
	Adding Timestamps

	Digital Signatures
	Verifying Signatures
	Signing Messages
	Signature Confirmation

	Encryption and Decryption
	Decryption
	Encryption

	Security Exception Handling

	Part III. Other Resources
	Bibliography

