
Spring XD Guide

1.0.0

Mark Fisher , Mark Pollack , David Turanski , Gunnar Hillert , Eric Bottard , Gary
Russell , Ilayaperumal Gopinathan , Jennifer Hickey , Michael Minella , Luke Taylor ,

Thomas Risberg , Winston Koh , Andy Clement , Jon Brisbin , Dave Syer , Glenn Renfro

Copyright © 2013-2014

Spring XD

1.0.0 Spring XD Guide ii

Table of Contents

I. Reference Guide ... 1
1. Introduction .. 2

1.1. Overview ... 2
2. Getting Started ... 3
3. Requirements ... 4

3.1. Download Spring XD ... 4
3.2. Install Spring XD ... 4
3.3. Start the Runtime and the XD Shell .. 4
3.4. Create a Stream ... 5
3.5. Explore Spring XD ... 6
3.6. OSX Homebrew installation .. 6
3.7. RedHat/CentOS Installation .. 7

4. Running in Distributed Mode ... 8
4.1. Introduction ... 8

XD CommandLine Options ... 9
xd-admin command line args: ... 10
xd-container command line args: ... 10

4.2. Setting up a RDBMS ... 10
4.3. Setting up ZooKeeper .. 11
4.4. Setting up Redis .. 11

Installing Redis ... 11
Troubleshooting .. 11

Redis on Windows ... 11
Redis is not running ... 11

Starting Redis .. 12
4.5. Using RabbitMQ .. 12

Installing RabbitMQ .. 12
Launching RabbitMQ .. 12

4.6. Starting Spring XD in Distributed Mode ... 13
Choosing a Transport ... 13
Choosing an Analytics provider ... 13
Other Options .. 14

4.7. Using Hadoop ... 14
4.8. XD-Shell in Distributed Mode ... 14

5. Running on YARN .. 15
5.1. Introduction ... 15
5.2. What do you need? ... 15
5.3. Download Spring XD on YARN binaries .. 15
5.4. Configure your deployment .. 15

XD options ... 15
Hadoop settings ... 15
Transport options ... 16
Zookeeper settings ... 16
JDBC datasource properties ... 16

5.5. Push and start the jobs .. 17
Push the Spring XD application binaries and config to HDFS 17
Submit the Spring XD admin server .. 17

Spring XD

1.0.0 Spring XD Guide iii

Submit the Spring XD container .. 17
Check the status of the app .. 17

6. Application Configuration .. 18
6.1. Introduction ... 18
6.2. Server Configuration .. 18

Profile support .. 18
Database Configuration .. 19

HSQLDB .. 19
MySQL .. 20
PostgreSQL ... 20

Redis ... 20
RabbitMQ ... 20
Admin Server HTTP Port .. 21
Management Port ... 21
Local transport ... 21

6.3. Module Configuration ... 21
Profiles .. 22
Batch Jobs or modules accessing JDBC ... 23

7. Architecture .. 24
7.1. Introduction ... 24

Runtime Architecture .. 24
DIRT Runtime .. 24
Support for other distributed runtimes .. 25

Single Node Runtime .. 25
Admin Server Architecture .. 26
Container Server Architecture ... 26
Streams ... 27
Stream Deployment .. 29

7.2. Jobs .. 33
7.3. Taps ... 33

8. XD Distributed Runtime .. 34
8.1. Introduction ... 34
8.2. Configuring XD for High Availabilty (HA) ... 34
8.3. ZooKeeper Overview ... 34
8.4. The Admin Server Internals .. 36

Example ... 37
8.5. Module Deployment ... 40

Deployment Manifest .. 42
Container Attributes .. 42

8.6. Stream Deployment Examples .. 43
9. Streams ... 45

9.1. Introduction ... 45
9.2. Creating a Simple Stream .. 45
9.3. Deleting a Stream ... 46
9.4. Deploying and Undeploying Streams .. 46
9.5. Other Source and Sink Types .. 46
9.6. Simple Stream Processing ... 47
9.7. DSL Syntax ... 47
9.8. Advanced Features .. 47

10. Modules ... 49

Spring XD

1.0.0 Spring XD Guide iv

10.1. Introduction ... 49
10.2. Creating a Module ... 49

Modules and Spring ... 49
Integration Modules .. 50

10.3. Registering a Module ... 51
Modules with isolated classpath .. 51

10.4. Composing Modules .. 52
10.5. Getting Information about Modules ... 54
10.6. How module options are resolved ... 56

11. Sources ... 58
11.1. Introduction ... 58
11.2. HTTP .. 58

HTTP with options .. 59
11.3. Tail ... 59

Tail with options ... 59
Tail Status Events .. 60

11.4. File ... 60
File with options ... 60

11.5. Mail ... 61
11.6. Twitter Search ... 62
11.7. Twitter Stream ... 63
11.8. GemFire .. 64

Options .. 64
Example ... 64

11.9. GemFire Continuous Query (CQ) .. 64
Launching the XD GemFire Server .. 64
Options .. 65

11.10. Syslog ... 65
11.11. TCP .. 66

TCP with options .. 67
Available Decoders ... 67
Examples ... 68
Binary Data Example .. 69
Implementing a simple conversation .. 69

11.12. TCP Client ... 70
TCP Client options ... 70

11.13. Reactor IP ... 71
11.14. RabbitMQ .. 71

RabbitMQ with Options ... 72
11.15. JMS .. 72

JMS with Options ... 73
11.16. Time .. 73
11.17. MQTT .. 74

Options .. 74
11.18. Stdout Capture .. 74

12. Processors ... 75
12.1. Introduction ... 75
12.2. Filter ... 75

Filter with SpEL expression .. 75
Filter using jsonPath evaluation ... 75

Spring XD

1.0.0 Spring XD Guide v

Filter with Groovy Script ... 76
12.3. Transform .. 76

Transform with SpEL expression ... 76
Transform with Groovy Script .. 76

12.4. Script .. 77
12.5. Splitter .. 77

Extract the value of a specific field .. 77
12.6. Aggregator .. 78

13. Sinks ... 80
13.1. Introduction ... 80
13.2. Log ... 80
13.3. File Sink .. 81

File with Options .. 81
13.4. Hadoop (HDFS) ... 81

HDFS with Options ... 83
13.5. HDFS Dataset (Avro/Parquet) ... 84

HDFS Dataset with Options .. 85
13.6. JDBC .. 85

JDBC with Options ... 86
13.7. TCP Sink .. 87

TCP with Options ... 88
Available Encoders ... 88
An Additional Example .. 89

13.8. Mail ... 89
13.9. RabbitMQ .. 90

RabbitMQ with Options ... 91
13.10. GemFire Server ... 91

Launching the XD GemFire Server .. 91
Gemfire sinks ... 92
Example ... 92

13.11. Splunk Server .. 93
Splunk sinks .. 93
Setup Splunk for TCP Input .. 93
Example ... 94

13.12. MQTT Sink .. 94
Options .. 94

13.13. Dynamic Router ... 94
SpEL-based Routing ... 94
Groovy-based Routing .. 95
Options .. 96

14. Taps .. 97
14.1. Introduction ... 97

Example ... 97
Example - tap after a processor has been applied .. 97
Example - using the module index .. 97
Example - using a label .. 98

14.2. Tap Lifecycle ... 98
15. Type Conversion .. 99

15.1. Introduction ... 99
15.2. MIME media types ... 99

Spring XD

1.0.0 Spring XD Guide vi

Stream Definition examples .. 99
15.3. Media types and Java types ... 100

Caveats ... 101
16. Batch Jobs ... 102

16.1. Introduction .. 102
16.2. Workflow ... 102
16.3. Features .. 103
16.4. Developing your Job .. 104
16.5. Creating a Job ... 104

Creating Jobs - Additional Options .. 104
16.6. Launching a job ... 105

Ad-hoc ... 105
Launch the Batch using Cron-Trigger .. 106
Launch the Batch using a Fixed-Delay-Trigger ... 106
Launch job as a part of event flow .. 106

16.7. Retrieve job notifications .. 106
To receive aggregated events ... 107
To receive job execution events .. 108
To receive step execution events .. 108
To receive item, skip and chunk events ... 108
To disable the default listeners .. 109
To select specific listeners .. 109

16.8. Removing Batch Jobs .. 109
16.9. Pre-Packaged Batch Jobs .. 109

Note HDFS Configuration ... 109
For Hadoop 1.x .. 109
For Hadoop 2.x .. 109

Poll a Directory and Import CSV Files to HDFS (filepollhdfs) 109
Import CSV Files to JDBC (filejdbc) ... 110
HDFS to JDBC Export (hdfsjdbc) ... 110
JDBC to HDFS Import (jdbchdfs) ... 110
HDFS to MongoDB Export (hdfsmongodb) ... 111
FTP to HDFS Export (ftphdfs) ... 111

17. Analytics .. 112
17.1. Introduction .. 112
17.2. Predictive analytics .. 112
17.3. Analytical Models ... 113

Modeling and Evaluation ... 113
Modeling .. 113
Evaluation .. 116
Model Selection .. 116

17.4. Counters and Gauges .. 117
Counter .. 118
Field Value Counter .. 118
Aggregate Counter ... 119
Gauge .. 120

Note: .. 120
Simple Tap Example .. 120

Rich Gauge .. 121
Simple Tap Example .. 121

Spring XD

1.0.0 Spring XD Guide vii

Stock Price Example .. 121
Improved Stock Price Example .. 122

Accessing Analytics Data over the RESTful API ... 123
18. DSL Reference ... 125

18.1. Introduction .. 125
18.2. Pipes and filters ... 125
18.3. Module parameters .. 125
18.4. Named channels .. 125
18.5. Labels ... 126

19. Tuples .. 127
19.1. Introduction .. 127

Creating a Tuple .. 127
Getting Tuple values ... 128
Using SpEL expressions to filter a tuple ... 129
Gradle Dependencies ... 130

20. Samples ... 131
20.1. Syslog ingestion into HDFS .. 131

A sample configuration using syslog-ng ... 131
21. Admin UI .. 133

21.1. Introduction .. 133
21.2. List available batch job modules ... 135
21.3. List job definitions .. 137
21.4. List job deployments .. 139

Launching a batch Job ... 141
21.5. List job executions ... 143

II. Appendices .. 145
A. Installing Hadoop ... 146

A.1. Installing Hadoop ... 146
Download ... 146
Java Setup ... 146
Setup SSH ... 147
Setting the Namenode Port ... 147
Further Configuration File Changes ... 148

A.2. Running Hadoop ... 148
B. Creating a Source Module .. 150

B.1. Introduction ... 150
B.2. Create the module Application Context file .. 150

Make the module configurable .. 151
B.3. Test the module locally .. 151

Create a project ... 151
Create the Spring integration test .. 152

B.4. Deploy the module .. 153
B.5. Test the deployed module .. 153

C. Creating a Processor Module ... 155
C.1. Introduction ... 155
C.2. Write the Transformer Code ... 155
C.3. Create the module Application Context File ... 155
C.4. Deploy the Module .. 156
C.5. Test the deployed module ... 156

D. Creating a Sink Module .. 157

Spring XD

1.0.0 Spring XD Guide viii

D.1. Introduction ... 157
D.2. Create the module Application Context file .. 157
D.3. Make the module configurable ... 158
D.4. Test the module locally .. 158

Create a project ... 158
Create the Spring integration test .. 159
Run the test ... 160

D.5. Deploy the module .. 161
D.6. Test the deployed module ... 161

E. Providing Module Options Metadata .. 162
E.1. Introduction ... 162
E.2. Using the "Simple" approach .. 162

Declaring and documenting an option .. 162
Advertising default values ... 163
Exposing the option type .. 163

E.3. Using the "POJO" approach ... 164
Declaring options to the module .. 164
Exposing values to the context .. 164
Providing defaults ... 164
Encapsulating options ... 165
Using profiles ... 165
Using validation .. 165

E.4. Metadata style remarks .. 166
F. Building Spring XD ... 167

F.1. Instructions .. 167
F.2. IDE support ... 167
F.3. Running script tests ... 167

G. Monitoring and Management .. 169
G.1. Monitoring XD Admin, Container and Single-node servers 169

To enable boot provided management endpoints over HTTP 169
To disable boot endpoints over HTTP .. 169
Management over JMX ... 169
To disable management over JMX .. 170

G.2. Monitoring deployed modules in XD container ... 170
G.3. Using Jolokia to access JMX over http ... 170

H. XD Shell Command Reference ... 171
H.1. Base Commands ... 171

admin config server .. 171
admin config info .. 171

H.2. Runtime Commands .. 171
runtime containers .. 171
runtime modules ... 171

H.3. Stream Commands ... 171
stream create ... 171
stream destroy ... 172
stream all destroy ... 172
stream deploy .. 172
stream undeploy ... 172
stream all undeploy .. 172
stream list .. 172

Spring XD

1.0.0 Spring XD Guide ix

H.4. Job Commands ... 173
job create ... 173
job list .. 173
job execution list .. 173
job execution step list ... 173
job execution step progress .. 173
job execution step display ... 174
job execution display .. 174
job execution all stop .. 174
job execution stop .. 174
job execution restart ... 174
job deploy .. 174
job launch .. 175
job undeploy .. 175
job all undeploy .. 175
job instance display .. 175
job destroy ... 175
job all destroy .. 175

H.5. Module Commands ... 176
module info .. 176
module compose .. 176
module delete .. 176
module list ... 176
module display ... 176

H.6. Metrics Commands ... 177
counter list ... 177
counter delete .. 177
counter display ... 177
field-value-counter list ... 177
field-value-counter delete .. 177
field-value-counter display ... 177
aggregate-counter list ... 178
aggregate-counter delete .. 178
aggregate-counter display ... 178
gauge list ... 178
gauge delete .. 179
gauge display ... 179
rich-gauge list ... 179
rich-gauge delete .. 179
rich-gauge display .. 179

H.7. Http Commands .. 179
http post .. 179
http get .. 180

H.8. Hadoop Configuration Commands .. 180
hadoop config props set ... 180
hadoop config props get ... 180
hadoop config info .. 180
hadoop config load ... 180
hadoop config props list .. 181
hadoop config fs ... 181

Spring XD

1.0.0 Spring XD Guide x

hadoop config jt .. 181
H.9. Hadoop FileSystem Commands ... 181

hadoop fs get ... 181
hadoop fs put ... 181
hadoop fs count ... 182
hadoop fs mkdir ... 182
hadoop fs tail ... 182
hadoop fs ls ... 182
hadoop fs cat ... 183
hadoop fs chgrp ... 183
hadoop fs chown .. 183
hadoop fs chmod .. 183
hadoop fs copyFromLocal ... 184
hadoop fs moveFromLocal .. 184
hadoop fs copyToLocal ... 184
hadoop fs copyMergeToLocal ... 184
hadoop fs cp .. 185
hadoop fs mv ... 185
hadoop fs du .. 185
hadoop fs expunge ... 185
hadoop fs rm .. 185
hadoop fs setrep .. 186
hadoop fs text .. 186
hadoop fs touchz .. 186

Part I. Reference Guide

Spring XD

1.0.0 Spring XD Guide 2

1. Introduction

1.1 Overview

Spring XD is a unified, distributed, and extensible service for data ingestion, real time analytics, batch
processing, and data export. The Spring XD project is an open source Apache 2 License licenced
project whose goal is to tackle big data complexity. Much of the complexity in building real-world big
data applications is related to integrating many disparate systems into one cohesive solution across a
range of use-cases. Common use-cases encountered in creating a comprehensive big data solution are

• High throughput distributed data ingestion from a variety of input sources into big data store such as
HDFS or Splunk

• Real-time analytics at ingestion time, e.g. gathering metrics and counting values.

• Workflow management via batch jobs. The jobs combine interactions with standard enterprise
systems (e.g. RDBMS) as well as Hadoop operations (e.g. MapReduce, HDFS, Pig, Hive or
Cascading).

• High throughput data export, e.g. from HDFS to a RDBMS or NoSQL database.

The Spring XD project aims to provide a one stop shop solution for these use-cases.

http://www.apache.org/licenses/LICENSE-2.0

Spring XD

1.0.0 Spring XD Guide 3

2. Getting Started

Spring XD

1.0.0 Spring XD Guide 4

3. Requirements

To get started, make sure your system has as a minimum Java JDK 6 or newer installed. Java JDK
7 is recommended.

3.1 Download Spring XD

If you want to try out Spring XD, we’d recommend downloading a snapshot build, since things are
changing quite fast. A snapshot distribution can be downloaded from the spring snapshots repository.
You can also build the project from source if you wish. The wiki content should also be kept up to date
with the current snapshot so if you are reading this on the github website, things may have changed
since the last milestone.

Unzip the distribution which will unpack to a single installation directory. All the commands below are
executed from this directory, so change into it before proceeding.

If you are sure you want the previous milestone release, you can also download the distribution spring-
xd-1.0.0.M6-dist.zip and its accompanying documentation.

$ cd spring-xd-1.0.0.M6

Set the environment variable XD_HOME to the installation directory <root-install-dir>\spring-
xd\xd

3.2 Install Spring XD

Spring XD can be run in two different modes. There’s a single-node runtime option for testing and
development, and there’s a distributed runtime which supports distribution of processing tasks across
multiple nodes. This document will get you up and running quickly with a single-node runtime. See
Running Distributed Mode for details on setting up a distributed runtime.

You can also install Spring XD using homebrew on OSX and yum on RedHat/CentOS.

3.3 Start the Runtime and the XD Shell

The single node option is the easiest to get started with. It runs everything you need in a single process.
To start it, you just need to cd to the xd directory and run the following command

xd/bin>$./xd-singlenode

In a separate terminal, cd into the shell directory and start the XD shell, which you can use to issue
commands.

http://www.oracle.com/technetwork/java/javase/downloads/
http://repo.springsource.org/libs-snapshot-local/org/springframework/xd/spring-xd/1.0.0.BUILD-SNAPSHOT/
http://repo.springsource.org/libs-milestone/org/springframework/xd/spring-xd/1.0.0.M6/spring-xd-1.0.0.M6-dist.zip
http://repo.springsource.org/libs-milestone/org/springframework/xd/spring-xd/1.0.0.M6/spring-xd-1.0.0.M6-dist.zip
http://repo.springsource.org/libs-milestone/org/springframework/xd/spring-xd/1.0.0.M6/spring-xd-1.0.0.M6-docs.zip

Spring XD

1.0.0 Spring XD Guide 5

shell/bin>$./xd-shell

 _____ __ _______

/ ___| (-) \ \ / / _ \

\ `--. _ __ _ __ _ _ __ __ _ \ V /| | | |

 `--. \ '_ \| '__| | '_ \ / _` | / ^ \| | | |

/__/ / |_) | | | | | | | (_| | / / \ \ |/ /

____/| .__/|_| |_|_| |_|__, | \/ \/___/

 | | __/ |

 |_| |___/

eXtreme Data

1.0.0.M6 | Admin Server Target: http://localhost:8080

Welcome to the Spring XD shell. For assistance hit TAB or type "help".

xd:>

The shell is a more user-friendly front end to the REST API which Spring XD exposes to clients. The
URL of the currently targeted Spring XD server is shown at startup.

Note

If the server could not be reached, the prompt will read

server-unknown:>

You can then use the admin config server <url> to attempt to reconnect to the admin
REST endpoint once you’ve figured out what went wrong:

admin config server http://localhost:9393

You should now be able to start using Spring XD.

Tip

Spring XD uses ZooKeeper internally which typically runs as an external process. XD singlenode
runs with an embedded ZooKeeper server and assigns a random available port. This keeps
things very simple. However if you already have a ZooKeeper ensemble set up and want to
connect to it, you can edit xd\config\servers.yml:

#Zookeeper properties

client connect string: host1:port1,host2:port2,...,hostN:portN

zk:

 client:

 connect: localhost:2181

Also, sometimes it is useful in troubleshooting to connect the ZooKeeper CLI to the embedded
server. The assigned server port is listed in the console log, but you can also set the port directly
by setting the property zk.embedded.server.port in servers.yml

3.4 Create a Stream

In Spring XD, a basic stream defines the ingestion of event driven data from a source to a sink that
passes through any number of processors. You can create a new stream by issuing a stream create
command from the XD shell. Stream definitions are built from a simple DSL. For example, execute:

xd:> stream create --name ticktock --definition "time | log" --deploy

Spring XD

1.0.0 Spring XD Guide 6

This defines a stream named ticktock based off the DSL expression time | log. The DSL uses
the "pipe" symbol |, to connect a source to a sink. The stream server finds the time and log definitions
in the modules directory and uses them to setup the stream. In this simple example, the time source
simply sends the current time as a message each second, and the log sink outputs it using the logging
framework at the WARN logging level. Since the --deploy flag was provided, this stream will be
deployed immediately. In the console where you started the server, you will see log output similar to
that listed below

13:09:53,812 INFO http-bio-8080-exec-1 module.SimpleModule:109 - started module: Module

 [name=log, type=sink]

13:09:53,813 INFO http-bio-8080-exec-1 module.ModuleDeployer:111 - launched sink module:

 ticktock:log:1

13:09:53,911 INFO http-bio-8080-exec-1 module.SimpleModule:109 - started module: Module

 [name=time, type=source]

13:09:53,912 INFO http-bio-8080-exec-1 module.ModuleDeployer:111 - launched source

 module: ticktock:time:0

13:09:53,945 WARN task-scheduler-1 logger.ticktock:141 - 2013-06-11 13:09:53

13:09:54,948 WARN task-scheduler-1 logger.ticktock:141 - 2013-06-11 13:09:54

13:09:55,949 WARN task-scheduler-2 logger.ticktock:141 - 2013-06-11 13:09:55

To stop the stream, and remove the definition completely, you can use the stream destroy command:

xd:>stream destroy --name ticktock

It is also possible to stop and restart the stream instead, using the undeploy and deploy commands.
The shell supports command completion so you can hit the tab key to see which commands and options
are available.

3.5 Explore Spring XD

Learn about the modules available in Spring XD in the Sources, Processors, and Sinks sections of the
documentation.

Don’t see what you’re looking for? Create a custom module: source, processor or sink (and then consider
contributing it back to Spring XD).

Want to add some analytics to your stream? Check out the Taps and Analytics sections.

3.6 OSX Homebrew installation

If you are on a Mac and using homebrew, all you need to do to install Spring XD is:

$ brew tap pivotal/tap

$ brew install springxd

Homebrew will install springxd to /usr/local/bin. Now you can jump straight into using Spring
XD:

$ xd-singlenode

Brew install also allows you to run Spring XD in distributed mode on you OSx. See Running Distributed
Mode for details on setting up a distributed runtime.

https://github.com/SpringSource/spring-xd/wiki/Contribute
http://brew.sh/

Spring XD

1.0.0 Spring XD Guide 7

3.7 RedHat/CentOS Installation

If you are using RHEL or CentOS (5 or 6) you can install Spring XD using our yum repository.

wget -q -O http://packages.gopivotal.com | sh

yum install spring-xd

This installs Spring XD and init.d services for managing Admin Server and Container runtimes. Before
you can run Admin Server and Container you will need to install and start distributed components. See
Running Distributed Mode for details on setting up a distributed runtime. After distributed component
are configured, Admin Server and Container can be started as follows:

service spring-xd-admin start

service spring-xd-container start

You can configure arguments to spring-xd-admin and spring-xd-container scripts by setting them in /
etc/sysconfig/spring-xd. For example to run spring-xd-container with transport=RabbitMQ update this
property in /etc/sysconfig/spring-xd:

TRANSPORT=rabbit

To stop Spring XD

service spring-xd-admin stop

service spring-xd-container stop

Spring XD

1.0.0 Spring XD Guide 8

4. Running in Distributed Mode

4.1 Introduction

The Spring XD distributed runtime (DIRT) supports distribution of processing tasks across multiple
nodes. See Getting Started for information on running Spring XD as a single node.

The XD distributed runtime architecture consists of the following distributed components:

• Admin - Manages Stream and Job deployments and other end user operations and provides REST
services to access runtime state, system metrics, and analytics

• Container - Hosts deployed Modules (stream processing tasks) and batch jobs

• ZooKeeper - Provides all runtime information for the XD cluster. Tracks running containers, in which
containers modules and jobs are deployed, stream definitions, deployment manifests, and the like,
see XD Distributed Runtime for an overview on how XD uses ZooKeeper.

• Spring Batch Job Repository Database - An RDBMS is required for jobs. The XD distribution comes
with HSQLDB, but this is not appropriate for a production installation. XD supports any JDBC
compliant database.

• A Message Broker - Used for data transport. XD data transport is designed to be pluggable. Currently
XD supports Rabbit MQ and Redis for messaging during stream and job processing. A production
installation must configure one of these transport options. Rabbit MQ is recommended as it is
considered the more reliable of the two. In either case, a separate server must be running to provide
the messaging middleware.

• Analytics Repository - XD currently uses Redis to store the counters and gauges provided Analytics)

In addition, XD provides a Command Line Interface (CLI), XD Shell as well as a web application, XD-
UI to interact with the XD runtime.

XD-Distributed-Runtime

Spring XD

1.0.0 Spring XD Guide 9

Figure 4.1.

XD CommandLine Options

The XD distribution provides shell scripts to start its runtime components under the xd directory of the
XD installation:

Whether you are running _xd-admin, xd-container or even xd-singlenode you can always get help by
typing the command followed by --help. For example:

Spring XD

1.0.0 Spring XD Guide 10

xd/bin/xd-admin --help

 _____ __ _______

/ ___| (-) \ \ / / _ \

\ `--. _ __ _ __ _ _ __ __ _ \ V /| | | |

 `--. \ '_ \| '__| | '_ \ / _` | / ^ \| | | |

/__/ / |_) | | | | | | | (_| | / / \ \ |/ /

____/| .__/|_| |_|_| |_|__, | \/ \/___/

 | | __/ |

 |_| |___/

1.0.0.BUILD-SNAPSHOT eXtreme Data

Started : AdminServerApplication

Documentation: https://github.com/spring-projects/spring-xd/wiki

Usage:

 --analytics [redis] : How to persist analytics such as counters and gauges

 --help (-?, -h) : Show this help screen

 --httpPort <httpPort> : Http port for the REST API server

 --mgmtPort <mgmtPort> : The port for the management server

xd-admin command line args:

• analytics - The data store that will be used to store the analytics data. The default is redis

• help - Displays help for the command args. Help information may be accessed with a -? or -h.

• httpPort - The http port for the REST API server. Defaults to 9393.

• mgmtPort - The port for the management server. Defaults to 9393.

xd-container command line args:

• analytics - How to persist analytics such as counters and gauges. The default is redis

• groups - The assigned group membership for this container as a comma delimited list

• hadoopDistro - The Hadoop distribution to be used for HDFS access. HDFS is not available if not set.

• help - Displays help for the command args. Help information may be accessed with a -? or -h.

• mgmtPort - The port for the management server. Defaults to the container server port.

4.2 Setting up a RDBMS

The distributed runtime requires an RDBMS. The XD distrubution comes with an HSQLDB in memory
database for testing purposes, but an alternate is expected. To start HSQLDB:

$ cd hsqldb/bin

$./hsqldb-server

To configure XD to connect to a different RDBMS, have a look at xd/config/servers.yml in the
spring:datasource section for details. Note that spring.batch.initializer.enabled is set
to true by default which will initialize the Spring Batch schema if it is not already set up. However, if
those tables have already been created, they will be unaffected.

Spring XD

1.0.0 Spring XD Guide 11

4.3 Setting up ZooKeeper

Currently XD does not ship with ZooKeeper. At the time of this writing, the compliant version is
3.4.6 and you can download it from here. Please refer to the ZooKeeper Getting Started Guide for
more information. A ZooKeeper ensemble consisting of at least three members is recommended for
production installations, but a single server is all that is needed to have XD up and running.

4.4 Setting up Redis

Redis is the default transport when running in distributed mode.

Installing Redis

If you already have a running instance of Redis it can be used for Spring XD. By default Spring XD
will try to use a Redis instance running on localhost using port 6379. You can change that in the
servers.yml file residing in the config/ directory.

If you don’t have a pre-existing installation of Redis, you can use the Spring XD provided instance (For
Linux and Mac). Inside the Spring XD installation directory (spring-xd) do:

$ cd redis/bin

$./install-redis

This will compile the Redis source tar and add the Redis executables under redis/bin:

• redis-check-dump

• redis-sentinel

• redis-benchmark

• redis-cli

• redis-server

You are now ready to start Redis by executing

$./redis-server

Tip

For further information on installing Redis in general, please checkout the Redis Quick Start
guide. If you are using Mac OS, you can also install Redis via Homebrew

Troubleshooting

Redis on Windows

Presently, Spring XD does not ship Windows binaries for Redis (See XD-151). However, Microsoft is
actively working on supporting Redis on Windows. You can download Windows Redis binaries from:

https://github.com/MSOpenTech/redis/tree/2.6/bin/release

Redis is not running

If you try to run Spring XD and Redis is NOT running, you will see the following exception:

http://zookeeper.apache.org/releases.html
http://zookeeper.apache.org/doc/trunk/zookeeperStarted.html
http://redis.io/topics/quickstart
http://mxcl.github.io/homebrew/
https://jira.springsource.org/browse/XD-151
http://blogs.msdn.com/b/interoperability/archive/2013/04/22/redis-on-windows-stable-and-reliable.aspx
http://blogs.msdn.com/b/interoperability/archive/2013/04/22/redis-on-windows-stable-and-reliable.aspx
https://github.com/MSOpenTech/redis/tree/2.6/bin/release

Spring XD

1.0.0 Spring XD Guide 12

11:26:37,830 ERROR main launcher.RedisContainerLauncher:85 - Unable to connect to Redis

 on localhost:6379; nested exception is com.lambdaworks.redis.RedisException: Unable to

 connect

Redis does not seem to be running. Did you install and start Redis? Please see the Getting

 Started section of the guide for instructions.

Starting Redis

$ redis-server

You should see something like this:

[35142] 01 May 14:36:28.939 # Warning: no config file specified, using the default config.

 In order to specify a config file use redis-server /path/to/redis.conf

[35142] 01 May 14:36:28.940 * Max number of open files set to 10032

 .

 _.-``__ ''-._

 .-`` `. `. ''-._ Redis 2.6.12 (00000000/0) 64 bit

 .-`` .-```. ```\/ _.,_ ''-._

 (' , .-` | `,) Running in stand alone mode

 |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379

 | `-._ `._ / _.-' | PID: 35142

 `-._ `-._ `-./ _.-' _.-'

 |`-._`-._ `-.__.-' _.-'_.-'|

 | `-._`-._ _.-'_.-' | http://redis.io

 `-._ `-._`-.__.-'_.-' _.-'

 |`-._`-._ `-.__.-' _.-'_.-'|

 | `-._`-._ _.-'_.-' |

 `-._ `-._`-.__.-'_.-' _.-'

 `-._ `-.__.-' _.-'

 `-._ _.-'

 `-.__.-'

[35142] 01 May 14:36:28.941 # Server started, Redis version 2.6.12

[35142] 01 May 14:36:28.941 * The server is now ready to accept connections on port 6379

4.5 Using RabbitMQ

Installing RabbitMQ

If you already have a running instance of RabbitMQ it can be used for Spring XD. By default Spring XD
will try to use a Rabbit instance running on localhost using port 5672. The default account credentials
of guest/guest are assumed. You can change that in the servers.yml file residing in the config/
directory.

If you don’t have a RabbitMQ installation already, head over to http://www.rabbitmq.com and follow the
instructions. Packages are provided for Windows, Mac and various flavor of unix/linux.

Launching RabbitMQ

Start the RabbitMQ broker by running the rabbitmq-server script:

$ rabbitmq-server

You should see something similar to this:

http://www.rabbitmq.com

Spring XD

1.0.0 Spring XD Guide 13

 RabbitMQ 3.3.0. Copyright (C) 2007-2013 GoPivotal, Inc.

 ## ## Licensed under the MPL. See http://www.rabbitmq.com/

 ## ##

 ########## Logs: /usr/local/var/log/rabbitmq/rabbit@localhost.log

 ###### ## /usr/local/var/log/rabbitmq/rabbit@localhost-sasl.log

 ##########

 Starting broker... completed with 10 plugins.

4.6 Starting Spring XD in Distributed Mode

Spring XD consists of two servers

• XDAdmin - controls deployment of modules into containers

• XDContainer - executes modules

You can start the xd-container and xd-admin servers individually as follows:

xd/bin>$./xd-admin

xd/bin>$./xd-container

Choosing a Transport

Spring XD uses data transport for sending data from the output of one module to the input of the next
module. In general, this requires remote transport between container nodes. The Admin server also
uses the data bus to launch batch jobs by sending a message to the job’s launch channel. Since the
same transport must be shared by the Admin and all Containers, the transport configuration is centrally
configured in xd/config/servers.yml. The default transport is redis. Open servers.yml with a text editor
and you will see the transport configuration near the top. To change the transport, you can uncomment
this section and change the transport to rabbit or any other supported transport. Any changes to the
transport configuration must be replicated to every XD node in the cluster.

Note

XD singlenode also supports a --transport command line argument, useful for testing streams
under alternate transports.

#xd:

transport: redis

Note

If you have multiple XD instances running share a single RabbitMQ server for transport,
you may encounter issues if each system contains streams of the same name. We
recommend using a different RabbitMQ virtual host for each system. Update the
spring.rabbitmq.virtual_host property in $XD_HOME/config/servers.yml to point
XD at the correct virtual host.

Choosing an Analytics provider

By default, the xd-container will store Analytics data in redis. At the time of writing, this is the only
supported option (when running in distributed mode). Use the --analytics option to specify another
backing store for Analytics data.

Spring XD

1.0.0 Spring XD Guide 14

xd/bin>$./xd-container --analytics redis

Other Options

There are additional configuration options available for these scripts:

To specify the location of the Spring XD install other than the default configured in the script

export XD_HOME=<Specific XD install directory>

To specify the http port of the XDAdmin server,

xd/bin>$./xd-admin --httpPort <httpPort>

The XDContainer nodes by default start up with server.port 0 (which means they will scan for an available
HTTP port). You can disable the HTTP endpoints for the XDContainer by setting server.port=-1. Note
that in this case HTTP source support will not work in a PaaS environment because typically it would
require XD to bind to a specific port. Both the XDAdmin and XDContainer processes bind to server.port
$PORT (i.e. an environment variable if one is available, as is typical in a PaaS).

4.7 Using Hadoop

Spring XD supports the following Hadoop distributions:

• hadoop12 - Apache Hadoop 1.2.1

• hadoop22 - Apache Hadoop 2.2.0 (default)

• phd1 - Pivotal HD 1.1

• cdh4 - Cloudera CDH 4.6.0

• hdp13 - Hortonworks Data Platform 1.3

• hdp20 - Hortonworks Data Platform 2.0

To specify the distribution to use for Hadoop client connections,

xd/bin>$./xd-shell --hadoopDistro <distribution>

xd/bin>$./xd-admin --hadoopDistro <distribution>

xd/bin>$./xd-container --hadoopDistro <distribution>

Pass in the --help option to see other configuration properties.

4.8 XD-Shell in Distributed Mode

If you wish to use a XD-Shell that is on a different machine than where you deployed your admin server.

1) Open your shell

shell/bin>$./xd-shell

2) From the xd shell use the "admin config server" command i.e.

admin config server <yourhost>:9393

Spring XD

1.0.0 Spring XD Guide 15

5. Running on YARN

5.1 Introduction

The Spring XD distributed runtime (DIRT) supports distribution of processing tasks across multiple
nodes. See Running Distributed Mode for information on running Spring XD in distributed mode. One
option is to run these nodes on a Hadoop YARN cluster rather than on VMs or physical servers managed
by you.

5.2 What do you need?

To begin with, you need to have access to a Hadoop cluster running a version based on Apache Hadoop
2.2.0 or later. This includes Apache Hadoop 2.2.0, Hortonworks HDP 2.0 and Cloudera CDH5.

You also need a supported transport, see Running Distributed Mode for installation of Redis or Rabbit
MQ. Spring XD on YARN currently uses Redis as the default data transport.

You also need Zookeeper running. If your Hadoop cluster doesn’t have Zookeeper installed you need
to install and run it specifically for Spring XD. See the Setting up ZooKeeper section of the "Running
Distributed Mode" chapter.

Lastly, you need an RDBMs to support batch jobs and JDBC operations.

5.3 Download Spring XD on YARN binaries

In addition to the regular spring-xd-<version>-dist.zip files we also distribute a zip file that
includes all you need to deploy on YARN. The name of this zip file is spring-xd-<version>-
yarn.zip. You can download it from the Spring Repo. Unzip the downloaded file and you should see
a spring-xd-<version>-yarn directory.

5.4 Configure your deployment

Configuration options are contained in a spring-xd-<version>-yarn\config\xd-config.yml
file. You need to configure the hadoop settings, the transport choice plus redis/rabbit settings, the
zookeeper settings and the JDBC datasource properties.

XD options

For Spring XD you need to define how many admin servers and containers you need. You also need
to define the HDFS location (spring.yarn.applicationDir) where the Spring XD binary and config files
will be stored.

spring:

 xd:

 adminServers: 1

 containers: 3

 yarn:

 applicationDir: /xd/app/

Hadoop settings

You need to specify the host where the YARN Resource Manager is running as well as the HDFS URL.

Running-Distributed-Mode
http://www.us.apache.org/dist/hadoop/common/hadoop-2.2.0/
http://hortonworks.com/products/hdp-2/
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Installation-Guide/cdh5ig_topic_4_2.html
Running-Distributed-Mode
http://repo.spring.io/libs-snapshot/org/springframework/xd/spring-xd/1.0.0.BUILD-SNAPSHOT/

Spring XD

1.0.0 Spring XD Guide 16

Hadoop configuration

spring:

 hadoop:

 fsUri: hdfs://localhost:8020

 resourceManagerHost: localhost

Transport options

You should choose either redis (default) or rabbit as the transport and include the host and port for the
choice you made.

Transport used

transport: rabbit

Redis properties

#spring:

redis:

port: 6379

host: localhost

RabbitMQ properties

spring:

 rabbitmq:

 host: localhost

 port: 5672

 username: guest

 password: guest

 virtual_host: /

Zookeeper settings

You should specify the Zookeeper connection settings

#Zookeeper properties

client connect string: host1:port1,host2:port2,...,hostN:portN

zk:

 client:

 connect: localhost:2181

JDBC datasource properties

You should specify the JDBC connection properties based on the RDBMs that you use for the batch
jobs and JDBC sink

#Config for use with MySQL - uncomment and edit with relevant values for your environment

spring:

 datasource:

 url: jdbc:mysql://yourDBhost:3306/yourDB

 username: yourUsername

 password: yourPassword

 driverClassName: com.mysql.jdbc.Driver

Spring XD

1.0.0 Spring XD Guide 17

5.5 Push and start the jobs

Change current directory to be the directory that was unzipped (spring-xd-<version>-yarn).

Push the Spring XD application binaries and config to HDFS

Run the command

./bin/xd-yarn push

Submit the Spring XD admin server

Run the command

./bin/xd-yarn start admin

Submit the Spring XD container

Run the command

./bin/xd-yarn start container

Check the status of the app

You can use the regular yarn command to check the status. Simply run:

yarn application -list

You should see two applications running named xd-admin and xd-container.

Spring XD

1.0.0 Spring XD Guide 18

6. Application Configuration

6.1 Introduction

There are two main parts of Spring XD that can be configured, servers and modules.

The servers (xd-singlenode, xd-admin, xd-container) are Spring Boot applications and are
configured as described in the Spring Boot Reference documentation. In the most simple case
this means editing values in the YAML based configuration file servers.yml. The values in this
configuration file will overwrite the values in the default application.yml file that is embedded in the XD jar.

Note

The use of YAML is an alternative to using property files. YAML is a superset of JSON, and as
such is a very convenient format for specifying hierarchical configuration data.

For modules, each module has its own configuration file located in its own directory, for example
source/http/http.properties. Shared configuration values for modules can be placed in a
common modules.yml file.

For both server and module configuration, you can have environment specific settings through the use
of application profiles and the ability to override values in files by setting OS environment variables.

In this section we will walk though how to configure servers and modules.

6.2 Server Configuration

The startup scripts for xd-singlenode, xd-admin, and xd-container will by default look for the
file $XD_HOME\config\servers.yml as a source of externalized configuration information.

The location and name of this resourse can be changed by using the environment variables
XD_CONFIG_LOCATION and XD_CONFIG_NAME. The start up script takes the value of these
environment variables to set the Spring Boot properties spring.config.location and
spring.config.name. Note, that for XD_CONFIG_LOCATION you can reference any Spring
Resource implementation, most commonly denoted using the prefixes classpath:, file: and
http:.

It is common to keep your server configuration separate form the installation directory of XD itself. To
do this, here is an example environment variable setting

export XD_CONFIG_LOCATION=file:/xd/config/

export XD_CONFIG_NAME=region1-servers

Profile support

Profiles provide a way to segregate parts of your application configuration and change their availability
and/or values based on the environment. This lets you have different configuration settings for qa and
prod environments and to easily switch between them.

To activate a profile, set the OS environment variable SPRING_PROFILES_ACTIVE to a
comma delimited list of profile names. The server looks to load profile specific variants of the

http://projects.spring.io/spring-boot/
http://docs.spring.io/spring-boot/docs/1.0.1.RELEASE/reference/htmlsingle/
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/resources/application.yml
http://docs.spring.io/spring/docs/4.0.3.RELEASE/spring-framework-reference/htmlsingle/#resources
http://docs.spring.io/spring/docs/4.0.3.RELEASE/spring-framework-reference/htmlsingle/#resources

Spring XD

1.0.0 Spring XD Guide 19

servers.yml file based on the naming convention servers-{profile}.yml. For example, if
SPRING_PROFILES_ACTIVE=prod the following files would be searched for in the following order.

1. XD_CONFIG_LOCATION/servers-prod.yml

2. XD_CONFIG_LOCATION/servers.yml

You may also put multiple profile specific configuration in a single servers.yml file by using the key
spring.profiles in different sections of the configuration file. See Multi-profile YAML documents
for more information.

Database Configuration

Spring XD saves the state of the batch job workflows in a relational database. When running xd-
singlenode a embedded HSQLDB database is run. When running in distributed mode a standalone
HSQLDB instance can be used, the startup script hsqldb-server is in is provided the installation
directory under the folder hsqldb/bin. It is recommended to use HSQLDB only for development and
learning.

When deploying in a production environment, you will need to select another database. Spring XD is
actively tested on MySql (Version: 5.1.23) and Postgres (Version 9.2-1002). All batch workflow tables
are automatically created, if they do not exist, for HSQLDB, MySQL and Postgres. The JDBC driver jars
for the HSQLDB, MySql, and Postgres are already on the XD classpath.

Note

Until full schema support is added for Oracle, Sybase and other database, you will need to put
a .jar file in the xd/lib directory that contains the equivalent functionality as these DDL scripts.

The provided configuration file servers.yml located in $XD_HOME\config has commented out
configuration for some commonly used databases. You can use these as a basis to support your
database environment.

HSQLDB

When in distributed mode and you want to use HSQLDB, you need to change the value of
spring.datasource properties. As an example,

hsql:

 server:

 host: localhost

 port: 9102

 dbname: xdjob

spring:

 datasource:

 url: jdbc:hsqldb:hsql://${hsql.server.host:localhost}:${hsql.server.port:9101}/

${hsql.server.dbname:xdjob}

 username: sa

 password:

 driverClassName: org.hsqldb.jdbc.JDBCDriver

The properties under hsql.server are substituted in the spring.datasource.url property
value. This lets you create short variants of existing Spring Boot properties. Using this style,
you can override the value of these configuration variables by setting an OS environment
variable, such as xd_server_host. Alternatively, you can not use any placeholders and set
spring.datasource.url directly to known values.

http://docs.spring.io/spring-boot/docs/1.0.1.RELEASE/reference/htmlsingle/#boot-features-external-config-multi-profile-yaml
https://github.com/spring-projects/spring-xd/tree/master/spring-xd-batch/src/main/resources/org/springframework/xd/batch/schema

Spring XD

1.0.0 Spring XD Guide 20

MySQL

When in distributed mode and you want to use MySQL, you need to change the value of
spring.datasource.* properties. As an example,

spring:

 datasource:

 url: jdbc:mysql://yourDBhost:3306/yourDB

 username: yourUsername

 password: yourPassword

 driverClassName: com.mysql.jdbc.Driver

To override these settings set an OS environment variable such as spring_datasource_url to the
value you require.

PostgreSQL

When in distributed mode and you want to use PostgreSQL, you need to change the value of
spring.datasource.* properties. As an example,

spring:

 datasource:

 url: jdbc:postgresql://yourDBhost:5432/yourDB

 username: yourUsername

 password: yourPassword

 driverClassName: org.postgresql.Driver

To override these settings set an OS environment variable such as spring_datasource_url to the
value you require.

Redis

If you want to use Redis for analytics or data transport you should set the host and port of the Redis
server.

spring:

 redis:

 port: 6379

 host: localhost

To override these settings set an OS environment variable such as spring_redis_port to the value
you require.

RabbitMQ

If you want to use RabbitMQ as a data transport use the following configuration setting

spring:

 rabbitmq:

 host: localhost

 port: 5672

 username: guest

 password: guest

 virtual_host: /

To override these settings set an OS environment variable such as spring_rabbitmq_host to the
value you require.

Spring XD

1.0.0 Spring XD Guide 21

Admin Server HTTP Port

The default HTTP port of the xd-admin server is 9393. To change the value use the following
configuration setting

server:

 port: 9876

Management Port

The XD servers provide general health and JMX exported management endpoints via Jolokia.

By default the management and health endpoints are available on port 9393. To change the value of
the port use the following configuration setting.

management:

 port: 9876

You can also disable http management endpoints by setting the port value to -1.

By default JMX MBeans are exported. You can disable JMX by setting spring.jmx.enabled=false.

The section on Monitoring and management over HTTP provides details on how to configure these
endpoint.

Local transport

Local transport uses a QueueChannel to pass data between modules. There are a few properties you
can configure on the QueueChannel

• xd.local.transport.named.queueSize - The capacity of the queue, the default value is
Integer.MAX_VALUE

• xd.local.transport.named.polling - Messages that are buffered in a QueueChannel need
to be polled to be consumed. This property controls the fixed rate at which polling occurs. The default
value is 1000 ms.

6.3 Module Configuration

Modules are configured by placing property files in a nested directory structure based on their type
and name. The root of the nested directory structure is by default XD_HOME/config/modules. This
location can be customized by setting the OS environment variable XD_MODULE_CONFIG_LOCATION,
similar to how the environment variable XD_CONFIG_LOCATION is used for configuring the server.

Note

The XD_MODULE_CONFIG_LOCATION can reference any any Spring Resource implementation,
most commonly denoted using the prefixes classpath:, file: and http:.

As an example, if you wanted to configure the twittersearch module, you would create a file

XD_MODULE_CONFIG_LOCATION\source\twittersearch\twittersearch.properties

and the contents of that file would be property names such as consumerKey and consumerSecret.

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#production-ready-endpoints
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#production-ready-jolokia
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#production-ready-monitoring
http://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/channel/QueueChannel.html
http://docs.spring.io/spring/docs/4.0.3.RELEASE/spring-framework-reference/htmlsingle/#resources

Spring XD

1.0.0 Spring XD Guide 22

Note

You do not need to prefix these property names with a source.twittersearch prefix.

You can override the values in the module property file in various ways. The following sources of
properties are considered in the following order.

1. Properties specified in the stream or job DSL definition

2. Java System Properties

3. OS environment variables.

4. XD_MODULE_CONFIG_LOCATION\<type>\<name>\<name>.properties (including profile
variants)

5. Default values specified in module metadata (if available).

Values in XD_MODULE_CONFIG_LOCATION\<type>\<name>\<name>.properties can be
property placeholder references to keys defined in another resource location. By default the resource is
the file XD_MODULE_CONFIG_LOCATION\modules.yml. You can customize the name of the resource
by using setting the OS environment variable XD_MODULE_CONFIG_NAME before running a server
startup script.

The modules.yml file can be used to specify the values of keys that should be shared across
different modules. For example, it is common to use the same twitter developer credentials in both the
twittersearch and twitterstream modules. To avoid repeating the same credentials in two property files,
you can use the following setup.

modules.yml contains

sharedConsumerKey: alsdjfqwopieur

sharedConsumerSecret: pqwieouralsdjkqwpo

sharedAccessToken: llixzchvpiawued

sharedAccessTokenSecret: ewoqirudhdsldke

and XD_MODULE_CONFIG_LOCATION\source\twitterstream\twitterstream.properties

contains

consumerKey=${sharedConsumerKey}

consumerSecret=${sharedConsumerSecret}

accessToken=${sharedAccessToken}

accessTokenSecret=${sharedAccessTokenSecret}

and XD_MODULE_CONFIG_LOCATION\source\twittersearch\twittersearch.properties

contains

consumerKey=${sharedConsumerKey}

consumerSecret=${sharedConsumerSecret}

Profiles

When resolving property file names, the server will look to load profile specific variants based on the
naming convention <name>-{profile}.properties. For example, if given the OS environment

Spring XD

1.0.0 Spring XD Guide 23

variable spring_profiles_active=default,qa the following configuration file names for the
twittersearch module would be searched in this order

1. XD_MODULE_CONFIG_LOCATION\source\twittersearch\twittersearch.properties

2. XD_MODULE_CONFIG_LOCATION\source\twittersearch\twittersearch-
default.properties

3. XD_MODULE_CONFIG_LOCATION\source\twittersearch\twittersearch-
qa.properties

Also, the shared module configuration file is refernced using profile variants, so given the
OS environment variable spring_profiles_active=default,qa the following shared module
configuration files would be searched for in this order

1. XD_MODULE_CONFIG_LOCATION\modules.yml

2. XD_MODULE_CONFIG_LOCATION\modules-default.yml

3. XD_MODULE_CONFIG_LOCATION\modules-qa.yml

Batch Jobs or modules accessing JDBC

Another common case is access to a relational database from a job or the JDBC Sink module.

As an example, to provide the properties for the batch job jdbchdfs the file
XD_MODULE_CONFIG_LOCATION\job\jdbchdfs\jdbchdfs.properites should contain

driverClass=org.hsqldb.jdbc.JDBCDriver

url=jdbc:hsqldb:mem:xd

username=sa

password=

A property file with the same keys, but likely different values would be located in
XD_MODULE_CONFIG_LOCATION\sink\jdbc\jdbc.properites.

Spring XD

1.0.0 Spring XD Guide 24

7. Architecture

7.1 Introduction

Spring XD is a unified, distributed, and extensible service for data ingestion, real time analytics, batch
processing, and data export. The foundations of XD’s architecture are based on the over 100+ man
years of work that have gone into the Spring Batch, Integration and Data projects. Building upon these
projects, Spring XD provides servers and a configuration DSL that you can immediately use to start
processing data. You do not need to build an application yourself from a collection of jars to start using
Spring XD.

Spring XD has two modes of operation - single and multi-node. The first is a single process that is
responsible for all processing and administration. This mode helps you get started easily and simplifies
the development and testing of your application. The second is a distributed mode, where processing
tasks can be spread across a cluster of machines and an administrative server reacts to user commands
and runtime events managed within a shared runtime state to coordinate processing tasks executing
on the cluster.

Runtime Architecture

The key components in Spring XD are the XD Admin and XD Container Servers. Using a high-level
DSL, you post the description of the required processing tasks to the Admin server over HTTP. The
Admin server then maps the processing tasks into processing modules. A module is a unit of execution
and is implemented as a Spring ApplicationContext. A distributed runtime is provided that will assign
modules to execute across multiple XD Container servers. A single XD Container server can run multiple
modules. When using the single node runtime, all modules are run in a single XD Container and the
XD Admin server is run in the same process.

DIRT Runtime

A distributed runtime, called Distributed Integration Runtime, aka DIRT, will distribute the processing
tasks across multiple XD Container instances. The XD Admin server breaks up a processing task into
individual module definitions and assigns each module to a container instance using ZooKeeper (see
XD Distributed Runtime). Each container listens for module definitions to which it has been assigned
and deploys the module, creating a Spring ApplicationContext to run it.

Modules share data by passing messages using a configured messaging middleware (Rabbit, Redis,
or Local for single node). To reduce the number of hops across messaging middleware between them,
multiple modules may be composed into larger deployment units that act as a single module. To learn
more about that feature, refer to the Composing Modules section.

Spring XD

1.0.0 Spring XD Guide 25

Figure 7.1. The XD Admin Server sending module definitions to each XD Container

How the processing task is broken down into modules is discussed in the section Container Server
Architecture.

Support for other distributed runtimes

In the 1.0 release, you are responsible for starting up a single XD Admin server and one or more XD
Containers. The 1.1 release will support running XD on top of other distributed runtime environments
such as Hadoop’s YARN architecture and CloudFoundry.

Single Node Runtime

For testing and development purposes, a single node runtime is provided that runs the Admin and
Container servers, ZooKeeper, and HSQLDB in the same process. The communication to the XD Admin
server is over HTTP and the XD Admin server communicates to an in-process XD Container using an
embedded ZooKeeper server.

Spring XD

1.0.0 Spring XD Guide 26

Figure 7.2. Single Node Runtime

Admin Server Architecture

The Admin Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and jobs, querying runtime state, analytics, and the
like. The Admin Server is implemented using Spring’s MVC framework and the Spring HATEOAS library
to create REST representations that follow the HATEOAS principle. The Admin Server and Container
Servers monitor and update runtime state using ZooKeeper (see XD Distributed Runtime).

Container Server Architecture

The key components of data processing in Spring XD are

• Streams

• Jobs

• Taps

Streams define how event driven data is collected, processed, and stored or forwarded. For example,
a stream might collect syslog data, filter, and store it in HDFS.

Jobs define how coarse grained and time consuming batch processing steps are orchestrated, for
example a job could be be defined to coordinate performing HDFS operations and the subsequent
execution of multiple MapReduce processing tasks.

Taps are used to process data in a non-invasive way as data is being processed by a Stream or a Job.
Much like wiretaps used on telephones, a Tap on a Stream lets you consume data at any point along
the Stream’s processing pipeline. The behavior of the original stream is unaffected by the presence of
the Tap.

https://github.com/SpringSource/spring-hateoas
http://en.wikipedia.org/wiki/HATEOAS

Spring XD

1.0.0 Spring XD Guide 27

Figure 7.3. Taps, Jobs, and Streams

Streams

The programming model for processing event streams in Spring XD is based on the well known
Enterprise Integration Patterns as implemented by components in the Spring Integration project. The
programming model was designed so that it is easy to test components.

A Stream consist of the following types of modules: * An Input source * Processing steps * An Output sink

An Input source produces messages from an external source. XD supports a variety of sources, e.g.
syslog, tcp, http. The output from a module is a Spring Message containing a payload of data and a
collection of key-value headers. Messages flow through message channels from the source, through
optional processing steps, to the output sink. The output sink delivers the message to an external
resource. For example, it is common to write the message to a file system, such as HDFS, but you may
also configure the sink to forward the message over tcp, http, or another type of middleware, or route
the message to another stream.

A stream that consists of a input source and a output sink is shown below

http://www.eaipatterns.com/
http://www.springsource.org/spring-integration

Spring XD

1.0.0 Spring XD Guide 28

Figure 7.4. Foundational components of the Stream processing model

A stream that incorporates processing steps is shown below

Figure 7.5. Stream processing with multiple steps

For simple linear processing streams, an analogy can be made with the UNIX pipes and filters model.
Filters represent any component that produces, processes or consumes events. This corresponds to the
modules (source, processing steps, and sink) in a stream. Pipes represent the way data is transported
between the Filters. This corresponds to the Message Channel that moves data through a stream.

A simple stream definition using UNIX pipes and filters syntax that takes data sent via a HTTP post and
writes it to a file (with no processing done in between) can be expressed as

http | file

The pipe symbol represents a message channel that passes data from the HTTP source to the File
sink. The message channel implementation can either be backed with a local in-memory transport,
Redis queues, or RabbitMQ. The message channel abstraction and the XD architecture are designed
to support a pluggable data transport. Future releases will support other transports such as JMS.

Note that the UNIX pipes and filter syntax is the basis for the DSL that Spring XD uses to describe simple
linear flows. Non-linear processing is partially supported using named channels which can be combined
with a router sink to effectively split a single stream into multiple streams (see Dynamic Router Sink).
Additional capabilities for non-linear processing are planned for future releases.

The programming model for processing steps in a stream originates from the Spring Integration project
and is included in the core Spring Framework as of version 4. The central concept is one of a Message
Handler class, which relies on simple coding conventions to Map incoming messages to processing

Spring XD

1.0.0 Spring XD Guide 29

methods. For example, using an http source you can process the body of an HTTP POST request using
the following class

public class SimpleProcessor {

 public String process(String payload) {

 return payload.toUpperCase();

 }

}

The payload of the incoming Message is passed as a string to the method process. The contents of
the payload is the body of the http request as we are using a http source. The non-void return value is
used as the payload of the Message passed to the next step. These programming conventions make
it very easy to test your Processor component in isolation. There are several processing components
provided in Spring XD that do not require you to write any code, such as a filter and transformer that
use the Spring Expression Language or Groovy. For example, adding a processing step, such as a
transformer, in a stream processing definition can be as simple as

http | transformer --expression=payload.toUpperCase() | file

For more information on processing modules, refer to the Processors section.

Stream Deployment

The Container Server listens for module deployment events initiated from the Admin Server via
ZooKeeper. When the container node handles a module deployment event, it connects the module’s
input and output channels to the data bus used to transport messages during stream processing. In a
single node configuration, the data bus uses in-memory direct channels. In a distributed configuration,
the data bus communications are backed by the configured transport middleware. Redis and Rabbit are
both provided with the Spring XD distribution, but other transports are envisioned for future releases.

Spring XD

1.0.0 Spring XD Guide 30

Figure 7.6. A Stream Deployed in a single node server

Spring XD

1.0.0 Spring XD Guide 31

Figure 7.7. A Stream Deployed in a distributed runtime

In the http | file example, the Admin assigns each module to a separate Container instance,
provided there are at least two Containers available. The file module is deployed to one container
and the http module to another. The definition of a module is stored in a Module Registry. A module
definition consists of a Spring XML configuration file, some classes used to validate and handle options
defined by the module, and dependent jars. The module definition contains variable placeholders,
corresponding to DSL parameters (called options) that allow you to customize the behavior of the
module. For example, setting the http listening port would be done by passing in the option --port,
e.g. http --port=8090 | file, which is in turn used to substitute a placeholder value in the module
definition.

The Module Registry is backed by the filesystem and corresponds to the directory <xd-install-
directory>/modules. When a module deployment is handled by the Container, the module definition
is loaded from the registry and a new Spring ApplicationContext is created in the Container process to
run the module. Dependent classes are loaded via the Module Classloader which first looks at jars in
the modules /lib directory before delegating to the parent classloader.

Using the DIRT runtime, the http | file example would map onto the following runtime architecture

Spring XD

1.0.0 Spring XD Guide 32

Figure 7.8. Distributed HTTP to File Stream

Data produced by the HTTP module is sent over a Redis Queue and is consumed by the File module. If
there was a filter processing module in the steam definition, e.g http | filter | file that would
map onto the following DIRT runtime architecture.

Spring XD

1.0.0 Spring XD Guide 33

Figure 7.9. Distributed HTTP to Filter to File Stream

7.2 Jobs

The creation and execution of Batch jobs builds upon the functionality available in the Spring Batch and
Spring for Apache Hadoop projects. See the Batch Jobs section for more information.

7.3 Taps

Taps provide a non-invasive way to consume the data that is being processed by either a Stream or
a Job, much like a real time telephone wire tap lets you eavesdrop on telephone conversations. Taps
are recommended as way to collect metrics and perform analytics on a Stream of data. See the section
Taps for more information.

Spring XD

1.0.0 Spring XD Guide 34

8. XD Distributed Runtime

8.1 Introduction

This document describes what’s happening "under the hood" of the XD Distributed Runtime (DIRT) and,
in particular, how the runtime architecture achieves high availability and failover in a clustered production
environment. See Running in Distributed Mode for more information on installing and running Spring
XD in distributed mode.

This discussion will focus on the core runtime components and the role of ZooKeeper.

8.2 Configuring XD for High Availabilty (HA)

A production XD environment is typically distributed among multiple hosts in a clustered environment.
XD scales horizontally by providing additional Container instances. In the simplest case, all containers
are replicas, that is, they are interchangeable and a module may be deployed to any instance in a
round-robin fashion. XD supports a flexible container matching algorithm to target modules to specific
container configurations. The matching algorithm will be covered in more detail later, but for now, let’s
assume the simple case. Running multiple containers not only supports horizontal scalability, but allows
for failover. If one container goes down, any modules deployed to that container will be deployed to
another available instance.

XD requires that a single active Admin server handle interactions with the containers, such as stream
deployment requests, as these types of operations must be carefully coordinated and processed
in the order received. Without a backup Admin server, this component becomes single point of
failure. Therefore, two (or more for the risk averse) Admin servers are recommended for a production
environment. Note that every Admin server can accept all requests via REST endpoints but only one
instance, the "Leader", will actually perform requests that update the runtime state. If the Leader goes
down, another available Admin server will assume the role.

An HA XD installation also requires that additional required servers - ZooKeeper, messaging
middleware, and data stores listed above - be configured for HA as well. Please consult the product
documentation for specific recommendations regarding these components.

8.3 ZooKeeper Overview

In the previous section, we claimed that if a container goes down, XD will redeploy anything that
is deployed on that instance to another available container. We also claimed that if the Admin
Leader goes down, another Admin server will assume that role. ZooKeeper is what makes this all
possible. ZooKeeper is a widely used Apache project designed primarily for cluster management and
coordination. This section will cover some basic concepts necessary to understand its role in XD. See
The ZooKeeper Wiki for a more complete overview.

ZooKeeper is based on a simple hierarchical data structure, formally a tree, but conceptually and
semantically similar to a file directory structure. As such, data is stored in nodes. A node is referenced
via a path, e.g., /xd/streams/mystream. Each node can store additional data, serialized as a byte array.
In XD, all data is a java.util.Map serialized as JSON.

A node is created to be either ephemeral or persistent. An ephemeral node exists only as long as
the process that created it. A persistent node is, well, persistent. For example, ephemeral nodes are

Running-Distributed-Mode
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index

Spring XD

1.0.0 Spring XD Guide 35

appropriate for registering Container instances. When an XD container starts up, it registers itself as
an ephemeral node, /xd/containers/<container-id>, where XD generates a unique container id. When
the container goes down, its node is removed. Persistent nodes are used to manage state needed for
recovery and failover that must be available independent of a Container instance. This includes data
such as stream definitions, job definitions, deployment manifests, and module deployments.

Obviously ZooKeeper is critically important to the XD runtime and must itself be HA. ZooKeeper
itself supports a clustered architecture, called an ensemble. The details are beyond the scope of this
document, but for the sake of discussion, there should be at least three ZooKeeper server instances
running (an odd number is always recommended). The XD Container and Admin nodes are clients to the
ZooKeeper ensemble and must connect to ZooKeeper at startup. XD components are configured with a
zk.client.connect property which may designate a single <host>:<port> or a comma separated list. The
ZooKeeper client will attempt to connect to each server in order until it succeeds. If it is unable to connect,
it will keep trying. If a connection goes down, the ZooKeeper client will attempt to reconnect to one
of the servers. The ZooKeeper cluster guarantees consistent replication of data across the ensemble.
ZooKeeper maintains data primarily in memory backed by a disk cache.

In addition to performing CRUD operations on nodes, A ZooKeeper client can register a callback on a
node to respond to any events or state changes to that node or any of its children. Such node operations
and callbacks are the mechanism that control the XD runtime.

Figure 8.1.

Spring XD

1.0.0 Spring XD Guide 36

8.4 The Admin Server Internals

Assuming more than one Admin instance is running, Each instance requests leadership at start up.
If there is already a designated leader, the instance will watch the xd/admin node to be notified if the
Leader goes away. The instance designated as the "Leader", using the Leader Selector recipe provided
by Curator, a ZooKeeper client library that implements some common patterns. Curator also provides
some Listener callback interfaces that the client can register on a node. The AdminServer creates the
top level nodes for xd:

• /xd/admin - children are ephemeral nodes for each available Admin instance and used for Leader
Selector

• /xd/containers - children are ephemeral nodes containing runtime attributes for each available
container

• /xd/streams - children are persistent nodes containing the definition for each stream, however the
leaf nodes for a deployed stream, at the module level, are ephemeral nodes added by the container
to which the module is deployed.

• /xd/jobs - children are persistent nodes containing the definition for each job, however the leaf node
for a deployed job is an ephemeral node added by the container to which the job is deployed.

• /xd/deployments/streams - children are persistent nodes containing stream deployment status

• /xd/deployments/jobs - children are persistent nodes containing job deployment status

and regiseters a LeaderListener which is used by the selected Leader.

The Leader registers listeners on /xd/deployments/streams, /xd/deployments/jobs, and /xd/containers
to handle events related to stream deployments, job deployments, and be notified when containers
are added and removed from the cluster. Note that any Admin instance can handle user requests. For
example, if you enter the following commands via XD shell,

xd>stream create ticktock --definition "time | log"

This command will invoke a REST service on its connected Admin instance to create a new node /xd/
streams/ticktock

xd>stream deploy ticktock

This will create a new node /xd/deployments/streams/ticktock

If the Admin instance connected to the shell is not the Leader, it will perform no further action. The
Leader listening to /xd/deployments/streams will respond to the newly added child node and deploy
each module in the stream definition to a different Container, if possible, and update the runtime state
accordingly.

http://curator.apache.org

Spring XD

1.0.0 Spring XD Guide 37

Figure 8.2.

Example

Let’s walk through a simple example. If you don’t have an XD cluster set up, the basics can be illustrated
by running XD in single node. From the XD install directory:

$export JAVA_OPTS="-Dzk.embedded.server.port=5555"

$xd/bin/xd-singlenode

XD single node runs with an embedded zookeeper server by default and will assign a random unused
port. The zk.embedded.server.port property will assign the requested port if available.

Spring XD

1.0.0 Spring XD Guide 38

In another terminal session, start the ZooKeeper CLI included with ZooKeeper to connect to the
embedded server and inspect the contents of the nodes (NOTE: tab completion works) :

$zkCli.sh -server localhost:5555

After some console output, you should see a prompt:

WatchedEvent state:SyncConnected type:None path:null

[zk: localhost:5555(CONNECTED) 0]

navigate using the ls command:

[[zk: localhost:5555(CONNECTED) 0] ls /xd

[containers, jobs, streams, admin, deployments]

[zk: localhost:5555(CONNECTED) 1] ls /xd/streams

[]

[zk: localhost:5555(CONNECTED) 2] ls /xd/deployments

[jobs, streams, modules]

[zk: localhost:5555(CONNECTED) 3] ls /xd/deployments/streams

[]

[zk: localhost:5555(CONNECTED) 4] ls /xd/deployments/modules

[2ebbbc9b-63ac-4da4-aa32-e39d69eb546b]

[zk: localhost:5555(CONNECTED) 5] ls /xd/deployments/modules/2ebbbc9b-63ac-4da4-aa32-

e39d69eb546b

[]

[zk: localhost:5555(CONNECTED) 6] ls /xd/containers

[2ebbbc9b-63ac-4da4-aa32-e39d69eb546b]

[zk: localhost:5555(CONNECTED) 7]

The above reflects the initial state of XD. Nothing is deployed yet and there are no stream definitions.
Note that xd/deployments/modules has a child which is the id corresponding to the embedded container.
If you are running in a clustered environment and connected to one of the ZooKeeper servers in the
same ensemble that XD is connected to, you should see multiple nodes under /xd/containers and there
may be some existing deployments.

Start the XD Shell in a new terminal session and create a stream:

$ shell/bin/xd-shell

 _____ __ _______

/ ___| (-) \ \ / / _ \

\ `--. _ __ _ __ _ _ __ __ _ \ V /| | | |

 `--. \ '_ \| '__| | '_ \ / _` | / ^ \| | | |

/__/ / |_) | | | | | | | (_| | / / \ \ |/ /

____/| .__/|_| |_|_| |_|__, | \/ \/___/

 | | __/ |

 |_| |___/

eXtreme Data

1.0.0.BUILD-SNAPSHOT | Admin Server Target: http://localhost:9393

Welcome to the Spring XD shell. For assistance hit TAB or type "help".

xd:>stream create ticktock --definition "time | log"

Created new stream 'ticktock'

xd:>

Back to the ZK CLI session:

Spring XD

1.0.0 Spring XD Guide 39

[zk: localhost:5555(CONNECTED) 7] ls /xd/streams

[ticktock]

[zk: localhost:5555(CONNECTED) 8] get /xd/streams/ticktock

{"definition":"time | log"}

cZxid = 0x31

ctime = Wed Apr 09 15:22:03 EDT 2014

mZxid = 0x31

mtime = Wed Apr 09 15:22:03 EDT 2014

pZxid = 0x31

cversion = 0

dataVersion = 0

aclVersion = 0

ephemeralOwner = 0x0

dataLength = 27

numChildren = 0

[zk: localhost:5555(CONNECTED) 9]

using the get command on the new stream node, we can see the stream definition represented as
JSON, along with some standard ZooKeeper node information.

Note

ephemeralOwner = 0x0, indicating this is not an ephemeral node. At this point, nothing else
should have changed from the initial state.

Now, Using the XD shell, let’s deploy the stream,

xd>stream deploy ticktock

Deployed stream 'ticktock'

and verify with ZooKeeper:

[zk: localhost:5555(CONNECTED) 9] ls /xd/deployments/streams

[ticktock]

[zk: localhost:2181(CONNECTED) 10] ls /xd/streams/ticktock

[sink, source]

[zk: localhost:2181(CONNECTED) 11] ls /xd/streams/ticktock/source

[time-0]

[zk: localhost:2181(CONNECTED) 12] ls /xd/streams/ticktock/sink

[log-1]

[zk: localhost:2181(CONNECTED) 13] ls /xd/streams/ticktock/source/time-0

[<container-id>]

[zk: localhost:2181(CONNECTED) 14] ls /xd/streams/ticktock/sink/log-1

[<container-id>]

[zk: localhost:5555(CONNECTED) 15] ls /xd/deployments/modules/<container-id>

[ticktock.sink.log-1, ticktock.source.time-0]

Since XD is running as single node, both modules (time and log) are deployed to the same container
instance, corresponding to the <container-id>. The module node name is <stream_name>.<module-
type>.<module-name>-<module-index>, where <module-index> represents the position of the module
in the stream.

The information stored in ZooKeeper is provided to XD shell queries. For example:

Spring XD

1.0.0 Spring XD Guide 40

xd:>runtime modules

 Module Container Id Options

 ---------------------- ------------------------------------

 --

 ticktock.sink.log-1 186d3b36-b005-45ff-b46f-cb2c5cf61ea4

 ticktock.source.time-0 186d3b36-b005-45ff-b46f-cb2c5cf61ea4 {format=yyyy-MM-dd

 HH:mm:ss, fixedDelay=1}

8.5 Module Deployment

A Stream is composed of Modules. In general, each module is deployed to one or more Container
instance(s). In this way the Stream processing is distributed among multiple containers. The Admin
decides to which container(s) each Module is deployed and writes the module information to /xd/
deployments/modules/<container-id>. The Container has a Deploymentlistener to monitor this node for
new modules to deploy. If the deployment is successful, the Container writes it’s id as an ephemeral
node to xd/streams/<stream_name>/<module-type>/<module-name>-<module-index>/<container-id>.

Spring XD

1.0.0 Spring XD Guide 41

Figure 8.3.

By default, deploying a stream in a distributed configuration uses simple round robin logic. For example
if there are 3 containers and 3 modules in a stream definition, s1= m1 | m2 | m3, then XD will attempt
distribute the work load evenly among each container. This is a very simplistic strategy and does not
take into account things like:

• server load - how many modules are already deployed to a container? How close is it to exhausting
available memory, cpu, etc.?

• server affinity - some containers may have external software installed with which specific modules
should be co-located. For example, an hdfs sink could be deployed only to servers running Hadoop.
Or perhaps a file sink should be deployed to servers configured with more disk space.

Spring XD

1.0.0 Spring XD Guide 42

• scalability - Suppose the stream s1, above, can achieve higher throughput with multiple instances of
m2 running, so we want to deploy m2 to every container.

• fault tolerance - the ability to target physical servers on redundant networks, routers, racks, etc.

Deployment Manifest

More complex strategies are critical to tuning and operating XD. Additionally, we must consider various
features and constraints when deploying to a PaaS, Yarn or some other cluster manager. Furthermore,
such deployment concerns should be addressed independently from the stream definition which is
really an expression of the processing logic. To accommodate deployment concerns, XD provides a
Deployment Manifest which is submitted with the deployment request, in the form of in-line properties,
or a reference to a persisted document containing deployment properties.

When you execute a stream deploy shell command, you can optionally pass a --properties parameter
which is a comma delimited list of key=value pairs. The key is either module.[modulename].count or
module.[modulename].criteria. The value for a count is a positive integer, and the value for criteria
is a valid SpEL expression. The Admin server will match the available containers to the deployment
manifest. The stream is considered to be successfully deployed if at least one of each module instance
is deployed to a container. For example,

xd:>stream create test1 --definition "http | transform --expression=payload.toUpperCase()

 | log"

Created new stream 'test1'

Next, deploy it requesting three transformer instances:

xd:>stream deploy --name test1 --properties "module.transform.count=3"

Deployed stream 'test1'

If there are only two container instances available, only two instances of transform will be deployed.
The stream deployment is successful since it is functional. However the unfulfilled deployment request
remains active and a third instance will be deployed if a new container comes on line that matches the
criteria.

Container Attributes

The SpEL context (root object) for the Deployment Manifest is ContainerAtrtributes, basically a map
derivative that contains some standard attributes:

• id - the generated container ID

• pid - the process ID of the container instance

• host - the host name of the machine running the container instance

• ip — the IP address of the machine running the container instance

ContainerAttributes also includes any user-defined attribute values configured for the container. These
attributes are configured by editing xd/config/servers.yml the file included in the XD distribution contains
some commented out sections as examples. In this case, the container attributes configuration looks
something like:

Spring XD

1.0.0 Spring XD Guide 43

xd:

 container:

 groups: group2

 color: red

Note

Groups may also be assigned to a container via the optional command line argument --groups
or by setting the environment variable XD_CONTAINER_GROUPS. As the property name
suggests, a container may belong to more than one group, represented as comma-delimited
string. XD considers the concept of groups a useful convention for targeting groups of servers
for deployment in a variety of scenarios, so it enjoys special treatment. However, there is nothing
technically different from groups and other user defined attribute.

8.6 Stream Deployment Examples

To Illustrate how to use the Deployment Manifest, We will use the following runtime configuration, as
displayed in the XD shell:

xd:>runtime containers

 Container Id Host IP Address PID Groups

 Custom Attributes

 ------------------------------------ ---------------- ------------- ---- ------

 bc624816-f8a8-4f35-83f6-a125ed147b7c ip-10-110-18-10 10.110.18.10 1708 group2

 {color=red}

 018b7c8d-6fa9-4759-8471-76899766f892 ip-10-139-36-168 10.139.36.168 1852 group2

 {color=blue}

 afc3741c-217a-415a-9d86-a1f62de03613 ip-10-139-17-116 10.139.17.116 1861 group1

 {color=green}

Each of the three containers is running on a different host and has configured Groups and Custom
Attributes as shown.

First, create a stream:

xd:>stream create test1 --definition "http | transform --expression=payload.toUpperCase()

 | log"

Created new stream 'test1'

Next, deploy it using a manifest:

xd:>stream deploy --name test1 --properties

 "module.transform.count=3,module.log.criteria=groups.contains('group1')"

Deployed stream 'test1'

Verify the deployment:

Spring XD

1.0.0 Spring XD Guide 44

xd:>runtime modules

 Module Container Id Properties

 --------------------------- ------------------------------------

 --

 test1.source.http-0 bc624816-f8a8-4f35-83f6-a125ed147b7c {port=9000}

 test1.processor.transform-1 bc624816-f8a8-4f35-83f6-a125ed147b7c {valid=true,

 expression=payload.toUpperCase()}

 test1.processor.transform-1 018b7c8d-6fa9-4759-8471-76899766f892 {valid=true,

 expression=payload.toUpperCase()}

 test1.processor.transform-1 afc3741c-217a-415a-9d86-a1f62de03613 {valid=true,

 expression=payload.toUpperCase()}

 test1.sink.log-2 afc3741c-217a-415a-9d86-a1f62de03613

We can see that three instances of the processor have been deployed, one to each container instance.
Also the log module has been deployed to the container id corresponding to group1. Now we can
undeploy and deploy the stream using a different manifest:

xd:>stream undeploy test1

Un-deployed stream 'test1'

xd:>runtime modules

 Module Container Id Properties

 ------ ------------ ----------

xd:>stream deploy --name test1 --properties "module.log.count=3,module.log.criteria=!

groups.contains('group1')"

Deployed stream 'test1'

xd:>runtime modules

 Module Container Id Properties

 --------------------------- ------------------------------------

 --

 test1.sink.log-2 bc624816-f8a8-4f35-83f6-a125ed147b7c

 test1.processor.transform-1 018b7c8d-6fa9-4759-8471-76899766f892 {valid=true,

 expression=payload.toUpperCase()}

 test1.sink.log-2 018b7c8d-6fa9-4759-8471-76899766f892

 test1.source.http-0 afc3741c-217a-415a-9d86-a1f62de03613 {port=9000}

Note that there are only two instances of log deployed. We asked for three however the criteria specified
only containers not in group1 are eligible. Since only two containers matched the criteria, we have a
log module deployed on each one. If we start a new container not in group1, the third instance will be
deployed. The stream is currently shown as deployed since it is functional even though the manifest
is not completely satisfied.

Spring XD

1.0.0 Spring XD Guide 45

9. Streams

9.1 Introduction

In Spring XD, a basic stream defines the ingestion of event driven data from a source to a sink that
passes through any number of processors. Stream processing is performed inside the XD Containers
and the deployment of stream definitions to containers is done via the XD Admin Server. The Getting
Started section shows you how to start these servers and how to start and use the Spring XD shell

Sources, sinks and processors are predefined configurations of a module. Module definitions are found
in the xd/modules directory. 1. Modules definitions are standard Spring configuration files that use
existing Spring classes, such as Input/Output adapters and Transformers from Spring Integration that
support general Enterprise Integration Patterns.

A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source
and a file sink (with no processors) is shown below

http | file

The DSL mimics a UNIX pipes and filters syntax. Default values for ports and filenames are used in this
example but can be overriden using -- options, such as

http --port=8091 | file --dir=/tmp/httpdata/

To create these stream definitions you make an HTTP POST request to the XD Admin Server. More
details can be found in the sections below.

9.2 Creating a Simple Stream

The XD Admin server 5 exposes a full RESTful API for managing the lifecycle of stream definitions, but
the easiest way to use the XD shell. Start the shell as described in the Getting Started section

New streams are created by posting stream definitions. The definitions are built from a simple DSL. For
example, let’s walk through what happens if we execute the following shell command:

xd:> stream create --definition "time | log" --name ticktock

This defines a stream named ticktock based off the DSL expression time | log. The DSL uses
the "pipe" symbol |, to connect a source to a sink.

Then to deploy the stream execute the following shell command (or alternatively add the --deploy
flag when creating the stream so that this step is not needed):

xd:> stream deploy --name ticktock

The stream server finds the time and log definitions in the modules directory and uses them to setup
the stream. In this simple example, the time source simply sends the current time as a message each
second, and the log sink outputs it using the logging framework.

1Using the filesystem is just one possible way of storing module defintions. Other backends will be supported in the future, e.g.
Redis.
5The server is implemented by the AdminMain class in the spring-xd-dirt subproject

http://static.springsource.org/spring-integration/reference/htmlsingle/#spring-integration-adapters
http://static.springsource.org/spring-integration/reference/htmlsingle/#transformer
http://www.eaipatterns.com/

Spring XD

1.0.0 Spring XD Guide 46

processing module 'Module [name=log, type=sink]' from group 'ticktock' with index: 1

processing module 'Module [name=time, type=source]' from group 'ticktock' with index: 0

17:26:18,774 WARN ThreadPoolTaskScheduler-1 logger.ticktock:141 - Thu May 23 17:26:18 EDT

 2013

If you would like to have multiple instances of a module in the stream, you can include a property with
the deploy command:

xd:> stream deploy --name ticktock --properties "module.time.count=3"

You can also include a SpEL Expression as a criteria property for any module. That will be evaluated
against the attributes of each currently available Container. Instances of the module will only be deployed
to Containers for which the expression evaluates to true.

xd:> stream deploy --name ticktock --properties

 "module.time.count=3,module.log.criteria=groups.contains('x')"

9.3 Deleting a Stream

You can delete a stream by issuing the stream destroy command from the shell:

xd:> stream destroy --name ticktock

9.4 Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undeploy the stream by name and issue the deploy command at a later time to restart it.

xd:> stream undeploy --name ticktock

xd:> stream deploy --name ticktock

9.5 Other Source and Sink Types

Let’s try something a bit more complicated and swap out the time source for something else. Another
supported source type is http, which accepts data for ingestion over HTTP POSTs. Note that the http
source accepts data on a different port (default 9000) from the Admin Server (default 8080).

To create a stream using an http source, but still using the same log sink, we would change the
original command above to

xd:> stream create --definition "http | log" --name myhttpstream --deploy

which will produce the following output from the server

processing module 'Module [name=log, type=sink]' from group 'myhttpstream' with index: 1

processing module 'Module [name=http, type=source]' from group 'myhttpstream' with index:

 0

Note that we don’t see any other output this time until we actually post some data (using shell command)

xd:> http post --target http://localhost:9000 --data "hello"

xd:> http post --target http://localhost:9000 --data "goodbye"

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/htmlsingle/#expressions

Spring XD

1.0.0 Spring XD Guide 47

and the stream will then funnel the data from the http source to the output log implemented by the log sink

15:08:01,676 WARN ThreadPoolTaskScheduler-1 logger.myhttpstream:141 - hello

15:08:12,520 WARN ThreadPoolTaskScheduler-1 logger.myhttpstream:141 - goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (file),
to hadoop (hdfs) or to any of the other sink modules which are provided. You can also define your
own modules.

9.6 Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

http | transform --expression=payload.toUpperCase() | log

To create this stream enter the following command in the shell

xd:> stream create --definition "http | transform --expression=payload.toUpperCase() |

 log" --name myprocstrem --deploy

Posting some data (using shell command)

xd:> http post --target http://localhost:9000 --data "hello"

Will result in an uppercased hello in the log

15:18:21,345 WARN ThreadPoolTaskScheduler-1 logger.myprocstream:141 - HELLO

See the Processors section for more information.

9.7 DSL Syntax

In the examples above, we connected a source to a sink using the pipe symbol |. You can also pass
parameters to the source and sink configurations. The parameter names will depend on the individual
module implementations, but as an example, the http source module exposes a port setting which
allows you to change the data ingestion port from the default value. To create the stream using port
8000, we would use

xd:> stream create --definition "http --port=8000 | log" --name myhttpstream

If you know a bit about Spring configuration files, you can inspect the module definition to see which
properties it exposes. Alternatively, you can read more in the source and sink documentation.

9.8 Advanced Features

In the examples above, simple module definitions are used to construct each stream. However, modules
may be grouped together in order to avoid duplication and/or reduce the amount of chattiness over the
messaging middleware. To learn more about that feature, refer to the Composing Modules section.

If directed graphs are needed instead of the simple linear streams described above, two features are
relevant. First, named channels may be used as a way to combine multiple flows upstream and/or

Spring XD

1.0.0 Spring XD Guide 48

downstream from the channel. The behavior of that channel may either be queue-based or topic-based
depending on what prefix is used ("queue:myqueue" or "topic:mytopic", respectively). To learn more,
refer to the Named Channels section. Second, you may need to determine the output channel of a
stream based on some information that is only known at runtime. To learn about such content-based
routing, refer to the Dynamic Router section.

Spring XD

1.0.0 Spring XD Guide 49

10. Modules

10.1 Introduction

The XD runtime environment supports data ingestion by allowing users to define streams. Streams are
composed of modules which encapsulate a unit of work into a reusable component.

Modules are categorized by type, typically representing the role or function of the module. Current XD
module types include source, sink, and processor which indicate how they modules may be composed
in a stream. Specifically, a source polls an external resource, or is triggered by an event and only
provides an output. The first module in a stream is always a source. A processor performs some type
of transformation or business logic and provides an input and one or more outputs. A sink provides only
an input and outputs data to an external resource to terminate the stream.

XD comes with a number of modules used for assembling streams which perform common input and/or
output operations with files, HDFS, http, twitter, syslog, GemFire, and more. Users can easily assemble
these into streams to build complex big data applications without having to know the underlying Spring
products on which XD is built.

However, if you are interested in extending XD with your own modules, some knowledge of Spring,
Spring Integration, and Spring Batch is essential. The remainder of this document assumes the reader
has some familiarity with these topics.

10.2 Creating a Module

This section provides details on how to write and register custom modules. For a quick start, dive into
the examples of creating source, processor, and sink modules.

A ModuleDefinition has the following required attributes:

• name - the name of the component, normally a single word representing the purpose of the module.
Examples are file, http, syslog.

• type - the module type, current XD module types include source, sink, and processor

• instance id - This represents a named instance of a module with a given name and type, with a specific
configuration.

Modules and Spring

At the core, a module is any component that may be implemented using a Spring application context. In
this respect, the concept may be extended for purposes other than data ingestion. The types mentioned
above (source, processor,sink) are specific to XD and constructing streams. But other module types
are envisioned.

A module is typically configured using property placeholders which are bound to the module’s attributes.
Attributes may be required or optional and this coincides with whether a default value is provided for
the placeholder.

For example, here is part of the Spring configuration for a twittersearch source that runs a query against
Twitter:

https://github.com/SpringSource/spring-xd/blob/master/spring-xd-module/src/main/java/org/springframework/xd/module/ModuleDefinition.java

Spring XD

1.0.0 Spring XD Guide 50

<beans>

 ...

 <int:inbound-channel-adapter id="results" auto-startup="false"

 ref="twitterSearchMessageSource" method="getTweets">

 <int:poller fixed-delay="${fixedDelay:5000}"/>

 </int:inbound-channel-adapter>

 <bean id="twitterSearchMessageSource" class="org.springframework.integration.x.twitter.TwitterSearchMessageSource">

 <constructor-arg ref="oauth2Template"/>

 <constructor-arg value="${query}"/>

 </bean>

 <bean id="oauth2Template" class="org.springframework.social.oauth2.OAuth2Template">

 <constructor-arg index="0" value="${consumerKey:${twitter.oauth.consumerKey}}" />

 <constructor-arg index="1" value="${consumerSecret:${twitter.oauth.consumerSecret}}" />

 <constructor-arg index="2" value="http://notused" />

 <constructor-arg index="3" value="http://notused" />

 <constructor-arg index="4" value="https://api.twitter.com/oauth2/token" />

 </bean>

</beans>

Note the property placeholders for query, fixedDelay, consumerKey and consumerSecret. The query
property defines no default value, so it is a required attribute for this module. fixedDelay defaults to 5000,
so it is an optional attribute. Note the defaults for consumerKey and consumerSecret. The property
names prefixed by twitter are globally defined for the entire XD system in config/twitter.properties. So
if the user does not specify a consumerKey or consumerSecret when creating the stream, XD’s twitter
configuration will be used instead.

The XD server will substitute values for all of these properties as configured for each module instance.
For example, we can create two streams each creating an instance of the twittersearch module with
a different configuration.

xd:> stream create --name tweettest --definition "twittersearch --query='java' | file"

or

xd:> stream create --name tweettest2 --definition "twittersearch --query-'java' --

consumerKey='mykey' --consumerSecret='mysecret' | file"

In addition to properties, modules may reference Spring beans which are defined externally such that
each module instance may inject a different implementation of a bean. The ability to configure each
module instance differently is only possible if each module is created in its own application context. The
module may be configured with a parent context, but this should be done with care. In the simplest case,
the module context is completely separate. This results in some very useful features, such as being
able to create multiple bean instances with the same id, possibly with different configurations. More
generally, this allows modules to adhere to the KISS principle.

Integration Modules

In Spring Integration terms,

• A source is a valid message flow that contains a direct channel named output which is fed by an
inbound adapter, either configured with a poller, or triggered by an event.

Spring XD

1.0.0 Spring XD Guide 51

• A processor is a valid message flow that contains a direct channel named input and a subscribable
channel named output (direct or publish subscribe). It should perform some type of transformation on
the message. (TBD: Describe multiple outputs, routing, etc.)

• A sink is a valid message flow that contains a direct channel named input and an outbound adapter,
or service activator used to consume a message payload.

Modules of type source, processor, and sink are built with Spring Integration and are typically very fine-
grained.

For example, take a look at the file source which simply polls a directory using a file inbound adapter
and file sink which appends incoming message payloads to a file using a file outbound adapter. On
the surface, there is nothing special about these components. They are plain old Spring XML bean
definition files.

Upon closer inspection, you will notice that modules adhere to some important conventions. For one
thing, the file name is the module name. Also note the channels named input and output, in keeping
with the KISS principle (let us know if you come up with some simpler names). These names are by
convention what XD uses to discover a module’s input and/or output channels which it wires together
to compose streams. Another thing you will observe is the use of property placeholders with sensible
defaults where possible. For example, the file source requires a directory. An appropriate strategy is
to define a common root path for XD input files (At the time of this writing it is /tmp/xd/input/. This is
subject to change, but illustrates the point). An instance of this module may specify the directory by
providing name property. If not provided, it will default to the stream name, which is contained in the
xd.stream.name property defined by the XD runtime. By convention, XD defined properties are prefixed
with xd

directory="/tmp/xd/input/${name:${xd.stream.name}}"

10.3 Registering a Module

XD provides a strategy interface ModuleRegistry which it uses to find a module of a given name and type.
Currently XD provides RedisModuleRegistry and FileModuleRegistry, The ModuleRegistry is a required
component for the XD Server. By default the XD Server is configured with the FileModuleRegistry which
looks for modules in ${xd.home:..}/modules. Where xd.home is a Java System Property or may
be passed as a command line argument to the container launcher. So out of the box, the modules
are contained in the XD modules directory. The modules directory organizes module types in sub-
directories. So you will see something like:

modules/processor

modules/sink

modules/source

Using the default server configuration, you simply drop your module file into the modules directory and
deploy a stream to the server.

Modules with isolated classpath

In addition to the simple format described above, where you would have a foo source module
implemented as a modules/source/foo.xml file, there is also preliminary support for modules that
wish to bring their own library dependencies, in an isolated fashion.

https://github.com/spring-projects/spring-xd/blob/master/modules/source/file/config/file.xml
https://github.com/spring-projects/spring-xd/blob/master/modules/sink/file/config/file.xml
https://github.com/SpringSource/spring-xd/blob/master/spring-xd-dirt/src/main/java/org/springframework/xd/dirt/module/ModuleRegistry.java

Spring XD

1.0.0 Spring XD Guide 52

This is accomplished by creating a folder named after your module name and moving the xml file to a
config subdirectory. As an example, the foo.xml file would then reside in

modules/source/foo/config/foo.xml

Additional jar files can then be added to a sibling lib directory, like so:

modules/source/foo/

 config/

 foo.xml

 lib/

 commons-foo.jar

 foo-ext.jar

Classes will first be loaded from any of the aforementioned jar files and, only if they’re not found will they
be loaded from the parent, global ClassLoader that Spring XD normally uses. Still, there are a couple
of caveats that one should be aware of:

1. refrain from putting into the lib/ folder jar files that are also part of Spring XD, or you’ll likely end
up with ClassCastExceptions

2. any class that is directly or indirectly referenced from the payload type of your messages (i.e. the
types that transit from module to module) must not belong to a particular module lib/ folder but
should rather be loaded by the global Spring XD classloader

10.4 Composing Modules

As described above, a stream is defined as a sequence of modules, minimally a source module followed
by a sink module. One or more processor modules may be added in between the source and sink, but
they are not mandatory. Sometimes streams are similar for a subset of their modules. For example,
consider the following two streams:

stream1 = http | filter --expression=payload.contains('foo') | file

stream2 = file | filter --expression=payload.contains('foo') | file

Other than the source module, the definitions of those two streams are the same. It would be better to
avoid this degree of duplication. This is the first problem that composed modules address.

Each module within a stream represents a unit of deployment. Therefore, in each of the streams defined
above, there would be 3 such units (the source, the processor, and the sink). In a singlenode runtime,
it doesn’t make much of a difference since the communication between each module would be a bridge
between in-memory channels. When deploying a stream to a distributed runtime environment, however,
the communication between each module occurs over messaging middleware. That decoupling between
modules is useful in that it promotes loose-coupling and thus enables load-balancing and buffering
of messages when the consuming module(s) are temporarily busy or down. Nevertheless, at times
the individual module boundaries are more fine-grained than necessary for these middleware "hops".
Overhead may be avoided by reducing the overall number of deployment units and therefore the number
of hops. In such cases, it’s convenient to be able to wrap multiple modules together so that they act as
a single "black box" unit for deployment. In other words, if "foo | bar" are composed together as a new
module named "baz", the input and/or output to "baz" would still occur as a hop over the middleware,
but the communication from foo to bar would occur directly, in-process. This is the second problem that
composed modules address.

Spring XD

1.0.0 Spring XD Guide 53

Now let’s look at an example. Returning to the two similar streams above, the filter processor and file
sink could be combined into a single module. In the shell, the following command would take care of that:

xd:> module compose foo --definition "filter --expression=payload.contains('foo') | file"

Then, to verify the new module composition was successful, check if it exists:

xd:> module list --type sink

Module Name Module Type

------------------- -----------

...

foo sink

Notice that the composed module shows up in the list of sink modules. That is because logically, it
has the structure of a sink: it provides an input channel (which is bridged to the filter processor’s input
channel), but it provides no output channel (since the file sink has no output).

If a module were composed of two processors, it would be classified as a processor itself:

xd:> module compose myprocessor --definition "splitter | filter --

expression=payload.contains('foo')"

If a module were composed of a source and a processor, it would be classified as a source itself:

xd:> module compose mysource --definition "http | filter --

expression=payload.contains('foo')"

Based on the logical type of the composed module, it may be used in a stream as if it were a simple
module instance. For example, to redefine the two streams from the first problem case above, now that
the "foo" sink module has been composed, you would issue the following shell commands:

xd:> stream create httpfoo --definition "http | foo" --deploy

xd:> stream create filefoo --definition "file --outputType=text/plain | foo" --deploy

To test the "httpfoo" stream, try the following:

xd:> http post --data hi

xd:> http post --data hifoo

The first message should have been ignored due to the filter, but the second one should exist in the file:

xd:> ! cat /tmp/xd/output/httpfoo.out

command is:cat /tmp/xd/output/httpfoo.out

hifoo

To test the "filefoo" stream, echo "foo" to a file in the /tmp/xd/input/filefoo directory, then verify:

xd:> ! cat /tmp/xd/output/filefoo.out

command is:cat /tmp/xd/output/filefoo.out

foo

When you no longer need a composed module, you may delete it with the "module delete" command
in the shell. However, if that composed module is currently being used by one or more streams, the
deletion will fail as shown below:

Spring XD

1.0.0 Spring XD Guide 54

xd:> module delete --name foo --type sink

16:51:37,349 WARN Spring Shell client.RestTemplate:566 - DELETE request for "http://

localhost:9393/modules/sink/foo" resulted in 500 (Internal Server Error); invoking error

 handler

Command failed org.springframework.xd.rest.client.impl.SpringXDException: Cannot delete

 module sink:foo because it is used by [stream:filefoo, stream:httpfoo]

As you can see, the failure message shows which stream(s) depend upon the composed module you
are trying to delete.

If you destroy both of those streams and try again, it will work:

xd:> stream destroy --name filefoo

Destroyed stream 'filefoo'

xd:> stream destroy --name httpfoo

Destroyed stream 'httpfoo'

xd:> module delete --name foo --type sink

Successfully destroyed module 'foo' with type sink

When creating a module, if you duplicate the name of an existing module for the same type, you will
receive an error. In the example below the user tried to compose a tcp module, however one already
exists:

xd:>module compose tcp --definition "filter --expression=payload.contains('foo') | file"

14:52:27,781 WARN Spring Shell client.RestTemplate:566 - POST request for "http://

ec2-50-16-24-31.compute-1.amazonaws.com:9393/modules" resulted in 409 (Conflict); invoking

 error handler

Command failed org.springframework.xd.rest.client.impl.SpringXDException: There is already

 a module named 'tcp' with type 'sink'

However, you can create a module for a given type even though a module of that name exists but as a
different type. For example: I can create a sink module named filter, even though a filter module exists
already as a processor.

Finally, it’s worth mentioning that in some cases duplication may be avoided by reusing an actual stream
rather than a composed module. That is possible when named channels are used in the source and/or
sink position of a stream definition. For example, the same overall functionality as provided by the two
streams above could also be achieved as follows:

xd:> stream create foofilteredfile --definition "queue:foo > filter --

expression=payload.contains('foo') | file"

xd:> stream create httpfoo --definition "http > queue:foo"

xd:> stream create filefoo --definition "file > queue:foo"

This approach is more appropriate for use-cases where individual streams on either side of the named
channel may need to be deployed or undeployed independently. Whereas the queue typed channel
will load-balance across multiple downstream consumers, the "topic:" prefix may be used if broadcast
behavior is needed instead. For more information about named channels, refer to the Named Channels
section.

10.5 Getting Information about Modules

To view the available modules use the the module list command. Modules appearing with a (c)
marker are composed modules. For example:

Spring XD

1.0.0 Spring XD Guide 55

xd:>module list

 Source Processor Sink Job

 ------------------ ------------------ ----------------------- ----------------

 file aggregator aggregate-counter filejdbc

 gemfire analytic-pmml counter ftphdfs

 gemfire-cq http-client field-value-counter hdfsjdbc

 http bridge file hdfsmongodb

 jms filter gauge jdbchdfs

 mail json-to-tuple gemfire-json-server filepollhdfs

 mqtt object-to-json gemfire-server

 post script jdbc

 reactor-syslog splitter mail

 reactor-tcp transform mqtt

 syslog-tcp (c) myfilter rich-gauge

 syslog-udp splunk

 tail tcp

 tcp throughput-sampler

 tcp-client avro

 trigger hdfs

 twittersearch log

 twitterstream rabbit

 rabbit router

 time

To get information about a particular module (such as what options it accepts), use the module info
--<module type>:<module name> command. For example:

xd:>module info --name source:file

Information about source module 'file':

 Option Name Description

 Default Type

 --- -------

 dir the absolute path to the directory to monitor for files

 <none> String

 pattern a filter expression (Ant style) to accept only files that match the

 pattern * String

 outputType how this module should emit messages it produces

 <none> MediaType

 preventDuplicates whether to prevent the same file from being processed twice

 true boolean

 ref set to true to output the File object itself

 false boolean

 fixedDelay the fixed delay polling interval specified in seconds

 5 int

To display the actual definition file of a module use the module display --name <module

type>:<module name> command. For example:

Spring XD

1.0.0 Spring XD Guide 56

xd:>module display --name tcp --type source

Configuration file contents for module definition 'tcp' (source):

...

 <int-ip:tcp-connection-factory id="connectionFactory"

 type="server"

 port="${port}"

 lookup-host="${reverseLookup}"

 so-timeout="${socketTimeout}"

 using-nio="${nio}"

 using-direct-buffers="${useDirectBuffers}"

 deserializer="${decoder}"/>

 <int-ip:tcp-inbound-channel-adapter id="adapter" channel="toString"

 auto-startup="false"

 connection-factory="connectionFactory"/>

 <int:transformer input-channel="toString" output-channel="output" expression="new

 String(payload, '${charset}')"/>

 <int:channel id="output"/>

...

10.6 How module options are resolved

As we’ve seen so far, a module is a re-usable piece of Spring Integration (or Spring Batch) software
that can be dynamically configured thru the use of module options.

A module option is any value that the module author has deemed worthy of configuration at deployment
time. Preferably, the module author will have provided metadata to describe the available options. This
section explains how default values are computed for each module option.

In a nutshell, actual values are drawn from the following 3 sources, from most precedent to least
precedent:

1. actual values in the stream definition (e.g. --foo=bar)

2. platform-wide defaults (appearing e.g. in .yml and .properties files, see below)

3. defaults the module author chose (see metadata)

Going into more detail, the mid layer above (platform-wide defaults) will resolve like so, assuming option
<optionname> of module <modulename> (which is of type <moduletype>):

a. a system property named <moduletype>.<modulename>.<optionname>

b. an environment variable named <moduletype>.<modulename>.<optionname> (or
<MODULETYPE>_<MODULENAME>_<OPTIONNAME>)

c. a key named <optionname> in the properties file <root>/<moduletype>/<modulename>/
<modulename>.properties

d. a key named <moduletype>.<modulename>.<optionname> in the YaML file <root>/
<module-config>.yml

where

Spring XD

1.0.0 Spring XD Guide 57

<root>

is the value of the xd.module.config.location system property (driven by the
XD_MODULE_CONFIG_LOCATION env var when using the canonical Spring XD shell scripts).
Defaults to ${xd.config.home}/modules/

<module-config>

is the value of the xd.module.config.name system property (driven by the
XD_MODULE_CONFIG_NAME env var). Defaults to xd-module-config

Note that YaML is particularly well suited for hierarchical configuration, so for example, instead of

source.file.dir: foo

source.file.pattern: *.txt

source.http.port: 1234

one can write

source:

 file:

 dir: foo

 pattern: *.txt

 http:

 port: 1234

Spring XD

1.0.0 Spring XD Guide 58

11. Sources

11.1 Introduction

In this section we will show some variations on input sources. As a prerequisite start the XD Container
as instructed in the Getting Started page.

The Sources covered are

• HTTP

• Tail

• File

• Mail

• Twitter Search

• Twitter Stream

• Gemfire

• Gemfire CQ

• Syslog

• TCP

• TCP Client

• Reactor IP

• JMS

• RabbitMQ

• Time

• MQTT

• Stdout Capture

Future releases will provide support for other currently available Spring Integration Adapters. For
information on how to adapt an existing Spring Integration Adapter for use in Spring XD see the section
Creating a Source Module.

The following sections show a mix of Spring XD shell and plain Unix shell commands, so if you are trying
them out, you should open two separate terminal prompts, one running the XD shell and one to enter
the standard commands for sending HTTP data, creating directories, reading files and so on.

11.2 HTTP

To create a stream definition in the server using the XD shell

xd:> stream create --name httptest --definition "http | file" --deploy

Post some data to the http server on the default port of 9000

Spring XD

1.0.0 Spring XD Guide 59

xd:> http post --target http://localhost:9000 --data "hello world"

See if the data ended up in the file

$ cat /tmp/xd/output/httptest

HTTP with options

The http source has one option

port
The http port where data will be posted (default: 9000)

Here is an example

xd:> stream create --name httptest9020 --definition "http --port=9020 | file" --deploy

Post some data to the new port

xd:> http post --target http://localhost:9020 --data "hello world"

$ cat /tmp/xd/output/httptest9020

11.3 Tail

Make sure the default input directory exists

$ mkdir -p /tmp/xd/input

Create an empty file to tail (this is not needed on some platforms such as Linux)

touch /tmp/xd/input/tailtest

To create a stream definition using the XD shell

xd:> stream create --name tailtest --definition "tail | file" --deploy

Send some text into the file being monitored

$ echo blah >> /tmp/xd/input/tailtest

See if the data ended up in the file

$ cat /tmp/xd/output/tailtest

Tail with options

The tail source has 3 options:

name
the absolute path to the file to tail (default: /tmp/xd/input/<streamName>)

lines
the number of lines from the end of an existing file to tail (default: 0)

Spring XD

1.0.0 Spring XD Guide 60

fileDelay
on platforms that don’t wait for a missing file to appear, how often (ms) to look for the file (default:
5000)

Here is an example

xd:> stream create --name tailtest --definition "tail --name=/tmp/foo | file --name=bar"

 --deploy

$ echo blah >> /tmp/foo

$ cat /tmp/xd/output/bar

Tail Status Events

Some platforms, such as linux, send status messages to stderr. The tail module sends these events
to a logging adapter, at WARN level; for example…

[message=tail: cannot open `/tmp/xd/input/tailtest' for reading: No such file or

 directory, file=/tmp/xd/input/tailtest]

[message=tail: `/tmp/xd/input/tailtest' has become accessible, file=/tmp/xd/input/

tailtest]

11.4 File

The file source provides the contents of a File as a byte array by default but may be configured to provide
the file reference itself.

To log the contents of a file create a stream definition using the XD shell

xd:> stream create --name filetest --definition "file | log" --deploy

The file source by default will look into a directory named after the stream, in this case /tmp/xd/input/
filetest

Note the above will log the raw bytes. For text files, it is normally desirable to output the contents as
plain text. To do this, set the outputType parameter:

xd:> stream create --name filetest --definition "file --outputType=text/plain | log" --

deploy

For more details on the use of the outputType parameter see Type Conversion

Copy a file into the directory /tmp/xd/input/filetest and observe its contents being logged in
the XD Container.

File with options

The file source has 5 options

dir
The absolute path to the directory to monitor for files (default: /tmp/xd/input/<streamName>)

preventDuplicates
Default value is true to prevent the same file from being processed twice.

Spring XD

1.0.0 Spring XD Guide 61

pattern
A filter expression (Ant style) that accepts only files that match the pattern.

fixedDelay
The fixed delay polling interval specified in seconds (default: 5)

ref
Set to true to output the File object itself. This is useful in some cases in which the file contents are
large and it would be more efficient to send the file path across the network than the contents. This
option requires that the file be in a shared file system.

11.5 Mail

Spring XD provides a source module for receiving emails, named mail. Depending on the protocol
used, in can work by polling or receive mails as they become available.

Let’s see an example:

xd:> stream create --name mailstream --definition "mail --host=imap.gmail.com --

username=your.user@gmail.com --password=secret | file" --deploy

Then send an email to yourself and you should see it appear inside a file at /tmp/xd/output/
mailstream

The full list of options for the mail source is below:

protocol
the protocol to use amongst pop3, pop3s, imap, imaps (default: imaps)

username
the username to use to connect to the mail server (no default)

password
the password to use to connect to the mail server (no default)

host
the hostname of the mail server (default: localhost)

port
the port of the mail server (default: 25)

folder
the folder to take emails from (default: INBOX)

markAsRead
whether to mark emails as read once they’ve been fetched by the module (default: false)

delete
whether to delete the emails once they’ve been fetched by the module (default: true)

usePolling
whether to use polling or not (no-polling works with imap(s) only) (default: false)

fixedDelay
the polling interval used for looking up messages, expressed in seconds. (default: 60)

Spring XD

1.0.0 Spring XD Guide 62

charset
the charset used to transform the body of the incoming emails to Strings. (default: UTF-8)

expression
a SpEL expression which filters which mail messages will be processed (non polling imap only)
(no default)

Warning

Of special attention are the markAsRead and delete options, which by default will delete the
emails once they are consumed. It is hard to come up with a sensible default option for this
(please refer to the Spring Integration documentation section on mail handling for a discussion
about this), so just be aware that the default for XD is to delete incoming messages.

11.6 Twitter Search

The twittersearch source has four parameters

query
The query that will be run against Twitter (required) For information on how to construct a query,
visit Using Search.

consumerKey
An application consumer key issued by twitter

consumerSecret
The secret corresponding to the consumerKey

fixedDelay
The fixed delay polling interval specified in miliseconds (default: 5000)

To get a consumerKey and consumerSecret you need to register a twitter application. If you don’t
already have one set up, you can create an app at the Twitter Developers site to get these credentials.

To create a stream definition in the server using the XD shell

xd:> stream create --name springone2gx --definition "twittersearch --

consumerKey=<your_key> --consumerSecret=<your_secret> --query='#springone2gx' | file" --

deploy

Make sure the default output directory for the file sink exists

$ mkdir -p /tmp/xd/output/

Let the twittersearch run for a little while and then check to see if some data ended up in the file

$ cat /tmp/xd/output/springone2gx

Tip

For both twittersearch and twitterstream you can put the keys in a module properties file
instead of supplying them in the stream definition. For twittersearch, the file would be config/
modules/source/twittersearch/twittersearch.properties.

https://dev.twitter.com/docs/using-search
https://dev.twitter.com/apps

Spring XD

1.0.0 Spring XD Guide 63

Note

twittersearch by default emits Spring Social Tweet objects. You may easily configure
twittersearch to emit JSON by setting --output=application/json. This will cause XD to
transform the objects JSON internally, resulting in properties corresponding to the Java type.
This yields a format slightly different than the native Twitter JSON emitted by twitterstream.
While logically identical, property names and types, notably dates, are different. Thus the JSON
strings produced by twittersearch and twitterstream are generally incompatible.

11.7 Twitter Stream

This source ingests data from Twitter’s streaming API. It uses the sample and filter stream endpoints
rather than the full "firehose" which needs special access. The endpoint used will depend on the
parameters you supply in the stream definition (some are specific to the filter endpoint).

You need to supply all keys and secrets (both consumer and accessToken) to authenticate for
this source, so it is easiest if you just add these to the XD_HOME/config/modules/source/
twitterstream/twitterstream.properties file. Stream creation is then straightforward:

xd:> stream create --name tweets --definition "twitterstream | file" --deploy

The parameters available are pretty much the same as those listed in the API docs and unless otherwise
stated, the accepted formats are the same.

delimited
set to true to get length delimiters in the stream data (defaults to false)

stallWarnings
set to true to enable stall warnings (defaults to false)

filterLevel
controls which tweets make it through to the stream (defaults to null)

language
comma delimited set of languages to retain (defaults to null)

follow
comma delimited set of user ids whose tweets should be sent to the stream (defaults to null)

track
which terms to look for in tweets (defaults to null)

locations
a comma-separated list of longitude,latitude pairs specifying a set of bounding boxes to filter Tweets
(defaults to null)

Note

twitterstream emits JSON in a native Twitter format. This format is incompatible with content
produced by twittersearch (see note above regarding twittersearch)

http://docs.spring.io/spring-social-twitter/docs/1.0.5.RELEASE/api/org/springframework/social/twitter/api/Tweet.html
https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/parameters
https://dev.twitter.com/docs/streaming-apis/parameters#delimited
https://dev.twitter.com/docs/streaming-apis/parameters#stall_warnings
https://dev.twitter.com/docs/streaming-apis/parameters#filter_level
https://dev.twitter.com/docs/streaming-apis/parameters#language
https://dev.twitter.com/docs/streaming-apis/parameters#follow
https://dev.twitter.com/docs/streaming-apis/parameters#track
https://dev.twitter.com/docs/streaming-apis/parameters#locations

Spring XD

1.0.0 Spring XD Guide 64

11.8 GemFire

This source configures a cache and replicated region in the XD container process along with a Spring
Integration GemFire inbound channel adapter, backed by a CacheListener that outputs messages
triggered by an external entry event on the region. By default the payload contains the updated entry
value, but may be controlled by passing in a SpEL expression that uses the EntryEvent as the evaluation
context.

Options

The Gemfire CacheListener source has the following options

regionName
The name of the region for which events are to be monitored (required, String)

cacheEventExpression
An optional SpEL expression referencing the event. (default: newValue)

Example

Use of the gemfire source requires an external process that creates or updates entries in a GemFire
region. Such events may trigger an XD process. For example, suppose a sales application creating
and updating orders in a replicated GemFire region named orders . To trigger an XD stream, the XD
container must join the GemFire distributed system and create a replica of the region, to which a cache
listener is bound via the GemFire inbound channel adapter.

xd:>stream create --name orderStream --definition "gemfire --regionName=orders | file --

inputType=application/json"

In the above example, it is presumed the cache entries are Order POJOs. In this case, it may be
convenient to convert to JSON before writing to the file.

11.9 GemFire Continuous Query (CQ)

Continuous query allows client applications to create a GemFire query using Object Query
Language(OQL) and register a CQ listener which subscribes to the query and is notified every time the
query 's result set changes. The gemfire_cq source registers a CQ which will post CQEvent messages
to the stream.

Launching the XD GemFire Server

This source requires a cache server to be running in a separate process and its host and port must be
known (NOTE: GemFire locators are not supported yet). The XD distribution includes a GemFire server
executable suitable for development and test purposes. This is a Java main class that runs with a Spring
configured cache server. The configuration is passed as a command line argument to the server’s main
method. The configuration includes a cache server port and one or more configured region. XD includes
a sample cache configuration called cq-demo. This starts a server on port 40404 and creates a region
named Stocks. A Logging cache listener is configured for the region to log region events.

Run Gemfire cache server by changing to the gemfire/bin directory and execute

$./gemfire-server ../config/cq-demo.xml

http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/EntryEvent.html
https://github.com/SpringSource/spring-xd/blob/master/spring-xd-gemfire-server/config/cq-demo.xml

Spring XD

1.0.0 Spring XD Guide 65

Options

The qemfire-cq source has the following options

query
The query string in Object Query Language(OQL) (required, String)

host
The host on which the GemFire server is running. (default: localhost)

port
The port on which the GemFire server is running. (default: 40404)

Here is an example. Create two streams: One to write http messages to a Gemfire region named Stocks,
and another to execute the CQ.

xd:> stream create --name stocks --definition "http --port=9090 | gemfire-json-server --

regionName=Stocks --keyExpression=payload.getField('symbol')" --deploy

xd:> stream create --name cqtest --definition "gemfire-cq --query='Select * from /Stocks

 where symbol=''FAKE''' | file" --deploy

Now send some messages to the stocks stream.

xd:> http post --target http://localhost:9090 --data "{"symbol":"FAKE","price":73}"

xd:> http post --target http://localhost:9090 --data "{"symbol":"FAKE","price":78}"

xd:> http post --target http://localhost:9090 --data "{"symbol":"FAKE","price":80}"

Please do not put spaces when separating the JSON key-value pairs, only a comma.

The cqtest stream is now listening for any stock quote updates for VMW. Presumably, another process is
updating the cache. You may create a separate stream to test this (see GemfireServer for instructions).

As updates are posted to the cache you should see them captured in the output file:

$cat /tmp/xd/output/cqtest.out

{"symbol":"FAKE","price":73}

{"symbol":"FAKE","price":78}

{"symbol":"FAKE","price":80}

11.10 Syslog

Three syslog sources are provided: reactor-syslog, syslog-udp, and syslog-tcp. The reactor-
syslog adapter uses tcp and builds upon the functionality available in the Reactor project and provides
improved throughput over the syslog-tcp adapter. They all support the following option:

port
the port on which the system will listen for syslog messages (default: 5140)

To create a stream definition (using shell command)

xd:> stream create --name syslogtest --definition "reactor-syslog --port=5140 | file" --

deploy

https://github.com/SpringSource/spring-xd/wiki/GemfireServer
https://github.com/reactor/reactor

Spring XD

1.0.0 Spring XD Guide 66

or

xd:> stream create --name syslogtest --definition "syslog-udp --port=5140 | file" --deploy

or

xd:> stream create --name syslogtest --definition "syslog-tcp --port=5140 | file" --deploy

(--port is not required when using the default 5140)

Send a test message to the syslog

logger -p local3.info -t TESTING "Test Syslog Message"

See if the data ended up in the file

$ cat /tmp/xd/output/syslogtest

Refer to your syslog documentation to configure the syslog daemon to forward syslog messages to the
stream; some examples are:

UDP - Mac OSX (syslog.conf) and Ubuntu (rsyslog.conf)

. @localhost:5140

TCP - Ubuntu (rsyslog.conf)

$ModLoad omfwd

. @@localhost:5140

Restart the syslog daemon after reconfiguring.

11.11 TCP

The tcp source acts as a server and allows a remote party to connect to XD and submit data over a
raw tcp socket.

To create a stream definition in the server, use the following XD shell command

xd:> stream create --name tcptest --definition "tcp | file" --deploy

This will create the default TCP source and send data read from it to the tcptest file.

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of decoders are available, the default being CRLF which is compatible with Telnet.

$ telnet localhost 1234

Trying ::1...

Connected to localhost.

Escape character is '^]'.

foo

^]

telnet> quit

Connection closed.

Spring XD

1.0.0 Spring XD Guide 67

See if the data ended up in the file

$ cat /tmp/xd/output/tcptest

TCP with options

The TCP source has the following options

port
the port on which to listen (default: 1234)

reverseLookup
perform a reverse DNS lookup on the remote IP Address (default: false)

socketTimeout
the timeout (ms) before closing the socket when no data received (default: 120000)

nio
whether or not to use NIO. NIO is more efficient when there are many connections. (default: false)

decoder
how to decode the stream - see below. (default: CRLF)

binary
whether the data is binary (true) or text (false). (default: false)

charset
the charset used when converting text to String. (default: UTF-8)

Available Decoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)

Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 216-1 bytes)

Spring XD

1.0.0 Spring XD Guide 68

L4
data preceded by a four byte (signed) length field (up to 231-1 bytes)

Examples

The following examples all use echo to send data to netcat which sends the data to the source.

The echo options -en allows echo to interpret escape sequences and not send a newline.

CRLF Decoder.

xd:> stream create --name tcptest --definition "tcp | file" --deploy

This uses the default (CRLF) decoder and port 1234; send some data

$ echo -en 'foobar\r\n' | netcat localhost 1234

See if the data ended up in the file

$ cat /tmp/xd/output/tcptest

LF Decoder.

xd:> stream create --name tcptest2 --definition "tcp --decoder=LF --port=1235 | file" --

deploy

$ echo -en 'foobar\n' | netcat localhost 1235

$ cat /tmp/xd/output/tcptest2

NULL Decoder.

xd:> stream create --name tcptest3 --definition "tcp --decoder=NULL --port=1236 | file" --

deploy

$ echo -en 'foobar\x00' | netcat localhost 1236

$ cat /tmp/xd/output/tcptest3

STXETX Decoder.

xd:> stream create --name tcptest4 --definition "tcp --decoder=STXETX --port=1237 | file"

 --deploy

$ echo -en '\x02foobar\x03' | netcat localhost 1237

$ cat /tmp/xd/output/tcptest4

RAW Decoder.

xd:> stream create --name tcptest5 --definition "tcp --decoder=RAW --port=1238 | file" --

deploy

$ echo -n 'foobar' | netcat localhost 1238

Spring XD

1.0.0 Spring XD Guide 69

$ cat /tmp/xd/output/tcptest5

L1 Decoder.

xd:> stream create --name tcptest6 --definition "tcp --decoder=L1 --port=1239 | file" --

deploy

$ echo -en '\x06foobar' | netcat localhost 1239

$ cat /tmp/xd/output/tcptest6

L2 Decoder.

xd:> stream create --name tcptest7 --definition "tcp --decoder=L2 --port=1240 | file" --

deploy

$ echo -en '\x00\x06foobar' | netcat localhost 1240

$ cat /tmp/xd/output/tcptest7

L4 Decoder.

xd:> stream create --name tcptest8 --definition "tcp --decoder=L4 --port=1241 | file" --

deploy

$ echo -en '\x00\x00\x00\x06foobar' | netcat localhost 1241

$ cat /tmp/xd/output/tcptest8

Binary Data Example

xd:> stream create --name tcptest9 --definition "tcp --decoder=L1 --port=1242 | file --

binary=true" --deploy

Note that we configure the file sink with binary=true so that a newline is not appended.

$ echo -en '\x08foo\x00bar\x0b' | netcat localhost 1242

$ hexdump -C /tmp/xd/output/tcptest9

00000000 66 6f 6f 00 62 61 72 0b |foo.bar.|

00000008

Implementing a simple conversation

That "stimulus" counter concept bears some explanation. By default, the module will emit (at interval set
by fixedDelay) an incrementing number, starting at 1. Given that the default is to use an expression
of payload.toString(), this results in the module sending 1, 2, 3, ... to the remote server.

By using another expression, or more certainly a script, one can implement a simple conversation,
assuming it is time based. As an example, let’s assume we want to join some kind of chat server where
one first needs to authenticate, then specify which rooms to join. Lastly, all clients are supposed to send
some keepalive commands to make sure that the connection is open.

The following groovy script could be used to that effect:

Spring XD

1.0.0 Spring XD Guide 70

def commands = ['', // index 0 is not used

'LOGIN user=johndoe', // first command sent

'JOIN weather',

'JOIN news',

'JOIN gossip'

]

// payload will contain an incrementing counter, starting at 1

if (commands.size > payload)

 return commands[payload] + "\n"

else

 return "PING\n" // send keep alive after 4th 'real' command

11.12 TCP Client

The tcp-client source module uses raw tcp sockets, as does the tcp module but contrary to the tcp
module, acts as a client. Whereas the tcp module will open a listening socket and wait for connections
from a remote party, the tcp-client will initiate the connection to a remote server and emit as
messages what that remote server sends over the wire. As an optional feature, the tcp-client can
itself emit messages to the remote server, so that a simple conversation can take place.

TCP Client options

The following options are supported:

host
the host to connect to (default: localhost)

port
the port to connect to (default: 1234)

reverseLookup
whether to attempt to resolve the host address (default: false)

nio
whether to use NIO (default: false)

encoder
the encoder to use when sending messages (default: LF, see TCP module)

decoder
the decoder to use when receiving messages (default: LF, see TCP module)

charset
the charset to use when converting bytes to String (default: UTF-8)

bufferSize
the size of the emitting/receiving buffers (default: 2048, i.e. 2KB)

fixedDelay
the rate at which stimulus messages will be emitted (default: 5 seconds)

script
reference to a script that should transform the counter stimulus to messages to send (default: use
expression)

Spring XD

1.0.0 Spring XD Guide 71

expression
a SpEL expression to convert the counter stimulus to a message (default: payload.toString(),
i.e. emit "1", "2", "3", etc.)

11.13 Reactor IP

The reactor-ip source acts as a server and allows a remote party to connect to XD and submit data
over a raw TCP or UDP socket. The reactor-ip source differs from the standard tcp source in that it
is based on the Reactor Project and can be configured to use the LMAX Disruptor RingBuffer library
allowing for extremely high ingestion rates, e.g. ~ 1M/sec.

To create a stream definition use the following XD shell command

xd:> stream create --name tcpReactor --definition "reactor-ip | file" --deploy

This will create the reactor TCP source and send data read from it to the file named tcpReactor.

The reactor-ip source has the following options

transport
tcp or udp (default: tcp)

framing
linefeed or length. How to frame the data to tell individual messages apart. (default:
linefeed)

lengthFieldLength
Byte precision of the length field when using length framing. 2, 4 or 8. (default: 4)

codec
How to decode the stream. Either bytes, string or syslog. (default: string)

dispatcher
ringBuffer, threadPoolExecutor, workQueue, sync. (default: ringBuffer)

host
the host to connect to (default: 0.0.0.0)

port
the port to connect to (default: 3000)

11.14 RabbitMQ

The "rabbit" source enables receiving messages from RabbitMQ.

The following example shows the default settings.

Configure a stream:

xd:> stream create --name rabbittest --definition "rabbit | file --binary=true" --deploy

This receives messages from a queue named rabbittest and writes them to the default file sink (/
tmp/xd/output/rabbittest.out). It uses the default RabbitMQ broker running on localhost, port
5672.

https://github.com/reactor/reactor
http://martinfowler.com/articles/lmax.html

Spring XD

1.0.0 Spring XD Guide 72

The queue(s) must exist before the stream is deployed. We do not create the queue(s) automatically.
However, you can easily create a Queue using the RabbitMQ web UI. Then, using that same UI, you
can navigate to the "rabbittest" Queue and publish test messages to it.

Notice that the file sink has --binary=true; this is because, by default, the data emitted by the
source will be bytes. This can be modified by setting the content_type property on messages to
text/plain. In that case, the source will convert the message to a String; you can then omit the --
binary=true and the file sink will then append a newline after each message.

To destroy the stream, enter the following at the shell prompt:

xd:> stream destroy --name rabbittest

RabbitMQ with Options

The RabbitMQ Source has the following options

username
the username to connect to the RabbitMQ broker (default: guest)

password
the password to connect to the RabbitMQ broker (default: guest)

host
the host (or IP Address) to connect to (default: localhost)

port
the port on the host (default: 5672)

vhost
the virtual host (default: / unless)

queues
the queue(s) from which messages will be received; use a comma-delimited list to receive messages
from multiple queues (default: <streamname>)

11.15 JMS

The "jms" source enables receiving messages from JMS.

The following example shows the default settings.

Configure a stream:

xd:> stream create --name jmstest --definition "jms | file" --deploy

This receives messages from a queue named jmstest and writes them to the default file sink (/tmp/
xd/output/jmstest). It uses the default ActiveMQ broker running on localhost, port 61616.

To destroy the stream, enter the following at the shell prompt:

xd:> stream destroy --name jmstest

To test the above stream, you can use something like the following…

Spring XD

1.0.0 Spring XD Guide 73

public class Broker {

 public static void main(String[] args) throws Exception {

 BrokerService broker = new BrokerService();

 broker.setBrokerName("broker");

 String brokerURL = "tcp://localhost:61616";

 broker.addConnector(brokerURL);

 broker.start();

 ConnectionFactory cf = new ActiveMQConnectionFactory(brokerURL);

 JmsTemplate template = new JmsTemplate(cf);

 while (System.in.read() >= 0) {

 template.convertAndSend("jmstest", "testFoo");

 }

 }

}

and tail -f /tmp/xd/output/jmstest

Run this as a Java application; each time you hit <enter> in the console, it will send a message to queue
jmstest.

JMS with Options

The JMS Source has the following options

provider
the JMS provider (default: activemq)

destination
the destination name (a queue by default) from which messages will be received (default: [stream
name])

pubSub
when true, indicates that the destination is a topic (default: false)

durableSubScription
when true, indicates the subscription to a topic is durable (default: false)

subscriptionName
a name that will be assigned to the topic subscription (default: [none])

clientId
an identifier for the client, to be associated with a durable topic subscription (default: [none])

Note: the selected broker requires an infrastructure configuration file jms-<provider>-

infrastructure-context.xml in modules/common. This is used to declare any infrastructure
beans needed by the provider. See the default (jms-activemq-infrastructure-context.xml)
for an example. Typically, all that is required is a ConnectionFactory. The activemq provider uses a
properties file jms-activemq.properties which can be found in the config directory. This contains
the broker URL.

11.16 Time

The time source will simply emit a String with the current time every so often. It supports the following
options:

Spring XD

1.0.0 Spring XD Guide 74

fixedDelay
how often to emit a message, expressed in seconds (default: 1 second)

format
how to render the current time, using SimpleDateFormat (default: 'yyyy-MM-dd HH:mm:ss')

11.17 MQTT

The mqtt source connects to an mqtt server and receives telemetry messages.

Configure a stream:

xd:> stream create tcptest --definition "mqtt --url='tcp://localhost:1883' --

topics='xd.mqtt.test' | log" --deploy

If you wish to use the MQTT Source defaults you can execute the command as follows:

xd:> stream create tcptest --definition "mqtt | log" --deploy

Options

The defaults are set up to connect to the RabbitMQ MQTT adapter on localhost:

url
location of the mqtt broker (default: tcp://localhost:1883)

clientId
identifies the client (default: xd.mqtt.client.id.snk)

username
the username to use when connecting to the broker (default: guest)

password
the password to use when connecting to the broker (default: guest)

topics
the topic(s) to which the source will subscribe (default: xd.mqtt.test)

11.18 Stdout Capture

There isn’t actually a source named "stdin" but it is easy to capture stdin by redirecting it to a tcp source.
For example if you wanted to capture the output of a command, you would first create the tcp stream,
as above, using the appropriate sink for your requirements:

xd:> stream create tcpforstdout --definition "tcp --decoder=LF | log" --deploy

You can then capture the output from commands using the netcat command:

$ cat mylog.txt | netcat localhost 1234

Spring XD

1.0.0 Spring XD Guide 75

12. Processors

12.1 Introduction

This section will cover the processors available out-of-the-box with Spring XD. As a prerequisite, start
the XD Container as instructed in the Getting Started page.

The Processors covered are

• Filter

• Transform

• Script

• Splitter

• Aggregator

See the section Creating a Processor Module for information on how to create custom processor
modules.

12.2 Filter

Use the filter module in a stream to determine whether a Message should be passed to the output
channel.

Filter with SpEL expression

The simplest way to use the filter processor is to pass a SpEL expression when creating the stream.
The expression should evaluate the message and return true or false. For example:

xd:> stream create --name filtertest --definition "http | filter --

expression=payload=='good' | log" --deploy

This filter will only pass Messages to the log sink if the payload is the word "good". Try sending "good"
to the HTTP endpoint and you should see it in the XD log:

xd:> http post --target http://localhost:9000 --data "good"

Alternatively, if you send the word "bad" (or anything else), you shouldn’t see the log entry.

Filter using jsonPath evaluation

As part of the SpEL expression you can make use of the pre-registered JSON Path function.

This filter example shows to pass messages to the output channel if they contain a specific JSON field
matching a specific value.

xd:> stream create --name jsonfiltertest --definition "http --port=9002 | filter --

expression=#jsonPath(payload,'$.firstName').contains('John') | log" --deploy

Note: There is no space between payload JSON and the jsonPath in the expression

This filter will only pass Messages to the log sink if the JSON payload contains the firstName "John".
Try sending this payload to the HTTP endpoint and you should see it in the XD log:

Spring XD

1.0.0 Spring XD Guide 76

xd:> http post --target http://localhost:9002 --data "{\"firstName\":\"John\", \"lastName

\":\"Smith\"}"

Alternatively, if you send a different firstName, you shouldn’t see the log entry.

Here is another example usage of filter

filter --expression=#jsonPath(payload,'$.entities.hashtags[*].text').contains('obama')

This is an example that is operating on a JSON payload of tweets as consumed from the twitter search
module.

Filter with Groovy Script

For more complex filtering, you can pass the location of a Groovy script using the script attribute. If you
want to pass variable values to your script, you can optionally pass the path to a properties file using the
properties-location attribute. All properties in the file will be made available to the script as variables.

Note that an implicit variable named payload is available to give you access to the data contained in
a message.

xd:> stream create --name groovyfiltertest --definition "http --port=9001 | filter --

script=custom-filter.groovy --properties-location=custom-filter.properties | log" --deploy

By default, Spring XD will search the classpath for custom-filter.groovy and custom-filter.properties.
You can place the script in ${xd.home}/modules/processor/scripts and the properties file in ${xd.home}/
config to make them available on the classpath. Alternatively, you can prefix the script and properties-
location values with file: to load from the file system.

12.3 Transform

Use the transform module in a stream to convert a Message’s content or structure.

Transform with SpEL expression

The simplest way to use the transform processor is to pass a SpEL expression when creating the stream.
The expression should return the modified message or payload. For example:

xd:> stream create --name transformtest --definition "http --port=9003 | transform --

expression='FOO' | log" --deploy

This transform will convert all message payloads to the word "FOO". Try sending something to the HTTP
endpoint and you should see "FOO" in the XD log:

xd:> http post --target http://localhost:9003 --data "some message"

As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax
is #jsonPath(payload,<json path expression>)

Transform with Groovy Script

For more complex transformations, you can pass the location of a Groovy script using the script attribute.
If you want to pass variable values to your script, you can optionally pass the path to a properties file

Spring XD

1.0.0 Spring XD Guide 77

using the properties-location attribute. All properties in the file will be made available to the script as
variables.

xd:> stream create --name groovytransformtest --definition "http --port=9004 | transform

 --script=custom-transform.groovy --properties-location=custom-transform.properties | log"

 --deploy

By default, Spring XD will search the classpath for custom-transform.groovy and custom-
transform.properties. You can place the script in ${xd.home}/modules/processor/scripts and the
properties file in ${xd.home}/config to make them available on the classpath. Alternatively, you can prefix
the script and properties-location values with file: to load from the file system.

12.4 Script

The script processor contains a Service Activator that invokes a specified Groovy script. This is a slightly
more generic way to accomplish processing logic, as the provided script may simply terminate the stream
as well as transform or filter Messages.

To use the module, pass the location of a Groovy script using the location attribute. If you want to pass
variable values to your script, you can optionally pass the path to a properties file using the properties-
location attribute. All properties in the file will be made available to the script as variables.

xd:> stream create --name groovyprocessortest --definition "http --port=9006 | script --

location=custom-processor.groovy --properties-location=custom-processor.properties | log"

 --deploy

By default, Spring XD will search the classpath for custom-processor.groovy and custom-
processor.properties. You can place the script in ${xd.home}/modules/processor/scripts and the
properties file in ${xd.home}/config to make them available on the classpath. Alternatively, you can prefix
the location and properties-location values with file: to load from the file system.

12.5 Splitter

The splitter module builds upon the concept of the same name in Spring Integration and allows the
splitting of a single message into several distinct messages.

The splitter module accepts the following options:

expression
a SpEL expression which should evaluate to an array or collection. Each element will then be emitted
as a separate message (default: payload, which actually does not split, unless the message
is already a collection)

As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax
is #jsonPath(payload,<json path expression>)

Extract the value of a specific field

This splitter converts a JSON message payload to the value of a specific JSON field.

xd:> stream create --name jsontransformtest --definition "http --port=9005 | splitter --

expression=#jsonPath(payload,'$.firstName') | log" --deploy

Try sending this payload to the HTTP endpoint and you should see just the value "John" in the XD log:

Spring XD

1.0.0 Spring XD Guide 78

xd:> http post --target http://localhost:9005 --data "{\"firstName\":\"John\", \"lastName

\":\"Smith\"}"

Note: JSON fields should be separated by a comma without any spaces.

12.6 Aggregator

The aggregator module does the opposite of the splitter, and builds upon the concept of the same name
found in Spring Integration. By default, it will consider all incoming messages from a stream to belong
to the same group:

xd:> stream create --name aggregates --definition "http | aggregator --count=3 --

aggregation=T(org.springframework.util.StringUtils).collectionToDelimitedString(#this.!

[payload],' ') | log" --deploy

This uses a SpEL expression that will basically concatenate all payloads together, inserting a space
character in between. As such,

xd:> http post --data Hello

xd:> http post --data World

xd:> http post --data !

would emit a single message whose contents is "Hello World !". This is because we set the aggregator
release strategy to accumulate 3 messages.

The aggregator modules comes with many more options, as shown below:

correlation
a SpEL expression to be evaluated against all incoming message and that should evaluate to
the "key" used to group messages together (default: <streamname>, which means that all
messages from the same stream are actually considered correlated)

release
a SpEL expression to be evaluated against a group of messages accumulated so far (a collection)
and that should return true when such a group is ready to be released. Using this overrides the
count option. (default: use the 'count' approach)

count
the number of messages to group together before emitting a group (default: 50)

aggregation
a SpEL expression, to be evaluated against the list of accumulated messages. This should return
what the new message will be made of. (default: #this.![payload], which uses the list of
message payloads to form the new message)

timeout
the delay (in milliseconds) after which messages should be released and aggregated, even
though the completion criteria was not met. Due to the way this is implemented (see
MessageGroupStoreReaper in the Spring Integration documentation), the actual observed delay
may vary between timeout and 2xtimeout. (default: 60000, i.e. one minute)

Additionally, the message store used to retain messages can be configured using the store option.
Valid options are memory (the default), redis and jdbc.

Spring XD

1.0.0 Spring XD Guide 79

• When using redis, additional options are available: hostname, port and password with defaults
pointing to the default redis install on localhost.

• When using jdbc, one must configure the datasource access, using driverClass, url, username
and password with no defaults. On first use, the database tables must be created. To that effect,
one can use set the initdb option to true. The database kind should be auto-detected, but one
can always provide dbkind to override.

Spring XD

1.0.0 Spring XD Guide 80

13. Sinks

13.1 Introduction

In this section we will show some variations on output sinks. As a prerequisite start the XD Container
as instructed in the Getting Started page.

The Sinks covered are

• Log

• File

• HDFS

• HDFS Dataset

• JDBC

• TCP

• Mail

• RabbitMQ

• GemFire Server

• Splunk Server

• MQTT

• Dynamic Router

See the section Creating a Sink Module for information on how to create sink modules using other
Spring Integration Adapters.

13.2 Log

Probably the simplest option for a sink is just to log the data. The log sink uses the application logger
to output the data for inspection. The log level is set to WARN and the logger name is created from the
stream name. To create a stream using a log sink you would use a command like

xd:> stream create --name mylogstream --definition "http --port=8000 | log" --deploy

You can then try adding some data. We’ve used the http source on port 8000 here, so run the following
command to send a message

xd:> http post --target http://localhost:8000 --data "hello"

and you should see the following output in the XD container console.

13/06/07 16:12:18 WARN logger.mylogstream: hello

The logger name is the sink name prefixed with the string "logger.". The sink name is the same as the
stream name by default, but you can set it by passing the --name parameter

Spring XD

1.0.0 Spring XD Guide 81

xd:> stream create --name myotherlogstream --definition "http --port=8001 | log --

name=mylogger" --deploy

13.3 File Sink

Another simple option is to stream data to a file on the host OS. This can be done using the file sink
module to create a stream.

xd:> stream create --name myfilestream --definition "http --port=8000 | file" --deploy

We’ve used the http source again, so run the following command to send a message

xd:> http post --target http://localhost:8000 --data "hello"

The file sink uses the stream name as the default name for the file it creates, and places the file in
the /tmp/xd/output/ directory.

$ less /tmp/xd/output/myfilestream

hello

You can cutomize the behavior and specify the name and dir options of the output file. For example

xd:> stream create --name otherfilestream --definition "http --port=8000 | file --

name=myfile --dir=/some/custom/directory" --deploy

File with Options

The file sink, by default, will add a newline at the end of each line; the actual newline will depend on
the operating system.

This can be disabled by using --binary=true.

13.4 Hadoop (HDFS)

If you do not have Hadoop installed, you can install Hadoop 1.2.1 as described in our separate guide.
Spring XD supports 4 Hadoop distributions, see using Hadoop for more information on how to start
Spring XD to target a specific distribution.

Once Hadoop is up and running, you can then use the hdfs sink when creating a stream

xd:> stream create --name myhdfsstream1 --definition "time | hdfs" --deploy

In the above example, we’ve scheduled time source to automatically send ticks to hdfs once in every
second. If you wait a little while for data to accumuluate you can then list can then list the files in the
hadoop filesystem using the shell’s built in hadoop fs commands. Before making any access to HDFS in
the shell you first need to configure the shell to point to your name node. This is done using the hadoop
config command.

xd:>hadoop config fs --namenode hdfs://localhost:8020

In this example the hdfs protocol is used but you may also use the webhdfs protocol. Listing the contents
in the output directory (named by default after the stream name) is done by issuing the following
command.

Spring XD

1.0.0 Spring XD Guide 82

xd:>hadoop fs ls /xd/myhdfsstream1

Found 1 items

-rw-r--r-- 3 jvalkealahti supergroup 0 2013-12-18 18:10 /xd/myhdfsstream1/

myhdfsstream1-0.txt.tmp

While the file is being written to it will have the tmp suffix. When the data written exceeds the rollover
size (default 1GB) it will be renamed to remove the tmp suffix. There are several options to control the in
use file file naming options. These are --inUsePrefix and --inUseSuffix set the file name prefix
and suffix respectfully.

When you destroy a stream

xd:>stream destroy --name myhdfsstream1

and list the stream directory again, in use file suffix doesn’t exist anymore.

xd:>hadoop fs ls /xd/myhdfsstream1

Found 1 items

-rw-r--r-- 3 jvalkealahti supergroup 380 2013-12-18 18:10 /xd/myhdfsstream1/

myhdfsstream1-0.txt

To list the list the contents of a file directly from a shell execute the hadoop cat command.

xd:> hadoop fs cat /xd/myhdfsstream1/myhdfsstream1-0.txt

2013-12-18 18:10:07

2013-12-18 18:10:08

2013-12-18 18:10:09

...

In the above examples we didn’t yet go through why the file was written in a specific directory and
why it was named in this specific way. Default location of a file is defined as /xd/<stream name>/
<stream name>-<rolling part>.txt. These can be changed using options --directory and
--fileName respectively. Example is shown below.

xd:>stream create --name myhdfsstream2 --definition "time | hdfs --directory=/xd/tmp --

fileName=data" --deploy

xd:>stream destroy --name myhdfsstream2

xd:>hadoop fs ls /xd/tmp

Found 1 items

-rw-r--r-- 3 jvalkealahti supergroup 120 2013-12-18 18:31 /xd/tmp/data-0.txt

It is also possible to control the size of a files written into HDFS. The --rollover option can be used
to control when file currently being written is rolled over and a new file opened by providing the rollover
size in bytes, kilobytes, megatypes, gigabytes, and terabytes.

xd:>stream create --name myhdfsstream3 --definition "time | hdfs --rollover=100" --deploy

xd:>stream destroy --name myhdfsstream3

xd:>hadoop fs ls /xd/myhdfsstream3

Found 3 items

-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/

myhdfsstream3-0.txt

-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/

myhdfsstream3-1.txt

-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/

myhdfsstream3-2.txt

Spring XD

1.0.0 Spring XD Guide 83

Shortcuts to specify sizes other than bytes are written as --rollover=64M, --rollover=512G or
--rollover=1T.

The stream can also be compressed during the write operation. Example of this is shown below.

xd:>stream create --name myhdfsstream4 --definition "time | hdfs --codec=gzip" --deploy

xd:>stream destroy --name myhdfsstream4

xd:>hadoop fs ls /xd/myhdfsstream4

Found 1 items

-rw-r--r-- 3 jvalkealahti supergroup 80 2013-12-18 18:48 /xd/myhdfsstream4/

myhdfsstream4-0.txt.gzip

From a native os shell we can use hadoop’s fs commands and pipe data into gunzip.

bin/hadoop fs -cat /xd/myhdfsstream4/myhdfsstream4-0.txt.gzip | gunzip

2013-12-18 18:48:10

2013-12-18 18:48:11

...

Often a stream of data may not have a high enough rate to roll over files frequently, leaving the file in
an opened state. This prevents users from reading a consistent set of data when running mapreduce
jobs. While one can alleviate this problem by using a small rollover value, a better way is to use the
idleTimeout option that will automatically close the file if there was no writes during the specified
period of time. This feature is also useful in cases where burst of data is written into a stream and you’d
like that data to become visible in HDFS.

xd:> stream create --name myhdfsstream5 --definition "http --port=8000 | hdfs --

rollover=20 --idleTimeout=10000" --deploy

In the above example we changed a source to http order to control what we write into a hdfs sink.
We defined a small rollover size and a timeout of 10 seconds. Now we can simply post data into this
stream via source end point using a below command.

xd:> http post --target http://localhost:8000 --data "hello"

If we repeat the command very quickly and then wait for the timeout we should be able to see that some
files are closed before rollover size was met and some were simply rolled because of a rollover size.

xd:>hadoop fs ls /xd/myhdfsstream5

Found 4 items

-rw-r--r-- 3 jvalkealahti supergroup 12 2013-12-18 19:02 /xd/myhdfsstream5/

myhdfsstream5-0.txt

-rw-r--r-- 3 jvalkealahti supergroup 24 2013-12-18 19:03 /xd/myhdfsstream5/

myhdfsstream5-1.txt

-rw-r--r-- 3 jvalkealahti supergroup 24 2013-12-18 19:03 /xd/myhdfsstream5/

myhdfsstream5-2.txt

-rw-r--r-- 3 jvalkealahti supergroup 18 2013-12-18 19:03 /xd/myhdfsstream5/

myhdfsstream5-3.txt

HDFS with Options

The HDFS Sink has the following options:

directory
Where to output the files in the Hadoop FileSystem (default: /xd/<streamname>)

Spring XD

1.0.0 Spring XD Guide 84

fileName
The base filename to use for the created files (a counter will be appended before the file extension).
(default: <streamname>)

fileExtension
The file extension to use (default: txt)

rollover
When to roll files over, expressed in bytes. Option can also expressed with a pattern as, 1M, 1G,
512G, 1T (default: 1G)

codec
If compression is used for stream. Possible values are gzip, snappy, bzip2, lzo. (default: no
compression)

idleTimeout
Idle timeout in millis when Hadoop file resource is automatically closed. (default: 0, no timeout)

inUseSuffix
Temporary file suffix indicating that file is currently written and in use. (default: .tmp)

inUsePrefix
Temporary file prefix indicating that file is currently written and in use. (default: none)

overwrite
Flag indicating if file resources in Hadoop is allowed to be overwritten. (default: false)

13.5 HDFS Dataset (Avro/Parquet)

The HDFS Dataset sink is used to store Java classes that are sent as the payload on the stream. It uses
the Kite SDK Data Module's Dataset implementation to store the payload data serialized in either Avro
or Parquet format. The Avro schema is generated from the Java class that is persisted. For Parquet the
Java object must follow JavaBean conventions with properties for any fields to be persisted. The fields
can only be simple scalar values like Strings and numbers.

The HDFS Dataset sink requires that you have a Hadoop installation that is based on Hadoop v2
(Hadoop 2.2.0, Pivotal HD 1.0, Cloudera CDH4 or Hortonworks HDP 2.0), see using Hadoop for more
information on how to start Spring XD to target a specific distribution.

Once Hadoop is up and running, you can then use the hdfs-dataset sink when creating a stream

xd:>stream create --name mydataset --definition "time | hdfs-dataset --batchSize=20" --

deploy

In the above example, we’ve scheduled time source to automatically send ticks to the hdfs-dataset
sink once every second. The data will be stored in a directory named /xd/<streamname> by default,
so in this example it will be /xd/mydataset. You can change this by supplying a ##directory
parameter. The Avro format is usd by default and the data files are stored in a sub-directory named
after the payload Java class. In this example the stream payload is a String so the name of the data
sub-directory is string. If you have multiple Java classes as payloads, each class will get its own sub-
directory.

Let the stream run for a minute or so. You can then list the contents of the hadoop filesystem using the
shell’s built in hadoop fs commands. You will first need to configure the shell to point to your name node
using the hadoop config command. We use the hdfs protocol is to access the hadoop name node.

http://kitesdk.org/

Spring XD

1.0.0 Spring XD Guide 85

xd:>hadoop config fs --namenode hdfs://localhost:8020

Then list the contents of the stream’s data directory.

xd:>hadoop fs ls /xd/mydataset/string

Found 3 items

drwxr-xr-x - trisberg supergroup 0 2013-12-19 12:23 /xd/mydataset/

string/.metadata

-rw-r--r-- 3 trisberg supergroup 202 2013-12-19 12:23 /xd/mydataset/

string/1387473825754-63.avro

-rw-r--r-- 3 trisberg supergroup 216 2013-12-19 12:24 /xd/mydataset/

string/1387473846708-80.avro

You can see that the sink has created two files containing the first two batches of 20 stream payloads
each. There is also a .metadata directory created that contains the metadata that the Kite SDK Dataset
implementation uses as well as the generated Avro schema for the persisted type.

xd:>hadoop fs ls /xd/mydataset/string/.metadata

Found 2 items

-rw-r--r-- 3 trisberg supergroup 136 2013-12-19 12:23 /xd/mydataset/

string/.metadata/descriptor.properties

-rw-r--r-- 3 trisberg supergroup 8 2013-12-19 12:23 /xd/mydataset/

string/.metadata/schema.avsc

Now destroy the stream.

xd:>stream destroy --name mydataset

HDFS Dataset with Options

The HDFS Dataset Sink has the following options:

batchSize
The number of payload objects that will be stored in each write operation. (default: 10000)

directory
Where the files will be written in the Hadoop FileSystem (default: /xd/<streamname>)

idleTimeout
Idle timeout in milliseconds for when the aggregated batch of payload objects will be written even
if the batchSize has not been reached. (default: -1, no timeout)

allowNullValues
Whether to allow null values in fields of the Java class to be written to the sink. If this is set to
true then each field in the generated schema will use a union of null and the data type of the field.
(default: true)

format
The format to use when writing the dataset data. Options are avro and parquet. (default: avro)

13.6 JDBC

The JDBC sink can be used to insert message payload data into a relational database table. By default
it inserts the entire payload into a table named after the stream name in the HSQLDB database that XD

Spring XD

1.0.0 Spring XD Guide 86

uses to store metadata for batch jobs. To alter this behavior, the jdbc sink accepts several options that
you can pass using the --foo=bar notation in the stream, or change globally. There is also a config/
init_db.sql file that contains the SQL statements used to initialize the database table. You can modify
this file if you’d like to create a table with your specific layout when the sink starts. You should also
change the initializeDatabase property to true to have this script execute when the sink starts up.

The payload data will be inserted as-is if the names option is set to payload. This is the default behavior.
If you specify any other column names the payload data will be assumed to be a JSON document that
will be converted to a hash map. This hash map will be used to populate the data values for the SQL
insert statement. A matching of column names with underscores like user_name will match onto camel
case style keys like userName in the hash map. There will be one insert statement executed for each
message.

To create a stream using a jdbc sink relying on all defaults you would use a command like

xd:> stream create --name mydata --definition "time | jdbc --initializeDatabase=true" --

deploy

This will insert the time messages into a payload column in a table named mydata. Since the default
is using the XD batch metadata HSQLDB database we can connect to this database instance from an
external tool. After we let the stream run for a little while, we can connect to the database and look at
the data stored in the database.

You can query the database with your favorite SQL tool using the following database URL:
jdbc:hsqldb:hsql://localhost:9101/xdjob with sa as the user name and a blank password.
You can also use the HSQL provided SQL Tool (download from HSQLDB) to run a quick query from
the command line:

$ java -cp ~/Downloads/hsqldb-2.3.0/hsqldb/lib/sqltool.jar org.hsqldb.cmdline.SqlTool

 --inlineRc url=jdbc:hsqldb:hsql://localhost:9101/xdjob,user=sa,password= --sql "select

 payload from mydata;"

This should result in something similar to the following output:

2014-01-06 09:33:25

2014-01-06 09:33:26

2014-01-06 09:33:27

2014-01-06 09:33:28

2014-01-06 09:33:29

2014-01-06 09:33:30

2014-01-06 09:33:31

2014-01-06 09:33:32

2014-01-06 09:33:33

2014-01-06 09:33:34

2014-01-06 09:33:35

2014-01-06 09:33:36

2014-01-06 09:33:37

Now we can destroy the stream using:

xd:> stream destroy --name mydata

JDBC with Options

The JDBC Sink has the following options:

http://hsqldb.org/

Spring XD

1.0.0 Spring XD Guide 87

driverClassName
the JDBC driver to use (default: same as batch config)

url
the JDBC URL for the database (default: same as batch config)

username
the JDBC usernmae (default: same as batch config)

password
the JDBC password (default: same as batch config)

initializeDatabase
whether to initialize the database using the initializer script (default: false)

initializerScript
the file name for the script containing SQL statements used to initialize the database when the sink
starts (will search config/ directory for this file) (default: init_db.sql)

tableName
the name of the table to insert payload data into (default: <streamname>)

names
comma separated list of column names to include in the insert statement. Use payload to include
the entire message payload into a payload column. (default: payload)

13.7 TCP Sink

The TCP Sink provides for outbound messaging over TCP.

The following examples use netcat (linux) to receive the data; the equivalent on Mac OSX is nc.

First, start a netcat to receive the data, and background it

$ netcat -l 1234 &

Now, configure a stream

xd:> stream create --name tcptest --definition "time --interval=3 | tcp" --deploy

This sends the time, every 3 seconds to the default tcp Sink, which connects to port 1234 on
localhost.

$ Thu May 30 10:28:21 EDT 2013

Thu May 30 10:28:24 EDT 2013

Thu May 30 10:28:27 EDT 2013

Thu May 30 10:28:30 EDT 2013

Thu May 30 10:28:33 EDT 2013

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of encoders are available, the default being CRLF.

Destroy the stream; netcat will terminate when the TCP Sink disconnects.

http://localhost:8080> stream destroy --name tcptest

Spring XD

1.0.0 Spring XD Guide 88

TCP with Options

The TCP Sink has the following options

host
the host (or IP Address) to connect to (default: localhost)

port
the port on the host (default 1234)

reverse-lookup
perform a reverse DNS lookup on IP Addresses (default: false)

nio
whether or not to use NIO (default: false)

encoder
how to encode the stream - see below (default: CRLF)

close
whether to close the socket after each message (default: false)

charset
the charset used when converting text from String to bytes (default: UTF-8)

Retry Options

retry-max-attempts
the maximum number of attempts to send the data (default: 5 - original request and 4 retries)

retry-initial-interval
the time (ms) to wait for the first retry (default: 2000)

retry-multiplier
the multiplier for exponential back off of retries (default: 2)

With the default retry configuration, the attempts will be made after 0, 2, 4, 8, and 16 seconds.

Available Encoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)

Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

Spring XD

1.0.0 Spring XD Guide 89

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 216-1 bytes)

L4
data preceded by a four byte (signed) length field (up to 231-1 bytes)

An Additional Example

Start netcat in the background and redirect the output to a file foo

$ netcat -l 1235 > foo &

Create the stream, using the L4 encoder

xd:> stream create --name tcptest --definition "time --interval=3 | tcp --encoder=L4 --

port=1235" --deploy

Destroy the stream

http://localhost:8080> stream destroy --name tcptest

Check the output

$ hexdump -C foo

00000000 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1|

00000010 30 3a 34 37 3a 30 33 20 45 44 54 20 32 30 31 33 |0:47:03 EDT 2013|

00000020 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1|

00000030 30 3a 34 37 3a 30 36 20 45 44 54 20 32 30 31 33 |0:47:06 EDT 2013|

00000040 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1|

00000050 30 3a 34 37 3a 30 39 20 45 44 54 20 32 30 31 33 |0:47:09 EDT 2013|

Note the 4 byte length field preceding the data generated by the L4 encoder.

13.8 Mail

The "mail" sink allows sending of messages as emails, leveraging Spring Integration mail-sending
channel adapter. Please refer to Spring Integration documentation for the details, but in a nutshell, the
sink is able to handle String, byte[] and MimeMessage messages out of the box.

Here is a simple example of how the mail module is used:

xd:> stream create mystream --definition "http | mail --to='"your.email@gmail.com"' --

host=your.imap.server --subject=payload+' world'" --deploy

Then,

xd:> http post --data Hello

You would then receive an email whose body contains "Hello" and whose subject is "Hellow world". Of
special attention here is the way you need to escape strings for most of the parameters, because they’re
actually SpEL expressions (so here for example, we used a String literal for the to parameter).

Spring XD

1.0.0 Spring XD Guide 90

The full list of options available to the mail module is below:

to
The primary recipient(s) of the email. (default: null, SpEL Expression)

from
The sender address of the email. (default: null, SpEL Expression)

subject
The email subject. (default: null, SpEL Expression)

cc
The recipient(s) that should receive a carbon copy. (default: null, SpEL Expression)

bcc
The recipient(s) that should receive a blind carbon copy. (default: null, SpEL Expression)

replyTo
The address that will become the recipient if the original recipient decides to "reply to" the email.
(default: null, SpEL Expression)

contentType
The content type to use when sending the email. (default: null, SpEL Expression)

host
The hostname of the sending server to use. (default: localhost)

port
The port of the sending server. (default: 25)

username
The username to use for authentication against the sending server. (default: none)

password
The password to use for authentication against the sending server. (default: none)

13.9 RabbitMQ

The "rabbit" sink enables outbound messaging over RabbitMQ.

The following example shows the default settings.

Configure a stream:

xd:> stream create --name rabbittest --definition "time --interval=3 | rabbit" --deploy

This sends the time, every 3 seconds to the default (no-name) Exchange for a RabbitMQ broker running
on localhost, port 5672.

The routing key will be the name of the stream by default; in this case: "rabbittest". Since the default
Exchange is a direct-exchange to which all Queues are bound with the Queue name as the binding key,
all messages sent via this sink will be passed to a Queue named "rabbittest", if one exists. We do not
create that Queue automatically. However, you can easily create a Queue using the RabbitMQ web UI.
Then, using that same UI, you can navigate to the "rabbittest" Queue and click the "Get Message(s)"
button to pop messages off of that Queue (you can choose whether to requeue those messages).

Spring XD

1.0.0 Spring XD Guide 91

To destroy the stream, enter the following at the shell prompt:

xd:> stream destroy --name rabbittest

RabbitMQ with Options

The RabbitMQ Sink has the following options

username
the username to connect to the RabbitMQ broker (default: guest)

password
the password to connect to the RabbitMQ broker (default: guest)

host
the host (or IP Address) to connect to (default: localhost)

port
the port on the host (default: 5672)

vhost
the virtual host (default: /)

exchange
the Exchange on the RabbitMQ broker to which messages should be sent (default: `` (empty:
therefore, the default no-name Exchange))

routingKey
the routing key to be passed with the message. Note: If the routing key is not passed with the
message and simply be a string literal (like the queue name), please make sure to specify it as
SpEL literal. (default: <streamname>)

Also, if the routingKey is specified as string literal, the SpEL literal needs to be specified like this:

xd:> stream create rabbitSinkStream --definition "http | rabbit --routingKey='\"myqueue

\"'" --deploy

13.10 GemFire Server

Currently XD supports GemFire’s client-server topology. A sink that writes data to a GemFire cache
requires at least one cache server to be running in a separate process and may also be configured to
use a Locator. While Gemfire configuration is outside of the scope of this document, details are covered
in the GemFire Product documentation. The XD distribution includes a standalone GemFire server
executable suitable for development and test purposes and bootstrapped using a Spring configuration
file provided as a command line argument. The GemFire jar is distributed freely under GemFire’s
development license and is subject to the license’s terms and conditions. Sink modules provided with
the XD distrubution that write data to GemFire create a client cache and client region. No data is cached
on the client.

Launching the XD GemFire Server

To start the GemFire cache server GemFire Server included in the Spring XD distribution, go to the
XD install directory:

https://www.vmware.com/support/pubs/vfabric-gemfire.html

Spring XD

1.0.0 Spring XD Guide 92

$cd gemfire/bin

$./gemfire-server ../config/cq-demo.xml

The command line argument is the path of a Spring Data Gemfire configuration file with including
a configured cache server and one or more regions. A sample cache configuration is provided cq-
demo.xml located in the config directory. Note that Spring interprets the path as a relative path unless
it is explicitly preceded by file:. The sample configuration starts a server on port 40404 and creates
a region named Stocks.

Gemfire sinks

There are 2 implementation of the gemfire sink: gemfire-server and gemfire-json-server. They are
identical except the latter converts JSON string payloads to a JSON document format proprietary to
GemFire and provides JSON field access and query capabilities. If you are not using JSON, the gemfire-
server module will write the payload using java serialization to the configured region. Either of these
modules accepts the following attributes:

regionName
the name of the GemFire region. This must be the name of a region configured for the cache server.
This module creates the corresponding client region. (default: <streamname>)

keyExpression
A SpEL expression which is evaluated to create a cache key. Typically, the key value is derived
from the payload. (default: <streamname>, which will overwrite the same entry for every message
received on the stream)

host
The host name or IP address of the cache server or locator (default: localhost)

port
The TCP port number of the cache server or locator (default: 40404)

useLocator
A boolean flag indicating that the above host and port refer to a locator (default: false)

Note

The locator option is mostly intended for integration with an existing GemFire installation in
which the cache servers are configured to use locators in accordance with best practice. While
GemFire supports configuration of multiple locators for failover, this is currently not supported in
XD. However, using a single virtual IP backed by hardware routers for failover has proven to be
an effective and simpler alternative.

Example

Suppose we have a JSON document containing a stock price:

{"symbol":"FAKE", "price":73}

We want this to be cached using the stock symbol as the key. The stream definition is:

http | gemfire-json-server --regionName=Stocks --keyExpression=payload.getField('symbol')

https://github.com/SpringSource/spring-xd/blob/master/spring-xd-gemfire-server/config/cq-demo.xml
https://github.com/SpringSource/spring-xd/blob/master/spring-xd-gemfire-server/config/cq-demo.xml

Spring XD

1.0.0 Spring XD Guide 93

The keyExpression is a SpEL expression that depends on the payload type. In this case,
com.gemstone.org.json.JSONObject. JSONObject which provides the getField method. To run this
example:

xd:> stream create --name stocks --definition "http --port=9090 | gemfire-json-server --

regionName=Stocks --keyExpression=payload.getField('symbol')"

xd:> http post --target http://localhost:9090 --data {"symbol":"FAKE","price":73}

This will write an entry to the GemFire Stocks region with the key FAKE. Please do not put spaces when
separating the JSON key-value pairs, only a comma.

You should see a message on STDOUT for the process running the GemFire server like:

INFO [LoggingCacheListener] - updated entry FAKE

13.11 Splunk Server

A Splunk sink that writes data to a TCP Data Input type for Splunk.

Splunk sinks

The Splunk sink converts an object payload to a string using the object’s toString method and then
converts this to a SplunkEvent that is sent via TCP to Splunk. The module accepts the following
attributes:

host
The host name or IP address of the Splunk server (default: localhost)

port
The TCP port number of the Splunk Server (default: 8089)

username
The login name that has rights to send data to the tcp-port (default: admin)

password
The password associated with the username (default: password)

owner
The owner of the tcp-port (default: admin1)

tcp-port
The TCP port number to where XD will send the data (default: 9500)

Setup Splunk for TCP Input

1. From the Manager page select Manage Inputs link

2. Click the Add data Button

3. Click the From a TCP port link

4. TCP Port enter the port you want Splunk to monitor

http://www.splunk.com/

Spring XD

1.0.0 Spring XD Guide 94

5. Set Source Type select Manual

6. Source Type enter tcp-raw

7. Click Save

Example

An example stream would be to take data from a twitter search and push it through to a splunk instance.

xd:> stream create --name springone2gx --definition "twittersearch --consumerKey= --

consumerSecret= --query='#LOTR' | splunk" --deploy

13.12 MQTT Sink

The mqtt sink connects to an mqtt server and publishes telemetry messages.

Options

The defaults are set up to connect to the RabbitMQ MQTT adapter on localhost:

url
location of the mqtt broker (default: tcp://localhost:1883)

clientId
identifies the client (default: xd.mqtt.client.id.snk)

username
the username to use when connecting to the broker (default: guest)

password
the password to use when connecting to the broker (default: guest)

topic
the topic to which the sink will publish (default: xd.mqtt.test)

qos
the Quality of Service (default: 1)

retained
whether the retained flag is set (default: false)

13.13 Dynamic Router

The Dynamic Router support allows for routing Spring XD messages to named channels based on the
evaluation of SpEL expressions or Groovy Scripts.

SpEL-based Routing

In the following example, 2 streams are created that listen for message on the foo and the bar channel.
Furthermore, we create a stream that receives messages via HTTP and then delegates the received
messages to a router:

Spring XD

1.0.0 Spring XD Guide 95

xd:>stream create f --definition "queue:foo > transform --expression=payload+'-foo' | log"

 --deploy

Created new stream 'f'

xd:>stream create b --definition "queue:bar > transform --expression=payload+'-bar' | log"

 --deploy

Created new stream 'b'

xd:>stream create r --definition "http | router --

expression=payload.contains('a')?'queue:foo':'queue:bar'" --deploy

Created new stream 'r'

Now we make 2 requests to the HTTP source:

xd:>http post --data "a"

> POST (text/plain;Charset=UTF-8) http://localhost:9000 a

> 200 OK

xd:>http post --data "b"

> POST (text/plain;Charset=UTF-8) http://localhost:9000 b

> 200 OK

In the server log you should see the following output:

11:54:19,868 WARN ThreadPoolTaskScheduler-1 logger.f:145 - a-foo

11:54:25,669 WARN ThreadPoolTaskScheduler-1 logger.b:145 - b-bar

For more information, please also consult the Spring Integration
Reference manual: http://static.springsource.org/spring-integration/reference/html/messaging-routing-
chapter.html#router-namespace particularly the section "Routers and the Spring Expression Language
(SpEL)".

Groovy-based Routing

Instead of SpEL expressions, Groovy scripts can also be used. Let’s create a Groovy script in the file
system at "/my/path/router.groovy"

println("Groovy processing payload '" + payload +"'");

if (payload.contains('a')) {

 return ":foo"

}

else {

 return ":bar"

}

Now we create the following streams:

xd:>stream create f --definition ":foo > transform --expression=payload+'-foo' | log" --

deploy

Created new stream 'f'

xd:>stream create b --definition ":bar > transform --expression=payload+'-bar' | log" --

deploy

Created new stream 'b'

xd:>stream create g --definition "http | router --script='file:/my/path/router.groovy'" --

deploy

http://static.springsource.org/spring-integration/reference/html/messaging-routing-chapter.html#router-namespace
http://static.springsource.org/spring-integration/reference/html/messaging-routing-chapter.html#router-namespace

Spring XD

1.0.0 Spring XD Guide 96

Now post some data to the HTTP source:

xd:>http post --data "a"

> POST (text/plain;Charset=UTF-8) http://localhost:9000 a

> 200 OK

xd:>http post --data "b"

> POST (text/plain;Charset=UTF-8) http://localhost:9000 b

> 200 OK

In the server log you should see the following output:

Groovy processing payload 'a'

11:29:27,274 WARN ThreadPoolTaskScheduler-1 logger.f:145 - a-foo

Groovy processing payload 'b'

11:34:09,797 WARN ThreadPoolTaskScheduler-1 logger.b:145 - b-bar

Note

You can also use Groovy scripts located on your classpath by specifying:

--script='org/my/package/router.groovy'

For more information, please also consult the Spring Integration Reference manual:
"Groovy support" http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-
chapter.html#groovy

Options

expression
The SpEL expression to use for routing

script
Indicates that Groovy Script based routing is used. If this property is set, then the "Expression"
attribute will be ignored. The groovy script is checked for updates every 60 seconds. The script can
be loaded from the classpath or from the file system e.g. "--script=org/springframework/springxd/
samples/batch/router.groovy" or "--script=file:/my/path/router.groovy"

properties-location
Will be made available as script variables for Groovy Script based routing. Will only be evaluated
once at initialization time. By default the following script variables will be made available: "payload"
and "headers".

http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-chapter.html#groovy
http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-chapter.html#groovy

Spring XD

1.0.0 Spring XD Guide 97

14. Taps

14.1 Introduction

A Tap allows you to "listen" to data while it is processed in an existing stream and process the data in a
separate stream. The original stream is unaffected by the tap and isn’t aware of its presence, similar to
a phone wiretap. (WireTap is included in the standard catalog of EAI patterns and implemented in the
Spring Integration EAI framework used by Spring XD).

Simply put, a Tap is a stream that uses a point in another stream as a source.

Example

The following XD shell commands create a stream foo1 and a tap named foo1tap:

xd:> stream create --name foo1 --definition "time | log" --deploy

xd:> stream create --name foo1tap --definition "tap:stream:foo1 > log" --deploy

Since a tap is a type of stream, use the stream create command to create the tap. The tap source
is specified using the named channel syntax and always begins with tap:. In this case, we are tapping
the stream named foo1 specified by :stream:foo1

Note

stream: is required in this case as it is possible to tap alternate XD targets such as jobs. This
tap consumes data at the source of the target stream.

A tap can consume data from any point along the target stream’s processing pipeline. XD provides a
few ways to tap a stream after a given processor has been applied:

Example - tap after a processor has been applied

If the module name is unique in the target stream, use tap:stream:<stream_name>.<module_name>

If you have a stream called mystream, defined as

http | filter --expression=payload.startsWith('A') | transform --

expression=payload.toLowerCase() | file

Create a tap after the filter is applied using

tap:stream:mystream.filter >

Example - using the module index

If the module name is repeated in the target stream, use
tap:stream:<stream_name>.<module_name>.<module_index> .

If you have a stream called mystream, defined as

http | transform --expression=payload.toLowerCase() | transform --expression=payload+'!' |

 file

http://www.enterpriseintegrationpatterns.com/WireTap.html
http://static.springsource.org/spring-integration/reference/htmlsingle/#channel-wiretap

Spring XD

1.0.0 Spring XD Guide 98

Create a tap after the first transformer is applied using

tap:stream:mystream.transform.1 >

Note

the module index is the position of the module in the stream, starting with 0. It is also valid to
tap the source using this syntax, e.g., tap:stream:mystream.http.0

Example - using a label

You may also use labels to create an alias for a module and reference the label in the tap

If you have a stream called mystream, defined as

http | transform --expression=payload.toLowerCase() | flibble: transform --

expression=payload.reverse() | file

Create a tap after the second transformer is applied using

tap:stream:mystream.flibble >

A primary use case for a Tap is to perform realtime analytics at the same time as data is being ingested
via its primary stream. For example, consider a Stream of data that is consuming Twitter search results
and writing them to HDFS. A tap can be created before the data is written to HDFS, and the data piped
from the tap to a counter that correspond to the number of times specific hashtags were mentioned
in the tweets.

Creating a tap on a named channel, a stream whose source is a named channel, or a label is not yet
supported. This is planned for a future release.

You’ll find specific examples of creating taps on existing streams in the Analytics section.

14.2 Tap Lifecycle

A side effect of a stream being unaware of any taps on its pipeline is that deleting the stream will not
automatically delete the taps. The taps have to be deleted separately. However if the tapped stream is
re-created, the existing tap will continue to function.

Spring XD

1.0.0 Spring XD Guide 99

15. Type Conversion

15.1 Introduction

XD allows you to declaratively configure type conversion within processing streams using inputType and
outputType parameters on module definitions. Note that general type conversion may be accomplished
easily within a transformer or a custom module. Currently, XD natively supports the following type
conversions commonly used in streams:

• JSON to/from POJO

• JSON to/from org.springframework.xd.tuple.Tuple

• Object to/from byte[] : Either the raw bytes serialized for remote transport, bytes emitted by a module,
or converted to bytes using Java serialization(requires the object to be Serializable)

• String to/from byte[]

• Object to plain text (invokes the object’s toString() method)

Where JSON represents JSON content. Currently, Objects may be unmarshalled from a JSON byte
array or String. Converting to JSON produces a String. Registration of custom type converters will likely
be supported in a future release.

15.2 MIME media types

inputType and outputType values are parsed as media types, e.g., application/json or text/
plain;charset=UTF-8. Media types are especially useful for indicating how to convert to String
or byte[] content. XD also uses standard media type format to represent Java types, using
the general type application/x-java-object with a type parameter. For example, application/x-java-
object;type=java.util.Map or application/x-java-object;type=com.bar.Foo . For convenience, you can
specify the class name by itself and XD will map it to the corresponding media type. In addition, XD
provides a namespace for internal types, notably, application/x-xd-tuple to specify a Tuple.

Stream Definition examples

twittersearch --query='#springone2gx' --outputType=application/json | file

The twittersearch module produces Tweet objects. Producing a domain object is useful in many cases,
however writing a Tweet directly to a file would produce something like:

org.springframework.social.twitter.api.Tweet@6e878e7c

Arguably, this output is not as useful as the JSON representation. Setting the outputType to application/
json causes XD to convert the default type to a JSON string before piping it to the next module. This
is almost equivalent to:

twittersearch --query='#springone2gx' | file --inputType=application/json

There are some technical differences: In the first case, the transformation is done before the
object is marshalled (serialized) for remote transport. In the second case, the transformation follows
unmarshalling. Perhaps a more significant difference is that a tap created on the file sink would consume
JSON in the first case, and Tweets in the second.

https://github.com/spring-projects/spring-xd/blob/master/spring-xd-tuple/src/main/java/org/springframework/xd/tuple/Tuple.java
https://github.com/spring-projects/spring-social-twitter/blob/master/spring-social-twitter/src/main/java/org/springframework/social/twitter/api/Tweet.java

Spring XD

1.0.0 Spring XD Guide 100

twittersearch --query='#springone2gx' --outputType=application/json | transform --

inputType=application/x-xd-tuple ...

The above example illustrates a combination of outputType and inputType conversion. the Tweet is
converted to a JSON string which is then converted to a Tuple. XD does not know how to convert an
arbitrary type to a Tuple, but it can write an object to JSON and read JSON into a Tuple, so we have
effectively performed an Object to Tuple conversion. In many cases, combining conversion this way is
not necessary, and care must be taken since XD does not validate that such combinations are possible.

The following serializes a java.io.Serializable object to a file. Presumably the foo module outputs a
Serializable type. If not, this will result in an exception. If remote transport is configured, the output of
foo will be marshalled using XD’s internal serialization mechanism. The object will be reconstituted in
the file module’s local JVM and then converted to a byte array using Java serialization.

foo | --inputType=application/x-java-serialized-object file

15.3 Media types and Java types

Internally, XD implements type conversion using Spring Integration’s datatype channels. The data type
channel converts payloads to the configured datatype using Spring’s MessageConverter.

Note

The use of MessageCoverter for data type channels was introduced in Spring Integration 4 to
pass the Message to the converter method to allow it to access the Message’s content-type
header. This provides greater flexibility. For example, it is now possible to support multiple
strategies for converting a String or byte array to a POJO, depending on the content-type header.

When XD processes a module with a declared type conversion, it modifies the module’s input and/or
output channel definition to set the required Java type and registers MessageConverters associated
with the target media type and Java type to the channel. The type conversions XD provides out of the
box are summarized in the following table:

Source
Payload

Target
Payload

content-type
header

outputType/
inputType

Comments

POJO JSON String ignored application/
json

Tuple JSON String ignored application/
json

JSON is
tailored for
Tuple

POJO String
(toString())

ignored text/plain,
java.lang.String

POJO byte[] (java.io
serialized)

ignored application/
x-java-
serialized-
object

JSON byte[] or
String

POJO application/
json (or none)

application/x-
java-object

http://docs.spring.io/spring-integration/docs/latest-ga/reference/htmlsingle/#channel-configuration
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/messaging/converter/MessageConverter.html

Spring XD

1.0.0 Spring XD Guide 101

Source
Payload

Target
Payload

content-type
header

outputType/
inputType

Comments

byte[] or String Serializable application/
x-java-
serialized-
object

application/x-
java-object

JSON byte[] or
String

Tuple application/
json (or none)

application/x-
xd-tuple

byte[] String any text/plain,
java.lang.String

will apply
any Charset
specified in the
content-type
header

String byte[] any application/
octet-stream

will apply
any Charset
specified in the
content-type
header

Caveats

Note that that inputType and outputType parameters only apply to payloads that require type conversion.
For example, if a module produces an XML string and outputType=application/json, the payload will not
be converted from XML to JSON. This is because the payload at the module’s output channel is already
a String so no conversion will be applied at runtime.

Spring XD

1.0.0 Spring XD Guide 102

16. Batch Jobs

16.1 Introduction

One of the features that XD offers is the ability to launch and monitor batch jobs based on Spring Batch.
The Spring Batch project was started in 2007 as a collaboration between SpringSource and Accenture
to provide a comprehensive framework to support the development of robust batch applications. Batch
jobs have their own set of best practices and domain concepts which have been incorporated into
Spring Batch building upon Accenture’s consulting business. Since then Spring Batch has been used
in thousands of enterprise applications and is the basis for the recent JSR standardization of batch
processing, JSR-352.

Spring XD builds upon Spring Batch to simplify creating batch workflow solutions that span traditional
use-cases such as moving data between flat files and relational databases as well as Hadoop use-
cases where analysis logic is broken up into several steps that run on a Hadoop cluster. Steps specific
to Hadoop in a workflow can be MapReduce jobs, executing Hive/Pig scripts or HDFS operations.

16.2 Workflow

The concept of a workflow translates to a Job, not to be confused with a MapReduce job. A Job is a
directed graph, each node of the graph is a processing Step. Steps can be executed sequentially or in
parallel, depending on the configuration. Jobs can be started, stopped, and restarted. Restarting jobs is
possible since the progress of executed steps in a Job is persisted in a database via a JobRepository.
The following figures shows the basic components of a workflow.

Figure 16.1.

A Job that has steps specific to Hadoop is shown below.

http://www.springsource.org/spring-batch
https://jcp.org/en/jsr/detail?id=352

Spring XD

1.0.0 Spring XD Guide 103

Figure 16.2.

A JobLauncher is responsible for starting a job and is often triggered via a scheduler. Other options to
launch a job are through Spring XD’s RESTful administration API, the XD web application, or in response
to an external event from and XD stream definition, e.g. file polling using the file source.

16.3 Features

Spring XD allows you to create and launch jobs. The launching of a job can be triggered using a cron
expression or in reaction to data on a stream. When jobs are executing, they are also a souce of
event data that can be subscribed to by a stream. There are several type of events sent during a job’s
execution, the most common being the status of the job and the steps taken within the job. This bi-
direction communication between stream processing and batch processing allows for more complex
chains of processing to be developed.

As a starting point, jobs for the following cases are provided to use out of the box

• Poll a Directory and import CSV files to HDFS

• Import CSV files to JDBC

• HDFS to JDBC Export

• JDBC to HDFS Import

• HDFS to MongoDB Export

These are described in the section below.

This purpose of this section is to show you how to create, schedule and monitor a job.

Spring XD

1.0.0 Spring XD Guide 104

16.4 Developing your Job

The Jobs definitions provided as part of the Spring XD distribution as well as those included in the Spring
XD Samples repository can be used a basis for building your own custom Jobs. The development of a
Job largely follows the development of a Spring Batch job, for which there are several references.

• Spring Batch home page

• Spring Batch In Action - Manning

• Pro Spring Batch - APress

For help developing Job steps specific to Hadoop, e.g. HDFS, Pig, Hive, the Spring XD Samples is
useful as well as the following resources

• Spring for Apache Hadoop home page

• Spring Data - O’Reilly - Chapter 13

Once your Jobs have been developed and unit tested, they are integrated into Spring XD by copying
the resulting .jar file and Job XML definition to $XD_HOME/lib and $XD_HOME/modules/jobs.

16.5 Creating a Job

To describe the creation of a job we will use the job definition that is part of the batch-simple example.

To create a job in the XD shell, execute the job create command composed of:

• name - the "name" that will be associated with the Job

• definition - the name of the context file that describes the tasklet.

So using our example above where we have a myjob.xml job definition file in the $XD_HOME/modules/
jobs directory, this will look like:

xd:> job create --name helloSpringXD --definition "myjob" --deploy

Note: by default, deploy is set to false. "--deploy" or "--deploy true" will deploy the job along with job
creation.

In the logging output of the XDContainer you should see the following:

14:17:46,793 INFO http-bio-8080-exec-5 job.JobPlugin:87 - Configuring module

 with the following properties: {numberFormat=, dateFormat=, makeUnique=true,

 xd.job.name=helloSpringXD}

14:17:46,837 INFO http-bio-8080-exec-5 module.SimpleModule:140 - initialized module:

 SimpleModule [name=myjob, type=job, group=helloSpringXD, index=0]

14:17:46,840 INFO http-bio-8080-exec-5 module.SimpleModule:154 - started module:

 SimpleModule [name=job, type=job, group=helloSpringXD, index=0]

14:17:46,840 INFO http-bio-8080-exec-5 module.ModuleDeployer:152 - launched job module:

 helloSpringXD:myjob:0

Creating Jobs - Additional Options

When creating jobs, the following options are available to all job definitions:

https://github.com/spring-projects/spring-xd-samples
https://github.com/spring-projects/spring-xd-samples
http://projects.spring.io/spring-batch/
http://www.manning.com/templier/
http://www.apress.com/9781430234524
https://github.com/spring-projects/spring-xd-samples
http://projects.spring.io/spring-hadoop/
http://shop.oreilly.com/product/0636920024767.do
https://github.com/spring-projects/spring-xd-samples/tree/master/batch-simple

Spring XD

1.0.0 Spring XD Guide 105

dateFormat
The optional date format for job parameters (default: yyyy/MM/dd)

numberFormat
Defines the number format when parsing numeric parameters (default:
NumberFormat.getInstance(Locale.US))

makeUnique
Shall job parameters be made unique? (default: true)

Also, similar to the stream create command, the job create command has an optional --deploy
option to create the job definition and deploy it. --deploy option is false by default.

Below is an example of some of these options combined:

job create myjob --definition "fooJob --makeUnique=false"

Remember that you can always find out about available options for a job by using the module info
command.

16.6 Launching a job

XD uses triggers as well as regular event flow to launch the batch jobs. So in this section we will cover
how to:

• Launch the Batch Job Ad-hoc

• Launch the Batch Job using a named Cron-Trigger

• Launch the Batch Job as sink.

Ad-hoc

To launch a job one time, use the launch option of the job command. So going back to our example
above, we’ve created a job module instance named helloSpringXD. Launching that Job Module Instance
would look like:

xd:> job launch helloSpringXD

In the logging output of the XDContainer you should see the following

16:45:40,127 INFO http-bio-9393-exec-1 job.JobPlugin:98 - Configuring module with the

 following properties: {numberFormat=, dateFormat=, makeUnique=true, xd.job.name=myjob}

16:45:40,185 INFO http-bio-9393-exec-1 module.SimpleModule:140 - initialized module:

 SimpleModule [name=job, type=job, group=myjob, index=0 @3a9ecb9d]

16:45:40,198 INFO http-bio-9393-exec-1 module.SimpleModule:161 - started module:

 SimpleModule [name=job, type=job, group=myjob, index=0 @3a9ecb9d]

16:45:40,199 INFO http-bio-9393-exec-1 module.ModuleDeployer:161 - deployed SimpleModule

 [name=job, type=job, group=myjob, index=0 @3a9ecb9d]

Hello Spring XD!

To re-launch the job just execute the launch command. For example:

xd:> job launch helloSpringXD

Spring XD

1.0.0 Spring XD Guide 106

Launch the Batch using Cron-Trigger

To launch a batch job based on a cron scheduler is done by creating a stream using the trigger source.

xd:> stream create --name cronStream --definition "trigger --cron='0/5 * * * * *' >

 queue:job:myCronJob" --deploy

A batch job can receive parameters from a source (in this case a trigger) or process. A trigger uses the
--payload expression to declare its payload.

xd:> stream create --name cronStream --definition "trigger --cron='0/5 * * * * *' --

payload={\"param1\":\"Kenny\"} > queue:job:myCronJob" --deploy

Note

The payload content must be in a JSON-based map representation.

To pause/stop future scheduled jobs from running for this stream, the stream must be undeployed for
example:

xd:> stream undeploy --name cronStream

Launch the Batch using a Fixed-Delay-Trigger

A fixed-delay-trigger is used to launch a Job on a regular interval. Using the --fixedDelay parameter you
can set up the number of seconds between executions. In the example below we are running myXDJob
every 10 seconds and passing it a payload containing a single attribute.

xd:> stream create --name fdStream --definition "trigger --payload={\"param1\":

\"fixedDelayKenny\"} --fixedDelay=5 > queue:job:myXDJob" --deploy

To pause/stop future scheduled jobs from running for this stream, you must undeploy the stream for
example:

xd:> stream undeploy --name cronStream

Launch job as a part of event flow

A batch job is always used as a sink, with that being said it can receive messages from sources (other
than triggers) and processors. In the case below we see that the user has created an http source (http
source receives http posts and passes the payload of the http message to the next module in the stream)
that will pass the http payload to the "myHttpJob".

 stream create --name jobStream --definition "http > queue:job:myHttpJob" --deploy

To test the stream you can execute a http post, like the following:

xd:> http post --target http://localhost:9000 --data "{\"param1\":\"fixedDelayKenny\"}"

16.7 Retrieve job notifications

Spring XD offers the facilities to capture the notifications that are sent from the job as it is executing.
When a batch job is deployed, by default it registers the following listeners along with pub/sub channels
that these listeners send messages to.

Spring XD

1.0.0 Spring XD Guide 107

• Job Execution Listener

• Chunk Listener

• Item Listener

• Step Execution Listener

• Skip Listener

Along with the pub/sub channels for each of these listeners, there will also be a pub/sub channel that
the aggregated events from all these listeners are published to.

In the following example, we setup a Batch Job called myHttpJob. Afterwards we create a stream that
will tap into the pub/sub channels that were implicitly generated when the myHttpJob job was deployed.

To receive aggregated events

The stream receives aggregated event messages from all the default batch job listeners and sends
those messages to the log.

xd>job create --name myHttpJob --definition "httpJob" --deploy

xd>stream create --name aggregatedEvents --definition "tap:job:myHttpJob >log" --deploy

xd>job launch myHttpJob

Note: The syntax for the tap that receives the aggregated events is: tap:job:<job-name>

In the logging output of the container you should see something like the following when the job completes
(with the aggregated events

09:55:53,532 WARN SimpleAsyncTaskExecutor-1 logger.aggregatedEvents:150

 - JobExecution: id=2, version=1, startTime=Sat Apr 12 09:55:53 PDT 2014,

 endTime=null, lastUpdated=Sat Apr 12 09:55:53 PDT 2014, status=STARTED,

 exitStatus=exitCode=UNKNOWN;exitDescription=, job=[JobInstance: id=2, version=0,

 Job=[myHttpJob]], jobParameters=[{random=0.07002785662707867}]

09:55:53,554 WARN SimpleAsyncTaskExecutor-1 logger.aggregatedEvents:150 - StepExecution:

 id=2, version=1, name=step1, status=STARTED, exitStatus=EXECUTING, readCount=0,

 filterCount=0, writeCount=0 readSkipCount=0, writeSkipCount=0, processSkipCount=0,

 commitCount=0, rollbackCount=0, exitDescription=

09:55:53,561 WARN SimpleAsyncTaskExecutor-1 logger.aggregatedEvents:150 -

 XdChunkContextInfo [complete=false, stepExecution=StepExecution: id=2, version=1,

 name=step1, status=STARTED, exitStatus=EXECUTING, readCount=0, filterCount=0,

 writeCount=0 readSkipCount=0, writeSkipCount=0, processSkipCount=0, commitCount=0,

 rollbackCount=0, exitDescription=, attributes={}]

09:55:53,567 WARN SimpleAsyncTaskExecutor-1 logger.aggregatedEvents:150 -

 XdChunkContextInfo [complete=false, stepExecution=StepExecution: id=2, version=2,

 name=step1, status=STARTED, exitStatus=EXECUTING, readCount=0, filterCount=0,

 writeCount=0 readSkipCount=0, writeSkipCount=0, processSkipCount=0, commitCount=1,

 rollbackCount=0, exitDescription=, attributes={}]

09:55:53,573 WARN SimpleAsyncTaskExecutor-1 logger.aggregatedEvents:150 - StepExecution:

 id=2, version=2, name=step1, status=COMPLETED, exitStatus=COMPLETED, readCount=0,

 filterCount=0, writeCount=0 readSkipCount=0, writeSkipCount=0, processSkipCount=0,

 commitCount=1, rollbackCount=0, exitDescription=

09:55:53,580 WARN SimpleAsyncTaskExecutor-1 logger.aggregatedEvents:150 - JobExecution:

 id=2, version=1, startTime=Sat Apr 12 09:55:53 PDT 2014, endTime=Sat Apr 12

 09:55:53 PDT 2014, lastUpdated=Sat Apr 12 09:55:53 PDT 2014, status=COMPLETED,

 exitStatus=exitCode=COMPLETED;exitDescription=, job=[JobInstance: id=2, version=0,

 Job=[myHttpJob]], jobParameters=[{random=0.07002785662707867}]

Spring XD

1.0.0 Spring XD Guide 108

To receive job execution events

xd>job create --name myHttpJob --definition "httpJob" --deploy

xd>stream create --name jobExecutionEvents --definition "tap:job:myHttpJob.job >log" --

deploy

xd>job launch myHttpJob

Note: The syntax for the tap that receives the job execution events is: tap:job:<job-name>.job

In the logging output of the container you should see something like the following when the job completes

10:06:41,579 WARN SimpleAsyncTaskExecutor-1 logger.jobExecutionEvents:150

 - JobExecution: id=3, version=1, startTime=Sat Apr 12 10:06:41 PDT 2014,

 endTime=null, lastUpdated=Sat Apr 12 10:06:41 PDT 2014, status=STARTED,

 exitStatus=exitCode=UNKNOWN;exitDescription=, job=[JobInstance: id=3, version=0,

 Job=[myHttpJob]], jobParameters=[{random=0.3774227747555795}]

10:06:41,626 INFO SimpleAsyncTaskExecutor-1 support.SimpleJobLauncher:136

 - Job: [FlowJob: [name=myHttpJob]] completed with the following parameters:

 [{random=0.3774227747555795}] and the following status: [COMPLETED]

10:06:41,626 WARN SimpleAsyncTaskExecutor-1 logger.jobExecutionEvents:150 -

 JobExecution: id=3, version=1, startTime=Sat Apr 12 10:06:41 PDT 2014, endTime=Sat

 Apr 12 10:06:41 PDT 2014, lastUpdated=Sat Apr 12 10:06:41 PDT 2014, status=COMPLETED,

 exitStatus=exitCode=COMPLETED;exitDescription=, job=[JobInstance: id=3, version=0,

 Job=[myHttpJob]], jobParameters=[{random=0.3774227747555795}]

To receive step execution events

xd>job create --name myHttpJob --definition "httpJob" --deploy

xd>stream create --name stepExecutionEvents --definition "tap:job:myHttpJob.step >log" --

deploy

xd>job launch myHttpJob

Note: The syntax for the tap that receives the step execution events is: tap:job:<job-name>.step

In the logging output of the container you should see something like the following when the job completes

10:13:16,072 WARN SimpleAsyncTaskExecutor-1 logger.stepExecutionEvents:150 -

 StepExecution: id=6, version=1, name=step1, status=STARTED, exitStatus=EXECUTING,

 readCount=0, filterCount=0, writeCount=0 readSkipCount=0, writeSkipCount=0,

 processSkipCount=0, commitCount=0, rollbackCount=0, exitDescription=

10:13:16,092 WARN SimpleAsyncTaskExecutor-1 logger.stepExecutionEvents:150 -

 StepExecution: id=6, version=2, name=step1, status=COMPLETED, exitStatus=COMPLETED,

 readCount=0, filterCount=0, writeCount=0 readSkipCount=0, writeSkipCount=0,

 processSkipCount=0, commitCount=1, rollbackCount=0, exitDescription=

To receive item, skip and chunk events

xd>job create --name myHttpJob --definition "httpJob" --deploy

xd>stream create --name itemEvents --definition "tap:job:myHttpJob.item >log" --deploy

xd>stream create --name skipEvents --definition "tap:job:myHttpJob.skip >log" --deploy

xd>stream create --name chunkEvents --definition "tap:job:myHttpJob.chunk >log" --deploy

xd>job launch myHttpJob

Note: The syntax for the tap that receives the item events: tap:job:<job-name>.item,for skip
events: tap:job:<job-name>.skip and for chunk events: tap:job:<job-name>.chunk

Spring XD

1.0.0 Spring XD Guide 109

To disable the default listeners

xd>job create --name myHttpJob --definition "httpJob --listeners=disable" --deploy

To select specific listeners

To select specific listeners, specify comma separated list in --listeners option. Following example
illustrates the selection of job and step execution listeners only:

xd>job create --name myHttpJob --definition "httpJob --listeners=job,step" --deploy

Note: List of options are: job, step, item, chunk and skip The aggregated channel is registered if at least
one of these default listeners are enabled.

For a complete example, please see the Batch Notifications Sample which is part of the Spring XD
Samples repository.

16.8 Removing Batch Jobs

Batch Jobs can be deleted by executing:

xd:> job destroy helloSpringXD

Alternatively, one can just undeploy the job, keeping its definition for a future redeployment:

xd:> job undeploy helloSpringXD

16.9 Pre-Packaged Batch Jobs

Spring XD comes with several batch import and export modules. You can run them out of the box or
use them as a basis for building your own custom modules.

Note HDFS Configuration

To use the hdfs based jobs below, XD needs to have append enabled for hdfs. Update the hdfs-site.xml
with the following settings:

For Hadoop 1.x

 <property>

 <name>dfs.support.broken.append</name>

 <value>true</value>

 </property>

For Hadoop 2.x

 <property>

 <name>dfs.support.append</name>

 <value>true</value>

 </property>

Poll a Directory and Import CSV Files to HDFS (filepollhdfs)

This module is designed to be driven by a stream polling a directory. It imports data from CSV files and
requires that you supply a list of named columns for the data using the names parameter. For example:

https://github.com/spring-projects/spring-xd-samples/tree/master/batch-notifications
https://github.com/spring-projects/spring-xd-samples
https://github.com/spring-projects/spring-xd-samples

Spring XD

1.0.0 Spring XD Guide 110

xd:> job create myjob --definition "filepollhdfs --names=forename,surname,address" --

deploy

You would then use a stream with a file source to scan a directory for files and drive the job. A separate
file will be started for each job found:

xd:> stream create csvStream --definition "file --ref=true --dir=/mycsvdir --pattern=*.csv

 > queue:job:myjob" --deploy

The job also supports a boolean deleteFiles option if you want the files to be removed after they
have been successfully imported.

Import CSV Files to JDBC (filejdbc)

A module which loads CSV files into a JDBC table using a single batch job. By default it uses the internal
HSQL DB which is used by Spring Batch. Refer to how module options are resolved for further details
on how to change defaults (one can of course always use --foo=bar notation in the job definition to
achieve the same effect). The job should be defined with the resources parameter defining the files
which should be loaded. It also requires a names parameter (for the CSV field names) and these should
match the database column names into which the data should be stored. You can either pre-create the
database table or the module will create it for you if you use --initializeDatabase=true when the
job is created. The table initialization is configured in a similar way to the JDBC sink and uses the same
parameters. The default table name is the job name and can be customized by setting the tableName
parameter. As an example, if you run the command

xd:> job create myjob --definition "filejdbc --resources=file:///mycsvdir/*.csv --

names=forename,surname,address --tableName=people --initializeDatabase=true" --deploy

it will create the table "people" in the database with three varchar columns called "forename", "surname"
and "address". When you launch the job it will load the files matching the resources pattern and write
the data to this table. As with the filepollhdfs job, this module also supports the deleteFiles
parameter which will remove the files defined by the resources parameter on successful completion
of the job.

Launch the job using:

xd:> job launch myjob

HDFS to JDBC Export (hdfsjdbc)

This module functions very similarly to the filejdbc one except that the resources you specify should
actually be in HDFS, rather than the OS filesystem.

xd:> job create myjob --definition "hdfsjdbc --resources=/xd/data/*.csv --

names=forename,surname,address --tableName=people --initializeDatabase=true" --deploy

Launch the job using:

xd:> job launch myjob

JDBC to HDFS Import (jdbchdfs)

Performs the reverse of the previous module. The database configuration is the same as for filejdbc
but without the initialization options since you need to already have the data to import into HDFS. When

Spring XD

1.0.0 Spring XD Guide 111

creating the job, you must either supply the select statement by setting the sql parameter, or you can
supply both tableName and columns options (which will be used to build the SQL statement).

To import data from the database table some_table, you could use

xd:> job create myjob --definition "jdbchdfs --sql='select col1,col2,col3 from

 some_table'" --deploy

You can customize how the data is written to HDFS by supplying the options directory (defaults
to /xd/(job name)), fileName (defaults to job name), rollover (in bytes, default 1000000) and
fileExtension (defaults to csv).

Launch the job using:

xd:> job launch myjob

HDFS to MongoDB Export (hdfsmongodb)

Exports CSV data from HDFS and stores it in a MongoDB collection which defaults to the job name.
This can be overridden with the collectionName parameter. Once again, the field names should be
defined by supplying the names parameter. The data is converted internally to a Spring XD Tuple and
the collection items will have an id matching the tuple’s UUID. You can override this by setting the
idField parameter to one of the field names if desired.

An example:

xd:> job create myjob --definition "hdfsmongodb --resources=/data/*.log --

names=employeeId,forename,surname,address --idField=employeeId --collectionName=people" --

deploy

FTP to HDFS Export (ftphdfs)

Copies files from FTP directory into HDFS. Job is partitioned in a way that each separate file copy is
executed on its own partitioned step.

An example which copies files:

job create --name ftphdfsjob --definition "ftphdfs --host=ftp.example.com --port=21" --

deploy

job launch --name ftphdfsjob --params {"remoteDirectory":"/pub/files","hdfsDirectory":"/

ftp"}

Full path is preserved so that above command would result files in HDFS shown below:

/ftp/pub/files

/ftp/pub/files/file1.txt

/ftp/pub/files/file2.txt

Parameters for Job definition host, port, username and password can be used to control access to
the FTP server. Additionally parameter stepConcurrency which defaults to 2 can be used to control
how many simultaneous connections are used towards the FTP server.

Parameters for Job execution, remoteDirectory and hdfsDirectory are used to define source
and destination directories.

Spring XD

1.0.0 Spring XD Guide 112

17. Analytics

17.1 Introduction

Spring XD provides support for the real-time evaluation of various machine learning scoring algorithms
as well simple real-time data analytics using various types of counters and gauges. The analytics
functionality is provided via modules that can be added to a stream. In that sense, real-time analytics
is accomplished via the same exact model as data-ingestion. It’s possible that the primary role of a
stream is to perform real-time analytics, but it’s quite common to add a tap to initiate a secondary stream
where analytics, e.g. a field-value-counter, is applied to the same data being ingested through a primary
stream. You will see both approaches in the examples below.

17.2 Predictive analytics

Spring XD’s support for implementing predictive analytics by scoring analytical models that
leverage machine learning algorithms begins with an extensible class library foundation upon which
implementations can be built, such as the PMML Module that we describe here.

That module integrates with the JPMML-Evaluator library that provides support for a wide range of model
types and is interoperable with models exported from R, Rattle, KNIME, and RapidMiner. For counter
and gauge analytics, in-memory and Redis implementations are provided.

Incorporating the evaluation of machine learning algorithms into stream processing is as easy as using
any other processing module. Here is a simple example

http --outputType=application/x-xd-tuple | analytic-pmml --location=/models/iris-flower-

naive-bayes.pmml.xml

 --

inputFieldMapping='sepalLength:Sepal.Length,sepalWidth:Sepal.Width,petalLength:Petal.Length,petalWidth:Petal.Width'

 --outputFieldMapping='Predicted_Species:predictedSpecies' | log"

The http source converts posted data to a Tuple. The analytic-pmml processor loads the model
from the specifed file and creates two mappings so that fields from the Tuple can be mapped into the
input and output model names. The log sink writes the payload of the event message to the log file
of the XD container.

Posting the following JSON data to the http source

{

 "sepalLength": "6.4",

 "sepalWidth": "3.2",

 "petalLength": "4.5",

 "petalWidth": "1.5"

}

will produce output in the log file as shown below.

https://github.com/spring-projects/spring-xd-modules/tree/master/analytics-ml-pmml
https://github.com/jpmml/jpmml-evaluator
https://github.com/jpmml/jpmml-evaluator#features
https://github.com/jpmml/jpmml-evaluator#features
http://www.r-project.org/
http://rattle.togaware.com/
http://www.knime.org/
http://rapid-i.com/content/view/181/190/
http://redis.io/

Spring XD

1.0.0 Spring XD Guide 113

{

 "id":"1722ec00-baad-11e3-b988-005056c00008",

 "timestamp":1396473833152,

 "sepalLength":"6.4",

 "sepalWidth":"3.2",

 "petalLength":"4.5",

 "petalWidth":"1.5",

 "predictedSpecies":"versicolor"

}

The next section on analytical models goes into more detail on the general infrastructure

17.3 Analytical Models

We provide some core abstractions for implementing analytical models in stream processing
applications. The main interface for integrating analytical models is Analytic. Some analytical models
need to adjust the domain input and the model output in some way, therefore we provide a special base
class MappedAnalytic which has core abstractions for implementing that mapping via InputMapper
and OutputMapper.

Since Spring XD 1.0.0.M6 we support the integration of analytical models, also called statistical models
or mining models, that are defined via PMML. PMML is the abbreviation for Predictive Model Markup
Language and is a standard XML representation that allows specifications of different mining models,
their ensembles, and associated preprocessing.

Note

PMML is maintained by the Data Mining Group (DMG) and supported by several state-of-the-
art statistics and data mining software tools such as InfoSphere Warehouse, R / Rattle, SAS
Enterprise Miner, SPSS®, and Weka. The current version of the PMML specification is 4.2 at
the time of this writing. Applications can produce and consume PMML models, thus allowing an
analytical model created in one application to be implemented and used for scoring or prediction
in another.

PMML is just one of many other technologies that one can integrate to implement analytics with, more
will follow in upcoming releases.

Modeling and Evaluation

Analytical models are usually defined by a statistician aka data scientist or quant by using some
statistical tool to analyze the data and build an appropriate model. In order to implement those models
in a business application they are usually transformed and exported in some way (e.g. in the form of a
PMML definition). This model is then loaded into the application which then evaluates it against a given
input (event, tuple, example).

Modeling

Analytical models can be defined in various ways. For the sake of brevity we use R from the r-project to
demonstrate how easy it is to export an analytical model to PMML and use it later in stream processing.

For our example we use the iris example dataset in R to generate a classifier for iris flower species by
applying the Naive Bayes algorithm.

http://en.wikipedia.org/wiki/Predictive_Model_Markup_Language
http://www.dmg.org/v4-2/GeneralStructure.html
http://www.r-project.org
http://en.wikipedia.org/wiki/Iris_flower_data_set
http://en.wikipedia.org/wiki/Naive_Bayes_classifier

Spring XD

1.0.0 Spring XD Guide 114

library(e1071) # Load library with the naive bayes algorithm support.

library(pmml) # Load library with PMML export support.

data(iris) # Load the IRIS example dataset

#Helper function to split the given dataset into a dataset used for training (trainset)

 and (testset) used for evaulation.

splitDataFrame <- function(dataframe, seed = NULL, n = trainSize) {

 if (!is.null(seed)){

 set.seed(seed)

 }

 index <- 1:nrow(dataframe)

 trainindex <- sample(index, n)

 trainset <- dataframe[trainindex,]

 testset <- dataframe[-trainindex,]

 list(trainset = trainset, testset = testset)

}

#We want to use 95% of the IRIS data as training data and 5% as test data for evaluation.

datasets <- splitDataFrame(iris, seed = 1337, n= round(0.95 * nrow(iris)))

#Create a naive Bayes classifier to predict iris flower species (iris[,5]) from [,1:4] =

 Sepal.Length Sepal.Width Petal.Length Petal.Width

model <- naiveBayes(datasets$trainset[,1:4], datasets$trainset[,5])

#The name of the model and it's externalId could be used to uniquely identify this version

 of the model.

modelName = "iris-flower-classifier"

externalId = 42

#Convert the given model into a PMML model definition

pmmlDefinition = pmml.naiveBayes(model,model.name=paste(modelName,externalId,sep = ";"),

 predictedField='Species')

#Print the PMML definition to stdout

cat(toString(pmmlDefinition))

The r script above should produce the following PMML document that contains the abstract definition
of the naive bayes classifier that we derived from the training dataset of the IRIS dataset.

Spring XD

1.0.0 Spring XD Guide 115

<PMML version="4.1" xmlns="http://www.dmg.org/PMML-4_1" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xsi:schemaLocation="http://www.dmg.org/PMML-4_1 http://www.dmg.org/

v4-1/pmml-4-1.xsd">

<Header copyright="Copyright (c) 2014 tom" description="NaiveBayes Model">

 <Extension name="user" value="tom" extender="Rattle/PMML"/>

 <Application name="Rattle/PMML" version="1.4"/>

 <Timestamp>2014-04-02 13:22:15</Timestamp>

</Header>

<DataDictionary numberOfFields="6">

 <DataField name="Species" optype="categorical" dataType="string">

 <Value value="setosa"/>

 <Value value="versicolor"/>

 <Value value="virginica"/>

 </DataField>

 <DataField name="Sepal.Length" optype="continuous" dataType="double"/>

 <DataField name="Sepal.Width" optype="continuous" dataType="double"/>

 <DataField name="Petal.Length" optype="continuous" dataType="double"/>

 <DataField name="Petal.Width" optype="continuous" dataType="double"/>

 <DataField name="DiscretePlaceHolder" optype="categorical" dataType="string">

 <Value value="pseudoValue"/>

 </DataField>

</DataDictionary>

<NaiveBayesModel modelName="iris-flower-

classifier;42" functionName="classification" threshold="0.001">

 <MiningSchema>

 <MiningField name="Species" usageType="predicted"/>

 <MiningField name="Sepal.Length" usageType="active"/>

 <MiningField name="Sepal.Width" usageType="active"/>

 <MiningField name="Petal.Length" usageType="active"/>

 <MiningField name="Petal.Width" usageType="active"/>

 <MiningField name="DiscretePlaceHolder" usageType="active" missingValueReplacement="pseudoValue"/

>

 </MiningSchema>

 <Output>

 <OutputField name="Predicted_Species" feature="predictedValue"/>

 <OutputField name="Probability_setosa" optype="continuous" dataType="double" feature="probability" value="setosa"/

>

 <OutputField name="Probability_versicolor" optype="continuous" dataType="double" feature="probability" value="versicolor"/

>

 <OutputField name="Probability_virginica" optype="continuous" dataType="double" feature="probability" value="virginica"/

>

 </Output>

 <BayesInputs>

 <Extension>

 <BayesInput fieldName="Sepal.Length">

 <TargetValueStats>

 <TargetValueStat value="setosa">

 <GaussianDistribution mean="5.006" variance="0.124248979591837"/>

 </TargetValueStat>

 <TargetValueStat value="versicolor">

 <GaussianDistribution mean="5.8953488372093" variance="0.283311184939092"/>

 </TargetValueStat>

 <TargetValueStat value="virginica">

 <GaussianDistribution mean="6.58163265306122" variance="0.410697278911565"/>

 </TargetValueStat>

 </TargetValueStats>

 </BayesInput>

 </Extension>

 <Extension>

 <BayesInput fieldName="Sepal.Width">

 <TargetValueStats>

 <TargetValueStat value="setosa">

 <GaussianDistribution mean="3.428" variance="0.143689795918367"/>

 </TargetValueStat>

 <TargetValueStat value="versicolor">

 <GaussianDistribution mean="2.76279069767442" variance="0.0966777408637874"/>

 </TargetValueStat>

 <TargetValueStat value="virginica">

 <GaussianDistribution mean="2.97142857142857" variance="0.105833333333333"/>

 </TargetValueStat>

 </TargetValueStats>

 </BayesInput>

 </Extension>

 <Extension>

 <BayesInput fieldName="Petal.Length">

 <TargetValueStats>

 <TargetValueStat value="setosa">

 <GaussianDistribution mean="1.462" variance="0.0301591836734694"/>

 </TargetValueStat>

 <TargetValueStat value="versicolor">

 <GaussianDistribution mean="4.21627906976744" variance="0.236633444075305"/>

 </TargetValueStat>

 <TargetValueStat value="virginica">

 <GaussianDistribution mean="5.55510204081633" variance="0.310442176870748"/>

 </TargetValueStat>

 </TargetValueStats>

 </BayesInput>

 </Extension>

 <Extension>

 <BayesInput fieldName="Petal.Width">

 <TargetValueStats>

 <TargetValueStat value="setosa">

 <GaussianDistribution mean="0.246" variance="0.0111061224489796"/>

 </TargetValueStat>

 <TargetValueStat value="versicolor">

 <GaussianDistribution mean="1.30697674418605" variance="0.042093023255814"/>

 </TargetValueStat>

 <TargetValueStat value="virginica">

 <GaussianDistribution mean="2.02448979591837" variance="0.0768877551020408"/>

 </TargetValueStat>

 </TargetValueStats>

 </BayesInput>

 </Extension>

 <BayesInput fieldName="DiscretePlaceHolder">

 <PairCounts value="pseudoValue">

 <TargetValueCounts>

 <TargetValueCount value="setosa" count="50"/>

 <TargetValueCount value="versicolor" count="43"/>

 <TargetValueCount value="virginica" count="49"/>

 </TargetValueCounts>

 </PairCounts>

 </BayesInput>

 </BayesInputs>

 <BayesOutput fieldName="Species">

 <TargetValueCounts>

 <TargetValueCount value="setosa" count="50"/>

 <TargetValueCount value="versicolor" count="43"/>

 <TargetValueCount value="virginica" count="49"/>

 </TargetValueCounts>

 </BayesOutput>

</NaiveBayesModel>

</PMML>

Spring XD

1.0.0 Spring XD Guide 116

Evaluation

The above defined PMML model can be evaluated in a Spring XD stream definition by using the
analytic-pmml module as a processor in your stream definition. The actual evaluation of the PMML is
performed via the PmmlAnalytic which uses the jpmml-evaluator library.

Model Selection

The PMML standard allows multiple models to be defined within a single PMML document. The model
to be used can be configured through the modelName option.

NOTE The PMML standard also supports other ways for selection models, e.g. based on a predicate.
This is currently not supported.

In order to perform the evaluation in Spring XD you need to save the generated PMML document to
some folder, typically the with the extension "pmml.xml". For this example we save the PMML document
under the name iris-flower-classification-naive-bayes-1.pmml.xml.

In the following example we set up a stream definition with an http source that produces iris-flower-
records that are piped to the analytic-pmml module which applies our iris flower classifier to predict
the species of a given flower record. The result of that is a new record extended by a new attribute
predictedSpecies which simply sent to a log sink.

The definition of the stream, which we call iris-flower-classification, looks as follows:

xd:>stream create --name iris-flower-classification --definition

 "http --outputType=application/x-xd-tuple | analytic-pmml --

location=/models/iris-flower-classification-naive-bayes-1.pmml.xml --

inputFieldMapping='sepalLength:Sepal.Length,sepalWidth:Sepal.Width,petalLength:Petal.Length,petalWidth:Petal.Width'

 --outputFieldMapping='Predicted_Species:predictedSpecies' | log" --deploy

• The location parameter can be used to specify the exact location of the pmml document. The value
must be a valid spring resource location

• The inputFieldMapping parameter defines a mapping of domain input fields to model input fields. It
is just a list of fields or optional field:alias mappings to control which fields and how they are going
to end up in the model-input. If no inputFieldMapping is defined then all domain input fields are used
as model input.

• The outputFieldMapping parameter defines a mapping of model output fields to domain output fields
with semantics analog to the inputFieldMapping.

• The optional modelName parameter of the analytic-pmml module can be used to refer to a particular
named model within the PMML definition. If modelName is not defined the first model is selected by
default.

NOTE Some analytical models like for instance association rules require a different typ of mapping.
You can implement your own custom mapping strategies by implementing a custom InputMapper and
OutputMapper and defining a new PmmlAnalytic or TuplePmmlAnalytic bean that uses your custom
mappers.

After the stream has been successfully deployed to Spring XD we can eventually start to throw some
data at it by issuing the following http request via the XD-Shell (or curl, or any other tool):

https://github.com/jpmml/jpmml-evaluator
http://www.springindepth.com/2.5.x/0.10/ch05.html

Spring XD

1.0.0 Spring XD Guide 117

Note that our example record contains no information about which species the example belongs to -
this will be added by our classifier.

xd:>http post --target http://localhost:9000 --contentType application/json --data

 "{ \"sepalLength\": 6.4, \"sepalWidth\": 3.2, \"petalLength\":4.5, \"petalWidth\":1.5 }"

After posting the above json document to the stream we should see the following output in the console:

 {

 "id":"1722ec00-baad-11e3-b988-005056c00008"

 , "timestamp":1396473833152

 , "sepalLength":"6.4"

 , "sepalWidth":"3.2"

 , "petalLength":"4.5"

 , "petalWidth":"1.5"

 , "predictedSpecies":"versicolor"

 }

NOTE the generated field predictedSpecies which now identifies our input as belonging to the iris
species versicolor.

We verify that the generated PMML classifier produces the same result as R by executing the issuing
the following commands in rproject:

datasets$testset[,1:4][1,]

This is the first example record that we sent via the http post.

 Sepal.Length Sepal.Width Petal.Length Petal.Width

52 6.4 3.2 4.5 1.5

#Predict the class for the example record by using our naiveBayes model.

> predict(model, datasets$testset[,1:4][1,])

[1] versicolor

17.4 Counters and Gauges

Counter and Gauges are analytical data structures collectively referred to as metrics. Metrics can be
used directly in place of a sink just as if you were creating any other stream, but you can also analyze
data from an existing stream using a tap. We’ll look at some examples of using metrics with taps in the
following sections. As a prerequisite start the XD Container as instructed in the Getting Started page.

The 1.0 release provides the following types of metrics

• Counter

• Field Value Counter

• Aggregate Counter

• Gauge

• Rich Gauge

Spring XD supports these metrics and analytical data structures as a general purpose class library
that works with several backend storage technologies. The 1.0 release provides in memory and Redis
implementations.

Spring XD

1.0.0 Spring XD Guide 118

Counter

A counter is a Metric that associates a unique name with a long value. It is primarily used for counting
events triggered by incoming messages on a target stream. You create a counter with a unique
name and optionally an initial value then set its value in response to incoming messages. The most
straightforward use for counter is simply to count messages coming into the target stream. That is, its
value is incremented on every message. This is exactly what the counter module provided by Spring
XD does.

Here’s an example:

Start by creating a data ingestion stream. Something like:

xd:> stream create --name springtweets --definition "twittersearch --

consumerKey=<your_key> --consumerSecret=<your_secret> --query=spring | file --dir=/

tweets/" --deploy

Next, create a tap on the springtweets stream that sets a message counter named tweetcount

xd:> stream create --name tweettap --definition "tap:stream:springtweets > counter --

name=tweetcount" --deploy

The results are written to redis under the key counter.${name}. To retrieve the count:

$ redis-cli

redis 127.0.0.1:6379> get counters.tweetcount

Field Value Counter

A field value counter is a Metric used for counting occurrences of unique values for a named field in a
message payload. XD Supports the following payload types out of the box:

• POJO (Java bean)

• Tuple

• JSON String

For example suppose a message source produces a payload with a field named user :

class Foo {

 String user;

 public Foo(String user) {

 this.user = user;

 }

}

If the stream source produces messages with the following objects:

 new Foo("fred")

 new Foo("sue")

 new Foo("dave")

 new Foo("sue")

The field value counter on the field user will contain:

fred:1, sue:2, dave:1

Spring XD

1.0.0 Spring XD Guide 119

Multi-value fields are also supported. For example, if a field contains a list, each value will be counted
once:

users:["dave","fred","sue"]

users:["sue","jon"]

The field value counter on the field users will contain:

dave:1, fred:1, sue:2, jon:1

field_value_counter has the following options:

fieldName
The name of the field for which values are counted (required)

name
A key used to access the counter values. (default: stream name)

To try this out, create a stream to ingest twitter feeds containing the word spring and output to a file:

xd:> stream create --name springtweets --definition "twittersearch --

consumerKey=<your_key> --consumerSecret=<your_secret> --query=spring | file" --deploy

Now create a tap for a field value counter:

xd:> stream create --name fromUserCount --definition "tap:stream:springtweets > field-

value-counter --fieldName=fromUser" --deploy

The twittersearch source produces JSON strings which contain the user id of the tweeter in the
fromUser field. The field_value_counter sink parses the tweet and updates a field value counter named
fromUserCount in Redis. To view the counts:

$ redis-cli

redis 127.0.0.1:6379>zrange fieldvaluecounters.fromUserCount 0 -1 withscores

Aggregate Counter

The aggregate counter differs from a simple counter in that it not only keeps a total value for the count,
but also retains the total count values for each minute, hour day and month of the period for which it
is run. The data can then be queried by supplying a start and end date and the resolution at which the
data should be returned.

Creating an aggregate counter is very similar to a simple counter. For example, to obtain an aggregate
count for our spring tweets stream:

xd:> stream create --name springtweets --definition "twittersearch --query=spring | file"

 --deploy

you’d simply create a tap which pipes the input to aggregate-counter:

xd:> stream create --name tweettap --definition "tap:stream:springtweets > aggregate-

counter --name=tweetcount" --deploy

The Redis back-end stores the aggregate counts in buckets prefixed with aggregatecounters.
${name}. The rest of the string contains the date information. So for our tweetcount counter you
might see something like the following keys appearing in Redis:

Spring XD

1.0.0 Spring XD Guide 120

redis 127.0.0.1:6379> keys aggregatecounters.tweetcount*

1) "aggregatecounters.tweetcount"

2) "aggregatecounters.tweetcount.years"

3) "aggregatecounters.tweetcount.2013"

4) "aggregatecounters.tweetcount.201307"

5) "aggregatecounters.tweetcount.20130719"

6) "aggregatecounters.tweetcount.2013071914"

The general format is

1. One total value

2. One years hash with a field per year eg. { 2010: value, 2011: value }

3. One hash per year with a field per month { 01: value, …}

4. One hash per month with a field per day

5. One hash per day with a field per hour

6. One hash per hour with a field per minute

Gauge

A gauge is a Metric, similar to a counter in that it holds a single long value associated with a unique
name. In this case the value can represent any numeric value defined by the application.

The gauge sink provided with XD stores expects a numeric value as a payload, typically this would be
a decimal formatted string, and stores its values in Redis. The gauge includes the following attributes:

name
The name for the gauge (default: <streamname>)

Note:

When using gauges and rich gauges with these examples you will need a redis instance running. Also
if you are using singlenode, start your single node with the --analytics redis parameter

xd-singlenode --analyttics redis

Here is an example of creating a tap for a gauge:

Simple Tap Example

Create an ingest stream

xd:> stream create --name test --definition "http --port=9090 | file" --deploy

Next create the tap:

xd:> stream create --name simplegauge --definition "tap:stream:test > gauge" --deploy

Now Post a message to the ingest stream:

xd:> http post --target http://localhost:9090 --data "10"

Check the gauge:

Spring XD

1.0.0 Spring XD Guide 121

$ redis-cli

redis 127.0.0.1:6379> get gauges.simplegauge

"10"

Rich Gauge

A rich gauge is a Metric that holds a double value associated with a unique name. In addition to the
value, the rich gauge keeps a running average, along with the minimum and maximum values and the
sample count.

The richgauge sink provided with XD expects a numeric value as a payload, typically this would be a
decimal formatted string, and keeps its value in a store. The rich-gauge includes the following attributes:

name
The name for the gauge (default: <streamname>)

alpha
A smoothing factor between 0 and 1, that if set will compute an exponential moving average (default:
-1, simple average)

When stored in Redis, the values are kept as a space delimited string, formatted as value alpha mean
max min count

Here are some examples of creating a tap for a rich gauge:

Simple Tap Example

Create an ingest stream

xd:> stream create --name test --definition "http --port=9090 | file" --deploy

Next create the tap:

xd:> stream create --name testgauge --definition "tap:stream:test > rich-gauge" --deploy

Now Post some messages to the ingest stream:

xd:> http post --target http://localhost:9090 --data "10"

xd:> http post --target http://localhost:9090 --data "13"

xd:> http post --target http://localhost:9090 --data "16"

Check the gauge:

$ redis-cli

redis 127.0.0.1:6379> get richgauges.testgauge

"16.0 -1 13.0 16.0 10.0 3"

Stock Price Example

In this example, we will track stock prices, which is a more practical example. The data is ingested as
JSON strings like

{"symbol":"VMW","price":72.04}

Create an ingest stream

xd:> stream create --name stocks --definition "http --port=9090 | file"

http://en.wikipedia.org/wiki/Exponential_smoothing

Spring XD

1.0.0 Spring XD Guide 122

Next create the tap, using the transform module to extract the stock price from the payload:

xd:> stream create --name stockprice --definition "tap:stream:stocks > transform --

expression=#jsonPath(payload,'$.price') | rich-gauge"

Now Post some messages to the ingest stream:

xd:> http post --target http://localhost:9090 --data {"symbol":"VMW","price":72.04}

xd:> http post --target http://localhost:9090 --data {"symbol":"VMW","price":72.06}

xd:> http post --target http://localhost:9090 --data {"symbol":"VMW","price":72.08}

Note: JSON fields should be separated by a comma without any spaces. Alternatively, enclose the
whole argument to --data with quotes and escape inner quotes with a backslash.

Check the gauge:

$ redis-cli

redis 127.0.0.1:6379> get richgauges.stockprice

"72.08 -1 72.04 72.08 72.02 3"

Improved Stock Price Example

In this example, we will track stock prices for selected stocks. The data is ingested as JSON strings like

{"symbol":"VMW","price":72.04}

{"symbol":"EMC","price":24.92}

The previous example would feed these prices to a single gauge. What we really want is to create a
separate tap for each ticker symbol in which we are interested:

Create an ingest stream

xd:> stream create --name stocks --definition "http --port=9090 | file"

Next create the tap, using the transform module to extract the stock price from the payload:

xd:> stream create --name vmwprice --definition "tap:stream:stocks >

 filter --expression=#jsonPath(payload,'$.symbol')==VMW | transform --

expression=#jsonPath(payload,'$.price') | rich-gauge" --deploy

xd:> stream create --name emcprice --definition "tap:stream:stocks >

 filter --expression=#jsonPath(payload,'$.symbol')==EMC | transform --

expression=#jsonPath(payload,'$.price') | rich-gauge" --deploy

Now Post some messages to the ingest stream:

xd:> http post --target http://localhost:9090 --data {"symbol":"VMW","price":72.04}

xd:> http post --target http://localhost:9090 --data {"symbol":"VMW","price":72.06}

xd:> http post --target http://localhost:9090 --data {"symbol":"VMW","price":72.08}

xd:> http post --target http://localhost:9090 --data {"symbol":"EMC","price":24.92}

xd:> http post --target http://localhost:9090 --data {"symbol":"EMC","price":24.90}

xd:> http post --target http://localhost:9090 --data {"symbol":"EMC","price":24.96}

Check the gauge:

$ redis-cli

redis 127.0.0.1:6379> get richgauges.emcprice

"24.96 -1 24.926666666666666 24.96 24.9 3"

Spring XD

1.0.0 Spring XD Guide 123

redis 127.0.0.1:6379> get richgauges.vmwprice

"72.08 -1 72.04 72.08 72.02 3"

Accessing Analytics Data over the RESTful API

Spring XD has a discoverable RESTful API based on the Spring HATEAOS library. You can discover
the resources available by making a GET request on the root resource of the Admin server. Here is an
example where navigate down to find the data for a counter named httptap that was created by these
commands

xd:>stream create --name httpStream --definition "http | file" --deploy

xd:>stream create --name httptap --definition "tap:stream:httpStream > counter" --deploy

xd:>http post --target http://localhost:9000 --data "helloworld"

The root resource returns

xd:>! wget -q -S -O - http://localhost:9393/

{

 "links":[

 {},

 {

 "rel":"jobs",

 "href":"http://localhost:9393/jobs"

 },

 {

 "rel":"modules",

 "href":"http://localhost:9393/modules"

 },

 {

 "rel":"runtime/modules",

 "href":"http://localhost:9393/runtime/modules"

 },

 {

 "rel":"runtime/containers",

 "href":"http://localhost:9393/runtime/containers"

 },

 {

 "rel":"counters",

 "href":"http://localhost:9393/metrics/counters"

 },

 {

 "rel":"field-value-counters",

 "href":"http://localhost:9393/metrics/field-value-counters"

 },

 {

 "rel":"aggregate-counters",

 "href":"http://localhost:9393/metrics/aggregate-counters"

 },

 {

 "rel":"gauges",

 "href":"http://localhost:9393/metrics/gauges"

 },

 {

 "rel":"rich-gauges",

 "href":"http://localhost:9393/metrics/rich-gauges"

 }

]

}

Spring XD

1.0.0 Spring XD Guide 124

Following the resource location for the counter

xd:>! wget -q -S -O - http://localhost:9393/metrics/counters

{

 "links":[

],

 "content":[

 {

 "links":[

 {

 "rel":"self",

 "href":"http://localhost:9393/metrics/counters/httptap"

 }

],

 "name":"httptap"

 }

],

 "page":{

 "size":0,

 "totalElements":1,

 "totalPages":1,

 "number":0

 }

}

And then the data for the counter itself

xd:>! wget -q -S -O - http://localhost:9393/metrics/counters/httptap

{

 "links":[

 {

 "rel":"self",

 "href":"http://localhost:9393/metrics/counters/httptap"

 }

],

 "name":"httptap",

 "value":2

}

Spring XD

1.0.0 Spring XD Guide 125

18. DSL Reference

18.1 Introduction

Spring XD provides a DSL for defining a stream. Over time the DSL is likely to evolve significantly as it
gains the ability to define more and more sophisticated streams as well as the steps of a batch job.

18.2 Pipes and filters

A simple linear stream consists of a sequence of modules. Typically an Input Source, (optional)
Processing Steps, and an Output Sink. As a simple example consider the collection of data from an
HTTP Source writing to a File Sink. Using the DSL the stream description is:

http | file

A stream that involves some processing:

http | filter | transform | file

The modules in a stream definition are connected together using the pipe symbol |.

18.3 Module parameters

Each module may take parameters. The parameters supported by a module are defined by the module
implementation. As an example the http source module exposes port setting which allows the data
ingestion port to be changed from the default value.

http --port=1337

It is only necessary to quote parameter values if they contain spaces or the | character. Here the
transform processor module is being passed a SpEL expression that will be applied to any data it
encounters:

transform --expression='new StringBuilder(payload).reverse()'

If the parameter value needs to embed a single quote, use two single quotes:

// Query is: Select * from /Customers where name='Smith'

scan --query='Select * from /Customers where name=''Smith'''

18.4 Named channels

Instead of a source or sink it is possible to use a named channel. Normally the modules in a stream are
connected by anonymous internal channels (represented by the pipes), but by using explicitly named
channels it becomes possible to construct more sophisticated flows. In keeping with the unix theme,
sourcing/sinking data from/to a particular channel uses the > character. A named channel is specified
by using a channel type, followed by a : followed by a name. The channel types available are:

queue - this type of channel has point-to-point (p2p) semantics

topic - this type of channel has pub/sub semantics

Spring XD

1.0.0 Spring XD Guide 126

Here is an example that shows how you can use a named channel to share a data pipeline driven by
different input sources.

queue:foo > file

http > queue:foo

time > queue:foo

Now if you post data to the http source, you will see that data intermingled with the time value in the file.

The opposite case, the fanout of a message to multiple streams, is planned for a future release. However,
taps are a specialization of named channels that do allow publishing data to multiple sinks. For example:

tap:stream:mystream > file

tap:stream:mystream > log

Once data is received on mystream, it will be written to both file and log.

Support for routing messages to different streams based on message content is also planned for a
future release.

18.5 Labels

Labels provide a means to alias or group modules. Labels are simply a name followed by a : When
used as an alias a label can provide a more descriptive name for a particular configuration of a module
and possibly something easier to refer to in other streams.

mystream = http | obfuscator: transform --expression=payload.replaceAll('password','*') |

 file

Labels are especially useful for disambiguating when multiple modules of the same name are used:

mystream = http | uppercaser: transform --expression=payload.toUpperCase() | exclaimer:

 transform --expression=payload+'!' | file

Refer to this section of the Taps chapter to see how labels facilitate the creation of taps in these cases
where a stream contains ambiguous modules.

Spring XD

1.0.0 Spring XD Guide 127

19. Tuples

19.1 Introduction

The Tuple class is a central data structure in Spring XD. It is an ordered list of values that can be
retrieved by name or by index. Tuples are created by a TupleBuilder and are immutable. The values
that are stored can be of any type and null values are allowed.

The underlying Message class that moves data from one processing step to the next can have an
arbitrary data type as its payload. Instead of creating a custom Java class that encapsulates the
properties of what is read or set in each processing step, the Tuple class can be used instead.
Processing steps can be developed that read data from specific named values and write data to specific
named values.

There are accessor methods that perform type conversion to the basic primitive types as well as
BigDecimal and Date. This avoids you from having to cast the values to specific types. Insteam you can
rely on the Tuple’s type conversion infastructure to perform the conversion.

The Tuple’s types conversion is performed by Spring’s Type Conversion Infrastructure which supports
commonly encountered type conversions and is extensible.

There are several overloads for getters that let you provide default values for primitive types should the
field you are looking for not be found. Date format patterns and Locale aware NumberFormat conversion
are also supported. A best effort has been made to preserve the functionality available in Spring Batch’s
FieldSet class that has been extensively used for parsing String based data in files.

Creating a Tuple

The TupleBuilder class is how you create new Tuple instances. The most basic case is

Tuple tuple = TupleBuilder.tuple().of("foo", "bar");

This creates a Tuple with a single entry, a key of foo with a value of bar. You can also use a static
import to shorten the syntax.

import static org.springframework.xd.tuple.TupleBuilder.tuple;

Tuple tuple = tuple().of("foo", "bar");

You can use the of method to create a Tuple with up to 4 key-value pairs.

Tuple tuple2 = tuple().of("up", 1, "down", 2);

Tuple tuple3 = tuple().of("up", 1, "down", 2, "charm", 3);

Tuple tuple4 = tuple().of("up", 1, "down", 2, "charm", 3, "strange", 4);

To create a Tuple with more then 4 entries use the fluent API that strings together the put method and
terminates with the build method

Tuple tuple6 = tuple().put("up", 1)

 .put("down", 2)

 .put("charm", 3)

 .put("strange", 4)

 .put("bottom", 5)

 .put("top", 6)

 .build();

http://static.springsource.org/spring/docs/3.0.x/reference/validation.html#core-convert
http://static.springsource.org/spring-batch/2.1.x/apidocs/org/springframework/batch/item/file/transform/FieldSet.html

Spring XD

1.0.0 Spring XD Guide 128

To customize the underlying type conversion system you can specify the DateFormat to use
for converting String to Date as well as the NumberFormat to use based on a Locale. For
more advanced customization of the type conversion system you can register an instance of a
FormattingConversionService. Use the appropriate setter methods on TupleBuilder to make
these customizations.

You can also create a Tuple from a list of String field names and a List of Object values.

Object[] tokens = new String[]

 { "TestString", "true", "C", "10", "-472", "354224", "543", "124.3", "424.3", "1,3245",

 null, "2007-10-12", "12-10-2007", "" };

String[] nameArray = new String[]

 { "String", "Boolean", "Char", "Byte", "Short", "Integer", "Long", "Float", "Double",

 "BigDecimal", "Null", "Date", "DatePattern", "BlankInput" };

List<String> names = Arrays.asList(nameArray);

List<Object> values = Arrays.asList(tokens);

tuple = tuple().ofNamesAndValues(names, values);

Getting Tuple values

There are getters for all the primitive types and also for BigDecimal and Date. The primitive types are

• Boolean

• Byte

• Char

• Double

• Float

• Int

• Long

• Short

• String

Each getter has an overload for providing a default value. You can access the values either by field
name or by index.

The overloaded methods for asking for a value to be converted into an integer are

• int getInt(int index)

• int getInt(String name)

• int getInt(int index, int defaultValue)

• int getInt(String name, int defaultValue)

There are similar methods for other primitive types. For Boolean there is a special case of providing
the String value that represents a trueValue.

Spring XD

1.0.0 Spring XD Guide 129

• boolean getBoolean(int index, String trueValue)

• boolean getBoolean(String name, String trueValue)

If the value that is stored for a given field or index is null and you ask for a primitive type, the standard
Java defalt value for that type is returned.

The getString method will remove and leading and trailing whitespace. If you want to get the String
and preserve whitespace use the methods getRawString

There is extra functionality for getting `Date`s. The are overloaded getters that take a String based date
format

• Date getDateWithPattern(int index, String pattern)

• Date getDateWithPattern(int index, String pattern, Date defaultValue)

• Date getDateWithPattern(String name, String pattern)

• Date getDateWithPattern(String name, String pattern, Date defaultValue)

There are a few other more generic methods available. Their functionality should be obvious from their
names

• size()

• getFieldCount()

• getFieldNames()

• getFieldTypes()

• getTimestamp() - the time the tuple was created - milliseconds since epoch

• getId() - the UUID of the tuple

• Object getValue(int index)

• Object getValue(String name)

• T getValue(int index, Class<T> valueClass)

• T getValue(String name, Class<T> valueClass)

• List<Object> getValues()

• List<String> getFieldNames()

• boolean hasFieldName(String name)

Using SpEL expressions to filter a tuple

SpEL provides support to transform a source collection into another by selecting from its entries. We
make use of this functionalty to select a elements of a the tuple into a new one.

Spring XD

1.0.0 Spring XD Guide 130

Tuple tuple = tuple().put("red", "rot")

 .put("brown", "braun")

 .put("blue", "blau")

 .put("yellow", "gelb")

 .put("beige", "beige")

 .build();

Tuple selectedTuple = tuple.select("?[key.startsWith('b')]");

assertThat(selectedTuple.size(), equalTo(3));

To select the first match use the ^ operator

selectedTuple = tuple.select("^[key.startsWith('b')]");

assertThat(selectedTuple.size(), equalTo(1));

assertThat(selectedTuple.getFieldNames().get(0), equalTo("brown"));

assertThat(selectedTuple.getString(0), equalTo("braun"));

Gradle Dependencies

If you wish to use Spring XD Tuples in you project add the following dependencies:

//Add this repo to your repositories if it does not already exist.

maven { url "http://repo.spring.io/libs-snapshot" }

//Add this dependency

compile 'org.springframework.xd:spring-xd-tuple:1.0.0.M6'

Spring XD

1.0.0 Spring XD Guide 131

20. Samples

We have a number of sample projects in the Spring XD Samples GitHub repository. Below are some
additional examples for ingesting syslog data to HDFS.

20.1 Syslog ingestion into HDFS

In this section we will show a simple example on how to setup syslog ingestion from multiple hosts
into HDFS.

Create the streams with syslog as source and HDFS as sink (Please refer to source and sink)

If you’re using syslog over TCP and need the highest throughput, use the Reactor-backed syslog
module.

xd:> stream create --definition "reactor-syslog --port=<tcp-port> | hdfs" --name <stream-

name>

The reactor-syslog module doesn’t yet support UDP (though it soon will), so if you’re using syslog
over UDP you’ll want to use the standard syslog module.

xd:> stream create --definition "syslog-udp --port=<udp-port> | hdfs" --name <stream-name>

xd:> stream create --definition "syslog-tcp --port=<tcp-port> | hdfs" --name <stream-name>

Please note for hdfs sink, set rollover parameter to a smaller value to avoid buffering and to see the
data has made to HDFS (incase of smaller volume of log).

Configure the external hosts’ syslog daemons forward their messages to the xd-container host’s UDP/
TCP port (where the syslog-udp/syslog-tcp source module is deployed).

A sample configuration using syslog-ng

Edit syslog-ng configuration (for example: /etc/syslog-ng/syslog-ng.conf):

1) Add destination

destination <destinationName> {

 tcp("<host>" port("<tcp-port>"));

};

or,

destination <destinationName> {

 udp("<host>" port("<udp-port>"));

};

where "host" is the container(launcher) host where the syslog module is deployed.

2) Add log rule to log message sources:

log {

 source(<message_source>); destination(<destinationName>);

};

https://github.com/spring-projects/spring-xd-samples

Spring XD

1.0.0 Spring XD Guide 132

3) Make sure to restart the service after the change:

sudo service syslog-ng restart

Now, the syslog messages from the syslog message sources are written into HDFS /xd/<stream-name>/

Spring XD

1.0.0 Spring XD Guide 133

21. Admin UI

21.1 Introduction

Spring XD provides a browser-based GUI which currently allows you to perform Batch Job related tasks.
Upon starting Spring XD, the Admin UI is available at:

http://localhost:9393/admin-ui

http://localhost:9393/admin-ui

Spring XD

1.0.0 Spring XD Guide 134

Figure 21.1.

Spring XD

1.0.0 Spring XD Guide 135

The admin UI currently has four main tabs for Batch Jobs

• Modules

• Definitions

• Deployments

• Executions

21.2 List available batch job modules

This page lists the available batch job modules and more details (such as the job module options and
the module XML configuration file).

Spring XD

1.0.0 Spring XD Guide 136

Figure 21.2.

Spring XD

1.0.0 Spring XD Guide 137

21.3 List job definitions

This page lists the XD batch job definitions and provides actions to deploy or un-deploy those jobs.

Spring XD

1.0.0 Spring XD Guide 138

Figure 21.3.

Spring XD

1.0.0 Spring XD Guide 139

21.4 List job deployments

This page lists all the deployed jobs and provides option to launch the deployed job.

Spring XD

1.0.0 Spring XD Guide 140

Figure 21.4.

Spring XD

1.0.0 Spring XD Guide 141

Launching a batch Job

Once the job is deployed, they can be launched through the Admin UI as well. Navigate to the
Deployments tab. Select the job you want to launch and press Launch. The following modal dialog
should appear:

Spring XD

1.0.0 Spring XD Guide 142

Figure 21.5.

Spring XD

1.0.0 Spring XD Guide 143

Using this screen, you can define one or more job parameters. Job parameters can be typed and the
following data types are available:

• String (The default)

• Date (The default date format is: yyyy/MM/dd)

• Long

• Double

21.5 List job executions

This page lists the batch job executions and provides option to restart if the batch job is restartable
and stopped/failed.

Spring XD

1.0.0 Spring XD Guide 144

Figure 21.6.

Part II. Appendices

Spring XD

1.0.0 Spring XD Guide 146

Appendix A. Installing Hadoop

A.1 Installing Hadoop

If you don’t have a local Hadoop cluster available already, you can do a local single node installation
(v1.2.1) and use that to try out Hadoop with Spring XD.

Tip

This guide is intended to serve as a quick guide to get you started in the context of Spring XD.
For more complete documentation please refer back to the documentation provided by your
respective Hadoop distribution.

Download

First, download an installation archive and unpack it locally. Linux users can also install Hadoop through
the system package manager and on Mac OS X, you can use Homebrew. However, the manual
installation is self-contained and it’s easier to see what’s going on if you just unpack it to a known location.

If you have wget available on your system, you can also execute:

$ wget http://archive.apache.org/dist/hadoop/common/hadoop-1.2.1/hadoop-1.2.1.tar.gz

Unpack the distribution with:

$ tar xzf hadoop-1.2.1.tar.gz

Change into the directory and have a look around

$ cd hadoop-1.2.1

$ ls

$ bin/hadoop

Usage: hadoop [--config confdir] COMMAND

where COMMAND is one of:

 namenode -format format the DFS filesystem

 secondarynamenode run the DFS secondary namenode

 namenode run the DFS namenode

 ...

The bin directory contains the start and stop scripts as well as the hadoop script which allows us to
interact with Hadoop from the command line. The next place to look at is the conf directory.

Java Setup

Make sure that you set JAVA_HOME in the conf/hadoop-env.sh script, or you will get an error when
you start Hadoop. For example:

The java implementation to use. Required.

export JAVA_HOME=/usr/lib/j2sdk1.5-sun

export JAVA_HOME=/usr/lib/jdk1.6.0_45

http://hadoop.apache.org/docs/r1.2.1/single_node_setup.html
http://hadoop.apache.org/docs/r1.2.1/single_node_setup.html
http://archive.apache.org/dist/hadoop/common/
http://brew.sh/

Spring XD

1.0.0 Spring XD Guide 147

Tip

When using Mac OS X you can determine the Java 6 home directory by executing $ /usr/
libexec/java_home -v 1.6

Important

When using MAC OS X (Other systems possible also) you may still encounter Unable to load
realm info from SCDynamicStore (For details see Hadoop Jira HADOOP-7489). In that
case, please also add to conf/hadoop-env.sh the following line: export HADOOP_OPTS="-
Djava.security.krb5.realm= -Djava.security.krb5.kdc=".

Setup SSH

As described in the installation guide, you also need to set up SSH login to localhost without a
passphrase. On Linux, you may need to install the ssh package and ensure the sshd daemon is
running. On Mac OS X, ssh is already installed but the sshd daemon isn’t usually running. To start it,
you need to enable "Remote Login" in the "Sharing" section of the control panel. Then you can carry on
and setup SSH keys as described in the installation guide:

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Make sure you can log in at the command line using ssh localhost before trying to start Hadoop:

$ ssh localhost

Last login: Thu May 30 12:52:47 2013

You also need to decide where in your local filesystem you want Hadoop to store its data. Let’s say
you decide to use /data.

First create the directory and make sure it is writeable:

$ mkdir /data

$ chmod 777 /data

Now edit conf/core-site.xml and add the following property:

<property>

 <name>hadoop.tmp.dir</name>

 <value>/data</value>

</property>

You’re then ready to format the filesystem for use by HDFS

$ bin/hadoop namenode -format

Setting the Namenode Port

By default Spring XD will use a Namenode setting of hdfs://localhost:8020 which is defined
in ${xd.home}/config/hadoop.properties, depending on the used Hadoop distribution and
version the by-default-defined port 8020 may be different, e.g. port 9000. Therefore, please ensure you
have the following setting in conf/core-site.xml:

https://issues.apache.org/jira/browse/HADOOP-7489
http://en.wikipedia.org/wiki/Secure_Shell

Spring XD

1.0.0 Spring XD Guide 148

<configuration>

 <property>

 <name>fs.default.name</name>

 <value>hdfs://localhost:8020</value>

 </property>

</configuration>

Further Configuration File Changes

In conf/hdfs-site.xml add:

<configuration>

 <property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

</configuration>

In conf/mapred-site.xml add:

<configuration>

 <property>

 <name>mapred.job.tracker</name>

 <value>localhost:9001</value>

 </property>

</configuration>

A.2 Running Hadoop

You should now finally be ready to run Hadoop. Run the start-all.sh script

$ bin/start-all.sh

You should see five Hadoop Java processes running:

$ jps

4039 TaskTracker

3713 NameNode

3802 DataNode

3954 JobTracker

3889 SecondaryNameNode

4061 Jps

Try a few commands with hadoop dfs to make sure the basic system works

$ bin/hadoop dfs -ls /

Found 1 items

drwxr-xr-x - luke supergroup 0 2013-05-30 17:28 /data

$ bin/hadoop dfs -mkdir /test

$ bin/hadoop dfs -ls /

Found 2 items

drwxr-xr-x - luke supergroup 0 2013-05-30 17:28 /data

drwxr-xr-x - luke supergroup 0 2013-05-30 17:31 /test

$ bin/hadoop dfs -rmr /test

Deleted hdfs://localhost:8020/test

Spring XD

1.0.0 Spring XD Guide 149

Lastly, you can also browse the web interface for NameNode and JobTracker at:

• NameNode: http://localhost:50070/

• JobTracker: http://localhost:50030/

At this point you should be good to create a Spring XD stream using a Hadoop sink.

http://localhost:50070/
http://localhost:50030/

Spring XD

1.0.0 Spring XD Guide 150

Appendix B. Creating a Source
Module

B.1 Introduction

As outlined in the modules document, XD currently supports 3 types of modules: source, sink, and
processor. This document walks through creation of a custom source module.

The first module in a stream is always a source. Source modules are built with Spring Integration and are
typically very fine-grained. A module of type source is responsible for placing a message on a channel
named output. This message can then be consumed by the other processor and sink modules in the
stream. A source module is typically fed data by an inbound channel adapter, configured with a poller.

Spring Integration provides a number of adapters out of the box to support various transports, such as
JMS, File, HTTP, Web Services, Mail, and more. You can typically create a source module that uses
these inbound channel adapters by writing just a single Spring application context file.

These steps will demonstrate how to create and deploy a source module using the Spring Integration
Feed Inbound Channel Adapter.

B.2 Create the module Application Context file

Create the Inbound Channel Adapter in a file called feed.xml:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:int-feed="http://www.springframework.org/schema/integration/feed"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/feed

 http://www.springframework.org/schema/integration/feed/spring-integration-feed.xsd">

 <int-feed:inbound-channel-adapter id="xdFeed" channel="output" url="http://

feeds.bbci.co.uk/news/rss.xml">

 <int:poller fixed-rate="5000" max-messages-per-poll="100" />

 </int-feed:inbound-channel-adapter>

 <int:channel id="output"/>

</beans>

The adapter is configured to poll the BBC News Feed every 5 seconds. Once an item is found, it will
create a message with a SyndEntryImpl domain object payload and write it to a message channel
called output. The name output should be used by convention so that your source module can easily
be combined with any processor and sink module in a stream.

http://docs.spring.io/spring-integration/reference/html/feed.html#feed-inbound-channel-adapter
http://docs.spring.io/spring-integration/reference/html/feed.html#feed-inbound-channel-adapter

Spring XD

1.0.0 Spring XD Guide 151

Make the module configurable

Users may want to pull data from feeds other than BBC News. Spring XD will automatically make a
PropertyPlaceholderConfigurer available to your application context. You can simply reference property
names and users can then pass in values when creating a stream using the DSL.

<int-feed:inbound-channel-adapter id="xdFeed" channel="output" url="${url:http://

feeds.bbci.co.uk/news/rss.xml}">

 <int:poller fixed-rate="5000" max-messages-per-poll="100" />

</int-feed:inbound-channel-adapter>

Now users can optionally pass a url property value on stream creation. If not present, the specified
default will be used.

B.3 Test the module locally

This section covers setup of a local project containing some code for testing outside of an XD container.
This step can be skipped if you prefer to test the module by deploying to Spring XD.

Create a project

The module can be tested by writing a Spring integration test to load the context file and validate that
news items are received. In order to write the test, you will need to create a project in an IDE such as
STS, Eclipse, or IDEA. Eclipse will be used for this example.

Create a feed directory and add feed.xml to src/main/resources. Add the following build.gradle (or an
equivalent pom.xml) to the root directory:

description = 'Feed Source Module'

group = 'org.springframework.xd.samples'

repositories {

 maven { url "http://repo.spring.io/libs-snapshot" }

 maven { url "http://repo.spring.io/plugins-release" }

}

apply plugin: 'java'

apply plugin: 'eclipse'

apply plugin: 'idea'

ext {

 junitVersion = '4.11'

 springVersion = '4.0.3.RELEASE'

 springIntegrationVersion = '4.0.0.M4'

}

dependencies {

 compile("org.springframework:spring-core:$springVersion")

 compile "org.springframework:spring-context-support:$springVersion"

 compile "org.springframework.integration:spring-integration-feed:

$springIntegrationVersion"

 // Testing

 testCompile "junit:junit:$junitVersion"

 testCompile "org.springframework:spring-test:$springVersion"

}

defaultTasks 'build'

Spring XD

1.0.0 Spring XD Guide 152

Run gradle eclipse to generate the Eclipse project. Import the project into Eclipse.

Create the Spring integration test

The main objective of the test is to ensure that news items are received once the module’s Application
Context is loaded. This can be tested by adding an Outbound Channel Adapter that will direct items to
a POJO that can store them for validation.

Add the following src/test/resources/org/springframework/xd/samples/test-context.xml:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:int="http://www.springframework.org/schema/integration"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd">

 <context:property-placeholder/>

 <int:outbound-channel-adapter channel="output" ref="target" method="add" />

 <bean id="target" class="org.springframework.xd.samples.FeedCache" />

</beans>

This context creates an Outbound Channel Adapter that will subscribe to all messages on the output
channel and pass the message payload to the add method of a FeedCache object. The context also
creates the PropertyPlaceholderConfigurer that is ordinarily provided by the XD container.

Create the src/test/java/org/springframework/xd/samples/FeedCache class:

package org.springframework.xd.samples;

import ...

public class FeedCache {

 final BlockingDeque<SyndEntry> entries = new LinkedBlockingDeque<SyndEntry>(99);

 public void add(SyndEntry entry) {

 entries.add(entry);

 }

}

The FeedCache places all received SyndEntry objects on a BlockingDeque that our test can use to
validate successful routing of messages.

Lastly, create and run the src/test/java/org/springframework/xd/samples/FeedSourceModuleTest:

Spring XD

1.0.0 Spring XD Guide 153

package org.springframework.xd.samples;

import ...

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations={"classpath:feed.xml", "test-context.xml"})

public class FeedSourceModuleTest {

 @Autowired

 FeedCache feedCache;

 @Test

 public void testFeedPolling() throws Exception {

 assertNotNull(feedCache.entries.poll(5, TimeUnit.SECONDS));

 }

}

The test will load an Application Context using our feed and test context files. It will fail if a item is not
placed into the FeedCache within 5 seconds.

You now have a way to build and test your new module independently. Time to deploy to Spring XD!

B.4 Deploy the module

Spring XD looks for modules in the ${xd.home}/modules directory. The modules directory organizes
module types in sub-directories. So you will see something like:

modules/processor

modules/sink

modules/source

Simply drop feed.xml into the modules/source directory and add the dependencies to the lib directory
by copying the following jars from your gradle cache to ${xd.home}/lib:

spring-integration-feed-4.0.0.M4.jar

jdom-1.0.jar

rome-1.0.0.jar

rome-fetcher-1.0.0.jar

Note

For a more sophisticated handling of module dependencies, please see Modules with isolated
classpath.

Now fire up the server. See Getting Started to learn how to start the Spring XD server.

B.5 Test the deployed module

Once the XD server is running, create a stream to test it out. This stream will write SyndEntry objects
to the XD log:

xd:> stream create --name feedtest --definition "feed | log" --deploy

You should start seeing messages like the following in the container console window:

https://github.com/spring-projects/spring-xd/wiki/Modules#modules-with-isolated-classpath
https://github.com/spring-projects/spring-xd/wiki/Modules#modules-with-isolated-classpath

Spring XD

1.0.0 Spring XD Guide 154

 WARN logger.feedtest: SyndEntryImpl.contributors=[]

SyndEntryImpl.contents=[]

SyndEntryImpl.updatedDate=null

SyndEntryImpl.link=http://www.bbc.co.uk/news/uk-22850006#sa-

ns_mchannel=rss&ns_source=PublicRSS20-sa

SyndEntryImpl.titleEx.value=VIDEO: Queen visits Prince Philip in hospital

...

As you can see, the SyndEntryImpl toString is fairly verbose. To make the output more concise, create
a processor module to further transform the SyndEntry or consider converting the entry to JSON and
using the JSON Field Extractor to send a single attribute value to the output channel.

Spring XD

1.0.0 Spring XD Guide 155

Appendix C. Creating a Processor
Module

C.1 Introduction

As outlined in the modules document, XD currently supports 3 types of modules: source, sink, and
processor. This document walks through creation of a custom processor module.

One or more processors can be included in a stream definition to modify the data as it passes between
the initial source and the destination sink. The architecture section covers the basics of processors
modules provided out of the box are covered in the processors section.

Here we’ll look at how to create and deploy a custom processor module to transform the input from
an incoming twittersearch. The steps are essentially the same for any source though. Rather than
using built-in functionality, we’ll write a custom processor implementation class and wire it up using
Spring Integration.

C.2 Write the Transformer Code

The tweet messages from twittersearch contain quite a lot of data (id, author, time and so on). The
transformer we’ll write will discard everything but the text content and output this as a string. The output
messages from the twittersearch source are also strings, containing the tweet data as JSON. We
first parse this into a map using Jackson library code, then extract the "text" field from the map.

package custom;

import java.io.IOException;

import java.util.Map;

import org.codehaus.jackson.map.ObjectMapper;

import org.codehaus.jackson.type.TypeReference;

import org.springframework.integration.transformer.MessageTransformationException;

public class TweetTransformer {

 private ObjectMapper mapper = new ObjectMapper();

 public String transform(String payload) {

 try {

 Map<String, Object> tweet = mapper.readValue(payload, new TypeReference<Map<String,

 Object>>() {});

 return tweet.get("text").toString();

 } catch (IOException e) {

 throw new MessageTransformationException("Unable to transform tweet: " +

 e.getMessage(), e);

 }

 }

}

C.3 Create the module Application Context File

Create the following file as tweettransformer.xml:

Spring XD

1.0.0 Spring XD Guide 156

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns="http://www.springframework.org/schema/integration"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:beans="http://www.springframework.org/schema/beans"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd">

 <channel id="input"/>

 <transformer input-channel="input" output-channel="output">

 <beans:bean class="custom.TweetTransformer" />

 </transformer>

 <channel id="output"/>

</beans:beans>

C.4 Deploy the Module

To deploy the module, you need to copy the tweettransformer.xml file to the ${xd.home}/modules/
processors directory. We also need to make the custom module code available. Spring XD looks for
code in the jars it finds in the ${xd.home}/lib directory. So create a jar with the TweetTransformer
class in it (and the correct package structure) and drop it into lib.

Note

For a more sophisticated handling of module dependencies, please see Modules with isolated
classpath.

C.5 Test the deployed module

Start the XD server and try creating a stream to test your processor:

xd:> stream create --name javatweets --definition "twittersearch --query=java --

consumerKey=<your_key> --consumerSecret=<your_secret> | tweettransformer | file" --deploy

If you haven’t already used twittersearch, read the sources section for more details. This
command should stream tweets to the file /tmp/xd/output/javatweets but, unlike the normal
twittersearch output, you should just see the plain tweet text there, rather than the full JSON data.

https://github.com/spring-projects/spring-xd/wiki/Modules#modules-with-isolated-classpath
https://github.com/spring-projects/spring-xd/wiki/Modules#modules-with-isolated-classpath

Spring XD

1.0.0 Spring XD Guide 157

Appendix D. Creating a Sink Module

D.1 Introduction

As outlined in the modules document, XD currently supports 3 types of modules: source, sink, and
processor. This document walks through creation of a custom sink module.

The last module in a stream is always a sink. Sink modules are built with Spring Integration and are
typically very fine-grained. A module of type sink listens on a channel named input and is responsible
for outputting received messages to an external resource to terminate the stream.

Spring Integration provides a number of adapters out of the box to support various transports, such as
JMS, File, HTTP, Web Services, Mail, and more. You can typically create a sink module that uses these
outbound channel adapters by writing just a single Spring application context file.

These steps will demonstrate how to create and deploy a sink module using the Spring Integration
RedisStore Outbound Channel Adapter.

D.2 Create the module Application Context file

Create the Outbound Channel Adapter in a file called redis-store.xml:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int="http://

www.springframework.org/schema/integration"

 xmlns:int-redis="http://www.springframework.org/schema/integration/redis"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd

 http://www.springframework.org/schema/integration/redis

 http://www.springframework.org/schema/integration/redis/spring-integration-redis.xsd">

 <int:channel id="input" />

 <int-redis:store-outbound-channel-adapter

 id="redisListAdapter" collection-type="LIST" channel="input" key="myCollection" />

 <bean id="redisConnectionFactory"

 class="org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory">

 <constructor-arg index="0" value="${localhost}" />

 <constructor-arg index="1" value="${6379}" />

 </bean>

</beans>

The adapter is configured to listen on a channel named input. The name input should be used by
convention so that your sink module will receive all messages sent in the stream. Once a message
is received, it will write the payload to a Redis list with key myCollection. By default, the RedisStore
Outbound Channel Adapter uses a bean named redisConnectionFactory to connect to the Redis server.

http://docs.spring.io/spring-integration/reference/html/redis.html#redis-store-outbound-channel-adapter
http://docs.spring.io/spring-integration/reference/html/redis.html#redis-store-outbound-channel-adapter

Spring XD

1.0.0 Spring XD Guide 158

Note

By default, the adapter uses a StringRedisTemplate. Therefore, this module will store all payloads
directly as Strings. Create a custom RedisTemplate with different value Serializers to serialize
other forms of data like Java objects to the Redis collection.

D.3 Make the module configurable

Users may want to specify a different Redis server or key to use for storing data. Spring XD will
automatically make a PropertyPlaceholderConfigurer available to your application context. You can
simply reference property names and users can then pass in values when creating a stream using the
DSL

 <int-redis:store-outbound-channel-adapter

 id="redisListAdapter" collection-type="LIST" channel="input" key="${key:myCollection}" /

>

 <bean id="redisConnectionFactory"

 class="org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory">

 <constructor-arg index="0" value="${hostname:localhost}" />

 <constructor-arg index="1" value="${port:6379}" />

 </bean>

Now users can optionally pass key, hostname, and port property values on stream creation. If not
present, the specified defaults will be used.

D.4 Test the module locally

This section covers setup of a local project containing some code for testing outside of an XD container.
This step can be skipped if you prefer to test the module by deploying to Spring XD.

Create a project

The module can be tested by writing a Spring integration test to load the context file and validate that
messages are stored in Redis. In order to write the test, you will need to create a project in an IDE such
as STS, Eclipse, or IDEA. Eclipse will be used for this example.

Create a redis-store directory and add redis-store.xml to src/main/resources. Add the following
build.gradle (or an equivalent pom.xml) to the root directory:

Spring XD

1.0.0 Spring XD Guide 159

description = 'Redis Store Sink Module'

group = 'org.springframework.xd.samples'

repositories {

 maven { url "http://repo.spring.io/libs-snapshot" }

 maven { url "http://repo.spring.io/plugins-release" }

}

apply plugin: 'java'

apply plugin: 'eclipse'

apply plugin: 'idea'

ext {

 junitVersion = '4.11'

 lettuceVersion = '2.3.3'

 springVersion = '4.0.3.RELEASE'

 springIntegrationVersion = '4.0.0.M4'

 springDataRedisVersion = '1.1.1.RELEASE'

}

dependencies {

 compile("org.springframework:spring-core:$springVersion")

 compile "org.springframework:spring-context-support:$springVersion"

 compile "org.springframework.integration:spring-integration-core:

$springIntegrationVersion"

 compile "org.springframework.integration:spring-integration-redis:

$springIntegrationVersion"

 compile "org.springframework.data:spring-data-redis:$springDataRedisVersion"

 // Testing

 testCompile "junit:junit:$junitVersion"

 testCompile "org.springframework:spring-test:$springVersion"

 testCompile "com.lambdaworks:lettuce:$lettuceVersion"

}

defaultTasks 'build'

Run gradle eclipse to generate the Eclipse project. Import the project into Eclipse.

Create the Spring integration test

The main objective of the test is to ensure that messages are stored in a Redis list once the module’s
Application Context is loaded. This can be tested by adding an Inbound Channel Adapter that will direct
test messages to the input channel.

Add the following src/test/resources/org/springframework/xd/samples/test-context.xml:

Spring XD

1.0.0 Spring XD Guide 160

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:int="http://

www.springframework.org/schema/integration"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.xsd

 http://www.springframework.org/schema/integration

 http://www.springframework.org/schema/integration/spring-integration.xsd">

 <context:property-placeholder />

 <int:inbound-channel-adapter channel="input" expression="'TESTING'">

 <int:poller fixed-rate="1000" />

 </int:inbound-channel-adapter>

 <bean id="redisTemplate" class="org.springframework.data.redis.core.StringRedisTemplate">

 <property name="connectionFactory" ref="redisConnectionFactory" />

 </bean>

</beans>

This context creates an Inbound Channel Adapter that will generate messages with the payload
"TESTING". The context also creates the PropertyPlaceholderConfigurer that is ordinarily provided by
the XD container. The redisTemplate is configured for use by the test to verify that data is placed in
Redis.

Lastly, create and run the src/test/java/org/springframework/xd/samples/RedisStoreSinkModuleTest:

package org.springframework.xd.samples;

import ...

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations={"classpath:redis-store.xml", "test-context.xml"})

public class RedisStoreSinkModuleTest {

 @Autowired

 RedisTemplate<String,String> redisTemplate;

 @Test

 public void testTweetSearch() throws Exception {

 assertNotNull(redisTemplate.boundListOps("myCollection").leftPop(5,

 TimeUnit.SECONDS));

 }

}

The test will load an Application Context using our redis-store and test context files. It will fail if an item
is not placed in the Redis list within 5 seconds.

Run the test

The test requires a running Redis server. See Getting Started for information on installing and starting
Redis.

You now have a way to build and test your new module independently. Time to deploy to Spring XD!

Spring XD

1.0.0 Spring XD Guide 161

D.5 Deploy the module

Spring XD looks for modules in the ${xd.home}/modules directory. The modules directory organizes
module types in sub-directories. So you will see something like:

modules/processor

modules/sink

modules/source

Simply drop redis-store.xml into the modules/sink directory and fire up the server. See Getting Started
to learn how to start the Spring XD server.

D.6 Test the deployed module

Once the XD server is running, create a stream to test it out. This stream will write tweets containing
the word "java" to Redis as a JSON string:

xd:> stream create --name javasearch --definition "twittersearch --consumerKey=<your_key>

 --consumerSecret=<your_secret> --query=java | redis-store --key=javatweets" --deploy

Note that you need to have a consumer key and secret to use the twittersearch module. See the
description in the streams section for more information.

Fire up the redis-cli and verify that tweets are being stored:

$ redis-cli

redis 127.0.0.1:6379> lrange javatweets 0 -1

1) {\"id\":342386150738120704,\"text\":\"Now Hiring: Senior Java Developer\",\"createdAt

\":1370466194000,\"fromUser\":\"jencompgeek\",...\"}"

Spring XD

1.0.0 Spring XD Guide 162

Appendix E. Providing Module
Options Metadata

E.1 Introduction

Each available module can expose metadata about the options it accepts. This is useful to enhance the
user experience, and is the foundation to advanced features like contextual help and code completion.

For example, provided that the file source module has been enriched with options metadata (and it has),
one can use the module info command in the shell to get information about the module:

xd:> module info source:file

Information about source module 'file':

 Option Name Description

 Default Type

 --- -------

 dir the absolute path to the directory to monitor for files

 <none> String

 pattern a filter expression (Ant style) to accept only files that match the

 pattern * String

 outputType how this module should emit messages it produces

 <none> MediaType

 preventDuplicates whether to prevent the same file from being processed twice

 true boolean

 ref set to true to output the File object itself

 false boolean

 fixedDelay the fixed delay polling interval specified in seconds

 5 int

For this to be available, module authors have to provide a little bit of extra information, known as "Module
Options Metadata". That metadata can take two forms, depending on the needs of the module: one can
either use the "simple" approach, or the "POJO" approach. If one does not need advanced features like
profile activation, validation or options encapsulation, then the "simple" approach is sufficient.

E.2 Using the "Simple" approach

To use the simple approach, simply create a file named <module>.properties right next to the
<module>.xml file for your module.

Declaring and documenting an option

In that file, each option <option> is declared by adding a line of the form

options.<option>.description = the description

The description for the option is the only required part, and is a very important piece of information for
the end user, so pay special attention to it (see also Style remarks)

That sole line in the properties file makes a --<option>= construct available in the definition of a
stream using your module.

Spring XD

1.0.0 Spring XD Guide 163

About plugin provided options metadata

Some options are automatically added to a module, depending on its type. For example, every
source module automatically inherits a outputType option, that controls the type conversion
feature between modules. You don’t have to do anything for that to happen.

Similarly, every job module benefits from a handful of job specific options.

Here is a recap of those automatically provided options:

Module Type Options

Source outputType

Processor outputType, inputType

Sink inputType

Job makeUnique, numberFormat, dateFormat

Advertising default values

In addition to this, one can also provide a default value for the option, using

options.<option>.default = SomeDefault

Doing this, the default value should not be used in the placeholder syntax in the xml file. Assuming this
is the contents of foo.properties:

options.bar.description = a very useful option

options.bar.default = 5

then in foo.xml:

<!-- this is correct -->

<feature the-bar="${bar}"" />

<!-- this is incorrect/not needed -->

<feature the-bar="${bar:5}" />

The only case(s) where using a default in the ${} construct is necessary are

1. when the default is computed from a value known only at deployment time. This is typically the case
of ${xd.stream.name}

2. when the default should be sourced from some configuration file. There will then typically be
a PropertyPlaceholderConfigurer defined in the module and the default will read like
${<option>:<key-in-thefile>}

Exposing the option type

Lastly, one can document the option type using a construct like

options.<option>.type = fully.qualified.class.Name

Type-Conversion

Spring XD

1.0.0 Spring XD Guide 164

For simple "primitive" types, one can use short names, like so:

options.<option>.type = String

or

options.<option>.type = boolean

or

options.<option>.type = Integer

Note that there is support for both wrapper types (e.g. Integer) and primitive types (e.g. int). Although
this is used for documentation purposes only, the primitive type would typically be used to indicate a
required option (null being prohibited).

E.3 Using the "POJO" approach

To use advanced features such as profile activation driven by the values provided by the end user, one
would need to leverage the "POJO" approach.

Instead of writing a properties file, you will need to write a custom java class that will hold the values at
runtime. That class is also introspected to derive metadata about your module.

Declaring options to the module

For the simplest cases, the class you need to write does not need to implement or inherit from anything.
The only thing you need to do is to reference it in a properties file named after your module (the same
file location you would have used had you been leveraging the "simple" approach):

options_class = fully.qualified.name.of.your.Pojo

Note that the key is options_class, with an s and an underscore (not to be confused with
option.<optionname> that is used in the "simple" approach)

For each option you want available using the --<option>= syntax, you must write a public setter
annotated with @ModuleOption, providing the option description in the annotation.

The type accepted by that setter will be used as the documented type.

That setter will typically be used to store the value in a private field. How the module application can
get ahold of the value is the topic of the next section.

Exposing values to the context

For a provided value to be used in the module definition (using the ${foo} syntax), your POJO class
needs to expose a getFoo() getter.

At runtime, an instance of the POJO class will be created (it requires a no-arg constructor, by the way)
and values given by the user will be bound (using setters). The POJO class thus acts as an intermediate
PropertySource to provide values to ${foo} constructs.

Providing defaults

To provide default values, one would most certainly simply store a default value in the backing field of a
getter/setter pair. That value (actually, the result of invoking the matching getter to a setter on a newly
instanciated object) is what is advertised as the default.

Spring XD

1.0.0 Spring XD Guide 165

Encapsulating options

Although one would typically use the combination of a foo field and a getFoo(), setFoo(x) pair,
one does not have to.

In particular, if your module definition requires some "complex" (all things being relative here) value
to be computed from "simpler" ones (e.g. a suffix value would be computed from an extension option,
that would take care of adding a dot, depending on whether it is blank or not), then you’d simply do
the following:

 1 public class MyOptions {

 private String extension;

 @ModuleOption("the file extension to use")

 5 public void setExtension(String extension) {

 this.extension = extension;

 }

 public String getSuffix() {

 10 return extension == null ? null : "." + extension;

 }

 }

This would expose a --extension= option, being surfaced as a ${suffix} placeholder construct.

The astute reader will have realized that the default can not be computed then, because there is no
getExtension() (and there should not be, as this could be mistakenly used in ${extension}).
To provide the default value, you should use the defaultValue attribute of the @ModuleOption
annotation.

Using profiles

The real benefit of using a POJO class for options metadata comes with advanced features though, one
of which is dynamic profile activation.

If the set of beans (or xml namespaced elements) you would define in the module definition file
depends on the value that the user provided for one or several options, then you can make
your POJO class implement ProfileNamesProvider. That interface brings one contract method,
profilesToActivate() that you must implement, returning the names of the profiles you want to use
(this method is invoked after user option values have been bound, so you can use any logic involving
those to compute the list of profile names).

As an example of this feature, see e.g. TriggerSourceOptionsMetadata.

Using validation

Your POJO class can optionally bear JSR303 annotations. If it does, then validation will occur after
values have been successfully bound (understand that injection can fail early due to type incoherence
by the way. This comes for free and does not require JSR303 annotations).

This can be used to validate a set of options passed in (some are often mutually exclusive) or to catch
misconfiguration earlier than deployment time (e.g. a port number cannot be negative).

Spring XD

1.0.0 Spring XD Guide 166

E.4 Metadata style remarks

To provide a uniform user experience, it is better if your options metadata information adheres to the
following style:

• option names should follow the camelCase syntax, as this is easier with the POJO approach. If we
later decide to switch to a more unix-style, this will be taken care of by XD itself, with no change
to the metadata artifacts described here

• description sentences should be concise

• descriptions should start with a lowercase letter and should not end with a dot

• use primitive types for required numbers

• descriptions should mention the unit for numbers (e.g ms)

• descriptions should not describe the default value, to the best extent possible (this is surfaced thru
the actual default metadata awareness)

• options metadata should know about the default, rather than relying on the ${foo:default}
construct

Spring XD

1.0.0 Spring XD Guide 167

Appendix F. Building Spring XD

F.1 Instructions

Here are some useful steps to build and run Spring XD.

To build all sub-projects and run tests for Spring XD (please note tests require a running Redis instance):

./gradlew build

To build and bundle the distribution of Spring XD

./gradlew dist

The above gradle task creates spring-xd-<version>.zip binary distribution archive and spring-xd-
<version>-docs.zip documentation archive files under build/distributions. This will also create a build/
dist/spring-xd directory which is the expanded version of the binary distribution archive.

To just create the Spring XD expanded binary distribution directory

./gradlew copyInstall

The above gradle task creates the distribution directory under build/dist/spring-xd.

Once the binary distribution directory is created, please refer to Getting Started on how to run Spring XD.

F.2 IDE support

If you would like to work with the Spring XD code in your IDE, please use the following project generation
depending on the IDE you use:

For Eclipse/Spring Tool Suite

./gradlew eclipse

For IntelliJ IDEA

./gradlew idea

Then just import the project as an existing project.

F.3 Running script tests

Apart from the unit and integration tests, the directory src/test/scripts contains set of scripts that
run end-to-end tests on XD runtime. Please see the instructions to setup and run:

• Once XD is built (with copyInstall), from the distribution directory: build/dist/spring-xd/xd/
bin/xd/bin/xd-singlenode(.bat)

• Setup XD_HOME environment variable that points to build/dist/spring-xd/xd

• From the directory src/test/scripts, run basic_stream_tests

http://redis.io/
https://github.com/SpringSource/spring-xd/wiki/Getting-Started

Spring XD

1.0.0 Spring XD Guide 168

• For the jdbc_tests, we need to run install_sqlite_jar first that installs sqlite jar into
$XD_HOME/lib

• For the hdfs_import_export_tests, make sure you have setup hadoop environment and have
the xd-singlenode started with appropriate hadoopDistro option and hadoop lib jars for the version
chosen

• For tweet_tests, make sure you have the twitter properties updated before running the tests

Spring XD

1.0.0 Spring XD Guide 169

Appendix G. Monitoring and
Management
Spring XD uses Spring Boot’s monitoring and management support over HTTP and JMX along with
Spring Integration’s MBean Exporters

G.1 Monitoring XD Admin, Container and Single-node servers

Following are available by default

JMX is enabled XD_JMX_ENABLED=true

The spring boot management endpoints are exposed over HTTP and since JMX is enabled these
endpoints are exposed over JMX

Spring integration components are exposed over JMX using IntegrationMBeanExporter

All the availble MBeans can be accessed over HTTP using Jolokia

To enable boot provided management endpoints over HTTP

By default management.port is set to use admin/container server port and all the exposed endpoints
can be accessed from the root context of admin and container servers.

When starting admin, container or singlenode server, the command-line option --mgmtPort can be
specified to use an explicit port for management server. With the given valid management port, the
management endpoints can be accessed from that port. Please refer Spring Boot document here for
more details on the endpoints.

For instance, once XD admin is started on localhost and the management port set to use the admin
port (9393)

http://localhost:9393/health

http://localhost:9393/env

http://localhost:9393/beans etc.,

To disable boot endpoints over HTTP

Set management.port=-1 for both default and container profiles in config/servers.yml

Management over JMX

All the boot endpoints are exposed over JMX with the domain name org.springframework.boot
The MBeans that are exposed within XD admin, container server level are available with the domain
names xd.admin (for XD admin), xd.container (for XD container), xd.shared.server and
xd.parent representing the application contexts common to both XD admin and container. Singlenode
server will have all these domain names exposed. When the stream/job gets deployed into the XD
container, the stream/job MBeans are exposed with specific domain/object naming strategy.

http://docs.spring.io/spring-boot/docs/1.0.1.RELEASE/reference/htmlsingle/#production-ready-monitoring
http://docs.spring.io/spring-boot/docs/1.0.1.RELEASE/reference/htmlsingle/#production-ready-jmx
http://docs.spring.io/spring-integration/docs/4.0.0.M4/reference/htmlsingle/#jmx-mbean-exporter
http://docs.spring.io/spring-boot/docs/1.0.1.RELEASE/reference/htmlsingle/#production-ready-endpoints

Spring XD

1.0.0 Spring XD Guide 170

To disable management over JMX

Set XD_JMX_ENABLED=false in config/servers.yml or set it as an environment variable to disable the
management over JMX

G.2 Monitoring deployed modules in XD container

When a module is deployed (with JMX is enabled on the XD container), the IntegrationMBeanExporter
is injected into module’s context via MBeanExportingPlugin and this exposes all the spring integration
components inside the module. For the given module, the IntegrationMBeanExporter uses a specific
object naming strategy that assigns domain name as xd.<stream/job name> and, object name as
<module name>.<module index>.

For a stream name mystream with DSL http | log will have

MBeans with domain name xd.mystream with two objects http.0 and log.1

For a job name myjob with DSL jdbchdfs will have

MBeans with domain name xd.myjob with an object jdbchdfs.0

G.3 Using Jolokia to access JMX over http

When JMX is enabled (which is default via XD_JMX_ENABLED property), Jolokia is auto-configured to
expose the XD admin, container and singenode server MBeans.

For example, with XD singlenode running management port 9080

http://localhost:9080/jolokia/search/xd.*:type=*,*

will list all the MBeans exposed in XD admin/container servers. Apart from this, other available domain
and types can be accessed via Jolokia.

Please note that the deployed modules MBeans aren’t exposed via Jolokia yet.But, those are accessible
using tools like jconsole etc.,

Spring XD

1.0.0 Spring XD Guide 171

Appendix H. XD Shell Command
Reference

H.1 Base Commands

admin config server

Configure the XD admin server to use.

admin config server [[--uri] <uri>]

uri
the location of the XD Admin REST endpoint. (default: http://localhost:9393/)

admin config info

Show the XD admin server being used.

admin config info

H.2 Runtime Commands

runtime containers

List runtime containers.

runtime containers

runtime modules

List runtime modules.

runtime modules [[--containerId] <containerId>]

containerId
to filter by container id.

H.3 Stream Commands

stream create

Create a new stream definition.

stream create [--name] <name> --definition <definition> [--deploy [<deploy>]]

name
the name to give to the stream. (required)

definition
a stream definition, using XD DSL (e.g. "http --port=9000 | hdfs"). (required)

Spring XD

1.0.0 Spring XD Guide 172

deploy
whether to deploy the stream immediately. (default: false, or true if --deploy is specified
without a value)

stream destroy

Destroy an existing stream.

stream destroy [--name] <name>

name
the name of the stream to destroy. (required)

stream all destroy

Destroy all existing streams.

stream all destroy [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

stream deploy

Deploy a previously created stream.

stream deploy [--name] <name> [--properties <properties>]

name
the name of the stream to deploy. (required)

properties
the properties for this deployment.

stream undeploy

Un-deploy a previously deployed stream.

stream undeploy [--name] <name>

name
the name of the stream to un-deploy. (required)

stream all undeploy

Un-deploy all previously deployed stream.

stream all undeploy [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

stream list

List created streams.

Spring XD

1.0.0 Spring XD Guide 173

stream list

H.4 Job Commands

job create

Create a job.

job create [--name] <name> --definition <definition> [--deploy [<deploy>]]

name
the name to give to the job. (required)

definition
job definition using xd dsl . (required)

deploy
whether to deploy the job immediately. (default: false, or true if --deploy is specified without
a value)

job list

List all jobs.

job list

job execution list

List all job executions.

job execution list

job execution step list

List all step executions for the provided job execution id.

job execution step list [--id] <id>

id
the id of the job execution. (required)

job execution step progress

Get the progress info for the given step execution.

job execution step progress [--id] <id> --jobExecutionId <jobExecutionId>

id
the id of the step execution. (required)

jobExecutionId
the job execution id. (required)

Spring XD

1.0.0 Spring XD Guide 174

job execution step display

Display the details of a Step Execution.

job execution step display [--id] <id> --jobExecutionId <jobExecutionId>

id
the id of the step execution. (required)

jobExecutionId
the job execution id. (required)

job execution display

Display the details of a Job Execution.

job execution display [--id] <id>

id
the id of the job execution. (required)

job execution all stop

Stop all the job executions that are running.

job execution all stop [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

job execution stop

Stop a job execution that is running.

job execution stop [--id] <id>

id
the id of the job execution. (required)

job execution restart

Restart a job that failed or interrupted previously.

job execution restart [--id] <id>

id
the id of the job execution that failed or interrupted. (required)

job deploy

Deploy a previously created job.

job deploy [--name] <name>

Spring XD

1.0.0 Spring XD Guide 175

name
the name of the job to deploy. (required)

job launch

Launch previously deployed job.

job launch [[--name] <name>] [--params <params>]

name
the name of the job to deploy.

params
the parameters for the job. (default: ``)

job undeploy

Un-deploy an existing job.

job undeploy [--name] <name>

name
the name of the job to un-deploy. (required)

job all undeploy

Un-deploy all existing jobs.

job all undeploy [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

job instance display

Display information about a given job instance.

job instance display [[--id] <id>]

id
the id of the job instance to retrieve.

job destroy

Destroy an existing job.

job destroy [--name] <name>

name
the name of the job to destroy. (required)

job all destroy

Destroy all existing jobs.

Spring XD

1.0.0 Spring XD Guide 176

job all destroy [--force [<force>]]

force
bypass confirmation prompt. (default: false, or true if --force is specified without a value)

H.5 Module Commands

module info

Get information about a module.

module info [--name] <name>

name
name of the module to query, in the form type:name. (required)

module compose

Create a virtual module.

module compose [--name] <name> --definition <definition>

name
the name to give to the module. (required)

definition
module definition using xd dsl. (required)

module delete

Delete a virtual module.

module delete [--name] <name>

name
name of the module to delete, in the form type:name. (required)

module list

List all modules.

module list

module display

Display the configuration file of a module.

module display [--name] <name>

name
name of the module to display, in the form type:name. (required)

Spring XD

1.0.0 Spring XD Guide 177

H.6 Metrics Commands

counter list

List all available counter names.

counter list

counter delete

Delete the counter with the given name.

counter delete [--name] <name>

name
the name of the counter to delete. (required)

counter display

Display the value of a counter.

counter display [--name] <name> [--pattern <pattern>]

name
the name of the counter to display. (required)

pattern
the pattern used to format the value (see DecimalFormat). (default: <use platform locale>)

field-value-counter list

List all available field-value-counter names.

field-value-counter list

field-value-counter delete

Delete the field-value-counter with the given name.

field-value-counter delete [--name] <name>

name
the name of the field-value-counter to delete. (required)

field-value-counter display

Display the value of a field-value-counter.

field-value-counter display [--name] <name> [--pattern <pattern>] [--size <size>]

name
the name of the field-value-counter to display. (required)

Spring XD

1.0.0 Spring XD Guide 178

pattern
the pattern used to format the field-value-counter’s field count (see DecimalFormat). (default: <use
platform locale>)

size
the number of values to display. (default: 25)

aggregate-counter list

List all available aggregate counter names.

aggregate-counter list

aggregate-counter delete

Delete an aggregate counter.

aggregate-counter delete [--name] <name>

name
the name of the aggregate counter to delete. (required)

aggregate-counter display

Display aggregate counter values by chosen interval and resolution(minute, hour).

aggregate-counter display [--name] <name> [--from <from>] [--to <to>] [--lastHours

 <lastHours>] [--lastDays <lastDays>] [--resolution <resolution>] [--pattern <pattern>]

name
the name of the aggregate counter to display. (required)

from
start-time for the interval. format: yyyy-MM-dd HH:mm:ss.

to
end-time for the interval. format: yyyy-MM-dd HH:mm:ss. defaults to now.

lastHours
set the interval to last n hours.

lastDays
set the interval to last n days.

resolution
the size of the bucket to aggregate (minute, hour, day, month). (default: hour)

pattern
the pattern used to format the count values (see DecimalFormat). (default: <use platform

locale>)

gauge list

List all available gauge names.

gauge list

Spring XD

1.0.0 Spring XD Guide 179

gauge delete

Delete a gauge.

gauge delete [--name] <name>

name
the name of the gauge to delete. (required)

gauge display

Display the value of a gauge.

gauge display [--name] <name> [--pattern <pattern>]

name
the name of the gauge to display. (required)

pattern
the pattern used to format the value (see DecimalFormat). (default: <use platform locale>)

rich-gauge list

List all available richgauge names.

rich-gauge list

rich-gauge delete

Delete the richgauge.

rich-gauge delete [--name] <name>

name
the name of the richgauge to delete. (required)

rich-gauge display

Display Rich Gauge value.

rich-gauge display [--name] <name> [--pattern <pattern>]

name
the name of the richgauge to display value. (required)

pattern
the pattern used to format the richgauge value (see DecimalFormat). (default: <use platform
locale>)

H.7 Http Commands

http post

POST data to http endpoint.

Spring XD

1.0.0 Spring XD Guide 180

http post [[--target] <target>] [--data <data>] [--file <file>] [--contentType

 <contentType>]

target
the location to post to. (default: http://localhost:9000)

data
the text payload to post. exclusive with file. embedded double quotes are not supported if next to
a space character.

file
filename to read data from. exclusive with data.

contentType
the content-type to use. file is also read using the specified charset. (default: text/plain;
Charset=UTF-8)

http get

Make GET request to http endpoint.

http get [[--target] <target>]

target
the URL to make the request to. (default: http://localhost:9393)

H.8 Hadoop Configuration Commands

hadoop config props set

Sets the value for the given Hadoop property.

hadoop config props set [--property] <property>

property
what to set, in the form <name=value>. (required)

hadoop config props get

Returns the value of the given Hadoop property.

hadoop config props get [--key] <key>

key
property name. (required)

hadoop config info

Returns basic info about the Hadoop configuration.

hadoop config info

hadoop config load

Loads the Hadoop configuration from the given resource.

Spring XD

1.0.0 Spring XD Guide 181

hadoop config load [--location] <location>

location
configuration location (can be a URL). (required)

hadoop config props list

Returns (all) the Hadoop properties.

hadoop config props list

hadoop config fs

Sets the Hadoop namenode.

hadoop config fs [--namenode] <namenode>

namenode
namenode address - can be local|<namenode:port>. (required)

hadoop config jt

Sets the Hadoop job tracker.

hadoop config jt [--jobtracker] <jobtracker>

jobtracker
job tracker address - can be local|<jobtracker:port>. (required)

H.9 Hadoop FileSystem Commands

hadoop fs get

Copy files to the local file system.

hadoop fs get --from <from> --to <to> [--ignoreCrc [<ignoreCrc>]] [--crc [<crc>]]

from
source file names. (required)

to
destination path name. (required)

ignoreCrc
whether ignore CRC. (default: false, or true if --ignoreCrc is specified without a value)

crc
whether copy CRC. (default: false, or true if --crc is specified without a value)

hadoop fs put

Copy single src, or multiple srcs from local file system to the destination file system.

Spring XD

1.0.0 Spring XD Guide 182

hadoop fs put --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs count

Count the number of directories, files, bytes, quota, and remaining quota.

hadoop fs count [--quota [<quota>]] --path <path>

quota
whether with quta information. (default: false, or true if --quota is specified without a value)

path
path name. (required)

hadoop fs mkdir

Create a new directory.

hadoop fs mkdir [--dir] <dir>

dir
directory name. (required)

hadoop fs tail

Display last kilobyte of the file to stdout.

hadoop fs tail [--file] <file> [--follow [<follow>]]

file
file to be tailed. (required)

follow
whether show content while file grow. (default: false, or true if --follow is specified without
a value)

hadoop fs ls

List files in the directory.

hadoop fs ls [[--dir] <dir>] [--recursive [<recursive>]]

dir
directory to be listed. (default: .)

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

Spring XD

1.0.0 Spring XD Guide 183

hadoop fs cat

Copy source paths to stdout.

hadoop fs cat [--path] <path>

path
file name to be shown. (required)

hadoop fs chgrp

Change group association of files.

hadoop fs chgrp [--recursive [<recursive>]] --group <group> [--path] <path>

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

group
group name. (required)

path
path of the file whose group will be changed. (required)

hadoop fs chown

Change the owner of files.

hadoop fs chown [--recursive [<recursive>]] --owner <owner> [--path] <path>

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

owner
owner name. (required)

path
path of the file whose ownership will be changed. (required)

hadoop fs chmod

Change the permissions of files.

hadoop fs chmod [--recursive [<recursive>]] --mode <mode> [--path] <path>

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

mode
permission mode. (required)

path
path of the file whose permissions will be changed. (required)

Spring XD

1.0.0 Spring XD Guide 184

hadoop fs copyFromLocal

Copy single src, or multiple srcs from local file system to the destination file system. Same as put.

hadoop fs copyFromLocal --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs moveFromLocal

Similar to put command, except that the source localsrc is deleted after it’s copied.

hadoop fs moveFromLocal --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs copyToLocal

Copy files to the local file system. Same as get.

hadoop fs copyToLocal --from <from> --to <to> [--ignoreCrc [<ignoreCrc>]] [--crc [<crc>]]

from
source file names. (required)

to
destination path name. (required)

ignoreCrc
whether ignore CRC. (default: false, or true if --ignoreCrc is specified without a value)

crc
whether copy CRC. (default: false, or true if --crc is specified without a value)

hadoop fs copyMergeToLocal

Takes a source directory and a destination file as input and concatenates files in src into the destination
local file.

hadoop fs copyMergeToLocal --from <from> --to <to> [--endline [<endline>]]

from
source file names. (required)

to
destination path name. (required)

Spring XD

1.0.0 Spring XD Guide 185

endline
whether add a newline character at the end of each file. (default: false, or true if --endline
is specified without a value)

hadoop fs cp

Copy files from source to destination. This command allows multiple sources as well in which case the
destination must be a directory.

hadoop fs cp --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs mv

Move source files to destination in the HDFS.

hadoop fs mv --from <from> --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs du

Displays sizes of files and directories contained in the given directory or the length of a file in case its
just a file.

hadoop fs du [[--dir] <dir>] [--summary [<summary>]]

dir
directory to be listed. (default: .)

summary
whether with summary. (default: false, or true if --summary is specified without a value)

hadoop fs expunge

Empty the trash.

hadoop fs expunge

hadoop fs rm

Remove files in the HDFS.

hadoop fs rm [[--path] <path>] [--skipTrash [<skipTrash>]] [--recursive [<recursive>]]

Spring XD

1.0.0 Spring XD Guide 186

path
path to be deleted. (default: .)

skipTrash
whether to skip trash. (default: false, or true if --skipTrash is specified without a value)

recursive
whether to recurse. (default: false, or true if --recursive is specified without a value)

hadoop fs setrep

Change the replication factor of a file.

hadoop fs setrep --path <path> --replica <replica> [--recursive [<recursive>]] [--waiting

 [<waiting>]]

path
path name. (required)

replica
source file names. (required)

recursive
whether with recursion. (default: false, or true if --recursive is specified without a value)

waiting
whether wait for the replic number is eqal to the number. (default: false, or true if --waiting
is specified without a value)

hadoop fs text

Take a source file and output the file in text format.

hadoop fs text [--file] <file>

file
file to be shown. (required)

hadoop fs touchz

Create a file of zero length.

hadoop fs touchz [--file] <file>

file
file to be touched. (required)

	Spring XD Guide
	Table of Contents
	Part I. Reference Guide
	1. Introduction
	1.1 Overview

	2. Getting Started
	3. Requirements
	3.1 Download Spring XD
	3.2 Install Spring XD
	3.3 Start the Runtime and the XD Shell
	3.4 Create a Stream
	3.5 Explore Spring XD
	3.6 OSX Homebrew installation
	3.7 RedHat/CentOS Installation

	4. Running in Distributed Mode
	4.1 Introduction
	XD CommandLine Options
	xd-admin command line args:
	xd-container command line args:

	4.2 Setting up a RDBMS
	4.3 Setting up ZooKeeper
	4.4 Setting up Redis
	Installing Redis
	Troubleshooting
	Redis on Windows
	Redis is not running

	Starting Redis

	4.5 Using RabbitMQ
	Installing RabbitMQ
	Launching RabbitMQ

	4.6 Starting Spring XD in Distributed Mode
	Choosing a Transport
	Choosing an Analytics provider
	Other Options

	4.7 Using Hadoop
	4.8 XD-Shell in Distributed Mode

	5. Running on YARN
	5.1 Introduction
	5.2 What do you need?
	5.3 Download Spring XD on YARN binaries
	5.4 Configure your deployment
	XD options
	Hadoop settings
	Transport options
	Zookeeper settings
	JDBC datasource properties

	5.5 Push and start the jobs
	Push the Spring XD application binaries and config to HDFS
	Submit the Spring XD admin server
	Submit the Spring XD container
	Check the status of the app

	6. Application Configuration
	6.1 Introduction
	6.2 Server Configuration
	Profile support
	Database Configuration
	HSQLDB
	MySQL
	PostgreSQL

	Redis
	RabbitMQ
	Admin Server HTTP Port
	Management Port
	Local transport

	6.3 Module Configuration
	Profiles
	Batch Jobs or modules accessing JDBC

	7. Architecture
	7.1 Introduction
	Runtime Architecture
	DIRT Runtime
	Support for other distributed runtimes

	Single Node Runtime
	Admin Server Architecture
	Container Server Architecture
	Streams
	Stream Deployment

	7.2 Jobs
	7.3 Taps

	8. XD Distributed Runtime
	8.1 Introduction
	8.2 Configuring XD for High Availabilty (HA)
	8.3 ZooKeeper Overview
	8.4 The Admin Server Internals
	Example

	8.5 Module Deployment
	Deployment Manifest
	Container Attributes

	8.6 Stream Deployment Examples

	9. Streams
	9.1 Introduction
	9.2 Creating a Simple Stream
	9.3 Deleting a Stream
	9.4 Deploying and Undeploying Streams
	9.5 Other Source and Sink Types
	9.6 Simple Stream Processing
	9.7 DSL Syntax
	9.8 Advanced Features

	10. Modules
	10.1 Introduction
	10.2 Creating a Module
	Modules and Spring
	Integration Modules

	10.3 Registering a Module
	Modules with isolated classpath

	10.4 Composing Modules
	10.5 Getting Information about Modules
	10.6 How module options are resolved

	11. Sources
	11.1 Introduction
	11.2 HTTP
	HTTP with options

	11.3 Tail
	Tail with options
	Tail Status Events

	11.4 File
	File with options

	11.5 Mail
	11.6 Twitter Search
	11.7 Twitter Stream
	11.8 GemFire
	Options
	Example

	11.9 GemFire Continuous Query (CQ)
	Launching the XD GemFire Server
	Options

	11.10 Syslog
	11.11 TCP
	TCP with options
	Available Decoders
	Examples
	Binary Data Example
	Implementing a simple conversation

	11.12 TCP Client
	TCP Client options

	11.13 Reactor IP
	11.14 RabbitMQ
	RabbitMQ with Options

	11.15 JMS
	JMS with Options

	11.16 Time
	11.17 MQTT
	Options

	11.18 Stdout Capture

	12. Processors
	12.1 Introduction
	12.2 Filter
	Filter with SpEL expression
	Filter using jsonPath evaluation
	Filter with Groovy Script

	12.3 Transform
	Transform with SpEL expression
	Transform with Groovy Script

	12.4 Script
	12.5 Splitter
	Extract the value of a specific field

	12.6 Aggregator

	13. Sinks
	13.1 Introduction
	13.2 Log
	13.3 File Sink
	File with Options

	13.4 Hadoop (HDFS)
	HDFS with Options

	13.5 HDFS Dataset (Avro/Parquet)
	HDFS Dataset with Options

	13.6 JDBC
	JDBC with Options

	13.7 TCP Sink
	TCP with Options
	Available Encoders
	An Additional Example

	13.8 Mail
	13.9 RabbitMQ
	RabbitMQ with Options

	13.10 GemFire Server
	Launching the XD GemFire Server
	Gemfire sinks
	Example

	13.11 Splunk Server
	Splunk sinks
	Setup Splunk for TCP Input
	Example

	13.12 MQTT Sink
	Options

	13.13 Dynamic Router
	SpEL-based Routing
	Groovy-based Routing
	Options

	14. Taps
	14.1 Introduction
	Example
	Example - tap after a processor has been applied
	Example - using the module index
	Example - using a label

	14.2 Tap Lifecycle

	15. Type Conversion
	15.1 Introduction
	15.2 MIME media types
	Stream Definition examples

	15.3 Media types and Java types
	Caveats

	16. Batch Jobs
	16.1 Introduction
	16.2 Workflow
	16.3 Features
	16.4 Developing your Job
	16.5 Creating a Job
	Creating Jobs - Additional Options

	16.6 Launching a job
	Ad-hoc
	Launch the Batch using Cron-Trigger
	Launch the Batch using a Fixed-Delay-Trigger
	Launch job as a part of event flow

	16.7 Retrieve job notifications
	To receive aggregated events
	To receive job execution events
	To receive step execution events
	To receive item, skip and chunk events
	To disable the default listeners
	To select specific listeners

	16.8 Removing Batch Jobs
	16.9 Pre-Packaged Batch Jobs
	Note HDFS Configuration
	For Hadoop 1.x
	For Hadoop 2.x

	Poll a Directory and Import CSV Files to HDFS (filepollhdfs)
	Import CSV Files to JDBC (filejdbc)
	HDFS to JDBC Export (hdfsjdbc)
	JDBC to HDFS Import (jdbchdfs)
	HDFS to MongoDB Export (hdfsmongodb)
	FTP to HDFS Export (ftphdfs)

	17. Analytics
	17.1 Introduction
	17.2 Predictive analytics
	17.3 Analytical Models
	Modeling and Evaluation
	Modeling
	Evaluation
	Model Selection

	17.4 Counters and Gauges
	Counter
	Field Value Counter
	Aggregate Counter
	Gauge
	Note:
	Simple Tap Example

	Rich Gauge
	Simple Tap Example
	Stock Price Example
	Improved Stock Price Example

	Accessing Analytics Data over the RESTful API

	18. DSL Reference
	18.1 Introduction
	18.2 Pipes and filters
	18.3 Module parameters
	18.4 Named channels
	18.5 Labels

	19. Tuples
	19.1 Introduction
	Creating a Tuple
	Getting Tuple values
	Using SpEL expressions to filter a tuple
	Gradle Dependencies

	20. Samples
	20.1 Syslog ingestion into HDFS
	A sample configuration using syslog-ng

	21. Admin UI
	21.1 Introduction
	21.2 List available batch job modules
	21.3 List job definitions
	21.4 List job deployments
	Launching a batch Job

	21.5 List job executions

	Part II. Appendices
	Appendix A. Installing Hadoop
	A.1 Installing Hadoop
	Download
	Java Setup
	Setup SSH
	Setting the Namenode Port
	Further Configuration File Changes

	A.2 Running Hadoop

	Appendix B. Creating a Source Module
	B.1 Introduction
	B.2 Create the module Application Context file
	Make the module configurable

	B.3 Test the module locally
	Create a project
	Create the Spring integration test

	B.4 Deploy the module
	B.5 Test the deployed module

	Appendix C. Creating a Processor Module
	C.1 Introduction
	C.2 Write the Transformer Code
	C.3 Create the module Application Context File
	C.4 Deploy the Module
	C.5 Test the deployed module

	Appendix D. Creating a Sink Module
	D.1 Introduction
	D.2 Create the module Application Context file
	D.3 Make the module configurable
	D.4 Test the module locally
	Create a project
	Create the Spring integration test
	Run the test

	D.5 Deploy the module
	D.6 Test the deployed module

	Appendix E. Providing Module Options Metadata
	E.1 Introduction
	E.2 Using the "Simple" approach
	Declaring and documenting an option
	Advertising default values
	Exposing the option type

	E.3 Using the "POJO" approach
	Declaring options to the module
	Exposing values to the context
	Providing defaults
	Encapsulating options
	Using profiles
	Using validation

	E.4 Metadata style remarks

	Appendix F. Building Spring XD
	F.1 Instructions
	F.2 IDE support
	F.3 Running script tests

	Appendix G. Monitoring and Management
	G.1 Monitoring XD Admin, Container and Single-node servers
	To enable boot provided management endpoints over HTTP
	To disable boot endpoints over HTTP
	Management over JMX
	To disable management over JMX

	G.2 Monitoring deployed modules in XD container
	G.3 Using Jolokia to access JMX over http

	Appendix H. XD Shell Command Reference
	H.1 Base Commands
	admin config server
	admin config info

	H.2 Runtime Commands
	runtime containers
	runtime modules

	H.3 Stream Commands
	stream create
	stream destroy
	stream all destroy
	stream deploy
	stream undeploy
	stream all undeploy
	stream list

	H.4 Job Commands
	job create
	job list
	job execution list
	job execution step list
	job execution step progress
	job execution step display
	job execution display
	job execution all stop
	job execution stop
	job execution restart
	job deploy
	job launch
	job undeploy
	job all undeploy
	job instance display
	job destroy
	job all destroy

	H.5 Module Commands
	module info
	module compose
	module delete
	module list
	module display

	H.6 Metrics Commands
	counter list
	counter delete
	counter display
	field-value-counter list
	field-value-counter delete
	field-value-counter display
	aggregate-counter list
	aggregate-counter delete
	aggregate-counter display
	gauge list
	gauge delete
	gauge display
	rich-gauge list
	rich-gauge delete
	rich-gauge display

	H.7 Http Commands
	http post
	http get

	H.8 Hadoop Configuration Commands
	hadoop config props set
	hadoop config props get
	hadoop config info
	hadoop config load
	hadoop config props list
	hadoop config fs
	hadoop config jt

	H.9 Hadoop FileSystem Commands
	hadoop fs get
	hadoop fs put
	hadoop fs count
	hadoop fs mkdir
	hadoop fs tail
	hadoop fs ls
	hadoop fs cat
	hadoop fs chgrp
	hadoop fs chown
	hadoop fs chmod
	hadoop fs copyFromLocal
	hadoop fs moveFromLocal
	hadoop fs copyToLocal
	hadoop fs copyMergeToLocal
	hadoop fs cp
	hadoop fs mv
	hadoop fs du
	hadoop fs expunge
	hadoop fs rm
	hadoop fs setrep
	hadoop fs text
	hadoop fs touchz

