
Spring XD Guide

1.0.0

MarkFisher, MarkPollack, DavidTuranski, GunnarHillert, EricBottard, GaryRussell,
IlayaperumalGopinathan, JenniferHickey, MichaelMinella, LukeTaylor, ThomasRisberg, WinstonKoh

Copyright © 2013

Spring XD

1.0.0 Spring XD Guide ii

Table of Contents

I. Reference Guide ... 1
1. Introduction .. 2

1.1. Overview ... 2
2. Getting Started ... 3

2.1. Requirements .. 3
2.2. Download Spring XD ... 3
2.3. Install Spring XD ... 3
2.4. Start the Runtime and the XD Shell .. 3
2.5. Create a Stream ... 4
2.6. Explore Spring XD ... 5

3. Running in Distributed Mode ... 6
3.1. Introduction ... 6
3.2. Using Redis .. 6

Installing Redis .. 6
Troubleshooting .. 7

Redis on Windows ... 7
Redis is not running ... 7

Starting Redis .. 7
3.3. Using RabbitMQ .. 7

Installing RabbitMQ .. 7
Launching RabbitMQ .. 8

3.4. Starting Spring XD in Distributed Mode ... 8
Choosing a Transport ... 8
Choosing a Store ... 9
Choosing an Analytics provider ... 9
Other Options .. 9

3.5. Using Hadoop ... 9
4. Architecture .. 10

4.1. Introduction ... 10
Runtime Architecture .. 10

DIRT Runtime .. 10
Support for other distributed runtimes .. 11

Single Node Runtime .. 11
Admin Server Architecture .. 12
Container Server Architecture ... 12
Streams ... 13
Stream Deployment .. 15

4.2. Jobs .. 19
4.3. Taps ... 19

5. Streams ... 20
5.1. Introduction ... 20
5.2. Creating a Simple Stream .. 20
5.3. Deleting a Stream ... 21
5.4. Deploying and Undeploying Streams .. 21
5.5. Other Source and Sink Types .. 21
5.6. Simple Stream Processing ... 21
5.7. DSL Syntax ... 22

Spring XD

1.0.0 Spring XD Guide iii

5.8. Advanced Features .. 22
6. Modules ... 23

6.1. Introduction ... 23
6.2. Creating a Module ... 23

Modules and Spring ... 23
Integration Modules .. 24

6.3. Registering a Module ... 25
Modules with isolated classpath .. 25

6.4. Composing Modules .. 26
7. Sources ... 29

7.1. Introduction ... 29
7.2. HTTP .. 29

HTTP with options .. 30
7.3. Tail ... 30

Tail with options ... 30
Tail Status Events .. 31

7.4. File ... 31
File with options ... 31

7.5. Mail sources .. 32
7.6. Twitter Search ... 33
7.7. Twitter Stream ... 34
7.8. GemFire .. 34

Options .. 34
Example ... 34

7.9. GemFire Continuous Query (CQ) ... 35
Launching the XD GemFire Server .. 35
Options .. 35

7.10. Syslog ... 36
7.11. TCP .. 36

TCP with options .. 37
Available Decoders ... 37
Examples ... 38
Binary Data Example .. 39

7.12. TCP Client .. 39
TCP Client options ... 40
Implementing a simple conversation .. 40

7.13. RabbitMQ .. 41
RabbitMQ with Options ... 41

7.14. JMS .. 42
JMS with Options ... 42

7.15. Time ... 43
7.16. MQTT ... 43

Options .. 43
8. Processors ... 44

8.1. Introduction ... 44
8.2. Filter ... 44

Filter with SpEL expression .. 44
Filter with Groovy Script ... 44

8.3. JSON Field Value Filter ... 45
8.4. Transform .. 45

Spring XD

1.0.0 Spring XD Guide iv

Transform with SpEL expression ... 45
Transform with Groovy Script .. 45

8.5. JSON Field Extractor ... 46
8.6. Script .. 46
8.7. Splitter .. 46
8.8. Aggregator .. 46

9. Sinks ... 48
9.1. Introduction ... 48
9.2. Log ... 48
9.3. File Sink .. 49

File with Options .. 49
9.4. Hadoop (HDFS) ... 49

HDFS with Options ... 50
9.5. JDBC .. 51

JDBC with Options ... 52
9.6. TCP .. 52

TCP with Options ... 53
Available Encoders ... 53
An Additional Example .. 54

9.7. Mail ... 54
9.8. RabbitMQ .. 55

RabbitMQ with Options ... 56
9.9. GemFire Server ... 56

Launching the XD GemFire Server .. 56
Gemfire sinks ... 57
Example ... 57

9.10. Splunk Server .. 57
Splunk sinks .. 58
Setup Splunk for TCP Input .. 58
Example ... 58

9.11. MQTT ... 58
Options .. 58

9.12. Dynamic Router ... 59
SpEL-based Routing ... 59
Groovy-based Routing .. 60
Options .. 61

10. Taps .. 62
10.1. Introduction ... 62
10.2. Tap Lifecycle ... 62

11. Batch Jobs ... 63
11.1. Introduction ... 63
11.2. Setting up a simple Batch Job .. 63

Creating the Tasklet ... 63
Setting Up the Application Context .. 63

11.3. Creating your Job .. 64
11.4. Launching a job ... 65

Ad-hoc ... 65
Launch the Batch using Cron-Trigger .. 65
Launch the Batch using a Fixed-Delay-Trigger ... 66
Launch job as a part of event flow .. 66

Spring XD

1.0.0 Spring XD Guide v

11.5. Retrieve job notifications .. 66
11.6. Removing Batch Jobs .. 67
11.7. Pre-Packaged Batch Jobs .. 67

Import Files to HDFS (filehdfs) ... 67
Import Files to JDBC (filejdbc) ... 67
HDFS to JDBC Export (hdfsjdbc) ... 68
HDFS to MongoDB Export (hdfsmongodb) ... 68

12. Analytics .. 69
12.1. Introduction ... 69
12.2. Counter ... 69
12.3. Field Value Counter ... 70
12.4. Aggregate Counter ... 71
12.5. Gauge ... 71

Simple Tap Example .. 72
12.6. Rich Gauge ... 72

Simple Tap Example .. 72
Stock Price Example .. 73
Improved Stock Price Example ... 73

12.7. Accessing Analytics Data over the RESTful API .. 74
13. DSL Reference ... 77

13.1. Introduction ... 77
13.2. Pipes and filters ... 77
13.3. Module parameters .. 77
13.4. Named channels .. 77
13.5. Labels ... 78

14. Tuples .. 79
14.1. Introduction ... 79

Creating a Tuple .. 79
Getting Tuple values .. 80
Using SpEL expressions to filter a tuple .. 81

15. Samples ... 83
15.1. Syslog ingestion into HDFS .. 83

A sample configuration using syslog-ng ... 83
II. Appendices .. 84

A. Installing Hadoop ... 85
A.1. Installing Hadoop .. 85

Download ... 85
Java Setup .. 85
Setup SSH ... 86
Setting the Namenode Port ... 86
Further Configuration File Changes ... 87

A.2. Running Hadoop ... 87
B. Creating a Source Module .. 89

B.1. Introduction ... 89
B.2. Create the module Application Context file .. 89

Make the module configurable .. 90
B.3. Test the module locally .. 90

Create a project ... 90
Create the Spring integration test .. 91

B.4. Deploy the module .. 92

Spring XD

1.0.0 Spring XD Guide vi

B.5. Test the deployed module ... 92
C. Creating a Processor Module ... 94

C.1. Introduction ... 94
C.2. Write the Transformer Code .. 94
C.3. Create the module Application Context File .. 94
C.4. Deploy the Module .. 95
C.5. Test the deployed module ... 95

D. Creating a Sink Module .. 96
D.1. Introduction ... 96
D.2. Create the module Application Context file ... 96
D.3. Make the module configurable ... 97
D.4. Test the module locally ... 97

Create a project ... 97
Create the Spring integration test .. 98
Run the test ... 99

D.5. Deploy the module .. 100
D.6. Test the deployed module ... 100

E. Building Spring XD ... 101
E.1. Instructions ... 101
E.2. IDE support ... 101
E.3. Running JavaScript UI Tests .. 101

F. XD Shell Command Reference ... 103
F.1. Base Commands ... 103

admin config server .. 103
admin config info .. 103

F.2. Runtime Commands .. 103
runtime containers .. 103
runtime modules ... 103

F.3. Stream Commands .. 103
stream create ... 103
stream destroy ... 104
stream all destroy ... 104
stream deploy .. 104
stream all deploy .. 104
stream undeploy ... 104
stream all undeploy .. 104
stream list .. 105

F.4. Job Commands ... 105
job create ... 105
job list .. 105
job deploy .. 105
job all deploy .. 105
job launch .. 106
job undeploy .. 106
job all undeploy .. 106
job destroy ... 106
job all destroy .. 106

F.5. Module Commands .. 107
module compose .. 107
module delete .. 107

Spring XD

1.0.0 Spring XD Guide vii

module display ... 107
module list ... 107

F.6. Metrics Commands .. 107
counter list ... 107
counter delete .. 108
counter display ... 108
fieldvaluecounter list ... 108
fieldvaluecounter delete .. 108
fieldvaluecounter display ... 108
aggregatecounter list .. 109
aggregatecounter delete ... 109
aggregatecounter display .. 109
gauge list ... 109
gauge delete .. 109
gauge display ... 110
richgauge list .. 110
richgauge delete ... 110
richgauge display .. 110

F.7. Http Commands .. 110
http post .. 110

F.8. Hadoop Configuration Commands .. 111
hadoop config props set ... 111
hadoop config props get ... 111
hadoop config info .. 111
hadoop config load ... 111
hadoop config props list .. 111
hadoop config fs ... 112
hadoop config jt .. 112

F.9. Hadoop FileSystem Commands .. 112
hadoop fs get ... 112
hadoop fs put ... 112
hadoop fs count ... 112
hadoop fs mkdir ... 113
hadoop fs tail ... 113
hadoop fs ls ... 113
hadoop fs cat ... 113
hadoop fs chgrp ... 113
hadoop fs chown .. 114
hadoop fs chmod .. 114
hadoop fs copyFromLocal ... 114
hadoop fs moveFromLocal .. 114
hadoop fs copyToLocal ... 115
hadoop fs copyMergeToLocal ... 115
hadoop fs cp .. 115
hadoop fs mv ... 116
hadoop fs du .. 116
hadoop fs expunge ... 116
hadoop fs rm .. 116
hadoop fs setrep .. 116
hadoop fs text .. 117

Spring XD

1.0.0 Spring XD Guide viii

hadoop fs touchz .. 117

Part I. Reference Guide

Spring XD

1.0.0 Spring XD Guide 2

1. Introduction

1.1 Overview

Spring XD is a unified, distributed, and extensible service for data ingestion, real time analytics, batch
processing, and data export. The Spring XD project is an open source Apache 2 License licenced
project whose goal is to tackle big data complexity. Much of the complexity in building real-world big
data applications is related to integrating many disparate systems into one cohesive solution across a
range of use-cases. Common use-cases encountered in creating a comprehensive big data solution are

• High throughput distributed data ingestion from a variety of input sources into big data store such as
HDFS or Splunk

• Real-time analytics at ingestion time, e.g. gathering metrics and counting values.

• Workflow management via batch jobs. The jobs combine interactions with standard enterprise
systems (e.g. RDBMS) as well as Hadoop operations (e.g. MapReduce, HDFS, Pig, Hive or
Cascading).

• High throughput data export, e.g. from HDFS to a RDBMS or NoSQL database.

The Spring XD project aims to provide a one stop shop solution for these use-cases.

http://www.apache.org/licenses/LICENSE-2.0

Spring XD

1.0.0 Spring XD Guide 3

2. Getting Started

2.1 Requirements

To get started, make sure your system has as a minimum Java JDK 6 or newer installed. Java JDK
7 is recommended.

2.2 Download Spring XD

If you want to try out Spring XD, we’d recommend downloading a snapshot build, since things are
changing quite fast. A snapshot distribution can be downloaded from the spring snapshots repository.
You can also build the project from source if you wish. The wiki content should also be kept up to date
with the current snapshot so if you are reading this on the github website, things may have changed
since the last milestone.

Unzip the distribution which will unpack to a single installation directory. All the commands below are
executed from this directory, so change into it before proceeding.

If you are sure you want the previous milestone release, you can also download the distribution spring-
xd-1.0.0.M4-dist.zip and its accompanying documentation.

$ cd spring-xd-1.0.0.M4

Set the environment variable XD_HOME to the installation directory <root-install-dir>\spring-
xd\xd

2.3 Install Spring XD

Spring XD can be run in two different modes. There’s a single-node runtime option for testing and
development, and there’s a distributed runtime which supports distribution of processing tasks across
multiple nodes. This document will get you up and running quickly with a single-node runtime. See
Running Distributed Mode for details on setting up a distributed runtime.

2.4 Start the Runtime and the XD Shell

The single node option is the easiest to get started with. It runs everything you need in a single process.
To start it, you just need to cd to the xd directory and run the following command

xd/bin>$./xd-singlenode

In a separate terminal, cd into the shell directory and start the XD shell, which you can use to issue
commands.

http://www.oracle.com/technetwork/java/javase/downloads/
http://repo.springsource.org/libs-snapshot-local/org/springframework/xd/spring-xd/1.0.0.BUILD-SNAPSHOT/
Building-Spring-XD
http://repo.springsource.org/libs-milestone/org/springframework/xd/spring-xd/1.0.0.M4/spring-xd-1.0.0.M4.zip
http://repo.springsource.org/libs-milestone/org/springframework/xd/spring-xd/1.0.0.M4/spring-xd-1.0.0.M4.zip
http://repo.springsource.org/libs-milestone/org/springframework/xd/spring-xd/1.0.0.M4/spring-xd-1.0.0.M4-docs.zip

Spring XD

1.0.0 Spring XD Guide 4

shell/bin>$./xd-shell

 _____ __ _______

/ ___| (-) \ \ / / _ \

\ `--. _ __ _ __ _ _ __ __ _ \ V /| | | |

 `--. \ '_ \| '__| | '_ \ / _` | / ^ \| | | |

/__/ / |_) | | | | | | | (_| | / / \ \ |/ /

____/| .__/|_| |_|_| |_|__, | \/ \/___/

 | | __/ |

 |_| |___/

eXtreme Data

1.0.0.M4 | Admin Server Target: http://localhost:8080

Welcome to the Spring XD shell. For assistance hit TAB or type "help".

xd:>

The shell is a more user-friendly front end to the REST API which Spring XD exposes to clients. The
URL of the currently targeted Spring XD server is shown at startup.

Note

If the server could not be reached, the prompt will read

server-unknown:>

You should now be able to start using Spring XD.

2.5 Create a Stream

In Spring XD, a basic stream defines the ingestion of event driven data from a source to a sink that
passes through any number of processors. You can create a new stream by issuing a stream create
command from the XD shell. Stream defintions are built from a simple DSL. For example, execute:

xd:> stream create --definition "time | log" --name ticktock

This defines a stream named ticktock based off the DSL expression time | log. The DSL uses
the "pipe" symbol |, to connect a source to a sink. The stream server finds the time and log definitions
in the modules directory and uses them to setup the stream. In this simple example, the time source
simply sends the current time as a message each second, and the log sink outputs it using the logging
framework at the WARN logging level. In the shell where you started the server, you will see log output
similar to that listed below

13:09:53,812 INFO http-bio-8080-exec-1 module.SimpleModule:109 - started module: Module

 [name=log, type=sink]

13:09:53,813 INFO http-bio-8080-exec-1 module.ModuleDeployer:111 - launched sink module:

 ticktock:log:1

13:09:53,911 INFO http-bio-8080-exec-1 module.SimpleModule:109 - started module: Module

 [name=time, type=source]

13:09:53,912 INFO http-bio-8080-exec-1 module.ModuleDeployer:111 - launched source

 module: ticktock:time:0

13:09:53,945 WARN task-scheduler-1 logger.ticktock:141 - 2013-06-11 13:09:53

13:09:54,948 WARN task-scheduler-1 logger.ticktock:141 - 2013-06-11 13:09:54

13:09:55,949 WARN task-scheduler-2 logger.ticktock:141 - 2013-06-11 13:09:55

To stop the stream, and remove the definition completely, you can use the stream destroy command:

xd:>stream destroy --name ticktock

Spring XD

1.0.0 Spring XD Guide 5

It is also possibly to stop and restart the stream instead, using the undeploy and deploy commands.
The shell supports command completion so you can hit the tab key to see which commands and options
are available.

2.6 Explore Spring XD

Learn about the modules available in Spring XD in the Sources, Processors, and Sinks sections of the
documentation.

Don’t see what you’re looking for? Create a custom module: source, processor or sink (and then consider
contributing it back to Spring XD).

Want to add some analytics to your stream? Check out the Taps and Analytics sections.

https://github.com/SpringSource/spring-xd/wiki/Contribute

Spring XD

1.0.0 Spring XD Guide 6

3. Running in Distributed Mode

3.1 Introduction

The Spring XD distributed runtime (DIRT) supports distribution of processing tasks across multiple
nodes. See Getting Started for information on running Spring XD as a single node.

Spring XD can use several middlewares when running in distributed mode. At the time of writing, Redis
and RabbitMQ are available options.

Let’s see how to install those first, before diving into the specifics of running Spring XD. Again, those are
alternatives when it comes to transport middleware used, so you need only one (although practically,
Redis may be required for other purposes, for example storage of definitions or Analytics).

Redis is actually the default when it comes to running in distributed mode, so let’s start with that.

3.2 Using Redis

Installing Redis

If you already have a running instance of Redis it can be used for Spring XD. By default Spring XD
will try to use a Redis instance running on localhost using port 6379. You can change that in the
redis.properties file residing in the config/ directory.

If you don’t have a pre-existing installation of Redis, you can use the Spring XD provided instance (For
Linux and Mac). Inside the Spring XD installation directory (spring-xd) do:

$ cd redis/bin

$./install-redis

This will compile the Redis source tar and add the Redis executables under redis/bin:

• redis-check-dump

• redis-sentinel

• redis-benchmark

• redis-cli

• redis-server

You are now ready to start Redis by executing

$./redis-server

Tip

For further information on installing Redis in general, please checkout the Redis Quick Start
guide. If you are using Mac OS, you can also install Redis via Homebrew

http://redis.io/
http://www.rabbitmq.com/
http://redis.io/topics/quickstart
http://mxcl.github.io/homebrew/

Spring XD

1.0.0 Spring XD Guide 7

Troubleshooting

Redis on Windows

Presently, Spring XD does not ship Windows binaries for Redis (See XD-151). However, Microsoft is
actively working on supporting Redis on Windows. You can download Windows Redis binaries from:

https://github.com/MSOpenTech/redis/tree/2.6/bin/release

Redis is not running

If you try to run Spring XD and Redis is NOT running, you will see the following exception:

11:26:37,830 ERROR main launcher.RedisContainerLauncher:85 - Unable to connect to Redis

 on localhost:6379; nested exception is com.lambdaworks.redis.RedisException: Unable to

 connect

Redis does not seem to be running. Did you install and start Redis? Please see the Getting

 Started section of the guide for instructions.

Starting Redis

$ redis-server

You should see something like this:

[35142] 01 May 14:36:28.939 # Warning: no config file specified, using the default config.

 In order to specify a config file use redis-server /path/to/redis.conf

[35142] 01 May 14:36:28.940 * Max number of open files set to 10032

 .

 _.-``__ ''-._

 .-`` `. `. ''-._ Redis 2.6.12 (00000000/0) 64 bit

 .-`` .-```. ```\/ _.,_ ''-._

 (' , .-` | `,) Running in stand alone mode

 |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379

 | `-._ `._ / _.-' | PID: 35142

 `-._ `-._ `-./ _.-' _.-'

 |`-._`-._ `-.__.-' _.-'_.-'|

 | `-._`-._ _.-'_.-' | http://redis.io

 `-._ `-._`-.__.-'_.-' _.-'

 |`-._`-._ `-.__.-' _.-'_.-'|

 | `-._`-._ _.-'_.-' |

 `-._ `-._`-.__.-'_.-' _.-'

 `-._ `-.__.-' _.-'

 `-._ _.-'

 `-.__.-'

[35142] 01 May 14:36:28.941 # Server started, Redis version 2.6.12

[35142] 01 May 14:36:28.941 * The server is now ready to accept connections on port 6379

3.3 Using RabbitMQ

Installing RabbitMQ

If you already have a running instance of RabbitMQ it can be used for Spring XD. By default Spring XD
will try to use a Rabbit instance running on localhost using port 5674. The default account credentials
of guest/guest are assumed. You can change that in the rabbit.properties file residing in the
config/ directory.

https://jira.springsource.org/browse/XD-151
http://blogs.msdn.com/b/interoperability/archive/2013/04/22/redis-on-windows-stable-and-reliable.aspx
http://blogs.msdn.com/b/interoperability/archive/2013/04/22/redis-on-windows-stable-and-reliable.aspx
https://github.com/MSOpenTech/redis/tree/2.6/bin/release

Spring XD

1.0.0 Spring XD Guide 8

If you don’t have a RabbitMQ installation already, head over to http://www.rabbitmq.com and follow the
instructions. Packages are provided for Windows, Mac and various flavor of unix/linux.

Launching RabbitMQ

Start the RabbitMQ broker by running the rabbitmq-server script:

$ rabbitmq-server

You should see something similar to this:

 RabbitMQ 3.1.1. Copyright (C) 2007-2013 VMware, Inc.

 ## ## Licensed under the MPL. See http://www.rabbitmq.com/

 ## ##

 ########## Logs: /usr/local/var/log/rabbitmq/rabbit@localhost.log

 ###### ## /usr/local/var/log/rabbitmq/rabbit@localhost-sasl.log

 ##########

 Starting broker... completed with 7 plugins.

3.4 Starting Spring XD in Distributed Mode

Spring XD consists of two servers

• XDAdmin - controls deployment of modules into containers

• XDContainer - executes modules

You can start the xd-container and xd-admin servers individually as follows:

xd/bin>$./xd-admin

xd/bin>$./xd-container

Choosing a Transport

The --transport option drives the choice of middleware to use. As stated previously, Redis is currently
the default, so the above example is equivalent to

xd/bin>$./xd-admin --transport redis

xd/bin>$./xd-container --transport redis

To run using RabbitMQ, simply issue the following commands:

xd/bin>$./xd-admin --transport rabbit

xd/bin>$./xd-container --transport rabbit

Note

If you have multiple XD systems (i.e. an xd-admin server and 0+ containers) using different
Redis instances for storage but sharing a single RabbitMQ server for transport, you may
encounter issues if each system contains streams of the same name. We recommend using
a different RabbitMQ virtual host for each system. Update the rabbit.vhost property in
rabbit.properties to point XD at the correct virtual host.

http://www.rabbitmq.com

Spring XD

1.0.0 Spring XD Guide 9

Choosing a Store

By default, the xd-admin server stores stream definitions and other information in Redis, using the
connection parameters specified in redis.properties. Use the --store option to specify another
storage type. Currently, only "redis" and "memory" are available.

xd/bin>$./xd-admin --store memory

Choosing an Analytics provider

By default, the xd-container will store Analytics data in redis. Use the --analytics option to specify another
backing store for Analytics data. currently only "redis" and "memory are available.

xd/bin>$./xd-container --analytics memory

Other Options

There are additional configuration options available for these scripts:

To specify the location of the Spring XD install,

xd/bin>$./xd-admin --xdHomeDir <xd-install-directory>

xd/bin>$./xd-container --xdHomeDir <xd-install-directory>

To specify the http port of the XDAdmin server,

xd/bin>$./xd-admin --httpPort <httpPort>

3.5 Using Hadoop

Spring XD supports the following Hadoop distributions:

• hadoop12 - Apache Hadoop 1.2.1 (default)

• hadoop20 - Apache Hadoop 2.0.6-alpha

• phd1 - Pivotal HD 1.0

• cdh4 - Cloudera CDH 4.3.1

• hdp13 - Hortonworks Data Platform 1.3

To specify the distribution to use for Hadoop client connections,

xd/bin>$./xd-admin --hadoopDistro <distribution>

xd/bin>$./xd-container --hadoopDistro <distribution>

Pass in the --help option to see other configuration properties.

Spring XD

1.0.0 Spring XD Guide 10

4. Architecture

4.1 Introduction

Spring XD is a unified, distributed, and extensible service for data ingestion, real time analytics, batch
processing, and data export. The foundations of XD’s architecture are based on the over 100+ man
years of work that have gone into the Spring Batch, Integration and Data projects. Building upon these
projects, Spring XD provides servers and a configuration DSL that you can immediately use to start
processing data. You do not need to build an application yourself from a collection of jars to start using
Spring XD.

Spring XD has two modes of operation - single and multi-node. The first is a single process that is
responsible for all processing and administration. This mode helps you get started easily and simplifies
the development and testing of your application. The second is a distributed mode, where processing
tasks can be spread across a cluster of machines and an administrative server sends commands to
control processing tasks executing on the cluster.

Runtime Architecture

The key components in Spring XD are the XD Admin and XD Container Servers. Using a high-level
DSL, you post the description of the required processing tasks to the Admin server over HTTP. The
Admin server then maps the processing tasks into processing modules. A module is a unit of execution
and is implemented as a Spring ApplicationContext. A simple distributed runtime is provided that will
assign modules to execute across multiple XD Container servers. A single XD Container server can run
multiple modules. When using the single node runtime, all modules are run in a single XD Container
and the XD Admin server is run in the same process.

DIRT Runtime

A simple distributed runtime, called Distributed Integration Runtime, aka DIRT, will distribute the
processing tasks across multiple XD Container instances. The XD Admin server breaks up a processing
task into individual module definitions and publishes them to a shared queue (backed by Redis or
RabbitMQ depending upon the provided transport option). Each container picks up a module definition
off the queue, in a round-robin like manner, and creates a Spring ApplicationContext to run that module.

To reduce the number of hops across messaging middleware between them, multiple modules may be
composed into larger deployment units that act as a single module. To learn more about that feature,
refer to the Composing Modules section.

Spring XD

1.0.0 Spring XD Guide 11

Figure 4.1. The XD Admin Server sending module definitions to each XD Container

How the processing task is broken down into modules is discussed in the section Container Server
Architecture.

Support for other distributed runtimes

In the 1.0 release, you are responsible for starting up a single XD Admin server and one or more XD
Containers. The 1.1 release will support running XD on top of other distributed runtime environments
such as Hadoop’s YARN architecture and CloudFoundry.

Single Node Runtime

For testing and development purposes, a single node runtime is provided that runs the Admin and
Container servers in the same process. The communication to the XD Admin server is over HTTP and
the XD Admin server communicates to an in-process XD Container using an in-memory queue.

Spring XD

1.0.0 Spring XD Guide 12

Figure 4.2. Single Node Runtime

Admin Server Architecture

The Admin Server uses an embedded servlet container and exposes two endpoints for creating and
deleting the modules required to perform data processing tasks as declared in the DSL. The Admin
Server is implemented using Spring’s MVC framework and the Spring HATEOAS library to create REST
representations that follow the HATEOAS principle. The Admin Server communicates with the Container
Servers using a pluggable transport based, the default uses Redis queues.

Container Server Architecture

The key components of data processing in Spring XD are

• Streams

• Jobs

• Taps

Streams define how event driven data is collected, processed, and stored or forwarded. For example,
a stream might collect syslog data, filter, and store it in HDFS.

Jobs define how coarse grained and time consuming batch processing steps are orchestrated, for
example a job could be be defined to coordinate performing HDFS operations and the subsequent
execution of multiple MapReduce processing tasks.

Taps are used to process data in a non-invasive way as data is being processed by a Stream or a Job.
Much like wiretaps used on telephones, a Tap on a Stream lets you consume data at any point along
the Stream’s processing pipeline. The behavior of the original stream is unaffected by the presence of
the Tap.

https://github.com/SpringSource/spring-hateoas
http://en.wikipedia.org/wiki/HATEOAS

Spring XD

1.0.0 Spring XD Guide 13

Figure 4.3. Taps, Jobs, and Streams

Streams

The programming model for processing event streams in Spring XD is based on the well known
Enterprise Integration Patterns as implemented by components in the Spring Integration project. The
programming model was designed to be easy to test components.

Streams consist of the following types of modules: * Input sources * Processing steps * Output sinks

Input sources produce messages from a variety of sources, e.g. syslog, tcp, http. A message contains a
payload of data and a collection of key-value headers. Messages flow through message channels from
the source, through optional processing steps, to the output sink. The output sink will often write the
message to a file system, such as HDFS, but may also forward the message over tcp, http, or another
type of middleware.

A stream that consists of a input source and a output sink is shown below

http://www.eaipatterns.com/
http://www.springsource.org/spring-integration

Spring XD

1.0.0 Spring XD Guide 14

Figure 4.4. Foundational components of the Stream processing model

A stream that incorporates processing steps is shown below

Figure 4.5. Stream processing with multiple steps

For simple linear processing streams, an analogy can be made with the UNIX pipes and filters model.
Filters represent any component that produces, processes or consumes events. This corresponds to
sources, processing steps, and sinks in a stream. Pipes represent the way data is transported between
the Filters. This corresponds to the Message Channel that moves data through a stream.

A simple stream definition using UNIX pipes and filters syntax that takes data sent via a HTTP post and
writes it to a file (with no processing done in between) can be expressed as

http | file

The pipe symbol represents a message channel that passes data from the HTTP source to the File sink.
The message channel implementation can either be backed with a local in-memory transport, Redis
queues, or RabbitMQ. Future releases will support backing the message channel with other transports
such as JMS.

Note that the UNIX pipes and filter syntax is the basis for the DSL that Spring XD uses to describe simple
linear flows, but we will significantly extend the syntax to cover non-linear flow in a subsequent release.

The programming model for processing steps in a stream comes from the Spring Integration project.
The central concept is one of a Message Handler class, which relies on simple coding conventions to
Map incoming messages to processing methods. For example, using an http source you can process
the body of an HTTP POST request using the following class

Spring XD

1.0.0 Spring XD Guide 15

public class SimpleProcessor {

 public String process(String payload) {

 return payload.toUpperCase();

 }

}

The payload of the incoming Message is passed as a string to the method process. The contents of the
payload is the body of the http request as we are using a http source. The non-void return value is used
as the payload of the Message passed to the next step. These programming conventions make it very
easy to test your Processor component in isolation. There are several processing components provided
in Spring XD that do not require you to write any code, such as a filter and transformer that use the
Spring Expression Language or Groovy. For example, adding a processing step, such as a transformer,
in a stream processing definition can be as simple as

http | transformer --expression=payload.toUpperCase() | file

For more information on processing modules, refer to the Processors section.

Stream Deployment

The Container Server listens for module deployment requests sent from the Admin Server via the
control bus. When the container node receives a module deployment request, it connects the module’s
input and output channels to the data bus used to transport messages during stream processing. In
a single node configuration, both the control bus and data bus use in-memory direct channels. In
a distributed configuration, control bus and data bus communications are backed by the configured
transport middleware. Redis and Rabbit are both provided with the Spring XD distrubution, but other
transports are envisioned for future releases. Currently, the control bus and the data bus use the same
transport middleware. Future releases will allow separate configuration of the control bus and data bus
(e.g., Redis for control and Rabbit for data).

Spring XD

1.0.0 Spring XD Guide 16

Figure 4.6. A Stream Deployed in a single node server

Spring XD

1.0.0 Spring XD Guide 17

Figure 4.7. A Stream Deployed in a distributed runtime

In the http | file example, a module deployment request sent for the http module and another
request is sent for the file module. The definition of a module is stored in a Module Registry, which is
a Spring XML configuration file. The module definition contains variable placeholders that allow you to
customize the behavior of the module. For example, setting the http listening port would be done by
passing in the option --port, e.g. http --port=8090 | file, which is in turn used to substitute
a placeholder value in the module definition.

The Module Registry is backed by the filesystem and corresponds to the directory <xd-install-
directory>/modules. When a module deployment request is processed by the Container, the
module definition is loaded from the registry and a Spring ApplicationContext is created.

Using the DIRT runtime, the http | file example would map onto the following runtime architecture

Spring XD

1.0.0 Spring XD Guide 18

Figure 4.8. Distributed HTTP to File Stream

Data produced by the HTTP module is sent over a Redis Queue and is consumed by the File module. If
there was a filter processing module in the steam definition, e.g http | filter | file that would
map onto the following DIRT runtime architecture.

Spring XD

1.0.0 Spring XD Guide 19

Figure 4.9. Distributed HTTP to Filter to File Stream

4.2 Jobs

The creation and execution of Batch jobs builds upon the functionality available in the Spring Batch and
Spring for Apache Hadoop projects. See the Batch Jobs section for more information.

4.3 Taps

Taps provide a non-invasive way to consume the data that is being processed by either a Stream or
a Job, much like a real time telephone wire tap lets you eavesdrop on telephone conversations. Taps
are recommended as way to collect metrics and perform analytics on a Stream of data. See the section
Taps for more information.

Spring XD

1.0.0 Spring XD Guide 20

5. Streams

5.1 Introduction

In Spring XD, a basic stream defines the ingestion of event driven data from a source to a sink that
passes through any number of processors. Stream processing is performed inside the XD Containers
and the deployment of stream definitions to containers is done via the XD Admin Server. The Getting
Started section shows you how to start these servers and how to start and use the Spring XD shell

Sources, sinks and processors are predefined configurations of a module. Module definitions are found
in the xd/modules directory. 1. Modules definitions are standard Spring configuration files that use
existing Spring classes, such as Input/Output adapters and Transformers from Spring Integration that
support general Enterprise Integration Patterns.

A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source
and a file sink (with no processors) is shown below

http | file

The DSL mimics a UNIX pipes and filters syntax. Default values for ports and filenames are used in this
example but can be overriden using -- options, such as

http --port=8091 | file --dir=/tmp/httpdata/

To create these stream definitions you make an HTTP POST request to the XD Admin Server. More
details can be found in the sections below.

5.2 Creating a Simple Stream

The XD Admin server 5 exposes a full RESTful API for managing the lifecycle of stream definitions, but
the easiest way to use the XD shell. Start the shell as described in the Getting Start ed section

New streams are created by posting stream definitions. The definitions are built from a simple DSL. For
example, let’s walk through what happens if we execute the following shell command

xd:> stream create --definition "time | log" --name ticktock

This defines a stream named ticktock based off the DSL expression time | log. The DSL uses
the "pipe" symbol |, to connect a source to a sink. The stream server finds the time and log definitions
in the modules directory and uses them to setup the stream. In this simple example, the time source
simply sends the current time as a message each second, and the log sink outputs it using the logging
framework.

processing module 'Module [name=log, type=sink]' from group 'ticktock' with index: 1

processing module 'Module [name=time, type=source]' from group 'ticktock' with index: 0

17:26:18,774 WARN ThreadPoolTaskScheduler-1 logger.ticktock:141 - Thu May 23 17:26:18 EDT

 2013

1Using the filesystem is just one possible way of storing module defintions. Other backends will be supported in the future, e.g.
Redis.
5The server is implemented by the AdminMain class in the spring-xd-dirt subproject

http://static.springsource.org/spring-integration/reference/htmlsingle/#spring-integration-adapters
http://static.springsource.org/spring-integration/reference/htmlsingle/#transformer
http://www.eaipatterns.com/

Spring XD

1.0.0 Spring XD Guide 21

5.3 Deleting a Stream

You can delete a stream by issuing the stream destroy command from the shell:

xd:> stream destroy --name ticktock

5.4 Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undeploy the stream by name and issue the deploy command at a later time to restart it.

xd:> stream undeploy --name ticktock

xd:> stream deploy --name ticktock

5.5 Other Source and Sink Types

Let’s try something a bit more complicated and swap out the time source for something else. Another
supported source type is http, which accepts data for ingestion over HTTP POSTs. Note that the http
source accepts data on a different port (default 9000) from the Admin Server (default 8080).

To create a stream using an http source, but still using the same log sink, we would change the
original command above to

xd:> stream create --definition "http | log" --name myhttpstream

which will produce the following output from the server

processing module 'Module [name=log, type=sink]' from group 'myhttpstream' with index: 1

processing module 'Module [name=http, type=source]' from group 'myhttpstream' with index:

 0

Note that we don’t see any other output this time until we actually post some data (using shell command)

xd:> http post --target http://localhost:9000 --data "hello"

xd:> http post --target http://localhost:9000 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

15:08:01,676 WARN ThreadPoolTaskScheduler-1 logger.myhttpstream:141 - hello

15:08:12,520 WARN ThreadPoolTaskScheduler-1 logger.myhttpstream:141 - goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (file),
to hadoop (hdfs) or to any of the other sink modules which are provided. You can also define your
own modules.

5.6 Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

http | transform --expression=payload.toUpperCase() | log

To create this stream enter the following command in the shell

Spring XD

1.0.0 Spring XD Guide 22

xd:> stream deploy --definition "http | transform --expression=payload.toUpperCase() |

 log" --name myprocstrem

Posting some data (using shell command)

xd:> http post --target http://localhost:9000 --data "hello"

Will result in an uppercased hello in the log

15:18:21,345 WARN ThreadPoolTaskScheduler-1 logger.myprocstream:141 - HELLO

See the Processors section for more information.

5.7 DSL Syntax

In the examples above, we connected a source to a sink using the pipe symbol |. You can also pass
parameters to the source and sink configurations. The parameter names will depend on the individual
module implementations, but as an example, the http source module exposes a port setting which
allows you to change the data ingestion port from the default value. To create the stream using port
8000, we would use

xd:> stream create --definition "http --port=8000 | log" --name myhttpstream

If you know a bit about Spring configuration files, you can inspect the module definition to see which
properties it exposes. Alternatively, you can read more in the source and sink documentation.

5.8 Advanced Features

In the examples above, simple module definitions are used to construct each stream. However, modules
may be grouped together in order to avoid duplication and/or reduce the amount of chattiness over the
messaging middleware. To learn more about that feature, refer to the Composing Modules section.

If directed graphs are needed instead of the simple linear streams described above, two features are
relevant. First, named channels may be used as a way to combine multiple flows upstream and/or
downstream from the channel. The behavior of that channel may either be queue-based or topic-based
depending on what prefix is used ("queue:myqueue" or "topic:mytopic", respectively). To learn more,
refer to the Named Channels section. Second, you may need to determine the output channel of a
stream based on some information that is only known at runtime. To learn about such content-based
routing, refer to the Dynamic Router section.

Spring XD

1.0.0 Spring XD Guide 23

6. Modules

6.1 Introduction

The XD runtime environment supports data ingestion by allowing users to define streams. Streams are
composed of modules which encapsulate a unit of work into a reusable component.

Modules are categorized by type, typically representing the role or function of the module. Current XD
module types include source, sink, and processor which indicate how they modules may be composed
in a stream. Specifically, a source polls an external resource, or is triggered by an event and only
provides an output. The first module in a stream is always a source. A processor performs some type
of transformation or business logic and provides an input and one or more outputs. A sink provides only
an input and outputs data to an external resource to terminate the stream.

XD comes with a number of modules used for assembling streams which perform common input and/or
output operations with files, HDFS, http, twitter, syslog, GemFire, and more. Users can easily assemble
these into streams to build complex big data applications without having to know the underlying Spring
products on which XD is built.

However, if you are interested in extending XD with your own modules, some knowledge of Spring,
Spring Integration, and Spring Batch is essential. The remainder of this document assumes the reader
has some familiarity with these topics.

6.2 Creating a Module

This section provides details on how to write and register custom modules. For a quick start, dive into
the examples of creating source, processor, and sink modules.

A Module has the following required attributes:

• name - the name of the component, normally a single word representing the purpose of the module.
Examples are file, http, syslog.

• type - the module type, current XD module types include source, sink, and processor

• instance id - This represents a named instance of a module with a given name and type, with a specific
configuration.

Modules and Spring

At the core, a module is any component that may be implemented using a Spring application context. In
this respect, the concept may be extended for purposes other than data ingestion. The types mentioned
above (source, processor,sink) are specific to XD and constructing streams. But other module types
are envisioned.

A module is typically configured using property placeholders which are bound to the module’s attributes.
Attributes may be required or optional and this coincides with whether a default value is provided for
the placeholder.

For example, here is part of the Spring configuration for a twittersearch source that runs a query against
Twitter:

https://github.com/SpringSource/spring-xd/blob/master/spring-xd-module/src/main/java/org/springframework/xd/module/Module.java

Spring XD

1.0.0 Spring XD Guide 24

<beans>

 ...

 <int:inbound-channel-adapter id="results" auto-startup="false"

 ref="twitterSearchMessageSource" method="getTweets">

 <int:poller fixed-delay="${fixedDelay:5000}"/>

 </int:inbound-channel-adapter>

 <bean id="twitterSearchMessageSource" class="org.springframework.integration.x.twitter.TwitterSearchMessageSource">

 <constructor-arg ref="oauth2Template"/>

 <constructor-arg value="${query}"/>

 </bean>

 <bean id="oauth2Template" class="org.springframework.social.oauth2.OAuth2Template">

 <constructor-arg index="0" value="${consumerKey:${twitter.oauth.consumerKey}}" />

 <constructor-arg index="1" value="${consumerSecret:${twitter.oauth.consumerSecret}}" />

 <constructor-arg index="2" value="http://notused" />

 <constructor-arg index="3" value="http://notused" />

 <constructor-arg index="4" value="https://api.twitter.com/oauth2/token" />

 </bean>

</beans>

Note the property placeholders for query, fixedDelay, consumerKey and consumerSecret. The query
property defines no default value, so it is a required attribute for this module. fixedDelay defaults to 5000,
so it is an optional attribute. Note the defaults for consumerKey and consumerSecret. The property
names prefixed by twitter are globally defined for the entire XD system in config/twitter.properties. So
if the user does not specify a consumerKey or consumerSecret when creating the stream, XD’s twitter
configuration will be used instead.

The XD server will substitute values for all of these properties as configured for each module instance.
For example, we can create two streams each creating an instance of the twittersearch module with
a different configuration.

xd:> stream create --name tweettest --definition "twittersearch --query='java' | file"

or

xd:> stream create --name tweettest2 --definition "twittersearch --query-'java' --

consumerKey='mykey' --consumerSecret='mysecret' | file"

In addition to properties, modules may reference Spring beans which are defined externally such that
each module instance may inject a different implementation of a bean. The ability to configure each
module instance differently is only possible if each module is created in its own application context. The
module may be configured with a parent context, but this should be done with care. In the simplest case,
the module context is completely separate. This results in some very useful features, such as being
able to create multiple bean instances with the same id, possibly with different configurations. More
generally, this allows modules to adhere to the KISS principle.

Integration Modules

In Spring Integration terms,

• A source is a valid message flow that contains a direct channel named output which is fed by an
inbound adapter, either configured with a poller, or triggered by an event.

Spring XD

1.0.0 Spring XD Guide 25

• A processor is a valid message flow that contains a direct channel named input and a subscribable
channel named output (direct or publish subscribe). It should perform some type of transformation on
the message. (TBD: Describe multiple outputs, routing, etc.)

• A sink is a valid message flow that contains a direct channel named input and an outbound adapter,
or service activator used to consume a message payload.

Modules of type source, processor, and sink are built with Spring Integration and are typically very fine-
grained.

For example, take a look at the file source which simply polls a directory using a file inbound adapter
and file sink which appends incoming message payloads to a file using a file outbound adapter. On
the surface, there is nothing special about these components. They are plain old Spring XML bean
definition files.

Upon closer inspection, you will notice that modules adhere to some important conventions. For one
thing, the file name is the module name. Also note the channels named input and output, in keeping
with the KISS principle (let us know if you come up with some simpler names). These names are by
convention what XD uses to discover a module’s input and/or output channels which it wires together
to compose streams. Another thing you will observe is the use of property placeholders with sensible
defaults where possible. For example, the file source requires a directory. An appropriate strategy is
to define a common root path for XD input files (At the time of this writing it is /tmp/xd/input/. This is
subject to change, but illustrates the point). An instance of this module may specify the directory by
providing name property. If not provided, it will default to the stream name, which is contained in the
xd.stream.name property defined by the XD runtime. By convention, XD defined properties are prefixed
with xd

directory="/tmp/xd/input/${name:${xd.stream.name}}"

6.3 Registering a Module

XD provides a strategy interface ModuleRegistry which it uses to find a module of a given name and type.
Currently XD provides RedisModuleRegistry and FileModuleRegistry, The ModuleRegistry is a required
component for the XD Server. By default the XD Server is configured with the FileModuleRegistry which
looks for modules in ${xd.home:..}/modules. Where xd.home is a Java System Property or may
be passed as a command line argument to the container launcher. So out of the box, the modules
are contained in the XD modules directory. The modules directory organizes module types in sub-
directories. So you will see something like:

modules/processor

modules/sink

modules/source

Using the default server configuration, you simply drop your module file into the modules directory and
deploy a stream to the server.

Modules with isolated classpath

In addition to the simple format described above, where you would have a foo source module
implemented as a modules/source/foo.xml file, there is also preliminary support for modules that
wish to bring their own library dependencies, in an isolated fashion.

https://github.com/SpringSource/spring-xd/blob/master/modules/source/file.xml
https://github.com/SpringSource/spring-xd/blob/master/modules/sink/file.xml
https://github.com/SpringSource/spring-xd/blob/master/spring-xd-dirt/src/main/java/org/springframework/xd/dirt/module/ModuleRegistry.java

Spring XD

1.0.0 Spring XD Guide 26

This is accomplished by creating a folder named after your module name and moving the xml file to a
config subdirectory. As an example, the foo.xml file would then reside in

modules/source/foo/config/foo.xml

Additional jar files can then be added to a sibling lib directory, like so:

modules/source/foo/

 config/

 foo.xml

 lib/

 commons-foo.jar

 foo-ext.jar

Classes will first be loaded from any of the aforementioned jar files and, only if they’re not found will they
be loaded from the parent, global ClassLoader that Spring XD normally uses. Still, there are a couple
of caveats that one should be aware of:

1. refrain from putting into the lib/ folder jar files that are also part of Spring XD, or you’ll likely end
up with ClassCastExceptions

2. any class that is directly or indirectly referenced from the payload type of your messages (i.e. the
types that transit from module to module) must not belong to a particular module lib/ folder but
should rather be loaded by the global Spring XD classloader

6.4 Composing Modules

As described above, a stream is defined as a sequence of modules, minimally a source module followed
by a sink module. One or more processor modules may be added in between the source and sink, but
they are not mandatory. Sometimes streams are similar for a subset of their modules. For example,
consider the following two streams:

stream1 = http | filter --expression=payload.contains('foo') | file

stream2 = file | filter --expression=payload.contains('foo') | file

Other than the source module, the definitions of those two streams are the same. It would be better to
avoid this degree of duplication. This is the first problem that composed modules address.

Each module within a stream represents a unit of deployment. Therefore, in each of the streams defined
above, there would be 3 such units (the source, the processor, and the sink). In a singlenode runtime,
it doesn’t make much of a difference since the communication between each module would be a bridge
between in-memory channels. When deploying a stream to a distributed runtime environment, however,
the communication between each module occurs over messaging middleware. That decoupling between
modules is useful in that it promotes loose-coupling and thus enables load-balancing and buffering
of messages when the consuming module(s) are temporarily busy or down. Nevertheless, at times
the individual module boundaries are more fine-grained than necessary for these middleware "hops".
Overhead may be avoided by reducing the overall number of deployment units and therefore the number
of hops. In such cases, it’s convenient to be able to wrap multiple modules together so that they act as
a single "black box" unit for deployment. In other words, if "foo | bar" are composed together as a new
module named "baz", the input and/or output to "baz" would still occur as a hop over the middleware,
but the communication from foo to bar would occur directly, in-process. This is the second problem that
composed modules address.

Spring XD

1.0.0 Spring XD Guide 27

Now let’s look at an example. Returning to the two similar streams above, the filter processor and file
sink could be combined into a single module. In the shell, the following command would take care of that:

xd:> module compose foo --definition "filter --expression=payload.contains('foo') | file"

Then, to verify the new module composition was successful, check if it exists:

xd:> module list --type sink

Module Name Module Type

------------------- -----------

...

foo sink

Notice that the composed module shows up in the list of sink modules. That is because logically, it
has the structure of a sink: it provides an input channel (which is bridged to the filter processor’s input
channel), but it provides no output channel (since the file sink has no output).

If a module were composed of two processors, it would be classified as a processor itself:

xd:> module compose myprocessor --definition "splitter | filter --

expression=payload.contains('foo')"

If a module were composed of a source and a processor, it would be classified as a source itself:

xd:> module compose mysource --definition "http | filter --

expression=payload.contains('foo')"

Based on the logical type of the composed module, it may be used in a stream as if it were a simple
module instance. For example, to redefine the two streams from the first problem case above, now that
the "foo" sink module has been composed, you would issue the following shell commands:

xd:> stream create httpfoo --definition "http | foo"

xd:> stream create filefoo --definition "file --outputType=text/plain | foo"

To test the "httpfoo" stream, try the following:

xd:> http post --data hi

xd:> http post --data hifoo

The first message should have been ignored due to the filter, but the second one should exist in the file:

xd:> ! cat /tmp/xd/output/httpfoo.out

command is:cat /tmp/xd/output/httpfoo.out

hifoo

To test the "filefoo" stream, echo "foo" to a file in the /tmp/xd/input/filefoo directory, then verify:

xd:> ! cat /tmp/xd/output/filefoo.out

command is:cat /tmp/xd/output/filefoo.out

foo

When you no longer need a composed module, you may delete it with the "module delete" command
in the shell. However, if that composed module is currently being used by one or more streams, the
deletion will fail as shown below:

Spring XD

1.0.0 Spring XD Guide 28

xd:> module delete --name foo --type sink

16:51:37,349 WARN Spring Shell client.RestTemplate:566 - DELETE request for "http://

localhost:9393/modules/sink/foo" resulted in 500 (Internal Server Error); invoking error

 handler

Command failed org.springframework.xd.rest.client.impl.SpringXDException: Cannot delete

 module sink:foo because it is used by [stream:filefoo, stream:httpfoo]

As you can see, the failure message shows which stream(s) depend upon the composed module you
are trying to delete.

If you destroy both of those streams and try again, it will work:

xd:> stream destroy --name filefoo

Destroyed stream 'filefoo'

xd:> stream destroy --name httpfoo

Destroyed stream 'httpfoo'

xd:> module delete --name foo --type sink

Successfully destroyed module 'foo' with type sink

Finally, it’s worth mentioning that in some cases duplication may be avoided by reusing an actual stream
rather than a composed module. That is possible when named channels are used in the source and/or
sink position of a stream definition. For example, the same overall functionality as provided by the two
streams above could also be achieved as follows:

xd:> stream create foofilteredfile --definition "queue:foo > filter --

expression=payload.contains('foo') | file"

xd:> stream create httpfoo --definition "http > queue:foo"

xd:> stream create filefoo --definition "file > queue:foo"

This approach is more appropriate for use-cases where individual streams on either side of the named
channel may need to be deployed or undeployed independently. Whereas the queue typed channel
will load-balance across multiple downstream consumers, the "topic:" prefix may be used if broadcast
behavior is needed instead. For more information about named channels, refer to the Named Channels
section.

Spring XD

1.0.0 Spring XD Guide 29

7. Sources

7.1 Introduction

In this section we will show some variations on input sources. As a prerequisite start the XD Container
as instructed in the Getting Started page.

The Sources covered are

• HTTP

• Tail

• File

• Mail

• Twitter Search

• Twitter Stream

• Gemfire

• Gemfire CQ

• Syslog

• TCP

• TCP Client

• JMS

• RabbitMQ

• Time

• MQTT

Future releases will provide support for other currently available Spring Integration Adapters. For
information on how to adapt an existing Spring Integration Adapter for use in Spring XD see the section
Creating a Source Module.

The following sections show a mix of Spring XD shell and plain Unix shell commands, so if you are trying
them out, you should open two separate terminal prompts, one running the XD shell and one to enter
the standard commands for sending HTTP data, creating directories, reading files and so on.

7.2 HTTP

To create a stream definition in the server using the XD shell

xd:> stream create --name httptest --definition "http | file"

Spring XD

1.0.0 Spring XD Guide 30

Post some data to the http server on the default port of 9000

xd:> http post --target http://localhost:9000 --data "hello world"

See if the data ended up in the file

$ cat /tmp/xd/output/httptest

HTTP with options

The http source has one option

port
The http port where data will be posted (default: 9000)

Here is an example

xd:> stream create --name httptest9020 --definition "http --port=9020 | file"

Post some data to the new port

xd:> http post --target http://localhost:9020 --data "hello world"

$ cat /tmp/xd/output/httptest9020

7.3 Tail

Make sure the default input directory exists

$ mkdir -p /tmp/xd/input

Create an empty file to tail (this is not needed on some platforms such as Linux)

touch /tmp/xd/input/tailtest

To create a stream definition using the XD shell

xd:> stream create --name tailtest --definition "tail | file"

Send some text into the file being monitored

$ echo blah >> /tmp/xd/input/tailtest

See if the data ended up in the file

$ cat /tmp/xd/output/tailtest

Tail with options

The tail source has 3 options:

name
the absolute path to the file to tail (default: /tmp/xd/input/<streamName>)

Spring XD

1.0.0 Spring XD Guide 31

lines
the number of lines from the end of an existing file to tail (default: 0)

fixedDelay
on platforms that don’t wait for a missing file to appear, how often (ms) to look for the file (default:
5000)

Here is an example

xd:> stream create --name tailtest --definition "tail --name=/tmp/foo | file --name=bar"

$ echo blah >> /tmp/foo

$ cat /tmp/xd/output/bar

Tail Status Events

Some platforms, such as linux, send status messages to stderr. The tail module sends these events
to a logging adapter, at WARN level; for example…

[message=tail: cannot open `/tmp/xd/input/tailtest' for reading: No such file or

 directory, file=/tmp/xd/input/tailtest]

[message=tail: `/tmp/xd/input/tailtest' has become accessible, file=/tmp/xd/input/

tailtest]

7.4 File

The file source provides the contents of a File as a byte array by default but may be configured to provide
the file reference itself.

To log the contents of a file create a stream definition using the XD shell

xd:> stream create --name filetest --definition "file | log"

The file source by default will look into a directory named after the stream, in this case /tmp/xd/input/
filetest

Note the above will log the raw bytes. For text files, it is normally desirable to output the contents as
plain text. To do this, set the outputType parameter:

xd:> stream create --name filetest --definition "file --outputType=text/plain | log"

For more details on the use of the outputType parameter see Type Conversion

Copy a file into the directory /tmp/xd/input/filetest and observe its contents being logged in
the XD Container.

File with options

The file source has 5 options

dir
The absolute path to the directory to monitor for files (default: /tmp/xd/input/<streamName>)

Type-Conversion

Spring XD

1.0.0 Spring XD Guide 32

preventDuplicates
Default value is true to prevent the same file from being processed twice.

pattern
A filter expression (Ant style) that accepts only files that match the pattern.

fixedDelay
The fixed delay polling interval specified in seconds (default: 5)

ref
Set to true to output the File object itself. This is useful in some cases in which the file contents are
large and it would be more efficient to send the file path across the network than the contents. This
option requires that the file be in a shared file system.

7.5 Mail sources

Spring XD provides two modules for receiving emails. Both have very similar options so they’ll be
described together here. The first one is named imap and only supports the imap protocol, using the
IDLE command. As such, it does not use polling. Instead messages are pushed as soon as they arrive.
The other module is named mail and supports all protocols (pop & imap), but it uses polling.

Let’s see an example:

xd:> stream create --name mailstream --definition "mail --host=imap.gmail.com --

username=your.user@gmail.com --password=secret | file"

Then send an email to yourself and you should see it appear inside a file at /tmp/xd/output/
mailstream

The full list of options for the mail and imap sources is below (most of them can be configured once
and for all in the mail.properties file):

protocol
the protocol to use amongst pop3, pop3s, imap, imaps (only imap variants for the imap module).
(default: imaps)

username
the username to use to connect to the mail server (no default)

password
the password to use to connect to the mail server (no default)

host
the hostname of the mail server (default: localhost)

port
the port of the mail server (default: none, use the default port according to the protocol used)

folder
the folder to take emails from (default: INBOX)

markAsRead
whether to mark emails as read once they’ve been fetched by the module (default: false)

Spring XD

1.0.0 Spring XD Guide 33

delete
whether to delete the emails once they’ve been fetched by the module (default: true)

fixedDelay
Does not apply to the imap source, the polling interval used for looking up messages, expressed
in seconds. (default: 60)

charset
the charset used to transform the body of the incoming emails to Strings. (default: UTF-8)

Warning

Of special attention are the markAsRead and delete options, which by default will delete the
emails once they are consumed. It is hard to come up with a sensible default option for this
(please refer to the Spring Integration documentation section on mail handling for a discussion
about this), so just be aware that the default for XD is to delete incoming messages.

7.6 Twitter Search

The twittersearch source has four parameters

query
The query that will be run against Twitter (required)

consumerKey
An application consumer key issued by twitter

consumerSecret
The secret corresponding to the consumerKey

fixedDelay
The fixed delay polling interval specified in miliseconds (default: 5000)

To get a consumerKey and consumerSecret you need to register a twitter application. If you don’t
already have one set up, you can create an app at the Twitter Developers site to get these credentials.

To create a stream definition in the server using the XD shell

xd:> stream create --name springone2gx --definition "twittersearch --

consumerKey=<your_key> --consumerSecret=<your_secret> --query='#springone2gx' | file"

Make sure the default output directory for the file sink exists

$ mkdir -p /tmp/xd/output/

Let the twittersearch run for a little while and then check to see if some data ended up in the file

$ cat /tmp/xd/output/springone2gx

Tip

For both twittersearch and twitterstream you can fill in in the conf/

twitter.properties file instead of using the DSL parameters to supply keys and secrets.

https://dev.twitter.com/apps

Spring XD

1.0.0 Spring XD Guide 34

7.7 Twitter Stream

This source ingests data from Twitter’s streaming API. It uses the sample and filter stream endpoints
rather than the full "firehose" which needs special access. The endpoint used will depend on the
parameters you supply in the stream definition (some are specific to the filter endpoint).

You need to supply all keys and secrets (both consumer and accessToken) to authenticate for this
source, so it is easiest if you just add these to the conf/twitter.properties file. Stream creation
is then straightforward:

xd:> stream create --name tweets --definition "twitterstream | file"

The parameters available are pretty much the same as those listed in the API docs and unless otherwise
stated, the accepted formats are the same.

delimited
set to true to get length delimiters in the stream data (defaults to false)

stallWarnings
set to true to enable stall warnings (defaults to false)

filterLevel, language, follow, track, locations

7.8 GemFire

This source configures a cache and replicated region in the XD container process along with a Spring
Integration GemFire inbound channel adapter, backed by a CacheListener that outputs messages
triggered by an external entry event on the region. By default the payload contains the updated entry
value, but may be controlled by passing in a SpEL expression that uses the EntryEvent as the evaluation
context.

Options

The Gemfire CacheListener source has the following options

regionName
The name of the region for which events are to be monitored (required, String)

cacheEventExpression
An optional SpEL expression referencing the event. (default: newValue)

Example

Use of the gemfire source requires an external process that creates or updates entries in a GemFire
region. Such events may trigger an XD process. For example, suppose a sales application creating
and updating orders in a replicated GemFire region named orders . To trigger an XD stream, the XD
container must join the GemFire distributed system and create a replica of the region, to which a cache
listener is bound via the GemFire inbound channel adapter.

xd:>stream create --name orderStream --definition "gemfire --regionName=orders | file --

inputType=application/json"

In the above example, it is presumed the cache entries are Order POJOs. In this case, it may be
convenient to convert to JSON before writing to the file.

https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/parameters
https://dev.twitter.com/docs/streaming-apis/parameters#delimited
https://dev.twitter.com/docs/streaming-apis/parameters#stall_warnings
https://dev.twitter.com/docs/streaming-apis/parameters#filter_level
https://dev.twitter.com/docs/streaming-apis/parameters#language
https://dev.twitter.com/docs/streaming-apis/parameters#follow
https://dev.twitter.com/docs/streaming-apis/parameters#track
https://dev.twitter.com/docs/streaming-apis/parameters#locations
http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/EntryEvent.html

Spring XD

1.0.0 Spring XD Guide 35

7.9 GemFire Continuous Query (CQ)

Continuous query allows client applications to create a GemFire query using Object Query
Language(OQL) and register a CQ listener which subscribes to the query and is notified every time the
query 's result set changes. The gemfire_cq source registers a CQ which will post CQEvent messages
to the stream.

Launching the XD GemFire Server

This source requires a cache server to be running in a separate process and its host and port must be
known (NOTE: GemFire locators are not supported yet). The XD distribution includes a GemFire server
executable suitable for development and test purposes. This is a Java main class that runs with a Spring
configured cache server. The configuration is passed as a command line argument to the server’s main
method. The configuration includes a cache server port and one or more configured region. XD includes
a sample cache configuration called cq-demo. This starts a server on port 40404 and creates a region
named Stocks. A Logging cache listener is configured for the region to log region events.

Run Gemfire cache server by changing to the gemfire/bin directory and execute

$./gemfire-server ../config/cq-demo.xml

Options

The qemfire-cq source has the following options

query
The query string in Object Query Language(OQL) (required, String)

gemfireHost
The host on which the GemFire server is running. (default: localhost)

gemfirePort
The port on which the GemFire server is running. (default: 40404)

Here is an example. Create two streams: One to write http messages to a Gemfire region named Stocks,
and another to execute the CQ.

xd:> stream create --name stocks --definition "http --port=9090 | gemfire-json-server --

regionName=Stocks --keyExpression=payload.getField('symbol')"

xd:> stream create --name cqtest --definition "gemfire-cq --query='Select * from /Stocks

 where symbol=''VMW''' | file"

Now send some messages to the stocks stream.

xd:> http post --target http://localhost:9090 --data "{"symbol":"VMW","price":73}"

xd:> http post --target http://localhost:9090 --data "{"symbol":"VMW","price":78}"

xd:> http post --target http://localhost:9090 --data "{"symbol":"VMW","price":80}"

Please do not put spaces when separating the JSON key-value pairs, only a comma.

The cqtest stream is now listening for any stock quote updates for VMW. Presumably, another process is
updating the cache. You may create a separate stream to test this (see GemfireServer for instructions).

As updates are posted to the cache you should see them captured in the output file:

https://github.com/SpringSource/spring-xd/blob/master/spring-xd-gemfire-server/config/cq-demo.xml
https://github.com/SpringSource/spring-xd/wiki/GemfireServer

Spring XD

1.0.0 Spring XD Guide 36

$cat /tmp/xd/output/cqtest

{"symbol":"VMW","price":73}

{"symbol":"VMW","price":78}

{"symbol":"VMW","price":80}

7.10 Syslog

Two syslog sources are provided: syslog-udp and syslog-tcp. They both support the following
options:

port
the port on which the system will listen for syslog messages (default: 11111)

To create a stream definition (using shell command)

xd:> stream create --name syslogtest --definition "syslog-udp --port=1514 | file"

or

xd:> stream create --name syslogtest --definition "syslog-tcp --port=1514 | file"

Send a test message to the syslog

logger -p local3.info -t TESTING "Test Syslog Message"

See if the data ended up in the file

$ cat /tmp/xd/output/syslogtest

Refer to your syslog documentation to configure the syslog daemon to forward syslog messages to the
stream; some examples are:

UDP - Mac OSX (syslog.conf) and Ubuntu (rsyslog.conf)

. @localhost:11111

TCP - Ubuntu (rsyslog.conf)

$ModLoad omfwd

. @@localhost:11111

Restart the syslog daemon after reconfiguring.

7.11 TCP

The tcp source acts as a server and allows a remote party to connect to XD and submit data over a
raw tcp socket.

To create a stream definition in the server, use the following XD shell command

xd:> stream create --name tcptest --definition "tcp | file"

This will create the default TCP source and send data read from it to the tcptest file.

Spring XD

1.0.0 Spring XD Guide 37

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of decoders are available, the default being CRLF which is compatible with Telnet.

$ telnet localhost 1234

Trying ::1...

Connected to localhost.

Escape character is '^]'.

foo

^]

telnet> quit

Connection closed.

See if the data ended up in the file

$ cat /tmp/xd/output/tcptest

TCP with options

The TCP source has the following options

port
the port on which to listen (default: 1234)

reverse-lookup
perform a reverse DNS lookup on the remote IP Address (default: false)

socket-timeout
the timeout (ms) before closing the socket when no data received (default: 120000)

nio
whether or not to use NIO. NIO is more efficient when there are many connections. (default: false)

decoder
how to decode the stream - see below. (default: CRLF)

binary
whether the data is binary (true) or text (false). (default: false)

charset
the charset used when converting text to String. (default: UTF-8)

Available Decoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)

Spring XD

1.0.0 Spring XD Guide 38

Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 216-1 bytes)

L4
data preceded by a four byte (signed) length field (up to 231-1 bytes)

Examples

The following examples all use echo to send data to netcat which sends the data to the source.

The echo options -en allows echo to interpret escape sequences and not send a newline.

CRLF Decoder.

xd:> stream create --name tcptest --definition "tcp | file"

This uses the default (CRLF) decoder and port 1234; send some data

$ echo -en 'foobar\r\n' | netcat localhost 1234

See if the data ended up in the file

$ cat /tmp/xd/output/tcptest

LF Decoder.

xd:> stream create --name tcptest2 --definition "tcp --decoder=LF --port=1235 | file"

$ echo -en 'foobar\n' | netcat localhost 1235

$ cat /tmp/xd/output/tcptest2

NULL Decoder.

xd:> stream create --name tcptest3 --definition "tcp --decoder=NULL --port=1236 | file"

$ echo -en 'foobar\x00' | netcat localhost 1236

$ cat /tmp/xd/output/tcptest3

STXETX Decoder.

xd:> stream create --name tcptest4 --definition "tcp --decoder=STXETX --port=1237 | file"

$ echo -en '\x02foobar\x03' | netcat localhost 1237

Spring XD

1.0.0 Spring XD Guide 39

$ cat /tmp/xd/output/tcptest4

RAW Decoder.

xd:> stream create --name tcptest5 --definition "tcp --decoder=RAW --port=1238 | file"

$ echo -n 'foobar' | netcat localhost 1238

$ cat /tmp/xd/output/tcptest5

L1 Decoder.

xd:> stream create --name tcptest6 --definition "tcp --decoder=L1 --port=1239 | file"

$ echo -en '\x06foobar' | netcat localhost 1239

$ cat /tmp/xd/output/tcptest6

L2 Decoder.

xd:> stream create --name tcptest7 --definition "tcp --decoder=L2 --port=1240 | file"

$ echo -en '\x00\x06foobar' | netcat localhost 1240

$ cat /tmp/xd/output/tcptest7

L4 Decoder.

xd:> stream create --name tcptest8 --definition "tcp --decoder=L4 --port=1241 | file"

$ echo -en '\x00\x00\x00\x06foobar' | netcat localhost 1241

$ cat /tmp/xd/output/tcptest8

Binary Data Example

xd:> stream create --name tcptest9 --definition "tcp --decoder=L1 --port=1242 | file --

binary=true"

Note that we configure the file sink with binary=true so that a newline is not appended.

$ echo -en '\x08foo\x00bar\x0b' | netcat localhost 1242

$ hexdump -C /tmp/xd/output/tcptest9

00000000 66 6f 6f 00 62 61 72 0b |foo.bar.|

00000008

7.12 TCP Client

The tcp-client source module uses raw tcp sockets, as does the tcp module but contrary to the tcp
module, acts as a client. Whereas the tcp module will open a listening socket and wait for connections
from a remote party, the tcp-client will initiate the connection to a remote server and emit as

Spring XD

1.0.0 Spring XD Guide 40

messages what that remote server sends over the wire. As an optional feature, the tcp-client can
itself emit messages to the remote server, so that a simple conversation can take place.

TCP Client options

The following options are supported:

host
the host to connect to (default: localhost)

port
the port to connect to (default: 1234)

reverse-lookup
whether to attempt to resolve the host address (default: false)

nio
whether to use NIO (default: false)

encoder
the encoder to use when sending messages (default: LF, see TCP module)

decoder
the decoder to use when receiving messages (default: LF, see TCP module)

charset
the charset to use when converting bytes to String (default: UTF-8)

bufferSize
the size of the emitting/receiving buffers (default: 2048, i.e. 2KB)

fixedDelay
the rate at which stimulus messages will be emitted (default: 5 seconds)

script
reference to a script that should transform the counter stimulus to messages to send (default: use
expression)

expression
a SpEL expression to convert the counter stimulus to a message (default: payload.toString(),
i.e. emit "1", "2", "3", etc.)

Implementing a simple conversation

That "stimulus" counter concept bears some explanation. By default, the module will emit (at interval set
by fixedDelay) an incrementing number, starting at 1. Given that the default is to use an expression
of payload.toString(), this results in the module sending 1, 2, 3, ... to the remote server.

By using another expression, or more certainly a script, one can implement a simple conversation,
assuming it is time based. As an example, let’s assume we want to join some kind of chat server where
one first needs to authenticate, then specify which rooms to join. Lastly, all clients are supposed to send
some keepalive commands to make sure that the connection is open.

The following groovy script could be used to that effect:

Spring XD

1.0.0 Spring XD Guide 41

def commands = ['', // index 0 is not used

'LOGIN user=johndoe', // first command sent

'JOIN weather',

'JOIN news',

'JOIN gossip'

]

// payload will contain an incrementing counter, starting at 1

if (commands.size > payload)

 return commands[payload] + "\n"

else

 return "PING\n" // send keep alive after 4th 'real' command

7.13 RabbitMQ

The "rabbit" source enables receiving messages from RabbitMQ.

The following example shows the default settings.

Configure a stream:

xd:> stream create --name rabbittest --definition "rabbit | file --binary=true"

This receives messages from a queue named rabbittest and writes them to the default file sink (/
tmp/xd/output/rabbittest.out). It uses the default RabbitMQ broker running on localhost, port
5672.

The queue(s) must exist before the stream is deployed. We do not create the queue(s) automatically.
However, you can easily create a Queue using the RabbitMQ web UI. Then, using that same UI, you
can navigate to the "rabbittest" Queue and publish test messages to it.

Notice that the file sink has --binary=true; this is because, by default, the data emitted by the
source will be bytes. This can be modified by setting the content_type property on messages to
text/plain. In that case, the source will convert the message to a String; you can then omit the --
binary=true and the file sink will then append a newline after each message.

To destroy the stream, enter the following at the shell prompt:

xd:> stream destroy --name rabbittest

RabbitMQ with Options

The RabbitMQ Source has the following options

host
the host (or IP Address) to connect to (default: localhost unless rabbit.hostname has been
overridden in rabbit.properties)

port
the port on the host (default: 5672 unless rabbit.port has been overridden in
rabbit.properties)

vhost
the virtual host (default: / unless rabbit.vhost has been overridden in
rabbit.properties)

Spring XD

1.0.0 Spring XD Guide 42

queues
the queue(s) from which messages will be received; use a comma-delimited list to receive messages
from multiple queues (default: the stream name)

Note: the rabbit.properties file referred to above is located within the XD_HOME/config directory.

7.14 JMS

The "jms" source enables receiving messages from JMS.

The following example shows the default settings.

Configure a stream:

xd:> stream create --name jmstest --definition "jms | file"

This receives messages from a queue named jmstest and writes them to the default file sink (/tmp/
xd/output/jmstest). It uses the default ActiveMQ broker running on localhost, port 61616.

To destroy the stream, enter the following at the shell prompt:

xd:> stream destroy --name jmstest

To test the above stream, you can use something like the following…

public class Broker {

 public static void main(String[] args) throws Exception {

 BrokerService broker = new BrokerService();

 broker.setBrokerName("broker");

 String brokerURL = "tcp://localhost:61616";

 broker.addConnector(brokerURL);

 broker.start();

 ConnectionFactory cf = new ActiveMQConnectionFactory(brokerURL);

 JmsTemplate template = new JmsTemplate(cf);

 while (System.in.read() >= 0) {

 template.convertAndSend("jmstest", "testFoo");

 }

 }

}

and tail -f /tmp/xd/output/jmstest

Run this as a Java application; each time you hit <enter> in the console, it will send a message to queue
jmstest.

JMS with Options

The JMS Source has the following options

provider
the JMS provider (default: activemq)

queue
the queue from which messages will be received; use a comma-delimited list to receive messages
from multiple queues

Spring XD

1.0.0 Spring XD Guide 43

Note: the selected broker requires an infrastructure configuration file jms-<provider>-

infrastructure-context.xml in modules/common. This is used to declare any infrastructure
beans needed by the provider. See the default (jms-activemq-infrastructure-context.xml)
for an example. Typically, all that is required is a ConnectionFactory. The activemq provider uses a
properties file jms-activemq.properties which can be found in the config directory. This contains
the broker URL.

7.15 Time

The time source will simply emit a String with the current time every so often. It supports the following
options:

fixedDelay
how often to emit a message, expressed in seconds (default: 1 second)

format
how to render the current time, using SimpleDateFormat (default: 'yyyy-MM-dd HH:mm:ss')

7.16 MQTT

The mqtt source connects to an mqtt server and receives telemetry messages.

Options

The folllowing options are configured in mqtt.properties in XD_HOME/config

mqtt.url=tcp://localhost:1883

mqtt.default.client.id=xd.mqtt.client.id

mqtt.username=guest

mqtt.password=guest

mqtt.default.topic=xd.mqtt.test

The defaults are set up to connect to the RabbitMQ MQTT adapter on localhost.

Note that the client id must be no more than 19 characters; this is because .src is added and the id
must be no more than 23 characters.

clientId
Identifies the client - overrides the default above.

topics
The topics to which the source will subscribe - overrides the default above.

Spring XD

1.0.0 Spring XD Guide 44

8. Processors

8.1 Introduction

This section will cover the processors available out-of-the-box with Spring XD. As a prerequisite, start
the XD Container as instructed in the Getting Started page.

The Processors covered are

• Filter

• JSON Field Value Filter

• Transform

• JSON Field Extractor

• Script

• Splitter

• Aggregator

See the section Creating a Processor Module for information on how to create custom processor
modules.

8.2 Filter

Use the filter module in a stream to determine whether a Message should be passed to the output
channel.

Filter with SpEL expression

The simplest way to use the filter processor is to pass a SpEL expression when creating the stream.
The expression should evaluate the message and return true or false. For example:

xd:> stream create --name filtertest --definition "http | filter --

expression=payload=='good' | log"

This filter will only pass Messages to the log sink if the payload is the word "good". Try sending "good"
to the HTTP endpoint and you should see it in the XD log:

xd:> http post --target http://localhost:9000 --data "good"

Alternatively, if you send the word "bad" (or anything else), you shouldn’t see the log entry.

Filter with Groovy Script

For more complex filtering, you can pass the location of a Groovy script using the script attribute. If you
want to pass variable values to your script, you can optionally pass the path to a properties file using the
properties-location attribute. All properties in the file will be made available to the script as variables.

xd:> stream create --name groovyfiltertest --definition "http --port=9001 | filter --

script=custom-filter.groovy --properties-location=custom-filter.properties | log"

Spring XD

1.0.0 Spring XD Guide 45

By default, Spring XD will search the classpath for custom-filter.groovy and custom-filter.properties.
You can place the script in ${xd.home}/modules/processor/scripts and the properties file in ${xd.home}/
config to make them available on the classpath. Alternatively, you can prefix the script and properties-
location values with file: to load from the file system.

8.3 JSON Field Value Filter

Use this filter to only pass messages to the output channel if they contain a specific JSON field matching
a specific value.

xd:> stream create --name jsonfiltertest --definition "http --port=9002 | json-field-

value-filter --fieldName=firstName --fieldValue=John | log"

This filter will only pass Messages to the log sink if the JSON payload contains the firstName "John".
Try sending this payload to the HTTP endpoint and you should see it in the XD log:

xd:> http post --target http://localhost:9002 --data "{\"firstName\":\"John\", \"lastName

\":\"Smith\"}"

Alternatively, if you send a different firstName, you shouldn’t see the log entry.

8.4 Transform

Use the transform module in a stream to convert a Message’s content or structure.

Transform with SpEL expression

The simplest way to use the transform processor is to pass a SpEL expression when creating the stream.
The expression should return the modified message or payload. For example:

xd:> stream create --name transformtest --definition "http --port=9003 | transform --

expression='FOO' | log"

This transform will convert all message payloads to the word "FOO". Try sending something to the HTTP
endpoint and you should see "FOO" in the XD log:

xd:> http post --target http://localhost:9003 --data "some message"

Transform with Groovy Script

For more complex transformations, you can pass the location of a Groovy script using the script attribute.
If you want to pass variable values to your script, you can optionally pass the path to a properties file
using the properties-location attribute. All properties in the file will be made available to the script as
variables.

xd:> stream create --name groovytransformtest --definition "http --port=9004 | transform

 --script=custom-transform.groovy --properties-location=custom-transform.properties | log"

By default, Spring XD will search the classpath for custom-transform.groovy and custom-
transform.properties. You can place the script in ${xd.home}/modules/processor/scripts and the
properties file in ${xd.home}/config to make them available on the classpath. Alternatively, you can prefix
the script and properties-location values with file: to load from the file system.

Spring XD

1.0.0 Spring XD Guide 46

8.5 JSON Field Extractor

This processor converts a JSON message payload to the value of a specific JSON field.

xd:> stream create --name jsontransformtest --definition "http --port=9005 | json-field-

extractor --fieldName=firstName | log"

Try sending this payload to the HTTP endpoint and you should see just the value "John" in the XD log:

xd:> http post --target http://localhost:9005 --data "{\"firstName\":\"John\", \"lastName

\":\"Smith\"}"

8.6 Script

The script processor contains a Service Activator that invokes a specified Groovy script. This is a slightly
more generic way to accomplish processing logic, as the provided script may simply terminate the stream
as well as transform or filter Messages.

To use the module, pass the location of a Groovy script using the location attribute. If you want to pass
variable values to your script, you can optionally pass the path to a properties file using the properties-
location attribute. All properties in the file will be made available to the script as variables.

xd:> stream create --name groovyprocessortest --definition "http --port=9006 | script --

location=custom-processor.groovy --properties-location=custom-processor.properties | log"

By default, Spring XD will search the classpath for custom-processor.groovy and custom-
processor.properties. You can place the script in ${xd.home}/modules/processor/scripts and the
properties file in ${xd.home}/config to make them available on the classpath. Alternatively, you can prefix
the location and properties-location values with file: to load from the file system.

8.7 Splitter

The splitter module builds upon the concept of the same name in Spring Integration and allows the
splitting of a single message into several distinct messages.

The splitter module accepts the following options:

expression
a SpEL expression which should evaluate to an array or collection. Each element will then be emitted
as a separate message (default: payload, which actually does not split, unless the message
is already a collection)

8.8 Aggregator

The aggregator module does the opposite of the splitter, and builds upon the concept of the same name
found in Spring Integration. By default, it will consider all incoming messages from a stream to belong
to the same group:

xd:> stream create --name aggregates --definition "http | aggregator --count=3 --

aggregation=T(org.springframework.util.StringUtils).collectionToDelimitedString(#this.!

[payload],' ') | log"

Spring XD

1.0.0 Spring XD Guide 47

This uses a SpEL expression that will basically concatenate all payloads together, inserting a space
character in between. As such,

xd:> http post --data Hello

xd:> http post --data World

xd:> http post --data !

would emit a single message whose contents is "Hello World !". This is because we set the aggregator
release strategy to accumulate 3 messages.

The aggregator modules comes with many more options, as shown below:

correlation
a SpEL expression to be evaluated against all incoming message and that should evaluate to
the "key" used to group messages together (default: <streamname>, which means that all
messages from the same stream are actually considered correlated)

release
a SpEL expression to be evaluated against a group of messages accumulated so far (a collection)
and that should return true when such a group is ready to be released. Using this overrides the
count option. (default: use the 'count' approach)

count
the number of messages to group together before emitting a group (default: 50)

aggregation
a SpEL expression, to be evaluated against the list of accumulated messages. This should return
what the new message will be made of. (default: #this.![payload], which uses the list of
message payloads to form the new message)

timeout
the delay (in milliseconds) after which messages should be released and aggregated, even
though the completion criteria was not met. Due to the way this is implemented (see
MessageGroupStoreReaper in the Spring Integration documentation), the actual observed delay
may vary between timeout and 2xtimeout. (default: 60000, i.e. one minute)

Spring XD

1.0.0 Spring XD Guide 48

9. Sinks

9.1 Introduction

In this section we will show some variations on output sinks. As a prerequisite start the XD Container
as instructed in the Getting Started page.

The Sinks covered are

• Log

• File

• HDFS

• JDBC

• TCP

• Mail

• RabbitMQ

• GemFire Server

• Splunk Server

• MQTT

• Dynamic Router

See the section Creating a Sink Module for information on how to create sink modules using other
Spring Integration Adapters.

9.2 Log

Probably the simplest option for a sink is just to log the data. The log sink uses the application logger
to output the data for inspection. The log level is set to WARN and the logger name is created from the
stream name. To create a stream using a log sink you would use a command like

xd:> stream create --name mylogstream --definition "http --port=8000 | log"

You can then try adding some data. We’ve used the http source on port 8000 here, so run the following
command to send a message

xd:> http post --target http://localhost:8000 --data "hello"

and you should see the following output in the XD container console.

13/06/07 16:12:18 WARN logger.mylogstream: hello

The logger name is the sink name prefixed with the string "logger.". The sink name is the same as the
stream name by default, but you can set it by passing the --name parameter

Spring XD

1.0.0 Spring XD Guide 49

xd:> stream create --name myotherlogstream --definition "http --port=8001 | log --

name=mylogger"

9.3 File Sink

Another simple option is to stream data to a file on the host OS. This can be done using the file sink
module to create a stream.

xd:> stream create --name myfilestream --definition "http --port=8000 | file"

We’ve used the http source again, so run the following command to send a message

xd:> http post --target http://localhost:8000 --data "hello"

The file sink uses the stream name as the default name for the file it creates, and places the file in
the /tmp/xd/output/ directory.

$ less /tmp/xd/output/myfilestream

hello

You can cutomize the behavior and specify the name and dir properties of the output file. For example

xd:> stream create --name otherfilestream --definition "http --port=8000 | file --

name=myfile --dir=/some/custom/directory"

File with Options

The file sink, by default, will add a newline at the end of each line; the actual newline will depend on
the operating system.

This can be disabled by using --binary=true.

9.4 Hadoop (HDFS)

If you do not have Hadoop installed, you can install Hadoop 1.1.2 as described in our separate guide.
Spring XD supports 4 Hadoop distributions, see using Hadoop for more information on how to start
Spring XD to target a specific distribution.

Once Hadoop is up and running, you can then use the hdfs sink when creating a stream

xd:> stream create --name myhdfsstream --definition "http --port=8000 | hdfs --

rollover=10"

Note that we’ve set the rollover parameter to a small value for this exercise. This is just to avoid
buffering, so that we can actually see the data has made it into HDFS.

As in the above examples, we’ve used the http source on port 8000, so we can post some data using
the shell’s built int http post command

xd:> http post --target http://localhost:8000 --data "hello"

Which is the equivalent to using curl

$ curl -d "hello" http://localhost:8000

Spring XD

1.0.0 Spring XD Guide 50

Repeat the command a few times.

You can then list the contents of the hadoop filesystem using the shell’s built in hadoop fs commands.
You will first need to configure the shell to point to your name node using the hadoop config command

xd:>hadoop config fs --namenode hdfs://localhost:8020

By default the hdfs protocol is used to access hadoop. then list the contents of the root directory

xd:>hadoop fs ls /

Found 1 items

drwxr-xr-x - mpollack supergroup 0 2013-07-30 02:34 /xd

You should see that an xd directory has appeared in the root with a sub-directory named after our
stream. This is equivalent to using the hadoop command line utility

$ hadoop dfs -ls /xd

Found 1 items

drwxr-xr-x - mpollack supergroup 0 2013-07-30 02:34 /xd

And there will be one or more log files in there depending how many times you ran the command to
post the data

xd:>hadoop fs ls /xd/myhdfsstream

Found 3 items

-rw-r--r-- 3 mpollack supergroup 12 2013-07-30 02:34 /xd/myhdfsstream/

myhdfsstream-0.log

-rw-r--r-- 3 mpollack supergroup 12 2013-07-30 02:39 /xd/myhdfsstream/

myhdfsstream-1.log

-rw-r--r-- 3 mpollack supergroup 0 2013-07-30 02:39 /xd/myhdfsstream/

myhdfsstream-2.log

You can examine the file contents using the shell’s hadoop fs cat command

xd:>hadoop fs cat /xd/myhdfsstream/myhdfsstream-0.log

hello

hello

HDFS with Options

The HDFS Sink has the following options:

newline
whether to append a newline to the message payload (default: true)

directory
where to output the files in the Hadoop FileSystem (default: /xd/<streamname>)

filename
the base filename to use for the created files (a counter will be appended before the file extension).
(default: <streamname>)

suffix
the file extension to use (default: log)

rollover
when to roll files over, expressed in bytes (default: 1000000, roughly 1MB)

Spring XD

1.0.0 Spring XD Guide 51

9.5 JDBC

The JDBC sink can be used to insert message payload data into a relational database table. By default it
inserts the entire payload into an in-memory HSQLDB database table named after the stream name. To
alter this behavior you should modify the config/jdbc.properties file with the connection parameters you
want to use. There is also a config/init_db.sql file that contains the SQL statements used to initialize the
database table. You can modify this file if you’d like to create the table when the sink starts or change
the initializeDatabase property to false if the table already exists.

The payload data will be inserted as-is if the columns option is set to payload. This is the default behavior.
If you specify any other column names the payload data will be assumed to be a JSON document that
will be converted to a hash map. This hash map will be used to populate the data values for the SQL
insert statement. A matching of column names with underscores like user_name will match onto camel
case style keys like userName in the hash map. There will be one insert statement executed for each
message.

To create a stream using a jdbc sink relying on all defaults you would use a command like

xd:> stream create --name myjdbc --definition "time | jdbc"

This will insert the time messages into a payload column in a table named myjdbc. Since the default
is using an in-memory HSQLDB database we can’t connect to this database instance from an external
tool. In order to do that we need to alter the connection properties. We can either modify the config/
jdbc.properties file or provide the url property when we create the stream. Here is an example of the
latter:

xd:> stream create --name mydata --definition "time | jdbc --url='jdbc:hsqldb:file:/tmp/

xd/test'"

We let the stream run for a little while and then destroy it so we can look at the data stored in the
database.

xd:> stream destroy --name mydata

You can use the above database URL from your favorite SQL tool or we can use the HSQL provided
SQL Tool to run a quick query from the command line:

$ java -cp $XD_HOME/lib/hsqldb-1.8.0.10.jar org.hsqldb.util.SqlTool --inlineRc

 url=jdbc:hsqldb:file:/tmp/xd/test,user=sa,password= --sql "select payload from mydata;"

This should result in something similar to the following output:

2013-07-29 12:05:48

2013-07-29 12:05:49

2013-07-29 12:05:50

2013-07-29 12:05:51

2013-07-29 12:05:52

2013-07-29 12:05:53

2013-07-29 12:05:54

2013-07-29 12:05:55

2013-07-29 12:05:56

2013-07-29 12:05:57

Fetched 10 rows.

Spring XD

1.0.0 Spring XD Guide 52

JDBC with Options

The JDBC Sink has the following options:

configProperties
base name of properties file (in the config directory) containing configuration options for the sink.
This file should contain the usual JDBC properties - driverClass, url, username, password (default:
jdbc)

initializeDatabase
whether to initialize the database using the initializer script (the default property file jdbc.properties
has this set to true) (default: false)

initializerScript
the file name for the script containing SQL statements used to initialize the database when the sink
starts (will search config directory for this file) (default: init_db.sql)

tablename
the name of the table to insert payload data into (default: <streamname>)

columns
comma separated list of column names to include in the insert statement. Use payload to include
the entire message payload into a payload column. (default: payload)

9.6 TCP

The TCP Sink provides for outbound messaging over TCP.

The following examples use netcat (linux) to receive the data; the equivalent on Mac OSX is nc.

First, start a netcat to receive the data, and background it

$ netcat -l 1234 &

Now, configure a stream

xd:> stream create --name tcptest --definition "time --interval=3 | tcp"

This sends the time, every 3 seconds to the default tcp Sink, which connects to port 1234 on
localhost.

$ Thu May 30 10:28:21 EDT 2013

Thu May 30 10:28:24 EDT 2013

Thu May 30 10:28:27 EDT 2013

Thu May 30 10:28:30 EDT 2013

Thu May 30 10:28:33 EDT 2013

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of encoders are available, the default being CRLF.

Destroy the stream; netcat will terminate when the TCP Sink disconnects.

http://localhost:8080> stream destroy --name tcptest

Spring XD

1.0.0 Spring XD Guide 53

TCP with Options

The TCP Sink has the following options

host
the host (or IP Address) to connect to (default: localhost)

port
the port on the host (default 1234)

reverse-lookup
perform a reverse DNS lookup on IP Addresses (default: false)

nio
whether or not to use NIO (default: false)

encoder
how to encode the stream - see below (default: CRLF)

close
whether to close the socket after each message (default: false)

charset
the charset used when converting text from String to bytes (default: UTF-8)

Retry Options

retry-max-attempts
the maximum number of attempts to send the data (default: 5 - original request and 4 retries)

retry-initial-interval
the time (ms) to wait for the first retry (default: 2000)

retry-multiplier
the multiplier for exponential back off of retries (default: 2)

With the default retry configuration, the attempts will be made after 0, 2, 4, 8, and 16 seconds.

Available Encoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)

Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

Spring XD

1.0.0 Spring XD Guide 54

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 216-1 bytes)

L4
data preceded by a four byte (signed) length field (up to 231-1 bytes)

An Additional Example

Start netcat in the background and redirect the output to a file foo

$ netcat -l 1235 > foo &

Create the stream, using the L4 encoder

xd:> stream create --name tcptest --definition "time --interval=3 | tcp --encoder=L4 --

port=1235"

Destroy the stream

http://localhost:8080> stream destroy --name tcptest

Check the output

$ hexdump -C foo

00000000 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1|

00000010 30 3a 34 37 3a 30 33 20 45 44 54 20 32 30 31 33 |0:47:03 EDT 2013|

00000020 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1|

00000030 30 3a 34 37 3a 30 36 20 45 44 54 20 32 30 31 33 |0:47:06 EDT 2013|

00000040 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1|

00000050 30 3a 34 37 3a 30 39 20 45 44 54 20 32 30 31 33 |0:47:09 EDT 2013|

Note the 4 byte length field preceding the data generated by the L4 encoder.

9.7 Mail

The "mail" sink allows sending of messages as emails, leveraging Spring Integration mail-sending
channel adapter. Please refer to Spring Integration documentation for the details, but in a nutshell, the
sink is able to handle String, byte[] and MimeMessage messages out of the box.

Here is a simple example of how the mail module is used:

xd:> stream create mystream --definition "http | mail --to='"your.email@gmail.com"' --

host=your.imap.server --subject=payload+' world'"

Then,

xd:> http post --data Hello

You would then receive an email whose body contains "Hello" and whose subject is "Hellow world". Of
special attention here is the way you need to escape strings for most of the parameters, because they’re
actually SpEL expressions (so here for example, we used a String literal for the to parameter).

Spring XD

1.0.0 Spring XD Guide 55

The full list of options available to the mail module is below (note that most of these options can be set
once and for all in the mail.properties file):

to
The primary recipient(s) of the email. (default: null, SpEL Expression)

from
The sender address of the email. (default: null, SpEL Expression)

subject
The email subject. (default: null, SpEL Expression)

cc
The recipient(s) that should receive a carbon copy. (default: null, SpEL Expression)

bcc
The recipient(s) that should receive a blind carbon copy. (default: null, SpEL Expression)

replyTo
The address that will become the recipient if the original recipient decides to "reply to" the email.
(default: null, SpEL Expression)

contentType
The content type to use when sending the email. (default: null, SpEL Expression)

host
The hostname of the sending server to use. (default: localhost)

port
The port of the sending server. (default: 25)

username
The username to use for authentication against the sending server. (default: none)

password
The password to use for authentication against the sending server. (default: none)

9.8 RabbitMQ

The "rabbit" sink enables outbound messaging over RabbitMQ.

The following example shows the default settings.

Configure a stream:

xd:> stream create --name rabbittest --definition "time --interval=3 | rabbit"

This sends the time, every 3 seconds to the default (no-name) Exchange for a RabbitMQ broker running
on localhost, port 5672.

The routing key will be the name of the stream by default; in this case: "rabbittest". Since the default
Exchange is a direct-exchange to which all Queues are bound with the Queue name as the binding key,
all messages sent via this sink will be passed to a Queue named "rabbittest", if one exists. We do not
create that Queue automatically. However, you can easily create a Queue using the RabbitMQ web UI.

Spring XD

1.0.0 Spring XD Guide 56

Then, using that same UI, you can navigate to the "rabbittest" Queue and click the "Get Message(s)"
button to pop messages off of that Queue (you can choose whether to requeue those messages).

To destroy the stream, enter the following at the shell prompt:

xd:> stream destroy --name rabbittest

RabbitMQ with Options

The RabbitMQ Sink has the following options

host
the host (or IP Address) to connect to (default: localhost unless rabbit.hostname has been
overridden in rabbit.properties)

port
the port on the host (default: 5672 unless rabbit.port has been overridden in
rabbit.properties)

vhost
the virtual host (default: / unless rabbit.vhost has been overridden in
rabbit.properties)

exchange
the Exchange on the RabbitMQ broker to which messages should be sent (default: `` (empty:
therefore, the default no-name Exchange))

routingKey
the routing key to be passed with the message (default: <streamname>)

Note: the rabbit.properties file referred to above is located within the XD_HOME/config directory.

9.9 GemFire Server

Currently XD supports GemFire’s client-server topology. A sink that writes data to a GemFire cache
requires a cache server to be running in a separate process and its host and port must be known (NOTE:
GemFire locators are not supported yet). The XD distribution includes a GemFire server executable
suitable for development and test purposes. It is made available under GemFire’s development license
and is limited to 3 nodes. Modules that write to GemFire create a client cache and client region. No
data is cached on the client.

Launching the XD GemFire Server

A GemFire Server is included in the Spring XD distribution. To start the server. Go to the XD install
directory:

$cd gemfire/bin

$./gemfire-server ../config/cq-demo.xml

The command line argument is the location of a Spring file with a configured cache server. A sample
cache configuration is provided cq-demo.xml located in the config directory. This starts a server on
port 40404 and creates a region named Stocks. A Logging cache listener is configured for the region
to log region events.

https://github.com/SpringSource/spring-xd/blob/master/spring-xd-gemfire-server/config/cq-demo.xml

Spring XD

1.0.0 Spring XD Guide 57

Gemfire sinks

There are 2 implementation of the gemfire sink: gemfire-server and gemfire-json-server. They are
identical except the latter converts JSON string payloads to a JSON document format proprietary to
GemFire and provides JSON field access and query capabilities. If you are not using JSON, the gemfire-
server module will write the payload using java serialization to the configured region. Either of these
modules accepts the following attributes:

regionName
the name of the GemFire region. This must be the name of a region configured for the cache server.
This module creates the corresponding client region. (default: <streamname>)

keyExpression
A SpEL expression which is evaluated to create a cache key. Typically, the key value is derived
from the payload. (default: <streamname>, which will overwrite the same entry for every message
received on the stream)

gemfireHost
The host name or IP address of the cache server (default: localhost)

gemfirePort
The TCP port number of the cache server (default: 40404)

Example

Suppose we have a JSON document containing a stock price:

{"symbol":"VMW", "price":73}

We want this to be cached using the stock symbol as the key. The stream definition is:

http | gemfire-json-server --regionName=Stocks --keyExpression=payload.getField('symbol')

The keyExpression is a SpEL expression that depends on the payload type. In this case,
com.gemstone.org.json.JSONObject. JSONObject which provides the getField method. To run this
example:

xd:> stream create --name stocks --definition "http --port=9090 | gemfire-json-server --

regionName=Stocks --keyExpression=payload.getField('symbol')"

xd:> http post --target http://localhost:9090 --data "{"symbol":"VMW","price":73}"

This will write an entry to the GemFire Stocks region with the key VMW. Please do not put spaces when
separating the JSON key-value pairs, only a comma.

You should see a message on STDOUT for the process running the GemFire server like:

INFO [LoggingCacheListener] - updated entry VMW

9.10 Splunk Server

A Splunk sink that writes data to a TCP Data Input type for Splunk.

http://www.splunk.com/

Spring XD

1.0.0 Spring XD Guide 58

Splunk sinks

The Splunk sink converts an object payload to a string using the object’s toString method and then
converts this to a SplunkEvent that is sent via TCP to Splunk. The module accepts the following
attributes:

host
The host name or IP address of the Splunk server *(default: localhost)

port
The TCP port number of the Splunk Server (default: 8089)

username
The login name that has rights to send data to the tcp-port (default: admin)

password
The password associated with the username (default: password)

owner
The owner of the tcp-port (default: admin1)

tcp-port
The TCP port number to where XD will send the data (default: 9500)

Setup Splunk for TCP Input

1. From the Manager page select Manage Inputs link

2. Click the Add data Button

3. Click the From a TCP port link

4. TCP Port enter the port you want Splunk to monitor

5. Set Source Type select Manual

6. Source Type enter tcp-raw

7. Click Save

Example

An example stream would be to take data from a twitter search and push it through to a splunk instance.

xd:> stream create --name springone2gx --definition "twittersearch --consumerKey= --

consumerSecret= --query='#LOTR' | splunk"

9.11 MQTT

The mqtt sink connects to an mqtt server and publishes telemetry messages.

Options

The folllowing options are configured in mqtt.properties in XD_HOME/config

Spring XD

1.0.0 Spring XD Guide 59

mqtt.url=tcp://localhost:1883

mqtt.default.client.id=xd.mqtt.client.id

mqtt.username=guest

mqtt.password=guest

mqtt.default.topic=xd.mqtt.test

The defaults are set up to connect to the RabbitMQ MQTT adapter on localhost.

Note that the client id must be no more than 19 characters; this is because .snk is added and the id
must be no more than 23 characters.

clientId
Identifies the client - overrides the default above.

topic
The topic to which the sink will publish - overrides the default above.

qos
The Quality of Service (default: 1)

retained
Whether the retained flag is set (default: false)

9.12 Dynamic Router

The Dynamic Router support allows for routing Spring XD messages to named channels based on the
evaluation of SpEL expressions or Groovy Scripts.

SpEL-based Routing

In the following example, 2 streams are created that listen for message on the foo and the bar channel.
Furthermore, we create a stream that receives messages via HTTP and then delegates the received
messages to a router:

xd:>stream create f --definition ":foo > transform --expression=payload+'-foo' | log"

Created new stream 'f'

xd:>stream create b --definition ":bar > transform --expression=payload+'-bar' | log"

Created new stream 'b'

xd:>stream create r --definition "http | router --

expression=payload.contains('a')?':foo':':bar'"

Created new stream 'r'

Now we make 2 requests to the HTTP source:

xd:>http post --data "a"

> POST (text/plain;Charset=UTF-8) http://localhost:9000 a

> 200 OK

xd:>http post --data "b"

> POST (text/plain;Charset=UTF-8) http://localhost:9000 b

> 200 OK

In the server log you should see the following output:

Spring XD

1.0.0 Spring XD Guide 60

11:54:19,868 WARN ThreadPoolTaskScheduler-1 logger.f:145 - a-foo

11:54:25,669 WARN ThreadPoolTaskScheduler-1 logger.b:145 - b-bar

For more information, please also consult the Spring Integration
Reference manual: http://static.springsource.org/spring-integration/reference/html/messaging-routing-
chapter.html#router-namespace particularly the section "Routers and the Spring Expression Language
(SpEL)".

Groovy-based Routing

Instead of SpEL expressions, Groovy scripts can also be used. Let’s create a Groovy script in the file
system at "/my/path/router.groovy"

println("Groovy processing payload '" + payload +"'");

if (payload.contains('a')) {

 return ":foo"

}

else {

 return ":bar"

}

Now we create the following streams:

xd:>stream create f --definition ":foo > transform --expression=payload+'-foo' | log"

Created new stream 'f'

xd:>stream create b --definition ":bar > transform --expression=payload+'-bar' | log"

Created new stream 'b'

xd:>stream create g --definition "http | router --script='file:/my/path/router.groovy'"

Now post some data to the HTTP source:

xd:>http post --data "a"

> POST (text/plain;Charset=UTF-8) http://localhost:9000 a

> 200 OK

xd:>http post --data "b"

> POST (text/plain;Charset=UTF-8) http://localhost:9000 b

> 200 OK

In the server log you should see the following output:

Groovy processing payload 'a'

11:29:27,274 WARN ThreadPoolTaskScheduler-1 logger.f:145 - a-foo

Groovy processing payload 'b'

11:34:09,797 WARN ThreadPoolTaskScheduler-1 logger.b:145 - b-bar

Note

You can also use Groovy scripts located on your classpath by specifying:

--script='org/my/package/router.groovy'

For more information, please also consult the Spring Integration Reference manual:
"Groovy support" http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-
chapter.html#groovy

http://static.springsource.org/spring-integration/reference/html/messaging-routing-chapter.html#router-namespace
http://static.springsource.org/spring-integration/reference/html/messaging-routing-chapter.html#router-namespace
http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-chapter.html#groovy
http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-chapter.html#groovy

Spring XD

1.0.0 Spring XD Guide 61

Options

expression
The SpEL expression to use for routing

script
Indicates that Groovy Script based routing is used. If this property is set, then the "Expression"
attribute will be ignored. The groovy script is checked for updates every 60 seconds. The script can
be loaded from the classpath or from the file system e.g. "--script=org/springframework/springxd/
samples/batch/router.groovy" or "--script=file:/my/path/router.groovy"

properties-location
Will be made available as script variables for Groovy Script based routing. Will only be evaluated
once at initialization time. By default the following script variables will be made available: "payload"
and "headers".

Spring XD

1.0.0 Spring XD Guide 62

10. Taps

10.1 Introduction

A Tap allows you to "listen in" to data from another stream and process the data separately from the
original stream definition. The original stream is unaffected by the tap and isn’t aware of its presence,
similar to a phone wiretap (WireTaps are part of the standard catalog of EAI patterns and are part of
the Spring Integration EAI framework used by Spring XD).

A tap acts like a source in that it occurs as the first module within a stream and can pipe its output
to a sink (and/or one or more processors added to a chain before the ultimate sink), but for a tap the
messages are actually those being processed by some other stream.

Taps are specified as named channels in a stream definition, where the channel name always begins
with tap:.

To create a tap using the shell, use the following command (assuming you want to tap into the "foo1"
stream, which we’ll create first):

xd:> stream create --name foo1 --definition "time | log"

xd:> stream create --name tapname --definition "tap:stream:foo1 > log"

A tap can consume data from any point along the target stream’s processing pipeline. For example, if
you have a stream called mystream, defined as

source | filter | transformer | sink

Then creating a tap using

tap:mystream.<filter module name> > sink2

would tap into the stream’s data after the filter has been applied but before the transformer. So the
untransformed data would be sent to sink2.

A primary use case is to perform realtime analytics at the same time as data is being ingested via its
primary stream. For example, consider a Stream of data that is consuming Twitter search results and
writing them to HDFS. A tap can be created before the data is written to HDFS, and the data piped
from the tap to a counter that correspond to the number of times specific hashtags were mentioned
in the tweets.

Creating a tap on a named channel, a stream whose source is a named channel, or a label is not yet
supported. This is planned for a future release.

You’ll find specific examples of creating taps on existing streams in the Analytics section.

10.2 Tap Lifecycle

A side effect of a stream being unaware of any taps on its pipeline is that deleting the stream will not
automatically delete the taps. The taps have to be deleted separately. However if the tapped stream is
re-created, the existing tap will continue to function.

http://www.enterpriseintegrationpatterns.com/WireTap.html
http://static.springsource.org/spring-integration/reference/htmlsingle/#channel-wiretap

Spring XD

1.0.0 Spring XD Guide 63

11. Batch Jobs

11.1 Introduction

One of the features that XD offers is the ability to launch and monitor batch jobs using Spring Batch.
This purpose of this section is to show you how to create a sample tasklet as well as create, schedule
and monitor a job.

11.2 Setting up a simple Batch Job

Creating the Tasklet

We will create a very simple Tasklet. The sole purpose of this Tasklet is to print out "Hello Spring XD!".
Note, you can find the the source code and the maven build files for this example in the Spring XD
Samples repository.

package org.springframework.springxd.samples.batch;

import org.springframework.batch.core.StepContribution;

import org.springframework.batch.core.scope.context.ChunkContext;

import org.springframework.batch.core.step.tasklet.Tasklet;

import org.springframework.batch.repeat.RepeatStatus;

public class HelloSpringXDTasklet implements Tasklet {

 public RepeatStatus execute(StepContribution contribution,

 ChunkContext chunkContext) throws Exception {

 System.out.println("Hello Spring XD!");

 return RepeatStatus.FINISHED;

 }

}

Please ensure that you deploy this class as part of a Jar file to the Spring XD ${xd.home}/lib folder.
Once you restart the Spring XD container the class will be automatically added to the classpath and thus
made available. If you are building from the sample repository do the following in the directory spring-
xd-samples/batch-simple

• mvn package

• cp ./target/springxd-batch-simple-1.0.0.BUILD-SNAPSHOT.jar $XD_HOME/lib

Setting Up the Application Context

Under modules/job, in the Spring XD home directory, please create the following XML application
context file named myjob.xml:

http://www.springsource.org/spring-batch
http://static.springsource.org/spring-batch/reference/html/configureStep.html#taskletStep
https://github.com/SpringSource/spring-xd-samples
https://github.com/SpringSource/spring-xd-samples

Spring XD

1.0.0 Spring XD Guide 64

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:batch="http://www.springframework.org/schema/batch"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/batch

 http://www.springframework.org/schema/batch/spring-batch.xsd">

 <batch:job id="job">

 <batch:step id="helloSpringXDStep">

 <batch:tasklet ref="helloSpringXDTasklet" />

 </batch:step>

 </batch:job>

 <bean id="helloSpringXDTasklet"

 class="org.springframework.springxd.samples.batch.HelloSpringXDTasklet" />

</beans>

This context file must contain single batch job whose id is job.

If you are building from the sample repository do the following in the directory spring-xd-samples/
batch-simple

• cp ./src/main/resources/myjob.xml $XD_HOME/modules/job/

11.3 Creating your Job

Now from the XD-Shell let’s create a job. This is done by executing a job create command composed of:

• name - the "name" that will be associated with the Job

• definition - the name of the context file that describes the tasklet.

So using our example above where we declared a myjob.xml that contains the context for our task, so
to create the job will look like:

xd:> job create --name helloSpringXD --definition "myjob"

In the logging output of the XDContainer you should see the following:

14:17:46,793 INFO http-bio-8080-exec-5 job.JobPlugin:87 - Configuring module

 with the following properties: {numberFormat=, dateFormat=, makeUnique=true,

 xd.stream.name=helloSpringXD}

14:17:46,837 INFO http-bio-8080-exec-5 module.SimpleModule:140 - initialized module:

 SimpleModule [name=myjob, type=job, group=helloSpringXD, index=0]

14:17:46,840 INFO http-bio-8080-exec-5 module.SimpleModule:154 - started module:

 SimpleModule [name=job, type=job, group=helloSpringXD, index=0]

14:17:46,840 INFO http-bio-8080-exec-5 module.ModuleDeployer:152 - launched job module:

 helloSpringXD:myjob:0

Spring XD

1.0.0 Spring XD Guide 65

11.4 Launching a job

XD uses triggers as well as regular event flow to launch the batch jobs. So in this section we will cover
how to:

• Launch the Batch Job Ad-hoc

• Launch the Batch Job using a named Cron-Trigger

• Launch the Batch Job as sink.

Ad-hoc

To launch a job one time, use the launch option of the job command. So going back to our example
above, we’ve created a job module instance named helloSpringXD. Launching that Job Module Instance
would look like:

xd:> job launch helloSpringXD

In the logging output of the XDContainer you should see the following

16:45:40,127 INFO http-bio-9393-exec-1 job.JobPlugin:98 - Configuring module with the

 following properties: {numberFormat=, dateFormat=, makeUnique=true, xd.stream.name=myjob}

16:45:40,185 INFO http-bio-9393-exec-1 module.SimpleModule:140 - initialized module:

 SimpleModule [name=job, type=job, group=myjob, index=0 @3a9ecb9d]

16:45:40,198 INFO http-bio-9393-exec-1 module.SimpleModule:161 - started module:

 SimpleModule [name=job, type=job, group=myjob, index=0 @3a9ecb9d]

16:45:40,199 INFO http-bio-9393-exec-1 module.ModuleDeployer:161 - deployed SimpleModule

 [name=job, type=job, group=myjob, index=0 @3a9ecb9d]

Hello Spring XD!

To re-launch the job just execute the launch command. For example:

xd:> job launch helloSpringXD

Launch the Batch using Cron-Trigger

To launch a batch job based on a cron scheduler is done by creating a stream using the cron-trigger
source.

xd:> stream create --name cronStream --definition "cron-trigger --cron='0/5 * * * * *' >

 queue:job:myCronJob"

A batch job can receive parameters from a source (in this case a trigger) or process. A trigger uses the
--payload expression to declare its payload.

xd:> stream create --name cronStream --definition "cron-trigger --cron='0/5 * * * * *' --

payload='{"param1":"Kenny"}' > queue:job:myCronJob"

Note

The payload content must be in a JSON-based map representation.

To pause/stop future scheduled jobs from running for this stream, the stream must be undeployed for
example:

Spring XD

1.0.0 Spring XD Guide 66

xd:> stream undeploy --name cronStream

Launch the Batch using a Fixed-Delay-Trigger

A fixed-delay-trigger is used to launch a Job on a regular interval. Using the --fixedDelay parameter you
can set up the number of seconds between executions. In the example below we are running myXDJob
every 10 seconds and passing it a payload containing a single attribute.

xd:> stream create --name fdStream --definition "fixed-delay-trigger --

payload='{"param1":"fixedDelayKenny"}' --fixedDelay=10 > queue:job:myXDJob"

To pause/stop future scheduled jobs from running for this stream, you must undeploy the stream for
example:

xd:> stream undeploy --name cronStream

Launch job as a part of event flow

A batch job is always used as a sink, with that being said it can receive messages from sources (other
than triggers) and processors. In the case below we see that the user has created a http source (http
source receives http posts and passes the payload of the http message to the next module in the stream)
that will pass the http payload to the "myHttpJob".

 stream create --name jobStream --definition "http > queue:job:myHttpJob"

To test the stream you can execute a http post, like the following:

xd:> http post --target http://localhost:9000 --data "{"param1":"fixedDelayKenny"}"

11.5 Retrieve job notifications

XD offers the facilities to capture the notifications that are sent from the job as it is executing.

Notifications include:

• Job Execution Listener

• Chunk Listener

• Item Listener

• Step Execution Listener

• Skip Listener

In this example, the job will send notifications to the log.

stream create --name jobNotifications --definition ":myHttpJob-notifications >log"

In the logging output of the container you should see something like the following when the job
completes:

Spring XD

1.0.0 Spring XD Guide 67

15:26:30,029 WARN task-scheduler-5 logger.jobNotifications:145 - JobExecution:

 id=1, version=2, startTime=Wed Aug 28 15:26:30 EDT 2013, endTime=Wed Aug 28

 15:26:30 EDT 2013, lastUpdated=Wed Aug 28 15:26:30 EDT 2013, status=COMPLETED,

 exitStatus=exitCode=COMPLETED;exitDescription=, job=[JobInstance: id=1, version=0,

 Job=[myHttpJob.job]], jobParameters=[{random=0.49881213192780494}]

11.6 Removing Batch Jobs

Batch Jobs can be deleted by executing:

xd:> job destroy helloSpringXD

Alternatively, one can just undeploy the job, keeping its definition for a future redeployment:

xd:> job undeploy helloSpringXD

11.7 Pre-Packaged Batch Jobs

Spring XD comes with several batch import and export modules. You can run them out of the box or
use them as a basis for building your own custom modules.

Import Files to HDFS (filehdfs)

This module is designed to be driven by a stream. It imports data from CSV files and requires that you
supply a list of named columns for the data using the names parameter. For example:

xd:> job create myjob --definition "filehdfs --names=forename,surname,address"

You would then use a stream with a file source to scan a directory for files and drive the job. A separate
file will be started for each job found:

xd:> stream create csvStream --definition "file --ref=true --dir=/mycsvdir --pattern=*.csv

 > queue:job:myjob"

Import Files to JDBC (filejdbc)

A module which loads CSV files from a directory into a JDBC table using a single batch job. By default
it uses the file config/batch-jdbc-import.properties to configure the module and stores data
in the internal HSQL DB which is used by Spring Batch. The job should be defined with the resources
parameter defining the files which should be loaded. It also requires a names parameter (for the CSV
field names) and these should match the database column names into which the data should be stored.
You can either pre-create the database table or the module will try to create it for you when it is loaded.
The table intitialization is configured in a similar way to the JDBC sink and uses the same parameters.
The default table name is the job name and can be cumstomized by setting the tableName parameter.
As an example, if you run the command

xd:> job create myjob --definition "filejdbc --resources=/mycsvdir/*.csv --

names=forename,surname,address --tableName=people"

it will create the table "people" in the database with three varchar columns called "forename", "surname"
and "address". When you launch the job it will load the files matching the resources pattern and write
the data to this table.

Spring XD

1.0.0 Spring XD Guide 68

HDFS to JDBC Export (hdfsjdbc)

This module functions very similarly to the filejdbc one except that the resources you specify should
actually be in HDFS, rather than the OS filesystem. Other than that the syntax is the same

xd:> job create myjob --definition "hdfsjdbc --resources=/data/*.log --

names=forename,surname,address --tableName=people"

there is also a limitation in that the database table must be created manually. This is due to a bug in
Spring Hadoop and will be fixed in the future.

HDFS to MongoDB Export (hdfsmongodb)

Exports CSV data from HDFS and stores it in a MongoDB collection which defaults to the stream
name. This can be overridden with the collectionName parameter. The job is configured using the
file config/batch-mongo-import.properties. Once again, the field names should be defined
by supplying the names parameter. The data is converted internally to a Spring XD Tuple and the
collection items will have an id matching the tuple’s UUID. You can override this by setting the idField
parameter to one of the field names if desired.

An example:

xd:> job create myjob --definition "hdfsmongodb --resources=/data/*.log --

names=employeeId,forename,surname,address --idField=employeeId --collectionName=people"

Spring XD

1.0.0 Spring XD Guide 69

12. Analytics

12.1 Introduction

Spring XD Analytics provides support for real-time analysis of data using metrics such as counters and
gauges. Spring XD intends to support a wide range of these metrics and analytical data structures as a
general purpose class library that works with several backend storage technologies.

We’ll look at the following metrics

• Counter

• Field Value Counter

• Aggregate Counter

• Gauge

• Rich Gauge

An in memory implementation and a Redis implementation are provided in Spring XD 1.0.0.M3. Other
metrics that will be provided in a future release are Rate Counters and Histograms.

Metrics can be used directly in place of a sink just as if you were creating any other stream, but you can
also analyze data from an existing stream using a tap. We’ll look at some examples of using metrics
with taps in the following sections. As a prerequisite start the XD Container as instructed in the Getting
Started page.

12.2 Counter

A counter is a Metric that associates a unique name with a long value. It is primarily used for counting
events triggered by incoming messages on a target stream. You create a counter with a unique
name and optionally an initial value then set its value in response to incoming messages. The most
straightforward use for counter is simply to count messages coming into the target stream. That is, its
value is incremented on every message. This is exactly what the counter module provided by Spring
XD does.

Here’s an example:

Start by creating a data ingestion stream. Something like:

xd:> stream create --name springtweets --definition "twittersearch --

consumerKey=<your_key> --consumerSecret=<your_secret> --query=spring | file --dir=/

tweets/"

Next, create a tap on the springtweets stream that sets a message counter named tweetcount

xd:> stream create --name tweettap --definition "tap:stream:springtweets > counter --

name=tweetcount"

$ redis-cli

redis 127.0.0.1:6379> get counters.tweetcount

Spring XD

1.0.0 Spring XD Guide 70

12.3 Field Value Counter

A field value counter is a Metric used for counting occurrences of unique values for a named field in a
message payload. XD Supports the following payload types out of the box:

• POJO (Java bean)

• Tuple

• JSON String

For example suppose a message source produces a payload with a field named user :

class Foo {

 String user;

 public Foo(String user) {

 this.user = user;

 }

}

If the stream source produces messages with the following objects:

 new Foo("fred")

 new Foo("sue")

 new Foo("dave")

 new Foo("sue")

The field value counter on the field user will contain:

fred:1, sue:2, dave:1

Multi-value fields are also supported. For example, if a field contains a list, each value will be counted
once:

users:["dave","fred","sue"]

users:["sue","jon"]

The field value counter on the field users will contain:

dave:1, fred:1, sue:2, jon:1

field_value_counter has the following options:

fieldName
The name of the field for which values are counted (required)

counterName
A key used to access the counter values. (default: ${fieldName})

To try this out, create a stream to ingest twitter feeds containing the word spring and output to a file:

xd:> stream create --name springtweets --definition "twittersearch --

consumerKey=<your_key> --consumerSecret=<your_secret> --query=spring | file"

Now create a tap for a field value counter:

xd:> stream create --name tweettap --definition "tap:stream:springtweets > field-value-

counter --fieldName=fromUser"

Spring XD

1.0.0 Spring XD Guide 71

The twittersearch source produces JSON strings which contain the user id of the tweeter in the fromUser
field. The field_value_counter sink parses the tweet and updates a field value counter named fromUser
in Redis. To view the counts:

$ redis-cli

redis 127.0.0.1:6379>zrange fieldvaluecounters.fromUser 0 -1 withscores

12.4 Aggregate Counter

The aggregate counter differs from a simple counter in that it not only keeps a total value for the count,
but also retains the total count values for each minute, hour day and month of the period for which it
is run. The data can then be queried by supplying a start and end date and the resolution at which the
data should be returned.

Creating an aggregate counter is very similar to a simple counter. For example, to obtain an aggregate
count for our spring tweets stream:

xd:> stream create --name springtweets --definition "twittersearch --query=spring | file"

you’d simply create a tap which pipes the input to aggregatecounter:

xd:> stream create --name tweettap --definition "tap:stream:springtweets >

 aggregatecounter --name=tweetcount"

The Redis back-end stores the aggregate counts in buckets prefixed with aggregatecounters.
${name}. The rest of the string contains the date information. So for our tweetcount counter you
might see something like the following keys appearing in Redis:

redis 127.0.0.1:6379> keys aggregatecounters.tweetcount*

1) "aggregatecounters.tweetcount"

2) "aggregatecounters.tweetcount.years"

3) "aggregatecounters.tweetcount.2013"

4) "aggregatecounters.tweetcount.201307"

5) "aggregatecounters.tweetcount.20130719"

6) "aggregatecounters.tweetcount.2013071914"

The general format is

1. One total value

2. One years hash with a field per year eg. { 2010: value, 2011: value }

3. One hash per year with a field per month { 01: value, …}

4. One hash per month with a field per day

5. One hash per day with a field per hour

6. One hash per hour with a field per minute

12.5 Gauge

A gauge is a Metric, similar to a counter in that it holds a single long value associated with a unique
name. In this case the value can represent any numeric value defined by the application.

Spring XD

1.0.0 Spring XD Guide 72

The gauge sink provided with XD stores expects a numeric value as a payload, typically this would be
a decimal formatted string, and stores its values in Redis. The gauge includes the following attributes:

name
The name for the gauge (default: <streamname>)

Here is an example of creating a tap for a gauge:

Simple Tap Example

Create an ingest stream

xd:> stream create --name test --definition "http --port=9090 | file"

Next create the tap:

xd:> stream create --name simplegauge --definition "tap:stream:test > gauge"

Now Post a message to the ingest stream:

xd:> http post --target http://localhost:9090 --data "10"

Check the gauge:

$ redis-cli

redis 127.0.0.1:6379> get gauges.simplegauge

"10"

12.6 Rich Gauge

A rich gauge is a Metric that holds a double value associated with a unique name. In addition to the
value, the rich gauge keeps a running average, along with the minimum and maximum values and the
sample count.

The richgauge sink provided with XD expects a numeric value as a payload, typically this would be a
decimal formatted string, and keeps its value in a store. The richgauge includes the following attributes:

name
The name for the gauge (default: <streamname>)

alpha
A smoothing factor between 0 and 1, that if set will compute an exponential moving average (default:
-1, simple average)

When stored in Redis, the values are kept as a space delimited string, formatted as value alpha mean
max min count

Here are some examples of creating a tap for a rich gauge:

Simple Tap Example

Create an ingest stream

http://en.wikipedia.org/wiki/Exponential_smoothing

Spring XD

1.0.0 Spring XD Guide 73

xd:> stream create --name test --definition "http --port=9090 | file"

Next create the tap:

xd:> stream create --name testgauge --definition "tap:stream:test > richgauge"

Now Post some messages to the ingest stream:

xd:> http post --target http://localhost:9090 --data "10"

xd:> http post --target http://localhost:9090 --data "13"

xd:> http post --target http://localhost:9090 --data "16"

Check the gauge:

$ redis-cli

redis 127.0.0.1:6379> get richgauges.testgauge

"16.0 -1 13.0 16.0 10.0 3"

Stock Price Example

In this example, we will track stock prices, which is a more practical example. The data is ingested as
JSON strings like

{"symbol":"VMW","price":72.04}

Create an ingest stream

xd:> stream create --name stocks --definition "http --port=9090 | file"

Next create the tap, using the json-field-extractor to extract the stock price from the payload:

xd:> stream create --name stockprice --definition "tap:stream:stocks > json-field-

extractor --fieldName=price | richgauge"

Now Post some messages to the ingest stream:

xd:> http post --target http://localhost:9090 --data "{\"symbol\":\"VMW\",\"price

\":72.04}"

xd:> http post --target http://localhost:9090 --data "{\"symbol\":\"VMW\",\"price

\":72.06}"

xd:> http post --target http://localhost:9090 --data "{\"symbol\":\"VMW\",\"price

\":72.08}"

Check the gauge:

$ redis-cli

redis 127.0.0.1:6379> get richgauges.stockprice

"72.08 -1 72.04 72.08 72.02 3"

Improved Stock Price Example

In this example, we will track stock prices for selected stocks. The data is ingested as JSON strings like

{"symbol":"VMW","price":72.04}

{"symbol":"EMC","price":24.92}

Spring XD

1.0.0 Spring XD Guide 74

The previous example would feed these prices to a single gauge. What we really want is to create a
separate tap for each ticker symbol in which we are interested:

Create an ingest stream

xd:> stream create --name stocks --definition "http --port=9090 | file"

Next create the taps, using the json-field-extractor to extract the stock price from the payload:

xd:> stream create --name vmwprice --definition "tap:stream:stocks > json-field-value-

filter --fieldName=symbol --fieldValue=VMW | json-field-extractor --fieldName=price |

 richgauge"

xd:> stream create --name emcprice --definition "tap:stream:stocks > json-field-value-

filter --fieldName=symbol --fieldValue=EMC | json-field-extractor --fieldName=price |

 richgauge"

Now Post some messages to the ingest stream:

xd:> http post --target http://localhost:9090 --data "{\"symbol\":\"VMW\",\"price

\":72.04}"

xd:> http post --target http://localhost:9090 --data "{\"symbol\":\"VMW\",\"price

\":72.06}"

xd:> http post --target http://localhost:9090 --data "{\"symbol\":\"VMW\",\"price

\":72.08}"

xd:> http post --target http://localhost:9090 --data "{\"symbol\":\"EMC\",\"price

\":24.92}"

xd:> http post --target http://localhost:9090 --data "{\"symbol\":\"EMC\",\"price

\":24.90}"

xd:> http post --target http://localhost:9090 --data "{\"symbol\":\"EMC\",\"price

\":24.96}"

Check the gauge:

$ redis-cli

redis 127.0.0.1:6379> get richgauges.emcprice

"24.96 -1 24.926666666666666 24.96 24.9 3"

redis 127.0.0.1:6379> get richgauges.vmwprice

"72.08 -1 72.04 72.08 72.02 3"

12.7 Accessing Analytics Data over the RESTful API

Spring XD has a discoverable RESTful API based on the Spring HATEAOS library. You can discover
the resources available by making a GET request on the root resource of the Admin server. Here is an
example where navigate down to find the data for a counter named httptap that was created by these
commands

xd:>stream create --name httpStream --definition "http | file"

xd:>stream create --name httptap --definition "tap:stream:httpStream > counter"

xd:>http post --target http://localhost:9000 --data "helloworld"

The root resource returns

Spring XD

1.0.0 Spring XD Guide 75

xd:>! wget -q -S -O - http://localhost:9393/

{

 "links":[

 {},

 {

 "rel":"jobs",

 "href":"http://localhost:9393/jobs"

 },

 {

 "rel":"modules",

 "href":"http://localhost:9393/modules"

 },

 {

 "rel":"runtime/modules",

 "href":"http://localhost:9393/runtime/modules"

 },

 {

 "rel":"runtime/containers",

 "href":"http://localhost:9393/runtime/containers"

 },

 {

 "rel":"counters",

 "href":"http://localhost:9393/metrics/counters"

 },

 {

 "rel":"field-value-counters",

 "href":"http://localhost:9393/metrics/field-value-counters"

 },

 {

 "rel":"aggregate-counters",

 "href":"http://localhost:9393/metrics/aggregate-counters"

 },

 {

 "rel":"gauges",

 "href":"http://localhost:9393/metrics/gauges"

 },

 {

 "rel":"richgauges",

 "href":"http://localhost:9393/metrics/richgauges"

 }

]

}

Following the resource location for the counter

Spring XD

1.0.0 Spring XD Guide 76

xd:>! wget -q -S -O - http://localhost:9393/metrics/counters

{

 "links":[

],

 "content":[

 {

 "links":[

 {

 "rel":"self",

 "href":"http://localhost:9393/metrics/counters/httptap"

 }

],

 "name":"httptap"

 }

],

 "page":{

 "size":0,

 "totalElements":1,

 "totalPages":1,

 "number":0

 }

}

And then the data for the counter itself

xd:>! wget -q -S -O - http://localhost:9393/metrics/counters/httptap

{

 "links":[

 {

 "rel":"self",

 "href":"http://localhost:9393/metrics/counters/httptap"

 }

],

 "name":"httptap",

 "value":2

}

Spring XD

1.0.0 Spring XD Guide 77

13. DSL Reference

13.1 Introduction

Spring XD provides a DSL for defining a stream. Over time the DSL is likely to evolve significantly as it
gains the ability to define more and more sophisticated streams as well as the steps of a batch job.

13.2 Pipes and filters

A simple linear stream consists of a sequence of modules. Typically an Input Source, (optional)
Processing Steps, and an Output Sink. As a simple example consider the collection of data from an
HTTP Source writing to a File Sink. Using the DSL the stream description is:

http | file

A stream that involves some processing:

http | filter | transform | file

The modules in a stream definition are connected together using the pipe symbol |.

13.3 Module parameters

Each module may take parameters. The parameters supported by a module are defined by the module
implementation. As an example the http source module exposes port setting which allows the data
ingestion port to be changed from the default value.

http --port=1337

It is only necessary to quote parameter values if they contain spaces or the | character. Here the
transform processor module is being passed a SpEL expression that will be applied to any data it
encounters:

transform --expression='new StringBuilder(payload).reverse()'

If the parameter value needs to embed a single quote, use two single quotes:

// Query is: Select * from /Customers where name='Smith'

scan --query='Select * from /Customers where name=''Smith'''

13.4 Named channels

Instead of a source or sink it is possible to use a named channel. Normally the modules in a stream are
connected by anonymous internal channels (represented by the pipes), but by using explicitly named
channels it becomes possible to construct more sophisticated flows. In keeping with the unix theme,
sourcing/sinking data from/to a particular channel uses the > character. A channel name is prefixed
with a :

Here is an example that shows how you can use a named channel to share a data pipeline driven by
different input sources.

Spring XD

1.0.0 Spring XD Guide 78

:foo > file

http > :foo

time > :foo

Now if you post data to the http source, you will see that data intermingled with the time value in the file.

The opposite case, the fanout of a message to multiple streams, is planned for a future release. However,
taps are a specialization of named channels that do allow publishing data to multiple sinks. For example:

tap:mystream > file

tap:mystream > log

Once data is received on mystream, it will be written to both file and log. Note that, unlike other named
channels, references to a tap do not contain a leading :.

Support for routing messages to different streams based on message content is also planned for a
future release.

13.5 Labels

Labels provide a means to alias or group modules. Labels are simply a name followed by a : When
used as an alias a label can provide a more descriptive name for a particular configuration of a module
and possibly something easier to refer to in other streams.

mystream = http | obfuscator: transform --expression=payload.replaceAll('password','*') |

 file

A module may have multiple labels:

mystream = http | foo: bar: transform --expression=payload.replaceAll('password','*') |

 file

When used for grouping a series of modules might share the same label:

mystream = http | group1: filter | group1: transform | file

Referring to the label group1 then effectively refers to all the labeled modules. This is not yet exploited
in XD but in future may be used for something like configuring deployment options:

// Ensure all modules in group1 are on the same machine

group1.colocation = true

Taps

Spring XD

1.0.0 Spring XD Guide 79

14. Tuples

14.1 Introduction

The Tuple class is a central data structure in Spring XD. It is an ordered list of values that can be
retrieved by name or by index. Tuples are created by a TupleBuilder and are immutable. The values
that are stored can be of any type and null values are allowed.

The underlying Message class that moves data from one processing step to the next can have an
arbitrary data type as its payload. Instead of creating a custom Java class that encapsulates the
properties of what is read or set in each processing step, the Tuple class can be used instead.
Processing steps can be developed that read data from specific named values and write data to specific
named values.

There are accessor methods that perform type conversion to the basic primitive types as well as
BigDecimal and Date. This avoids you from having to cast the values to specific types. Insteam you can
rely on the Tuple’s type conversion infastructure to perform the conversion.

The Tuple’s types conversion is performed by Spring’s Type Conversion Infrastructure which supports
commonly encountered type conversions and is extensible.

There are several overloads for getters that let you provide default values for primitive types should the
field you are looking for not be found. Date format patterns and Locale aware NumberFormat conversion
are also supported. A best effort has been made to preserve the functionality available in Spring Batch’s
FieldSet class that has been extensively used for parsing String based data in files.

Creating a Tuple

The TupleBuilder class is how you create new Tuple instances. The most basic case is

Tuple tuple = TupleBuilder.tuple().of("foo", "bar");

This creates a Tuple with a single entry, a key of foo with a value of bar. You can also use a static
import to shorten the syntax.

import static org.springframework.xd.tuple.TupleBuilder.tuple;

Tuple tuple = tuple().of("foo", "bar");

You can use the of method to create a Tuple with up to 4 key-value pairs.

Tuple tuple2 = tuple().of("up", 1, "down", 2);

Tuple tuple3 = tuple().of("up", 1, "down", 2, "charm", 3);

Tuple tuple4 = tuple().of("up", 1, "down", 2, "charm", 3, "strange", 4);

To create a Tuple with more then 4 entries use the fluent API that strings together the put method and
terminates with the build method

Tuple tuple6 = tuple().put("up", 1)

 .put("down", 2)

 .put("charm", 3)

 .put("strange", 4)

 .put("bottom", 5)

 .put("top", 6)

 .build();

http://static.springsource.org/spring/docs/3.0.x/reference/validation.html#core-convert
http://static.springsource.org/spring-batch/2.1.x/apidocs/org/springframework/batch/item/file/transform/FieldSet.html

Spring XD

1.0.0 Spring XD Guide 80

To customize the underlying type conversion system you can specify the DateFormat to use
for converting String to Date as well as the NumberFormat to use based on a Locale. For
more advanced customization of the type conversion system you can register an instance of a
FormattingConversionService. Use the appropriate setter methods on TupleBuilder to make
these customizations.

You can also create a Tuple from a list of String field names and a List of Object values.

Object[] tokens = new String[]

 { "TestString", "true", "C", "10", "-472", "354224", "543", "124.3", "424.3", "1,3245",

 null, "2007-10-12", "12-10-2007", "" };

String[] nameArray = new String[]

 { "String", "Boolean", "Char", "Byte", "Short", "Integer", "Long", "Float", "Double",

 "BigDecimal", "Null", "Date", "DatePattern", "BlankInput" };

List<String> names = Arrays.asList(nameArray);

List<Object> values = Arrays.asList(tokens);

tuple = tuple().ofNamesAndValues(names, values);

Getting Tuple values

There are getters for all the primitive types and also for BigDecimal and Date. The primitive types are

• Boolean

• Byte

• Char

• Double

• Float

• Int

• Long

• Short

• String

Each getter has an overload for providing a default value. You can access the values either by field
name or by index.

The overloaded methods for asking for a value to be converted into an integer are

• int getInt(int index)

• int getInt(String name)

• int getInt(int index, int defaultValue)

• int getInt(String name, int defaultValue)

There are similar methods for other primitive types. For Boolean there is a special case of providing
the String value that represents a trueValue.

Spring XD

1.0.0 Spring XD Guide 81

• boolean getBoolean(int index, String trueValue)

• boolean getBoolean(String name, String trueValue)

If the value that is stored for a given field or index is null and you ask for a primitive type, the standard
Java defalt value for that type is returned.

The getString method will remove and leading and trailing whitespace. If you want to get the String
and preserve whitespace use the methods getRawString

There is extra functionality for getting `Date`s. The are overloaded getters that take a String based date
format

• Date getDateWithPattern(int index, String pattern)

• Date getDateWithPattern(int index, String pattern, Date defaultValue)

• Date getDateWithPattern(String name, String pattern)

• Date getDateWithPattern(String name, String pattern, Date defaultValue)

There are a few other more generic methods available. Their functionality should be obvious from their
names

• size()

• getFieldCount()

• getFieldNames()

• getFieldTypes()

• getTimestamp() - the time the tuple was created - milliseconds since epoch

• getId() - the UUID of the tuple

• Object getValue(int index)

• Object getValue(String name)

• T getValue(int index, Class<T> valueClass)

• T getValue(String name, Class<T> valueClass)

• List<Object> getValues()

• List<String> getFieldNames()

• boolean hasFieldName(String name)

Using SpEL expressions to filter a tuple

SpEL provides support to transform a source collection into another by selecting from its entries. We
make use of this functionalty to select a elements of a the tuple into a new one.

Spring XD

1.0.0 Spring XD Guide 82

Tuple tuple = tuple().put("red", "rot")

 .put("brown", "braun")

 .put("blue", "blau")

 .put("yellow", "gelb")

 .put("beige", "beige")

 .build();

Tuple selectedTuple = tuple.select("?[key.startsWith('b')]");

assertThat(selectedTuple.size(), equalTo(3));

To select the first match use the ^ operator

selectedTuple = tuple.select("^[key.startsWith('b')]");

assertThat(selectedTuple.size(), equalTo(1));

assertThat(selectedTuple.getFieldNames().get(0), equalTo("brown"));

assertThat(selectedTuple.getString(0), equalTo("braun"));

Spring XD

1.0.0 Spring XD Guide 83

15. Samples

15.1 Syslog ingestion into HDFS

In this section we will show a simple example on how to setup syslog ingestion from multiple hosts
into HDFS.

Create the streams with syslog as source and HDFS as sink (Please refer to source and sink)

xd:> stream create --definition "syslog-udp --port=<udp-port> | hdfs" --name <stream-name>

xd:> stream create --definition "syslog-tcp --port=<tcp-port> | hdfs" --name <stream-name>

Please note for hdfs sink, set rollover parameter to a smaller value to avoid buffering and to see the
data has made to HDFS (incase of smaller volume of log).

Configure the external hosts’ syslog daemons forward their messages to the xd-container host’s UDP/
TCP port (where the syslog-udp/syslog-tcp source module is deployed).

A sample configuration using syslog-ng

Edit /etc/syslog-ng/syslog-ng.conf :

1) Add destination

Add destination <destinationName> {

 tcp("<xd-container-host>" port("<tcp-port>"));

};

or,

Add destination <destinationName> {

 udp("<xd-container-host>" port("<udp-port>"));

};

2) Add log rule to log message sources:

log {

 source(<message_source>); destination(<destinationName>);

};

We can use “s_all” as message source to try this example.

3) Make sure to restart the service after the change:

sudo service syslog-ng restart

Now, the syslog messages are written into HDFS /xd/<stream-name>/

Part II. Appendices

Spring XD

1.0.0 Spring XD Guide 85

Appendix A. Installing Hadoop

A.1 Installing Hadoop

If you don’t have a local Hadoop cluster available already, you can do a local single node installation
(v1.2.1) and use that to try out Hadoop with Spring XD.

Tip

This guide is intended to serve as a quick guide to get you started in the context of Spring XD.
For more complete documentation please refer back to the documentation provided by your
respective Hadoop distribution.

Download

First, download an installation archive and unpack it locally. Linux users can also install Hadoop through
the system package manager and on Mac OS X, you can use Homebrew. However, the manual
installation is self-contained and it’s easier to see what’s going on if you just unpack it to a known location.

If you have wget available on your system, you can also execute:

$ wget http://archive.apache.org/dist/hadoop/common/hadoop-1.2.1/hadoop-1.2.1.tar.gz

Unpack the distribution with:

$ tar xzf hadoop-1.2.1.tar.gz

Change into the directory and have a look around

$ cd hadoop-1.2.1

$ ls

$ bin/hadoop

Usage: hadoop [--config confdir] COMMAND

where COMMAND is one of:

 namenode -format format the DFS filesystem

 secondarynamenode run the DFS secondary namenode

 namenode run the DFS namenode

 ...

The bin directory contains the start and stop scripts as well as the hadoop script which allows us to
interact with Hadoop from the command line. The next place to look at is the conf directory.

Java Setup

Make sure that you set JAVA_HOME in the conf/hadoop-env.sh script, or you will get an error when
you start Hadoop. For example:

The java implementation to use. Required.

export JAVA_HOME=/usr/lib/j2sdk1.5-sun

export JAVA_HOME=/usr/lib/jdk1.6.0_45

http://hadoop.apache.org/docs/r1.2.1/single_node_setup.html
http://hadoop.apache.org/docs/r1.2.1/single_node_setup.html
http://archive.apache.org/dist/hadoop/common/
http://brew.sh/

Spring XD

1.0.0 Spring XD Guide 86

Tip

When using Mac OS X you can determine the Java 6 home directory by executing $ /usr/
libexec/java_home -v 1.6

Important

When using MAC OS X (Other systems possible also) you may still encounter Unable to load
realm info from SCDynamicStore (For details see Hadoop Jira HADOOP-7489). In that
case, please also add to conf/hadoop-env.sh the following line: export HADOOP_OPTS="-
Djava.security.krb5.realm= -Djava.security.krb5.kdc=".

Setup SSH

As described in the installation guide, you also need to set up SSH login to localhost without a
passphrase. On Linux, you may need to install the ssh package and ensure the sshd daemon is
running. On Mac OS X, ssh is already installed but the sshd daemon isn’t usually running. To start it,
you need to enable "Remote Login" in the "Sharing" section of the control panel. Then you can carry on
and setup SSH keys as described in the installation guide:

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Make sure you can log in at the command line using ssh localhost before trying to start Hadoop:

$ ssh localhost

Last login: Thu May 30 12:52:47 2013

You also need to decide where in your local filesystem you want Hadoop to store its data. Let’s say
you decide to use /data.

First create the directory and make sure it is writeable:

$ mkdir /data

$ chmod 777 /data

Now edit conf/core-site.xml and add the following property:

<property>

 <name>hadoop.tmp.dir</name>

 <value>/data</value>

</property>

You’re then ready to format the filesystem for use by HDFS

$ bin/hadoop namenode -format

Setting the Namenode Port

By default Spring XD will use a Namenode setting of hdfs://localhost:8020 which is defined
in ${xd.home}/config/hadoop.properties, depending on the used Hadoop distribution and
version the by-default-defined port 8020 may be different, e.g. port 9000. Therefore, please ensure you
have the following setting in conf/core-site.xml:

https://issues.apache.org/jira/browse/HADOOP-7489
http://en.wikipedia.org/wiki/Secure_Shell

Spring XD

1.0.0 Spring XD Guide 87

<configuration>

 <property>

 <name>fs.default.name</name>

 <value>hdfs://localhost:8020</value>

 </property>

</configuration>

Further Configuration File Changes

In conf/hdfs-site.xml add:

<configuration>

 <property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

</configuration>

In conf/mapred-site.xml add:

<configuration>

 <property>

 <name>mapred.job.tracker</name>

 <value>localhost:9001</value>

 </property>

</configuration>

A.2 Running Hadoop

You should now finally be ready to run Hadoop. Run the start-all.sh script

$ bin/start-all.sh

You should see five Hadoop Java processes running:

$ jps

4039 TaskTracker

3713 NameNode

3802 DataNode

3954 JobTracker

3889 SecondaryNameNode

4061 Jps

Try a few commands with hadoop dfs to make sure the basic system works

$ bin/hadoop dfs -ls /

Found 1 items

drwxr-xr-x - luke supergroup 0 2013-05-30 17:28 /data

$ bin/hadoop dfs -mkdir /test

$ bin/hadoop dfs -ls /

Found 2 items

drwxr-xr-x - luke supergroup 0 2013-05-30 17:28 /data

drwxr-xr-x - luke supergroup 0 2013-05-30 17:31 /test

$ bin/hadoop dfs -rmr /test

Deleted hdfs://localhost:8020/test

Spring XD

1.0.0 Spring XD Guide 88

Lastly, you can also browse the web interface for NameNode and JobTracker at:

• NameNode: http://localhost:50070/

• JobTracker: http://localhost:50030/

At this point you should be good to create a Spring XD stream using a Hadoop sink.

http://localhost:50070/
http://localhost:50030/

Spring XD

1.0.0 Spring XD Guide 89

Appendix B. Creating a Source
Module

B.1 Introduction

As outlined in the modules document, XD currently supports 3 types of modules: source, sink, and
processor. This document walks through creation of a custom source module.

The first module in a stream is always a source. Source modules are built with Spring Integration and are
typically very fine-grained. A module of type source is responsible for placing a message on a channel
named output. This message can then be consumed by the other processor and sink modules in the
stream. A source module is typically fed data by an inbound channel adapter, configured with a poller.

Spring Integration provides a number of adapters out of the box to support various transports, such as
JMS, File, HTTP, Web Services, Mail, and more. You can typically create a source module that uses
these inbound channel adapters by writing just a single Spring application context file.

These steps will demonstrate how to create and deploy a source module using the Spring Integration
Feed Inbound Channel Adapter.

B.2 Create the module Application Context file

Create the Inbound Channel Adapter in a file called feed.xml:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-feed="http://www.springframework.org/schema/integration/feed"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/feed

 http://www.springframework.org/schema/integration/feed/spring-integration-feed.xsd">

 <int-feed:inbound-channel-adapter channel="output" url="http://feeds.bbci.co.uk/news/

rss.xml">

 <int:poller fixed-rate="5000" max-messages-per-poll="100" />

 </int-feed:inbound-channel-adapter>

 <int:channel id="output"/>

</beans>

The adapter is configured to poll the BBC News Feed every 5 seconds. Once an item is found, it will
create a message with a SyndEntryImpl domain object payload and write it to a message channel
called output. The name output should be used by convention so that your source module can easily
be combined with any processor and sink module in a stream.

Spring XD

1.0.0 Spring XD Guide 90

Make the module configurable

Users may want to pull data from feeds other than BBC News. Spring XD will automatically make a
PropertyPlaceholderConfigurer available to your application context. You can simply reference property
names and users can then pass in values when creating a stream using the DSL.

<int-feed:inbound-channel-adapter channel="output" url="${url:http://feeds.bbci.co.uk/

news/rss.xml}">

 <int:poller fixed-rate="5000" max-messages-per-poll="100" />

</int-feed:inbound-channel-adapter>

Now users can optionally pass a url property value on stream creation. If not present, the specified
default will be used.

B.3 Test the module locally

This section covers setup of a local project containing some code for testing outside of an XD container.
This step can be skipped if you prefer to test the module by deploying to Spring XD.

Create a project

The module can be tested by writing a Spring integration test to load the context file and validate that
news items are received. In order to write the test, you will need to create a project in an IDE such as
STS, Eclipse, or IDEA. Eclipse will be used for this example.

Create a feed directory and add feed.xml to src/main/resources. Add the following build.gradle (or an
equivalent pom.xml) to the root directory:

description = 'Feed Source Module'

group = 'org.springframework.xd.samples'

repositories {

 maven { url "http://repo.springsource.org/libs-snapshot" }

 maven { url "http://repo.springsource.org/plugins-release" }

}

apply plugin: 'java'

apply plugin: 'eclipse'

apply plugin: 'idea'

ext {

 junitVersion = '4.11'

 springVersion = '3.2.2.RELEASE'

 springIntegrationVersion = '3.0.0.M2'

}

dependencies {

 compile("org.springframework:spring-core:$springVersion")

 compile "org.springframework:spring-context-support:$springVersion"

 compile "org.springframework.integration:spring-integration-feed:

$springIntegrationVersion"

 // Testing

 testCompile "junit:junit:$junitVersion"

 testCompile "org.springframework:spring-test:$springVersion"

}

defaultTasks 'build'

Spring XD

1.0.0 Spring XD Guide 91

Run gradle eclipse to generate the Eclipse project. Import the project into Eclipse.

Create the Spring integration test

The main objective of the test is to ensure that news items are received once the module’s Application
Context is loaded. This can be tested by adding an Outbound Channel Adapter that will direct items to
a POJO that can store them for validation.

Add the following src/test/resources/org/springframework/xd/samples/test-context.xml:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd">

 <context:property-placeholder/>

 <int:outbound-channel-adapter channel="output" ref="target" method="add" />

 <bean id="target" class="org.springframework.xd.samples.FeedCache" />

</beans>

This context creates an Outbound Channel Adapter that will subscribe to all messages on the output
channel and pass the message payload to the add method of a FeedCache object. The context also
creates the PropertyPlaceholderConfigurer that is ordinarily provided by the XD container.

Create the src/test/java/org/springframework/xd/samples/FeedCache class:

package org.springframework.xd.samples;

import ...

public class FeedCache {

 final BlockingDeque<SyndEntry> entries = new LinkedBlockingDeque<SyndEntry>(99);

 public void add(SyndEntry entry) {

 entries.add(entry);

 }

}

The FeedCache places all received SyndEntry objects on a BlockingDeque that our test can use to
validate successful routing of messages.

Lastly, create and run the src/test/java/org/springframework/xd/samples/FeedSourceModuleTest:

Spring XD

1.0.0 Spring XD Guide 92

package org.springframework.xd.samples;

import ...

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations={"classpath:feed.xml", "test-context.xml"})

public class FeedSourceModuleTest {

 @Autowired

 FeedCache feedCache;

 @Test

 public void testFeedPolling() throws Exception {

 assertNotNull(feedCache.entries.poll(5, TimeUnit.SECONDS));

 }

}

The test will load an Application Context using our feed and test context files. It will fail if a item is not
placed into the FeedCache within 5 seconds.

You now have a way to build and test your new module independently. Time to deploy to Spring XD!

B.4 Deploy the module

Spring XD looks for modules in the ${xd.home}/modules directory. The modules directory organizes
module types in sub-directories. So you will see something like:

modules/processor

modules/sink

modules/source

Simply drop feed.xml into the modules/source directory and add the dependencies to the lib directory.
For now, all module dependencies need to be added to ${xd.home}/lib. Future versions of Spring XD
will provide a more elegant module packaging approach. Copy the following jars from your gradle cache
to ${xd.home}/lib:

spring-integration-feed-3.0.0.M2.jar

jdom-1.0.jar

rome-1.0.0.jar

rome-fetcher-1.0.0.jar

Now fire up the server. See Getting Started to learn how to start the Spring XD server.

B.5 Test the deployed module

Once the XD server is running, create a stream to test it out. This stream will write SyndEntry objects
to the XD log:

xd:> stream create --name feedtest --definition "feed | log"

You should start seeing messages like the following in the container console window:

Spring XD

1.0.0 Spring XD Guide 93

 WARN logger.feedtest: SyndEntryImpl.contributors=[]

SyndEntryImpl.contents=[]

SyndEntryImpl.updatedDate=null

SyndEntryImpl.link=http://www.bbc.co.uk/news/uk-22850006#sa-

ns_mchannel=rss&ns_source=PublicRSS20-sa

SyndEntryImpl.titleEx.value=VIDEO: Queen visits Prince Philip in hospital

...

As you can see, the SyndEntryImpl toString is fairly verbose. To make the output more concise, create
a processor module to further transform the SyndEntry or consider converting the entry to JSON and
using the JSON Field Extractor to send a single attribute value to the output channel.

Spring XD

1.0.0 Spring XD Guide 94

Appendix C. Creating a Processor
Module

C.1 Introduction

As outlined in the modules document, XD currently supports 3 types of modules: source, sink, and
processor. This document walks through creation of a custom processor module.

One or more processors can be included in a stream definition to modifythe data as it passes between
the inital source and the destination sink. The architecture section covers the basics of processors
modules provided out of the box are covered in the processors section.

Here we’ll look at how to create and deploy a custom processor module to transform the input from
an incoming twittersearch. The steps are essentially the same for any source though. Rather than
using built-in functionality, we’ll write a custom processor implementation class and wire it up using
Spring Integration.

C.2 Write the Transformer Code

The tweet messages from twittersearch contain quite a lot of data (id, author, time and so on). The
transformer we’ll write will discard everything but the text content and output this as a string. The output
messages from the twittersearch source are also strings, containing the tweet data as JSON. We
first parse this into a map using Jackson library code, then extract the "text" field from the map.

package custom;

import java.io.IOException;

import java.util.Map;

import org.codehaus.jackson.map.ObjectMapper;

import org.codehaus.jackson.type.TypeReference;

import org.springframework.integration.transformer.MessageTransformationException;

public class TweetTransformer {

 private ObjectMapper mapper = new ObjectMapper();

 public String transform(String payload) {

 try {

 Map<String, Object> tweet = mapper.readValue(payload, new TypeReference<Map<String,

 Object>>() {});

 return tweet.get("text").toString();

 } catch (IOException e) {

 throw new MessageTransformationException("Unable to transform tweet: " +

 e.getMessage(), e);

 }

 }

}

C.3 Create the module Application Context File

Create the following file as tweettransformer.xml:

Spring XD

1.0.0 Spring XD Guide 95

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns="http://www.springframework.org/schema/integration"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:beans="http://www.springframework.org/schema/beans"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd">

 <channel id="input"/>

 <transformer input-channel="input" output-channel="output">

 <beans:bean class="custom.TweetTransformer" />

 </transformer>

 <channel id="output"/>

</beans:beans>

C.4 Deploy the Module

To deploy the module, you need to copy the tweettransformer.xml file to the ${xd.home}/modules/
processors directory. We also need to make the custom module code available. Currently Spring
XD looks for code in the jars it finds in the ${xd.home}/lib directory. So create a jar with the
TweetTransformer class in it (and the correct package structure) and drop it into lib.

C.5 Test the deployed module

Start the XD server and try creating a stream to test your processor:

xd:> stream create --name javatweets --definition "twittersearch --query=java --

consumerKey=<your_key> --consumerSecret=<your_secret> | tweettransformer | file"

If you haven’t already used twittersearch, read the sources section for more details. This
command should stream tweets to the file /tmp/xd/output/javatweets but, unlike the normal
twittersearch output, you should just see the plain tweet text there, rather than the full JSON data.

Spring XD

1.0.0 Spring XD Guide 96

Appendix D. Creating a Sink Module

D.1 Introduction

As outlined in the modules document, XD currently supports 3 types of modules: source, sink, and
processor. This document walks through creation of a custom sink module.

The last module in a stream is always a sink. Sink modules are built with Spring Integration and are
typically very fine-grained. A module of type sink listens on a channel named input and is responsible
for outputting received messages to an external resource to terminate the stream.

Spring Integration provides a number of adapters out of the box to support various transports, such as
JMS, File, HTTP, Web Services, Mail, and more. You can typically create a sink module that uses these
outbound channel adapters by writing just a single Spring application context file.

These steps will demonstrate how to create and deploy a sink module using the Spring Integration
RedisStore Outbound Channel Adapter.

D.2 Create the module Application Context file

Create the Outbound Channel Adapter in a file called redis-store.xml:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int="http://

www.springframework.org/schema/integration"

 xmlns:int-redis="http://www.springframework.org/schema/integration/redis"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/redis

 http://www.springframework.org/schema/integration/redis/spring-integration-redis.xsd">

 <int:channel id="input" />

 <int-redis:store-outbound-channel-adapter

 id="redisListAdapter" collection-type="LIST" channel="input" key="myCollection" />

 <bean id="redisConnectionFactory"

 class="org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory">

 <constructor-arg index="0" value="${localhost}" />

 <constructor-arg index="1" value="${6379}" />

 </bean>

</beans>

The adapter is configured to listen on a channel named input. The name input should be used by
convention so that your sink module will receive all messages sent in the stream. Once a message
is received, it will write the payload to a Redis list with key myCollection. By default, the RedisStore
Outbound Channel Adapter uses a bean named redisConnectionFactory to connect to the Redis server.

Spring XD

1.0.0 Spring XD Guide 97

Note

By default, the adapter uses a StringRedisTemplate. Therefore, this module will store all payloads
directly as Strings. Create a custom RedisTemplate with different value Serializers to serialize
other forms of data like Java objects to the Redis collection.

D.3 Make the module configurable

Users may want to specify a different Redis server or key to use for storing data. Spring XD will
automatically make a PropertyPlaceholderConfigurer available to your application context. You can
simply reference property names and users can then pass in values when creating a stream using the
DSL

 <int-redis:store-outbound-channel-adapter

 id="redisListAdapter" collection-type="LIST" channel="input" key="${key:myCollection}" /

>

 <bean id="redisConnectionFactory"

 class="org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory">

 <constructor-arg index="0" value="${hostname:localhost}" />

 <constructor-arg index="1" value="${port:6379}" />

 </bean>

Now users can optionally pass key, hostname, and port property values on stream creation. If not
present, the specified defaults will be used.

D.4 Test the module locally

This section covers setup of a local project containing some code for testing outside of an XD container.
This step can be skipped if you prefer to test the module by deploying to Spring XD.

Create a project

The module can be tested by writing a Spring integration test to load the context file and validate that
messages are stored in Redis. In order to write the test, you will need to create a project in an IDE such
as STS, Eclipse, or IDEA. Eclipse will be used for this example.

Create a redis-store directory and add redis-store.xml to src/main/resources. Add the following
build.gradle (or an equivalent pom.xml) to the root directory:

Spring XD

1.0.0 Spring XD Guide 98

description = 'Redis Store Sink Module'

group = 'org.springframework.xd.samples'

repositories {

 maven { url "http://repo.springsource.org/libs-snapshot" }

 maven { url "http://repo.springsource.org/plugins-release" }

}

apply plugin: 'java'

apply plugin: 'eclipse'

apply plugin: 'idea'

ext {

 junitVersion = '4.11'

 lettuceVersion = '2.3.2'

 springVersion = '3.2.2.RELEASE'

 springIntegrationVersion = '3.0.0.M2'

 springSocialVersion = '1.0.1.RELEASE'

 springDataRedisVersion = '1.0.4.RELEASE'

}

dependencies {

 compile("org.springframework:spring-core:$springVersion")

 compile "org.springframework:spring-context-support:$springVersion"

 compile "org.springframework.integration:spring-integration-core:

$springIntegrationVersion"

 compile "org.springframework.integration:spring-integration-redis:

$springIntegrationVersion"

 compile "org.springframework.data:spring-data-redis:$springDataRedisVersion"

 // Testing

 testCompile "junit:junit:$junitVersion"

 testCompile "org.springframework:spring-test:$springVersion"

 testCompile "com.lambdaworks:lettuce:$lettuceVersion"

}

defaultTasks 'build'

Run gradle eclipse to generate the Eclipse project. Import the project into Eclipse.

Create the Spring integration test

The main objective of the test is to ensure that messages are stored in a Redis list once the module’s
Application Context is loaded. This can be tested by adding an Inbound Channel Adapter that will direct
test messages to the input channel.

Add the following src/test/resources/org/springframework/xd/samples/test-context.xml:

Spring XD

1.0.0 Spring XD Guide 99

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int="http://

www.springframework.org/schema/integration"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd">

 <context:property-placeholder />

 <int:inbound-channel-adapter channel="input" expression="'TESTING'">

 <int:poller fixed-rate="1000" />

 </int:inbound-channel-adapter>

 <bean id="redisTemplate" class="org.springframework.data.redis.core.StringRedisTemplate">

 <property name="connectionFactory" ref="redisConnectionFactory" />

 </bean>

</beans>

This context creates an Inbound Channel Adapter that will generate messages with the payload
"TESTING". The context also creates the PropertyPlaceholderConfigurer that is ordinarily provided by
the XD container. The redisTemplate is configured for use by the test to verify that data is placed in
Redis.

Lastly, create and run the src/test/java/org/springframework/xd/samples/RedisStoreSinkModuleTest:

package org.springframework.xd.samples;

import ...

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations={"classpath:redis-store.xml", "test-context.xml"})

public class RedisStoreSinkModuleTest {

 @Autowired

 RedisTemplate<String,String> redisTemplate;

 @Test

 public void testTweetSearch() throws Exception {

 assertNotNull(redisTemplate.boundListOps("myCollection").leftPop(5,

 TimeUnit.SECONDS));

 }

}

The test will load an Application Context using our redis-store and test context files. It will fail if an item
is not placed in the Redis list within 5 seconds.

Run the test

The test requires a running Redis server. See Getting Started for information on installing and starting
Redis.

You now have a way to build and test your new module independently. Time to deploy to Spring XD!

Spring XD

1.0.0 Spring XD Guide 100

D.5 Deploy the module

Spring XD looks for modules in the ${xd.home}/modules directory. The modules directory organizes
module types in sub-directories. So you will see something like:

modules/processor

modules/sink

modules/source

Simply drop redis-store.xml into the modules/sink directory and fire up the server. See Getting Started
to learn how to start the Spring XD server.

D.6 Test the deployed module

Once the XD server is running, create a stream to test it out. This stream will write tweets containing
the word "java" to Redis as a JSON string:

xd:> stream create --name javasearch --definition "twittersearch --consumerKey=<your_key>

 --consumerSecret=<your_secret> --query=java | redis-store --key=javatweets"

Note that you need to have a consumer key and secret to use the twittersearch module. See the
description in the streams section for more information.

Fire up the redis-cli and verify that tweets are being stored:

$ redis-cli

redis 127.0.0.1:6379> lrange javatweets 0 -1

1) {\"id\":342386150738120704,\"text\":\"Now Hiring: Senior Java Developer\",\"createdAt

\":1370466194000,\"fromUser\":\"jencompgeek\",...\"}"

Spring XD

1.0.0 Spring XD Guide 101

Appendix E. Building Spring XD

E.1 Instructions

Here are some useful steps to build and run Spring XD.

To build all sub-projects and run tests for Spring XD:

./gradlew build

To build and bundle the distribution of Spring XD

./gradlew dist

The above gradle task creates spring-xd-<version>.zip binary distribution archive and spring-xd-
<version>-docs.zip documentation archive files under build/distributions. This will also create a build/
dist/spring-xd directory which is the expanded version of the binary distribution archive.

To just create the Spring XD expanded binary distribution directory

./gradlew copyInstall

The above gradle task creates the distribution directory under build/dist/spring-xd.

Once the binary distribution directory is created, please refer to Getting Started on how to run Spring XD.

E.2 IDE support

If you would like to work with the Spring XD code in your IDE, please use the following project generation
depending on the IDE you use:

For Eclipse/Spring Tool Suite

./gradlew eclipse

For IntelliJ IDEA

./gradlew idea

Then just import the project as an existing project.

E.3 Running JavaScript UI Tests

In order to run the UI tests, phantomjs must be installed on your system. On a Mac using brew execute:

brew install phantomjs

Alternatively, you can also install phantomjs using the Node Package Manager:

npm install -g phantomjs

Afterwards, execute:

https://github.com/SpringSource/spring-xd/wiki/Getting-Started

Spring XD

1.0.0 Spring XD Guide 102

./gradlew jsTest

As a result you should see console output similar to the following:

:spring-xd-ui:jsTest

Opening: http://localhost:9393/admin-ui/test/SpecRunnerPhantomJS.html

Starting...

Finished

8 specs, 0 failures in 0.073s.

ConsoleReporter finished: success

Stopped the SingleNode server.

BUILD SUCCESSFUL

Spring XD

1.0.0 Spring XD Guide 103

Appendix F. XD Shell Command
Reference

F.1 Base Commands

admin config server

Configure the XD admin server to use.

admin config server [[--uri] <uri>]

uri
the location of the XD Admin REST endpoint. (default: http://localhost:9393/)

admin config info

Show the XD admin server being used.

admin config info

F.2 Runtime Commands

runtime containers

List runtime containers.

runtime containers

runtime modules

List runtime modules.

runtime modules [[--containerId] <containerId>]

containerId
to filter by container id.

F.3 Stream Commands

stream create

Create a new stream definition.

stream create [--name] <name> --definition <definition> [--deploy <deploy>]

name
the name to give to the stream. (required)

definition
a stream definition, using XD DSL (e.g. "http --port=9000 | hdfs"). (required)

Spring XD

1.0.0 Spring XD Guide 104

deploy
whether to deploy the stream immediately. (default: true)

stream destroy

Destroy an existing stream.

stream destroy [--name] <name>

name
the name of the stream to destroy. (required)

stream all destroy

Destroy all existing streams.

stream all destroy [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

stream deploy

Deploy a previously created stream.

stream deploy [--name] <name>

name
the name of the stream to deploy. (required)

stream all deploy

Deploy all previously created stream.

stream all deploy [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

stream undeploy

Un-deploy a previously deployed stream.

stream undeploy [--name] <name>

name
the name of the stream to un-deploy. (required)

stream all undeploy

Un-deploy all previously deployed stream.

stream all undeploy [--force [<force>]]

Spring XD

1.0.0 Spring XD Guide 105

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

stream list

List created streams.

stream list

F.4 Job Commands

job create

Create a job.

job create [--name] <name> --definition <definition> [--deploy <deploy>] [--dateFormat

 <dateFormat>] [--numberFormat <numberFormat>] [--makeUnique <makeUnique>]

name
the name to give to the job. (required)

definition
job definition using xd dsl . (required)

deploy
whether to deploy the stream immediately. (default: true)

dateFormat
the optional date format for job parameters.

numberFormat
the optional number format for job parameters.

makeUnique
shall job parameters be made unique?. (default: false)

job list

List all jobs.

job list

job deploy

Deploy a previously created job.

job deploy [--name] <name>

name
the name of the job to deploy. (required)

job all deploy

Deploy previously created job(s).

Spring XD

1.0.0 Spring XD Guide 106

job all deploy [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

job launch

Launch previously deployed job.

job launch [[--name] <name>] [--params <params>]

name
the name of the job to deploy.

params
the parameters for the job. (default: ``)

job undeploy

Un-deploy an existing job.

job undeploy [--name] <name>

name
the name of the job to un-deploy. (required)

job all undeploy

Un-deploy all existing jobs.

job all undeploy [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

job destroy

Destroy an existing job.

job destroy [--name] <name>

name
the name of the job to destroy. (required)

job all destroy

Destroy all existing jobs.

job all destroy [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

Spring XD

1.0.0 Spring XD Guide 107

F.5 Module Commands

module compose

Create a virtual module.

module compose [--name] <name> --definition <definition>

name
the name to give to the module. (required)

definition
module definition using xd dsl. (required)

module delete

Delete a virtual module.

module delete [--name] <name> --type <type>

name
the name of the the module. (required)

type
the type of the module. (required)

module display

Display the configuration file of a module.

module display [--name] <name> --type <type>

name
the name of the the module. (required)

type
the type of the module. (required)

module list

List all modules.

module list [--type <type>]

type
retrieve a specific type of module.

F.6 Metrics Commands

counter list

List all available counter names.

Spring XD

1.0.0 Spring XD Guide 108

counter list

counter delete

Delete the counter with the given name.

counter delete [--name] <name>

name
the name of the counter to delete. (required)

counter display

Display the value of a counter.

counter display [--name] <name> [--pattern <pattern>]

name
the name of the counter to display. (required)

pattern
the pattern used to format the value (see DecimalFormat). (default: <use platform locale>)

fieldvaluecounter list

List all available field-value-counter names.

fieldvaluecounter list

fieldvaluecounter delete

Delete the field-value-counter with the given name.

fieldvaluecounter delete [--name] <name>

name
the name of the field-value-counter to delete. (required)

fieldvaluecounter display

Display the value of a field-value-counter.

fieldvaluecounter display [--name] <name> [--pattern <pattern>] [--size <size>]

name
the name of the field-value-counter to display. (required)

pattern
the pattern used to format the field-value-counter’s field count (see DecimalFormat). (default: <use
platform locale>)

size
the number of values to display. (default: 25)

Spring XD

1.0.0 Spring XD Guide 109

aggregatecounter list

List all available aggregate counter names.

aggregatecounter list

aggregatecounter delete

Delete an aggregate counter.

aggregatecounter delete [--name] <name>

name
the name of the aggregate counter to delete. (required)

aggregatecounter display

Display aggregate counter values by chosen interval and resolution(minute, hour).

aggregatecounter display [--name] <name> [--from <from>] [--to <to>] [--lastHours

 <lastHours>] [--lastDays <lastDays>] [--resolution <resolution>] [--pattern <pattern>]

name
the name of the aggregate counter to display. (required)

from
start-time for the interval. format: yyyy-MM-dd HH:mm:ss.

to
end-time for the interval. format: yyyy-MM-dd HH:mm:ss. defaults to now.

lastHours
set the interval to last n hours.

lastDays
set the interval to last n days.

resolution
the size of the bucket to aggregate (minute, hour, day, month). (default: hour)

pattern
the pattern used to format the count values (see DecimalFormat). (default: <use platform

locale>)

gauge list

List all available gauge names.

gauge list

gauge delete

Delete a gauge.

Spring XD

1.0.0 Spring XD Guide 110

gauge delete [--name] <name>

name
the name of the gauge to delete. (required)

gauge display

Display the value of a gauge.

gauge display [--name] <name> [--pattern <pattern>]

name
the name of the gauge to display. (required)

pattern
the pattern used to format the value (see DecimalFormat). (default: <use platform locale>)

richgauge list

List all available richgauge names.

richgauge list

richgauge delete

Delete the richgauge.

richgauge delete [--name] <name>

name
the name of the richgauge to delete. (required)

richgauge display

Display Rich Gauge value.

richgauge display [--name] <name> [--pattern <pattern>]

name
the name of the richgauge to display value. (required)

pattern
the pattern used to format the richgauge value (see DecimalFormat). (default: <use platform
locale>)

F.7 Http Commands

http post

POST data to http endpoint.

http post [[--target] <target>] [--data <data>] [--file <file>] [--contentType

 <contentType>]

Spring XD

1.0.0 Spring XD Guide 111

target
the location to post to. (default: http://localhost:9000)

data
the text payload to post. exclusive with file. embedded double quotes are not supported if next to
a space character.

file
filename to read data from. exclusive with data.

contentType
the content-type to use. file is also read using the specified charset. (default: text/plain;
Charset=UTF-8)

F.8 Hadoop Configuration Commands

hadoop config props set

Sets the value for the given Hadoop property.

hadoop config props set [--property] <property>

property
what to set, in the form <name=value>. (required)

hadoop config props get

Returns the value of the given Hadoop property.

hadoop config props get [--key] <key>

key
property name. (required)

hadoop config info

Returns basic info about the Hadoop configuration.

hadoop config info

hadoop config load

Loads the Hadoop configuration from the given resource.

hadoop config load [--location] <location>

location
configuration location (can be a URL). (required)

hadoop config props list

Returns (all) the Hadoop properties.

hadoop config props list

Spring XD

1.0.0 Spring XD Guide 112

hadoop config fs

Sets the Hadoop namenode.

hadoop config fs [--namenode] <namenode>

namenode
namenode address - can be local|<namenode:port>. (required)

hadoop config jt

Sets the Hadoop job tracker.

hadoop config jt [--jobtracker] <jobtracker>

jobtracker
job tracker address - can be local|<jobtracker:port>. (required)

F.9 Hadoop FileSystem Commands

hadoop fs get

Copy files to the local file system.

hadoop fs get --from <from> --to <to> [--ignoreCrc [<ignoreCrc>]] [--crc [<crc>]]

from
source file names. (required)

to
destination path name. (required)

ignoreCrc
whether ignore CRC. (default: false, or true if --ignoreCrc is specified without a value)

crc
whether copy CRC. (default: false, or true if --crc is specified without a value)

hadoop fs put

Copy single src, or multiple srcs from local file system to the destination file system.

hadoop fs put --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs count

Count the number of directories, files, bytes, quota, and remaining quota.

hadoop fs count [--quota [<quota>]] --path <path>

Spring XD

1.0.0 Spring XD Guide 113

quota
whether with quta information. (default: false, or true if --quota is specified without a value)

path
path name. (required)

hadoop fs mkdir

Create a new directory.

hadoop fs mkdir [--dir] <dir>

dir
directory name. (required)

hadoop fs tail

Display last kilobyte of the file to stdout.

hadoop fs tail [--file] <file> [--follow [<follow>]]

file
file to be tailed. (required)

follow
whether show content while file grow. (default: false, or true if --follow is specified without
a value)

hadoop fs ls

List files in the directory.

hadoop fs ls [[--dir] <dir>] [--recursive [<recursive>]]

dir
directory to be listed. (default: .)

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

hadoop fs cat

Copy source paths to stdout.

hadoop fs cat [--path] <path>

path
file name to be shown. (required)

hadoop fs chgrp

Change group association of files.

hadoop fs chgrp [--recursive [<recursive>]] --group <group> [--path] <path>

Spring XD

1.0.0 Spring XD Guide 114

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

group
group name. (required)

path
path of the file whose group will be changed. (required)

hadoop fs chown

Change the owner of files.

hadoop fs chown [--recursive [<recursive>]] --owner <owner> [--path] <path>

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

owner
owner name. (required)

path
path of the file whose ownership will be changed. (required)

hadoop fs chmod

Change the permissions of files.

hadoop fs chmod [--recursive [<recursive>]] --mode <mode> [--path] <path>

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

mode
permission mode. (required)

path
path of the file whose permissions will be changed. (required)

hadoop fs copyFromLocal

Copy single src, or multiple srcs from local file system to the destination file system. Same as put.

hadoop fs copyFromLocal --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs moveFromLocal

Similar to put command, except that the source localsrc is deleted after it’s copied.

Spring XD

1.0.0 Spring XD Guide 115

hadoop fs moveFromLocal --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs copyToLocal

Copy files to the local file system. Same as get.

hadoop fs copyToLocal --from <from> --to <to> [--ignoreCrc [<ignoreCrc>]] [--crc [<crc>]]

from
source file names. (required)

to
destination path name. (required)

ignoreCrc
whether ignore CRC. (default: false, or true if --ignoreCrc is specified without a value)

crc
whether copy CRC. (default: false, or true if --crc is specified without a value)

hadoop fs copyMergeToLocal

Takes a source directory and a destination file as input and concatenates files in src into the destination
local file.

hadoop fs copyMergeToLocal --from <from> --to <to> [--endline [<endline>]]

from
source file names. (required)

to
destination path name. (required)

endline
whether add a newline character at the end of each file. (default: false, or true if --endline
is specified without a value)

hadoop fs cp

Copy files from source to destination. This command allows multiple sources as well in which case the
destination must be a directory.

hadoop fs cp --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

Spring XD

1.0.0 Spring XD Guide 116

hadoop fs mv

Move source files to destination in the HDFS.

hadoop fs mv --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs du

Displays sizes of files and directories contained in the given directory or the length of a file in case its
just a file.

hadoop fs du [[--dir] <dir>] [--summary [<summary>]]

dir
directory to be listed. (default: .)

summary
whether with summary. (default: false, or true if --summary is specified without a value)

hadoop fs expunge

Empty the trash.

hadoop fs expunge

hadoop fs rm

Remove files in the HDFS.

hadoop fs rm [[--path] <path>] [--skipTrash [<skipTrash>]] [--recursive [<recursive>]]

path
path to be deleted. (default: .)

skipTrash
whether to skip trash. (default: false, or true if --skipTrash is specified without a value)

recursive
whether to recurse. (default: false, or true if --recursive is specified without a value)

hadoop fs setrep

Change the replication factor of a file.

hadoop fs setrep --path <path> --replica <replica> [--recursive [<recursive>]] [--waiting

 [<waiting>]]

path
path name. (required)

Spring XD

1.0.0 Spring XD Guide 117

replica
source file names. (required)

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

waiting
whether wait for the replic number is eqal to the number. (default: false, or true if --waiting
is specified without a value)

hadoop fs text

Take a source file and output the file in text format.

hadoop fs text [--file] <file>

file
file to be shown. (required)

hadoop fs touchz

Create a file of zero length.

hadoop fs touchz [--file] <file>

file
file to be touched. (required)

	Spring XD Guide
	Table of Contents
	Part I. Reference Guide
	1. Introduction
	1.1 Overview

	2. Getting Started
	2.1 Requirements
	2.2 Download Spring XD
	2.3 Install Spring XD
	2.4 Start the Runtime and the XD Shell
	2.5 Create a Stream
	2.6 Explore Spring XD

	3. Running in Distributed Mode
	3.1 Introduction
	3.2 Using Redis
	Installing Redis
	Troubleshooting
	Redis on Windows
	Redis is not running

	Starting Redis

	3.3 Using RabbitMQ
	Installing RabbitMQ
	Launching RabbitMQ

	3.4 Starting Spring XD in Distributed Mode
	Choosing a Transport
	Choosing a Store
	Choosing an Analytics provider
	Other Options

	3.5 Using Hadoop

	4. Architecture
	4.1 Introduction
	Runtime Architecture
	DIRT Runtime
	Support for other distributed runtimes

	Single Node Runtime
	Admin Server Architecture
	Container Server Architecture
	Streams
	Stream Deployment

	4.2 Jobs
	4.3 Taps

	5. Streams
	5.1 Introduction
	5.2 Creating a Simple Stream
	5.3 Deleting a Stream
	5.4 Deploying and Undeploying Streams
	5.5 Other Source and Sink Types
	5.6 Simple Stream Processing
	5.7 DSL Syntax
	5.8 Advanced Features

	6. Modules
	6.1 Introduction
	6.2 Creating a Module
	Modules and Spring
	Integration Modules

	6.3 Registering a Module
	Modules with isolated classpath

	6.4 Composing Modules

	7. Sources
	7.1 Introduction
	7.2 HTTP
	HTTP with options

	7.3 Tail
	Tail with options
	Tail Status Events

	7.4 File
	File with options

	7.5 Mail sources
	7.6 Twitter Search
	7.7 Twitter Stream
	7.8 GemFire
	Options
	Example

	7.9 GemFire Continuous Query (CQ)
	Launching the XD GemFire Server
	Options

	7.10 Syslog
	7.11 TCP
	TCP with options
	Available Decoders
	Examples
	Binary Data Example

	7.12 TCP Client
	TCP Client options
	Implementing a simple conversation

	7.13 RabbitMQ
	RabbitMQ with Options

	7.14 JMS
	JMS with Options

	7.15 Time
	7.16 MQTT
	Options

	8. Processors
	8.1 Introduction
	8.2 Filter
	Filter with SpEL expression
	Filter with Groovy Script

	8.3 JSON Field Value Filter
	8.4 Transform
	Transform with SpEL expression
	Transform with Groovy Script

	8.5 JSON Field Extractor
	8.6 Script
	8.7 Splitter
	8.8 Aggregator

	9. Sinks
	9.1 Introduction
	9.2 Log
	9.3 File Sink
	File with Options

	9.4 Hadoop (HDFS)
	HDFS with Options

	9.5 JDBC
	JDBC with Options

	9.6 TCP
	TCP with Options
	Available Encoders
	An Additional Example

	9.7 Mail
	9.8 RabbitMQ
	RabbitMQ with Options

	9.9 GemFire Server
	Launching the XD GemFire Server
	Gemfire sinks
	Example

	9.10 Splunk Server
	Splunk sinks
	Setup Splunk for TCP Input
	Example

	9.11 MQTT
	Options

	9.12 Dynamic Router
	SpEL-based Routing
	Groovy-based Routing
	Options

	10. Taps
	10.1 Introduction
	10.2 Tap Lifecycle

	11. Batch Jobs
	11.1 Introduction
	11.2 Setting up a simple Batch Job
	Creating the Tasklet
	Setting Up the Application Context

	11.3 Creating your Job
	11.4 Launching a job
	Ad-hoc
	Launch the Batch using Cron-Trigger
	Launch the Batch using a Fixed-Delay-Trigger
	Launch job as a part of event flow

	11.5 Retrieve job notifications
	11.6 Removing Batch Jobs
	11.7 Pre-Packaged Batch Jobs
	Import Files to HDFS (filehdfs)
	Import Files to JDBC (filejdbc)
	HDFS to JDBC Export (hdfsjdbc)
	HDFS to MongoDB Export (hdfsmongodb)

	12. Analytics
	12.1 Introduction
	12.2 Counter
	12.3 Field Value Counter
	12.4 Aggregate Counter
	12.5 Gauge
	Simple Tap Example

	12.6 Rich Gauge
	Simple Tap Example
	Stock Price Example
	Improved Stock Price Example

	12.7 Accessing Analytics Data over the RESTful API

	13. DSL Reference
	13.1 Introduction
	13.2 Pipes and filters
	13.3 Module parameters
	13.4 Named channels
	13.5 Labels

	14. Tuples
	14.1 Introduction
	Creating a Tuple
	Getting Tuple values
	Using SpEL expressions to filter a tuple

	15. Samples
	15.1 Syslog ingestion into HDFS
	A sample configuration using syslog-ng

	Part II. Appendices
	Appendix A. Installing Hadoop
	A.1 Installing Hadoop
	Download
	Java Setup
	Setup SSH
	Setting the Namenode Port
	Further Configuration File Changes

	A.2 Running Hadoop

	Appendix B. Creating a Source Module
	B.1 Introduction
	B.2 Create the module Application Context file
	Make the module configurable

	B.3 Test the module locally
	Create a project
	Create the Spring integration test

	B.4 Deploy the module
	B.5 Test the deployed module

	Appendix C. Creating a Processor Module
	C.1 Introduction
	C.2 Write the Transformer Code
	C.3 Create the module Application Context File
	C.4 Deploy the Module
	C.5 Test the deployed module

	Appendix D. Creating a Sink Module
	D.1 Introduction
	D.2 Create the module Application Context file
	D.3 Make the module configurable
	D.4 Test the module locally
	Create a project
	Create the Spring integration test
	Run the test

	D.5 Deploy the module
	D.6 Test the deployed module

	Appendix E. Building Spring XD
	E.1 Instructions
	E.2 IDE support
	E.3 Running JavaScript UI Tests

	Appendix F. XD Shell Command Reference
	F.1 Base Commands
	admin config server
	admin config info

	F.2 Runtime Commands
	runtime containers
	runtime modules

	F.3 Stream Commands
	stream create
	stream destroy
	stream all destroy
	stream deploy
	stream all deploy
	stream undeploy
	stream all undeploy
	stream list

	F.4 Job Commands
	job create
	job list
	job deploy
	job all deploy
	job launch
	job undeploy
	job all undeploy
	job destroy
	job all destroy

	F.5 Module Commands
	module compose
	module delete
	module display
	module list

	F.6 Metrics Commands
	counter list
	counter delete
	counter display
	fieldvaluecounter list
	fieldvaluecounter delete
	fieldvaluecounter display
	aggregatecounter list
	aggregatecounter delete
	aggregatecounter display
	gauge list
	gauge delete
	gauge display
	richgauge list
	richgauge delete
	richgauge display

	F.7 Http Commands
	http post

	F.8 Hadoop Configuration Commands
	hadoop config props set
	hadoop config props get
	hadoop config info
	hadoop config load
	hadoop config props list
	hadoop config fs
	hadoop config jt

	F.9 Hadoop FileSystem Commands
	hadoop fs get
	hadoop fs put
	hadoop fs count
	hadoop fs mkdir
	hadoop fs tail
	hadoop fs ls
	hadoop fs cat
	hadoop fs chgrp
	hadoop fs chown
	hadoop fs chmod
	hadoop fs copyFromLocal
	hadoop fs moveFromLocal
	hadoop fs copyToLocal
	hadoop fs copyMergeToLocal
	hadoop fs cp
	hadoop fs mv
	hadoop fs du
	hadoop fs expunge
	hadoop fs rm
	hadoop fs setrep
	hadoop fs text
	hadoop fs touchz

