Spring XD Guide

1.0.0

Mark Fisher , Mark Pollack , David Turanski , Gunnar Hillert , Eric Bottard , Gary
Russell , llayaperumal Gopinathan , Jennifer Hickey , Michael Minella , Luke Taylor ,
Thomas Risberg , Winston Koh , Andy Clement , Jon Brishin , Dave Syer , Glenn Renfro

Copyright © 2013-2014

Spring XD

Table of Contents

T = 1= 1Y Tt T T o [1
IO 101 (o To 18 o1 o o KPP PSP PPPT PP PPUPPPPPPIN 2
I @Y= V1 PP 2

2. GetliNG STAMEU ...oeuiiieiii et ettt eaaas 3
G T = LT (81T (=T 0 0=) 4
3.1. DOWNIOAA SPIING XD ..ottt et e e eaas 4

3.2. INSLAll SPrING XD ..eeeiiiiiiii e 4

3.3. Start the Runtime and the XD Shellcooooiiiiiiiiii e 4

3.4, Creat@ @ SIITBAIM ...iui ittt et et et e e et et e et e ea e e e e aaas 5

3.5. EXPIOre SPriNg XD ..oeuuiieiiiieiiii et eaaa 6

3.6. OSX Homebrew iNStallationeiiiieiiiiiiiii e 6

3.7. RedHat/CentOS INSAllAtioncoeuniiiiiii e 7

4. Running in DIStributed MOGEiiiiiiiii e 8
O 1 o1 (0 To 18 o1 o o TP SPPPPPPPPTT 8

XD CommandLiNg OPLIONS ...c.uuiitieeiieei ettt e e e e aeens 9

xd-admin command liNE ArgS:couuuiieiiiiiieeei e 10

xd-container command liNE args:cc.ieiiiiiiiiiieiie e 10

4.2. Setting Up @ RDBIMS ...t 10

4.3, SettiNg UP ZOOKEEPETeiitieeiiii ettt et e ettt e e et e e e et e e eeat e eees 11

4.4, Setting UP REMISioviiiiiiii e 11
INStAlliNg REAIS . ..niie e e 11
TroubIESNOOLING ..oevenieii e 11

RedisS 0N WINAOWSuuiiiiiiiiiiiiiii e 11

RediS IS NOL FUNMING ..ceuniiiii et 11

StArtiNg RIS ...ceieiiiieii e e 12

4.5. Using RabbitMQ ... 12
Installing RabbitMQiiei e 12
Launching RabbitMQiiiiiii e 12

4.6. Starting Spring XD in Distributed MOGEccoiiiiiiiiiii e, 13
ChoOSING @ TrANSPOIT ...ttt e e e e e e e aaeaeans 13

Choosing an AnalytiCS ProVIAErcoeuuuniiiiiiiiei e 13

L@ 11T S @] o) o) 1 1P 14

o R O £ [To I o =T (o T o R PP UPRRPPTRR 14

4.8. XD-Shell in Distributed MOGEcccuiiviiiiiiiiei e e 14

5. RUNNING ON YARN oot e e e e e e e e e e et e e e e et e e et e e eanaeeees 16
0 I [o o [F{od 1 o] o R PP 16

5.2. What dO YOU NEEA? ...t eaaes 16

5.3. Download Spring XD on YARN DINAMEScccovniiiiiiiiiieie e 16

5.4. Configure your deployYmMENTt 16

XD OPLIONS ettt 17

[F= (o (oo o IR~ 1110 1= 17

I = 1] o Jo] g o] o] i o] o =S PP 17

o To) (1=t o= gRT= 1] o PSP 17

JDBC datasource ProPEItIESciuuieiiiieeii e e et e e e e e e et e e e e e e e e e anaas 18

5.5. Push and start the JODSoiiiiii e e 18
Push the Spring XD application binaries and config to HDFSccc.ccoivvennniis 18

Submit the Spring XD admMin SEIVELccvuiiiiiieie e eae 18

1.0.0 Spring XD Guide ii

Spring XD

Submit the Spring XD CONtAINETuiiiiiiii e 18
Check the status of the appPoveeniii e 18

6. Application COoNfIQUIALIONuuiiiiiii e e e eeaeans 19
L o To [F T3 o] H PP 19
6.2. Server COoNfIQUIALIONoieuuiiiii it e e e e s 19
Profile SUPPOIT «...eniei et 19
Database Configurationcioiuuiiiiii i e e e e e e 20

[ST 2 P 20

YT | PO 21
POSIgrES QL i 21

R OIS et e 21
RAbBDIMQ ..o 21
AdMIN Server HTTP PO ... e 22
ManNagEMENT POIT ... e et 22

(o Tor: 1 (=T g Y o Lo] APPSR 23

6.3. Module ConfIQUIAtIONuieii i e e e e e e e e eanaeees 23
PrOTIES . e 24
Batch Jobs or modules accessing JDBCcooeuiiiiiiiiiiieiiiiiece e 25

A A o 111 1=Tox 18] £SO SOPPRTPPN 26
4% T [o o [Fod 1] o KPP PT RPN 26
RUNEIME AFCRILECIUIE ...t e e e e 26
DIRT RUNLIME ittt ettt e et e e eaa s 26

Support for other distributed runtimescooooiiiiiiii e 27

Single NOde RUNLIME ... e 27
AdMIN Server ArChitECUIEioiiiiiii e 28
Container Server ArChiteCIUIEviiu i 28

Y1 £=T= 10 1 TP 29
Stream DepPlOYMENT ... 31

72, JODS ettt e eaa e 35
RS T - | oL T PP PPT PP 35
8. XD Distributed RUNIIMEcieiiiiiiiiii e e et e e 36
S0 I [V o o [F od 1] o KPP PTRUPT 36
8.2. Configuring XD for High Availabilty (HA)oiiiii e, 36
8.3. ZOOKEEPEN OVEIVIEW ...ietueeiiieeii ettt e et et s et e e et e e e et e e et e e et s e e e e e e e et e eeanaaennaes 36
8.4. The AdmMIN Server INErNAIS ..o e e 37
B XA e e 39

TV, [To [0 LT 1=] 1) 42 1T o | 41
Deployment ManIfESTccun i e 42
DeploymMeENt PrOPEITIES .. .ocvuiiiiiiii et 43

1= =T | 0] o 1= 1= 43

BUS PIOPEITIES . .ouiiiiieii ettt e e e ees 43

Partition PrOPertieSoouuuiiiiiiiiiiiii e e 44
L=V 10 11 T 45

Container ALIHDULES ... ouiiii e e e e 45

8.6. Stream Deployment EXamPIEScoooiiiiiiiiieie e 45
8.7. Partitioned Stream Deployment EXamPIESviviiiiiieiiii e e v e a7
USING SPEL EXPIrESSIONS ...cuuniiiiieiiiaeii ettt et ettt e e e e e e e e e ean s 47

1S TS 1T 1101 48
LS o To [1T o o H PSPPSRI 48
9.2. Creating a SimpPle SrEea@muiiii e 48

1.0.0 Spring XD Guide il

Spring XD

9.3. Deleting @ SIrEAIM ...uuiiiiiiii e e e e e e e e e e e e e e aa 49
9.4. Deploying and Undeploying SIreamsovieuuiiiiiiiiiieiieee e 49
9.5. Other Source and SINK TYPES ...oeuuuiiiiiiiei ettt 49
9.6. SIMple Stream ProCESSING ...c.uuiieiiiii et e e e e e e e e et e e e eanns 50
0.7, DSL SYNEBX ettietitiiieeee ettt e ettt e e e et ettt e e e ettt et b e et e e e a b e 50
9.8. AAVANCEA FEAIUMNESiiiiiiiii et e e e e e e e e et e e et e e et e eeaneees 50
O TR\ o T [PSP 52
L0.1. INEFOAUCTION ..ttt ettt e e e e e e e e et e e ea e e ean s 52
10.2. Creating @ MOGUIEiiii e 52
oo (0] C=Tr=Ta o IS o] 1oV S 52
INtegration MOUIEScooueii e 53
Placeholders available to all MOdUIEScoooiiiiiiiii 54
10.3. Registering @ MOAUIEoiiiiiii e e e 55
Modules with isolated classpath ... 56
10.4. CompPOSING MOAUIEScouuiiiiiiii et e e e 56
10.5. Getting Information about MOAUIESccovviiiiiiiiii e 59
10.6. How module options are reSoIVedoooeuiiiiiiiiieie e 60
BT S T 1 o = PPN 62
5 00t OO [o To [o 1T o PP 62
2 o I I I = TP PO PPPPTTTTR 62
HTTP WIth OPLIONS .o 63

I T I | TP 63
Tall WIth OPLIONS «..eneee e e e e 64

Tall STATUS EVENTS ..o e e et e e e e aen 64
LA A, BB e 64
File WIth OPTIONS ...t e e e e e e e 65
L0580 MBI ettt e e e e e e et e e 65
L11.6. TWILLEr SEAICH ..ouuiiiiiii e et e e 66
11,7, TWILEEE STFEAIM ..etniiti ittt ettt et e e e e e et e et e e et e e et e eeanaas 67
B S TR =T 0o = P 68
L 11 1P 68
EXAMPIE ..o e 68
Launching the XD GeMFIre SEIVETccouuuiiiiiiiii e 69
11.9. GemFire Continuous QUETIY (CQ) .uuuiiiueiiii it ee e e e e e e e e e e et e e e e eanaees 69
(0] 1[0] 1 1S ST UPTRUPR 69
L1100, SYSIOQ eituieiiiti et 70
I T 5 T 1 PP 71
TCP WIth OPLIONSeeeeie e e eees 72
AVAIIADIE DECOUETSiiieieii et e e e e e 72
= 10 1] o] 1= P 72
Binary Data EXamPIecccouiiiiiiiii e 74
Implementing a Simple CONVErsationccoiiiiiiiiiiiiiii e 74

I o O 1 = o | TP TTTI PSPPI 75
TCP ClI@Nt OPLIONS ...uietiieieee ettt et e et et e e e e et e e et e eanaas 75
11,13, REACION P et 75
11.14. RaAbDItMQ ..o e 76
RabbitMQ With OPLIONS ... couiiiii e 77

0 O TN 1 PR 77
JMS WIth OPLIONS ..o e e e e e 78
O G T T = TSP PP TTPRRUPPPPPPPPIN 78

1.0.0

Spring XD Guide iv

Spring XD

I O A 1 PP SSUPPPPRRTTN 78
(0] 1[0] 1 1S S PP UPTRUPTRN 79
11.18. SEAOUL CABPLUIE ...ceeitiieeiii ettt ettt e e et e e et e e e e 79
I e (oLt cT o] = PP 80
D0 B [g1 1 oo [0 Tox 1T o PRSPPI 80
I o {1 (= SO 80
Filter with SPEL @XPreSSIONc.uuiiiiiiiii et e et e e e e e e e 80
Filter using jsonPath evaluationoooiiiiiiiii e 80
Filter With GroOVY SCHIPE ...uuiiiiii e 81
12.3. TrANSTOIM L.t e e e 81
Transform with SPEL @XPreSSIONcieuiiiiiiiiiiieii e 81
Transform With GroOVY SCHPLccouueiiiii e 81
D oy T o) 82
12,5, SPIEEI et eaa s 82
Extract the value of a specific fieldcoooviiiii 82
T Yo To | =0 = 1o] 83
L3, SINKS ettt ettt 85
R 0 R [10 T [T o) o 85
0 0 o o 85
13,30 FIE SINK o 86
File WIth OPLONS ..ooetiiii e et e e e eees 86
R o = T (o o] o (1 0 s 86
HDFS With OPLIONS ...t et 92
Partition Path EXPrESSIONc.uuuiiiiiiieiiiii ettt e et e e et e eeeni e eees 93
ACCESSING PrOPEITIES ...vviiiiii it e e e e e eanaeees 93

CUSIOM MELNOAS ...cevtiieiiit e e e e 93

13.5. HDFS Dataset (AVIO/PArqUEL)icieuuuieiiiiieeteiiia et e et e et e s 95
HDFS Dataset With OPtiONSiiiiiiii e e 96
L13.6. IDBUOC .ottt e e a e e 98
JIDBC WIth OPLIONS ...eeiiiiiiiii ettt e e e e s 99
L3.7. TCP SINK oottt 99
TCP WIth OPLIONS ..o e et e e eees 100
AVAIIADIE ENCOUEIS . .oeniiiiiieeiee ettt et e e et e e e e e e eeen 100

An Additional EXamPIEieeiiii e 101
L3080 ML ettt e et 101
G T = -] o] 1411, [LSRRI 102
RabbitMQ With OPLIONSccvviiiiiii e e e e 103
13.10. GEMEFITE SEIVET ...ttt et eeenaas 103
Launching the XD GemEFiIre SEIVETcoouuii it 104
GEMIINE SINKS ...iiii it 104
EXAMPIE oo e 105
13,11, SPIUNK SEIVET ..ottt ettt ettt et e e e e e e enees 105
SPIUNK SINKS oeii it 105
Setup Splunk for TCP INPUL ... 106

B XA e e e 106
13.12. MOQTT SINK oottt e et e e et e e r e e e e eeennnes 106
1010] 4 1S ST PRSPPI 106
13.13. DYNAMIC ROULET ...uuiiiiiiiiiei ittt ettt e e et e e e et e e e ena e eees 107
Sy o] = I o T= 1Y =T I o 11 1 o [P 107
Groovy-based ROULINGiieniii e 107

1.0.0

Spring XD Guide %

Spring XD

111 1 1 108

N = o PP UPTPP 109
2 R 0 T [T o) o P 109
0= 1 1] o 1= 109
Example - tap after a processor has been appliedccoooiiiiiiiiinn. 109
Example - using the module iNdeXc.oiiiiiiiiiiiii e 109
Example - using a 1abeloooeiiiii 110
14.2. TAP LITECYCIE .t eans 110
15, TYPE CONVEISION ..ottt ettt ettt e et e ettt e e et et e e e e et reeeettaeeeebaaeaeee 111
L 700 O [1o To [o 1T o I PP 111
15.2. MIME MEIA LYPES ..neeuitii ettt ettt et e e e e ea s 111
Stream Definition eXamples ..o 111
15.3. Media types and JAVA tYPEScvvvuiieenieiiiieiiee e e e e e e 112
AV EALS ettt ea e 113

G = T (o N o 1 114
G700 O [o To [o 1T o I PP 114
16.2. WOIKIIOW ...ttt e e e eens 114
16.3. FRAIUIES ..ot ettt 115
16.4. DeVeloping YOUF JODcouuiiiii et e e 116
16.5. Creating @ JOD ... e 116
Creating Jobs - Additional OPtioNScccevuiiiiiiiiieii e 116
16.6. Deployment manifest support for jJobceviiiiiiiii 117
16.7. Launching @ JoD ... 118
AQ-NOC o 118
Launch the Batch using Cron-THQOErocvuuiiiiieeee et e e e e e e e eaaeee 118
Launch the Batch using a Fixed-Delay-Trggercocooiiiiiniiiiiiiiiiieiieeeeeee 119
Launch job as a part of event flowccooiiiiiiiii 119
16.8. Retrieve job NOtIfICAtiONSoiviiiiiii i 119
To receive aggregated EVENTSoieuiiiiiii e 119

TO receive Job eXeCULION EVENTSiiiiiiiiiieiii e 120

TO receive Step EXECULION BVENTScivuiiiiii e e e ea e eaes 121

To receive item, skip and chunk @VeNtSccooiiiiiiiiiiiii e 121

To disable the default IStENEISii i 121

To select SPECIfIC ISTENEISivveiciei e 121
16.9. Removing BatCh JODScoouiiiiiii e 122
16.10. Pre-Packaged BatCh JODScoiiiiiiiiiiiiiiicc e e 122
Note HDFS Configurationoiieuiiiiieiie e e e e 122

(o g o F- To (oo o 1 0 G U PRUPTRRPIN 122

FOIr HAgOOP 2.X i 122

Poll a Directory and Import CSV Files to HDFS (fi |l epol I hdf s) .c.cocvviviniinnniii. 122
Import CSV Files to JDBC (fil €] dDC) ooveeniieiiii 123
HDFS to JDBC Export (Ndf Sj dDC) ..eeuviiiiiiiiii e 123
JDBC to HDFS Import (j dbchdf S) .oovviiiiii e 123
HDFS to MongoDB Export (hdf smongodb) ..., 124

FTP to HDFS Export (f t phdf S) ..ooovveiiii e 124

A Y 4T Y 1Tt 125
A I [10T [DT i To] o I PP 125
17.2. Predictive @nalytiCSooiiiiiiiiiiii e 125
17.3. Analytical MOEISc.uiiiiiii e e e 126
Modeling and Evaluation ..o 126

1.0.0 Spring XD Guide Vi

Spring XD

11710 To 1= 1T T 126
EVAIUALION ...oeee e e 130
/[0 o [IS Y= 1= ox 1 T o P 130
A 0o 0T g1 (=Y S T= U [0 I 7= 18 o =T 131
1000111 1| (= SR PP PPRPPPRPN 132
Field Value COUNLEToiieiieie e e e e e e e e e e eeen 132

Y [0 £ P =T O 01U 11 (= 133
LT 10 (o [TP PP PPTPI 134

[N L] (=PRI 134

Simple Tap EXAMPIE ... 134

RICN GAUGE ...ttt e e e eaa s 135
Simple Tap EXample ..o 135

StOCK Price EXAmMPIE ...uiiiiii e 135

Improved Stock Price EXample ... 136
Accessing Analytics Data over the RESTIul APl ... 137

18. DSL REFEIENCE ... et et e et e e et e e et e eees 140
18.1. INTFOAUCTION ..iei ettt et e e et et e et e e e e eaaas 140
18.2. PIpes and filtErSuuiiiiii i e 140
18.3. MOAUIE PArAMELEIS ...ttt et e e e e e e e e eaes 140
18.4. Named ChanNEIScoouuiiiiii e 140
SR TR - T PPN 141
18.6. Single quotes, Double quotes, ESCapINgcccuvvviiiiiiiiiiii e 141
SPriNG Shell ... e 142

XD SYNEAX ettt et 142
SpEL syntax and SPEL IEralsccuoiiviiiiii i 143
Putting it all togethero.. i 144

L0, TUPIES e et 145
I Tt O [1o To [o 1T o I PP 145
Creating @ TUPIE ... e 145
Getling TUPIE VAIUEScoouiiiiii e 146
Using SpEL expressions to filter a tuplecocevveiiiiiiiiiiiii e 147
Gradle DEPENUENCIESccuuiiiiiieiii e e 148

20. SAMPIES ..o et e e e 149
20.1. Syslog ingestion iNt0 HDFSiiiiii e e e 149
A sample configuration USINg SYSIOg-NQoveuniiiiiiiiiie e 149

22 I Yo | 1 11 T 1 PP 151
P22 I I 1 oo o [T 1 o] o PRSP 151
20,2, SUAIMIS ettt ettt e e e ettt et e e e e et e e e 151
2 G TN [o L PP 152
MOGUIES ..ot e e e 152

List available batch job modules ... 152

Create a Job Definition from a selected Job Moduleccoccoiiiviiiiinns 153

View Job Module Detailsiiiiiiiiiiiiii e 155

List Job definitioNScouniii e 155

List JOD deplOYMENLS .. .coviiiiii e 156
Launching a batch JoOb ... 157

Schedule Batch JOb EXECULIONcoeuniiiiiiiiiieii e 159

Job Deployment DetailScooouuiiiiiiiiiii e 159

LiSt JOD EXECULIONS .. .eviiii e e e e e e 160

Job execution detailSc..oiiiiiiiii e 162

1.0.0

Spring XD Guide vii

Spring XD

Step execution detailScocvuiiiiiii e 163

Step eXeCULION NISTOMYiiiui e e 165

LY o] o1=T o To [T PP P PP UPPPTN 166
AN 19153 =11 [T Vo Il o F= To (o o o 167
AL InStalling HAOOP .. cenniieiiiiieee et 167

[0 1177 1] (o 7= o PPN 167

B 7= TS T = 1 o 167

SEIUP SSH o e e e enaaa 168

Setting the Namenode POrTcooouiiiiiiii e 169

Further Configuration File Changesccccciviiiii i 169

A.2. RUNNING HAOOOP ..ttt e e eens 169

B. Creating @ SoUrce MOAUIE ..o 171
270 I [011 7 To [0 T 1T o ISP 171

B.2. Create the module Application Context file ..., 171
Make the module configurable ... 172

B.3. Test the Module [0CAIlYcovvuiii e 172
CrEALE @ PrOJECL ..euniit ettt ettt et e et et e e et e e et e e e e eaaaee 172

Create the Spring integration tEStcoouuiiiiiiii e 173

B.4. Deploy the MOCUIEiiiiii e e r e 174

B.5. Test the deployed MOdUIEooiiiiiiiii e 174

C. Creating a Processor MOUUIEooiiiiiiiiiii e 176
O30 I [oo [0 ox o] o ISP PPPT PRI 176

C.2. Write the Transformer COUeui i e e 176

C.3. Create the module Application Context Fileccooeiiiiiiiiiiiiiii e, 176

C.4. Deploy the MOAUIEcoouiiii e e e s 177

C.5. Test the deployed mMOdUIEccouuiiiii e 177

D. Creating a SiNK MOUIEcooiiiiii et eaees 178
D.1. INFOAUCTION ...ttt e e e e e e e e e e eennnes 178

D.2. Create the module Application Context fileccooeiiiiiiiiiiii e 178

D.3. Make the module configurable ..o 179

D.4. Test the module 10CallYcc.ueiiiiiii e e 179
CrEALE 8 PrOJECL ...uniit ettt ettt e et et e e e e et e et e eaaeae 179

Create the Spring integration tEStcoouuiiiiiii e 180

RUN ThE TEST it 181

D.5. Deploy the MOAUIE ... e 182

D.6. Test the deployed MOAUIEccoiiiiiiiii e 182

E. Providing Module Options Metadataccuuieiiiiiiiieeii e e e e e e 183
E.L. INTOTUCTION ...eeetieeiei et e e e e e e e 183

E.2. Using the "Simple" @pproach ... 183
Declaring and documenting an OPtioNcc.vviiiieiiiee e 183
Advertising default ValUESoooiuiii e 184

EXPOSIiNg the OPtioN tYPEciiiii i 184

E.3. Using the "POJO" @pProachoiieiiiiiiii e 185
Declaring options to the MOoduleccoiiiiiiiiiii e, 185

EXposing values to the CONEXTcoouuiiiiiii e 185

Providing defaults ... 185
Encapsulating OPpLtioNSc.uiiiiiiii e 185

USING PrOfilES ..o e 186

[0 LT o Y 7= 11T = o o 186

E.4. Metadata Style remMarks ... 186

1.0.0 Spring XD Guide viii

Spring XD

L = TU 1 o e o TS o 1 o 0, LS 188
F. L. INSIIUCLIONS ..ttt et e e et e e e e et e e e e eanns 188
L |] = ¥ o] oo ST PPT PP 188
F.3. RUNNING SCHPL tESES ..uiiiiiiii et e e e e e e e e 188

G. Monitoring and MaNAgEMENTieue it e e e e et e e eeaeaes 190
G.1. Monitoring XD Admin, Container and Single-node Serversc.coooeeeveneeeennnnnn. 190

To enable boot provided management endpoints over HTTPc.ccoivvvineennnnn. 190
To disable boot endpoints over HTTP ... 190
Management OVEI JMX ..o 190
To disable management over JMXooviiiiiiiiiiiii e 191
G.2. Monitoring deployed modules in XD CONAINETcc.uieiuuiiiiiiiiiiieieieeeieeeieeeen, 191
Y1 (== 10 TSP 191
B [0] PO 191
G.3. Using Jolokia to access JMX over NPovieuiiiiiii e 191

H. XD Shell Command REFEIENCEviiuiiiiii e e 192

H.1. BASE COMMANGSeevuiniiiiiiieetiii ettt e e e e et e e e et e e e et e e e et e e e eaan s 192
admin config iNfO ... 192
AdMIN CONTIG SEIVET ..ttt e e eeeans 192

H.2. RUNIME COMMANASciiiiiieiiii ettt e e 192
FUNEIME CONTAINEISiee ittt et e et e e e et e e et e e et e e e e e eanaees 192
FUNEIME MOTUIES ... e e e ean s 192

H.3. Stream COMMANGSoiiiiiiieeiiii e e e e e et eeeaea s 192
SITEAIM CrEALE ...ttt e ettt e et e e e e e et e e e e e e e raeennns 192
SITEAM ESIIOY ...uiiiiii ettt ettt et e et e e e eaa s 193
Stream All AESIIOY ...ivveiii e 193
SIrEAM dEPIOY ... 193
SErEAM UNAEPIOY ..iiiiiii ettt eaeas 193
stream all UNAEPI0Y ..oevniiii e e e e 193
STFEAM IS e ettt e e e een 193

[1R S T o I @ 1 1 =T T £ 194
o] o o3 (= - 194
OB LISt e 194
JOD @XECULION ISt et 194
JOb €XECULION SEEP IS ..vveiiiei e 194
JOD eXECULION SIEP PrOGIESS ...eeuieieieeet ettt e e e e e e et e e e eaa e eees 194
job execution Step diSPlAYccuuuiiiiiiiii e 195
JOb eXeCULION dISPIAY ...vvvneiiiii e 195
JOD €XECULION @ll STOP ...t e 195
JOD EXECULION STOP i 195
JTod o= (=T o T I =] = L 195
JOD AEPIOY et 195
JOD TAUNCR L. 196
o o U T T 1=T o] o)Y/ 196
JOD All UNAEPIOY ..o e 196
JOD INStANCE dISPIAY ...eevenieeiii e e 196
o 00 [= 7] 10V PP 196
JOD AII AESIIOY .. 197

H.5. MOdule COMMENAS ...oouiiiiiieeii e et e e e e e et s e e e eean s 197
MOAUIE TINTO e e 197
MOAUIE COMPOSE ...eniii ittt ettt e e et et e e et e e aaeeeaaaes 197

1.0.0 Spring XD Guide iX

Spring XD

H.6.

H.7.

H.8.

H.9.

MOAUIE TEIELE ... e 197
MOTUIE TIST .. e 197
MOAUIE ISPIAY ... e 197
MEtriCS COMMEANDS ...vviiiiieeeiieeii ettt e e e e e e e e e e ennnes 198
COUNTET AISPIAY . eeeeiit et eaa e ees 198
(o0 18] 1 (= S 1 198
COUNTEE AEIELE ...ttt e e e e e e e ennnes 198
field-value-counter diSPIayooieuiiiiii e 198
field-value-Counter TStiiiii e 198
field-value-counter delete ... 198
aggregate-counter diSPIAY e 199
AQggregate-CoUNTEr lISTu.i i 199
aggregate-counter deleteoiivuiiiiiiii e 199
QAUGE QISPIAY ettt et 199
QAUGE ISt et e eaaas 200
o =TT [T 0 (=1 1= (PN 200
FCh-gauge diSPIAYc..iiiii e 200
FICN-QAUGE IS ..ot e e 200
L Tod o T= LU o T= o 1= 1= N 200
HEP COMMEANGAS ...t e e 200
NEED POST e 200
110 T 0T P 201
Hadoop Configuration COMMAaNASooieuniiiiiiiiieei e 201
hadoop CONFIG INFO ...uuniii e 201
hadoop config 10adooiiiiii e 201
hadoop config Props liStc.un i e 201
hadoop CONFIG TS ... e e 201
T To [0 o] o B ot] o T N | S 202
hadoop config ProPS SELieee i e 202
hadoop CONFig PrOPS GEL ..vnniiiiii e 202
Hadoop FileSystem Commandsccouuiiiiiiiiiiieie e e e 202
NAAOOP TS IS it 202
NAAOOP S CAL ...eiiiiiie et 202
(T To [0 To] o I £ o] T |1 o T 203
hadoop fS CROWNue e 203
hadoop fS ChMOdiii e 203
hadoop fs COPYFromMLOCAlocvuuiiiiiii e e 203
hadoop fS MOVEFIOMLOCALcouuiiiiii e 204
hadoop S COPYTOLOCAIcoovuiiiiiiii e 204
hadoop fs COPYMEIrgETOLOCAIuiieiieiiiei e e 204
NAAOOP TS CP teenieii i e 204
NAAOOP S MV L. e e e 205
=T [Yo o T £ 0o U 205
hadoop S EXPUNGEc.e e 205
NAAOOP S FIM e et 205
F=T0 [o] o I £ TECT= 1 =T o TP 206
NAAOOP TS TEXE .eeiie e 206
hadoop S TOUCNZiiii e 206
NAdOOP S QL i 206
NAdOOP TS PUL .. e 207

1.0.0

Spring XD Guide X

Spring XD

hadoop S COUNLee e e e e e e e e 207
hadoop S MKAIr oo e 207
hadOOP S LAl ...veneeeee e 207
1.0.0 Spring XD Guide Xi

Part |. Reference Guide

Spring XD

1. Introduction

1.1 Overview

Spring XD is a unified, distributed, and extensible service for data ingestion, real time analytics, batch
processing, and data export. The Spring XD project is an open source Apache 2 License licenced
project whose goal is to tackle big data complexity. Much of the complexity in building real-world big
data applications is related to integrating many disparate systems into one cohesive solution across a
range of use-cases. Common use-cases encountered in creating a comprehensive big data solution are

» High throughput distributed data ingestion from a variety of input sources into big data store such as
HDFS or Splunk

» Real-time analytics at ingestion time, e.g. gathering metrics and counting values.

» Workflow management via batch jobs. The jobs combine interactions with standard enterprise
systems (e.g. RDBMS) as well as Hadoop operations (e.g. MapReduce, HDFS, Pig, Hive or
Cascading).

* High throughput data export, e.g. from HDFS to a RDBMS or NoSQL database.

The Spring XD project aims to provide a one stop shop solution for these use-cases.

1.0.0 Spring XD Guide 2

http://www.apache.org/licenses/LICENSE-2.0

Spring XD

2. Getting Started

1.0.0 Spring XD Guide

Spring XD

3. Requirements

To get started, make sure your system has as a minimum Java JDK 6 or newer installed. Java JDK
7 is recommended.

3.1 Download Spring XD

If you want to try out Spring XD, we'd recommend downloading a snapshot build, since things are
changing quite fast. A snapshot distribution can be downloaded from the spring snapshots repository.
You can also build the project from source if you wish. The wiki content should also be kept up to date
with the current snapshot so if you are reading this on the github website, things may have changed
since the last milestone.

Unzip the distribution which will unpack to a single installation directory. All the commands below are
executed from this directory, so change into it before proceeding.

If you are sure you want the previous milestone release, you can also download the distribution spring-
xd-1.0.0.M7-dist.zip and its accompanying documentation.

‘$ cd spring-xd-1.0.0. M7

Set the environment variable XD_HQOVE to the installation directory <r oot -i nst al | - di r>\ spri ng-
xd\ xd

3.2 Install Spring XD

Spring XD can be run in two different modes. There’s a single-node runtime option for testing and
development, and there’s a distributed runtime which supports distribution of processing tasks across
multiple nodes. This document will get you up and running quickly with a single-node runtime. See
Running Distributed Mode for details on setting up a distributed runtime.

You can also install Spring XD using homebrew on OSX and yum on RedHat/CentOS.

3.3 Start the Runtime and the XD Shell

The single node option is the easiest to get started with. It runs everything you need in a single process.
To start it, you just need to cd to the xd directory and run the following command

xd/ bi n>$./xd-si ngl enode

In a separate terminal, cd into the shel | directory and start the XD shell, which you can use to issue
commands.

1.0.0 Spring XD Guide 4

http://www.oracle.com/technetwork/java/javase/downloads/
http://repo.springsource.org/libs-snapshot-local/org/springframework/xd/spring-xd/1.0.0.BUILD-SNAPSHOT/
http://repo.springsource.org/libs-milestone/org/springframework/xd/spring-xd/1.0.0.M7/spring-xd-1.0.0.M7-dist.zip
http://repo.springsource.org/libs-milestone/org/springframework/xd/spring-xd/1.0.0.M7/spring-xd-1.0.0.M7-dist.zip
http://repo.springsource.org/libs-milestone/org/springframework/xd/spring-xd/1.0.0.M7/spring-xd-1.0.0.M7-docs.zip

Spring XD

shel | / bi n>$./ xd- shel

I (-) (A
Ve S W VA I B I
T SRR § IR) I R A RN I
L VA 1 e O e I A S
(S I 2 O T T A S O VA W A

I /

[_| [—
eXtreme Data

1.0.0. M7 | Adnmin Server Target: http://local host: 8080
Wl come to the Spring XD shell. For assistance hit TAB or type "hel p"
xd: >

The shell is a more user-friendly front end to the REST API which Spring XD exposes to clients. The
URL of the currently targeted Spring XD server is shown at startup.

© Note

If the server could not be reached, the prompt will read

server - unknown: >

You can then use the admi n confi g server <url > to attempt to reconnect to the admin
REST endpoint once you've figured out what went wrong:

adm n config server http://|ocal host: 9393

You should now be able to start using Spring XD.
Q@ Tip

Spring XD uses ZooKeeper internally which typically runs as an external process. XD singlenode
runs with an embedded ZooKeeper server and assigns a random available port. This keeps
things very simple. However if you already have a ZooKeeper ensemble set up and want to
connect to it, you can edit xd\ conf i g\ servers. ym :

#Zookeeper properties
client connect string: hostl:portl, host2:port2,..., host N: port N
zk:
client:
connect: | ocal host: 2181

Also, sometimes it is useful in troubleshooting to connect the ZooKeeper CLI to the embedded
server. The assigned server port is listed in the console log, but you can also set the port directly
by setting the property zk. enbedded. server. port inservers.ym

3.4 Create a Stream

In Spring XD, a basic stream defines the ingestion of event driven data from a source to a sink that
passes through any number of processors. You can create a new stream by issuing astream cr eat e
command from the XD shell. Stream definitions are built from a simple DSL. For example, execute:

xd: > streamcreate --nanme ticktock --definition "time | |1o0g" --deploy

1.0.0 Spring XD Guide 5

Spring XD

This defines a stream named t i ckt ock based off the DSL expressiontine | | o0g. The DSL uses
the "pipe” symbol | , to connect a source to a sink. The stream server finds the t i ne and | og definitions
in the modules directory and uses them to setup the stream. In this simple example, the time source
simply sends the current time as a message each second, and the log sink outputs it using the logging
framework at the WARN logging level. Since the - - depl oy flag was provided, this stream will be
deployed immediately. In the console where you started the server, you will see log output similar to
that listed below

13: 09: 53,812 | NFO htt p-bi o- 8080-exec-1 nodul e. Si npl eMbdul e: 109 - started nodul e: Mdul e
[nane=l og, type=si nk]

13: 09: 53, 813 | NFO htt p- bi 0o- 8080-exec-1 nodul e. Modul eDepl oyer: 111 - | aunched si nk nodul e
ticktock:log:1

13: 09: 53,911 | NFO htt p-bi 0o- 8080-exec-1 nodul e. Si npl eMbdul e: 109 - started nodul e: Mdul e
[name=time, type=source]

13: 09: 53,912 | NFO htt p-bi o- 8080- exec-1 nodul e. Modul eDepl oyer: 111 - | aunched source
nmodul e: ticktock:time:0

13: 09: 53,945 WARN task-schedul er-1 | ogger.ticktock: 141 - 2013-06-11 13:09: 53

13: 09: 54,948 WARN task-schedul er-1 | ogger.ticktock: 141 - 2013-06-11 13:09: 54

13: 09: 55,949 WARN task-schedul er-2 | ogger.ticktock: 141 - 2013-06-11 13:09: 55

To stop the stream, and remove the definition completely, you can use the st r eam dest r oy command:

xd: >stream destroy --name ticktock

It is also possible to stop and restart the stream instead, using the undepl oy and depl oy commands.
The shell supports command completion so you can hitthe t ab key to see which commands and options
are available.

3.5 Explore Spring XD

Learn about the modules available in Spring XD in the Sources, Processors, and Sinks sections of the
documentation.

Don't see what you're looking for? Create a custom module: source, processor or sink (and then consider
contributing it back to Spring XD).

Want to add some analytics to your stream? Check out the Taps and Analytics sections.

3.6 OSX Homebrew installation

If you are on a Mac and using homebrew, all you need to do to install Spring XD is:

$ brew tap pivotal/tap
$ brew install springxd

Homebrew will install spri ngxd to /usr/1 ocal / bi n. Now you can jump straight into using Spring
XD:

‘$ xd- si ngl enode

Brew install also allows you to run Spring XD in distributed mode on you OSx. See Running Distributed
Mode for details on setting up a distributed runtime.

1.0.0 Spring XD Guide 6

https://github.com/SpringSource/spring-xd/wiki/Contribute
http://brew.sh/

Spring XD

3.7 RedHat/CentOS Installation

If you are using RHEL or CentOS you can install Spring XD using our yum repository.

wget -q -O - http://packages. gopi votal . coni pub/rpnirhel 5/ app-suite/app-suite-installer
sh
yuminstall spring-xd

wget -q -O - http://packages. gopi votal .conl pub/rpnirhel 6/ app-suite/app-suite-installer
sh
yuminstall spring-xd

This installs Spring XD and init.d services for managing Admin Server and Container runtimes. Before
you can run Admin Server and Container you will need to install and start distributed components. See
Running Distributed Mode for details on setting up a distributed runtime. After distributed component
are configured, Admin Server and Container can be started as follows:

service spring-xd-admn start
servi ce spring-xd-container start

You can configure arguments to spring-xd-admin and spring-xd-container scripts by setting them in /
etc/sysconfig/spring-xd. For example to run spring-xd-container with transport=RabbitMQ update this
property in /etc/sysconfig/spring-xd:

‘TRANSPCFUtrabbit

To stop Spring XD

servi ce spring-xd-adm n stop
servi ce spring-xd-container stop

1.0.0 Spring XD Guide 7

Spring XD

4. Running in Distributed Mode

4.1 Introduction

The Spring XD distributed runtime (DIRT) supports distribution of processing tasks across multiple
nodes. See Getting Started for information on running Spring XD as a single node.

The XD distributed runtime architecture consists of the following distributed components:

* Admin - Manages Stream and Job deployments and other end user operations and provides REST
services to access runtime state, system metrics, and analytics

» Container - Hosts deployed Modules (stream processing tasks) and batch jobs

» ZooKeeper - Provides all runtime information for the XD cluster. Tracks running containers, in which
containers modules and jobs are deployed, stream definitions, deployment manifests, and the like,
see XD Distributed Runtime for an overview on how XD uses ZooKeeper.

» Spring Batch Job Repository Database - An RDBMS is required for jobs. The XD distribution comes
with HSQLDB, but this is not appropriate for a production installation. XD supports any JDBC
compliant database.

* A Message Broker - Used for data transport. XD data transport is designed to be pluggable. Currently
XD supports Rabbit MQ and Redis for messaging during stream and job processing. A production
installation must configure one of these transport options. Rabbit MQ is recommended as it is
considered the more reliable of the two. In either case, a separate server must be running to provide
the messaging middleware.

« Analytics Repository - XD currently uses Redis to store the counters and gauges provided Analytics

In addition, XD provides a Command Line Interface (CLI), XD Shell as well as a web application, XD-
Ul to interact with the XD runtime.

1.0.0 Spring XD Guide 8

XD-Distributed-Runtime

Spring XD

Messaging
Middleware [Redis
or Rabbit)
/ Spring Batch Job \
Repository

XD Ul

XD Shel

\ ZooKeeper /
Analytics
Repository (Redis)

The XD distribution provides shell scripts to start its runtime components under the xd directory of the
XD installation:

)
N
P
)

Figure 4.1.

XD CommandLine Options

Whether you are running _xd-admin, xd-container or even xd-singlenode you can always get help by
typing the command followed by --help. For example:

1.0.0 Spring XD Guide 9

Spring XD

xd/ bi n/ xd-admi n --hel p

I] (-) VN N
A _ [U VA I |
RO SR ¥ I I R U A A
VA B G I A A S O A
| Y A O IO I O I Y A O AV \/__ 1
(I I

[_I [—
1. 0. 0. BUI LD- SNAPSHOT eXtreme Data

Started : Adm nServer Application
Docunent ation: https://github.conlspring-projects/spring-xd/ w ki

Usage:
--anal ytics [redis] : How to persist analytics such as counters and gauges
--help (-?, -h) : Show this hel p screen

--httpPort <httpPort> : Htp port for the REST APl server
--ngnt Port <nmgnt Port> : The port for the nanagenent server

xd-admin command line args:
» analytics - The data store that will be used to store the analytics data. The default is redis

» help - Displays help for the command args. Help information may be accessed with a -? or -h.

httpPort - The http port for the REST API server. Defaults to 9393.

» mgmtPort - The port for the management server. Defaults to the admin server port.

xd-container command line args:

» analytics - How to persist analytics such as counters and gauges. The default is redis

* groups - The assigned group membership for this container as a comma delimited list

» hadoopDistro - The Hadoop distribution to be used for HDFS access. HDFS is not available if not set.
» help - Displays help for the command args. Help information may be accessed with a -? or -h.

» mgmtPort - The port for the management server. Defaults to the container server port.

4.2 Setting up a RDBMS

The distributed runtime requires an RDBMS. The XD distrubution comes with an HSQLDB in memory
database for testing purposes, but an alternate is expected. To start HSQLDB:

$ cd hsqgl db/ bin
$./hsql db-server

To configure XD to connect to a different RDBMS, have a look at xd/ confi g/ servers.ym in the
spri ng: dat asour ce section for details. Note that spri ng. batch.initializer.enabl ed is set
to true by default which will initialize the Spring Batch schema if it is not already set up. However, if
those tables have already been created, they will be unaffected.

1.0.0 Spring XD Guide 10

Spring XD

4.3 Setting up ZooKeeper

Currently XD does not ship with ZooKeeper. At the time of this writing, the compliant version is
3.4.6 and you can download it from here. Please refer to the ZooKeeper Getting Started Guide for
more information. A ZooKeeper ensemble consisting of at least three members is recommended for
production installations, but a single server is all that is needed to have XD up and running.

4.4 Setting up Redis

Redis is the default transport when running in distributed mode.
Installing Redis

If you already have a running instance of Redis it can be used for Spring XD. By default Spring XD
will try to use a Redis instance running on localhost using port 6379. You can change that in the
servers. ynl file residing in the confi g/ directory.

If you don’t have a pre-existing installation of Redis, you can use the Spring XD provided instance (For
Linux and Mac). Inside the Spring XD installation directory (spring-xd) do:

$ cd redis/bin
$./install-redis

This will compile the Redis source tar and add the Redis executables under redis/bin:

* redis-check-dump

» redis-sentinel

redis-benchmark
e redis-cli
» redis-server

You are now ready to start Redis by executing

‘$./ redis-server

@ Tip

For further information on installing Redis in general, please checkout the Redis Quick Start
guide. If you are using Mac OS, you can also install Redis via Homebrew

Troubleshooting
Redis on Windows

Presently, Spring XD does not ship Windows binaries for Redis (See XD-151). However, Microsoft is
actively working on supporting Redis on Windows. You can download Windows Redis binaries from:

https://github.com/MSOpenTech/redis/tree/2.6/bin/release

Redis is not running

If you try to run Spring XD and Redis is NOT running, you will see the following exception:

1.0.0 Spring XD Guide 11

http://zookeeper.apache.org/releases.html
http://zookeeper.apache.org/doc/trunk/zookeeperStarted.html
http://redis.io/topics/quickstart
http://mxcl.github.io/homebrew/
https://jira.springsource.org/browse/XD-151
http://blogs.msdn.com/b/interoperability/archive/2013/04/22/redis-on-windows-stable-and-reliable.aspx
http://blogs.msdn.com/b/interoperability/archive/2013/04/22/redis-on-windows-stable-and-reliable.aspx
https://github.com/MSOpenTech/redis/tree/2.6/bin/release

Spring XD

11: 26: 37,830 ERROR mmi n | auncher. Redi sCont ai ner Launcher: 85 - Unable to connect to Redis

on | ocal host: 6379; nested exception is com | anbdaworks. redi s. Redi sExcepti on: Unable to
connect

Redi s does not seemto be running. Did you install and start Redis? Please see the Getting
Started section of the guide for instructions

Starting Redis

$ redis-server

You should see something like this:
[35142] 01 May 14:36:28.939 # Warning: no config file specified, using the default config

In order to specify a config file use redis-server /path/to/redis.conf
[35142] 01 May 14:36:28.940 * Max nunber of open files set to 10032

R .o -l Redi s 2.6.12 (00000000/0) 64 bit
(! , A) Running in stand al one node

1 e Son00=" _poe=e = "% =9 Port: 6379
| . / | PID. 35142

| - - e | http://redis.io

[35142] 01 May 14: 36:28.941 # Server started, Redis version 2.6.12
[35142] 01 May 14:36:28.941 * The server is now ready to accept connections on port 6379

4.5 Using RabbitMQ

Installing RabbitMQ

If you already have a running instance of RabbitMQ it can be used for Spring XD. By default Spring XD
will try to use a Rabbit instance running on localhost using port 5672. The default account credentials
of guest/guest are assumed. You can change that in the servers. ym file residing in the confi g/
directory.

If you don’t have a RabbitMQ installation already, head over to http://www.rabbitmg.com and follow the
instructions. Packages are provided for Windows, Mac and various flavor of unix/linux.

Launching RabbitMQ

Start the RabbitMQ broker by running the rabbitmg-server script:

$ rabbitng-server

You should see something similar to this:

1.0.0 Spring XD Guide 12

http://www.rabbitmq.com

Spring XD

Rabbi t MQ 3. 3. 0. Copyright (C) 2007-2013 GoPivotal, Inc.
#Ht H#H# Li censed under the MPL. See http://ww. rabbitng. conl
H##t
#uppppp###t Logs: /usr/local /var/ |l og/rabbitng/rabbit@ ocal host. | og
HHHHHH #Y /usr /| ocal /var/| og/rabbitnmg/rabbit@ ocal host-sasl .| og
HHHBHHHHHHT

Starting broker... conpleted with 10 pl ugins.

4.6 Starting Spring XD in Distributed Mode

Spring XD consists of two servers

* XDAdmin - controls deployment of modules into containers

+ XDContainer - executes modules

You can start the xd- cont ai ner and xd- adm n servers individually as follows:

xd/ bi n>$./ xd-admi n
xd/ bi n>$./ xd-cont ai ner

Choosing a Transport

Spring XD uses data transport for sending data from the output of one module to the input of the next
module. In general, this requires remote transport between container nodes. The Admin server also
uses the data bus to launch batch jobs by sending a message to the job’s launch channel. Since the
same transport must be shared by the Admin and all Containers, the transport configuration is centrally
configured in xd/config/servers.yml. The default transport is redis. Open servers.yml with a text editor
and you will see the transport configuration near the top. To change the transport, you can uncomment
this section and change the transport to r abbi t or any other supported transport. Any changes to the
transport configuration must be replicated to every XD node in the cluster.

© Note

XD singlenode also supports a --transport command line argument, useful for testing streams
under alternate transports.

#xd:
transport: redis

© Note

If you have multiple XD instances running share a single RabbitMQ server for transport,
you may encounter issues if each system contains streams of the same name. We
recommend using a different RabbitMQ virtual host for each system. Update the
spring.rabbitng. virtual _host property in $XD_HOVE/ confi g/ servers. ynl to point
XD at the correct virtual host.

Choosing an Analytics provider

By default, the xd-container will store Analytics data in redis. At the time of writing, this is the only
supported option (when running in distributed mode). Use the --analytics option to specify another
backing store for Analytics data.

1.0.0 Spring XD Guide 13

Spring XD

xd/ bi n>$./xd-container --analytics redis

Other Options
There are additional configuration options available for these scripts:

To specify the location of the Spring XD install other than the default configured in the script

export XD HOVE=<Specific XD install directory>

To specify the http port of the XDAdmin server,

xd/ bi n>$./xd-adnmin --httpPort <httpPort>

The XDContainer nodes by default start up with server.port 0 (which means they will scan for an available
HTTP port). You can disable the HTTP endpoints for the XDContainer by setting server.port=-1. Note
that in this case HTTP source support will not work in a PaaS environment because typically it would
require XD to bind to a specific port. Both the XDAdmin and XDContainer processes bind to server.port
$PORT (i.e. an environment variable if one is available, as is typical in a PaaS).

4.7 Using Hadoop

Spring XD supports the following Hadoop distributions:
» hadoopl12 - Apache Hadoop 1.2.1

» hadoop22 - Apache Hadoop 2.2.0 (default)

e phdl - Pivotal HD 1.1

» phd20 - Pivotal HD 2.0

+ cdh4 - Cloudera CDH 4.6.0

+ cdh5 - Cloudera CDH 5.0.0

* hdp13 - Hortonworks Data Platform 1.3

» hdp21 - Hortonworks Data Platform 2.1

To specify the distribution libraries to use for Hadoop client connections, use the option - -
hadoopDi st r o for the xd- cont ai ner and xd- shel | commands:

xd/ bi n>$./xd-shell --hadoopDi stro <distribution>
xd/ bi n>$./xd-admin
xd/ bi n>$./xd-container --hadoopDistro <distribution>

Pass in the - - hel p option to see other configuration properties.

4.8 XD-Shell in Distributed Mode

If you wish to use a XD-Shell that is on a different machine than where you deployed your admin server.

1) Open your shell

1.0.0 Spring XD Guide 14

Spring XD

shel | / bi n>$./ xd- shel

2) From the xd shell use the "admin config server" command i.e.

adm n config server <yourhost>: 9393

1.0.0 Spring XD Guide

15

Spring XD

5. Running on YARN

5.1 Introduction

The Spring XD distributed runtime (DIRT) supports distribution of processing tasks across multiple
nodes. See Running Distributed Mode for information on running Spring XD in distributed mode. One
option is to run these nodes on a Hadoop YARN cluster rather than on VMs or physical servers managed
by you.

5.2 What do you need?

To begin with, you need to have access to a Hadoop cluster running a version based on Apache Hadoop
2.2.0 or later. This includes Apache Hadoop 2.2.0, Hortonworks HDP 2.1 and Cloudera CDH5.

You also need a supported transport, see Running Distributed Mode for installation of Redis or Rabbit
MQ. Spring XD on YARN currently uses Redis as the default data transport.

You also need Zookeeper running. If your Hadoop cluster doesn’t have Zookeeper installed you need
to install and run it specifically for Spring XD. See the Setting up ZooKeeper section of the "Running
Distributed Mode" chapter.

Lastly, you need an RDBMs to support batch jobs and JDBC operations.

5.3 Download Spring XD on YARN binaries

In addition to the regular spri ng- xd- <ver si on>-di st . zi p files we also distribute a zip file that
includes all you need to deploy on YARN. The name of this zip file is spri ng- xd- <ver si on>-
yarn. zi p. You can download zip for the the M7 release or download snapshot builds. Unzip the
downloaded file and you should see a spri ng- xd- <ver si on>- yar n directory.

5.4 Configure your deployment

Configuration options are contained inaspri ng- xd- <ver si on>-yarn\ confi g\ servers. ynl file.
You need to configure the hadoop settings, the transport choice plus redis/rabbit settings, the zookeeper
settings and the JDBC datasource properties.

Depending on the distribution used you might need to change the sit eYar nAppCl asspat h and
si t eMapr educeAppd asspat h. We have provided basic settings for the supported distros, you just
need to uncomment the ones for the distro you use.

These are the settings used for Hadoop 2.2.0:

spring:
yarn:

si t eYar nAppCl asspat h: " $HADOOP_CONF_DI R, $HADOOP_COVMON_HOVE/ shar e/ hadoop/ common/
*, $HADOOP_COMMON_HOME/ shar e/ hadoop/ conmon/ | i b/ *, $HADOOP_HDFS_HOVE/ shar e/ hadoop/ hdf s/
*, $HADOOP_HDFS_HOMWE/ shar e/ hadoop/ hdf s/ | i b/ *, $HADOOP_YARN_HOVE/ shar e/ hadoop/ yar n/ *,
$HADOOP_YARN_HOVE/ shar e/ hadoop/ yarn/ i b/ *"

si t eMapr educeAppd asspat h: " $HADOOP_MAPRED HOME/ shar e/ hadoop/ mapr educe/ *,
$HADOOP_MAPRED_HOVE/ shar e/ hadoop/ mapr educe/ | i b/ *"

1.0.0 Spring XD Guide 16

Running-Distributed-Mode
http://www.us.apache.org/dist/hadoop/common/hadoop-2.2.0/
http://hortonworks.com/hdp/
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-express.html
Running-Distributed-Mode
http://repo.spring.io/simple/libs-milestone-local/org/springframework/xd/spring-xd/1.0.0.M7/spring-xd-1.0.0.M7-yarn.zip
http://repo.spring.io/libs-snapshot/org/springframework/xd/spring-xd/1.0.0.BUILD-SNAPSHOT/

Spring XD

XD options

For Spring XD you need to define how many admin servers and containers you need. You also need
to define the HDFS location (spring.yarn.applicationDir) where the Spring XD binary and config files
will be stored.

Had

sSpring:

xd
adm nServers: 1
containers: 3
yarn:

applicationDir: /xd/app/

oop settings

You need to specify the host where the YARN Resource Manager is running as well as the HDFS URL.

Hadoop configuration
spring:

hadoop

fsUri: hdfs://Iocal host: 8020

resour ceManager Host :

| ocal host

Transport options

You should choose either redis (default) or rabbit as the transport and include the host and port for the
choice you made.

T
tra

#sp
#
#
#

spr
r

ransport used
nsport: rabbit

Redis properties

ring

redis:
port: 6379
host: | ocal host

Rabbi t MQ properties

ing:

abbi t my:

host: | ocal host
port: 5672

user nane: guest
passwor d: guest
virtual _host: /

Zoo

keeper settings

You should specify the Zookeeper connection settings

#Z0
zk:
c

okeeper properties

lient:
connect: |ocal host: 2181

client connect string: hostl:portl, host2:port2,..., host N: port N

1.0.0

Spring XD Guide

17

Spring XD

JDBC datasource properties

You should specify the JDBC connection properties based on the RDBMs that you use for the batch
jobs and JDBC sink

#Config for use with MySQL - uncomrent and edit with rel evant values for your environment
Spring:
dat asour ce
url: jdbc:nysql://yourDBhost: 3306/ your DB
user nane: your User nane
password: your Password
driverC assNanme: com nysql.jdbc. Driver

5.5 Push and start the jobs

Change current directory to be the directory that was unzipped (spring-xd-<version>-yarn).
Push the Spring XD application binaries and config to HDFS

Run the command

./ bi n/ xd-yarn push

Submit the Spring XD admin server
Run the command

./ bin/xd-yarn start admn

Submit the Spring XD container

Run the command

./ bin/xd-yarn start contai ner

Check the status of the app

You can use the regular yar n command to check the status. Simply run:

yarn application -1ist

You should see two applications running named xd-admin and xd-container.

1.0.0 Spring XD Guide 18

Spring XD

6. Application Configuration

6.1 Introduction

There are two main parts of Spring XD that can be configured, servers and modules.

The servers (xd- si ngl enode, xd- adni n, xd- cont ai ner) are Spring Boot applications and are
configured as described in the Spring Boot Reference documentation. In the most simple case
this means editing values in the YAML based configuration file servers. ym . The values in this
configuration file will overwrite the values in the default application.yml file that is embedded in the XD jar.

@ Note

The use of YAML is an alternative to using property files. YAML is a superset of JSON, and as
such is a very convenient format for specifying hierarchical configuration data.

For modules, each module has its own configuration file located in its own directory, for example
source/ http/ http. properties. Shared configuration values for modules can be placed in a
common nodul es. yni file.

For both server and module configuration, you can have environment specific settings through the use
of application profiles and the ability to override values in files by setting OS environment variables.

In this section we will walk though how to configure servers and modules.

6.2 Server Configuration

The startup scripts for xd- si ngl enode, xd- admi n, and xd- cont ai ner will by default look for the
file $XD_HOVE\ confi g\ servers. ym as a source of externalized configuration information.

The location and name of this resourse can be changed by using the environment variables
XD _CONFI G_ LOCATI ON and XD _CONFI G_NAME. The start up script takes the value of these
environment variables to set the Spring Boot properties spring.config.location and
spring. confi g. nanme. Note, that for XD CONFI G_LOCATI ON you can reference any Spring
Resource implementation, most commonly denoted using the prefixes cl asspath:, file: and
http:.

It is common to keep your server configuration separate form the installation directory of XD itself. To
do this, here is an example environment variable setting

export XD CONFl G LOCATI ON=fi | e: / xd/ confi g/
export XD_CONFI G_NAME=r egi onl-servers

Profile support

Profiles provide a way to segregate parts of your application configuration and change their availability
and/or values based on the environment. This lets you have different configuration settings for qa and
pr od environments and to easily switch between them.

To activate a profile, set the OS environment variable SPRI NG PROFI LES ACTIVE to a
comma delimited list of profile names. The server looks to load profile specific variants of the

1.0.0 Spring XD Guide 19

http://projects.spring.io/spring-boot/
http://docs.spring.io/spring-boot/docs/1.0.1.RELEASE/reference/htmlsingle/
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/resources/application.yml
http://docs.spring.io/spring/docs/4.0.3.RELEASE/spring-framework-reference/htmlsingle/#resources
http://docs.spring.io/spring/docs/4.0.3.RELEASE/spring-framework-reference/htmlsingle/#resources

Spring XD

servers.ynl file based on the naming convention servers-{profile}.ym . For example, if
SPRI NG_PROFI LES_ACTI VE=pr od the following files would be searched for in the following order.

1. XD_CONFI G_LOCATI OV ser ver s-prod. ym
2. XD_CONFI G_LOCATI ON/ servers. yni

You may also put multiple profile specific configuration in a single servers. ynl file by using the key
spring. profil es in different sections of the configuration file. See Multi-profile YAML documents
for more information.

Database Configuration

Spring XD saves the state of the batch job workflows in a relational database. When running xd-
si ngl enode a embedded HSQLDB database is run. When running in distributed mode a standalone
HSQLDB instance can be used, the startup script hsql db- server is in is provided the installation
directory under the folder hsqldb/bin. It is recommended to use HSQLDB only for development and
learning.

When deploying in a production environment, you will need to select another database. Spring XD is
actively tested on MySql (Version: 5.1.23) and Postgres (Version 9.2-1002). All batch workflow tables
are automatically created, if they do not exist, for HSQLDB, MySQL and Postgres. The JDBC driver jars
for the HSQLDB, MySq|, and Postgres are already on the XD classpath.

© Note

Until full schema support is added for Oracle, Sybase and other database, you will need to put
a .jar file in the xd/ | i b directory that contains the equivalent functionality as these DDL scripts.

The provided configuration file servers. ynml located in $XD_HOVE\ confi g has commented out
configuration for some commonly used databases. You can use these as a basis to support your
database environment.

HSQLDB

When in distributed mode and you want to use HSQLDB, you need to change the value of
spri ng. dat asour ce properties. As an example,

hsql
server:
host: | ocal host

port: 9102
dbnane: xdj ob
spring:

dat asour ce

url: jdbc: hsql db: hsql ://${hsql . server. host: | ocal host}: ${ hsql . server. port: 9101}/
${ hsql . server. dbnane: xdj ob}

usernane: sa

passwor d:

driverd assNanme: org. hsql db. j dbc. JDBCDxi ver

The properties under hsql . server are substituted in the spring. datasource. url property
value. This lets you create short variants of existing Spring Boot properties. Using this style,
you can override the value of these configuration variables by setting an OS environment
variable, such as xd_server _host. Alternatively, you can not use any placeholders and set
spring. dat asour ce. ur| directly to known values.

1.0.0 Spring XD Guide 20

http://docs.spring.io/spring-boot/docs/1.0.1.RELEASE/reference/htmlsingle/#boot-features-external-config-multi-profile-yaml
https://github.com/spring-projects/spring-xd/tree/master/spring-xd-batch/src/main/resources/org/springframework/xd/batch/schema

Spring XD

MySQL

When in distributed mode and you want to use MySQL, you need to change the value of
spring. dat asour ce. * properties. As an example,

spring:
dat asour ce:
url: jdbc:nysql://yourDBhost: 3306/ your DB
user nane: your User nane
password: your Password
driverC assNanme: com nysql.jdbc. Driver

To override these settings set an OS environment variable such as spri ng_dat asource_ur| to the
value you require.

PostgreSQL

When in distributed mode and you want to use PostgreSQL, you need to change the value of
spri ng. dat asour ce. * properties. As an example,

spring:
dat asour ce:
url: jdbc: postgresql://your DBhost: 5432/ your DB
user nanme: your User nane
passwor d: your Password
driverCl assNane: org. postgresql.Driver

To override these settings set an OS environment variable such as spri ng_dat asource_ur| to the
value you require.

Redis

If you want to use Redis for analytics or data transport you should set the host and port of the Redis
server.

spring:
redis:
port: 6379
host: | ocal host

To override these settings set an OS environment variable such as spri ng_r edi s_port to the value
you require.

RabbitMQ

If you want to use RabbitMQ as a data transport use the following configuration setting

spring:
rabbi t my:
host: | ocal host
port: 5672

user nane: guest
passwor d: guest
virtual _host: /

To override these settings set an OS environment variable such as spri ng_r abbi t ng_host to the
value you require.

1.0.0 Spring XD Guide 21

Spring XD

In addition, the following default settings for the rabbit message bus can be modified inser vers. yni ...

nessagebus:
rabbit:
defaul t:
ackMbde: AUTO 0O
backOf flnitiallnterval: 1000 O
backCf f MaxI nt erval : 10000 O
backCOf f Mul tiplier: 2.0 O
concurrency: 1 O
maxAtt enpt s: 3 O
maxConcurrency: 1 O
prefix: xdbus. 0O
prefetch: 1 O
repl yHeader Pat t er ns: STANDARD REPLY_HEADERS, * O
request Header Pat t er ns: STANDARD_REQUEST_HEADERS, *
requeue: true
transact ed: fal se
t xSi ze: 1

O AUTO (container acks), NONE (broker acks), MANUAL (consumer acks). Upper case only. Note:
MANUAL requires specialized code in the consuming module and is unlikely to be used in an
XD application. For more information, see http://docs.spring.io/spring-integration/reference/html/
amgp.html#amgp-inbound-ack

The time in milliseconds before retrying a failed message delivery

The maximum time (ms) to wait between retries

The back off multiplier (previous interval x multiplier = next interval)

The minimum number of consumer threads receiving messages for a module

The maximum number of delivery attempts

The maximum number of consumer threads receiving messages for a module

A prefix applied to all queues, exchanges so that policies (HA etc) can be applied

The number of messages to prefetch for each consumer

Determines which request headers will be transported

Determines which reply headers will be transported

Whether rejected messages will be requeued by default

Whether the channel is to be transacted

The number of messages to process between acks (when ack mode is AUTO).

EEEEDDDDDDDDD

Admin Server HTTP Port

The default HTTP port of the xd-admi n server is 9393. To change the value use the following
configuration setting

server:
port: 9876

Management Port
The XD servers provide general health and JMX exported management endpoints via Jolokia.

By default the management and health endpoints are available on port 9393. To change the value of
the port use the following configuration setting.

1.0.0 Spring XD Guide 22

http://docs.spring.io/spring-integration/reference/html/amqp.html#amqp-inbound-ack
http://docs.spring.io/spring-integration/reference/html/amqp.html#amqp-inbound-ack
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#production-ready-endpoints
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#production-ready-jolokia

Spring XD

managenent :
port: 9876

You can also disable http management endpoints by setting the port value to -1.

By default IMX MBeans are exported. You can disable JIMX by setting spri ng. j mx. enabl ed=f al se.

The section on Monitoring and management over HTTP provides details on how to configure these
endpoint.

Local transport

Local transport uses a QueueChannel to pass data between modules. There are a few properties you
can configure on the QueueChannel

» xd.l ocal .transport. naned. queueSi ze - The capacity of the queue, the default value is
I nt eger. MAX_VALUE

e xd. |l ocal .transport. naned. pol | i ng - Messages that are buffered in a QueueChannel need
to be polled to be consumed. This property controls the fixed rate at which polling occurs. The default
value is 1000 ms.

6.3 Module Configuration

Modules are configured by placing property files in a nested directory structure based on their type
and name. The root of the nested directory structure is by default XD_HOVE/ conf i g/ nodul es. This
location can be customized by setting the OS environment variable XD_MODULE_CONFI G_LOCATI ON,
similar to how the environment variable XD_CONFI G_LOCATI ONis used for configuring the server.

© Note

The XD_MODULE_CONFI G_LOCATI ON can reference any any Spring Resource implementation,
most commonly denoted using the prefixes cl asspat h: ,file: andhttp:.

As an example, if you wanted to configure the twittersearch module, you would create a file

‘ XD_MODULE_CONFI G_LOCATI ON\source\tw ttersearch\tw ttersearch. properties

and the contents of that file would be property names such as consuner Key and consuner Secr et .

© Note

You do not need to prefix these property names with a sour ce. t wi tt er sear ch prefix.

You can override the values in the module property file in various ways. The following sources of
properties are considered in the following order.

1. Properties specified in the stream or job DSL definition
2. Java System Properties
3. OS environment variables.

4, XD MODULE_CONFI G_LOCATI O\\ <t ype>\ <name>\ <nane>. properties (including profile
variants)

1.0.0 Spring XD Guide 23

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#production-ready-monitoring
http://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/channel/QueueChannel.html
http://docs.spring.io/spring/docs/4.0.3.RELEASE/spring-framework-reference/htmlsingle/#resources

Spring XD

5. Default values specified in module metadata (if available).

Values in XD_MODULE_CONFI G_LOCATI ON\ <t ype>\ <name>\ <nane>. properties can be
property placeholder references to keys defined in another resource location. By default the resource is
the file XD_MODULE_CONFI G_LOCATI ON\ nodul es. ym . You can customize the name of the resource
by using setting the OS environment variable XD_MODULE_CONFI G_NAME before running a server
startup script.

The nodul es. ym file can be used to specify the values of keys that should be shared across
different modules. For example, it is common to use the same twitter developer credentials in both the
twittersearch and twitterstream modules. To avoid repeating the same credentials in two property files,
you can use the following setup.

nodul es. ym contains

shar edConsuner Key: al sdj f qwopi eur

shar edConsumner Secret: pgw eour al sdj kqwpo
shar edAccessToken: |1ixzchvpi awed

shar edAccessTokenSecret: ewoqirudhdsl dke

and XD MODULE CONFI G LOCATI ON\source\twitterstreamitwitterstream properties
contains

consuner Key=${ shar edConsuner Key}

consumrer Secr et =${ shar edConsuner Secr et }
accessToken=${ shar edAccessToken}
accessTokenSecr et =${ shar edAccessTokenSecr et }

and XD MODULE CONFI G LOCATI ON\source\twittersearch\twi ttersearch. properties
contains

consuner Key=${ shar edConsuner Key}
consumner Secr et =${ shar edConsuner Secr et }

Profiles

When resolving property file names, the server will look to load profile specific variants based on the
naming convention <nane>-{profil e}. properti es. For example, if given the OS environment
variable spring_profiles_active=defaul t, ga the following configuration file names for the
twittersearch module would be searched in this order

1. XD_MODULE_CONFI G_LOCATI ON\source\twi ttersearch\tw ttersearch. properties

2. XD_MODULE_CONFI G LOCATI ON\source\twi ttersearch\tw ttersearch-
defaul t. properties

3. XD_MODULE_CONFI G_LOCATI ON\source\twi ttersearch\tw ttersearch-
ga. properties

Also, the shared module configuration file is refernced using profile variants, so given the
OS environment variable spring _profiles_active=default, ga the following shared module
configuration files would be searched for in this order

1. XD_MODULE_CONFI G_LOCATI ON\ nodul es. ym

1.0.0 Spring XD Guide 24

Spring XD

2. XD_MODULE_CONFI G_LOCATI O\\ nodul es-defaul t. ym

3. XD_MODULE_CONFI G_LOCATI ON\ nodul es-qga. ym

Batch Jobs or modules accessing JDBC
Another common case is access to a relational database from a job or the JDBC Sink module.

As an example, to provide the properties for the batch job jdbchdfs the file
XD_MODULE_CONFI G_LOCATI ON\ j ob\ j dbchdf s\ j dbchdf s. properi t es should contain

driver C ass=org. hsql db. j dbc. JDBCDr i ver
ur | =j dbc: hsql db: mem xd

user nane=sa

passwor d=

A property file with the same keys, but likely different values would be located in
XD_MODULE_CONFI G_LOCATI ON\\ si nk\ j dbc\ j dbc. properites.

1.0.0 Spring XD Guide 25

Spring XD

7. Architecture

7.1 Introduction

Spring XD is a unified, distributed, and extensible service for data ingestion, real time analytics, batch
processing, and data export. The foundations of XD’s architecture are based on the over 100+ man
years of work that have gone into the Spring Batch, Integration and Data projects. Building upon these
projects, Spring XD provides servers and a configuration DSL that you can immediately use to start
processing data. You do not need to build an application yourself from a collection of jars to start using
Spring XD.

Spring XD has two modes of operation - single and multi-node. The first is a single process that is
responsible for all processing and administration. This mode helps you get started easily and simplifies
the development and testing of your application. The second is a distributed mode, where processing
tasks can be spread across a cluster of machines and an administrative server reacts to user commands
and runtime events managed within a shared runtime state to coordinate processing tasks executing
on the cluster.

Runtime Architecture

The key components in Spring XD are the XD Admin and XD Container Servers. Using a high-level
DSL, you post the description of the required processing tasks to the Admin server over HTTP. The
Admin server then maps the processing tasks into processing modules. A module is a unit of execution
and is implemented as a Spring ApplicationContext. A distributed runtime is provided that will assign
modules to execute across multiple XD Container servers. A single XD Container server can run multiple
modules. When using the single node runtime, all modules are run in a single XD Container and the
XD Admin server is run in the same process.

DIRT Runtime

A distributed runtime, called Distributed Integration Runtime, aka DIRT, will distribute the processing
tasks across multiple XD Container instances. The XD Admin server breaks up a processing task into
individual module definitions and assigns each module to a container instance using ZooKeeper (see
XD Distributed Runtime). Each container listens for module definitions to which it has been assigned
and deploys the module, creating a Spring ApplicationContext to run it.

Modules share data by passing messages using a configured messaging middleware (Rabbit, Redis,
or Local for single node). To reduce the number of hops across messaging middleware between them,
multiple modules may be composed into larger deployment units that act as a single module. To learn
more about that feature, refer to the Composing Modules section.

1.0.0 Spring XD Guide 26

Spring XD

HTTP POST
of

Data Processing DSL

XD Admin

\
f/ XD Container \ f/ XD Container

[[
[[

Module Module

N)

Q A

<

Figure 7.1. The XD Admin Server sending module definitions to each XD Container

How the processing task is broken down into modules is discussed in the section Container Server
Architecture.

Support for other distributed runtimes

In the 1.0 release, You can run Spring XD natively, in which case you are responsible for starting up
the XD Admin and XD Container instances. Alternately you can run Spring XD on Hadoop’s YARN, see
Running XD on YARN. Pivotal Cloud Foundry support is planned for a future release. If you are feeling
a adventurous, you can also take a look at our scripts for deploying Spring XD to EC2. These are used
as part of our system integration tests.

Single Node Runtime

A single node runtime is provided that runs the Admin and Container servers, ZooKeeper, and HSQLDB
in the same process. the single node runtime is primarily intended for testing and development purposes
but it may also appropriate to use in small production use-cases. The communication to the XD Admin

1.0.0 Spring XD Guide 27

Running-on-YARN
https://github.com/spring-projects/spring-xd-ec2
https://build.spring.io/browse/XD-ATEC2

Spring XD

server is over HTTP and the XD Admin server communicates to an in-process XD Container using an
embedded ZooKeeper server.

HTTP POST
of

Data Processing DSL

/ 4 XD Container
4

.] [
XD Admin J >

Module

_

\

\

Figure 7.2. Single Node Runtime
Admin Server Architecture

The Admin Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and jobs, querying runtime state, analytics, and the
like. The Admin Server is implemented using Spring’s MVC framework and the Spring HATEOAS library
to create REST representations that follow the HATEOAS principle. The Admin Server and Container
Servers monitor and update runtime state using ZooKeeper (see XD Distributed Runtime).

Container Server Architecture

The key components of data processing in Spring XD are
» Streams

» Jobs

e Taps

Streams define how event driven data is collected, processed, and stored or forwarded. For example,
a stream might collect syslog data, filter, and store it in HDFS.

Jobs define how coarse grained and time consuming batch processing steps are orchestrated, for
example a job could be be defined to coordinate performing HDFS operations and the subsequent
execution of multiple MapReduce processing tasks.

Taps are used to process data in a non-invasive way as data is being processed by a Stream or a Job.
Much like wiretaps used on telephones, a Tap on a Stream lets you consume data at any point along

1.0.0 Spring XD Guide 28

https://github.com/SpringSource/spring-hateoas
http://en.wikipedia.org/wiki/HATEOAS

Spring XD

the Stream'’s processing pipeline. The behavior of the original stream is unaffected by the presence of
the Tap.

eb / Mobile Real-time

Analytics

Real-time

Streams —_ 'f
i
l

Batch files el lekenkad o S3 | HDFS
& ETL Stream Storage

Enterprise

Applications Databases

Figure 7.3. Taps, Jobs, and Streams
Streams
The programming model for processing event streams in Spring XD is based on the well known

Enterprise Integration Patterns as implemented by components in the Spring Integration project. The
programming model was designed so that it is easy to test components.

A Stream consist of the following types of modules: * An Input source * Processing steps * An Output sink

An Input source produces messages from an external source. XD supports a variety of sources, e.g.
syslog, tcp, http. The output from a module is a Spring Message containing a payload of data and a
collection of key-value headers. Messages flow through message channels from the source, through
optional processing steps, to the output sink. The output sink delivers the message to an external
resource. For example, it is common to write the message to a file system, such as HDFS, but you may
also configure the sink to forward the message over tcp, http, or another type of middleware, or route
the message to another stream.

A stream that consists of a input source and a output sink is shown below

1.0.0 Spring XD Guide 29

http://www.eaipatterns.com/
http://www.springsource.org/spring-integration

Spring XD

Message i:

Input | _)Output
Source | Sink

Figure 7.4. Foundational components of the Stream processing model

A stream that incorporates processing steps is shown below

Input | | = =i Processing | =)
Source Step

@Processing_%- m@ Output

Step Sink

Figure 7.5. Stream processing with multiple steps

For simple linear processing streams, an analogy can be made with the UNIX pipes and filters model.
Filters represent any component that produces, processes or consumes events. This corresponds to the
modules (source, processing steps, and sink) in a stream. Pipes represent the way data is transported
between the Filters. This corresponds to the Message Channel that moves data through a stream.

A simple stream definition using UNIX pipes and filters syntax that takes data sent via a HTTP post and
writes it to a file (with no processing done in between) can be expressed as

http | file

The pipe symbol represents a message channel that passes data from the HTTP source to the File
sink. The message channel implementation can either be backed with a local in-memory transport,
Redis queues, or RabbitMQ. The message channel abstraction and the XD architecture are designed
to support a pluggable data transport. Future releases will support other transports such as JMS.

Note that the UNIX pipes and filter syntax is the basis for the DSL that Spring XD uses to describe simple
linear flows. Non-linear processing is partially supported using named channels which can be combined
with a router sink to effectively split a single stream into multiple streams (see Dynamic Router Sink).
Additional capabilities for non-linear processing are planned for future releases.

The programming model for processing steps in a stream originates from the Spring Integration project
and is included in the core Spring Framework as of version 4. The central concept is one of a Message
Handler class, which relies on simple coding conventions to Map incoming messages to processing

1.0.0 Spring XD Guide 30

Spring XD

methods. For example, using an http source you can process the body of an HTTP POST request using
the following class

public class SinpleProcessor {

public String process(String payl oad) {
return payl oad. t oUpper Case();

}

The payload of the incoming Message is passed as a string to the method pr ocess. The contents of
the payload is the body of the http request as we are using a http source. The non-void return value is
used as the payload of the Message passed to the next step. These programming conventions make
it very easy to test your Processor component in isolation. There are several processing components
provided in Spring XD that do not require you to write any code, such as a filter and transformer that
use the Spring Expression Language or Groovy. For example, adding a processing step, such as a
transformer, in a stream processing definition can be as simple as

http | transforner --expression=payload.toUpperCase() | file

For more information on processing modules, refer to the Processors section.
Stream Deployment

The Container Server listens for module deployment events initiated from the Admin Server via
ZooKeeper. When the container node handles a module deployment event, it connects the module’s
input and output channels to the data bus used to transport messages during stream processing. In a
single node configuration, the data bus uses in-memory direct channels. In a distributed configuration,
the data bus communications are backed by the configured transport middleware. Redis and Rabbit are
both provided with the Spring XD distribution, but other transports are envisioned for future releases.

1.0.0 Spring XD Guide 31

Spring XD

Embedded
ZooKeeper

XDContainer

B, ¢
QOutbound Inbound
Adapter Adapter

AL iy

___ Spring Application Context

S Spring Application Context)

1 . Data Bus '

XD Single Node Configuration

<source> | <sink>

Figure 7.6. A Stream Deployed in a single node server

1.0.0 Spring XD Guide 32

Spring XD

XD Container XD Container

(_ Databus i)
'<source> | <sink> |

Figure 7.7. A Stream Deployed in a distributed runtime

Inthe http | file example, the Admin assigns each module to a separate Container instance,
provided there are at least two Containers available. The fi | e module is deployed to one container
and the ht t p module to another. The definition of a module is stored in a Module Registry. A module
definition consists of a Spring XML configuration file, some classes used to validate and handle options
defined by the module, and dependent jars. The module definition contains variable placeholders,
corresponding to DSL parameters (called options) that allow you to customize the behavior of the
module. For example, setting the http listening port would be done by passing in the option - - port,
e.g.http --port=8090 | file,whichisinturnused to substitute a placeholder value in the module
definition.

The Module Registry is backed by the filesystem and corresponds to the directory <xd-i nstal | -
di r ect or y>/ nodul es. When a module deployment is handled by the Container, the module definition
is loaded from the registry and a new Spring ApplicationContext is created in the Container process to
run the module. Dependent classes are loaded via the Module Classloader which first looks at jars in
the modules /lib directory before delegating to the parent classloader.

Using the DIRT runtime, the http | file example would map onto the following runtime architecture

1.0.0 Spring XD Guide 33

Spring XD

HTTP POST

/streams/streaml
“‘http | file”

[XD Admin]

4) 4

XD Container XD Container
HTTP File
Module Module

. / . J

Redis Queues

Figure 7.8. Distributed HTTP to File Stream

Data produced by the HTTP module is sent over a Redis Queue and is consumed by the File module. If
there was a filter processing module in the steam definition, e.ghttp | filter | fil e thatwould
map onto the following DIRT runtime architecture.

1.0.0 Spring XD Guide 34

Spring XD

HTTP POST

/streams/stream?2
“http | filter | file”

XD Admin

4 4 4

XD Container XD Container XD Container

HTTP Filter File
Module Module Module

Redis Queues

Figure 7.9. Distributed HTTP to Filter to File Stream

7.2 Jobs

The creation and execution of Batch jobs builds upon the functionality available in the Spring Batch and
Spring for Apache Hadoop projects. See the Batch Jobs section for more information.

7.3 Taps

Taps provide a non-invasive way to consume the data that is being processed by either a Stream or
a Job, much like a real time telephone wire tap lets you eavesdrop on telephone conversations. Taps
are recommended as way to collect metrics and perform analytics on a Stream of data. See the section
Taps for more information.

1.0.0 Spring XD Guide 35

Spring XD

8. XD Distributed Runtime

8.1 Introduction

This document describes what’s happening "under the hood" of the XD Distributed Runtime (DIRT) and,
in particular, how the runtime architecture achieves high availability and failover in a clustered production
environment. See Running in Distributed Mode for more information on installing and running Spring
XD in distributed mode.

This discussion will focus on the core runtime components and the role of ZooKeeper.

8.2 Configuring XD for High Availabilty (HA)

A production XD environment is typically distributed among multiple hosts in a clustered environment.
XD scales horizontally by providing additional Container instances. In the simplest case, all containers
are replicas, that is, they are interchangeable and a module may be deployed to any instance in a
round-robin fashion. XD supports a flexible container matching algorithm to target modules to specific
container configurations. The matching algorithm will be covered in more detail later, but for now, let’s
assume the simple case. Running multiple containers not only supports horizontal scalability, but allows
for failover. If one container goes down, any modules deployed to that container will be deployed to
another available instance.

XD requires that a single active Admin server handle interactions with the containers, such as stream
deployment requests, as these types of operations must be carefully coordinated and processed
in the order received. Without a backup Admin server, this component becomes single point of
failure. Therefore, two (or more for the risk averse) Admin servers are recommended for a production
environment. Note that every Admin server can accept all requests via REST endpoints but only one
instance, the "Leader", will actually perform requests that update the runtime state. If the Leader goes
down, another available Admin server will assume the role.

An HA XD installation also requires that additional required servers - ZooKeeper, messaging
middleware, and data stores listed above - be configured for HA as well. Please consult the product
documentation for specific recommendations regarding these components.

8.3 ZooKeeper Overview

In the previous section, we claimed that if a container goes down, XD will redeploy anything that
is deployed on that instance to another available container. We also claimed that if the Admin
Leader goes down, another Admin server will assume that role. ZooKeeper is what makes this all
possible. ZooKeeper is a widely used Apache project designed primarily for cluster management and
coordination. This section will cover some basic concepts necessary to understand its role in XD. See
The ZooKeeper Wiki for a more complete overview.

ZooKeeper is based on a simple hierarchical data structure, formally a tree, but conceptually and
semantically similar to a file directory structure. As such, data is stored in nodes. A node is referenced
via a path, e.g., /xd/streams/mystream. Each node can store additional data, serialized as a byte array.
In XD, all data is a java.util.Map serialized as JSON.

A node is created to be either ephemeral or persistent. An ephemeral node exists only as long as
the process that created it. A persistent node is, well, persistent. For example, ephemeral nodes are

1.0.0 Spring XD Guide 36

Running-Distributed-Mode
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index

Spring XD

appropriate for registering Container instances. When an XD container starts up, it registers itself as
an ephemeral node, /xd/containers/<container-id>, where XD generates a unique container id. When
the container goes down, its node is removed. Persistent nodes are used to manage state needed for
recovery and failover that must be available independent of a Container instance. This includes data
such as stream definitions, job definitions, deployment manifests, and module deployments.

Obviously ZooKeeper is critically important to the XD runtime and must itself be HA. ZooKeeper
itself supports a clustered architecture, called an ensemble. The details are beyond the scope of this
document, but for the sake of discussion, there should be at least three ZooKeeper server instances
running (an odd number is always recommended). The XD Container and Admin nodes are clients to the
ZooKeeper ensemble and must connect to ZooKeeper at startup. XD components are configured with a
zk.client.connect property which may designate a single <host>:<port> or a comma separated list. The
ZooKeeper client will attempt to connect to each server in order until it succeeds. If itis unable to connect,
it will keep trying. If a connection goes down, the ZooKeeper client will attempt to reconnect to one
of the servers. The ZooKeeper cluster guarantees consistent replication of data across the ensembile.
ZooKeeper maintains data primarily in memory backed by a disk cache.

In addition to performing CRUD operations on nodes, A ZooKeeper client can register a callback on a
node to respond to any events or state changes to that node or any of its children. Such node operations
and callbacks are the mechanism that control the XD runtime.

Admin

Container

‘\)
~,
‘\
fooKeeper
Ensemble

8.4 The Admin Server Internals

Figure 8.1.

Assuming more than one Admin instance is running, Each instance requests leadership at start up.
If there is already a designated leader, the instance will watch the xd/admin node to be natified if the
Leader goes away. The instance designated as the "Leader", using the Leader Selector recipe provided

1.0.0 Spring XD Guide 37

Spring XD

by Curator, a ZooKeeper client library that implements some common patterns. Curator also provides
some Listener callback interfaces that the client can register on a node. The AdminServer creates the
top level nodes for xd:

» /xd/admins - children are ephemeral nodes for each available Admin instance and used for Leader
Selector

» /xd/containers - children are ephemeral nodes containing runtime attributes for each available
container

» /xd/streams - children are persistent nodes containing the definition for each stream, however the
leaf nodes for a deployed stream, at the module level, are ephemeral nodes added by the container
to which the module is deployed.

» /xd/jobs - children are persistent nodes containing the definition for each job, however the leaf node
for a deployed job is an ephemeral node added by the container to which the job is deployed.

» /xd/deployments/streams - children are persistent nodes containing stream deployment status
» /xd/deployments/jobs - children are persistent nodes containing job deployment status
and regiseters a LeaderListener which is used by the selected Leader.

The Leader registers listeners on /xd/deployments/streams, /xd/deployments/jobs, and /xd/containers
to handle events related to stream deployments, job deployments, and be notified when containers
are added and removed from the cluster. Note that any Admin instance can handle user requests. For
example, if you enter the following commands via XD shell,

xd>stream create ticktock --definition "time | |og"

This command will invoke a REST service on its connected Admin instance to create a new node /xd/
streams/ticktock

xd>st ream depl oy ticktock

This will create a new node /xd/deployments/streams/ticktock

If the Admin instance connected to the shell is not the Leader, it will perform no further action. The
Leader listening to /xd/deployments/streams will respond to the newly added child node and deploy
each module in the stream definition to a different Container, if possible, and update the runtime state
accordingly.

1.0.0 Spring XD Guide 38

http://curator.apache.org

Spring XD

StreamListener
fxd/deployments/streams

. . JoblListener
AdminServer LeaderListener Idideploymentsfiobs
ContainerListener
fxd/containers
Curator
Client
ZooKeeper
Ensemble
Figure 8.2.
Example

Let's walk through a simple example. If you don’t have an XD cluster set up, the basics can be illustrated
by running XD in single node. From the XD install directory:

$export JAVA OPTS="- Dzk. embedded. server. port =5555"
$xd/ bi n/ xd- si ngl enode

XD single node runs with an embedded zookeeper server by default and will assign a random unused
port. The zk.embedded.server.port property will assign the requested port if available.

In another terminal session, start the ZooKeeper CLI included with ZooKeeper to connect to the
embedded server and inspect the contents of the nodes (NOTE: tab completion works) :

‘ $zkd i.sh -server |ocal host: 5555

After some console output, you should see a prompt:

Wat chedEvent state: SyncConnected type: None pat h: nul |
[zk: | ocal host: 5555(CONNECTED) 0]

navigate using the Is command:

1.0.0 Spring XD Guide 39

Spring XD

[[zk: | ocal host: 5555(CONNECTED) 0] |s /xd

[containers, jobs, streans, admin, deploynents]

[zk: | ocal host: 5555(CONNECTED) 1] |s /xd/streans

[

[zk: 1 ocal host: 5555(CONNECTED) 2] |s /xd/depl oynents

[jobs, streans, nodul es]

[zk: | ocal host: 5555(CONNECTED) 3] |s /xd/ depl oyment s/ streans
[

[zk: | ocal host: 5555(CONNECTED) 4] |s /xd/ depl oyrment s/ nodul es
[2ebbbc9b- 63ac- 4da4- aa32- €39d69eb546b]

[zk: | ocal host: 5555(CONNECTED) 5] |s /xd/depl oyment s/ nodul es/ 2ebbbc9b- 63ac- 4da4- aa32-
e39d69eb546b

[

[zk: 1 ocal host: 5555(CONNECTED) 6] |s /xd/containers

[2ebbbc9b- 63ac- 4da4- aa32- e39d69eb546b]

[zk: | ocal host: 5555(CONNECTED) 7]

The above reflects the initial state of XD. Nothing is deployed yet and there are no stream definitions.
Note that xd/deployments/modules has a child which is the id corresponding to the embedded container.
If you are running in a clustered environment and connected to one of the ZooKeeper servers in the
same ensemble that XD is connected to, you should see multiple nodes under /xd/containers and there
may be some existing deployments.

Start the XD Shell in a new terminal session and create a stream:

$ shel | / bi n/ xd- shel

\Ceen R U2 A I I I

ShRT SRR § IR B I S A

VA I e O I A T

\ T & U O T S IV A VA
|

|| _
| _| [—
eXtreme Data

1.0.0. BU LD SNAPSHOT | Admin Server Target: http://|ocal host: 9393

Wl come to the Spring XD shell. For assistance hit TAB or type "hel p"
xd: >stream create ticktock --definition "time | |o0g"

Created new stream'ticktock’

xd: >

Back to the ZK CLI session:

[zk: | ocal host: 5555(CONNECTED) 7] |s /xd/streans
[ticktock]

{"def
cZxid
ctinme
nZxi d
ntime
pZxi d
cvers

acl Ve
dat aL

nuntCh
[zk:

[zk: | ocal host: 5555(CONNECTED) 8] get /xd/streans/ticktock

inition":"tine | |og"}

= 0x31

= Wed Apr 09 15:22: 03 EDT 2014
= 0x31

= Wed Apr 09 15:22: 03 EDT 2014
= 0x31

ion =0

dataVersion = 0

rsion = 0

ephener al Omer = 0x0

ength = 27
ildren = 0
| ocal host : 5555(CONNECTED) 9]

1.0.0

Spring XD Guide

40

Spring XD

using the get command on the new stream node, we can see the stream definition represented as
JSON, along with some standard ZooKeeper node information.

© Note

ephemeralOwner = 0x0, indicating this is not an ephemeral node. At this point, nothing else
should have changed from the initial state.

Now, Using the XD shell, let's deploy the stream,

xd>stream depl oy ticktock
Depl oyed stream 'ticktock'

and verify with ZooKeeper:

[zk: | ocal host: 5555(CONNECTED) 9] |s /xd/ depl oyment s/ streans

[ticktock]

[zk: | ocal host:2181(CONNECTED) 10] |s /xd/streans/ticktock

[si nk, source]

[zk: local host: 2181(CONNECTED) 11] |s /xd/streans/ticktock/source
[time-0]

[zk: | ocal host: 2181(CONNECTED) 12] |s /xd/streans/ticktock/sink

[10g-1]

[zk: | ocal host: 2181(CONNECTED) 13] |s /xd/streamns/ticktock/source/time-0
[<cont ai ner-i d>]

[zk: | ocal host: 2181(CONNECTED) 14] |s /xd/streans/ticktock/sink/log-1

[<cont ai ner-i d>]

[zk: | ocal host: 5555(CONNECTED) 15] |s /xd/ depl oyment s/ modul es/ <cont ai ner-i d>
[ticktock.sink.log-1, ticktock.source.tinme-0]

Since XD is running as single node, both modules (time and log) are deployed to the same container
instance, corresponding to the <container-id>. The module node name is <stream_name>.<module-
type>.<module-name>-<module-index>, where <module-index> represents the position of the module
in the stream.

The information stored in ZooKeeper is provided to XD shell queries. For example:

xd: >runtime nodul es
Modul e Cont ai ner 1d Opti ons

ticktock. sink.log-1 186d3b36- b005- 45f f - b46f - cb2c5c¢f 61easd
ticktock.source.tinme-0 186d3b36-b005-45f f - b46f-cb2c5cf6lead {fornmat=yyyy- M} dd
HH: mm ss, fixedDel ay=1}

8.5 Module Deployment

A Stream is composed of Modules. In general, each module is deployed to one or more Container
instance(s). In this way the Stream processing is distributed among multiple containers. The Admin
decides to which container(s) each Module is deployed and writes the module information to /xd/
deployments/modules/<container-id>. The Container has a Deploymentlistener to monitor this node for
new modules to deploy. If the deployment is successful, the Container writes it's id as an ephemeral
node to xd/streams/<stream_name>/<module-type>/<module-name>-<module-index>/<container-id>.

1.0.0 Spring XD Guide 41

Spring XD

fxd/deployments/modules/<container-id>

create module node
get module node

Container

DeploymentListener ModuleDeployer

Curator create

Client

Curator
Client

/xd/streams/<stream-name>/<module-type>/<module-
name>-<module-index>/<container-id>

ZooKeeper
Ensemble

Figure 8.3.

By default, deploying a stream in a distributed configuration uses simple round robin logic. For example
if there are 3 containers and 3 modules in a stream definition, s1= m1 | m2 | m3, then XD will attempt
distribute the work load evenly among each container. This is a very simplistic strategy and does not
take into account things like:

 server load - how many modules are already deployed to a container? How close is it to exhausting
available memory, cpu, etc.?

 server affinity - some containers may have external software installed with which specific modules
should be co-located. For example, an hdfs sink could be deployed only to servers running Hadoop.
Or perhaps a file sink should be deployed to servers configured with more disk space.

« scalability - Suppose the stream s1, above, can achieve higher throughput with multiple instances of
m2 running, so we want to deploy m2 to every container.

« fault tolerance - the ability to target physical servers on redundant networks, routers, racks, etc.

Deployment Manifest

More complex strategies are critical to tuning and operating XD. Additionally, we must consider various
features and constraints when deploying to a PaaS, Yarn or some other cluster manager. Furthermore,
such deployment concerns should be addressed independently from the stream definition which is
really an expression of the processing logic. To accommodate deployment concerns, XD provides a
Deployment Manifest which is submitted with the deployment request, in the form of in-line properties,
or a reference to a persisted document containing deployment properties.

When you execute a stream deploy shell command, you can optionally pass a --properties parameter
which is a comma delimited list of key=value pairs. Examples for the key include module.
[modulename].count and module.[modulename].criteria (for a full list of properties, see below). The
value for a count is a positive integer, and the value for criteria is a valid SpEL expression. The Admin

1.0.0 Spring XD Guide 42

Spring XD

server will match the available containers to the deployment manifest. The stream is considered to be
successfully deployed if at least one of each module instance is deployed to a container. For example,

xd: >stream create testl --definition "http | transform --expressi on=payl oad. t oUpper Case()

| 1og"
Created new stream'test1’

Next, deploy it requesting three transformer instances:

xd: >stream depl oy --nanme testl --properties "nodul e.transform count=3"
Depl oyed stream 'test1'

If there are only two container instances available, only two instances of transform will be deployed.
The stream deployment is successful since it is functional. However the unfulfilled deployment request
remains active and a third instance will be deployed if a new container comes on line that matches the
criteria.

Deployment Properties

General Properties

module.[modulename].count
See above.

module.[modulename].criteria
See above.

Bus Properties
The following properties are currently only implemented when using a RabbitMessageBus.
See the Spring AMQP reference documentation for information about the RabbitMQ-specific attributes.

module.[modulename].consumer.ackMode
Controls message acknowledgements (default AUTO)

module.[modulename].consumer.backOfflnitialinterval
The number of milliseconds to wait for the first delivery retry (default 1000)

module.[modulename].consumer.backOffMaxInterval
The maximum number of milliseconds to wait betwwen retries (default 10000)

module.[modulename].consumer.backOffMultiplier
The previous retry interval is multiplied by this to determine the current interval (but see
backOffMaxInterval) (default 2.0)

module.[modulename].consumer.concurrency
The number of concurrent consumers for the module (default 1).

module.[modulename].consumer.maxAttempts
The maximum number of attempts to make a delivery when a failure occurs (default 3)

module.[modulename].consumer.maxConcurrency
The maximum number of concurrent consumers for the module (default 1).

1.0.0 Spring XD Guide 43

Spring XD

module.[modulename].consumer.prefetch
The number of messages prefetched from the RabbitMQ broker (default 1)

module.[modulename].consumer.prefix
A prefix applied to all queues/exchanges that are declared by the bus - allows policies to be applied
(default xdbus.)

module.[modulename].consumer.requestHeaderPatterns
Controls which message headers are passed between modules (default
STANDARD_REQUEST_HEADERS,*)

module.[modulename].consumer.requeue
Whether messages will be requeued (and retried) on failure (default true)

module.[modulename].consumer.transacted
Whether consumers use transacted channels (default false)

module.[modulename].consumer.txSize
The number of delivered messages between acknowledgements (when ackMode=AUTO) (default
1

module.[modulename].producer.deliveryMode
THe delivery mode of messages sent to RabbitMQ (PERSISTENT or NON_PERSISTENT) (default
PERSISTENT)

module.[modulename].producer.requestHeaderPatterns
Controls which message headers are passed between modules (default
STANDARD_REQUEST_HEADERS,*)

module.[modulename].producer.replyHeaderPatterns
Controls which message headers are passed between modules (only used in partitioned jobs)
(default STANDARD_REPLY_HEADERS,*)

Partition Properties

© Note

The following properties are currently only implemented when using a RabbitMessageBus.
Support for Redis will be available in the RC1 release.

module.[modulename].producer.partitionKeyExtractorClass
The class name of a PartitionKeyExtractorStrategy (default null)

module.[modulename].producer.partitionKeyExpression
A SpEL expression, evaluated against the message, to determine the partition key; only applies if
partitionKeyExtractorClass is null. If both are null, the module is not partitioned (default null)

module.[modulename].producer.partitionSelectorClass
The class name of a PartitionSelectorStrategy (default null)

module.[modulename].producer.partitionSelectorExpression
A SpEL expression, evaluated against the partition key, to determine the partition index to
which the message will be routed. The final partition index will be the return value (an

1.0.0 Spring XD Guide 44

Spring XD

integer) modulo [nextModule].count If both the class and expression are null, the bus’s default
PartitionSelectorStrategy will be applied to the key (default null)

Partitioning

To summarize, a module is partitioned if its count is > 1 and the previous module has a
partitionKeyExtractorClass or partitionKeyExpression (class takes precedence). When a partition key
is extracted the partitioned module instance is determined by invoking the partitionSelectorClass, if
present, or the partitionSelectorExpression % count. If neither is present the result is key.hashCode()
% count.

See below for examples of deploying partitioned modules.
Container Attributes

The SpEL context (root object) for the Deployment Manifest is ContainerAtrtributes, basically a map
derivative that contains some standard attributes:

* id - the generated container ID

» pid - the process ID of the container instance

host - the host name of the machine running the container instance

ip —the IP address of the machine running the container instance

ContainerAttributes also includes any user-defined attribute values configured for the container. These
attributes are configured by editing xd/config/servers.yml the file included in the XD distribution contains
some commented out sections as examples. In this case, the container attributes configuration looks
something like:

xd:
cont ai ner:
groups: group2
color: red
© Note

Groups may also be assigned to a container via the optional command line argument --groups
or by setting the environment variable XD_CONTAINER_GROUPS. As the property name
suggests, a container may belong to more than one group, represented as comma-delimited
string. XD considers the concept of groups a useful convention for targeting groups of servers
for deployment in a variety of scenarios, so it enjoys special treatment. However, there is nothing
technically different from groups and other user defined attribute.

8.6 Stream Deployment Examples

To lllustrate how to use the Deployment Manifest, We will use the following runtime configuration, as
displayed in the XD shell:

1.0.0 Spring XD Guide 45

Spring XD

xd: >runti ne containers
Cont ai ner |d Host | P Address PID G oups
Custom Attri butes

bc624816- f 8a8- 4f 35- 83f 6- al25ed147b7c i p-10-110-18-10 10. 110. 18. 10 1708 group2
{col or =red}

018b7c8d- 6f a9- 4759- 8471- 76899766f 892 i p-10- 139-36- 168 10.139.36.168 1852 group2
{col or =bl ue}

af c3741c- 217a- 415a- 9d86- alf 62de03613 i p-10-139-17-116 10.139.17.116 1861 groupl
{col or =gr een}

Each of the three containers is running on a different host and has configured Groups and Custom
Attributes as shown.

First, create a stream:

xd: >stream create testl --definition "http | transform --expressi on=payl oad. t oUpper Case()
| 1og"
Created new stream'testl'

Next, deploy it using a manifest:

xd: >stream depl oy --nanme testl --properties
"modul e. transform count =3, nodul e. | og. criteria=groups. contains('groupl')"
Depl oyed stream 'test1'

Verify the deployment:

xd: >runti nme nodul es
Modul e Cont ai ner Id Properties

testl. source. http-0 bc624816- f 8a8- 4f 35- 83f 6- al25ed147b7c { port=9000}

testl. processor.transform1l bc624816-f 8a8- 4f 35-83f 6-al25ed147b7c {valid=true,
expr essi on=payl oad. t oUpper Case() }

testl. processor.transform1l 018b7c8d-6fa9-4759-8471-76899766f892 {valid=true,
expr essi on=payl oad. t oUpper Case() }

testl. processor.transforml afc3741c-217a-415a-9d86-alf62de03613 {valid=true,
expr essi on=payl oad. t oUpper Case() }

test1.sink.log-2 af c3741c- 217a- 415a- 9d86- alf 62de03613

We can see that three instances of the processor have been deployed, one to each container instance.
Also the log module has been deployed to the container id corresponding to groupl. Now we can
undeploy and deploy the stream using a different manifest:

1.0.0 Spring XD Guide 46

Spring XD

xd: >stream undepl oy test1l
Un- depl oyed stream 'testl
xd: >runtinme nmodul es
Modul e Container Id Properties

xd: >stream depl oy --name testl --properties "nodul e.l og. count =3, rodul e. | og. criteria=
groups. contai ns(' groupl')"
Depl oyed stream 'testl

xd: >runti ne nodul es
Modul e Contai ner Id Properties

testl.sink.log-2 bc624816- f 8a8- 4f 35- 83f 6- al25ed147b7c

testl. processor.transform1l 018b7c8d-6fa9-4759-8471-76899766f892 {valid=true
expr essi on=payl oad. t oUpper Case() }

test 1. sink.Ilog-2 018b7c8d- 6f a9- 4759-8471- 76899766f 892

testl. source. http-0 af c3741c- 217a- 415a- 9d86- alf 62de03613 {port =9000}

Note that there are only two instances of log deployed. We asked for three however the criteria specified
only containers not in groupl are eligible. Since only two containers matched the criteria, we have a
log module deployed on each one. If we start a new container not in groupl, the third instance will be
deployed. The stream is currently shown as deployed since it is functional even though the manifest
is not completely satisfied.

8.7 Partitioned Stream Deployment Examples

Using SpEL Expressions
First, create a stream:

xd: >stream create partitioned --definition "jnms | transform--
expr essi on=#expensi veTr ansf or mati on(payl oad) | | og"

Created new stream 'partitioned

(hypothetical SpEL function expensiveTransformation)

Next, deploy it using a manifest:

xd: >stream depl oy --name partitioned --properties
"modul e. j ms. producer. partiti onKeyExpressi on=payl oad. cust oner | d, modul e. t ransf or m count =3"

Depl oyed stream 'partitioned

In this example three instances of the transformer will be created (with partition index of O, 1, and
2). When the jms module sends a message it will take the customerld property on the message
payload, invoke its hashCode() method and apply the modulo function with the divisor being the
transform.count property to determine which instance of the transform will process the message
(payload.getCustomerld().hashCode() % 3). Messages with the same customerld will always be
processed by the same instance.

1.0.0 Spring XD Guide a7

Spring XD

9. Streams

9.1 Introduction

In Spring XD, a basic stream defines the ingestion of event driven data from a source to a sink that
passes through any number of processors. Stream processing is performed inside the XD Containers
and the deployment of stream definitions to containers is done via the XD Admin Server. The Getting
Started section shows you how to start these servers and how to start and use the Spring XD shell

Sources, sinks and processors are predefined configurations of a module. Module definitions are found
in the xd/ nodul es directory. ! Modules definitions are standard Spring configuration files that use
existing Spring classes, such as Input/Output adapters and Transformers from Spring Integration that
support general Enterprise Integration Patterns.

A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source
and a file sink (with no processors) is shown below

‘http| file

The DSL mimics a UNIX pipes and filters syntax. Default values for ports and filenames are used in this
example but can be overriden using - - options, such as

‘http --port=8091 | file --dir=/tnp/httpdatal

To create these stream definitions you make an HTTP POST request to the XD Admin Server. More
details can be found in the sections below.

9.2 Creating a Simple Stream

The XD Admin server ° exposes a full RESTful API for managing the lifecycle of stream definitions, but
the easiest way to use the XD shell. Start the shell as described in the Getting Started section

New streams are created by posting stream definitions. The definitions are built from a simple DSL. For
example, let's walk through what happens if we execute the following shell command:

xd: > streamcreate --definition "time | |log" --name ticktock

This defines a stream named t i ckt ock based off the DSL expressiontine | | o0g. The DSL uses
the "pipe" symbol | , to connect a source to a sink.

Then to deploy the stream execute the following shell command (or alternatively add the - - depl oy
flag when creating the stream so that this step is not needed):

xd: > stream depl oy --name ticktock

The stream server finds the t i me and | og definitions in the modules directory and uses them to setup
the stream. In this simple example, the time source simply sends the current time as a message each
second, and the log sink outputs it using the logging framework.

1Using the filesystem is just one possible way of storing module defintions. Other backends will be supported in the future, e.g.
Redis.
5The server is implemented by the Admi nMai n class in the spri ng- xd- di rt subproject

1.0.0 Spring XD Guide 48

http://static.springsource.org/spring-integration/reference/htmlsingle/#spring-integration-adapters
http://static.springsource.org/spring-integration/reference/htmlsingle/#transformer
http://www.eaipatterns.com/

Spring XD

processi ng nodul e ' Mbdul e [nane=l og, type=sink]' fromgroup 'ticktock' with index: 1
processi ng nodul e ' Mbdul e [nane=ti me, type=source]' fromgroup 'ticktock' with index: O
17:26: 18, 774 WARN Thr eadPool TaskSchedul er-1 | ogger.ticktock: 141 - Thu May 23 17:26: 18 EDT
2013

If you would like to have multiple instances of a module in the stream, you can include a property with
the deploy command:

xd: > stream depl oy --nane ticktock --properties "nodul e.tine.count=3"

You can alsoinclude a SpEL Expressionasacri t eri a property for any module. That will be evaluated
against the attributes of each currently available Container. Instances of the module will only be deployed
to Containers for which the expression evaluates to true.

xd: > stream depl oy --nanme ticktock --properties
"modul e. tine. count =3, nodul e. | og. criteria=groups.contains('x")"

9.3 Deleting a Stream

You can delete a stream by issuing the st r eam dest r oy command from the shell:

xd: > stream destroy --name ticktock

9.4 Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undepl oy the stream by nhame and issue the depl oy command at a later time to restart it.

xd: > stream undepl oy --name ticktock
xd: > stream depl oy --name ticktock

9.5 Other Source and Sink Types

Let’s try something a bit more complicated and swap out the t i me source for something else. Another
supported source type is ht t p, which accepts data for ingestion over HTTP POSTSs. Note thatthe ht t p
source accepts data on a different port (default 9000) from the Admin Server (default 8080).

To create a stream using an ht t p source, but still using the same | og sink, we would change the
original command above to

xd: > streamcreate --definition "http | log" --nane nyhttpstream --depl oy

which will produce the following output from the server

processi ng nodul e ' Mbdul e [name=l og, type=sink]' fromgroup 'nmyhttpstream with index: 1
processi ng nodul e ' Mbdul e [nane=http, type=source]' fromgroup 'nyhttpstream with index:
0

Note that we don't see any other output this time until we actually post some data (using shell command)

xd: > http post --target http://|ocal host: 9000 --data "hell o"
xd:> http post --target http://local host: 9000 --data "goodbye"

1.0.0 Spring XD Guide 49

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/htmlsingle/#expressions

Spring XD

and the stream will then funnel the data from the http source to the output log implemented by the log sink

15: 08: 01,676 WARN Thr eadPool TaskSchedul er-1 | ogger. nyhttpstream 141 - hello
15: 08: 12,520 WARN Thr eadPool TaskSchedul er-1 | ogger. nyhttpstream 141 - goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (fi | e),
to hadoop (hdf s) or to any of the other sink modules which are provided. You can also define your
own modules.

9.6 Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

‘http | transform --expressi on=payl oad. t oUpper Case() | |og

To create this stream enter the following command in the shell

xd: > streamcreate --definition "http | transform --expressi on=payl oad. t oUpper Case() |
| og" --name nyprocstrem --depl oy

Posting some data (using shell command)

xd: > http post --target http://local host: 9000 --data "hell 0"

Will result in an uppercased hello in the log

15:18: 21, 345 WARN Thr eadPool TaskSchedul er-1 | ogger. nyprocstream 141 - HELLO

See the Processors section for more information.

9.7 DSL Syntax

In the examples above, we connected a source to a sink using the pipe symbol | . You can also pass
parameters to the source and sink configurations. The parameter names will depend on the individual
module implementations, but as an example, the ht t p source module exposes a port setting which
allows you to change the data ingestion port from the default value. To create the stream using port
8000, we would use

xd: > streamcreate --definition "http --port=8000 | |og" --nanme nyhttpstream

If you know a bit about Spring configuration files, you can inspect the module definition to see which
properties it exposes. Alternatively, you can read more in the source and sink documentation.

9.8 Advanced Features

In the examples above, simple module definitions are used to construct each stream. However, modules
may be grouped together in order to avoid duplication and/or reduce the amount of chattiness over the
messaging middleware. To learn more about that feature, refer to the Composing Modules section.

If directed graphs are needed instead of the simple linear streams described above, two features are
relevant. First, named channels may be used as a way to combine multiple flows upstream and/or

1.0.0 Spring XD Guide 50

Spring XD

downstream from the channel. The behavior of that channel may either be queue-based or topic-based
depending on what prefix is used ("queue:myqueue” or "topic:mytopic”, respectively). To learn more,
refer to the Named Channels section. Second, you may need to determine the output channel of a
stream based on some information that is only known at runtime. To learn about such content-based
routing, refer to the Dynamic Router section.

1.0.0 Spring XD Guide 51

Spring XD

10. Modules

10.1 Introduction

The XD runtime environment supports data ingestion by allowing users to define streams. Streams are
composed of modules which encapsulate a unit of work into a reusable component.

Modules are categorized by type, typically representing the role or function of the module. Current XD
module types include source, sink, and processor which indicate how they modules may be composed
in a stream. Specifically, a source polls an external resource, or is triggered by an event and only
provides an output. The first module in a stream is always a source. A processor performs some type
of transformation or business logic and provides an input and one or more outputs. A sink provides only
an input and outputs data to an external resource to terminate the stream.

XD comes with a number of modules used for assembling streams which perform common input and/or
output operations with files, HDFS, http, twitter, syslog, GemFire, and more. Users can easily assemble
these into streams to build complex big data applications without having to know the underlying Spring
products on which XD is built.

However, if you are interested in extending XD with your own modules, some knowledge of Spring,
Spring Integration, and Spring Batch is essential. The remainder of this document assumes the reader
has some familiarity with these topics.

10.2 Creating a Module

This section provides details on how to write and register custom modules. For a quick start, dive into
the examples of creating source, processor, and sink modules.

A ModuleDefinition has the following required attributes:

* name - the name of the component, normally a single word representing the purpose of the module.
Examples are file, http, syslog.

* type - the module type, current XD module types include source, sink, and processor

Modules and Spring

At the core, a module is any component that may be implemented using a Spring application context. In
this respect, the concept may be extended for purposes other than data ingestion. The types mentioned
above (source, processor,sink) are specific to XD and constructing streams. But other module types
are envisioned.

A module is typically configured using property placeholders which are bound to the module’s attributes.
Attributes may be required or optional and this coincides with whether a default value is provided for
the placeholder.

For example, here is part of the Spring configuration for a twittersearch source that runs a query against
Twitter:

1.0.0 Spring XD Guide 52

https://github.com/SpringSource/spring-xd/blob/master/spring-xd-module/src/main/java/org/springframework/xd/module/ModuleDefinition.java

Spring XD

<beans>

<i nt:inbound-channel - adapter id="results" auto-startup="fal se"
ref ="tw tterSearchMessageSour ce" nethod="get Tweets">
<int:poller fixed-delay="${fixedDel ay}"/>
</int:inbound- channel - adapt er >

<bean id="twi tterSearchMessageSour ce"
class="org.springframework.integration.x.twitter.Tw tter SearchMessageSour ce" >
<constructor-arg ref="oaut h2Tenpl ate"/>
<constructor-arg val ue="${query}"/>

</ bean>

<bean i d="oaut h2Tenpl ate" cl ass="org. spri ngfranmewor k. soci al . oaut h2. QAut h2Tenpl at e" >
<constructor-arg i ndex="0" val ue="${consuner Key}"/ >
<constructor-arg i ndex="1" val ue="${consuner Secret}"/>
<constructor-arg i ndex="2" val ue="http://notused"/>
<constructor-arg i ndex="3" val ue="http://notused"/>
<constructor-arg index="4" value="https://api.tw tter.com oauth2/token"/>

</ bean>

</ beans>

Note the property placeholders for query, fixedDelay, consumerKey and consumerSecret. The XD
server will substitute values for all of these properties as configured for each module instance. For
example, we can create two streams each creating an instance of the twittersearch module with a
different configuration.

xd: > stream create --nanme tweettest --definition "twittersearch --query="java' | file"

or

xd: > streamcreate --nane tweettest2 --definition "twittersearch --query='spring" --
consuner Key=' mykey' --consuner Secret="mysecret' | file"

In addition to properties, modules may reference Spring beans which are defined externally such that
each module instance may inject a different implementation of a bean. The ability to configure each
module instance differently is only possible if each module is created in its own application context. The
module may be configured with a parent context, but this should be done with care. In the simplest case,
the module context is completely separate. This results in some very useful features, such as being
able to create multiple bean instances with the same id, possibly with different configurations. More
generally, this allows modules to adhere to the KISS principle.

Integration Modules

In Spring Integration terms,

» A source is a valid message flow that contains a direct channel named output which is fed by an
inbound adapter, either configured with a poller, or triggered by an event.

» A processor is a valid message flow that contains a direct channel named input and a subscribable
channel named output (direct or publish subscribe). It should perform some type of transformation on
the message. (TBD: Describe multiple outputs, routing, etc.)

» Asink is a valid message flow that contains a direct channel named input and an outbound adapter,
or service activator used to consume a message payload.

1.0.0 Spring XD Guide 53

Spring XD

Modules of type source, processor, and sink are built with Spring Integration and are typically very fine-
grained.

For example, take a look at the file source which simply polls a directory using a file inbound adapter
and file sink which appends incoming message payloads to a file using a file outbound adapter. On
the surface, there is nothing special about these components. They are plain old Spring XML bean
definition files.

Upon closer inspection, you will notice that modules adhere to some important conventions. For one
thing, the file name is the module name. Also note the channels named input and output, in keeping
with the KISS principle (let us know if you come up with some simpler names). These names are by
convention what XD uses to discover a module’s input and/or output channels which it wires together
to compose streams.

Another thing you will observe is the use of property placeholders with sensible defaults where possible.
For example, the file source requires a directory. An appropriate strategy is to define a common root path
for XD input files (At the time of this writing it is /tmp/xd/input/. This is subject to change, but illustrates the
point). An instance of this module may specify the directory by providing name property. If not provided,
it will default to the stream name, which is contained in the xd. st r eam nane property defined by the
XD runtime. By convention, XD defined properties are prefixed with xd. This can be seen when using
the nodul e i nf o command:

xd: >modul e info --name sink:file
I nformati on about sink nodule 'file':
Option Nane Description Def aul t
Type
bi nary if false, will append a newline character at the end false
bool ean
char set the charset to use when witing a String payl oad UTF- 8
String
dir the directory in which files will be created / t mp/ xd/ out put /
String
nmode what to do if the file already exists APPEND
Mbde
name filenane pattern to use ${xd. st ream nane}
String
suf fix filenane extension to use <none>
String
i nput Type how t hi s nmodul e shoul d interpret messages it consunes <none>
M neType

Placeholders available to all modules

Below is the list of all available ${ xd. xxx} keys that module authors may use in their declaration.

@ Using placeholders in stream definitions

One can also use the ${ xd. xxx} notation directly inside the DSL definition of a stream or a
job. For example:

xd: >stream create foo --definition "http | filter --expression=
\"" ${xd. stream name}'\" | |og"

1.0.0 Spring XD Guide 54

https://github.com/spring-projects/spring-xd/blob/master/modules/source/file/config/file.xml
https://github.com/spring-projects/spring-xd/blob/master/modules/sink/file/config/file.xml

Spring XD

will only let messages that read "foo" pass through.

Placeholder Context Meaning

${xd. st ream nane} streams the name of the stream the
module lives in

${ xd. j ob. nane} jobs the name of the job the module
lives in

${ xd. nodul e. nane} streams, jobs the technical name of the
module

${ xd. nodul e. t ype} streams, jobs the type of the module

${ xd. nodul e. i ndex} streams the 0-based position of the

module inside the stream

${xd. cont ai ner. i d} streams, jobs the generated unique id of
the container the module is
deployed in

${ xd. cont ai ner. host} streams, jobs the hostname of the container

the module is deployed in

${ xd. cont ai ner. pi d} streams, jobs the process id of the container
the module is deployed in

${ xd. cont ai ner. i p} streams, jobs the IP address of the container
the module is deployed in

${ xd. cont ai ner. <f 00>} streams, jobs the value of the custom attribute
<f oo> for the container

10.3 Registering a Module

XD provides a strategy interface ModuleRegistry which it uses to find a module of a given name and type.
Currently XD provides RedisModuleRegistry and FileModuleRegistry, The ModuleRegistry is a required
component for the XD Server. By default the XD Server is configured with the FileModuleRegistry which
looks for modules in ${ xd. hone: . . }/ nodul es. Where xd. hone is a Java System Property or may
be passed as a command line argument to the container launcher. So out of the box, the modules
are contained in the XD modules directory. The modules directory organizes module types in sub-
directories. So you will see something like:

nmodul es/ processor
nmodul es/ si nk
nodul es/ sour ce

Using the default server configuration, you simply drop your module file into the modules directory and
deploy a stream to the server.

1.0.0 Spring XD Guide 55

https://github.com/SpringSource/spring-xd/blob/master/spring-xd-dirt/src/main/java/org/springframework/xd/dirt/module/ModuleRegistry.java

Spring XD

Modules with isolated classpath

In addition to the simple format described above, where you would have a f oo source module
implemented as a nodul es/ sour ce/ f oo. xm file, there is also preliminary support for modules that
wish to bring their own library dependencies, in an isolated fashion.

This is accomplished by creating a folder named after your module name and moving the xml file to a
confi g subdirectory. As an example, the f co. xm file would then reside in

nodul es/ sour ce/ f oo/ confi g/ f 0o. xni

Additional jar files can then be added to a sibling | i b directory, like so:

nmodul es/ sour ce/ f oo/
confi g/
f oo. xm
I'i b/
commons- f 0o. j ar
foo-ext.jar

Classes will first be loaded from any of the aforementioned jar files and, only if they’re not found will they
be loaded from the parent, global ClassLoader that Spring XD normally uses. Still, there are a couple
of caveats that one should be aware of:

1. refrain from putting into the | i b/ folder jar files that are also part of Spring XD, or you'll likely end
up with ClassCastExceptions

2. any class that is directly or indirectly referenced from the payload type of your messages (i.e. the
types that transit from module to module) must not belong to a particular module I i b/ folder but
should rather be loaded by the global Spring XD classloader

10.4 Composing Modules

As described above, a stream is defined as a sequence of modules, minimally a source module followed
by a sink module. One or more processor modules may be added in between the source and sink, but
they are not mandatory. Sometimes streams are similar for a subset of their modules. For example,
consider the following two streams:

streaml http | filter --expression=payload.contains('foo') | file
strean?2 = file | filter --expression=payload.contains('foo') | file

Other than the source module, the definitions of those two streams are the same. It would be better to
avoid this degree of duplication. This is the first problem that composed modules address.

Each module within a stream represents a unit of deployment. Therefore, in each of the streams defined
above, there would be 3 such units (the source, the processor, and the sink). In a singlenode runtime,
it doesn’t make much of a difference since the communication between each module would be a bridge
between in-memory channels. When deploying a stream to a distributed runtime environment, however,
the communication between each module occurs over messaging middleware. That decoupling between
modules is useful in that it promotes loose-coupling and thus enables load-balancing and buffering
of messages when the consuming module(s) are temporarily busy or down. Nevertheless, at times
the individual module boundaries are more fine-grained than necessary for these middleware "hops".
Overhead may be avoided by reducing the overall number of deployment units and therefore the number
of hops. In such cases, it's convenient to be able to wrap multiple modules together so that they act as

1.0.0 Spring XD Guide 56

Spring XD

a single "black box" unit for deployment. In other words, if "foo | bar" are composed together as a new
module named "baz", the input and/or output to "baz" would still occur as a hop over the middleware,
but the communication from foo to bar would occur directly, in-process. This is the second problem that
composed modules address.

Now let's look at an example. Returning to the two similar streams above, the filter processor and file
sink could be combined into a single module. In the shell, the following command would take care of that:

xd: > nodul e conpose foo --definition "filter --expression=payload.contains('foo') | file"

Then, to verify the new module composition was successful, check if it exists:

xd: >nodul e |i st
Sour ce Processor Si nk Job
file aggr egat or aggr egat e- count er filejdbc
genfire http-client count er ftphdfs
(....)
trigger spl unk
twittersearch tcp
twitterstream t hr oughput - sanpl er
tinme (c) foo

Notice that the composed module shows up in the list of sink modules. That is because logically, it
has the structure of a sink: it provides an input channel (which is bridged to the filter processor’s input
channel), but it provides no output channel (since the file sink has no output). Also notice that the module
has a small (c) prefixed to it, to indicate that it is a composed module.

If a module were composed of two processors, it would be classified as a processor itself:

xd: > nodul e conpose nyprocessor --definition "splitter | filter --
expr essi on=payl oad. contai ns(' foo')"

If a module were composed of a source and a processor, it would be classified as a source itself:

xd: > nmodul e conpose nysource --definition "http | filter --
expr essi on=payl oad. contains('foo')"

Based on the logical type of the composed module, it may be used in a stream as if it were a simple
module instance. For example, to redefine the two streams from the first problem case above, now that
the "foo" sink module has been composed, you would issue the following shell commands:

xd: > streamcreate httpfoo --definition "http | foo" --deploy
xd: > streamcreate filefoo --definition "file --outputType=text/plain | foo" --deploy

To test the "httpfoo" stream, try the following:

xd: > http post --data hi
xd: > http post --data hifoo

The first message should have been ignored due to the filter, but the second one should exist in the file:

xd: > ! cat /tnp/xd/output/httpfoo.out
command i s:cat /tnp/xd/output/httpfoo. out
hi f oo

1.0.0 Spring XD Guide 57

Spring XD

To test the "filefoo" stream, echo "foo" to a file in the /tmp/xd/input/filefoo directory, then verify:

xd: > | cat /tnp/xd/output/filefoo.out
command is:cat /tnp/xd/output/filefoo.out
f oo

When you no longer need a composed module, you may delete it with the "module delete” command
in the shell. However, if that composed module is currently being used by one or more streams, the
deletion will fail as shown below:

xd: > nmodul e del ete --name sink:foo

16:51: 37,349 WARN Spring Shell client.RestTenpl ate: 566 - DELETE request for "http://

| ocal host : 9393/ nodul es/ si nk/foo" resulted in 500 (Internal Server Error); invoking error
handl er

Command failed org. springfranmework. xd. rest.client.inpl.SpringXDException: Cannot delete
modul e sink: foo because it is used by [streamfil efoo, stream htt pfoo]

As you can see, the failure message shows which stream(s) depend upon the composed module you
are trying to delete.

If you destroy both of those streams and try again, it will work:

xd: > stream destroy --nane filefoo

Destroyed stream'fil efoo

xd: > stream destroy --nane httpfoo

Destroyed stream ' htt pfoo

xd: > nmodul e del ete --nanme sink:foo

Successfully destroyed nodule 'foo' with type sink

When creating a module, if you duplicate the name of an existing module for the same type, you will
receive an error. In the example below the user tried to compose a tcp module, however one already
exists:

xd: >mbdul e conpose tcp --definition "“filter --expression=payload.contains('foo') | file"
14:52: 27,781 WARN Spring Shell client.RestTenpl ate: 566 - POST request for "http://
ec2-50- 16- 24- 31. conput e- 1. amazonaws. com 9393/ nodul es" resulted in 409 (Conflict); invoking
error handl er

Conmand fail ed org. springfranework. xd. rest.client.inpl.SpringXDException: There is already
a nmodul e naned 'tcp' with type 'sink

However, you can create a module for a given type even though a module of that name exists but as a
different type. For example: | can create a sink module named filter, even though a filter module exists
already as a processor.

Finally, it's worth mentioning that in some cases duplication may be avoided by reusing an actual stream
rather than a composed module. That is possible when named channels are used in the source and/or
sink position of a stream definition. For example, the same overall functionality as provided by the two
streams above could also be achieved as follows:

xd: > stream create foofilteredfile --definition "queue:foo > filter --
expr essi on=payl oad. contai ns('foo') | file"

xd: > stream create httpfoo --definition "http > queue: fo00"

xd: > streamcreate filefoo --definition "file > queue: foo"

This approach is more appropriate for use-cases where individual streams on either side of the named
channel may need to be deployed or undeployed independently. Whereas the queue typed channel

1.0.0 Spring XD Guide 58

Spring XD

will load-balance across multiple downstream consumers, the "topic:" prefix may be used if broadcast
behavior is needed instead. For more information about named channels, refer to the Named Channels

section.

10.5 Getting Information about Modules

To view the available modules use the the nodul e |i st command. Modules appearing with a (c)

marker are composed modules. For example:

xd: >modul e |i st
Sour ce Processor Si nk Job
file aggr egat or aggr egat e- count er filejdbc
genfire anal yti c- pnmi count er ftphdfs
genfire-cq http-client fiel d-val ue-counter hdf sj dbc
http bri dge file hdf smongodb
j ms filter gauge j dbchdf s
mai | json-to-tuple genfire-json-server filepoll hdfs
mt t obj ect-to-json genfire-server
post scri pt j dbc
react or - sysl og splitter nai
reactor-tcp transform mt t
sysl og-tcp (c) nyfilter ri ch- gauge
sysl og- udp spl unk
tail tcp
tcp t hr oughput - sanpl er
tcp-client avr o
trigger hdf s
twittersearch | og
twitterstream r abbi t
r abbi t router
tine

To get information about a particular module (such as what options it accepts), use the nodul e i nf o
- -<nodul e type>: <nbdul e nanme> command. For example:

xd: >nbdul e i nfo --nanme source:file
I nformati on about source nodule 'file':

Opti on Nane Description
Default Type
dir the absolute path to the directory to nmonitor for files
<none> String
pattern a filter expression (Ant style) to accept only files that match the
pattern * String
out put Type how t hi s nmodul e should emit nessages it produces
<none> Medi aType
prevent Dupl i cates whether to prevent the sane file from being processed tw ce
true bool ean
r ef set to true to output the File object itself
fal se bool ean
fi xedDel ay the fixed delay polling interval specified in seconds
5 int
To display the actual definition file of a module use the nodul e display --nane <nodul e
t ype>: <nodul e nanme> command. For example:
1.0.0 Spring XD Guide 59

Spring XD

xd: >modul e di spl ay --nanme source:tcp
Configuration file contents for nodule definition 'tcp' (source):

<int-ip:tcp-connection-factory i d="connectionFactory"
type="server"
port="${port}"
| ookup- host =" ${r ever seLookup} "
so-ti meout =" ${ socket Ti neout } "
usi ng- ni o="${ ni o}"
usi ng-di rect - buf f ers="${useDi rect Buf fers}"
deseri al i zer="${decoder}"/>

<i nt-ip:tcp-inbound-channel -adapter id="adapter" channel ="toString"
aut o-startup="fal se"

connection-factory="connecti onFactory"/>

<int:transformer input-channel="toString" output-channel ="output" expression="new
String(payload, '${charset}')"/>

<i nt:channel id="output"/>

10.6 How module options are resolved

As we've seen so far, a module is a re-usable piece of Spring Integration (or Spring Batch) software
that can be dynamically configured thru the use of module options.

A module option is any value that the module author has deemed worthy of configuration at deployment
time. Preferably, the module author will have provided metadata to describe the available options. This
section explains how default values are computed for each module option.

In a nutshell, actual values are drawn from the following 3 sources, from most precedent to least
precedent:

1. actual values in the stream definition (e.g. - - f oo=bar)
2. platform-wide defaults (appearing e.g. in .yml and .properties files, see below)
3. defaults the module author chose (see metadata)

Going into more detail, the mid layer above (platform-wide defaults) will resolve like so, assuming option
<opt i onnane> of module <nodul enane> (which is of type <nodul et ype>):

a. a system property named <nodul et ype>. <nodul enane>. <opti onnane>

b. an environment variable named <nodul etype>. <npdul enane>. <opti onname> (or
<MODULETYPE>_<MODULENAME>_<OPTI ONNAME>)

c. a key named <opt i onname> in the properties file <r oot >/ <npdul et ype>/ <nodul enane>/
<nmodul enane>. properties

d. a key named <nodul et ype>. <nbdul enane>. <opti onnane> in the YaML file <r oot >/
<nodul e-confi g>. ym

where

1.0.0 Spring XD Guide 60

Spring XD

<r oot >
is the value of the xd.nodule.config.location system property (driven by the
XD_MODULE_CONFI G_LOCATI ON env var when using the canonical Spring XD shell scripts).
Defaults to ${ xd. conf i g. home}/ nodul es/

<nodul e-confi g>
is the value of the xd.nodule.config.nane system property (driven by the
XD_MODULE_CONFI G_NAME env var). Defaults to xd- nodul e-confi g

Note that YaML is particularly well suited for hierarchical configuration, so for example, instead of

source.file.dir: foo
source.file.pattern: *.txt

source. http. port: 1234

one can write

sour ce:
file:
dir: foo
pattern: *.txt
http
port: 1234

Note that options in the . properti es files can reference values that appear in the nodul es. ym
file (this makes sharing common configuration easy). Also, the values that are used to configure the
server runtimes (in ser ver s. ynl) are visible to nodul es. ym and. properti es file (but the inverse
is not true).

1.0.0 Spring XD Guide 61

Spring XD

11. Sources

11.1 Introduction

In this section we will show some variations on input sources. As a prerequisite start the XD Container
as instructed in the Getting Started page.

The Sources covered are

« HTTP

» Twitter Search
» Twitter Stream
» Gemfire

* Gemfire CQ

» Syslog

s TCP
* TCP Client
* Reactor IP
¢ JMS
* RabbitMQ

e Time

* MQTT

» Stdout Capture

Future releases will provide support for other currently available Spring Integration Adapters. For
information on how to adapt an existing Spring Integration Adapter for use in Spring XD see the section
Creating a Source Module.

The following sections show a mix of Spring XD shell and plain Unix shell commands, so if you are trying
them out, you should open two separate terminal prompts, one running the XD shell and one to enter
the standard commands for sending HTTP data, creating directories, reading files and so on.

11.2 HTTP

To create a stream definition in the server using the XD shell

1.0.0 Spring XD Guide 62

Spring XD

xd: > stream create --nanme httptest --definition "http | file" --deploy

Post some data to the http server on the default port of 9000

xd: > http post --target http://|ocal host: 9000 --data "hello world"

See if the data ended up in the file

$ cat /tnp/xd/output/httptest

To send binary data, set the Cont ent - Type header to appl i cati on/ octet-string

$ curl --data-binary @oo.zip -H Content-Type: application-octet-string' http://
| ocal host : 9000

HTTP with options
The http source has one option

port
The http port where data will be posted (default: 9000)

Here is an example

xd: > stream create --nanme httptest9020 --definition "http --port=9020 | file" --deploy

Post some data to the new port

xd: > http post --target http://|ocal host: 9020 --data "hello world"

‘$ cat /tnp/xd/ out put/httptest9020

11.3 Tail

Make sure the default input directory exists

‘$ nkdir -p /tnp/xd/input

Create an empty file to tail (this is not needed on some platforms such as Linux)

‘$ touch /tnp/xd/input/tailtest

To create a stream definition using the XD shell

xd: > streamcreate --nanme tailtest --definition "tail | file" --deploy

Send some text into the file being monitored

‘$ echo blah >> /tnp/xd/input/tailtest

See if the data ended up in the file

‘$ cat /tnp/xd/output/tailtest

1.0.0 Spring XD Guide

63

Spring XD

Tail with options
The tail source has 3 options:

name
the absolute path to the file to tail (default: / t np/ xd/ i nput / <st r eamNane>)

lines
the number of lines from the end of an existing file to tail (default: 0)

fileDelay
on platforms that don’t wait for a missing file to appear, how often (ms) to look for the file (default:
5000)

Here is an example

xd: > stream create --nanme tailtest --definition "tail --nane=/tnp/foo | file --nanme=bar"
- -depl oy

$ echo blah >> /tnp/foo

$ cat /tnp/xd/output/ bar

Tail Status Events

Some platforms, such as linux, send status messages to st der r . The tail module sends these events
to a logging adapter, at WARN level; for example...

[message=tail: cannot open "/tnp/xd/input/tailtest’ for reading: No such file or
directory, file=/tnp/xd/input/tailtest]
[message=tail: “/tnp/xd/input/tailtest' has become accessible, file=/tnp/xd/input/
tailtest]
11.4 File

The file source provides the contents of a File as a byte array by default but may be configured to provide
the file reference itself.

To log the contents of a file create a stream definition using the XD shell

xd: > streamcreate --nanme filetest --definition "file | |1og" --deploy

The file source by default will look into a directory named after the stream, in this case /tmp/xd/input/
filetest

Note the above will log the raw bytes. For text files, it is normally desirable to output the contents as
plain text. To do this, set the outputType parameter:

xd: > streamcreate --nanme filetest --definition "file --outputType=text/plain | |og"
depl oy

For more details on the use of the outputType parameter see Type Conversion

Copy a file into the directory / t np/ xd/ i nput/fil et est and observe its contents being logged in
the XD Container.

1.0.0 Spring XD Guide 64

Spring XD

File with options

The file source has 5 options

dir
The absolute path to the directory to monitor for files (default: / t np/ xd/ i nput / <st r eamrNane>)

preventDuplicates
Default value is t r ue to prevent the same file from being processed twice.

pattern
A filter expression (Ant style) that accepts only files that match the pattern.

fixedDelay
The fixed delay polling interval specified in seconds (default: 5)

ref
Set to true to output the File object itself. This is useful in some cases in which the file contents are
large and it would be more efficient to send the file path across the network than the contents. This
option requires that the file be in a shared file system.

11.5 Mail

Spring XD provides a source module for receiving emails, named mai | . Depending on the protocol
used, in can work by polling or receive mails as they become available.

Let's see an example:

xd: > stream create --nanme nmilstream--definition "mail --host=i map.gmil.com --
user nane=your . user @nai | . com - - password=secret | file" --deploy

Then send an email to yourself and you should see it appear inside a file at /t np/ xd/ out put/
mai | st ream

The full list of options for the mai | source is below:

protocol
the protocol to use amongst pop3, pop3s, imap, imaps (default: i naps)

username
the username to use to connect to the mail server (no default)

password
the password to use to connect to the mail server (no default)

host
the hostname of the mail server (default: | ocal host)

port
the port of the mail server (default: 25)

folder
the folder to take emails from (default: | NBOX)

1.0.0 Spring XD Guide 65

Spring XD

markAsRead
whether to mark emails as read once they’ve been fetched by the module (default: f al se)

delete
whether to delete the emails once they've been fetched by the module (default: t r ue)

usePolling
whether to use polling or not (ho-polling works with imap(s) only) (default: f al se)

fixedDelay
the polling interval used for looking up messages, expressed in seconds. (default: 60)

charset
the charset used to transform the body of the incoming emails to Strings. (default: UTF- 8)

expression
a SpEL expression which filters which mail messages will be processed (non polling imap only)
(no default)

©® Warning

Of special attention are the nmar kAsRead and del et e options, which by default will delete the
emails once they are consumed. It is hard to come up with a sensible default option for this
(please refer to the Spring Integration documentation section on mail handling for a discussion
about this), so just be aware that the default for XD is to delete incoming messages.

11.6 Twitter Search

The twittersearch source runs a continuous query against Twitter and has following parameters

query
The query that will be run against Twitter. For information on how to construct a query, see the
Search APl v1.1.

consumerKey
An application consumer key issued by twitter

consumerSecret
The secret corresponding to the consuner Key

geocode
Limit the search to a geographic area given by latitude,longitude,radius

language
The language code (e.g., en) to include in the search

includeEntities
Include entities (hashtag metadata, etc) (default:true)

resultType
popular, recent, mixed (default: mixed)

readTimeout
The timeout in ms for each read (default: 9000 ms)

1.0.0 Spring XD Guide 66

https://dev.twitter.com/docs/api/1.1/get/search/tweets

Spring XD

connectTimeout
The timeout in ms for connecting to Twitter (default: 5000 ms)

To get a consuner Key and consuner Secr et you need to register a twitter application. If you don't
already have one set up, you can create an app at the Twitter Developers site to get these credentials.

@ Tip

For both twittersearch and twi tterstream you can put these keys in a module
properties file instead of supplying them in the stream definition. If both sources share the
same credentials, it is easiest to configure the required credentials in confi g/ nodul es/
nmodul es. ynl . Alternately, each module has its own properties file. For twittersearch, the file
would be confi g/ nodul es/ source/twi ttersearch/tw ttersearch. properties.

To create and deploy a stream definition in the server using the XD shell:

xd: > stream create --nanme springone2gx --definition "twi ttersearch --query='#springone2gx’
| file" --deploy

Let the twittersearch run for a little while and then check to see if some data ended up in the file

$ cat /tnp/xd/ out put/springone2gx

@ Note

Bothtwi ttersearchandtw tterstreamemitJSON in the native Twitter format.

11.7 Twitter Stream

This source ingests data from Twitter’s streaming API v1.1. It uses the sample and filter stream endpoints
rather than the full "firehose" which needs special access. The endpoint used will depend on the
parameters you supply in the stream definition (some are specific to the filter endpoint).

You need to supply all keys and secrets (both consumer and accessToken) to authenticate for
this source, so it is easiest if you just add these to XD_HOVE/ confi g/ nodul es/ nodul es. ym or
XD_HOVE/ confi g/ nmodul es/ source/twitterstreamtw tterstream properti es file.

Stream creation is then straightforward:

xd: > streamcreate --nanme tweets --definition "twitterstream| file" --deploy

The parameters available are pretty much the same as those listed in the API docs and unless otherwise
stated, the accepted formats are the same.

delimited
settot r ue to get length delimiters in the stream data (default: false)

stallWarnings
settot r ue to enable stall warnings (default: false)

filterLevel
controls which tweets make it through to the stream

1.0.0 Spring XD Guide 67

https://dev.twitter.com/apps
https://dev.twitter.com/docs/platform-objects/tweets
https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/parameters
https://dev.twitter.com/docs/streaming-apis/parameters#delimited
https://dev.twitter.com/docs/streaming-apis/parameters#stall_warnings
https://dev.twitter.com/docs/streaming-apis/parameters#filter_level

Spring XD

language
comma delimited set of languages to include

follow
comma delimited set of user ids whose tweets should be included in the stream

track
which terms to filter for in tweets

locations
a comma-separated list of longitude,latitude pairs specifying a set of bounding boxes to filter Tweets

readTimeout
The timeout in ms for each read (default: 9000 ms)

connectTimeout
The timeout in ms for connecting to Twitter (default: 5000 ms)

© Note

Bothtwi ttersearchandtw tterstreamemitJSON in the native Twitter format.

11.8 GemFire

This source configures a client cache and client region, along with the necessary subscriptions enabled,
in the XD container process along with a Spring Integration GemFire inbound channel adapter, backed
by a CachelListener that outputs messages triggered by an external entry event on the region. By default
the payload contains the updated entry value, but may be controlled by passing in a SpEL expression
that uses the EntryEvent as the evaluation context.

Options
The Gemfire CachelListener source has the following options

regionName
The name of the region for which events are to be monitored (default: stream name)

cacheEventExpression
An optional SpEL expression referencing the EntryEvent object. (default: newval ue)

host
The host of the cache server or locator (default: localhost)

port
The port of the cache server or locator (default: 40404)

uselLocator
Set to true if using a locator (default:false)

Example

Use of the gemfire source requires an external process (or a separate stream) that creates or updates
entries in a GemFire region configured for a cache server. Such events may feed an XD stream. To
enable such a stream, the XD container must join a GemFire distributed client-server system as a client,
creating a client region corresponding to an existing region on a cache server. The client region registers

1.0.0 Spring XD Guide 68

https://dev.twitter.com/docs/streaming-apis/parameters#language
https://dev.twitter.com/docs/streaming-apis/parameters#follow
https://dev.twitter.com/docs/streaming-apis/parameters#track
https://dev.twitter.com/docs/streaming-apis/parameters#locations
https://dev.twitter.com/docs/platform-objects/tweets
http://www.vmware.com/support/developer/vfabric-gemfire/700-api/com/gemstone/gemfire/cache/EntryEvent.html

Spring XD

a cache listener via the Spring Integration GemFire inbound channel adapter. The client region and pool
are configured for a subscription on all keys in the region.

The following example creates two streams: One to write http messages to a Gemfire region named
Stocks, and another to listen for cache events and record the updates to a file. This works with the
Cache Server and sample configuration included with the Spring XD distribution:

xd: > stream create --nanme gftest --definition "genfire --regi onName="Stocks" | file" --
depl oy

xd: > stream create --nane stocks --definition "http --port=9090 | genfire-json-server --
regi onNanme=St ocks --keyExpressi on=payl oad. get Fi el d(' synbol ')" --depl oy

Now send some messages to the stocks stream.

xd: > http post --target http://local host: 9090 --data {"synbol ":"FAKE", "price": 73}
xd: > http post --target http://l|ocal host: 9090 --data {"synbol ":"FAKE", "price": 78}
xd: > http post --target http://|ocal host: 9090 --data {"synbol ":"FAKE", "price": 80}

© Note

Avoid spaces in the JSON when using the shell to post data.

As updates are posted to the cache you should see them captured in the output file:

$ cat /tnp/xd/output/gftest. out

{"synbol ": "FAKE", "price": 73}
{"synmbol ": " FAKE", "price": 78}
{"synbol ":"FAKE", "price": 80}

Launching the XD GemFire Server

This source requires a cache server to be running in a separate process and its host and port, or a
locator host and port must be configured. The XD distribution includes a GemFire server executable
suitable for development and test purposes. This is a Java main class that runs with a Spring configured
cache server. The configuration is passed as a command line argument to the server’'s main method.
The configuration includes a cache server port and one or more configured region. XD includes a sample
cache configuration called cg-demo. This starts a server on port 40404 and creates a region hamed
Stocks. A Logging cache listener is configured for the region to log region events.

Run Gemfire cache server by changing to the gemfire/bin directory and execute

$./genfire-server ../config/cqg-deno.xnl

11.9 GemFire Continuous Query (CQ)

Continuous query allows client applications to create a GemFire query using Object Query
Language(OQL) and register a CQ listener which subscribes to the query and is notified every time the
query 's result set changes. The gemfire_cq source registers a CQ which will post CQEvent messages
to the stream.

Options

The gemfire-cq source has the following options

1.0.0 Spring XD Guide 69

https://github.com/SpringSource/spring-xd/blob/master/spring-xd-gemfire-server/config/cq-demo.xml

Spring XD

query
The query string in Object Query Language(OQL) (required, String)

host
The host on which the GemFire server or locator is running. (default: | ocal host)

port
The port on which the GemFire server or locator is running. (default: 40404)

uselLocator
Set to true if using a locator (default:false)

The example is similar to that presented for the gemfire source above, and requires an external cache
server as described in the above section. In this case the query provides a finer filter on data events.
In the example below, the cqt est stream will only receive events matching a single ticker symbol,
whereas the gf t est stream example above will receive updates to every entry in the region.

xd: > stream create --nanme stocks --definition "http --port=9090 | genfire-json-server --
regi onNanme=St ocks --keyExpressi on=payl oad. get Fi el d(' synbol ')" --depl oy

xd: > streamcreate --nane cqtest --definition "genfire-cq --query="Select * from/ Stocks
where synbol ="' FAKE '"' | file" --deploy

Now send some messages to the stocks stream.

xd: > http post --target http://l|ocal host: 9090 --data {"synbol ":"FAKE", "price": 73}
xd: > http post --target http://|ocal host: 9090 --data {"synbol ":"FAKE", "price": 78}
xd: > http post --target http://local host: 9090 --data {"synbol ":"FAKE", "price": 80}

The cqtest stream is now listening for any stock quote updates for the ticker symbol FAKE. As updates
are posted to the cache you should see them captured in the output file:

$ cat /tnp/xd/output/cqtest. out

{"synbol ": " FAKE", "price": 73}
{"synbol ": " FAKE", "price": 78}
{"synbol ": " FAKE", "price": 80}

11.10 Syslog

Three syslog sources are provided: r eact or - sysl og, sysl og- udp, and sysl og-t cp. The reactor-
syslog adapter uses tcp and builds upon the functionality available in the Reactor project and provides
improved throughput over the syslog-tcp adapter. They all support the following option:

port
the port on which the system will listen for syslog messages (default: 5140)

To create a stream definition (using shell command)

xd: > stream create --nanme syslogtest --definition "reactor-syslog --port=5140 | file" --
depl oy

or

xd: > stream create --nanme syslogtest --definition "syslog-udp --port=5140 | file" --deploy

or

1.0.0 Spring XD Guide 70

https://github.com/reactor/reactor

Spring XD

xd: > stream create --nanme syslogtest --definition "syslog-tcp --port=5140 | file" --deploy

(- - port is not required when using the default 5140)

Send a test message to the syslog

‘ |l ogger -p local3.info -t TESTING "Test Syslog Message"

See if the data ended up in the file

‘ $ cat /tnp/xd/ out put/syslogtest

Refer to your syslog documentation to configure the syslog daemon to forward syslog messages to the
stream; some examples are:

UDP - Mac OSX (syslog.conf) and Ubuntu (rsyslog.conf)

&3 @ ocal host: 5140

TCP - Ubuntu (rsyslog.conf)

$ModLoad onfwd
&3 @ ocal host : 5140

Restart the syslog daemon after reconfiguring.

11.11 TCP

The t cp source acts as a server and allows a remote party to connect to XD and submit data over a
raw tcp socket.

To create a stream definition in the server, use the following XD shell command

xd: > streamcreate --nanme tcptest --definition "tcp | file" --deploy

This will create the default TCP source and send data read from it to the t cpt est file.

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of decoders are available, the default being CRLF which is compatible with Telnet.

$ tel net |ocal host 1234
Trying ::1...

Connected to | ocal host.

Escape character is '"]'
f oo

"

tel net> quit
Connection cl osed.

See if the data ended up in the file

$ cat /tnp/xd/ output/tcptest

By default, the TCP module will emit a byt e[]; to convert to a String, add - - out put Type=t ext/
pl ai n to the module definition.

1.0.0 Spring XD Guide 71

Spring XD

TCP with options
The TCP source has the following options

port
the port on which to listen (default: 1234)

reverseLookup
perform a reverse DNS lookup on the remote IP Address (default: f al se)

socketTimeout
the timeout (ms) before closing the socket when no data received (default: 120000)

nio
whether or not to use NIO. NIO is more efficient when there are many connections. (default: f al se)

decoder
how to decode the stream - see below. (default: CRLF)

Available Decoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)
Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 2161 bytes)

L4
data preceded by a four byte (signed) length field (up to 23t bytes)

Examples
The following examples all use echo to send data to net cat which sends the data to the source.
The echo options - en allows echo to interpret escape sequences and not send a newline.

CRLF Decoder.

xd: > stream create --nanme tcptest --definition "tcp | file" --deploy

1.0.0 Spring XD Guide 72

Spring XD

This uses the default (CRLF) decoder and port 1234; send some data

‘$ echo -en 'foobar\r\n' | netcat |ocal host 1234

See if the data ended up in the file

‘$ cat /tnp/xd/output/tcptest

LF Decoder.
xd: > streamcreate --nane tcptest2 --definition "tcp --decoder=LF --port=1235 | file" --
depl oy
$ echo -en 'foobar\n' | netcat |ocal host 1235
$ cat /tnp/xd/output/tcptest2
NULL Decoder.
xd: > streamcreate --nane tcptest3 --definition "tcp --decoder=NULL --port=1236 | file" --

depl oy

$ echo -en 'foobar\x00' | netcat |ocal host 1236

$ cat /tnp/xd/output/tcptest3

STXETX Decoder.

xd: > stream create --nanme tcptest4 --definition "tcp --decoder=STXETX --port=1237 | file"
- - depl oy
$ echo -en '\ x02foobar\x03" | netcat |ocal host 1237
$ cat /tnp/xd/output/tcptestsd
RAW Decoder.
xd: > stream create --nane tcptest5 --definition "tcp --decoder=RAW--port=1238 | file" --
depl oy
$ echo -n 'foobar' | netcat |ocal host 1238
$ cat /tnp/xd/output/tcptest5
L1 Decoder.
xd: > stream create --nane tcptest6 --definition "tcp --decoder=L1 --port=1239 | file" --

depl oy

$ echo -en '\ x06foobar' | netcat |ocal host 1239

$ cat /tnp/xd/output/tcptest6

L2 Decoder.

1.0.0 Spring XD Guide

Spring XD

xd: > stream create --nanme tcptest7 --definition "tcp --decoder=L2 --port=1240 | file" --
depl oy
$ echo -en '\ x00\x06foobar' | netcat |ocal host 1240
$ cat /tnp/xd/output/tcptest?
L4 Decoder.
xd: > stream create --nanme tcptest8 --definition "tcp --decoder=L4 --port=1241 | file" --
depl oy
$ echo -en '\ x00\ x00\ x00\ x06f oobar’ | netcat |ocal host 1241
$ cat /tnp/xd/output/tcptest8
Binary Data Example
xd: > stream create --nanme tcptest9 --definition "tcp --decoder=L1 --port=1242 | file --

bi nary=true" --depl oy

$ echo -en '\x08foo\x00bar\x0b' | netcat |ocal host 1242

Note that we configure the fi | e sink with bi nar y=t r ue so that a newline is not appended.

$ hexdunp -C /tnp/xd/ out put/tcptest9
00000000 66 6f 6f 00 62 61 72 Ob
00000008

Implementing a simple conversation

| f 0o. bar.

That "stimulus" counter concept bears some explanation. By default, the module will emit (at interval set
by f i xedDel ay) an incrementing number, starting at 1. Given that the default is to use an expr essi on

of payl oad. t oSt ri ng(), this results in the module sending 1, 2, 3,

. to the remote server.

By using another expression, or more certainly a scri pt, one can implement a simple conversation,
assuming it is time based. As an example, let's assume we want to join some kind of chat server where
one first needs to authenticate, then specify which rooms to join. Lastly, all clients are supposed to send

some keepalive commands to make sure that the connection is open.

The following groovy script could be used to that effect:

def commands = ['', // index 0 is not used
'LOG N user =johndoe', // first command sent
"JA N weat her' ,

"JA N news',

"JA N gossi p'

]

i f (conmands. si ze > payl oad)
return commands[payl oad] + "\n"
el se
return "PINGNn" // send keep alive after 4th

/'l payload will contain an increnenting counter

starting at 1

‘real' conmmand

1.0.0 Spring XD Guide

74

Spring XD

11.12 TCP Client

Thet cp- cl i ent source module uses raw tcp sockets, as does the t cp module but contrary to the t cp
module, acts as a client. Whereas the t cp module will open a listening socket and wait for connections
from a remote party, the t cp-cli ent will initiate the connection to a remote server and emit as
messages what that remote server sends over the wire. As an optional feature, the t cp-cl i ent can
itself emit messages to the remote server, so that a simple conversation can take place.

TCP Client options

The following options are supported:

host
the host to connect to (default: | ocal host)

port
the port to connect to (default: 1234)

reverseLookup

whether to attempt to resolve the host address (default: f al se)
nio

whether to use NIO (default: f al se)

encoder
the encoder to use when sending messages (default: LF, see TCP module)

decoder
the decoder to use when receiving messages (default: LF, see TCP_module)

charset
the charset to use when converting bytes to String (default: UTF- 8)

bufferSize
the size of the emitting/receiving buffers (default: 2048, i.e. 2KB)

fixedDelay
the rate at which stimulus messages will be emitted (default: 5 seconds)

script
reference to a script that should transform the counter stimulus to messages to send (default: use
expressi on)

expression
a SpEL expression to convert the counter stimulus to a message (default: payl oad. t oStri ng(),
i.e.emit"1","2", "3", etc.)

11.13 Reactor IP

The react or - i p source acts as a server and allows a remote party to connect to XD and submit data
over a raw TCP or UDP socket. The reactor-ip source differs from the standard tcp source in that it
is based on the Reactor Project and can be configured to use the LMAX Disruptor RingBuffer library
allowing for extremely high ingestion rates, e.g. ~ 1M/sec.

To create a stream definition use the following XD shell command

1.0.0 Spring XD Guide 75

https://github.com/reactor/reactor
http://martinfowler.com/articles/lmax.html

Spring XD

xd: > stream create --nanme tcpReactor --definition "reactor-ip | file" --deploy

This will create the reactor TCP source and send data read from it to the file named tcpReactor.
The reactor-ip source has the following options

transport
t cp or udp (default: t cp)

framing
i nefeed or | ength. How to frame the data to tell individual messages apart. (default:
i nef eed)

lengthFieldLength
Byte precision of the length field when using | engt h framing. 2, 4 or 8. (default: 4)

codec
How to decode the stream. Either bytes, string or syslog. (default: stri ng)

dispatcher
ri ngBuf f er, t hr eadPool Execut or, wor kQueue, sync. (default: ri ngBuf f er)

host
the host to connect to (default: 0. 0. 0. 0)

port
the port to connect to (default: 3000)

11.14 RabbitMQ

The "rabbit" source enables receiving messages from RabbitMQ.
The following example shows the default settings.
Configure a stream:

xd: > stream create --nanme rabbittest --definition "rabbit | file --binary=true" --depl oy

This receives messages from a queue named r abbi t t est and writes them to the default file sink (/
t np/ xd/ out put / rabbi tt est. out). It uses the default RabbitMQ broker running on localhost, port
5672.

The queue(s) must exist before the stream is deployed. We do not create the queue(s) automatically.
However, you can easily create a Queue using the RabhitMQ web Ul. Then, using that same Ul, you
can navigate to the "rabbittest” Queue and publish test messages to it.

Notice that the fi | e sink has - - bi nar y=t r ue; this is because, by default, the data emitted by the
source will be bytes. This can be modified by setting the cont ent _t ype property on messages to
t ext/ pl ai n. In that case, the source will convert the message to a St ri ng; you can then omit the - -
bi nar y=t r ue and the file sink will then append a newline after each message.

To destroy the stream, enter the following at the shell prompt:

xd: > stream destroy --nane rabbittest

1.0.0 Spring XD Guide 76

Spring XD

RabbitMQ with Options
The RabbitMQ Source has the following options

username
the username to connect to the RabbitMQ broker (default: guest)

password
the password to connect to the RabbitMQ broker (default: guest)

host
the host (or IP Address) to connect to (default: | ocal host)

port
the port on the host (default: 5672)

vhost
the virtual host (default: / unless)

gueues
the queue(s) from which messages will be received; use a comma-delimited list to receive messages
from multiple queues (default: <st r earmane>)

11.15 IMS

The "jms" source enables receiving messages from JMS.
The following example shows the default settings.
Configure a stream:

xd: > streamcreate --nane jnstest --definition "jns | file" --deploy

This receives messages from a queue named j nst est and writes them to the default file sink (/ t np/
xd/ out put/j nst est). It uses the default ActiveMQ broker running on localhost, port 61616.

To destroy the stream, enter the following at the shell prompt:

xd: > stream destroy --nanme jnstest

To test the above stream, you can use something like the following...

public class Broker {

public static void main(String[] args) throws Exception {
Br oker Servi ce broker = new Broker Service();
br oker . set Br oker Nane(" br oker");
String brokerURL = "tcp://|ocal host: 61616";
br oker. addConnect or (br oker URL) ;
broker.start();
Connecti onFactory cf = new ActiveMXonnecti onFactory(brokerURL);
JnsTenpl ate tenplate = new JnsTenpl ate(cf);
while (Systemin.read() >= 0) {

tenpl at e. convert AndSend("j nstest", "testFoo");

}

}

}

1.0.0 Spring XD Guide 77

Spring XD

andtail -f /tnp/xd/output/jnstest

Run this as a Java application; each time you hit <enter> in the console, it will send a message to queue
j mst est.

JMS with Options

The JMS Source has the following options

provider
the JMS provider (default: acti vent)

destination
the destination name (a queue by default) from which messages will be received (default: [st r eam
nane])

pubSub
when true, indicates that the destination is a t opi ¢ (default: f al se)

durableSubScription
when true, indicates the subscription to a topic is durable (default: f al se)

subscriptionName
a name that will be assigned to the topic subscription (default: [none])

clientld
an identifier for the client, to be associated with a durable topic subscription (default: [none])

Note: the selected broker requires an infrastructure configuration file jms-<provi der >-
i nfrastructure-context.xn in nodul es/ conmon. This is used to declare any infrastructure
beans needed by the provider. See the default (j ns- acti venqg-i nfrastructure-context.xm)
for an example. Typically, all that is required is a Connect i onFact or y. The activemq provider uses a
propertiesfilej ms- acti veny. pr operti es which can be found inthe conf i g directory. This contains
the broker URL.

11.16 Time

The time source will simply emit a String with the current time every so often. It supports the following
options:

fixedDelay
how often to emit a message, expressed in seconds (default: 1 second)

format
how to render the current time, using SimpleDateFormat (default: ' yyyy- Mt dd HH: mm ss')

11.17 MQTT

The mqtt source connects to an mqtt server and receives telemetry messages.

Configure a stream:;

xd: > stream create tcptest --definition "mtt --url="tcp://Iocal host: 1883'
topics='xd.ngtt.test' | log" --deploy

1.0.0 Spring XD Guide 78

Spring XD

If you wish to use the MQTT Source defaults you can execute the command as follows:

xd: > streamcreate tcptest --definition "ngtt | |og" --deploy

Options

The defaults are set up to connect to the RabbitMQ MQTT adapter on localhost:

url

location of the mqtt broker (default: t cp: / /1 ocal host: 1883)
clientld

identifies the client (default: xd. mgtt. cl i ent . i d. snk)
username

the username to use when connecting to the broker (default: guest)
password

the password to use when connecting to the broker (default: guest)
topics

the topic(s) to which the source will subscribe (default: xd. ngtt. t est)

11.18 Stdout Capture

There isn’t actually a source named "stdin" but it is easy to capture stdin by redirecting itto at cp source.
For example if you wanted to capture the output of a command, you would first create the t cp stream,

as above, using the appropriate sink for your requirements:

xd: > stream create tcpforstdout --definition "tcp --decoder=LF | |og" --deploy

You can then capture the output from commands using the net cat command:

‘$ cat nylog.txt | netcat |ocal host 1234

1.0.0 Spring XD Guide

79

Spring XD

12. Processors

12.1 Introduction

This section will cover the processors available out-of-the-box with Spring XD. As a prerequisite, start
the XD Container as instructed in the Getting Started page.

The Processors covered are

» Filter

Transform
» Script
« Splitter

* Aggregator

See the section Creating a Processor Module for information on how to create custom processor
modules.

12.2 Filter

Use the filter module in a stream to determine whether a Message should be passed to the output
channel.

Filter with SpEL expression

The simplest way to use the filter processor is to pass a SpEL expression when creating the stream.
The expression should evaluate the message and return true or false. For example:

xd: > streamcreate --nanme filtertest --definition "http | filter --
expr essi on=payl oad==' good' | |o0g" --deploy

This filter will only pass Messages to the log sink if the payload is the word "good". Try sending "good"
to the HTTP endpoint and you should see it in the XD log:

xd: > http post --target http://l|ocal host: 9000 --data "good"

Alternatively, if you send the word "bad" (or anything else), you shouldn’t see the log entry.
Filter using jsonPath evaluation

As part of the SpEL expression you can make use of the pre-registered JSON Path function.

This filter example shows to pass messages to the output channel if they contain a specific JSON field
matching a specific value.

xd: > streamcreate --nane jsonfiltertest --definition "http --port=9002 | filter --
expr essi on=#j sonPat h(payl oad, ' $. first Name'). contai ns('John') | |og" --depl oy

Note: There is no space between payload JSON and the jsonPath in the expression

This filter will only pass Messages to the log sink if the JSON payload contains the firstName "John".
Try sending this payload to the HTTP endpoint and you should see it in the XD log:

1.0.0 Spring XD Guide 80

Spring XD

xd: > http post --target http://l|ocal host:9002 --data "{\"firstNane\":\"John\", \"|astNanme
\'oA"Smith\"}"

Alternatively, if you send a different firstName, you shouldn’t see the log entry.
Here is another example usage of filter

‘filter - - expressi on=#j sonPat h(payl oad, ' $. entities. hashtags[*].text').contains(' obama')

This is an example that is operating on a JSON payload of tweets as consumed from the twitter search
module.

Filter with Groovy Script

For more complex filtering, you can pass the location of a Groovy script using the script attribute. If you
want to pass variable values to your script, you can optionally pass the path to a properties file using the
properties-location attribute. All properties in the file will be made available to the script as variables.

Note that an implicit variable named payload is available to give you access to the data contained in
a message.

xd: > stream create --name groovyfiltertest --definition "http --port=9001 | filter --
script=customfilter.groovy --properties-|locati on=customfilter.properties | |og" --deploy

By default, Spring XD will search the classpath for custom-filter.groovy and custom-filter.properties.
You can place the script in ${xd.home}/modules/processor/scripts and the properties file in ${xd.home}/

config to make them available on the classpath. Alternatively, you can prefix the script and properties-
location values with file: to load from the file system.

12.3 Transform

Use the transform module in a stream to convert a Message’s content or structure.

Transform with SpEL expression

The simplest way to use the transform processor is to pass a SpEL expression when creating the stream.
The expression should return the modified message or payload. For example:

xd: > stream create --nanme transforntest --definition "http --port=9003 | transform --
expression='"FOO | |og" --deploy

This transform will convert all message payloads to the word "FOO". Try sending something to the HTTP
endpoint and you should see "FOO" in the XD log:

xd: > http post --target http://local host: 9003 --data "some nessage"

As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax
is #jsonPath(payload,<json path expression>)

Transform with Groovy Script

For more complex transformations, you can pass the location of a Groovy script using the script attribute.
If you want to pass variable values to your script, you can optionally pass the path to a properties file

1.0.0 Spring XD Guide 81

Spring XD

using the properties-location attribute. All properties in the file will be made available to the script as
variables.

xd: > stream create --nanme groovytransforntest --definition "http --port=9004 | transform
--script=customtransformgroovy --properties-|ocati on=customtransform properties | |og"
- - depl oy

By default, Spring XD will search the classpath for custom-transform.groovy and custom-
transform.properties. You can place the script in ${xd.home}/modules/processor/scripts and the
properties file in ${xd.home}/config to make them available on the classpath. Alternatively, you can prefix
the script and properties-location values with file: to load from the file system.

12.4 Script

The script processor contains a Service Activator that invokes a specified Groovy script. This is a slightly
more generic way to accomplish processing logic, as the provided script may simply terminate the stream
as well as transform or filter Messages.

To use the module, pass the location of a Groovy script using the location attribute. If you want to pass
variable values to your script, you can optionally pass the path to a properties file using the properties-
location attribute. All properties in the file will be made available to the script as variables.

xd: > stream create --nanme groovyprocessortest --definition "http --port=9006 | script --

| ocat i on=cust om processor. groovy --properties-|ocation=custom processor.properties | |og"
- - depl oy

By default, Spring XD will search the classpath for custom-processor.groovy and custom-
processor.properties. You can place the script in ${xd.home}/modules/processor/scripts and the
properties file in ${xd.home}/config to make them available on the classpath. Alternatively, you can prefix
the location and properties-location values with file: to load from the file system.

12.5 Splitter

The splitter module builds upon the concept of the same name in Spring Integration and allows the
splitting of a single message into several distinct messages.

The splitter module accepts the following options:

expression
a SpEL expression which should evaluate to an array or collection. Each element will then be emitted
as a separate message (default: payl oad, which actually does not split, unless the message
is already a collection)

As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax
is #jsonPath(payload,<json path expression>)

Extract the value of a specific field
This splitter converts a JSON message payload to the value of a specific JSON field.

xd: > stream create --nanme jsontransforntest --definition "http --port=9005 | splitter --
expr essi on=#j sonPat h(payl oad, ' $.firstNane') | |og" --deploy

Try sending this payload to the HTTP endpoint and you should see just the value "John" in the XD log:

1.0.0 Spring XD Guide 82

Spring XD

xd: > http post --target http://l|ocal host:9005 --data "{\"firstNane\":\"John\", \"|astNanme
\'oA"Smith\"}"

Note: JSON fields should be separated by a comma without any spaces.

12.6 Aggregator

The aggregator module does the opposite of the splitter, and builds upon the concept of the same name
found in Spring Integration. By default, it will consider all incoming messages from a stream to belong
to the same group:

xd: > stream create --nane aggregates --definition "http | aggregator --count=3 --
aggregati on=T(org. springframework.util.StringUils).collectionToDelinitedString(#this.!
[payload],' ") | log" --deploy

This uses a SpEL expression that will basically concatenate all payloads together, inserting a space
character in between. As such,

xd: > http post --data Hello
xd: > http post --data World
xd: > http post --data !

would emit a single message whose contents is "Hello World !". This is because we set the aggregator
release strategy to accumulate 3 messages.

The aggregator modules comes with many more options, as shown below:

correlation
a SpEL expression to be evaluated against all incoming message and that should evaluate to
the "key" used to group messages together (default: <streamamnme>, which means that all
messages from the same stream are actually considered correlated)

release
a SpEL expression to be evaluated against a group of messages accumulated so far (a collection)
and that should return true when such a group is ready to be released. Using this overrides the
count option. (default: use the' count' approach)

count
the number of messages to group together before emitting a group (default: 50)

aggregation
a SpEL expression, to be evaluated against the list of accumulated messages. This should return
what the new message will be made of. (default: #t hi s. ! [payl oad], which uses the list of
message payloads to form the new message)

timeout
the delay (in milliseconds) after which messages should be released and aggregated, even
though the completion criteria was not met. Due to the way this is implemented (see
MessageGroupStoreReaper in the Spring Integration documentation), the actual observed delay
may vary between ti meout and 2xt i meout . (default: 60000, i.e. one minute)

Additionally, the message store used to retain messages can be configured using the st or e option.
Valid options are nenor y (the default), r edi s and j dbc.

1.0.0 Spring XD Guide 83

Spring XD

* When using r edi s, additional options are available: host nane, port and passwor d with defaults
pointing to the default redis install on localhost.

* When usingj dbc, one must configure the datasource access, usingdri ver Cl ass, url ,user nane
and passwor d with no defaults. On first use, the database tables must be created. To that effect,
one can use set the i ni t db option to t r ue. The database kind should be auto-detected, but one
can always provide dbki nd to override.

1.0.0 Spring XD Guide 84

Spring XD

13. Sinks

13.1 Introduction

In this section we will show some variations on output sinks. As a prerequisite start the XD Container
as instructed in the Getting Started page.

The Sinks covered are
« Log

» File

* HDFS

« HDFS Dataset

.
(&

DBC

—

CP
e Mail

* RabbitMQ

* GemkFire Server

» Splunk Server

* MQTT

» Dynamic Router

See the section Creating a Sink Module for information on how to create sink modules using other
Spring Integration Adapters.

13.2 Log

Probably the simplest option for a sink is just to log the data. The | og sink uses the application logger
to output the data for inspection. The log level is set to WARN and the logger name is created from the
stream name. To create a stream using a | og sink you would use a command like

xd: > stream create --nane mylogstream--definition "http --port=8000 | |og" --deploy

You can then try adding some data. We've used the ht t p source on port 8000 here, so run the following
command to send a message

xd: > http post --target http://local host: 8000 --data "hell 0"

and you should see the following output in the XD container console.

‘ 13/ 06/ 07 16:12:18 | NFO si nk. myl ogstream hello

1.0.0 Spring XD Guide 85

Spring XD

The logger name is the sink name prefixed with the string xd. si nk. . The sink name is the same as
the stream name by default, but you can set it by passing the - - nane parameter

xd: > stream create --nanme nyotherl ogstream--definition "http --port=8001 | log --
nane=nyl| ogger" --depl oy

The log level is | NFOby default; this can be changed with the - - | evel property (FATAL, ERROR, WARN,
| NFO, DEBUG, or TRACE)

xd: > stream create --nanme nyl ogstream--definition "http --port=8001 | |log --Ievel =VWARN'
- - depl oy

By default, the message payload is logged; this can be changed with the - - expr essi on property (e.g.
payl oad. f oo to log some property f oo of the payload, or #r oot to log the entire message)

xd: > stream create --nanme nyl ogstream --definition "http --port=8001 | log --
expressi on=#root" --depl oy
13.3 File Sink

Another simple option is to stream data to a file on the host OS. This can be done using the fi | e sink
module to create a stream.

xd: > stream create --nanme nyfilestream--definition "http --port=8000 | file" --deploy

We've used the ht t p source again, so run the following command to send a message

xd: > http post --target http://|ocal host: 8000 --data "hell 0"

The fi | e sink uses the stream name as the default name for the file it creates, and places the file in
the / t np/ xd/ out put / directory.

$ less /tnp/xd/output/nyfil estream
hel | o

You can cutomize the behavior and specify the name and di r options of the output file. For example

xd: > streamcreate --nane otherfilestream--definition "http --port=8000 | file --
name=nyfile --dir=/sonme/customdirectory" --deploy

File with Options

The file sink, by default, will add a newline at the end of each line; the actual newline will depend on
the operating system.

This can be disabled by using - - bi nary=t r ue.

13.4 Hadoop (HDFS)

If you do not have Hadoop installed, you can install Hadoop as described in our separate guide. Spring
XD supports 4 Hadoop distributions, see using Hadoop for more information on how to start Spring XD
to target a specific distribution.

Once Hadoop is up and running, you can then use the hdf s sink when creating a stream

1.0.0 Spring XD Guide 86

Spring XD

xd: > stream create --nanme nyhdfsstreaml --definition "time | hdfs" --depl oy

In the above example, we've scheduled t i me source to automatically send ticks to hdf s once in every
second. If you wait a little while for data to accumuluate you can then list can then list the files in the
hadoop filesystem using the shell’s built in hadoop fs commands. Before making any access to HDFS in
the shell you first need to configure the shell to point to your name node. This is done using the hadoop
confi g command.

xd: >hadoop config fs --namenode hdfs://| ocal host: 8020

In this example the hdfs protocol is used but you may also use the webhdfs protocol. Listing the contents
in the output directory (named by default after the stream name) is done by issuing the following
command.

xd: >hadoop fs Is /xd/ nyhdfsstreaml

Found 1 itens

STWr--r-- 3 jval keal ahti supergroup 0 2013-12-18 18: 10 /xd/ nmyhdf sst reant/
nmyhdf sstreantl-0. txt.tnp

While the file is being written to it will have the t np suffix. When the data written exceeds the rollover
size (default 1GB) it will be renamed to remove the t np suffix. There are several options to control the in
use file file naming options. These are - - i nUsePrefi x and - - i nUseSuf f i x set the file name prefix
and suffix respectfully.

When you destroy a stream

xd: >stream destroy --name nyhdfsstreaml

and list the stream directory again, in use file suffix doesn’t exist anymore.

xd: >hadoop fs |s /xd/ myhdfsstreamndl

Found 1 itens

STWr--r-- 3 jval keal ahti super group 380 2013-12-18 18: 10 /xd/ myhdf sstreant/
nyhdf sst reant- 0. t xt

To list the list the contents of a file directly from a shell execute the hadoop cat command.

xd: > hadoop fs cat /xd/ myhdfsstreantl/ myhdf sstreant- 0.t xt
2013-12-18 18:10: 07
2013-12-18 18:10: 08
2013-12-18 18:10: 09

In the above examples we didn't yet go through why the file was written in a specific directory and
why it was named in this specific way. Default location of a file is defined as / xd/ <st r eam nane>/
<stream nanme>-<rol li ng part>.txt. These can be changed using options - - di rect ory and
- - fi | eName respectively. Example is shown below.

xd: >stream create --nane nyhdfsstreanR --definition "tine | hdfs --directory=/xd/tnp --
fil eName=dat a" --depl oy

xd: >stream destroy --nane myhdf sstrean?

xd: >hadoop fs |s /xd/tnp

Found 1 itens

STWr--T-- 3 jval keal ahti super group 120 2013-12-18 18: 31 /xd/tnp/ data-0. txt

1.0.0 Spring XD Guide 87

Spring XD

It is also possible to control the size of a files written into HDFS. The - - r ol | over option can be used
to control when file currently being written is rolled over and a new file opened by providing the rollover
size in bytes, kilobytes, megatypes, gigabytes, and terabytes.

xd: >stream create --nane nyhdfsstreanB --definition "tine | hdfs --rollover=100" --depl oy
xd: >stream destroy --name nyhdf sstrean8

xd: >hadoop fs |s /xd/ nyhdf sstreanB

Found 3 itens

SPWr--r-- 3 jval keal ahti super group 100 2013-12-18 18: 41 /xd/ nyhdf sstreanB/
nyhdf sst reanB- 0. t xt
STWr--1-- 3 jval keal ahti supergroup 100 2013-12-18 18:41 /xd/ myhdf sstreanB/
nmyhdf sst reanB- 1. t xt
STWr--1-- 3 jval keal ahti supergroup 100 2013-12-18 18: 41 /xd/ myhdf sstreanB/

nmyhdf sst reanB- 2. t xt

Shortcuts to specify sizes other than bytes are written as --rol | over =64M - -r ol | over =512Gor
--rol | over =1T.

The stream can also be compressed during the write operation. Example of this is shown below.

xd: >stream create --nanme nyhdfsstreamd --definition "time | hdfs --codec=gzi p" --depl oy
xd: >stream destroy --name nyhdfsstreamt

xd: >hadoop fs Is /xd/ nyhdfsstreamt

Found 1 itens

STW-r--1-- 3 jval keal ahti supergroup 80 2013-12-18 18: 48 /xd/ myhdf sstreamd/
nmyhdf sstreanm4- 0. t xt. gzip

From a native os shell we can use hadoop’s fs commands and pipe data into gunzip.

bin/hadoop fs -cat /xd/ nyhdfsstreamd/ nyhdfsstreamd-0.txt.gzip | gunzip
2013-12-18 18:48:10
2013-12-18 18:48:11

Often a stream of data may not have a high enough rate to roll over files frequently, leaving the file in
an opened state. This prevents users from reading a consistent set of data when running mapreduce
jobs. While one can alleviate this problem by using a small rollover value, a better way is to use the
i dl eTi meout option that will automatically close the file if there was no writes during the specified
period of time. This feature is also useful in cases where burst of data is written into a stream and you'd
like that data to become visible in HDFS.

xd: > stream create --nanme nyhdfsstreanb --definition "http --port=8000 | hdfs --
rol | over=20 --idl eTi meout =10000" - - depl oy

In the above example we changed a source to ht t p order to control what we write into a hdf s sink.
We defined a small rollover size and a timeout of 10 seconds. Now we can simply post data into this
stream via source end point using a below command.

xd: > http post --target http://|ocal host: 8000 --data "hello"

If we repeat the command very quickly and then wait for the timeout we should be able to see that some
files are closed before rollover size was met and some were simply rolled because of a rollover size.

1.0.0 Spring XD Guide 88

Spring XD

xd: >hadoop fs |Is /xd/ nyhdfsstreanb

Found 4 itemns

STWr--1-- 3 jval keal ahti supergroup 12 2013-12-18 19: 02 /xd/ myhdf sst reanb/
nmyhdf sst reanb- 0. t xt

STWr--1-- 3 jval keal ahti supergroup 24 2013-12-18 19: 03 / xd/ nyhdf sst r eanb/
nyhdf sst reanb- 1. t xt

SPWr--r-- 3 jval keal ahti super group 24 2013-12-18 19: 03 /xd/ myhdf sst reanb/
nyhdf sst r eanb- 2. t xt

STWr--1-- 3 jval keal ahti supergroup 18 2013-12-18 19: 03 /xd/ myhdf sst reanb/
nmyhdf sst r eanb- 3. t xt

Files can be automatically partitioned using a parti ti onPat h expression. If we create a stream with
i dl eTi meout and partiti onPat h with simple format yyyy/ MM dd/ HH mmwe should see writes
ending into its own files within every minute boundary.

xd: >stream create --name nyhdfsstreanb --definition "time|hdfs --idleTi mout=10000 --
partitionPat h=dat eFormat (' yyyy/ M dd/ HH/ mm)" - - depl oy

Let a stream run for a short period of time and list files.

xd: >hadoop fs |Is --recursive true --dir /xd/ nyhdfsstreant

dr wxr - xr - x - jval keal ahti super group 0 2014-05-28 09: 42 /xd/ nyhdf sst reant/ 2014
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 09: 42 /xd/
nyhdf sst reant/ 2014/ 05

dr wxr - xr - x - jval keal ahti super group 0 2014-05-28 09:42 /xd/
nyhdf sst reant/ 2014/ 05/ 28

dr wxr - Xr - x - jval keal ahti supergroup 0 2014- 05-28 09: 45 /xd/
myhdf sst r eant/ 2014/ 05/ 28/ 09

dr wxr - Xr - x - jval keal ahti supergroup 0 2014- 05-28 09: 43 /xd/
nyhdf sst reant/ 2014/ 05/ 28/ 09/ 42

SPWr--r-- 3 jval keal ahti super group 140 2014-05-28 09: 43 /xd/
nyhdf sst reant/ 2014/ 05/ 28/ 09/ 42/ myhdf sst r eanb- 0. t xt

dr wxr - xr - x - jval keal ahti supergroup 0 2014-05-28 09: 44 /xd/
myhdf sst reant/ 2014/ 05/ 28/ 09/ 43

STWr--1-- 3 jval keal ahti supergroup 1200 2014- 05- 28 09: 44 / xd/
nyhdf sst reant/ 2014/ 05/ 28/ 09/ 43/ myhdf sst r eanb- 0. t xt

dr wxr - Xr - x - jval keal ahti super group 0 2014-05-28 09: 45 /xd/
nyhdf sst reant/ 2014/ 05/ 28/ 09/ 44

STWr--1-- 3 jval keal ahti supergroup 1200 2014- 05- 28 09: 45 /xd/
nmyhdf sst reant/ 2014/ 05/ 28/ 09/ 44/ nyhdf sst r eant- 0. t xt

Partitioning can also be based on defined lists. In a below example we simulate feeding data by
using atinme and a t r ansf or melements. Data passed to hdf s sink has a content APPO: f oobar,
APP1: f oobar, APP2: f oobar or APP3: f oobar .

xd: >stream create --name nyhdfsstreanv --definition "time | transform --expression=
\"" APP' +T(Mat h) . round(T(Mat h) . randon()*3) +' : foobar'\" | hdfs --idleTi meout=10000

--partitionPat h=pat h(dat eFormat (' yyyy/ MM dd/ HH), | i st (payl oad.split(':")[0],
{{'oTO1',"' APPO',"' APP1'}, {' 2TQ3',"' APP2' ,' APP3'}}))" --depl oy

Let the stream run few seconds, destroy it and check what got written in those partitioned files.

1.0.0 Spring XD Guide 89

Spring XD

xd: >stream destroy --name nyhdf sstreanv
Destroyed stream ' nyhdfsstreanv
xd: >hadoop fs |Is --recursive true --dir /xd

dr wxr - xr - x - jval keal ahti super group 0 2014-05-28 19: 24 / xd/ nyhdf sst reanv
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 24 / xd/ nyhdf sstrean¥/ 2014
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 24 /xd/

nmyhdf sst reanv/ 2014/ 05

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 24 /xd/

nyhdf sst rean7/ 2014/ 05/ 28

dr wxr - Xr - x - jval keal ahti super group 0 2014-05-28 19: 24 /xd/

nyhdf sst reani’/ 2014/ 05/ 28/ 19

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 24 /xd/

nmyhdf sst reanv/ 2014/ 05/ 28/ 19/ 0TOL_|I i st

STWr--1-- 3 jval keal ahti supergroup 108 2014-05-28 19: 24 /xd/

nmyhdf sstreanv/ 2014/ 05/ 28/ 19/ 0TOL_I i st/ nyhdf sst reanv- 0. t xt

dr wxr - xr - x - jval keal ahti super group 0 2014-05-28 19: 24 /xd/

nyhdf sst rean7/ 2014/ 05/ 28/ 19/ 2TC8_1 i st

STWr--1-- 3 jval keal ahti supergroup 180 2014-05-28 19: 24 /xd/

myhdf sst reanv/ 2014/ 05/ 28/ 19/ 2TO3_1 i st/ myhdf sst r ean¥- 0. t xt

xd: >hadoop fs cat /xd/ nmyhdfsstreani// 2014/ 05/ 28/ 19/ 0TOL_I i st/ nmyhdf sst reani- 0. t xt
APP1: f oobar

APP1: f oobar

APPO: f oobar

APPO: f oobar

APP1: f oobar

Partitioning can also be based on defined ranges. In a below example we simulate feeding data by using
atinme and atransformelements. Data passed to hdf s sink has a content ranging from APPO to
APP15. We simple parse the number part and use it to do a partition with ranges { 3, 5, 10} .

xd: >stream create --name nyhdfsstreanB --definition "time | transform
--expression=\"'APP' +T(Mat h).round(T(Math).randon()*15)\" | hdfs

--idl eTi meout =10000 --partitionPat h=pat h(dat eFormat (' yyyy/ MV dd/

HH), range(T(I nteger). parsel nt (payl oad. substring(3)),{3,5,10}))" --deploy

Let the stream run few seconds, destroy it and check what got written in those partitioned files.

1.0.0 Spring XD Guide 90

Spring XD

xd: >stream destroy --name nyhdf sstrean8
Destroyed stream ' nyhdfsstreanB
xd: >hadoop fs |Is --recursive true --dir /xd

dr wxr - xr - x - jval keal ahti super group 0 2014-05-28 19: 34 / xd/ nyhdf sst rean8
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 34 / xd/ nyhdf sstreanB/ 2014
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 34 /xd/

nmyhdf sst r eanB/ 2014/ 05

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 34 /xd/

nyhdf sst reanB/ 2014/ 05/ 28

dr wxr - Xr - x - jval keal ahti super group 0 2014-05-28 19: 34 /xd/

nyhdf sst reanB/ 2014/ 05/ 28/ 19

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 34 /xd/

nmyhdf sst reanB/ 2014/ 05/ 28/ 19/ 10_r ange

STWr--1-- 3 jval keal ahti supergroup 16 2014-05-28 19: 34 /xd/

nmyhdf sst reanB/ 2014/ 05/ 28/ 19/ 10_r ange/ nyhdf sst r eanB- 0. t xt

dr wxr - xr - x - jval keal ahti super group 0 2014-05-28 19: 34 /xd/

nyhdf sst reanB/ 2014/ 05/ 28/ 19/ 3_r ange

STWr--1-- 3 jval keal ahti supergroup 35 2014- 05-28 19: 34 /xd/

myhdf sst reanB/ 2014/ 05/ 28/ 19/ 3_r ange/ nyhdf sst r eanB- 0. t xt

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 34 /xd/

nyhdf sst reanB/ 2014/ 05/ 28/ 19/ 5_r ange

SPWr--r-- 3 jval keal ahti super group 5 2014-05-28 19: 34 /xd/

nyhdf sst reanB/ 2014/ 05/ 28/ 19/ 5_r ange/ nyhdf sst r eanB- 0. t xt

xd: >hadoop fs cat /xd/ nyhdfsstreanB/ 2014/ 05/ 28/ 19/ 3_r ange/ myhdf sstreanB- 0. t xt
APP3

APP3

APP1

APPO

APP1

xd: >hadoop fs cat /xd/ nyhdfsstreanB/ 2014/ 05/ 28/ 19/5_range/ myhdf sstreanB- 0. t xt
APP4

xd: >hadoop fs cat /xd/ nmyhdf sstreanB/ 2014/ 05/28/19/10_r ange/ nyhdf sst reanB- 0. t xt
APP6

APP15

APP7

Partition using a dat eFor mat can be based on content itself. This is a good use case if old log files
needs to be processed where partitioning should happen based on timestamp of a log entry. We create
a fake log data with a simple date string ranging from 1970- 01- 10 to 1970- 01- 13.

xd: >stream create --name nyhdfsstreand® --definition "time | transform --expression=
\"'1970-01-"' +1+T(Mat h).round(T(Mat h).random()*3)\" | hdfs --idl eTi meout =10000 - -
partitionPat h=pat h(dat eFor mat (' yyyy/ MM dd/ HH , payl oad, ' yyyy-MW DD))" --depl oy

Let the stream run few seconds, destroy it and check what got written in those partitioned files. If you
see the partition paths, those are based on year 1970, not present year.

1.0.0 Spring XD Guide 91

Spring XD

xd: >stream destroy --name nyhdf sstreanmd

Destroyed stream ' nyhdfsstreand

xd: >hadoop fs |Is --recursive true --dir /xd

dr wxr - xr - x - jval keal ahti super group 0 2014-05-28 19: 56 /xd/ nyhdf sstreand
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 56 /xd/ myhdf sstreanB/ 1970
dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19:56 /xd/
nmyhdf sst reanB/ 1970/ 01

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 56 /xd/
nyhdf sst reand/ 1970/ 01/ 10

dr wxr - Xr - x - jval keal ahti super group 0 2014-05-28 19: 57 /xd/
nyhdf sst reand/ 1970/ 01/ 10/ 00

STWr--1-- 3 jval keal ahti supergroup 44 2014-05-28 19: 57 /xd/
nmyhdf sstreanB/ 1970/ 01/ 10/ 00/ myhdf sst r eand- 0. t xt

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 56 /xd/
nmyhdf sstreanB/ 1970/ 01/ 11

dr wxr - xr - x - jval keal ahti super group 0 2014-05-28 19: 57 /xd/
nyhdf sstreand/ 1970/ 01/ 11/ 00

STWr--1-- 3 jval keal ahti supergroup 99 2014- 05-28 19: 57 /xd/
nmyhdf sstreanB/ 1970/ 01/ 11/ 00/ myhdf sst r eand- 0. t xt

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 56 /xd/
nmyhdf sstreanB/ 1970/ 01/ 12

dr wxr - xr - x - jval keal ahti super group 0 2014-05-28 19: 57 /xd/
nyhdf sst reand/ 1970/ 01/ 12/ 00

STWr--1-- 3 jval keal ahti supergroup 44 2014-05-28 19:57 /xd/
nmyhdf sstreanB/ 1970/ 01/ 12/ 00/ myhdf sst r eand- 0. t xt

dr wxr - Xr - x - jval keal ahti supergroup 0 2014-05-28 19: 56 /xd/
nyhdf sstreand/ 1970/ 01/ 13

dr wxr - Xr - x - jval keal ahti super group 0 2014-05-28 19: 57 /xd/
nyhdf sst reand/ 1970/ 01/ 13/ 00

STWr--1-- 3 jval keal ahti supergroup 55 2014- 05-28 19: 57 /xd/
myhdf sstreanB/ 1970/ 01/ 13/ 00/ myhdf sst r eand- 0. t xt

xd: >hadoop fs cat /xd/ nmyhdfsstreanB/ 1970/ 01/ 10/ 00/ nyhdf sst reand- 0. t xt
1970-01- 10

1970-01- 10

1970- 01- 10

1970-01- 10

HDFS with Options
The HDFS Sink has the following options:

directory
Where to output the files in the Hadoop FileSystem (default: / xd/ <st r earmane>)

fileName
The base filename to use for the created files (a counter will be appended before the file extension).
(default: <st r eammane>)

fileExtension
The file extension to use (default: t xt)

rollover
When to roll files over, expressed in bytes. Option can also expressed with a pattern as, 1M 1G
512G, 1T (default: 1§

codec
If compression is used for stream. Possible values are gzi p, snappy, bzi p2, | zo. (default: no
conpr essi on)

1.0.0 Spring XD Guide 92

Spring XD

idleTimeout
Idle timeout in millis when Hadoop file resource is automatically closed. (default: 0, no timeout)

inUseSuffix
Temporary file suffix indicating that file is currently written and in use. (default: . t np)

inUsePrefix
Temporary file prefix indicating that file is currently written and in use. (default: none)

overwrite
Flag indicating if file resources in Hadoop is allowed to be overwritten. (default: f al se)

fileUuid
Flag indicating if filename should have automatically created uuid part in it. (default: f al se)

partitionPath
Partition path as SpEL exression. (default: none)

fileOpenAttempts
Maximum number of path open attempts. Attempt is either one rollover request or failed stream open
request for a path(if other writer came up with a same path and already opened it). (default: 10)

Partition Path Expression

SpEL expression is evaluated against a Spring Messaging Message passed internally into a HDFS
writer. This allows expression to use header s and payl oad from that message. While you could do a
custom processing within a stream and add custom headers, t i nest anp is always going to be there.
Data to be written is then available in a pay! oad.

Accessing Properties

Using a payl oad simply returns whatever is currently being written. Access to headers is via
header s property. Any other property is automatically resolved from headers if found. For example
headers. ti nest anp is equivalentto t i nest anp.

Custom Methods

Addition to a normal SpEL functionality, few custom methods has been added to make it easier to build
partition paths. These custom methods can be used to work with a normal partition concepts like dat e
formatting,|ists, ranges and hashes.

path

path(String... paths)

Concatenates paths together with a delimiter / . This method can be used to make the expression less
verbose than using a native SpEL functionality to combine path parts together. To create a path part 1/
part 2, expression' partl' + '/' + 'part2' isequivalenttopath('partl',' part2').
Parameters

paths
Any number of path parts

Return Value. Concatenated value of paths delimited with / .

1.0.0 Spring XD Guide 93

Spring XD

dateFormat

dat eFormat (String pattern)

dateFormat (String pattern, Long epoch)

dateFormat (String pattern, Date date)

dateFormat (String pattern, String datestring)

dateFormat (String pattern, String datestring, String dateformat)

Creates a path using date formatting. Internally this method delegates into Si npl eDat eFor nmat and
needs a Dat e and a pat t er n. On default if no parameter used for conversion is given, ti mest anp
is expected. Effectively dat eFor mat (' yyyy') equals to dat eFormat (' yyyy', tinestanp) or
dat eFormat (' yyyy', headers.timestanp).

Method signature with three parameters can be used to create a custom Dat e object which is then
passed to Si nmpl eDat eFor mat conversion using a dat ef or mat pattern. This is useful in use cases
where partition should be based on a date or time string found from a payload content itself. Default
dat ef or nat pattern if omitted is yyyy- MM dd.

Parameters

pattern
Pattern compatible with Si npl eDat eFor mat to produce a final output.

epoch
Timestamp as Long which is converted into a Dat e.

date
A Dat e to be formatted.

dateformat
Secondary pattern to convert dat est ri ng into a Dat e.

datestring
DateasaString

Return Value. A path part representation which can be a simple file or directory name or a directory
structure.

list

list(Object source, List<List<Cbject>> |ists)

Creates a partition path part by matching a sour ce against a lists denoted by | i st s.

Lets assume that data is being written and it's possible to extrace an appid
either from headers or payload. We can automatically do a list based partition
by using a partition method |i st (headers.appid, {{'1TC3',"' APP1',"' APP2' ,' APP3'},
{'4TC6' ,' APP4' ' APP5' ,' APP6' }}). This method would create three partitions, 1TG3_I i st ,
ATO6 list and i st. Latter is used if no match is found from partition lists passedto | i st s.
Parameters

source
An Obj ect to be matched against | i st s.

lists
A definition of list of lists.

1.0.0 Spring XD Guide 94

Spring XD

Return Value. A path part prefixed with a matched key i.e. XXX _| i st orl i st if no match.

range

range(Obj ect source, List<Object> list)

Creates a partition path part by matching a sour ce against a list denoted by | i st using a simple binary
search.

The partition method takes a sour ce as first argument and | i st as a second argument. Behind the
scenes this is using jvm’s bi nar y Sear ch which works on an Qbj ect level so we can pass in anything.
Remember that meaningful range match only works if passed in Gbj ect and types in list are of same
type like | nt eger . Range is defined by a binarySearch itself so mostly it is to match against an upper
bound except the last range in a list. Having a list of { 1000, 3000, 5000} means that everything above
3000 will be matched with 5000. If that is an issue then simply adding | nt eger . MAX_VALUE as last
range would overflow everything above 5000 into a new partition. Created partitions would then be
1000_r ange, 3000_r ange and 5000_r ange.

Parameters

source
An (bj ect to be matched against | i st .

list
A definition of list.

Return Value. A path part prefixed with a matched key i.e. XXX_r ange.

hash

hash(Obj ect source, int bucketcount)

Creates a partition path part by calculating hashkey using sour ce” s hashCode and bucket count .
Using a partition method hash(ti nest anp, 2) would then create partitions named 0_hash, 1_hash
and 2_hash. Number suffixed with _hash is simply calculated using Obj ect. hashCode() %
bucket count .

Parameters

source
An Obj ect which hashCode will be used.

bucketcount
A number of buckets

Return Value. A path part prefixed with a hash key i.e. XXX_hash.

13.5 HDFS Dataset (Avro/Parquet)

The HDFS Dataset sink is used to store Java classes that are sent as the payload on the stream. It uses
the Kite SDK Data Module's Dataset implementation to store the payload data serialized in either Avro
or Parquet format. The Avro schema is generated from the Java class that is persisted. For Parquet the
Java object must follow JavaBean conventions with properties for any fields to be persisted. The fields
can only be simple scalar values like Strings and numbers.

1.0.0 Spring XD Guide 95

http://kitesdk.org/

Spring XD

The HDFS Dataset sink requires that you have a Hadoop installation that is based on Hadoop v2
(Hadoop 2.2.0, Pivotal HD 1.0, Cloudera CDH4 or Hortonworks HDP 2.0), see using Hadoop for more
information on how to start Spring XD to target a specific distribution.

Once Hadoop is up and running, you can then use the hdf s- dat aset sink when creating a stream

xd: >stream create --nane nydataset --definition "time | hdfs-dataset --batchSize=20" --
depl oy

In the above example, we've scheduled t i me source to automatically send ticks to the hdf s- dat aset
sink once every second. The data will be stored in a directory named / xd/ <st r eamrmane> by default,
so in this example it will be / xd/ mydat aset. You can change this by supplying a --di rectory
parameter. The Avro format is usd by default and the data files are stored in a sub-directory named
after the payload Java class. In this example the stream payload is a String so the name of the data

sub-directory is st ri ng. If you have multiple Java classes as payloads, each class will get its own sub-
directory.

Let the stream run for a minute or so. You can then list the contents of the hadoop filesystem using the
shell’s built in hadoop fs commands. You will first need to configure the shell to point to your name node
using the hadoop config command. We use the hdfs protocol is to access the hadoop hame node.

xd: >hadoop config fs --nanenode hdfs://I| ocal host: 8020

Then list the contents of the stream’s data directory.

xd: >hadoop fs Is /xd/nydataset/string
Found 3 itemns

dr wxr - Xr - x - trisberg supergroup 0 2013-12-19 12: 23 /xd/ nydat aset/
string/.netadata

STWr--T-- 3 trisberg supergroup 202 2013-12-19 12:23 /xd/ mydat aset/
string/ 1387473825754- 63. avr o

STWr--r-- 3 trisherg supergroup 216 2013-12-19 12: 24 /xd/ mydat aset/

string/ 1387473846708- 80. avro

You can see that the sink has created two files containing the first two batches of 20 stream payloads
each. Thereisalso a. et adat a directory created that contains the metadata that the Kite SDK Dataset
implementation uses as well as the generated Avro schema for the persisted type.

xd: >hadoop fs |s /xd/ nydataset/string/.netadata
Found 2 itens

STWTr--r-- 3 trisberg supergroup 136 2013-12-19 12: 23 /xd/ nydat aset/
string/.netadatal/descriptor.properties
STWr--r-- 3 trisberg supergroup 8 2013-12-19 12: 23 /xd/ nmydat aset/

string/.netadatal/ schema. avsc

Now destroy the stream.

xd: >stream destroy --name nydat aset

HDFS Dataset with Options

The HDFS Dataset Sink has the following options:

batchSize
The number of payload objects that will be stored in each write operation. (default: 10000)

1.0.0 Spring XD Guide 96

Spring XD

directory
Where the files will be written in the Hadoop FileSystem (default: / xd/ <st r eanrmane>)

idleTimeout
Idle timeout in milliseconds for when the aggregated batch of payload objects will be written even
if the batchSize has not been reached. (default: - 1, no timeout)

allowNullValues
Whether to allow null values in fields of the Java class to be written to the sink. If this is set to true
then each field in the generated schema will use a union of null and the data type of the field. You
can annotate fields in a POJO using Avro’s or g. apache. avro. refl ect. Nul | abl e annotation
to create a schema using a union with null for that field. (default: f al se)

format
The format to use when writing the dataset data. Options are avr o and par quet . (default: avr o)

partitionPath
This option lets you specify one or more paths that will be used to partition the files that the data
is written to based on the content of the data. You can use any of the FieldPartitioners that are
available for the Kite SDK project. We simply pass in what is specified to create the corresponding
partition strategy. You can separate multiple paths with a / character. The following partitioning
functions are available:

year, month, day, hour, minute creates partitions based on the value of a timestamp and creates
directories named like "YEAR=2014" (works well with fields of datatype long)

« specify function plus field name like: year (' ti nmest anp')

dateformat creates partitions based on a timestamp and a dateformat expression provided -
creates directories based on the name provided (works well with fields of datatype long)

» specify function plus field name, a name for the partition and the date format like:
dateFormat ('tinestanp', 'Y-M, 'yyyyMV)

range creates partitions based on a field value and the upper bounds for each bucket that is
specified (works well with fields of datatype int and string)

« specify function plus field name and the upper bounds for each partition bucket like:
range(' age', 20, 50, 80, T(I nteger). MAX VALUE) (Note that you can use SpEL
expressions like we just did for the Integer.MAX_VALUE)

identity creates partitions based on the exact value of a field (works well with fields of datatype
string, long and int)

e specify function plus field name, a name for the partition, the type of the
field (String or Integer) and the number of values/buckets for the partition like:
identity('region','R,T(String), 10)

hash creates partitions based on the hash calculated from the value of a field divided into a
number of buckets that is specified (works well with all data types)

 specify function plus field name and number of buckets like: hash(' | ast nane' , 10)

Multiple expressions can be specified by separating them with a [/ like:
identity('region',"R ,T(String), 10)/year('tinestanp')/nmonth('timestanp')

1.0.0

Spring XD Guide 97

http://kitesdk.org/docs/0.11.0/apidocs/org/kitesdk/data/FieldPartitioner.html

Spring XD

13.6 JDBC

The JDBC sink can be used to insert message payload data into a relational database table. By default
it inserts the entire payload into a table named after the stream name in the HSQLDB database that XD
uses to store metadata for batch jobs. To alter this behavior, the jdbc sink accepts several options that
you can pass using the - - f oo=bar notation in the stream, or change globally. There is also a config/
init_db.sql file that contains the SQL statements used to initialize the database table. You can modify
this file if you'd like to create a table with your specific layout when the sink starts. You should also
change the initializeDatabase property to true to have this script execute when the sink starts up.

The payload data will be inserted as-is if the names option is set to payload. This is the default behavior.
If you specify any other column names the payload data will be assumed to be a JSON document that
will be converted to a hash map. This hash map will be used to populate the data values for the SQL
insert statement. A matching of column names with underscores like user_name will match onto camel
case style keys like userName in the hash map. There will be one insert statement executed for each
message.

To create a stream using a j dbc sink relying on all defaults you would use a command like

xd: > streamcreate --nanme nydata --definition "time | jdbc --initializeDatabase=true" --
depl oy

This will insert the time messages into a payload column in a table named mydata. Since the default
is using the XD batch metadata HSQLDB database we can connect to this database instance from an
external tool. After we let the stream run for a little while, we can connect to the database and look at
the data stored in the database.

You can query the database with your favorite SQL tool using the following database URL:
j dbc: hsql db: hsql : //1 ocal host: 9101/ xdj ob with sa as the user name and a blank password.
You can also use the HSQL provided SQL Tool (download from HSQLDB) to run a quick query from
the command line:

$ java -cp ~/ Downl oads/ hsql db-2. 3. 0/ hsql db/ i b/ sql tool . jar org. hsql db. cmdl i ne. Sql Too
--inlineRc url =jdbc: hsql db: hsql : / /| ocal host: 9101/ xdj ob, user =sa, password= --sqgl "sel ect
payl oad from nydata;"

This should result in something similar to the following output:

2014-01- 06 09: 33: 25
2014-01-06 09: 33: 26
2014-01-06 09:33: 27
2014-01- 06 09: 33: 28
2014-01-06 09: 33: 29
2014-01-06 09: 33: 30
2014-01-06 09: 33:31
2014-01-06 09: 33: 32
2014-01-06 09: 33: 33
2014-01- 06 09: 33: 34
2014-01-06 09: 33: 35
2014-01-06 09: 33: 36
2014-01- 06 09: 33: 37

Now we can destroy the stream using:

xd: > stream destroy --name nydata

1.0.0 Spring XD Guide 98

http://hsqldb.org/

Spring XD

JDBC with Options

The JDBC Sink has the following options:

driverClassName
the JDBC driver to use (default: same as batch config)

url
the JDBC URL for the database (default: same as batch config)

username
the JDBC usernmae (default: same as batch config)

password
the JDBC password (default: same as batch config)

initializeDatabase
whether to initialize the database using the initializer script (default: f al se)

initializerScript
the file name for the script containing SQL statements used to initialize the database when the sink
starts (will search confi g/ directory for this file) (default: i ni t _db. sqgl)

tableName
the name of the table to insert payload data into (default: <st r earmane>)

names
comma separated list of column names to include in the insert statement. Use payload to include
the entire message payload into a payload column. (default: payl oad)

13.7 TCP Sink

The TCP Sink provides for outbound messaging over TCP.
The following examples use net cat (linux) to receive the data; the equivalent on Mac OSX is nc.
First, start a netcat to receive the data, and background it

‘$ netcat -1 1234 &

Now, configure a stream

xd: > stream create --nanme tcptest --definition "time --interval =3 | tcp" --deploy

This sends the time, every 3 seconds to the default tcp Sink, which connects to port 1234 on
ocal host .

$ Thu May 30 10:28:21 EDT 2013
Thu May 30 10: 28: 24 EDT 2013
Thu May 30 10: 28: 27 EDT 2013
Thu May 30 10:28: 30 EDT 2013
Thu May 30 10: 28: 33 EDT 2013

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of encoders are available, the default being CRLF.

1.0.0 Spring XD Guide 99

Spring XD

Destroy the stream; netcat will terminate when the TCP Sink disconnects.

http://1 ocal host: 8080> stream destroy --nanme tcptest

TCP with Options

The TCP Sink has the following options

host
the host (or IP Address) to connect to (default: | ocal host)

port
the port on the host (default 1234)

reverse-lookup
perform a reverse DNS lookup on IP Addresses (default: f al se)

nio
whether or not to use NIO (default: f al se)

encoder
how to encode the stream - see below (default: CRLF)

close
whether to close the socket after each message (default: f al se)

charset
the charset used when converting text from St r i ng to bytes (default: UTF- 8)

Retry Options

retry-max-attempts
the maximum number of attempts to send the data (default: 5 - original request and 4 retries)

retry-initial-interval
the time (ms) to wait for the first retry (default: 2000)

retry-multiplier
the multiplier for exponential back off of retries (default: 2)

With the default retry configuration, the attempts will be made after 0, 2, 4, 8, and 16 seconds.

Available Encoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

1.0.0 Spring XD Guide 100

Spring XD

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)
Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 2161 bytes)

L4
data preceded by a four byte (signed) length field (up to 23t bytes)

An Additional Example

Start netcat in the background and redirect the output to a file f oo

‘$ netcat -1 1235 > foo &

Create the stream, using the L4 encoder

xd: > stream create --nanme tcptest --definition "time --interval=3 | tcp --encoder=L4 --
port=1235" --depl oy

Destroy the stream

‘http://localhost:8080> stream destroy --nane tcptest

Check the output

$ hexdump -C foo

00000000 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1
00000010 30 3a 34 37 3a 30 33 20 45 44 54 20 32 30 31 33 |0:47:03 EDT 2013
00000020 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1
00000030 30 3a 34 37 3a 30 36 20 45 44 54 20 32 30 31 33 |0:47:06 EDT 2013
00000040 00 00 00 1c 54 68 75 20 4d 61 79 20 33 30 20 31 |....Thu May 30 1
00000050 30 3a 34 37 3a 30 39 20 45 44 54 20 32 30 31 33 |0:47:09 EDT 2013

Note the 4 byte length field preceding the data generated by the L4 encoder.

13.8 Mail

The "mail" sink allows sending of messages as emails, leveraging Spring Integration mail-sending
channel adapter. Please refer to Spring Integration documentation for the details, but in a nutshell, the
sink is able to handle String, byte[] and MimeMessage messages out of the box.

Here is a simple example of how the mail module is used:

xd: > stream create nystream--definition "http | mail --to=""your.emil @nuail.con’
host =your . i map. server --subject=payl oad+ world'" --depl oy

1.0.0 Spring XD Guide 101

Spring XD

Then,

xd: > http post --data Hello

You would then receive an email whose body contains "Hello" and whose subject is "Hellow world". Of
special attention here is the way you need to escape strings for most of the parameters, because they're
actually SpEL expressions (so here for example, we used a String literal for the t o parameter).

The full list of options available to the mail module is below:

to
The primary recipient(s) of the email. (default: nul | , SpEL Expression)
from
The sender address of the email. (default: nul | , SpEL Expression)
subject
The email subject. (default: nul | , SpEL Expression)
cc
The recipient(s) that should receive a carbon copy. (default: nul | , SpEL Expression)
bcc
The recipient(s) that should receive a blind carbon copy. (default: nul | , SpEL Expression)
replyTo
The address that will become the recipient if the original recipient decides to "reply to" the email.
(default: nul I , SpEL Expression)
contentType
The content type to use when sending the email. (default: nul | , SpEL Expression)
host
The hostname of the sending server to use. (default: | ocal host)
port
The port of the sending server. (default: 25)
username
The username to use for authentication against the sending server. (default: none)
password

The password to use for authentication against the sending server. (default: none)

13.9 RabbitMQ

The "rabbit" sink enables outbound messaging over RabbitMQ.
The following example shows the default settings.
Configure a stream:

xd: > stream create --nane rabbittest --definition "time --interval =3 | rabbit" --depl oy

1.0.0 Spring XD Guide 102

Spring XD

This sends the time, every 3 seconds to the default (no-name) Exchange for a RabbitMQ broker running
on localhost, port 5672.

The routing key will be the name of the stream by default; in this case: "rabbittest”". Since the default
Exchange is a direct-exchange to which all Queues are bound with the Queue name as the binding key,
all messages sent via this sink will be passed to a Queue named "rabbittest", if one exists. We do not
create that Queue automatically. However, you can easily create a Queue using the RabbitMQ web UL.
Then, using that same Ul, you can navigate to the "rabbittest” Queue and click the "Get Message(s)"
button to pop messages off of that Queue (you can choose whether to requeue those messages).

To destroy the stream, enter the following at the shell prompt:

xd: > stream destroy --nane rabbittest

RabbitMQ with Options
The RabbitMQ Sink has the following options

username
the username to connect to the RabbitMQ broker (default: guest)

password
the password to connect to the RabbitMQ broker (default: guest)

host
the host (or IP Address) to connect to (default: | ocal host)

port
the port on the host (default: 5672)

vhost
the virtual host (default: /)

exchange
the Exchange on the RabbitMQ broker to which messages should be sent (default: = (empty:
therefore, the default no-name Exchange))

routingkey
the routing key to be passed with the message. Note: If the routing key is not passed with the
message and simply be a string literal (like the queue name), please make sure to specify it as
SpEL literal. (default: <streamname>)

Also, if the routingKey is specified as string literal, the SpEL literal needs to be specified like this:

xd: > stream create rabbitSinkStream --definition "http | rabbit --routingKey="\"nmyqueue
\"'" __depl oy

13.10 GemFire Server

Currently XD supports GemFire’s client-server topology. A sink that writes data to a GemFire cache
requires at least one cache server to be running in a separate process and may also be configured to
use a Locator. While Gemfire configuration is outside of the scope of this document, details are covered
in the GemFire Product documentation. The XD distribution includes a standalone GemFire server

1.0.0 Spring XD Guide 103

https://www.vmware.com/support/pubs/vfabric-gemfire.html

Spring XD

executable suitable for development and test purposes and bootstrapped using a Spring configuration
file provided as a command line argument. The GemFire jar is distributed freely under GemFire’s
development license and is subject to the license’s terms and conditions. Sink modules provided with
the XD distrubution that write data to GemFire create a client cache and client region. No data is cached
on the client.

Launching the XD GemFire Server

To start the GemFire cache server GemFire Server included in the Spring XD distribution, go to the
XD install directory:

$cd genfire/bin
$./genfire-server ../config/cg-deno.xmn

The command line argument is the path of a Spring Data Gemfire configuration file with including
a configured cache server and one or more regions. A sample cache configuration is provided cg-
demo.xml located in the conf i g directory. Note that Spring interprets the path as a relative path unless
it is explicitly preceded by fi | e: . The sample configuration starts a server on port 40404 and creates
a region named Stocks.

Gemfire sinks

There are 2 implementation of the gemfire sink: gemfire-server and gemfire-json-server. They are
identical except the latter converts JSON string payloads to a JSON document format proprietary to
GemFire and provides JSON field access and query capabilities. If you are not using JSON, the gemfire-
server module will write the payload using java serialization to the configured region. Either of these
modules accepts the following attributes:

regionName
the name of the GemFire region. This must be the name of a region configured for the cache server.
This module creates the corresponding client region. (default: <st r eamrmane>)

keyExpression
A SpEL expression which is evaluated to create a cache key. Typically, the key value is derived
from the payload. (default: <st r eamrmane>, which will overwrite the same entry for every message
received on the stream)

host
The host name or IP address of the cache server or locator (default: | ocal host)

port
The TCP port number of the cache server or locator (default: 40404)

uselLocator
A boolean flag indicating that the above host and port refer to a locator (default: f al se)

© Note

The locator option is mostly intended for integration with an existing GemFire installation in
which the cache servers are configured to use locators in accordance with best practice. While
GemFire supports configuration of multiple locators for failover, this is currently not supported in
XD. However, using a single virtual IP backed by hardware routers for failover has proven to be
an effective and simpler alternative.

1.0.0 Spring XD Guide 104

https://github.com/SpringSource/spring-xd/blob/master/spring-xd-gemfire-server/config/cq-demo.xml
https://github.com/SpringSource/spring-xd/blob/master/spring-xd-gemfire-server/config/cq-demo.xml

Spring XD

Example

Suppose we have a JSON document containing a stock price:

‘{"synbol":"FAKE", “price": 73}

We want this to be cached using the stock symbol as the key. The stream definition is:

‘http | genfire-json-server --regi onNane=St ocks --keyExpressi on=payl oad. get Fi el d(' synbol ")

The keyExpression is a SpEL expression that depends on the payload type. In this case,
com.gemstone.org.json.JSONObject. JSONObject which provides the getField method. To run this
example:

xd: > stream create --nanme stocks --definition "http --port=9090 | genfire-json-server --
regi onNane=St ocks - - keyExpressi on=payl oad. get Fi el d(' synbol')" --depl oy

xd: > http post --target http://|ocal host: 9090 --data {"synbol ":"FAKE", "price": 73}

This will write an entry to the GemFire Stocks region with the key FAKE. Please do not put spaces when
separating the JSON key-value pairs, only a comma.

You should see a message on STDOUT for the process running the GemFire server like:

‘INFO [Loggi ngCachelLi stener] - updated entry FAKE

© Note

In order to use locators you must add the use- | ocat or to the active profile via server.yml or
the spring.profiles_active environment variable.

13.11 Splunk Server

A Splunk sink that writes data to a TCP Data Input type for Splunk.
Splunk sinks

The Splunk sink converts an object payload to a string using the object’s toString method and then
converts this to a SplunkEvent that is sent via TCP to Splunk. The module accepts the following
attributes:

host
The host name or IP address of the Splunk server (default: | ocal host)

port
The TCP port number of the Splunk Server (default: 8089)

username
The login name that has rights to send data to the tcp-port (default: admni n)

password
The password associated with the username (default: passwor d)

1.0.0 Spring XD Guide 105

http://www.splunk.com/

Spring XD

owner
The owner of the tcp-port (default: admi nl)

tcp-port
The TCP port number to where XD will send the data (default: 9500)

Setup Splunk for TCP Input

1. From the Manager page select Manage | nput s link
2. Click the Add dat a Button

3. Clickthe From a TCP port link

4. TCP Port enter the port you want Splunk to monitor
5. Set Source Type select Manual

6. Source Type entertcp-raw

7. Click Save

Example

An example stream would be to take data from a twitter search and push it through to a splunk instance.

xd: > stream create --nanme springone2gx --definition "twi ttersearch --consumerKey= --
consuner Secret = --query='"#LOTR | splunk" --depl oy

13.12 MQTT Sink
The maqtt sink connects to an mqtt server and publishes telemetry messages.
Options

The defaults are set up to connect to the RabbitMQ MQTT adapter on localhost:

url

location of the mqtt broker (default: t cp: / /1 ocal host: 1883)
clientld

identifies the client (default: xd. mgtt. cli ent.i d. snk)
username

the username to use when connecting to the broker (default: guest)
password

the password to use when connecting to the broker (default: guest)
topic

the topic to which the sink will publish (default: xd. ngt t . t est)
gos

the Quality of Service (default: 1)
retained

whether the retained flag is set (default: f al se)

1.0.0 Spring XD Guide 106

Spring XD

13.13 Dynamic Router

The Dynamic Router support allows for routing Spring XD messages to named channels based on the
evaluation of SpEL expressions or Groovy Scripts.

SpEL-based Routing

In the following example, 2 streams are created that listen for message on the foo and the bar channel.
Furthermore, we create a stream that receives messages via HTTP and then delegates the received
messages to a router:

xd: >stream create f --definition "queue:foo > transform --expressi on=payl oad+ -foo' | |o0g"
- -depl oy
Created new stream'f'

xd: >stream create b --definition "queue: bar > transform --expressi on=payl oad+' -bar' | |o0g"
- - depl oy
Created new stream'Db’

xd: >stream create r --definition "http | router --
expr essi on=payl oad. contai ns(' a') ?' queue: foo' : ' queue: bar'" --depl oy
Created new stream'r'

Now we make 2 requests to the HTTP source:

xd: >http post --data "a"
> POST (text/plain; Charset=UTF-8) http://I|ocal host: 9000 a
> 200 &K

xd: >http post --data "b"
> POST (text/plain; Charset =UTF-8) http://I|ocal host: 9000 b
> 200 X

In the server log you should see the following output:

11:54: 19, 868 WARN Thr eadPool TaskSchedul er-1 sink.f: 145 - a-foo
11: 54: 25,669 WARN Thr eadPool TaskSchedul er-1 sink. b: 145 - b-bar

For more information, please also consult the Spring Integration
Reference manual: http://static.springsource.org/spring-integration/reference/html/messaging-routing-
chapter.html#router-namespace particularly the section "Routers and the Spring Expression Language
(SpEL)".

Groovy-based Routing

Instead of SpEL expressions, Groovy scripts can also be used. Let's create a Groovy script in the file
system at "/my/path/router.groovy"

println("Goovy processing payload '" + payload +"''");
if (payload.contains('a')) {

return ":foo"

}
el se {

return ":bar"

}

Now we create the following streams:

1.0.0 Spring XD Guide 107

http://static.springsource.org/spring-integration/reference/html/messaging-routing-chapter.html#router-namespace
http://static.springsource.org/spring-integration/reference/html/messaging-routing-chapter.html#router-namespace

Spring XD

xd: >stream create f --definition ":foo > transform --expressi on=payl oad+' -foo' | |og" --
depl oy
Created new stream'f'

xd: >stream create b --definition ":bar > transform --expressi on=payl oad+' -bar' | |og" --
depl oy
Created new stream'Db’

xd: >stream create g --definition "http | router --script="file:/my/path/router.groovy'" --
depl oy

Now post some data to the HTTP source:

xd: >http post --data "a"
> POST (text/plain; Charset =UTF-8) http://I|ocal host: 9000 a
> 200 X

xd: >http post --data "b"
> POST (text/plain; Charset=UTF-8) http://I|ocal host: 9000 b
> 200 &K

In the server log you should see the following output:

Groovy processing payload 'a
11: 29: 27,274 WARN Thr eadPool TaskSchedul er-1 sink.f: 145 - a-foo
Groovy processing payload 'b
11: 34: 09, 797 WARN Thr eadPool TaskSchedul er-1 si nk. b: 145 - b-bar

@ Note

You can also use Groovy scripts located on your classpath by specifying:

--script="org/ ny/ package/ r out er. gr oovy

For more information, please also consult the Spring Integration Reference manual:
"Groovy support" http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-
chapter.html#groovy

Options

expression
The SpEL expression to use for routing

script
Indicates that Groovy Script based routing is used. If this property is set, then the "Expression”
attribute will be ignored. The groovy script is checked for updates every 60 seconds. The script can
be loaded from the classpath or from the file system e.g. "--script=org/springframework/springxd/
samples/batch/router.groovy" or "--script=file:/my/path/router.groovy"

properties-location
Will be made available as script variables for Groovy Script based routing. Will only be evaluated
once at initialization time. By default the following script variables will be made available: "payload"
and "headers".

1.0.0 Spring XD Guide 108

http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-chapter.html#groovy
http://static.springsource.org/spring-integration/reference/html/messaging-endpoints-chapter.html#groovy

Spring XD

14. Taps

14.1 Introduction

A Tap allows you to "listen" to data while it is processed in an existing stream and process the data in a
separate stream. The original stream is unaffected by the tap and isn’'t aware of its presence, similar to
a phone wiretap. (WireTap is included in the standard catalog of EAI patterns and implemented in the
Spring Integration EAI framework used by Spring XD).

Simply put, a Tap is a stream that uses a point in another stream as a source.
Example

The following XD shell commands create a stream f ool and a tap named f oolt ap:

xd: > stream create --nanme fool --definition "time | [og" --deploy
xd: > stream create --nanme fooltap --definition “"tap:streamfool > | og" --deploy

Since a tap is a type of stream, use the st r eam cr eat e command to create the tap. The tap source
is specified using the named channel syntax and always begins with t ap: . In this case, we are tapping
the stream named f 001 specified by : st ream f ool

© Note

st ream is required in this case as it is possible to tap alternate XD targets such as jobs. This
tap consumes data at the source of the target stream.

A tap can consume data from any point along the target stream’s processing pipeline. XD provides a
few ways to tap a stream after a given processor has been applied:

Example - tap after a processor has been applied
If the module name is unique in the target stream, use tap:stream:<stream_name>.<module_name>
If you have a stream called nyst r eam defined as

http | filter --expression=payload.startsWth('A") | transform--
expr essi on=payl oad. t oLower Case() | file

Create a tap after the filter is applied using

‘tap:streamn’ystreamfilter > ..

Example - using the module index

If the module name is repeated in the target stream, use
tap:stream:<stream_name>.<module_name>.<module_index> .

If you have a stream called nyst r eam defined as

http | transform --expressi on=payl oad.toLower Case() | transform --expressi on=payl oad+'!"
file

1.0.0 Spring XD Guide 109

http://www.enterpriseintegrationpatterns.com/WireTap.html
http://static.springsource.org/spring-integration/reference/htmlsingle/#channel-wiretap

Spring XD

Create a tap after the first transformer is applied using

‘tap:stream nystreamtransform1 >

© Note

the nodul e i ndex is the position of the module in the stream, starting with O. It is also valid to
tap the source using this syntax, e.g., tap:stream:mystream.http.0

Example - using a label
You may also use labels to create an alias for a module and reference the label in the tap
If you have a stream called nyst r eam defined as

http | transform --expressi on=payl oad.toLowerCase() | flibble: transform--
expressi on=payl oad. reverse() | file

Create a tap after the second transformer is applied using

tap: streamnystream flibble >

A primary use case for a Tap is to perform realtime analytics at the same time as data is being ingested
via its primary stream. For example, consider a Stream of data that is consuming Twitter search results
and writing them to HDFS. A tap can be created before the data is written to HDFS, and the data piped
from the tap to a counter that correspond to the number of times specific hashtags were mentioned
in the tweets.

Creating a tap on a named channel, a stream whose source is a named channel, or a label is not yet
supported. This is planned for a future release.

You'll find specific examples of creating taps on existing streams in the Analytics section.
14.2 Tap Lifecycle
A side effect of a stream being unaware of any taps on its pipeline is that deleting the stream will not

automatically delete the taps. The taps have to be deleted separately. However if the tapped stream is
re-created, the existing tap will continue to function.

1.0.0 Spring XD Guide 110

Spring XD

15. Type Conversion

15.1 Introduction

XD allows you to declaratively configure type conversion within processing streams using inputType and
outputType parameters on module definitions. Note that general type conversion may be accomplished
easily within a transformer or a custom module. Currently, XD natively supports the following type
conversions commonly used in streams:

* JSON to/from POJO

JSON to/from org.springframework.xd.tuple.Tuple

Object to/from byte[] : Either the raw bytes serialized for remote transport, bytes emitted by a module,
or converted to bytes using Java serialization(requires the object to be Serializable)

String to/from byte|[]

Object to plain text (invokes the object’s toString() method)

Where JSON represents JSON content. Currently, Objects may be unmarshalled from a JSON byte
array or String. Converting to JSON produces a String. Registration of custom type converters is covered
in this section.

15.2 MIME media types

inputType and outputType values are parsed as media types, e.g., application/json or text/
plain;charset=UTF-8. Media types are especially useful for indicating how to convert to String
or byte[] content. XD also uses standard media type format to represent Java types, using
the general type application/x-java-object with a type parameter. For example, application/x-java-
object;type=java.util.Map or application/x-java-object;type=com.bar.Foo . For convenience, you can
specify the class name by itself and XD will map it to the corresponding media type. In addition, XD
provides a namespace for internal types, notably, application/x-xd-tuple to specify a Tuple.

Stream Definition examples

twittersearch --query='#springone2gx' --outputType=application/json | file

The twittersearch module produces Tweet objects. Producing a domain object is useful in many cases,
however writing a Tweet directly to a file would produce something like:

org.springframework.social.twitter.api. Tweet@6e878e7c

Arguably, this output is not as useful as the JSON representation. Setting the outputType to application/
json causes XD to convert the default type to a JSON string before piping it to the next module. This
is almost equivalent to:

twittersearch --query='#springone2gx' | file --inputType=application/json

There are some technical differences: In the first case, the transformation is done before the
object is marshalled (serialized) for remote transport. In the second case, the transformation follows
unmarshalling. Perhaps a more significant difference is that a tap created on the file sink would consume
JSON in the first case, and Tweets in the second.

1.0.0 Spring XD Guide 111

https://github.com/spring-projects/spring-xd/blob/master/spring-xd-tuple/src/main/java/org/springframework/xd/tuple/Tuple.java
https://github.com/spring-projects/spring-social-twitter/blob/master/spring-social-twitter/src/main/java/org/springframework/social/twitter/api/Tweet.java

Spring XD

twittersearch --query='#springone2gx’ transform - -

i nput Type=appl i cati on/ x-xd-tuple ...

- -out put Type=appl i cation/json

The above example illustrates a combination of outputType and inputType conversion. the Tweet is
converted to a JSON string which is then converted to a Tuple. XD does not know how to convert an
arbitrary type to a Tuple, but it can write an object to JSON and read JSON into a Tuple, so we have
effectively performed an Object to Tuple conversion. In many cases, combining conversion this way is
not necessary, and care must be taken since XD does not validate that such combinations are possible.

The following serializes a java.io.Serializable object to a file. Presumably the foo module outputs a
Serializable type. If not, this will result in an exception. If remote transport is configured, the output of
foo will be marshalled using XD’s internal serialization mechanism. The object will be reconstituted in
the file module’s local JVM and then converted to a byte array using Java serialization.

‘foo | --input Type=application/x-java-serialized-object file

15.3 Media types and Java types

Internally, XD implements type conversion using Spring Integration’s datatype channels. The data type
channel converts payloads to the configured datatype using Spring’'s MessageConverter.

o

Note

The use of MessageCoverter for data type channels was introduced in Spring Integration 4 to
pass the Message to the converter method to allow it to access the Message’s content-type
header. This provides greater flexibility. For example, it is now possible to support multiple
strategies for converting a String or byte array to a POJO, depending on the content-type header.

When XD processes a module with a declared type conversion, it modifies the module’s input and/or
output channel definition to set the required Java type and registers MessageConverters associated
with the target media type and Java type to the channel. The type conversions XD provides out of the
box are summarized in the following table:

Source Payload Target Payload content-type outputType/ Comments
header inputType
POJO JSON String ignored application/json
Tuple JSON String ignored application/json JSON is tailored
for Tuple
POJO String (toString()) ignored text/plain,
java.lang.String

POJO byte[] (java.io ignored application/x-java-

serialized) serialized-object
JSON byte[] or POJO application/json application/x-java-
String (or none) object
byte[] or String Serializable application/x-java- application/x-java-

serialized-object

object

1.0.0

Spring XD Guide

112

http://docs.spring.io/spring-integration/docs/latest-ga/reference/htmlsingle/#channel-configuration
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/messaging/converter/MessageConverter.html

Spring XD

Source Payload Target Payload content-type outputType/ Comments
header inputType

JSON byte[] or Tuple application/json application/x-xd-

String (or none) tuple

byte[] String any text/plain, will apply any

java.lang.String Charset specified
in the content-
type header

String byte[] any application/octet- will apply any
stream Charset specified
in the content-
type header

Caveats

Note that that inputType and outputType parameters only apply to payloads that require type conversion.
For example, if a module produces an XML string and outputType=application/json, the payload will not
be converted from XML to JSON. This is because the payload at the module’s output channel is already
a String so no conversion will be applied at runtime.

1.0.0 Spring XD Guide 113

Spring XD

16. Batch Jobs

16.1 Introduction

One of the features that XD offers is the ability to launch and monitor batch jobs based on Spring Batch.
The Spring Batch project was started in 2007 as a collaboration between SpringSource and Accenture
to provide a comprehensive framework to support the development of robust batch applications. Batch
jobs have their own set of best practices and domain concepts which have been incorporated into
Spring Batch building upon Accenture’s consulting business. Since then Spring Batch has been used
in thousands of enterprise applications and is the basis for the recent JSR standardization of batch
processing, JSR-352.

Spring XD builds upon Spring Batch to simplify creating batch workflow solutions that span traditional
use-cases such as moving data between flat files and relational databases as well as Hadoop use-
cases where analysis logic is broken up into several steps that run on a Hadoop cluster. Steps specific
to Hadoop in a workflow can be MapReduce jobs, executing Hive/Pig scripts or HDFS operations.

16.2 Workflow

The concept of a workflow translates to a Job, not to be confused with a MapReduce job. A Job is a
directed graph, each node of the graph is a processing Step. Steps can be executed sequentially or in
parallel, depending on the configuration. Jobs can be started, stopped, and restarted. Restarting jobs is
possible since the progress of executed steps in a Job is persisted in a database via a JobRepository.
The following figures shows the basic components of a workflow.

Job
Step

Launches ¥
Job launcher - : -
Step Step

Step

Updates

Updates
Y

Job repository

Figure 16.1.

A Job that has steps specific to Hadoop is shown below.

1.0.0 Spring XD Guide 114

http://www.springsource.org/spring-batch
https://jcp.org/en/jsr/detail?id=352

Spring XD

HDFS

PIG

>

MR Hive

N

HDFS

Figure 16.2.

A JobLauncher is responsible for starting a job and is often triggered via a scheduler. Other options to
launch a job are through Spring XD’s RESTful administration API, the XD web application, or in response
to an external event from and XD stream definition, e.qg. file polling using the file source.

16.3 Features

Spring XD allows you to create and launch jobs. The launching of a job can be triggered using a cron
expression or in reaction to data on a stream. When jobs are executing, they are also a souce of
event data that can be subscribed to by a stream. There are several type of events sent during a job’s
execution, the most common being the status of the job and the steps taken within the job. This bi-
direction communication between stream processing and batch processing allows for more complex
chains of processing to be developed.

As a starting point, jobs for the following cases are provided to use out of the box

Poll a Directory and import CSV files to HDFS

Import CSV files to JIDBC

HDFS to JDBC Export

JDBC to HDFS Import

HDFS to MongoDB Export
These are described in the section below.

This purpose of this section is to show you how to create, schedule and monitor a job.

1.0.0 Spring XD Guide 115

Spring XD

16.4 Developing your Job

The Jobs definitions provided as part of the Spring XD distribution as well as those included in the Spring
XD Samples repository can be used a basis for building your own custom Jobs. The development of a
Job largely follows the development of a Spring Batch job, for which there are several references.

* Spring Batch home page

* Spring Batch In Action - Manning

* Pro Spring Batch - APress

For help developing Job steps specific to Hadoop, e.g. HDFS, Pig, Hive, the Spring XD Samples is
useful as well as the following resources

» Spring for Apache Hadoop home page

» Spring Data - O’Reilly - Chapter 13

Once your Jobs have been developed and unit tested, they are integrated into Spring XD by copying
the resulting .jar file and Job XML definition to $XD_HOME/lib and $XD_HOME/modules/jobs.

16.5 Creating a Job

To describe the creation of a job we will use the job definition that is part of the batch-simple example.
To create a job in the XD shell, execute the job create command composed of:

* name - the "name" that will be associated with the Job

« definition - the name of the context file that describes the tasklet.

So using our example above where we have a myjob.xml job definition file in the $XD_HOME/modules/
jobs directory, this will look like:

xd: > job create --nane hel |l oSpri ngXD --definition "myjob" --deploy

Note: by default, deploy is set to false. "--deploy" or "--deploy true" will deploy the job along with job
creation.

In the logging output of the XDContainer you should see the following:

14:17: 46, 793 | NFO htt p- bi 0o- 8080- exec-5 j ob. JobPl ugi n: 87 - Configuring nodul e

with the followi ng properties: {nunberFornat=, dateFornat=, nakeUni que=true

xd. j ob. name=hel | oSpri ngXD}

14:17: 46, 837 | NFO htt p- bi 0- 8080- exec-5 nodul e. Si npl eModul e: 140 - initialized nodul e

Si npl eModul e [nane=nyj ob, type=job, group=hell oSpringXD, index=0]

14:17: 46, 840 | NFO htt p- bi o- 8080- exec-5 nodul e. Si npl eModul e: 154 - started nodul e

Si npl eModul e [nane=j ob, type=job, group=helloSpringXD, index=0]

14:17: 46, 840 | NFO htt p- bi o- 8080-exec-5 nodul e. Modul eDepl oyer: 152 - | aunched job nodul e
hel | oSpri ngXD: nyj ob: O

Creating Jobs - Additional Options

When creating jobs, the following options are available to all job definitions:

1.0.0 Spring XD Guide 116

https://github.com/spring-projects/spring-xd-samples
https://github.com/spring-projects/spring-xd-samples
http://projects.spring.io/spring-batch/
http://www.manning.com/templier/
http://www.apress.com/9781430234524
https://github.com/spring-projects/spring-xd-samples
http://projects.spring.io/spring-hadoop/
http://shop.oreilly.com/product/0636920024767.do
https://github.com/spring-projects/spring-xd-samples/tree/master/batch-simple

Spring XD

dateFormat
The optional date format for job parameters (default: yyyy/ MM dd)

numberFormat
Defines the number format when parsing numeric parameters (default:
Nunber For mat . get | nst ance(Local e. US))

makeUnique
Shall job parameters be made unique? (default: t r ue)

Also, similar to the st r eam cr eat e command, the j ob cr eat e command has an optional - - depl oy
option to create the job definition and deploy it. - - depl oy option is false by default.

Below is an example of some of these options combined:

‘job create myjob --definition "fooJob --nmakeUni que=fal se"

Remember that you can always find out about available options for a job by using the nodul e i nf o
command.

16.6 Deployment manifest support for job

When deploying batch job you can provide a deployment manifest. Deployment manifest properties for
jobs are the same as for streams, you can declare

e The number of job modules to deploy
» The criteria expression to use for matching the job to available containers
For example,

job create nyjob --definition "fooJob --makeUni que=fal se"

job depl oy nyjob --properties
"modul e. f ooJob. count =3, nbdul e. fooJob. criteri a=groups. cont ai ns(' hdf s- cont ai ners-group')"

The above deployment manifest would deploy 3 number of f ooJob modules into containers whose
group name matches "hdfs-containers-group".

When a batch job is launched/scheduled, the job module that picks up the job launching request
message executes the batch job. To support partitioning of the job across multiple containers, the job
definition needs to define how the job will be partitioned. The type of partitioning depends on the type
of the job, for example a job reading from JDBC would partition the data in a table by dividing up the
number of rows and a job reading files form a directory would partition on the number of files available.

In the M7 release, only the FTP to HDFS job includes support for partitioning. Support for other out
of the box jobs will be provided in a future release. To add partitioning support for your own jobs you
should import singlestep-partition-support.xml in your job definition. This provides the infrastructure so
that the job module that processes the launch request can communicate as the master with the other
job modules that have been deployed. You will also need to provide an implementation of the Partitioner
interface.

For more information on the deployment manifest, please refer here

1.0.0 Spring XD Guide 117

https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/resources/META-INF/spring-xd/batch/singlestep-partition-support.xml
http://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/partition/support/Partitioner.html
https://github.com/spring-projects/spring-xd/wiki/XD-Distributed-Runtime#deployment-manifest

Spring XD

16.7 Launching a job

XD uses triggers as well as regular event flow to launch the batch jobs. So in this section we will cover
how to:

» Launch the Batch Job Ad-hoc
» Launch the Batch Job using a named Cron-Trigger

» Launch the Batch Job as sink.

Ad-hoc

To launch a job one time, use the launch option of the job command. So going back to our example
above, we've created a job module instance named helloSpringXD. Launching that Job Module Instance
would look like:

xd: > job | aunch hel | oSpri ngXD

In the logging output of the XDContainer you should see the following

16: 45: 40, 127 | NFO htt p- bi 0- 9393-exec-1 j ob. JobPl ugi n: 98 - Configuring nodule with the
follow ng properties: {nunmberFornat=, dateFornmat=, makeUni que=true, xd.job. name=nyj ob}
16: 45: 40,185 | NFO htt p- bi 0- 9393-exec-1 nodul e. Si npl eMbdul e: 140 - initialized nodul e:
Si npl eModul e [nane=j ob, type=job, group=nyjob, index=0 @a9ecb9d]
16: 45: 40, 198 | NFO htt p- bi 0- 9393-exec-1 nodul e. Si npl eModul e: 161 - started nodul e:
Si npl eModul e [nane=j ob, type=job, group=nyjob, index=0 @a9ech9d]
16: 45: 40,199 | NFO htt p- bi 0- 9393-exec-1 nodul e. Modul eDepl oyer: 161 - depl oyed Si npl eMbdul e
[name=j ob, type=j ob, group=nyjob, index=0 @a9ech9d]
Hel l o Spring XD

To re-launch the job just execute the launch command. For example:

xd: > job launch hell oSpri ngXD

Launch the Batch using Cron-Trigger
To launch a batch job based on a cron scheduler is done by creating a stream using the trigger source.

xd: > stream create --nanme cronStream --definition "trigger --cron="0/5 * * * * *x' >
queue: j ob: nyCronJob" --depl oy

A batch job can receive parameters from a source (in this case a trigger) or process. A trigger uses the
--payload expression to declare its payload.

xd: > stream create --nane cronStream --definition "trigger --cron="0/5 * * * * x' ..
payl oad={\ "paraml\":\"Kenny\"} > queue:job: myCronJob" --depl oy

© Note

The payload content must be in a JSON-based map representation.

To pause/stop future scheduled jobs from running for this stream, the stream must be undeployed for
example:

xd: > stream undepl oy --nanme cronStream

1.0.0 Spring XD Guide 118

Spring XD

Launch the Batch using a Fixed-Delay-Trigger

A fixed-delay-trigger is used to launch a Job on a regular interval. Using the --fixedDelay parameter you
can set up the number of seconds between executions. In the example below we are running myXDJob
every 10 seconds and passing it a payload containing a single attribute.

xd: > streamcreate --nanme fdStream --definition "trigger --payload={\"parant\":
\"fixedDel ayKenny\ "} --fixedDel ay=5 > queue:j ob: myXDJob" --depl oy

To pause/stop future scheduled jobs from running for this stream, you must undeploy the stream for
example:

xd: > stream undepl oy --nanme cronStream

Launch job as a part of event flow

A batch job is always used as a sink, with that being said it can receive messages from sources (other
than triggers) and processors. In the case below we see that the user has created an http source (http
source receives http posts and passes the payload of the http message to the next module in the stream)
that will pass the http payload to the "myHttpJob".

‘ stream create --nanme jobStream--definition "http > queue:job: myH t pJob" --depl oy

To test the stream you can execute a http post, like the following:

xd: > http post --target http://local host: 9000 --data "{\"paranmtl\":\"fi xedDel ayKenny\"}"

16.8 Retrieve job notifications

Spring XD offers the facilities to capture the notifications that are sent from the job as it is executing.
When a batch job is deployed, by default it registers the following listeners along with pub/sub channels
that these listeners send messages to.

» Job Execution Listener
e Chunk Listener
e |tem Listener

» Step Execution Listener

Skip Listener

Along with the pub/sub channels for each of these listeners, there will also be a pub/sub channel that
the aggregated events from all these listeners are published to.

In the following example, we setup a Batch Job called myHttpJob. Afterwards we create a stream that
will tap into the pub/sub channels that were implicitly generated when the myHttpJob job was deployed.

To receive aggregated events

The stream receives aggregated event messages from all the default batch job listeners and sends
those messages to the log.

1.0.0 Spring XD Guide 119

Spring XD

xd>j ob create --name nyH tpJob --definition "httpJob" --depl oy
xd>stream create --nanme aggregatedEvents --definition "tap:job: myH tpJob >l og" --depl oy
xd>j ob | aunch myHtt pJob

Note: The syntax for the tap that receives the aggregated events is: t ap: j ob: <j ob- nane>

In the logging output of the container you should see something like the following when the job completes
(with the aggregated events

09: 55: 53,532 WARN Si npl eAsyncTaskExecut or-1 | ogger. aggr egat edEvent s: 150
- JobExecution: id=2, version=1l, startTime=Sat Apr 12 09:55:53 PDT 2014,
endTi me=nul |, | ast Updat ed=Sat Apr 12 09:55:53 PDT 2014, status=STARTED
exi t St at us=exi t Code=UNKNOWN; exi t Descri pti on=, job=[Jobl nstance: id=2, version=0
Job=[myHt t pJob]], jobParaneters=[{randon=0. 07002785662707867}]

09: 55: 53,554 WARN Si npl eAsyncTaskExecutor-1 | ogger. aggr egat edEvents: 150 - St epExecuti on
i d=2, version=1, nanme=stepl, status=STARTED, exit Status=EXECUTI NG, readCount=0
filterCount=0, witeCount=0 readSki pCount=0, witeSkipCount=0, processSkipCount=0
conmi t Count =0, rol | backCount =0, exitDescription=

09: 55: 53,561 WARN Si npl eAsyncTaskExecutor-1 | ogger. aggr egat edEvents: 150 -
XdChunkCont ext | nf o [conpl et e=f al se, stepExecuti on=StepExecution: id=2, version=1
name=st epl, status=STARTED, exit Status=EXECUTI NG readCount=0, filterCount=0
wri t eCount =0 readSki pCount =0, writeSki pCount=0, processSki pCount=0, commi t Count=0
rol | backCount =0, exitDescription=, attributes={}]

09: 55: 53,567 WARN Si npl eAsyncTaskExecutor-1 | ogger. aggr egat edEvents: 150 -
XdChunkCont ext I nfo [conpl et e=fal se, stepExecuti on=St epExecution: id=2, version=2
nane=st epl, status=STARTED, exit Status=EXECUTI NG, readCount=0, filterCount=0
wri t eCount =0 readSki pCount =0, writeSki pCount=0, processSki pCount=0, commtCount=1
rol | backCount =0, exitDescription=, attributes={}]

09: 55: 53,573 WARN Si npl eAsyncTaskExecut or-1 | ogger. aggregat edEvents: 150 - St epExecution
i d=2, version=2, name=stepl, status=COVPLETED, exit Status=COWLETED, readCount =0
filterCount=0, witeCount=0 readSki pCount=0, witeSkipCount=0, processSki pCount=0
conmmi t Count =1, rol | backCount =0, exitDescription=

09: 55: 53,580 WARN Si npl eAsyncTaskExecutor-1 | ogger. aggr egat edEvents: 150 - JobExecuti on
id=2, version=1, startTime=Sat Apr 12 09:55:53 PDT 2014, endTi me=Sat Apr 12
09: 55: 53 PDT 2014, | astUpdated=Sat Apr 12 09:55:53 PDT 2014, status=COVPLETED,
exi t St at us=exi t Code=COVPLETED; exi t Descri pti on=, job=[Joblnstance: id=2, version=0
Job=[myHt t pJob]], jobParaneters=[{randonr0. 07002785662707867}]

To receive job execution events

xd>j ob create --nane nyHttpJob --definition "httpJob" --deploy

xd>stream create --nane jobExecuti onEvents --definition "tap:job: myHttpJob.job >l og" --
depl oy

xd>j ob | aunch nyHtt pJob

Note: The syntax for the tap that receives the job execution events is: t ap: j ob: <j ob- nanme>. j ob

In the logging output of the container you should see something like the following when the job completes

1.0.0 Spring XD Guide 120

Spring XD

10: 06: 41,579 WARN Si npl eAsyncTaskExecutor-1 | ogger.j obExecuti onEvents: 150
- JobExecution: id=3, version=1, startTime=Sat Apr 12 10: 06: 41 PDT 2014,
endTi me=nul |, | ast Updated=Sat Apr 12 10: 06:41 PDT 2014, status=STARTED,
exi t St at us=exi t Code=UNKNOWN; exi t Descri pti on=, job=[Jobl nstance: id=3, version=0,
Job=[nyHt t pJob]], | obParaneters=[{randonr0. 3774227747555795}]

10: 06: 41, 626 | NFO Si npl eAsyncTaskExecutor-1 support. Si npl eJobLauncher: 136
- Job: [Flowdob: [name=nyH tpJob]] conpleted with the follow ng paraneters:
[{random=0. 3774227747555795}] and the follow ng status: [COVPLETED]

10: 06: 41, 626 WARN Si npl eAsyncTaskExecut or-1 | ogger.j obExecuti onEvents: 150 -
JobExecution: id=3, version=1, startTime=Sat Apr 12 10:06: 41 PDT 2014, endTi me=Sat
Apr 12 10: 06: 41 PDT 2014, | astUpdated=Sat Apr 12 10:06: 41 PDT 2014, status=COVPLETED,
exi t St at us=exi t Code=COVPLETED; exi t Descri pti on=, job=[Joblnstance: id=3, version=0,
Job=[myHt t pJob]], jobParaneters=[{randon=0. 3774227747555795}]

To receive step execution events

xd>j ob create --name nyHttpJob --definition "httpJob" --deploy

xd>stream create --nane stepExecutionEvents --definition "tap:job:nyHtpJob.step >l og" --
depl oy

xd>j ob | aunch myHtt pJob

Note: The syntax for the tap that receives the step execution events is: t ap: j ob: <j ob- nanme>. st ep

In the logging output of the container you should see something like the following when the job completes

10: 13: 16, 072 WARN Si npl eAsyncTaskExecutor-1 | ogger. st epExecuti onEvents: 150 -
St epExecution: id=6, version=1, nanme=stepl, status=STARTED, exit Status=EXECUTI NG
readCount =0, filterCount=0, witeCount=0 readSki pCount=0, writeSkipCount=0,
processSki pCount =0, commit Count =0, roll backCount=0, exitDescription=

10: 13: 16,092 WARN Si npl eAsyncTaskExecutor-1 | ogger. st epExecuti onEvents: 150 -
St epExecution: id=6, version=2, nane=stepl, status=COWLETED, exit Status=COVPLETED,
readCount =0, filterCount=0, witeCount=0 readSki pCount=0, writeSkipCount=0,
processSki pCount =0, conmit Count =1, rollbackCount=0, exitDescription=

To receive item, skip and chunk events

xd>j ob create --name nyH tpJob --definition "httpJob" --depl oy

xd>stream create --nane itenEvents --definition "tap:job: myHttpJob.item >l og" --depl oy
xd>stream create --nane ski pEvents --definition "tap:job: nmyHttpJob. skip >l o0g" --deploy
xd>stream create --nanme chunkEvents --definition "tap:job: myHtt pJob. chunk >l og" --depl oy

xd>j ob [aunch nyHttpJob

Note: The syntax for the tap that receives the item events: t ap: j ob: <j ob- nane>. i t emfor skip
events: t ap: j ob: <j ob- nane>. ski p and for chunk events: t ap: j ob: <j ob- nane>. chunk

To disable the default listeners

xd>j ob create --nanme nyHttpJob --definition "httpJob --Ilisteners=disable" --depl oy

To select specific listeners

To select specific listeners, specify comma separated list in - - | i st ener s option. Following example
illustrates the selection of job and step execution listeners only:

1.0.0 Spring XD Guide 121

Spring XD

xd>j ob create --name nyH tpJob --definition "httpJob --1isteners=job, step" --depl oy

Note: List of options are: job, step, item, chunk and skip The aggregated channel is registered if at least
one of these default listeners are enabled.

For a complete example, please see the Batch Notifications Sample which is part of the Spring XD
Samples repository.

16.9 Removing Batch Jobs
Batch Jobs can be deleted by executing:

xd: > job destroy hell oSpringXD

Alternatively, one can just undeploy the job, keeping its definition for a future redeployment:

xd: > j ob undepl oy hel |l oSpri ngXD

16.10 Pre-Packaged Batch Jobs

Spring XD comes with several batch import and export modules. You can run them out of the box or
use them as a basis for building your own custom modules.

Note HDFS Configuration

To use the hdfs based jobs below, XD needs to have append enabled for hdfs. Update the hdfs-site.xml
with the following settings:

For Hadoop 1.x

<property>
<nane>df s. support. broken. append</ nane>
<val ue>t rue</ val ue>

</ property>

For Hadoop 2.x

<property>
<nane>df s. support. append</ nane>
<val ue>t rue</ val ue>

</ property>

Poll a Directory and Import CSV Files to HDFS (fi | epol | hdf s)

This module is designed to be driven by a stream polling a directory. It imports data from CSV files and
requires that you supply a list of named columns for the data using the names parameter. For example:

xd: > job create nyjob --definition "filepollhdfs --names=forenane, surnane, address" --
depl oy

You would then use a stream with a file source to scan a directory for files and drive the job. A separate
file will be started for each job found:

xd: > stream create csvStream --definition “"file --ref=true --dir=/nycsvdir --pattern=*.csv
> queue: j ob: nyj ob" --depl oy

1.0.0 Spring XD Guide 122

https://github.com/spring-projects/spring-xd-samples/tree/master/batch-notifications
https://github.com/spring-projects/spring-xd-samples
https://github.com/spring-projects/spring-xd-samples

Spring XD

The job also supports a boolean del et eFi | es option if you want the files to be removed after they
have been successfully imported.

Import CSV Files to JDBC (fi | ej dbc)

A module which loads CSV files into a JDBC table using a single batch job. By default it uses the internal
HSQL DB which is used by Spring Batch. Refer to how module options are resolved for further details
on how to change defaults (one can of course always use - - f oo=bar notation in the job definition to
achieve the same effect). The job should be defined with the r esour ces parameter defining the files
which should be loaded. It also requires a nanes parameter (for the CSV field names) and these should
match the database column names into which the data should be stored. You can either pre-create the
database table or the module will create it for you if youuse - - i ni ti al i zeDat abase=t r ue when the
job is created. The table initialization is configured in a similar way to the JDBC sink and uses the same
parameters. The default table name is the job hame and can be customized by setting the t abl eNane
parameter. As an example, if you run the command

xd:> job create nyjob --definition "filejdbc --resources=file:///mycsvdir/*.csv --
names=f or enane, sur nane, addr ess --tabl eNanme=peopl e --initializeDatabase=true" --deploy

it will create the table "people” in the database with three varchar columns called "forename”, "surname"
and "address". When you launch the job it will load the files matching the resources pattern and write
the data to this table. As with the fi | epol | hdf s job, this module also supports the del et eFi | es
parameter which will remove the files defined by the r esour ces parameter on successful completion
of the job.

Launch the job using:

xd: > job launch nyjob

HDFS to JDBC Export (hdf sj dbc)

This module functions very similarly to the f i | ej dbc one except that the resources you specify should
actually be in HDFS, rather than the OS filesystem.

xd:> job create nyjob --definition "hdfsjdbc --resources=/xd/data/*.csv --
names=f or enane, sur nane, addr ess --tabl eNanme=peopl e --initializeDatabase=true" --depl oy

Launch the job using:

xd: > job | aunch nyj ob

JDBC to HDFS Import (j dbchdf s)

Performs the reverse of the previous module. The database configuration is the same as for f i | ej dbc
but without the initialization options since you need to already have the data to import into HDFS. When
creating the job, you must either supply the select statement by setting the sql parameter, or you can
supply both t abl eNanme and col utms options (which will be used to build the SQL statement).

To import data from the database table sone_t abl e, you could use

xd: > job create nmyjob --definition "jdbchdfs --sqgl =" sel ect col1,col2,col3 from
sone_table' " --depl oy

1.0.0 Spring XD Guide 123

Spring XD

You can customize how the data is written to HDFS by supplying the options di r ect ory (defaults
to/xd/ (job nane)), fil eName (defaults to job name), r ol | over (in bytes, default 21000000) and
fil eExt ensi on (defaults to csv).

Launch the job using:

xd: > job launch nyjob

HDFS to MongoDB Export (hdf snongodb)

Exports CSV data from HDFS and stores it in a MongoDB collection which defaults to the job name.
This can be overridden with the col | ect i onNane parameter. Once again, the field names should be
defined by supplying the names parameter. The data is converted internally to a Spring XD Tupl e and
the collection items will have an i d matching the tuple’s UUID. You can override this by setting the
i dFi el d parameter to one of the field names if desired.

An example:

xd: > job create nyjob --definition "hdfsnmongodb --resources=/data/*.log --
names=enpl oyeel d, f or enane, sur nane, address --i dFi el d=enpl oyeel d --col | ecti onNane=peopl e" --
depl oy

FTP to HDFS Export (f t phdf s)

Copies files from FTP directory into HDFS. Job is partitioned in a way that each separate file copy is
executed on its own partitioned step.

An example which copies files:

job create --name ftphdfsjob --definition "ftphdfs --host=ftp.exanple.com--port=21" --
depl oy

job launch --nanme ftphdfsjob --params {"renmoteDirectory":"/pub/files","hdfsDirectory":"/
ftp"}

Full path is preserved so that above command would result files in HDFS shown below:

[ftp/pub/files
[ftp/pub/files/filel.txt
/[ftp/pub/files/file2. txt

Parameters for Job definition host , port, user nane and passwor d can be used to control access
to the FTP server.

Parameters for Job execution, r enot eDi rect ory and hdf sDi rect ory are used to define source
and destination directories.

1.0.0 Spring XD Guide 124

Spring XD

17. Analytics

17.1 Introduction

Spring XD provides support for the real-time evaluation of various machine learning scoring algorithms
as well simple real-time data analytics using various types of counters and gauges. The analytics
functionality is provided via modules that can be added to a stream. In that sense, real-time analytics
is accomplished via the same exact model as data-ingestion. It's possible that the primary role of a
stream is to perform real-time analytics, but it's quite common to add a tap to initiate a secondary stream
where analytics, e.g. a field-value-counter, is applied to the same data being ingested through a primary
stream. You will see both approaches in the examples below.

17.2 Predictive analytics

Spring XD’s support for implementing predictive analytics by scoring analytical models that
leverage machine learning algorithms begins with an extensible class library foundation upon which
implementations can be built, such as the PMML Module that we describe here.

That module integrates with the JPMML-Evaluator library that provides support for a wide range of model
types and is interoperable with models exported from R, Rattle, KNIME, and RapidMiner. For counter
and gauge analytics, in-memory and Redis implementations are provided.

Incorporating the evaluation of machine learning algorithms into stream processing is as easy as using
any other processing module. Here is a simple example

http --output Type=application/x-xd-tuple | analytic-pmm
--location=/nodel s/iris-flower-naive-bayes. pnm . xni
--input Fi el dMappi ng=
' sepal Lengt h: Sepal . Lengt h
sepal W dt h: Sepal . Wdt h,
pet al Lengt h: Petal . Lengt h
pet al Wdt h: Petal . Wdt h'
- -out put Fi el dMappi ng=" Predi ct ed_Speci es: predi ct edSpeci es' | |o0g"

The ht t p source converts posted data to a Tuple. The anal yti c- prm processor loads the model
from the specifed file and creates two mappings so that fields from the Tuple can be mapped into the
input and output model names. The | og sink writes the payload of the event message to the log file
of the XD container.

Posting the following JSON data to the http source

{

"sepal Length": "6.4
"sepal Wdth": "3.2
"petal Length": "4.5
"petal Wdth": "1.5

}

will produce output in the log file as shown below.

1.0.0 Spring XD Guide 125

https://github.com/spring-projects/spring-xd-modules/tree/master/analytics-ml-pmml
https://github.com/jpmml/jpmml-evaluator
https://github.com/jpmml/jpmml-evaluator#features
https://github.com/jpmml/jpmml-evaluator#features
http://www.r-project.org/
http://rattle.togaware.com/
http://www.knime.org/
http://rapid-i.com/content/view/181/190/
http://redis.io/

Spring XD

"id":"1722ec00- baad- 11e3- b988- 005056c00008",
"timestanp": 1396473833152,

"sepal Lengt h":"6. 4",

"sepal Wdth":"3.2",

"petal Length":"4.5",

"petal Wdth":"1.5",

"predi ct edSpeci es": "versi col or"

The next section on analytical models goes into more detail on the general infrastructure

17.3 Analytical Models

We provide some core abstractions for implementing analytical models in stream processing
applications. The main interface for integrating analytical models is Analytic. Some analytical models
need to adjust the domain input and the model output in some way, therefore we provide a special base
class MappedAnalytic which has core abstractions for implementing that mapping via InputMapper
and OutputMapper.

Since Spring XD 1.0.0.M6 we support the integration of analytical models, also called statistical models
or mining models, that are defined via PMML. PMML is the abbreviation for Predictive Model Markup
Language and is a standard XML representation that allows specifications of different mining models,
their ensembles, and associated preprocessing.

© Note

PMML is maintained by the Data Mining Group (DMG) and supported by several state-of-the-
art statistics and data mining software tools such as InfoSphere Warehouse, R / Rattle, SAS
Enterprise Miner, SPSS®, and Weka. The current version of the PMML specification is 4.2 at
the time of this writing. Applications can produce and consume PMML models, thus allowing an
analytical model created in one application to be implemented and used for scoring or prediction
in another.

PMML is just one of many other technologies that one can integrate to implement analytics with, more
will follow in upcoming releases.

Modeling and Evaluation

Analytical models are usually defined by a statistician aka data scientist or quant by using some
statistical tool to analyze the data and build an appropriate model. In order to implement those models
in a business application they are usually transformed and exported in some way (e.g. in the form of a
PMML definition). This model is then loaded into the application which then evaluates it against a given
input (event, tuple, example).

Modeling

Analytical models can be defined in various ways. For the sake of brevity we use R from the r-project to
demonstrate how easy it is to export an analytical model to PMML and use it later in stream processing.

For our example we use the iris example dataset in R to generate a classifier for iris flower species by
applying the Naive Bayes algorithm.

1.0.0 Spring XD Guide 126

http://en.wikipedia.org/wiki/Predictive_Model_Markup_Language
http://www.dmg.org/v4-2/GeneralStructure.html
http://www.r-project.org
http://en.wikipedia.org/wiki/Iris_flower_data_set
http://en.wikipedia.org/wiki/Naive_Bayes_classifier

Spring XD

library(el071) # Load library with the naive bayes al gorithm support.
l'ibrary(pmm) # Load |ibrary with PMML export support.
data(iris) # Load the | RIS exanpl e dataset

#Hel per function to split the given dataset into a dataset used for training (trainset)
and (testset) used for evaul ation
splitDataFrame <- function(datafranme, seed = NULL, n = trainSize) {

if ('is.null(seed)){
set.seed(seed)

i ndex <- 1:nrow datafrane)
trai ni ndex <- sanpl e(index, n)
trainset <- datafrange[trainindex,]
testset <- datafrange[-trainindex,]

list(trainset = trainset, testset = testset)

datasets <- splitDataFrame(iris, seed = 1337, n= round(0.95 * nromiris)))

Sepal . Length Sepal . Wdth Petal.Length Petal.Wdth
nodel <- naiveBayes(datasets$trainset[,1:4], datasets$trainset[,5])

of the nodel
nmodel Name = "iris-flower-classifier"
external ld = 42

#Convert the given nodel into a PMML nodel definition
pnm Definition = pmi . nai veBayes(nodel , nbdel . nane=past e(nodel Nane, external | d, sep = ";"),
pr edi ct edFi el d=' Speci es')

#Print the PMML definition to stdout
cat (toString(pm Definition))

#We want to use 95% of the IRIS data as training data and 5% as test data for eval uation.

#Create a naive Bayes classifier to predict iris flower species (iris[,5]) from[,1:4] =

#The nane of the nodel and it's externalld could be used to uniquely identify this version

The r script above should produce the following PMML document that contains the abstract definition

of the naive bayes classifier that we derived from the training dataset of the IRIS dataset.

1.0.0 Spring XD Guide

127

Spring XD

<PMWML version="4.1" xm ns="http://ww.dng. org/ PMML-4_1" xm ns: xsi ="http://ww. w3. org/ 2001/
XM_.Schema- i nst ance" xsi:schemaLocati on="http://ww. dng. org/ PMM.-4_1 http://ww. dng. or g/
v4- 1/ pm - 4- 1. xsd" >
<Header copyright="Copyright (c) 2014 tom' description="Nai veBayes Mbdel ">
<Ext ensi on name="user" val ue="tont extender="Rattle/PMWL"/>
<Appl i cation nane="Rattle/ PMM." version="1.4"/>
<Ti mest anp>2014- 04- 02 13: 22: 15</ Ti mest anp>
</ Header >
<Dat aDi cti onary nunber O Fi el ds="6">
<Dat aFi el d name="Speci es" optype="categorical" dataType="string">
<Val ue val ue="setosa"/>
<Val ue val ue="versicolor"/>
<Val ue val ue="virginica"/>
</ Dat aFi el d>
<Dat aFi el d name="Sepal . Lengt h" optype="conti nuous" dataType="doubl e"/>
<Dat aFi el d name="Sepal . Wdt h" optype="conti nuous" dataType="doubl e"/>
<Dat aFi el d nanme="Pet al . Lengt h" optype="conti nuous" dataType="doubl e"/>
<Dat aFi el d name="Petal . Wdth" optype="continuous" dataType="doubl e"/>
<Dat aFi el d name="Di scret ePl aceHol der" optype="categorical" dataType="string">
<Val ue val ue="pseudoVal ue"/ >
</ Dat aFi el d>
</ Dat aDi cti onary>
<Nai veBayesModel nodel Nanme="iris-flower-classifier;42"
functionNane="cl assi fication" threshol d="0.001">
<M ni ngSchema>
<M ni ngFi el d nane="Speci es" usageType="predi cted"/ >
<M ni ngFi el d nane="Sepal . Lengt h" usageType="active"/>
<M ni ngFi el d nane="Sepal . Wdth" usageType="active"/>
<M ni ngFi el d nane="Pet al . Lengt h" usageType="active"/>
<M ni ngFi el d nane="Petal . Wdth" usageType="active"/>
<M ni ngFi el d nane="Di scr et ePl aceHol der" usageType="active"
m ssi ngVal ueRepl acenent =" pseudoVal ue"/ >
</ M ni ngSchema>
<Qut put >
<Qut put Fi el d name="Predi ct ed_Speci es" feature="predictedVal ue"/>
<Qut put Fi el d nane="Probability_setosa" optype="continuous"
dat aType="doubl e" feature="probability" val ue="setosa"/>
<Qut put Fi el d name="Probability_versicol or" optype="continuous"
dat aType="doubl e" feature="probability" val ue="versicolor"/>
<Qut put Fi el d nane="Probability_virginica" optype="continuous"
dat aType="doubl e" feature="probability" val ue="virginica"/>
</ Qut put >
<Bayesl| nput s>
<Ext ensi on>
<Bayesl| nput fi el dName="Sepal . Lengt h">
<Tar get Val ueSt at s>
<Tar get Val ueSt at val ue="set osa">
<Gaussi anDi stributi on nmean="5. 006" vari ance="0.124248979591837"/ >
</ Tar get Val ueSt at >
<Tar get Val ueSt at val ue="versi col or">
<Gaussi anDi stri buti on nmean="5. 8953488372093" vari ance="0.283311184939092"/ >
</ Tar get Val ueSt at >
<Tar get Val ueSt at val ue="vi rgi ni ca">
<Gaussi anDi stribution nmean="6.58163265306122" vari ance="0.410697278911565"/ >
</ Tar get Val ueSt at >
</ Tar get Val ueSt at s>
</ Bayesl| nput >
</ Ext ensi on>
<Ext ensi on>
<Bayesl| nput fi el dNanme="Sepal . Wdth">
<Tar get Val ueSt at s>
<Tar get Val ueSt at val ue="set osa">

1.0.0 Spring XD Guide 128

Spring XD

</ Tar get Val ueSt at >
<Tar get Val ueSt at val ue="versi col or">

</ Tar get Val ueSt at >
<Tar get Val ueSt at val ue="vi rgi ni ca">

</ Tar get Val ueSt at >
</ Tar get Val ueSt at s>
</ Bayesl| nput >
</ Ext ensi on>
<Ext ensi on>
<Bayesl| nput fi el dName="Pet al . Lengt h">
<Tar get Val ueSt at s>
<Tar get Val ueSt at val ue="set osa">

</ Tar get Val ueSt at >
<Tar get Val ueSt at val ue="versi col or">

</ Tar get Val ueSt at >
<Tar get Val ueSt at val ue="vi rgi ni ca">

</ Tar get Val ueSt at >
</ Tar get Val ueSt at s>
</ Bayesl| nput >
</ Ext ensi on>
<Ext ensi on>
<Bayesl| nput fi el dName="Petal . Wdth">
<Tar get Val ueSt at s>
<Tar get Val ueSt at val ue="set osa">

</ Tar get Val ueSt at >
<Tar get Val ueSt at val ue="versi col or">

</ Tar get Val ueSt at >
<Tar get Val ueSt at val ue="vi rgi ni ca">

</ Tar get Val ueSt at >
</ Tar get Val ueSt at s>
</ Bayesl| nput >
</ Ext ensi on>
<Bayesl| nput fiel dName="Di scretePl aceHol der" >
<Pai r Count s val ue="pseudoVal ue" >
<Tar get Val ueCount s>
<Tar get Val ueCount val ue="set osa" count="50"/>
<Tar get Val ueCount val ue="versicol or" count="43"/>
<Tar get Val ueCount val ue="virgi ni ca" count="49"/>
</ Tar get Val ueCount s>
</ Pai r Count s>
</ Bayesl| nput >
</ Bayesl| nput s>
<BayesQut put fi el dName="Speci es" >
<Tar get Val ueCount s>
<Tar get Val ueCount val ue="set osa" count="50"/>
<Tar get Val ueCount val ue="versicol or" count="43"/>
<Tar get Val ueCount val ue="virgi ni ca" count="49"/>
</ Tar get Val ueCount s>
</ BayesCut put >
</ Nai veBayesModel >
</ PMML>

<Gaussi anDi stri buti on nmean="3. 428" vari ance="0.143689795918367"/ >

<Gaussi anDi stri buti on nmean="2.76279069767442" vari ance="0.0966777408637874"/ >

<Gaussi anDi stri buti on nmean="2.97142857142857" vari ance="0. 105833333333333"/>

<Gaussi anDi stri buti on nmean="1. 462" variance="0.0301591836734694"/ >

<Gaussi anDi stri buti on nean="4.21627906976744" vari ance="0.236633444075305"/ >

<Gaussi anDi stri buti on mean="5.55510204081633" vari ance="0.310442176870748"/ >

<Gaussi anDi stri buti on mean="0. 246" variance="0.0111061224489796"/ >

<Gaussi anDi stri buti on nean="1.30697674418605" vari ance="0.042093023255814"/ >

<Gaussi anDi stri buti on nmean="2.02448979591837" vari ance="0.0768877551020408"/ >

1.0.0 Spring XD Guide

129

Spring XD

Evaluation

The above defined PMML model can be evaluated in a Spring XD stream definition by using the
analytic-pmml module as a processor in your stream definition. The actual evaluation of the PMML is
performed via the PmmlAnalytic which uses the jpmml-evaluator library.

Model Selection

The PMML standard allows multiple models to be defined within a single PMML document. The model
to be used can be configured through the modelName option.

NOTE The PMML standard also supports other ways for selection models, e.g. based on a predicate.
This is currently not supported.

In order to perform the evaluation in Spring XD you need to save the generated PMML document to
some folder, typically the with the extension "pmml.xml". For this example we save the PMML document
under the name iris-flower-classification-naive-bayes-1.pmml.xml.

In the following example we set up a stream definition with an ht t p source that produces iris-flower-
records that are piped to the anal yt i c- pmm module which applies our iris flower classifier to predict
the species of a given flower record. The result of that is a new record extended by a new attribute
predictedSpecies which simply sent to a | og sink.

The definition of the stream, which we call iris-flower-classification, looks as follows:

xd: >stream create --name iris-flower-classification
--definition "http --output Type=application/x-xd-tuple | analytic-pnm
--location=/nodel s/iris-flower-classification-naive-bayes-1.pmi . xml
--i nput Fi el dMappi ng="' sepal Lengt h: Sepal . Lengt h,
sepal W dt h: Sepal . Wdt h,
pet al Lengt h: Pet al . Lengt h,
pet al Wdt h: Petal . Wdt h'
- - out put Fi el dMappi ng=" Predi ct ed_Speci es: predi ct edSpeci es' | |o0g" --deploy

» The location parameter can be used to specify the exact location of the pmml document. The value
must be a valid spring resource location

* The inputFieldMapping parameter defines a mapping of domain input fields to model input fields. It
is just a list of fields or optional field:alias mappings to control which fields and how they are going
to end up in the model-input. If no inputFieldMapping is defined then all domain input fields are used
as model input.

* The outputFieldMapping parameter defines a mapping of model output fields to domain output fields
with semantics analog to the inputFieldMapping.

» The optional modelName parameter of the analytic-pmml module can be used to refer to a particular
named model within the PMML definition. If modelName is not defined the first model is selected by
default.

NOTE Some analytical models like for instance association rules require a different typ of mapping.
You can implement your own custom mapping strategies by implementing a custom InputMapper and
OutputMapper and defining a new PmmlAnalytic or TuplePmmlAnalytic bean that uses your custom
mappers.

After the stream has been successfully deployed to Spring XD we can eventually start to throw some
data at it by issuing the following http request via the XD-Shell (or cur | , or any other tool):

1.0.0 Spring XD Guide 130

https://github.com/jpmml/jpmml-evaluator
http://www.springindepth.com/2.5.x/0.10/ch05.html

Spring XD

Note that our example record contains no information about which species the example belongs to -
this will be added by our classifier.

xd: >http post --target http://l ocal host: 9000 --content Type application/json --data
"{ \"sepal Length\": 6.4, \"sepal Wdth\": 3.2, \"petal Length\":4.5, \"petal Wdth\":1.5 }"

After posting the above json document to the stream we should see the following output in the console:

{
"id":"1722ec00- baad- 11e3- b988- 005056c00008"
"timestanp": 1396473833152

, "sepal Length":"6. 4"

, "sepal Wdth":"3.2"
"petal Length":"4.5"

, "petal Wdth":"1.5"

, "predictedSpeci es":"versicol or"

}

NOTE the generated field predictedSpecies which now identifies our input as belonging to the iris
species versicolor.

We verify that the generated PMML classifier produces the same result as R by executing the issuing
the following commands in rproject:

dat aset s$testset [, 1:4][1,]

This is the first exanple record that we sent via the http post.
Sepal . Length Sepal . Wdth Petal.Length Petal.Wdth

52 6.4 3.2 4.5 1.5

#Predict the class for the exanple record by using our nai veBayes nodel
> predict(nodel, datasets$testset[,1:4][1,])
[1] versicol or

17.4 Counters and Gauges

Counter and Gauges are analytical data structures collectively referred to as metrics. Metrics can be
used directly in place of a sink just as if you were creating any other stream, but you can also analyze
data from an existing stream using a tap. We’'ll look at some examples of using metrics with taps in the
following sections. As a prerequisite start the XD Container as instructed in the Getting Started page.

The 1.0 release provides the following types of metrics

* Counter

Field Value Counter

* Aggregate Counter

« Gauge

» Rich Gauge

Spring XD supports these metrics and analytical data structures as a general purpose class library
that works with several backend storage technologies. The 1.0 release provides in memory and Redis
implementations.

1.0.0 Spring XD Guide 131

Spring XD

Counter

A counter is a Metric that associates a uniqgue name with a long value. It is primarily used for counting
events triggered by incoming messages on a target stream. You create a counter with a unique
name and optionally an initial value then set its value in response to incoming messages. The most
straightforward use for counter is simply to count messages coming into the target stream. That is, its
value is incremented on every message. This is exactly what the counter module provided by Spring

XD does.
Here’s an example:

Start by creating a data ingestion stream. Something like:

xd: > stream create --nanme springtweets --definition "twittersearch --

consuner Key=<your _key> --consuner Secr et =<your _secret> --query=spring | file --dir=/

tweets/" --depl oy

Next, create a tap on the springtweets stream that sets a message counter named tweetcount

name=t weet count" --depl oy

The results are written to redis under the key counter.${name}. To retrieve the count:

$ redis-cli
redis 127.0.0.1: 6379> get counters.tweetcount

Field Value Counter

xd: > stream create --nanme tweettap --definition "tap:streamspringtweets > counter --

A field value counter is a Metric used for counting occurrences of unique values for a named field in a

message payload. XD Supports the following payload types out of the box:
* POJO (Java bean)
* Tuple

» JSON String

For example suppose a message source produces a payload with a field named user :

class Foo {
String user;
public Foo(String user) {
thi s.user = user;

}

If the stream source produces messages with the following objects:

new Foo("fred")
new Foo("sue")
new Foo("dave")
new Foo("sue")

The field value counter on the field user will contain:

fred: 1, sue:2, dave:l

1.0.0 Spring XD Guide

132

Spring XD

Multi-value fields are also supported. For example, if a field contains a list, each value will be counted
once:

users: ["dave","fred", "sue"]
users:["sue","jon"]

The field value counter on the field users will contain:

‘ dave: 1, fred:1, sue:2, jon:1

field_value_counter has the following options:

fieldName
The name of the field for which values are counted (required)

name
A key used to access the counter values. (default: stream name)

To try this out, create a stream to ingest twitter feeds containing the word spring and output to a file:

xd: > stream create --nanme springtweets --definition "twittersearch --
consuner Key=<your _key> --consuner Secr et =<your_secret> --query=spring | file" --depl oy

Now create a tap for a field value counter:

xd: > stream create --nanme fronlserCount --definition "tap:streamspringtweets > field-
val ue-counter --fieldNanme=fronJser" --depl oy

The twittersearch source produces JSON strings which contain the user id of the tweeter in the
fromUser field. The field_value_counter sink parses the tweet and updates a field value counter named
fromUserCount in Redis. To view the counts:

$ redis-cli
redis 127.0.0. 1: 6379>zrange fi el dval uecounters. fromJserCount 0 -1 w thscores

Aggregate Counter

The aggregate counter differs from a simple counter in that it not only keeps a total value for the count,
but also retains the total count values for each minute, hour day and month of the period for which it
is run. The data can then be queried by supplying a start and end date and the resolution at which the
data should be returned.

Creating an aggregate counter is very similar to a simple counter. For example, to obtain an aggregate
count for our spring tweets stream:

xd: > stream create --nanme springtweets --definition "twittersearch --query=spring | file"
- - depl oy

you'd simply create a tap which pipes the input to aggr egat e- count er :

xd: > streamcreate --nanme tweettap --definition "tap:stream springtweets > aggregate-
counter --nanme=tweetcount" --depl oy

The Redis back-end stores the aggregate counts in buckets prefixed with aggr egat ecount ers.
${ nane}. The rest of the string contains the date information. So for our t weet count counter you
might see something like the following keys appearing in Redis:

1.0.0 Spring XD Guide 133

Spring XD

redis 127.0.0. 1: 6379> keys aggregat ecount ers. t weet count *
1) "aggregat ecounters.tweet count "

2) "aggregatecounters.tweetcount.years"

3) "aggregatecounters.tweetcount.2013"

4) "aggregat ecounters.tweetcount.201307"

5) "aggregatecounters.tweetcount.20130719"

6) "aggregatecounters.tweetcount.2013071914"

The general format is

1. One total value

2. One years hash with a field per year eg. { 2010: value, 2011: value }
3. One hash per year with a field per month { 01: value, ...}

4. One hash per month with a field per day

5. One hash per day with a field per hour

6. One hash per hour with a field per minute
Gauge

A gauge is a Metric, similar to a counter in that it holds a single long value associated with a unique
name. In this case the value can represent any numeric value defined by the application.

The gauge sink provided with XD stores expects a numeric value as a payload, typically this would be
a decimal formatted string, and stores its values in Redis. The gauge includes the following attributes:

name
The name for the gauge (default: <st r eammane>)

Note:

When using gauges and rich gauges with these examples you will need a redis instance running. Also
if you are using singlenode, start your single node with the --analytics redis parameter

xd- si ngl enode --analytics redis

Here is an example of creating a tap for a gauge:
Simple Tap Example

Create an ingest stream

xd: > stream create --nanme test --definition "http --port=9090 | file" --deploy

Next create the tap:

xd: > stream create --nane sinpl egauge --definition "tap:streamtest > gauge" --depl oy

Now Post a message to the ingest stream:

xd: > http post --target http://local host: 9090 --data " 10"

Check the gauge:

1.0.0 Spring XD Guide 134

Spring XD

$ redis-cl
redis 127.0.0.1: 6379> get gauges. si npl egauge
" 10"

Rich Gauge

A rich gauge is a Metric that holds a double value associated with a unique name. In addition to the
value, the rich gauge keeps a running average, along with the minimum and maximum values and the
sample count.

The richgauge sink provided with XD expects a numeric value as a payload, typically this would be a
decimal formatted string, and keeps its value in a store. The rich-gauge includes the following attributes:

name
The name for the gauge (default: <st r eammane>)

alpha
A smoothing factor between 0 and 1, that if set will compute an exponential moving average (default:
-1, sinple average)

When stored in Redis, the values are kept as a space delimited string, formatted as value alpha mean
max min count

Here are some examples of creating a tap for a rich gauge:
Simple Tap Example
Create an ingest stream

xd: > stream create --nanme test --definition "http --port=9090 | file" --deploy

Next create the tap:

xd: > stream create --nane testgauge --definition "tap:streamtest > rich-gauge" --deploy

Now Post some messages to the ingest stream:

xd: > http post --target http://local host: 9090 --data " 10"
xd: > http post --target http://|ocal host: 9090 --data "13"
xd: > http post --target http://local host: 9090 --data "16"

Check the gauge:

$ redis-cl
redis 127.0.0.1: 6379> get richgauges.testgauge
"16.0 -1 13.0 16.0 10.0 3"

Stock Price Example

In this example, we will track stock prices, which is a more practical example. The data is ingested as
JSON strings like

{"synbol ":"VMN, "price":72. 04}

Create an ingest stream

1.0.0 Spring XD Guide 135

http://en.wikipedia.org/wiki/Exponential_smoothing

Spring XD

xd: > stream create --nanme stocks --definition "http --port=9090 | file"

Next create the tap, using the transform module to extract the stock price from the payload:

xd: > stream create --name stockprice --definition "tap:streamstocks > transform --
expr essi on=#j sonPat h(payl oad, ' $. price') | rich-gauge"

Now Post some messages to the ingest stream:

xd: > http post --target http://local host: 9090 --data {"synbol":"VMN, "price": 72. 04}
xd: > http post --target http://local host: 9090 --data {"synbol":"VMN, "price": 72. 06}
xd: > http post --target http://local host: 9090 --data {"synbol ":"VMN, "price": 72. 08}

Note: JSON fields should be separated by a comma without any spaces. Alternatively, enclose the
whole argument to - - dat a with quotes and escape inner quotes with a backslash.

Check the gauge:
$ redis-cl

redis 127.0.0.1: 6379> get richgauges. stockprice
"72.08 -1 72.04 72.08 72.02 3"

Improved Stock Price Example

In this example, we will track stock prices for selected stocks. The data is ingested as JSON strings like

{"synmbol ":"VMN, "price": 72. 04}
{"synbol ":"EMC', "price": 24. 92}

The previous example would feed these prices to a single gauge. What we really want is to create a
separate tap for each ticker symbol in which we are interested:

Create an ingest stream

xd: > stream create --nane stocks --definition "http --port=9090 | file"

Next create the tap, using the transform module to extract the stock price from the payload:

xd: > stream create --name vmwprice --definition "tap:stream stocks >
filter --expression=# sonPath(payload,"'$.synbol')==VMNV| transform --
expr essi on=#j sonPat h(payl oad, ' $. price') | rich-gauge" --depl oy

xd: > stream create --nanme entprice --definition "tap:stream stocks >
filter --expression=# sonPath(payload,"'$.synbol')==EMC | transform --
expr essi on=#j sonPat h(payl oad, ' $. price') | rich-gauge" --depl oy

Now Post some messages to the ingest stream:

xd: > http post --target http://local host: 9090 --data {"synbol":"VMN, "price": 72. 04}
xd: > http post --target http://local host: 9090 --data {"synbol":"VMN, "price":72. 06}
xd: > http post --target http://local host: 9090 --data {"synbol":"VMN,6 "“price": 72. 08}

xd: > http post --target http://local host: 9090 --data {"synbol ":"EMC', "price": 24. 92}
xd: > http post --target http://local host: 9090 --data {"synbol":"EMC', "price": 24. 90}
xd: > http post --target http://local host: 9090 --data {"synbol":"EMC', "price": 24. 96}

Check the gauge:

1.0.0 Spring XD Guide 136

Spring XD

$ redis-cli
redis 127.0.0.1:6379> get richgauges. entprice
"24.96 -1 24.926666666666666 24.96 24.9 3"

redis 127.0.0.1:6379> get richgauges. vimprice
"72.08 -1 72.04 72.08 72.02 3"

Accessing Analytics Data over the RESTful API

Spring XD has a discoverable RESTful API based on the Spring HATEAOS library. You can discover
the resources available by making a GET request on the root resource of the Admin server. Here is an
example where navigate down to find the data for a counter named httptap that was created by these
commands

xd: >stream create --name httpStream --definition "http | file" --deploy
xd: >stream create --nane httptap --definition "tap:stream httpStream > counter" --depl oy
xd: >http post --target http://local host: 9000 --data "hell oworld"

The root resource returns

1.0.0 Spring XD Guide 137

Spring XD

xd:>! wget -q -S -O - http://local host: 9393/
{
"links":[
{1
{
"rel":"jobs",
“href":"http://| ocal host: 9393/ obs"
H
{
"rel": " modul es",
“href":"http://] ocal host: 9393/ nodul es"
.
{
“rel":"runtinme/ nodul es",
“href":"http://1ocal host: 9393/ runti me/ nodul es"
B
{
"rel":"runtinme/ containers",
"href":"http://local host: 9393/ runti ne/ contai ners"
H
{
"rel":"counters",
“href":"http://1ocal host: 9393/ netrics/counters"
.
{
“rel":"field-val ue-counters",
“href":"http://1ocal host: 9393/ netrics/field-val ue-counters"
B
{
"rel ":"aggregate-counters",
"href":"http://local host: 9393/ metri cs/aggregat e-count ers"
H
{
"rel ":"gauges",
“href":"http://|ocal host: 9393/ netri cs/ gauges"
.
{
“rel":"rich-gauges",
"href":"http://local host: 9393/ netrics/rich-gauges"
}
]
}

Following the resource location for the counter

1.0.0 Spring XD Guide 138

Spring XD

xd:>! wget -q -S -O - http://local host: 9393/ netrics/counters
{
"links":[
e
"content": [
{
"links":[
{
"rel":"sel f",
“href":"http://1ocal host: 9393/ netrics/counters/ httptap"
}
o
“nanme": "httptap"
}
o
"page": {
"size": 0
"total El ements": 1,
"total Pages": 1,
“nunber": 0
}
}

And then the data for the counter itself

xd:>! wget -q -S -O - http://local host: 9393/ metrics/counters/httptap
{
"links":[
{
"rel":"sel f",
"href":"http://local host: 9393/ metrics/counters/httptap"
}
I
"name": "httptap",
"val ue": 2

1.0.0 Spring XD Guide

139

Spring XD

18. DSL Reference

18.1 Introduction

Spring XD provides a DSL for defining a stream. Over time the DSL is likely to evolve significantly as it
gains the ability to define more and more sophisticated streams as well as the steps of a batch job.

18.2 Pipes and filters

A simple linear stream consists of a sequence of modules. Typically an Input Source, (optional)
Processing Steps, and an Output Sink. As a simple example consider the collection of data from an
HTTP Source writing to a File Sink. Using the DSL the stream description is:

‘ http | file
A stream that involves some processing:

‘http| filter | transform| file

The modules in a stream definition are connected together using the pipe symbol | .

18.3 Module parameters

Each module may take parameters. The parameters supported by a module are defined by the module
implementation. As an example the ht t p source module exposes port setting which allows the data
ingestion port to be changed from the default value.

http --port=1337

It is only necessary to quote parameter values if they contain spaces or the | character. Here the
transform processor module is being passed a SpEL expression that will be applied to any data it
encounters:

‘ transform - - expressi on='"new StringBuil der (payl oad).reverse()"'

If the parameter value needs to embed a single quote, use two single quotes:

/1l Query is: Select * from/Custoners where nane='Smith'
scan --query='Select * from/Custoners where name="'Smth'""’

18.4 Named channels

Instead of a source or sink it is possible to use a named channel. Normally the modules in a stream are
connected by anonymous internal channels (represented by the pipes), but by using explicitly named
channels it becomes possible to construct more sophisticated flows. In keeping with the unix theme,
sourcing/sinking data from/to a particular channel uses the > character. A named channel is specified
by using a channel type, followed by a : followed by a name. The channel types available are:

‘queue - this type of channel has point-to-point (p2p) semantics

‘topi c - this type of channel has pub/sub semantics

1.0.0 Spring XD Guide 140

Spring XD

Here is an example that shows how you can use a named channel to share a data pipeline driven by
different input sources.

queue:foo > file

http > queue: foo

time > queue:foo

Now if you post data to the http source, you will see that data intermingled with the time value in the file.

The opposite case, the fanout of a message to multiple streams, is planned for a future release. However,
taps are a specialization of named channels that do allow publishing data to multiple sinks. For example:

‘tap:stream nmystream > file

‘tap: stream nystream > | og

Once data is received on myst r eam it will be written to both file and log.

Support for routing messages to different streams based on message content is also planned for a
future release.

18.5 Labels

Labels provide a means to alias or group modules. Labels are simply a hame followed by a : When
used as an alias a label can provide a more descriptive name for a particular configuration of a module
and possibly something easier to refer to in other streams.

nmystream = http | obfuscator: transform --expression=payl oad. repl aceAll (' password',"*"') |
file

Labels are especially useful for disambiguating when multiple modules of the same name are used:

nystream = http | uppercaser: transform --expressi on=payl oad.toUpper Case() | exclai nmer:
transform - - expressi on=payl oad+'!"' | file

Refer to this section of the Taps chapter to see how labels facilitate the creation of taps in these cases

where a stream contains ambiguous modules.

18.6 Single quotes, Double quotes, Escaping

Spring XD is a complex runtime that involves a lot of systems when you look at the complete picture.
There is a Spring Shell based client that talks to the admin that is responsible for parsing. In turn,
modules may themselves rely on embedded languages (like the Spring Expression Language) to
accomplish their behavior.

Those three components (shell, XD parser and SpEL) have rules about how they handle quotes and how
syntax escaping works, and when stacked with each other, confusion may arise. This section explains
the rules that apply and provides examples to the most common situations.

1.0.0 Spring XD Guide 141

Spring XD

@ It's not always that complicated

This section focuses on the most complicated cases, when all 3 layers are involved. Of course, if
you don’t use the XD shell (for example if you're using the REST API directly) or if module option
values are not SpEL expressions, then escaping rules can be much simpler

Spring Shell

Arguably, the most complex component when it comes to quotes is the shell. The rules can be laid out
quite simply, though:

» a shell command is made of keys (- - f 00) and corresponding values. There is a special, key-less
mapping though, see below

» avalue can not normally contain spaces, as space is the default delimiter for commands

» spaces can be added though, by surrounding the value with quotes (only double quotes at the time
of writing)

« if surrounded with quotes, a value can embed a literal quote by prefixing it with a backslash (\)
» Other escapes are available, suchas\t,\n,\r,\ f and unicode escapes of the form \ uxxxx

 Lastly, the key-less mapping is handled in a special way in the sense that if does not need quoting
to contain spaces

For example, the XD shell supports the ! command to execute native shell commands. The ! accepts
a single, key-less argument. This is why the following works:

xd: > rm foo

The argument here is the whole r m f 0o string, which is passed as is to the underlying shell.

As another example, the following commands are strictly equivalent, and the argument value is f oo
(without the quotes):

xd: >stream destroy foo

xd: >stream destroy --nane foo
xd: >stream destroy "fo00"

xd: >stream destroy --name "foo"

XD Syntax

At the XD parser level (that is, inside the body of a stream or job definition) the rules are the following:
» option values are normally parsed until the first space character

 they can be made of literal strings though, surrounded by single or double quotes

» To embed such a quote, use two consecutive quotes of the desired kind

As such, the values of the - - expr essi on option to the filter module are semantically equivalent in
the following examples:

1.0.0 Spring XD Guide 142

Spring XD

filter --expression=payl oad>5
filter --expression="payl oad>5"
filter --expression=' payl oad>5
filter --expression='payload > 5

Arguably, the last one is more readable. It is made possible thanks to the surrounding quotes. The actual
expression is payl oad > 5 (without quotes).

Now, let's imagine we want to test against string messages. If we'd like to compare the payload to the
SpEL literal string, " f 00", this is how we could do:

filter --expression=payl oad=='f 00 O
filter --expression='payload == "''foo'"" 0
filter --expression='payload == "foo"' O

0 This works because there are no spaces. Not very legible though

O This uses single quotes to protect the whole argument, hence actual single quotes need to be
doubled

0 But SpEL recognizes String literals with either single or double quotes, so this last method is
arguably the best

Please note that the examples above are to be considered outside of the Spring XD shell. When entered
inside the shell, chances are that the whole stream definition will itself be inside double quotes, which
would need escaping. The whole example then becomes:

xd: >stream create foo --definition "http | filter --expression=payload='foo' | |og"
xd: >stream create foo --definition "htpp | filter --expression='"payload == '"foo''"' | |og"
xd: >stream create foo --definition "http | filter --expression='payload == \"foo\"' | |o0g"

SpEL syntax and SpEL literals

The last piece of the puzzle is about SpEL expressions. Many modules accept options that are to be
interpreted as SpEL expressions, and as seen above, String literals are handled in a special way there
too. Basically,

« literals can be enclosed in either single or double quotes

» quotes need to be doubled to embed a literal quote. Single quotes inside double quotes need no
special treatment, and vice versa

As alast example, assume you want to use the transform module. That module accepts an expr essi on
option which is a SpEL expression. It is to be evaluated against the incoming message, with a default
of payl oad (which forwards the message payload untouched).

It is important to understand that the following are equivalent:

transform - - expressi on=payl oad
transform - - expressi on=' payl oad

but very different from the following:

transform - - expressi on=""' payl oad" "
transform --expressi on=""'"'payl oad""

and other variations.

1.0.0 Spring XD Guide 143

Spring XD

The first series will simply evaluate to the message payload, while the latter examples will evaluate to
the actual literal string pay!| oad (again, without quotes).

Putting it all together

As a last, complete example, let’s review how one could force the transformation of all messages to the
string literal hel | o wor | d, by creating a stream in the context of the XD shell:

stream create foo --definition "http | transform--expression="""hello world""'' | log" O
stream create foo --definition "http | transform--expression="\"hello world\"' | log" O
stream create foo --definition "http | transform--expression=\""hello world'\" | log" O

0 This uses single quotes around the string (at the XD parser level), but they need to be doubled
because we're inside a string literal (very first single quote after the equals sign)

00O use single and double quotes respectively to encompass the whole string at the XD parser level.
Hence, the other kind of quote can be used inside the string. The whole thing is inside the - -
definition argument to the shell though, which uses double quotes. So double quotes are
escaped (at the shell level)

1.0.0 Spring XD Guide 144

Spring XD

19. Tuples

19.1 Introduction

The Tuple class is a central data structure in Spring XD. It is an ordered list of values that can be
retrieved by name or by index. Tuples are created by a TupleBuilder and are immutable. The values
that are stored can be of any type and null values are allowed.

The underlying Message class that moves data from one processing step to the next can have an
arbitrary data type as its payload. Instead of creating a custom Java class that encapsulates the
properties of what is read or set in each processing step, the Tuple class can be used instead.
Processing steps can be developed that read data from specific named values and write data to specific
named values.

There are accessor methods that perform type conversion to the basic primitive types as well as
BigDecimal and Date. This avoids you from having to cast the values to specific types. Insteam you can
rely on the Tuple’s type conversion infastructure to perform the conversion.

The Tuple’s types conversion is performed by Spring’s Type Conversion Infrastructure which supports
commonly encountered type conversions and is extensible.

There are several overloads for getters that let you provide default values for primitive types should the
field you are looking for not be found. Date format patterns and Locale aware NumberFormat conversion
are also supported. A best effort has been made to preserve the functionality available in Spring Batch's
Fi el dSet class that has been extensively used for parsing String based data in files.

Creating a Tuple
The Tupl eBui | der class is how you create new Tupl e instances. The most basic case is

Tupl e tuple = Tupl eBuil der.tuple().of ("foo", "bar")

This creates a Tuple with a single entry, a key of foo with a value of bar. You can also use a static
import to shorten the syntax.

inport static org.springframework. xd.tuple. Tupl eBui |l der.tuple

Tupl e tuple = tuple().of ("foo", "bar");

You can use the of method to create a Tuple with up to 4 key-value pairs.

Tupl e tuple2 = tuple().of ("up", 1, "down", 2);
Tupl e tuple3 = tuple().of ("up", 1, "down", 2, "charnt, 3)
Tupl e tupled4 = tuple().of ("up", 1, "down", 2, "charnl', 3, "strange", 4);

To create a Tuple with more then 4 entries use the fluent API that strings together the put method and
terminates with the bui | d method

Tupl e tuple6 = tuple().put("up", 1)
. put ("down", 2)
.put ("charnt, 3)
. put ("strange", 4)
. put ("bottont, 5)
.put("top", 6)
. bui ld();

1.0.0 Spring XD Guide 145

http://static.springsource.org/spring/docs/3.0.x/reference/validation.html#core-convert
http://static.springsource.org/spring-batch/2.1.x/apidocs/org/springframework/batch/item/file/transform/FieldSet.html

Spring XD

To customize the underlying type conversion system you can specify the Dat eFor mat to use
for converting String to Dat e as well as the Nunber For mat to use based on a Local e. For
more advanced customization of the type conversion system you can register an instance of a
For mat t i ngConver si onSer vi ce. Use the appropriate setter methods on Tupl eBui | der to make
these customizations.

You can also create a Tuple from a list of St ri ng field names and a List of Obj ect values.

Obj ect[] tokens = new String[]

{ "TestString", "true", "C', "10", "-472", "354224", "543", "124.3", "424.3", "1, 3245",
nul |, "2007-10-12", "12-10-2007", "" };
String[] nameArray = new String[]
{ "String", "Boolean", "Char", "Byte", "Short", "Integer", "Long", "Float", "Double",
"BigDecimal ", "Null", "Date", "DatePattern", "Bl anklnput" };

Li st<String> names = Arrays. asLi st (naneArray);
Li st <Obj ect > val ues = Arrays. asLi st (tokens);
tuple = tupl e(). of NanesAndVal ues(nanes, val ues);

Getting Tuple values
There are getters for all the primitive types and also for BigDecimal and Date. The primitive types are
* Bool ean

* Byte

+ Char

* Doubl e

* Fl oat

* Int

* Long

» Short

e String

Each getter has an overload for providing a default value. You can access the values either by field
name or by index.

The overloaded methods for asking for a value to be converted into an integer are

int getlnt(int index)

eint getInt(String nane)

int getint(int index, int defaultValue)

int getint(String nane, int defaultValue)

There are similar methods for other primitive types. For Bool ean there is a special case of providing
the St ri ng value that represents a t r ueVal ue.

1.0.0 Spring XD Guide 146

Spring XD

* bool ean get Bool ean(int index, String trueVal ue)
* bool ean get Bool ean(String name, String trueVal ue)

If the value that is stored for a given field or index is null and you ask for a primitive type, the standard
Java defalt value for that type is returned.

The get St ri ng method will remove and leading and trailing whitespace. If you want to get the String
and preserve whitespace use the methods get RawSt ri ng

There is extra functionality for getting "Date’s. The are overloaded getters that take a String based date
format

» Date getDateWthPattern(int index, String pattern)

e Date getDateWthPattern(int index, String pattern, Date defaultVal ue)
 Date getDateWthPattern(String nane, String pattern)

» Date getDateWthPattern(String nanme, String pattern, Date defaultVal ue)

There are a few other more generic methods available. Their functionality should be obvious from their
names

* size()

get Fi el dCount ()

» get Fi el dNanes()

e getFiel dTypes()

e get Ti nest anp() - the time the tuple was created - milliseconds since epoch
e getld() -the UUID of the tuple

e Obj ect getVal ue(int index)

» Cbj ect getValue(String nane)

T getValue(int index, O ass<T> val ued ass)

e T getValue(String nane, O ass<T> val ueC ass)
e Li st<bj ect> get Val ues()

e List<String> getFiel dNanes()

* bool ean hasFi el dNane(Stri ng nane)
Using SpEL expressions to filter a tuple

SpEL provides support to transform a source collection into another by selecting from its entries. We
make use of this functionalty to select a elements of a the tuple into a new one.

1.0.0 Spring XD Guide 147

Spring XD

Tuple tuple = tuple().put("red", "rot")
. put ("brown", "braun")
.put ("blue", "blau")
.put("yellow', "gelb")
. put (" bei ge", "beige")
Cbuild();

Tupl e sel ectedTuple = tuple.select("?[key.startsWth('b')]");
assert That (sel ect edTupl e. si ze(), equal To(3));

To select the first match use the * operator

sel ectedTupl e = tuple.select ("~ key.startsWth('b")]");
assert That (sel ect edTupl e. si ze(), equal To(1));

assert That (sel ect edTupl e. get Fi el dNanes() . get (0), equal To("brown"));
assert That (sel ect edTupl e. get String(0), equal To("braun"));

Gradle Dependencies

If you wish to use Spring XD Tuples in you project add the following dependencies:

//Add this repo to your repositories if it does not already exist.
maven { url "http://repo.spring.iollibs-snapshot" }

/1 Add this dependency
conpi l e 'org. springframewor k. xd: spri ng-xd-tuple:1.0.0. M7

1.0.0 Spring XD Guide

148

Spring XD

20. Samples

We have a number of sample projects in the Spring XD Samples GitHub repository. Below are some
additional examples for ingesting syslog data to HDFS.

20.1 Syslog ingestion into HDFS

In this section we will show a simple example on how to setup syslog ingestion from multiple hosts
into HDFS.

Create the streams with syslog as source and HDFS as sink (Please refer to source and sink)

If you're using syslog over TCP and need the highest throughput, use the Reactor-backed syslog
module.

xd: > streamcreate --definition "reactor-syslog --port=<tcp-port> | hdfs" --name <stream
name>

The r eact or - sysl og module doesn’t yet support UDP (though it soon will), so if you're using syslog
over UDP you'll want to use the standard syslog module.

xd: > streamcreate --definition "syslog-udp --port=<udp-port> | hdfs" --name <stream name>

xd: > streamcreate --definition "syslog-tcp --port=<tcp-port> | hdfs" --name <stream name>

Please note for hdfs sink, setr ol | over parameter to a smaller value to avoid buffering and to see the
data has made to HDFS (incase of smaller volume of log).

Configure the external hosts’ syslog daemons forward their messages to the xd-container host's UDP/
TCP port (where the syslog-udp/syslog-tcp source module is deployed).

A sample configuration using syslog-ng
Edit syslog-ng configuration (for example: /etc/syslog-ng/syslog-ng.conf):
1) Add destination

destinati on <desti nati onName> {
tcp("<host>" port("<tcp-port>"));

}s

or,

desti nati on <desti nati onName> {
udp(" <host >" port ("<udp-port>"));
ki

where "host" is the container(launcher) host where the syslog module is deployed.
2) Add log rule to log message sources:

log {
sour ce(<nmessage_source>); destination(<desti nati onName>);

}s

1.0.0 Spring XD Guide 149

https://github.com/spring-projects/spring-xd-samples

Spring XD

3) Make sure to restart the service after the change:

sudo service syslog-ng restart

Now, the syslog messages from the syslog message sources are written into HDFS /xd/<stream-name>/

1.0.0 Spring XD Guide 150

Spring XD

21. Admin Ul

21.1 Introduction

Spring XD provides a browser-based GUI which currently has 2 sections allowing you to
» perform Batch Job related tasks

 deploy/undeploy Stream Definitions

Upon starting Spring XD, the Admin Ul is available at:

http://localhost:9393/admin-ui

@ Spring STREAMS JOBS | ABOUT

About

Spring XD is a unified, distributed, and extensible system for data ingestion, real time analytics, batch processing, and data
export. The project’s goal is to simplify the development of big data applications.

Need Help or Found an Issue?

Project Page http://projects.spring.io/spring-xd/

Sources https://github.com/spring-projects/spring-xd/
Documentation http://docs.spring.io/spring-xd/docs/1.0.x/reference/html/
API Docs http://docs.spring.io/spring-xd/docs/1.0.x/api/

Support Forum http://stackoverflow.com/questions/tagged/spring-xd
Issue Tracker https://jira.spring.io/browse/XD

Figure 21.1. The Spring XD Admin Ul

21.2 Streams

The Streams section of the admin Ul provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those streams. Additionally you can
remove the definition by clicking on destroy.

1.0.0 Spring XD Guide 151

http://localhost:9393/admin-ui

Spring XD

&) spring

Streams

This section lists all the stream definitions and provides the ability to deploy/undeploy or destroy streams.

Definitions

Definition Actions

ticktock time | log B Undeploy P Deploy

wordCountFiles file --ref=true > queue:job:wordCountob B Undeploy P Deploy

Figure 21.2. List of Stream Definitions

21.3 Jobs

The Jobs section of the admin Ul currently has four tabs specific for Batch Jobs
* Modules

+ Definitions

» Deployments

» Executions
Modules

Modules encapsulate a unit of work into a reusable component. Within the XD runtime environment
Modules allow users to create definitions for Streams as well as Batch Jobs. Consequently, the Modules
tab within the Jobs section allows users to create Batch Job definitions. In order to learn more about
Modules, please see the chapter on Modules.

List available batch job modules

This page lists the available batch job modules.

1.0.0 Spring XD Guide 152

Spring XD

&) spring so8s

Batch Jobs

This section lists all available batch job modules. You have the ability to view module details and to create job definitions.

Modules Definitions Deployments Executions

Name Actions

filejdbc H n
filepollhdfs H n
ftphdfs H n
hdfsjdbc H
hdfsmongodb H n
jdbchdfs H n
Bg
payment H n

Figure 21.3. List Job Modules

On this screen you can perform the following actions:

View details such as the job module options and the module XML configuration
file.

Create a Job Definition from the respective Module.

Create a Job Definition from a selected Job Module

On this screen you can create a new Job Definition. As a minimum you must provide a name for the
new definition. Optionally you can select wether the new definition shall be automatically deployed.
Depending on the selected module, you will also have the option to specify various parameters that are
used during the deployment of the definition.

1.0.0 Spring XD Guide 153

Spring XD

JoBs

Create Definition for Job Module myjob

Definition Name HelloWorld

The name of the definition must be different from the module name

™ Deploy created definition

Parameters
DateFormat yyyymMmdd
The date format to use when parsing date parameters
Listeners
Comma separated list of listeners from [job,step,chunk,item and skip]
MakeUnique true

Whether always allow re-invocation of this job

NumberFormat

The number format to use when parsing numeric parameters

Resulting Definition

myjob ——dateFormat=yyyyMMdd —--makeUnique=true

Figure 21.4. Create a Job Definition

1.0.0 Spring XD Guide 154

Spring XD

View Job Module Details

&) spring so8s

Module wordcount (Type: job)

Options
Name Type Default Value Description
dateFormat String the date format to use when parsing date parameters
listeners String comma separated list of listeners from [job,step,chunk,item and
skip]
makeUnigue boolean true whether always allow re-invocation of this job
numberFormat String the number format to use when parsing numeric parameters
resources string file:///# unknown

{jobParameters[‘absoluteFilePath’]}
Definition File

<?xml version="1.8" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:hadoop="http://www.springframework.org/schema/hadoop"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:batch="http://www.springframework.org/schema/batch"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemalocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/sprin
g-beans.xsd
http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util.xsd
http://www.springframework.org/schema/hadoop http://www.springframework.org/schema/hadoop/spring—hadoop.xsd
http://www.springframework.org/schema/batch http://www.springframework.org/schema/batch/spring-batch.xsd
http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd"

Figure 21.5. View Job Module Details

On this page you can view the details of a selected job module. The pages lists the available options
(properties) of the modules as well as the actual XML application context file associated with the module.

List job definitions

This page lists the XD batch job definitions and provides actions to deploy, un-deploy or destroy those
jobs.

1.0.0 Spring XD Guide 155

Spring XD

JoBs

Batch Jobs

This section lists all the batch job definitions and allows you to deploy/undeploy/destroy them.

Modules Definitions Deployments Executions

Definition Actions

job --dateF t=yyyy-MM-dd --list =job --

makeUnigue=true
secondDemoJob myjob --makeUnique=true B Undeploy P Deploy
wordCountJob wordcount B Undeploy P Deploy

Figure 21.6. List Job Definitions
List job deployments

This page lists all the deployed jobs and provides option to launch or schedule the deployed job.

1.0.0 Spring XD Guide 156

Spring XD

&) spring so8s

Batch Jobs

This section lists all the available batch job deployments and allows you to launch/schedule them.

Modules Definitions Deployments Executions

Execution Count Last Execution Status Actions

demolob 4 COMPLETED m © Schedule n

secondDemoJob 1 FAILED © Schedule n
wordCountlob 3 COMPLETED m © Schedule n

Figure 21.7. List Job Deployments
Launching a batch Job
Once the job is deployed, they can be launched through the Admin Ul as well. Navigate to the

Deployments tab. Select the job you want to launch and press Launch. The following modal dialog
should appear:

1.0.0 Spring XD Guide 157

Spring XD

Batch Jobs

This section lists all the available batch job deployments and allows you to launch/schedule them.

Modules Definitions Deployments Executions

Schedule Execution Count Last Execution Status

HelloWorldJob © Schedule £ FAILED

® Schedule COMPLETED

w

wordCountob m

Launch - Job Parameters for wordCountJob

SomeParameter 1234

Long = ™ Identifying

Figure 21.8. Launch a Batch Job with parameters

Using this screen, you can define one or more job parameters. Job parameters can be typed and the
following data types are available:

String (The default)

Date (The default date format is: yyyy/MM/dd)
* Long

* Double

1.0.0 Spring XD Guide 158

Spring XD

Schedule Batch Job Execution

Batch Jobs

This section lists all the available batch job deployments and allows you to launch/schedule them.

Modules Definitions Deployments Executions

Launch Schedule Execution Count Last Execution Status

HelloWorldJob £ FAILED

© Schedule

wordCountlob m © Schedule 3 COMPLETED

Scheduling job wordCountJob

Scheduler (Stream) Name

MyScheduledJob

(=) Fixed delay
60

() Date

(O Cron

Schedule Job »

Figure 21.9. Schedule a Batch Job

When clicking on Schedule, you have the option to run the job:
« using a fixed delay interval (specified in seconds)

* on a specific data/time

* using a valid CRON expression

Job Deployment Details

On this screen, you can view additional deployment details. Besides viewing the stream definition, the
available Module Metadata is shown as well, e.g. on which Container the definition has been deployed
to.

1.0.0 Spring XD Guide 159

Spring XD

&) spring so8s

Job Deployment Details for Job 'demoJob’

Job Definition

myjob ——dateFormat=yyyy-MM-dd —--listeners=job --makeUnique=true

Module Metadata

Module Id demoJob.job.myjob-0

Container Id f9084836-cbbf-4c02-a965-ea2bdcf2fd07

Properties {dateFormat=yyyy-MM-dd, makeUnigue=true, listenersListValid=true, listeners=job}
Back

Figure 21.10. Job Deployment Details
List job executions

This page lists the batch job executions and provides option to restart specific job executions, provided
the batch job is restartable and stopped/failed.

1.0.0 Spring XD Guide 160

Spring XD

JoBs

Batch Jobs

This section lists all the available batch job executions and provides the control to restart the job execution (if restartable).

Modules Definitions Deployments Executions

Instance Execution Step Executions
Id Id Job Start Time Count Status Actions

2014-05-29
-
secondDemoJob 2 5 11:33:58 1 FAILED n ﬂ

demoJob 1 4 f?:l;z':gsg'zg 1 COMPLETED n n
demoJob 1 3 fE1J:1342—356—29 1 FAILED n
demoJob 1 2 f?:l;z':gso'zg 1 FAILED n n
demoJob 1 1 ff;’gﬁ’zg 1 FAILED n n
wordCountlob 0 0 ff;—:%gzg 2 COMPLETED n n

Figure 21.11. List Job Executions

Furthermore, you have the option to view the Job execution details.

1.0.0 Spring XD Guide 161

Spring XD

Job execution details

&) spring so8s

Job Execution Details - Execution ID: 4

Id 4

Job Name HelloWorldlob

Job Instance 3

Job Parameters random=0.644669600095795,-throwError=true
Start Date 2014-05-15

Start Time 22:15:28 (America/New_York)
Duration 00:00:01

Status FAILED

Exit Code FAILED

Exit Message N/A

Step Execution Count 1

Figure 21.12. Job Execution Details

The same screen also contains a list of the executed steps:

amart Lime LL1% L0 |[AMETICA/INEW_TOTK)

Duration 00:00:26

Status COMPLETED

Exit Code COMPLETED

Exit Message N/A

Step Execution Count 2

Steps
Step Id Step Name Reads Writes Commits Rollbacks Duration Status Details

4 import 0 0 1 0 481 ms COMPLETED n
5 wordcount 836 2988 1 0 24503 ms COMPLETED n

Back

Figure 21.13. Job Execution Details - Steps

1.0.0 Spring XD Guide 162

Spring XD

From there you can drill deeper into the Step Execution Details.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

&) spring so8s

Step Execution Details - Step Execution ID: 5

Step Execution Progress

Percentage Complete

Property Value

Step Execution Id 5

Job Execution Id 2

Step Name wordcount
Status COMPLETED
Commits 1

Duration 24503 ms
Filter Count o]

Process Skips 0

Reads 836

Figure 21.14. Step Execution Details

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.
For example, the Spring for Apache Hadoop steps provides exhaustive detail information.

1.0.0 Spring XD Guide 163

Spring XD

Job Status::ID

job_1400191378494_0003

Job Status::Name

scopedTarget.wordcountiob

Job Status::State

SUCCEEDED

Job Status::Tracking URL

http://INTEGRATION.local:8088/proxy/application_1400191378494_0003/

Map-Reduce Framework::Combine input records 0
Map-Reduce Framework::Combine output records 0
Map-Reduce Framework::CPU time spent (ms) 0
Map-Reduce Framework::Failed Shuffles 0
Map-Reduce Framework::GC time elapsed (ms) 36
Map-Reduce Framework::Input split bytes 119
Map-Reduce Framework::Map input records 836
Map-Reduce Framework::Map output bytes 84813
Map-Reduce Framework::Map output materialized bytes 101605
Map-Reduce Framework::Map output records 8393
Map-Reduce Framework:Merged Map outputs 1
Map-Reduce Framework::Physical memory (bytes) snapshot 0
Map-Reduce Framework::Reduce input groups 2988

Figure 21.15. Step Execution Context

This includes a link back to the Job History Ul of the Hadoop Cluster.

Logged in as: dr.who

MapReduce Job

job_1400191378494_0002

» Application Job Qverview
~ Job Job Name: scopedTarget.wordcountJob
. User Name: hillert
Overview Queue: default
%ﬁmn State: SUCCEEDED
—g—Ma tasks Uberized: false
_p—Reduce tasks Started: Thu May 15 22:09:22 EDT 2014
- Finished: Thu May 15 22:09:38 EDT 2014
» Tools Elapsed: 15sec
Diagnostics:
Average Map Time 5sec
Average Reduce Time Osec
Average Shuffle Time 4sec
Average Merge Time Osec
ApplicationMaster
Attempt Number Start Time Node Logs
1 Thu May 15 22:09:18 EDT 2014 10.0.1.4:8042 logs
Task Type Total Complete
Map 1 1
Reduce 1 1
Attempt Type Failed Killed Successful
Maps 0 0 1
Reduces i} i} 1
Figure 21.16. Job History Ul
1.0.0 Spring XD Guide 164

Spring XD

Step execution history

Step Execution Progress for Step 'wordcount'
Percentage Complete

Step Execution History
Name Count Min Max Mean Standard Deviation
Commit Count 3 1 1 1.00 0.00
Duration 3 24503 32735 27629.33 3640.49
Duration per Read 3 29 39 32.67 4.50
Filter Count 3 0 0 0.00 0.00
Process Skip Count 3 0 0 0.00 0.00
Read Count 3 o] 0 0.00 0.00
Read Skip Count 3 0 0 0.00 0.00
Rollback Count 3 0 0 0.00 0.00
Write Count 3 2988 2988 2988.00 0.00
Write Skip Count 3 0 0 0.00 0.00

Back

Figure 21.17. Step Execution History

On this screen, you can view various metrics associated with the selected step such as duration, read
counts, write counts etc.

1.0.0 Spring XD Guide 165

Part Il. Appendices

Spring XD

Appendix A. Installing Hadoop

A.l Installing Hadoop

If you don't have a local Hadoop cluster available already, you can do a local single node installation
(v2.2.0) and use that to try out Hadoop with Spring XD.

@ Tip

This guide is intended to serve as a quick guide to get you started in the context of Spring XD.
For more complete documentation please refer back to the documentation provided by your
respective Hadoop distribution.

Download

First, download an installation archive (hadoop-2.2.0.tar.gz) and unpack it locally. Linux users can also
install Hadoop through the system package manager and on Mac OS X, you can use Homebrew.
However, the manual installation is self-contained and it's easier to see what’'s going on if you just
unpack it to a known location.

If you have wget available on your system, you can also execute:

‘$ wget http://archive. apache. org/ di st/ hadoop/ conmon/ hadoop- 2. 2. 0/ hadoop-2. 2. 0. tar. gz

Unpack the distribution with:

‘$ tar xzf hadoop-2.2.0.tar.gz

Change into the directory and have a look around

$ cd hadoop-2.2.0

$1s

$ bi n/ hadoop

Usage: hadoop [--config confdir] COMVAND
where COWAND i s one of

fs run a generic filesystemuser client
ver si on print the version
jar <jar> run a jar file

The bi n directory contains the start and stop scripts as well as the hadoop and hdf s scripts which
allow us to interact with Hadoop from the command line.

Java Setup

Make sure that you set JAVA HOME in the et ¢/ hadoop/ hadoop- env. sh script, or you will get an
error when you start Hadoop. For example:

The java inplenentation to use. Required
export JAVA HOME=/usr/lib/j2sdkl. 5-sun
export JAVA HOVE=/usr/lib/jdkl.6.0_45

1.0.0 Spring XD Guide 167

http://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-common/SingleCluster.html
http://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-common/SingleCluster.html
http://archive.apache.org/dist/hadoop/common/hadoop-2.2.0/
http://brew.sh/

Spring XD

@ Tip

When using Mac OS X you can determine the Java home directory by executing $ /usr/
| i bexec/java_hone -v 1.6

@ Tip

When using Ubuntu you can determine the Java home directory by executing $ sudo updat e-
java-al ternatives -1

© Important

When using MAC OS X (Other systems possible also) you may still encounter Unabl e t o | oad
real minfo from SCDynani cSt or e (For details see Hadoop Jira HADOOP-7489). In that
case, please also add to conf / hadoop- env. sh the following line: export HADOOP_OPTS=" -
D ava. security. krb5. real m= -Dj ava. security. krb5. kdc=".

Setup SSH

As described in the installation guide, you also need to set up SSH login to | ocal host without a
passphrase. On Linux, you may need to install the ssh package and ensure the sshd daemon is
running. On Mac OS X, ssh is already installed but the sshd daemon isn't usually running. To start it,
you need to enable "Remote Login" in the "Sharing" section of the control panel. Then you can carry on
and setup SSH keys as described in the installation guide:

$ ssh-keygen -t dsa -P'' -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Make sure you can log in at the command line using ssh | ocal host and ssh 0. 0. 0. 0 before trying
to start Hadoop:

$ ssh | ocal host
Last login: Thu May 1 15:02:32 2014 from | ocal host

$ ssh 0.0.0.0
Last login: Thu May 1 15:06:02 2014 from | ocal host

You also need to decide where in your local filesystem you want Hadoop to store its data. Let's say
you decide to use / dat a.

First create the directory and make sure it is writeable:

$ nkdir /data
$ chnod 777 /data

Now edit et ¢/ hadoop/ core-site. xm and add the following property:

<property>
<name>hadoop. t np. di r </ nane>
<val ue>/ dat a</ val ue>

</ property>

You're then ready to format the filesystem for use by HDFS

$ bi n/ hadoop nanenode -f ormat

1.0.0 Spring XD Guide 168

https://issues.apache.org/jira/browse/HADOOP-7489
http://en.wikipedia.org/wiki/Secure_Shell

Spring XD

Setting the Namenode Port

By default Spring XD will use a Namenode setting of hdfs:/ /| ocal host: 8020 which can be
overridden in ${ xd. hone}/ confi g/ server. ym , depending on the used Hadoop distribution and
version the by-default-defined port 8020 may be different, e.g. port 9000. Therefore, please ensure you
have the following property setting in et ¢/ hadoop/ core-site. xm :

<property>

<nane>fs. def aul t FS</ nane>

<val ue>hdfs:/ /| ocal host: 8020</ val ue>
</ property>

Further Configuration File Changes

In et ¢/ hadoop/ hdf s-si te. xn add the following properties:

<property>
<nane>dfs. replication</nane>
<val ue>1</val ue>

</ property>

<property>
<name>df s. support . append</ nanme>
<val ue>true</ val ue>

</ property>

<property>
<nane>df s. webhdf s. enabl ed</ nane>
<val ue>t rue</ val ue>

</ property>

Create et ¢/ hadoop/ mapr ed- si t e. xm and add:

<?xm version="1.0"?>
<?xm -styl esheet type="text/xsl" href="configuration.xsl"?>

<configuration>
<property>
<nanme>mapr educe. f r amewor k. nane</ nane>
<val ue>yar n</ val ue>
</ property>
</ confi guration>

In et ¢/ hadoop/ yar n-si te. xnl add these properties:

<property>
<name>yar n. nodemanager . aux- ser vi ces</ nane>
<val ue>mapr educe_shuf fl e</ val ue>
</ property>
<property>
<nane>yar n. nodemanager . aux- servi ces. mapr educe. shuffl e. cl ass</ nane>
<val ue>or g. apache. hadoop. mapr ed. Shuf f | eHandl er </ val ue>
</ property>

A.2 Running Hadoop

First we need to set up the environment settings. It's convenient to add these to a file that you can source
when you want to work with Hadoop. We create a file called hadoop- env and add the following content:

1.0.0 Spring XD Guide 169

Spring XD

The directory of the unpacked distribution
export HADOOP_| NSTALL="$HOVE/ Downl oads/ hadoop- 2. 2. 0"

The JAVE _HOME (see above how to deternine this)
export JAVA HOVE=/usr/lib/jdkl.6.0_45

Some HOMVE settings

export HADOOP_MAPRED HOVE=$HADOOP_| NSTALL
export HADOOP_YARN_ HOVE=$HADOOP_| NSTALL
export HADOOP_COVMON_ HOVE=$HADOOP_| NSTALL

Add Hadoop scripts to the PATH
export PATH=$HADOOP_| NSTALL/ bi n: $HADOOP_| NSTALL/ sbi n: $PATH

To use these settings we need to source this script:

$ source hadoop- env

You should now finally be ready to run Hadoop. Run the following commands

$ start-dfs.sh
$ start-yarn.sh
$ nr-jobhistory-daenon. sh start historyserver

You should see six Hadoop Java processes running:

$ jps
21636 NanmeNode
22004 Secondar yNaneNode
22360 NodeManager
22425 JobHi storyServer
21808 Dat aNode
22159 Resour ceManager
22471 Jps

Try a few commands with hdf s df s to make sure the basic system works

$ hdfs dfs -1s /
Found 1 items
dr wxr wx- - - - trisberg supergroup 0 2014-05-01 15:31 /tnp

$ hdfs dfs -nkdir /xd

$ bi n/ hadoop dfs -ls /

Found 2 itens

dr wxr wx- - - - trisberg supergroup 0 2014-05-01 15:31 /tnp
dr wxr - xr - x - trisberg supergroup 0 2014-05-01 15:34 /xd

Lastly, you can also browse the web interface for NameNode and ResourceManager at:

 NameNode: http://localhost:50070/

» ResourceManager: http://localhost:8088/

At this point you should be good to create a Spring XD stream using a Hadoop sink.

1.0.0 Spring XD Guide 170

http://localhost:50070/
http://localhost:8088/

Spring XD

Appendix B. Creating a Source
Module

B.1 Introduction

As outlined in the modules document, XD currently supports 3 types of modules: source, sink, and
processor. This document walks through creation of a custom source module.

The first module in a stream is always a source. Source modules are built with Spring Integration and are
typically very fine-grained. A module of type source is responsible for placing a message on a channel
named output. This message can then be consumed by the other processor and sink modules in the
stream. A source module is typically fed data by an inbound channel adapter, configured with a poller.

Spring Integration provides a number of adapters out of the box to support various transports, such as
JMS, File, HTTP, Web Services, Mail, and more. You can typically create a source module that uses
these inbound channel adapters by writing just a single Spring application context file.

These steps will demonstrate how to create and deploy a source module using the Spring Integration
Feed Inbound Channel Adapter.

B.2 Create the module Application Context file

Create the Inbound Channel Adapter in a file called feed.xml:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:int="http://ww. springfranmework. org/ schema/integration"
xm ns:int-feed="http://ww. springfranmework. org/schema/integration/feed"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ i ntegration
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http://ww. spri ngfranewor k. org/ schenma/ i ntegration/feed
http://ww. springfranework. org/ schema/ i ntegration/feed/ spring-integration-feed. xsd">

<i nt - f eed: i nbound- channel - adapt er i d="xdFeed" channel ="output" url="http://
f eeds. bbci . co. uk/ news/rss. xm ">

<int:poller fixed-rate="5000" nmax-nmessages-per-poll="100" />

</int-feed:inbound-channel - adapt er >

<i nt:channel id="output"/>
</ beans>

The adapter is configured to poll the BBC News Feed every 5 seconds. Once an item is found, it will
create a message with a SyndEntrylmpl domain object payload and write it to a message channel
called output. The name output should be used by convention so that your source module can easily
be combined with any processor and sink module in a stream.

1.0.0 Spring XD Guide 171

http://docs.spring.io/spring-integration/reference/html/feed.html#feed-inbound-channel-adapter
http://docs.spring.io/spring-integration/reference/html/feed.html#feed-inbound-channel-adapter

Spring XD

Make the module configurable

Users may want to pull data from feeds other than BBC News. Spring XD will automatically make a
PropertyPlaceholderConfigurer available to your application context. You can simply reference property
names and users can then pass in values when creating a stream using the DSL.

<i nt-feed: i nbound- channel - adapter id="xdFeed" channel ="output" url="${url:http://
f eeds. bbci . co. uk/ news/rss. xnl }" >

<int:poller fixed-rate="5000" max-nmessages-per-poll="100" />
</int-feed:inbound-channel - adapt er >

Now users can optionally pass a url property value on stream creation. If not present, the specified
default will be used.

B.3 Test the module locally

This section covers setup of a local project containing some code for testing outside of an XD container.
This step can be skipped if you prefer to test the module by deploying to Spring XD.

Create a project

The module can be tested by writing a Spring integration test to load the context file and validate that
news items are received. In order to write the test, you will need to create a project in an IDE such as
STS, Eclipse, or IDEA. Eclipse will be used for this example.

Create a feed directory and add feed.xml to src/main/resources. Add the following build.gradle (or an
equivalent pom.xml) to the root directory:

description = 'Feed Source Mdul e
group = 'org.springfranework. xd. sanpl es

repositories {
maven { url "http://repo.spring.iol/libs-snapshot” }
maven { url "http://repo.spring.iolplugins-rel ease" }

}

apply plugin: 'java
apply plugin: 'eclipse
apply plugin: 'idea

ext {
junitVersion = '4.11'
springVersion = '4.0.3. RELEASE
springlntegrationVersion = '4.0.0. V4

}

dependenci es {
conpi | e("org. springfranmewor k: spring-core: $spri ngVer si on")
conpi l e "org. springfranmewor k: spring-cont ext -support: $spri ngVersi on"
conpil e "org. springframework.integration:spring-integration-feed
$springl nt egrati onVersi on"

/1 Testing
test Conpi l e "j unit:junit:$junitVersion"
test Conpi |l e "org. springframework: spri ng-test: $spri ngVersi on"

}

def aul t Tasks ' buil d'

1.0.0 Spring XD Guide 172

Spring XD

Run gradle eclipse to generate the Eclipse project. Import the project into Eclipse.

Create the Spring integration test

The main objective of the test is to ensure that news items are received once the module’s Application
Context is loaded. This can be tested by adding an Outbound Channel Adapter that will direct items to

a POJO that can store them for validation.

Add the following src/test/resources/org/springframework/xd/samples/test-context.xml:

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns:int="http://ww.springframework. org/schema/integration”

xm ns: cont ext ="http://wwmv. springfranmewor k. or g/ schema/ cont ext "

xsi : schemalLocat i on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://wwv spri ngfranmewor k. or g/ schema/ cont ext
http://ww. springfranmework. or g/ schema/ cont ext/spri ng-cont ext. xsd
http://ww. springframework. org/ schema/ i nt egration
http://ww. spri ngfranewor k. org/ schema/ i ntegration/spring-integration.xsd">

<cont ext : property- pl acehol der/ >
<i nt : out bound- channel - adapt er channel ="out put" ref="target" method="add" />
<bean id="target" class="org.springfranework.xd. sanpl es. FeedCache" />

</ beans>

This context creates an Outbound Channel Adapter that will subscribe to all messages on the output
channel and pass the message payload to the add method of a FeedCache object. The context also
creates the PropertyPlaceholderConfigurer that is ordinarily provided by the XD container.

Create the src/test/java/org/springframework/xd/samples/FeedCache class:

package org. springfranmewor k. xd. sanpl es
i mport

public class FeedCache {
final Bl ocki ngDeque<SyndEntry> entries = new Li nkedBl ocki ngDeque<SyndEntry>(99);

public void add(SyndEntry entry) {
entries.add(entry);

}

}

The FeedCache places all received SyndEntry objects on a BlockingDeque that our test can use to
validate successful routing of messages.

Lastly, create and run the src/test/java/org/springframework/xd/samples/FeedSourceModuleTest:

1.0.0 Spring XD Guide 173

Spring XD

package org. springfranmework. xd. sanpl es
import ...

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@Cont ext Confi guration(locations={"classpath: feed.xm", "test-context.xm "})
public class FeedSourceMdul eTest {

@\ut owi r ed
FeedCache feedCache

@est
public void testFeedPolling() throws Exception {
assert Not Nul | (f eedCache. entries. poll (5, TineUnit.SECONDS));

}

The test will load an Application Context using our feed and test context files. It will fail if a item is not
placed into the FeedCache within 5 seconds.

You now have a way to build and test your new module independently. Time to deploy to Spring XD!

B.4 Deploy the module

Spring XD looks for modules in the ${xd.home}/modules directory. The modules directory organizes
module types in sub-directories. So you will see something like:

nmodul es/ processor
nodul es/ si nk
nmodul es/ sour ce

Simply drop feed.xml into the modules/source directory and add the dependencies to the lib directory
by copying the following jars from your gradle cache to ${ xd. hone}/ | i b:

spring-integration-feed-4.0.0. M. jar
jdom 1.0.jar

rome-1.0.0.jar
ronme-fetcher-1.0.0.jar

© Note

For a more sophisticated handling of module dependencies, please see Modules with isolated
classpath.

Now fire up the server. See Getting Started to learn how to start the Spring XD server.

B.5 Test the deployed module

Once the XD server is running, create a stream to test it out. This stream will write SyndEntry objects
to the XD log:

xd: > stream create --nane feedtest --definition "feed | |10g" --deploy

You should start seeing messages like the following in the container console window:

1.0.0 Spring XD Guide 174

https://github.com/spring-projects/spring-xd/wiki/Modules#modules-with-isolated-classpath
https://github.com/spring-projects/spring-xd/wiki/Modules#modules-with-isolated-classpath

Spring XD

WARN | ogger . feedtest: SyndEntrylnpl.contributors=[]
SyndEnt ryl npl . cont ent s=[]
SyndEnt ryl npl . updat edDat e=nul |
SyndEnt ryl npl . | i nk=http://ww. bbc. co. uk/ news/ uk- 22850006#sa-
ns_nthannel =r ss&ns_sour ce=Publ i cRSS20- sa
SyndEntryl npl . titl eEx. val ue=VIDEO Queen visits Prince Philip in hospital

As you can see, the SyndEntrylmpl toString is fairly verbose. To make the output more concise, create
a processor module to further transform the SyndEntry or consider converting the entry to JSON and
using the JSON Field Extractor to send a single attribute value to the output channel.

1.0.0 Spring XD Guide 175

Spring XD

Appendix C. Creating a Processor
Module

C.1 Introduction

As outlined in the modules document, XD currently supports 3 types of modules: source, sink, and
processor. This document walks through creation of a custom processor module.

One or more processors can be included in a stream definition to modify the data as it passes between
the initial source and the destination sink. The architecture section covers the basics of processors
modules provided out of the box are covered in the processors section.

Here we’ll look at how to create and deploy a custom processor module to transform the input from
an incoming t wi tt er sear ch. The steps are essentially the same for any source though. Rather than
using built-in functionality, we’ll write a custom processor implementation class and wire it up using
Spring Integration.

C.2 Write the Transformer Code

The tweet messages fromt wi t t er sear ch contain quite a lot of data (id, author, time and so on). The
transformer we’ll write will discard everything but the text content and output this as a string. The output
messages from the t wi t t er sear ch source are also strings, containing the tweet data as JSON. We
first parse this into a map using Jackson library code, then extract the "text" field from the map.

package custom

i mport java.io.| COException;
import java.util.Mp;

i mport org.codehaus. jackson. map. Obj ect Mapper ;
i mport org.codehaus. jackson. type. TypeRef erence;
i nport org.springfranework.integration.transforner. MessageTransfor mati onExcepti on;

public class Tweet Transformer {
private Object Mapper mapper = new Obj ect Mapper ();

public String transform(String payl oad) {
try {
Map<String, Object> tweet = mapper.readVal ue(payl oad, new TypeRef erence<Map<Stri ng,
Qoj ect>>() {});
return tweet.get("text").toString();
} catch (1 OException e) {
t hrow new MessageTransformati onExcepti on("Unable to transformtweet: " +
e. get Message(), e);
}
}
}

C.3 Create the module Application Context File

Create the following file as tweettransformer.xmil:

1.0.0 Spring XD Guide 176

Spring XD

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans: beans xm ns="http://ww. spri ngfranework. org/ schena/i nt egration"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: beans="htt p: //wwm. spri ngf ramewor k. or g/ schema/ beans"
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http: // ww. spri ngfranewor k. or g/ schema/ i ntegration
http://ww. springfranework. org/ schema/ i ntegration/spring-integration.xsd">
<channel id="input"/>

<transformer input-channel ="input" output-channel ="out put">
<beans: bean cl ass="cust om Tweet Transforner" />
</ transf or mer >

<channel id="output"/>
</ beans: beans>

C.4 Deploy the Module

To deploy the module, you need to copy the tweettransformer.xml file to the ${ xd. hone} / nodul es/
processor s directory. We also need to make the custom module code available. Spring XD looks for
code inthe jarsit finds in the ${ xd. home} / | i b directory. So create a jar with the Tweet Tr ansf or ner
class in it (and the correct package structure) and drop itinto | i b.

© Note

For a more sophisticated handling of module dependencies, please see Modules with isolated
classpath.

C.5 Test the deployed module

Start the XD server and try creating a stream to test your processor:

xd: > stream create --nane javatweets --definition "twittersearch --query=java --
consuner Key=<your _key> --consuner Secr et =<your _secret> | tweettransformer | file" --deploy

If you haven't already used twittersearch, read the sources section for more details. This
command should stream tweets to the file / t np/ xd/ out put / j avat weet s but, unlike the normal
twi ttersear ch output, you should just see the plain tweet text there, rather than the full JSON data.

1.0.0 Spring XD Guide 177

https://github.com/spring-projects/spring-xd/wiki/Modules#modules-with-isolated-classpath
https://github.com/spring-projects/spring-xd/wiki/Modules#modules-with-isolated-classpath

Spring XD

Appendix D. Creating a Sink Module

D.1 Introduction

As outlined in the modules document, XD currently supports 3 types of modules: source, sink, and
processor. This document walks through creation of a custom sink module.

The last module in a stream is always a sink. Sink modules are built with Spring Integration and are
typically very fine-grained. A module of type sink listens on a channel named input and is responsible
for outputting received messages to an external resource to terminate the stream.

Spring Integration provides a number of adapters out of the box to support various transports, such as
JMS, File, HTTP, Web Services, Mail, and more. You can typically create a sink module that uses these
outbound channel adapters by writing just a single Spring application context file.

These steps will demonstrate how to create and deploy a sink module using the Spring Integration
RedisStore Outbound Channel Adapter.

D.2 Create the module Application Context file

Create the Outbound Channel Adapter in a file called redis-store.xmil:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance" xm ns:int="http://
www. spri ngframewor k. or g/ schema/ i nt egrati on"
xm ns:int-redi s="http://ww.springframework. org/ schena/integration/redis"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ i nt egrati on
http://ww. springframework. org/ schema/ i ntegration/spring-integration.xsd
http://ww. springfranmework. org/ schema/integration/redis
http://ww. springframework. org/ schema/integration/redis/spring-integration-redis.xsd">

<i nt:channel id="input" />

<i nt-redis: store-out bound-channel - adapt er
i d="redi sLi st Adapter" collection-type="LIST" channel ="i nput" key="nyCol | ection" />

<bean i d="redi sConnecti onFact ory"

class="org. springframework. data. redi s. connection. | ettuce. LettuceConnecti onFactory">
<constructor-arg i ndex="0" val ue="${l ocal host}" />

<constructor-arg i ndex="1" val ue="${6379}" />

</ bean>

</ beans>

The adapter is configured to listen on a channel named input. The name input should be used by
convention so that your sink module will receive all messages sent in the stream. Once a message
is received, it will write the payload to a Redis list with key myCollection. By default, the RedisStore
Outbound Channel Adapter uses a bean named redisConnectionFactory to connect to the Redis server.

1.0.0 Spring XD Guide 178

http://docs.spring.io/spring-integration/reference/html/redis.html#redis-store-outbound-channel-adapter
http://docs.spring.io/spring-integration/reference/html/redis.html#redis-store-outbound-channel-adapter

Spring XD

© Note

By default, the adapter uses a StringRedisTemplate. Therefore, this module will store all payloads
directly as Strings. Create a custom RedisTemplate with different value Serializers to serialize
other forms of data like Java objects to the Redis collection.

D.3 Make the module configurable

Users may want to specify a different Redis server or key to use for storing data. Spring XD will
automatically make a PropertyPlaceholderConfigurer available to your application context. You can
simply reference property names and users can then pass in values when creating a stream using the
DSL

<i nt-redi s: st ore-out bound-channel - adapt er i d="redi sLi st Adapter"
col l ection-type="LI ST" channel ="i nput" key="${key: myCol | ection}" />

<bean i d="redi sConnecti onFact ory"
cl ass="org. springframewor k. dat a. redi s. connection. | ettuce. LettuceConnecti onFactory">
<constructor-arg i ndex="0" val ue="${host nane: | ocal host}" />
<constructor-arg i ndex="1" val ue="${port: 6379}" />

</ bean>

Now users can optionally pass key, hostname, and port property values on stream creation. If not
present, the specified defaults will be used.

D.4 Test the module locally

This section covers setup of a local project containing some code for testing outside of an XD container.
This step can be skipped if you prefer to test the module by deploying to Spring XD.

Create a project

The module can be tested by writing a Spring integration test to load the context file and validate that
messages are stored in Redis. In order to write the test, you will need to create a project in an IDE such
as STS, Eclipse, or IDEA. Eclipse will be used for this example.

Create a redis-store directory and add redis-store.xml to src/main/resources. Add the following
build.gradle (or an equivalent pom.xml) to the root directory:

1.0.0 Spring XD Guide 179

Spring XD

description = 'Redis Store Sink Mdule
group = 'org.springframework. xd. sanpl es

repositories {
maven { url "http://repo.spring.iollibs-snapshot" }
maven { url "http://repo.spring.iolplugins-rel ease" }

}

apply plugin: 'java
apply plugin: "eclipse
apply plugin: 'idea

ext {
junitVersion = '4.11'
| ettuceVersion = '2.3.3
springVersion = '4.0.3. RELEASE
springlntegrationVersion = '4.0.0. V4
springDat aRedi sVersion = '1.1.1. RELEASE

}

dependenci es {

conpi | e("org. springfranmewor k: spring-core: $spri ngVer si on")

conpi l e "org. springfranmewor k: spri ng-cont ext - support: $spri ngVer si on"

conpil e "org.springframework.integration:spring-integration-core
$springl nt egrati onVersi on"

conpil e "org.springframework.integration:spring-integration-redis
$springl nt egrati onVersi on"

conpi l e "org. springfranmewor k. dat a: spri ng-dat a-redi s: $spri ngDat aRedi sVer si on"

/1 Testing

test Conpil e "junit:junit:$junitVersion"

test Conpi | e "org. spri ngframewor k: spri ng-test: $spri ngVersi on"
t est Conpi | e "com | anbdawor ks: | et t uce: $l ett uceVer si on"

}

def aul t Tasks ' buil d'

Run gradle eclipse to generate the Eclipse project. Import the project into Eclipse.

Create the Spring integration test

The main objective of the test is to ensure that messages are stored in a Redis list once the module’s
Application Context is loaded. This can be tested by adding an Inbound Channel Adapter that will direct
test messages to the input channel.

Add the following src/test/resources/org/springframework/xd/samples/test-context.xml:

1.0.0 Spring XD Guide 180

Spring XD

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance" xm ns:int="http://
www. spri ngf ranewor k. or g/ schema/ i nt egrati on"
xm ns: cont ext ="http://wwmv springfranmewor k. or g/ schema/ cont ext "
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://wwv. spri ngfranmewor k. or g/ schema/ cont ext
http://ww. springfranewor k. or g/ schenma/ cont ext/ spri ng-cont ext. xsd
http://ww. springframewor k. org/ schema/ i nt egrati on
http: //ww. spri ngfranewor k. or g/ schenma/ i ntegration/spring-integration.xsd">

<cont ext: property-pl acehol der />

<i nt:inbound- channel - adapt er channel ="i nput" expressi on=""'TESTI NG ">

<int:poller fixed-rate="1000" />

</int:inbound- channel - adapt er >

<bean i d="redi sTenpl ate" cl ass="org. spri ngframework. data.redi s. core. Stri ngRedi sTenpl at e">
<property nane="connectionFactory" ref="redi sConnecti onFactory" />

</ bean>

</ beans>

This context creates an Inbound Channel Adapter that will generate messages with the payload
"TESTING". The context also creates the PropertyPlaceholderConfigurer that is ordinarily provided by
the XD container. The redisTemplate is configured for use by the test to verify that data is placed in
Redis.

Lastly, create and run the src/test/java/org/springframework/xd/samples/RedisStoreSinkModuleTest:

package org. springfranmewor k. xd. sanpl es;
i mport

@RunW t h(Spri ngJdUni t 4Cl assRunner . cl ass)
@ont ext Confi gurati on(l ocati ons={"cl asspat h: redi s-store.xm ", "test-context.xm"})
public class Redi sStoreSi nkMdul eTest {

@\ut owi r ed
Redi sTenpl at e<String, String> redi sTenpl at e;

@est
public void testTweet Search() throws Exception {
assert Not Nul | (redi sTenpl at e. boundLi st Ops(" nyCol | ecti on") .| eftPop(5,
Ti meUni t . SECONDS)) ;
}

}

The test will load an Application Context using our redis-store and test context files. It will fail if an item
is not placed in the Redis list within 5 seconds.

Run the test

The test requires a running Redis server. See Getting Started for information on installing and starting
Redis.

You now have a way to build and test your new module independently. Time to deploy to Spring XD!

1.0.0 Spring XD Guide 181

Spring XD

D.5 Deploy the module

Spring XD looks for modules in the ${xd.home}/modules directory. The modules directory organizes
module types in sub-directories. So you will see something like:

nmodul es/ processor
nmodul es/ si nk
nmodul es/ sour ce

Simply drop redis-store.xml into the modules/sink directory and fire up the server. See Getting Started
to learn how to start the Spring XD server.

D.6 Test the deployed module

Once the XD server is running, create a stream to test it out. This stream will write tweets containing
the word "java" to Redis as a JSON string:

xd: > stream create --name javasearch --definition "twittersearch --consunerKey=<your_key>
--consuner Secr et =<your _secret> --query=java | redis-store --key=javatweets" --depl oy

Note that you need to have a consumer key and secret to use the t wi t t er sear ch module. See the
description in the streams section for more information.

Fire up the redis-cli and verify that tweets are being stored:

$ redis-cli

redis 127.0.0.1:6379> Irange javatweets 0 -1

1) {\"id\":342386150738120704,\"text\":\"Now Hiring: Senior Java Devel oper\",\"creat edAt
\":1370466194000, \ "fromJser\":\"j enconmpgeek\", ... \"}"

1.0.0 Spring XD Guide 182

Spring XD

Appendix E. Providing Module
Options Metadata

E.1 Introduction

Each available module can expose metadata about the options it accepts. This is useful to enhance the
user experience, and is the foundation to advanced features like contextual help and code completion.
the For example, provided that the file source module has been enriched with options metadata (and it
has), one can use the nodul e i nf o command in the shell to get information about the module:

xd: > nodul e info source:file
I nformati on about source nodule 'file':

Option Nane Descri ption
Default Type

dir the absolute path to the directory to monitor for files
<none> String
pattern a filter expression (Ant style) to accept only files that match the
pattern * String
out put Type how t hi s nmodul e should enit nmessages it produces

<none> Medi aType
prevent Dupl i cates whether to prevent the sane file from being processed twice

true bool ean

ref set to true to output the File object itself
fal se bool ean

fi xedDel ay the fixed delay polling interval specified in seconds
5 i nt

For this to be available, module authors have to provide a little bit of extra information, known as "Module
Options Metadata". That metadata can take two forms, depending on the needs of the module: one can
either use the "simple" approach, or the "POJO" approach. If one does not need advanced features like
profile activation, validation or options encapsulation, then the "simple" approach is sufficient.

E.2 Using the "Simple" approach

To use the simple approach, simply create a file named <nodul e>. properti es right next to the
<nodul e>. xm file for your module.

Declaring and documenting an option

In that file, each option <opt i on> is declared by adding a line of the form

options. <option>. description = the description

The description for the option is the only required part, and is a very important piece of information for
the end user, so pay special attention to it (see also Style remarks)

That sole line in the properties file makes a - - <opt i on>= construct available in the definition of a
stream using your module.

1.0.0 Spring XD Guide 183

Spring XD

© About plugin provided options metadata

Some options are automatically added to a module, depending on its type. For example, every
source module automatically inherits a out put Type option, that controls the type conversion
feature between modules. You don't have to do anything for that to happen.

Similarly, every job module benefits from a handful of job specific options.

Here is a recap of those automatically provided options:

Module Type Options

Source outputType

Processor outputType, inputType

Sink inputType

Job makeUnique, numberFormat, dateFormat

Advertising default values

In addition to this, one can also provide a default value for the option, using

options. <option>. default = SoneDef aul t

Doing this, the default value should not be used in the placeholder syntax in the xml file. Assuming this
is the contents of f 0o. properti es:

options. bar.description = a very useful option
options. bar.default =5

then in f oo. xm :

<l-- this is correct -->
<feature the-bar="${bar}"" />

<I-- this is incorrect/not needed -->
<feature the-bar="${bar:5}" />

Exposing the option type

Lastly, one can document the option type using a construct like

options. <option>type = fully.qualified.class. Nane

For simple "primitive" types, one can use short nhames, like so:

options. <option> type = String
or
options. <option>.type = bool ean
or
options. <option>.type = | nteger

1.0.0 Spring XD Guide 184

Type-Conversion

Spring XD

Note that there is support for both wrapper types (e.g. Integer) and primitive types (e.g. int). Although
this is used for documentation purposes only, the primitive type would typically be used to indicate a
required option (nul | being prohibited).

E.3 Using the "POJO" approach

To use advanced features such as profile activation driven by the values provided by the end user, one
would need to leverage the "POJO" approach.

Instead of writing a properties file, you will need to write a custom java class that will hold the values at
runtime. That class is also introspected to derive metadata about your module.

Declaring options to the module

For the simplest cases, the class you need to write does not need to implement or inherit from anything.
The only thing you need to do is to reference it in a properties file named after your module (the same
file location you would have used had you been leveraging the "simple" approach):

options_class = fully.qualified. name. of . your. Poj o

Note that the key is options_cl ass, with an s and an underscore (not to be confused with
opt i on. <opti onname> that is used in the "simple" approach)

For each option you want available using the - - <opt i on>= syntax, you must write a public setter
annotated with @vbdul eOpt i on, providing the option description in the annotation.

The type accepted by that setter will be used as the documented type.

That setter will typically be used to store the value in a private field. How the module application can
get ahold of the value is the topic of the next section.

Exposing values to the context

For a provided value to be used in the module definition (using the ${ f oo} syntax), your POJO class
needs to expose a get Foo() getter.

At runtime, an instance of the POJO class will be created (it requires a no-arg constructor, by the way)
and values given by the user will be bound (using setters). The POJO class thus acts as an intermediate
Pr oper t ySour ce to provide values to ${ f oo} constructs.

Providing defaults

To provide default values, one would most certainly simply store a default value in the backing field of a
getter/setter pair. That value (actually, the result of invoking the matching getter to a setter on a newly
instanciated object) is what is advertised as the default.

Encapsulating options

Although one would typically use the combination of a f oo field and a get Foo(), set Foo(x) pair,
one does not have to.

In particular, if your module definition requires some "complex" (all things being relative here) value
to be computed from "simpler” ones (e.g. a suffix value would be computed from an extension option,

1.0.0 Spring XD Guide 185

Spring XD

that would take care of adding a dot, depending on whether it is blank or not), then you'd simply do
the following:

1 public class M/Options {
private String extension;

@bdul eOption("the file extension to use")
5 public void setExtension(String extension) {
thi s. extensi on = extension;

}

public String getSuffix() {

10 return extension == null ? null : "." + extension;
}
}

This would expose a - - ext ensi on= option, being surfaced as a ${ suf f i x} placeholder construct.

The astute reader will have realized that the default can not be computed then, because there is no
get Ext ensi on() (and there should not be, as this could be mistakenly used in ${ ext ensi on}).
To provide the default value, you should use the def aul t Val ue attribute of the @wbdul eQpti on
annotation.

Using profiles

The real benefit of using a POJO class for options metadata comes with advanced features though, one
of which is dynamic profile activation.

If the set of beans (or xml namespaced elements) you would define in the module definition file
depends on the value that the user provided for one or several options, then you can make
your POJO class implement Pr of i | eNanesPr ovi der. That interface brings one contract method,
profil esToActi vat e() thatyou mustimplement, returning the names of the profiles you want to use
(this method is invoked after user option values have been bound, so you can use any logic involving
those to compute the list of profile names).

As an example of this feature, see e.g. Tri gger Sour ceQpt i onsMet adat a.
Using validation

Your POJO class can optionally bear JSR303 annotations. If it does, then validation will occur after
values have been successfully bound (understand that injection can fail early due to type incoherence
by the way. This comes for free and does not require JSR303 annotations).

This can be used to validate a set of options passed in (some are often mutually exclusive) or to catch
misconfiguration earlier than deployment time (e.g. a port number cannot be negative).

E.4 Metadata style remarks

To provide a uniform user experience, it is better if your options metadata information adheres to the
following style:

» option names should follow the camel Case syntax, as this is easier with the POJO approach. If we
later decide to switch to a more uni x- st yl e, this will be taken care of by XD itself, with no change
to the metadata artifacts described here

1.0.0 Spring XD Guide 186

Spring XD

« description sentences should be concise

« descriptions should start with a lowercase letter and should not end with a dot
 use primitive types for required numbers

« descriptions should mention the unit for numbers (e.g ms)

« descriptions should not describe the default value, to the best extent possible (this is surfaced thru
the actual default metadata awareness)

» options metadata should know about the default, rather than relying on the ${f oo: def aul t}
construct

1.0.0 Spring XD Guide 187

Spring XD

Appendix F. Building Spring XD

F.1 Instructions

Here are some useful steps to build and run Spring XD.

To build all sub-projects and run tests for Spring XD (please note tests require a running Redis instance):

‘./gradl ew build

To build and bundle the distribution of Spring XD

‘./gradl ew di st

The above gradle task creates spring-xd-<version>.zip binary distribution archive and spring-xd-
<version>-docs.zip documentation archive files under build/distributions. This will also create a build/
dist/spring-xd directory which is the expanded version of the binary distribution archive.

To just create the Spring XD expanded binary distribution directory

./ gradl ew copyl nstal |

The above gradle task creates the distribution directory under build/dist/spring-xd.

Once the binary distribution directory is created, please refer to Getting Started on how to run Spring XD.

F.2 IDE support

If you would like to work with the Spring XD code in your IDE, please use the following project generation
depending on the IDE you use:

For Eclipse/Spring Tool Suite

‘ ./ gradl ew eclipse

For IntelliJ IDEA

‘./gradl ew i dea

Then just import the project as an existing project.

F.3 Running script tests

Apart from the unit and integration tests, the directory src/ t est/ scri pt s contains set of scripts that
run end-to-end tests on XD runtime. Please see the instructions to setup and run:

e Once XD is built (with copylnstall), from the distribution directory: bui | d/ di st/ spri ng- xd/ xd/
bi n/ xd/ bi n/ xd- si ngl enode(. bat)

e Setup XD_HOME environment variable that points to bui | d/ di st/ spri ng-xd/ xd

» From the directory src/test/scripts,runbasic_streamtests

1.0.0 Spring XD Guide 188

http://redis.io/
https://github.com/SpringSource/spring-xd/wiki/Getting-Started

Spring XD

e For the jdbc_tests, we need to run install _sqglite_jar first that installs sqlite jar into
$XD HOVE/ i b

» Forthe hdf s_i nmport _export _t ests, make sure you have setup hadoop environment and have
the xd- si ngl enode started with appropriate hadoopDistro option and hadoop lib jars for the version

chosen

» Fortweet tests, make sure you have the twitter properties updated before running the tests

1.0.0 Spring XD Guide 189

Spring XD

Appendix G. Monitoring and
Management

Spring XD uses Spring Boot's monitoring and management support over HTTP and JMX along with
Spring Integration’s MBean Exporters

G.1 Monitoring XD Admin, Container and Single-node servers

Following are available by default
JMX is enabled XD_JMX_ENABLED=t r ue

The spring boot management endpoints are exposed over HTTP and since JMX is enabled these
endpoints are exposed over JMX

Spring integration components are exposed over JMX using | nt egr at i onMBeanExport er

All the availble MBeans can be accessed over HTTP using Jol oki a

To enable boot provided management endpoints over HTTP

By default managenent . port is set to use admin/container server port and all the exposed endpoints
can be accessed from the root context of admin and container servers.

When starting admin, container or singlenode server, the command-line option - - ngnt Port can be
specified to use an explicit port for management server. With the given valid management port, the
management endpoints can be accessed from that port. Please refer Spring Boot document here for
more details on the endpoints.

For instance, once XD admin is started on localhost and the management port set to use the admin
port (9393)

http://1ocal host: 9393/ managenent / heal t h
http://1 ocal host: 9393/ managenent / env
http://1ocal host: 9393/ managenent / beans

etc..

To disable boot endpoints over HTTP
Set managenent . port =- 1 for both default and container profiles in config/servers.yml
Management over JMX

All the boot endpoints are exposed over JMX with the domain name or g. spri ngf r amewor k. boot
The MBeans that are exposed within XD admin, container server level are available with the domain
names xd. adm n (for XD admin), xd. cont ai ner (for XD container), xd. shar ed. server and
xd. par ent representing the application contexts common to both XD admin and container. Singlenode
server will have all these domain names exposed. When the stream/job gets deployed into the XD
container, the stream/job MBeans are exposed with specific domain/object naming strategy.

1.0.0 Spring XD Guide 190

http://docs.spring.io/spring-boot/docs/1.0.1.RELEASE/reference/htmlsingle/#production-ready-monitoring
http://docs.spring.io/spring-boot/docs/1.0.1.RELEASE/reference/htmlsingle/#production-ready-jmx
http://docs.spring.io/spring-integration/docs/4.0.0.M4/reference/htmlsingle/#jmx-mbean-exporter
http://docs.spring.io/spring-boot/docs/1.0.1.RELEASE/reference/htmlsingle/#production-ready-endpoints

Spring XD

To disable management over JMX

Set XD_JMX_ENABLED=f al se in config/servers.yml or set it as an environment variable to disable the
management over JMX

G.2 Monitoring deployed modules in XD container

When a module is deployed (with IMX is enabled on the XD container), the IntegrationMBeanExporter
is injected into module’s context via MBeanExportingPlugin and this exposes all the spring integration
components inside the module. For the given module, the IntegrationMBeanExporter uses a specific
object naming strategy that assigns domain name as xd. <st r eanm j ob nane> and, object name as
<nodul e nane>. <nodul e i ndex>.

Streams
For a stream name nyst r eamwith DSL http | | og will have

MBeans with domain name xd. myst r eamwith two objects htt p. 0 and | og. 1

Source, processor, and sink modules will generally have the following attributes and operations

Module Type Attributes and
Operations

Source MessageSourceMetrics

Processor,Sink MessageHandlerMetrics

In addition, each module has channel attributes and operations defined by MessageChannelMetrics.

Jobs

For a job name nryj ob with DSL j dbchdf s will have
MBeans with domain name xd. myj ob with an objectj dbchdfs. 0

You can also obtain monitoring information for Jobs using the Ul or accessing the Job management
REST API. Documentation for the Job Management REST API is forthcoming, but until then
please reference the request mappings in BatchJobsController, BatchJobExecutionsController,
BatchStepExecutionsController, and BatchJoblnstancesController.

G.3 Using Jolokia to access JMX over http

When JMX is enabled (which is default via XD_JMX_ENABLED property), Jolokia is auto-configured to
expose the XD admin, container and singenode server MBeans.

For example, with XD singlenode running management port 9080

http:/ /| ocal host: 9080/ managenent/ j ol oki a/ sear ch/ xd. *: t ype=*, *

will list all the MBeans exposed in XD admin/container servers and the deployed modules. Apart from
this, other available domain and types can be accessed via Jolokia.

1.0.0 Spring XD Guide 191

http://docs.spring.io/spring-integration/docs/4.0.0.RC1/api/org/springframework/integration/monitor/LifecycleMessageSourceMetrics.html
http://docs.spring.io/spring-integration/docs/4.0.0.RC1/api/org/springframework/integration/monitor/LifecycleMessageHandlerMetrics.html
http://docs.spring.io/spring-integration/docs/4.0.0.RC1/api/org/springframework/integration/monitor/MessageChannelMetrics.html
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/java/org/springframework/xd/dirt/rest/BatchJobsController.java
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/java/org/springframework/xd/dirt/rest/BatchJobExecutionsController.java
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/java/org/springframework/xd/dirt/rest/BatchStepExecutionsController.java
https://github.com/spring-projects/spring-xd/blob/master/spring-xd-dirt/src/main/java/org/springframework/xd/dirt/rest/BatchJobInstancesController.java

Spring XD

Appendix H. XD Shell Command
Reference

H.1 Base Commands

admin config info

Show the XD admin server being used.

admin config info

admin config server
Configure the XD admin server to use.

adm n config server [[--uri] <uri>]

uri

the location of the XD Admin REST endpoint. (default: htt p: / /1 ocal host: 9393/)

H.2 Runtime Commands

runtime containers

List runtime containers.

runtine containers

runtime modules

List runtime modules.

runti me nodul es [[--containerld] <containerld>]

containerld
to filter by container id.

H.3 Stream Commands

stream create

Create a new stream definition.

stream create [--nanme] <name> --definition <definition> [--deploy [<deploy>]]

name
the name to give to the stream. (required)

definition
a stream definition, using XD DSL (e.g. "http --port=9000 | hdfs"). (required)

1.0.0 Spring XD Guide

192

Spring XD

deploy
whether to deploy the stream immediately. (default: f al se, or true if - - depl oy is specified
without a value)

stream destroy
Destroy an existing stream.

stream destroy [--nanme] <name>

name
the name of the stream to destroy. (required)

stream all destroy

Destroy all existing streams.

stream all destroy [--force [<force>]]

force
bypass confirmation prompt. (default: f al se, ortrue if - - f or ce is specified without a value)

stream deploy

Deploy a previously created stream.

stream depl oy [--nanme] <name> [--properties <properties>]

name
the name of the stream to deploy. (required)

properties
the properties for this deployment.

stream undeploy
Un-deploy a previously deployed stream.

stream undepl oy [--nane] <nane>

name
the name of the stream to un-deploy. (required)

stream all undeploy
Un-deploy all previously deployed stream.

stream all undeploy [--force [<force>]]

force
bypass confirmation prompt. (default: f al se, ort rue if - - f or ce is specified without a value)

stream list

List created streams.

1.0.0 Spring XD Guide 193

Spring XD

stream | i st

H.4 Job Commands

job create

Create a job.

job create [--nane] <nane> --definition <definition> [--deploy [<deploy>]]

name
the name to give to the job. (required)

definition
job definition using xd dsl . (required)

deploy

whether to deploy the job immediately. (default: f al se, ortrue if - - depl oy is specified without
avalue)

job list

List all jobs.

job list

job execution list

List all job executions.

job execution |ist

job execution step list
List all step executions for the provided job execution id.

job execution step list [--id] <id>

id
the id of the job execution. (required)

job execution step progress

Get the progress info for the given step execution.

job execution step progress [--id] <id> --jobExecutionld <jobExecutionld>
id
the id of the step execution. (required)

jobExecutionid
the job execution id. (required)

1.0.0 Spring XD Guide 194

Spring XD

job execution step display
Display the details of a Step Execution.

job execution step display [--id] <id> --jobExecutionld <jobExecutionld>

id
the id of the step execution. (required)

jobExecutionid
the job execution id. (required)

job execution display

Display the details of a Job Execution.

job execution display [--id] <id>

id
the id of the job execution. (required)

job execution all stop

Stop all the job executions that are running.

job execution all stop [--force [<force>]]

force
bypass confirmation prompt. (default: f al se, ort rue if - - f or ce is specified without a value)

job execution stop

Stop a job execution that is running.

job execution stop [--id] <id>

id
the id of the job execution. (required)

job execution restart

Restart a job that failed or interrupted previously.

job execution restart [--id] <id>

id
the id of the job execution that failed or interrupted. (required)

job deploy
Deploy a previously created job.

job deploy [--name] <name> [--properties <properties>]

1.0.0 Spring XD Guide 195

Spring XD

name
the name of the job to deploy. (required)

properties
the properties for this deployment.

job launch

Launch previously deployed job.

job launch [[--nanme] <nane>] [--paranms <parans>]

name
the name of the job to deploy.

params
the parameters for the job. (default: ™)

job undeploy
Un-deploy an existing job.

job undepl oy [--nane] <nane>

name
the name of the job to un-deploy. (required)

job all undeploy

Un-deploy all existing jobs.

job all undeploy [--force [<force>]]

force

bypass confirmation prompt. (default: f al se, ort rue if - - f or ce is specified without a value)

job instance display

Display information about a given job instance.

job instance display [[--id] <id>]

id
the id of the job instance to retrieve.

job destroy

Destroy an existing job.

job destroy [--nane] <nane>

name
the name of the job to destroy. (required)

1.0.0 Spring XD Guide

196

Spring XD

job all destroy
Destroy all existing jobs.

‘job all destroy [--force [<force>]]

force
bypass confirmation prompt. (default: f al se, ort rue if - - f or ce is specified without a value)

H.5 Module Commands

module info
Get information about a module.

modul e info [--nane] <nane>

name
name of the module to query, in the form type:name. (required)

module compose
Create a virtual module.

modul e conpose [--nanme] <nanme> --definition <definition>

name
the name to give to the module. (required)

definition
module definition using xd dsl. (required)

module delete
Delete a virtual module.

modul e del ete [--nane] <name>

name
name of the module to delete, in the form type:name. (required)

module list
List all modules.

‘nndule list

module display
Display the configuration file of a module.

‘nvdule di splay [--nanme] <nanme>

name
name of the module to display, in the form type:name. (required)

1.0.0 Spring XD Guide 197

Spring XD

H.6 Metrics Commands

counter display
Display the value of a counter.

counter display [--nane] <nane> [--pattern <pattern>]

name
the name of the counter to display. (required)

pattern
the pattern used to format the value (see DecimalFormat). (default: <use pl atf orm | ocal e>)

counter list
List all available counter names.

counter |ist

counter delete
Delete the counter with the given name.

counter delete [--nanme] <name>

name
the name of the counter to delete. (required)

field-value-counter display
Display the value of a field-value-counter.

field-val ue-counter display [--nane] <nane> [--pattern <pattern>] [--size <size>]

name
the name of the field-value-counter to display. (required)

pattern
the pattern used to format the field-value-counter’s field count (see DecimalFormat). (default: <use
pl at form | ocal e>)

size
the number of values to display. (default: 25)

field-value-counter list
List all available field-value-counter names.

fi el d-val ue-counter Iist

field-value-counter delete

Delete the field-value-counter with the given name.

1.0.0 Spring XD Guide 198

Spring XD

field-val ue-counter delete [--nane] <nane>

name
the name of the field-value-counter to delete. (required)

aggregate-counter display

Display aggregate counter values by chosen interval and resolution(minute, hour).

aggregate-counter display [--nanme] <name> [--from <fronmp] [--to <to>] [--l|astHours
<l ast Hours>] [--lastDays <lastDays>] [--resolution <resolution>] [--pattern <pattern>]

name
the name of the aggregate counter to display. (required)

from
start-time for the interval. format: yyyy-MM-dd HH:mm:ss.

to
end-time for the interval. format: yyyy-MM-dd HH:mm:ss. defaults to now.
lastHours
set the interval to last n hours.
lastDays
set the interval to last n days.
resolution
the size of the bucket to aggregate (minute, hour, day, month). (default: hour)
pattern
the pattern used to format the count values (see DecimalFormat). (default: <use platform
| ocal e>)

aggregate-counter list
List all available aggregate counter names.

aggregat e-counter |ist

aggregate-counter delete

Delete an aggregate counter.

aggregat e-counter delete [--nane] <name>

name
the name of the aggregate counter to delete. (required)

gauge display
Display the value of a gauge.

gauge di splay [--nane] <nanme> [--pattern <pattern>]

1.0.0 Spring XD Guide 199

Spring XD

name
the name of the gauge to display. (required)

pattern
the pattern used to format the value (see DecimalFormat). (default: <use pl atform | ocal e>)

gauge list

List all available gauge names.

gauge |i st

gauge delete
Delete a gauge.

gauge del ete [--nane] <nanme>

name
the name of the gauge to delete. (required)

rich-gauge display
Display Rich Gauge value.

ri ch-gauge display [--nane] <nanme> [--pattern <pattern>]

name
the name of the richgauge to display value. (required)

pattern
the pattern used to format the richgauge value (see DecimalFormat). (default: <use pl atform
| ocal e>)

rich-gauge list

List all available richgauge names.

ri ch-gauge |ist

rich-gauge delete
Delete the richgauge.

ri ch-gauge del ete [--nane] <nane>

name
the name of the richgauge to delete. (required)

H.7 Http Commands

http post

POST data to http endpoint.

1.0.0 Spring XD Guide 200

Spring XD

http post [[--target] <target>] [--data <data>] [--file <file>] [--contentType
<cont ent Type>]

target
the location to post to. (default: htt p: / /1 ocal host : 9000)

data
the text payload to post. exclusive with file. embedded double quotes are not supported if next to
a space character.

file
filename to read data from. exclusive with data.

contentType
the content-type to use. file is also read using the specified charset. (default: t ext/ pl ai n;
Char set =UTF- 8)

http get

Make GET request to http endpoint.

‘http get [[--target] <target>]

target
the URL to make the request to. (default: htt p: / /| ocal host : 9393)

H.8 Hadoop Configuration Commands

hadoop config info

Returns basic info about the Hadoop configuration.

hadoop config info

hadoop config load

Loads the Hadoop configuration from the given resource.

hadoop config load [--1ocation] <location>

location
configuration location (can be a URL). (required)

hadoop config props list

Returns (all) the Hadoop properties.

hadoop config props |ist

hadoop config fs

Sets the Hadoop namenode.

1.0.0 Spring XD Guide 201

Spring XD

hadoop config fs [--namenode] <namenode>

namenode
namenode address - can be local|[<namenode:port>. (required)

hadoop config jt

Sets the Hadoop job tracker.

hadoop config jt [--jobtracker] <jobtracker>

jobtracker
job tracker address - can be local|<jobtracker:port>. (required)

hadoop config props set
Sets the value for the given Hadoop property.

hadoop config props set [--property] <property>

property
what to set, in the form <name=value>. (required)

hadoop config props get
Returns the value of the given Hadoop property.
‘hadoop config props get [--key] <key>

key
property name. (required)

H.9 Hadoop FileSystem Commands

hadoop fs Is
List files in the directory.

hadoop fs Is [[--dir] <dir>] [--recursive [<recursive>]]

dir
directory to be listed. (default: .)

recursive
whether with recursion. (default: f al se, ortrue if - -recur si ve is specified without a value)

hadoop fs cat

Copy source paths to stdout.

hadoop fs cat [--path] <path>

path
file name to be shown. (required)

1.0.0 Spring XD Guide 202

Spring XD

hadoop fs chgrp

Change group association of files.

hadoop fs chgrp [--recursive [<recursive>]] --group <group> [--path] <path>

recursive
whether with recursion. (default: f al se, ortrue if - -recur si ve is specified without a value)

group
group name. (required)

path
path of the file whose group will be changed. (required)

hadoop fs chown

Change the owner of files.

hadoop fs chown [--recursive [<recursive>]] --owner <owner> [--path] <path>

recursive
whether with recursion. (default: f al se, ortrue if - -recur si ve is specified without a value)

owner
owner name. (required)

path
path of the file whose ownership will be changed. (required)

hadoop fs chmod

Change the permissions of files.

hadoop fs chnod [--recursive [<recursive>]] --nmpbde <nbde> [--path] <path>

recursive
whether with recursion. (default: f al se, ortrue if - -recur si ve is specified without a value)

mode
permission mode. (required)

path
path of the file whose permissions will be changed. (required)

hadoop fs copyFromLocal

Copy single src, or multiple srcs from local file system to the destination file system. Same as put.

hadoop fs copyFroniocal --from<fromr --to <to>

from
source file names. (required)

1.0.0 Spring XD Guide 203

Spring XD

to
destination path name. (required)

hadoop fs moveFromLocal

Similar to put command, except that the source localsrc is deleted after it's copied.

hadoop fs noveFroniocal --from<fromr --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs copyToLocal

Copy files to the local file system. Same as get.

hadoop fs copyToLocal --from<from> --to <to> [--ignoreCrc [<ignoreCrc>]] [--crc [<crc>]]

from
source file names. (required)

to

destination path name. (required)
ignoreCrc

whether ignore CRC. (default: f al se, or true if - -i gnor eCr c is specified without a value)
crc

whether copy CRC. (default: f al se, or true if - - cr c is specified without a value)
hadoop fs copyMergeTolLocal

Takes a source directory and a destination file as input and concatenates files in src into the destination
local file.

hadoop fs copyMergeToLocal --from<fronr --to <to> [--endline [<endline>]]

from
source file names. (required)

to
destination path name. (required)

endline
whether add a newline character at the end of each file. (default: f al se, or true if - - endl i ne
is specified without a value)

hadoop fs cp

Copy files from source to destination. This command allows multiple sources as well in which case the
destination must be a directory.

1.0.0 Spring XD Guide 204

Spring XD

hadoop fs cp --from<fronr --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs mv

Move source files to destination in the HDFS.

hadoop fs nmv --from<fronr --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs du

Displays sizes of files and directories contained in the given directory or the length of a file in case its
just a file.

hadoop fs du [[--dir] <dir>] [--summary [<sunmary>]]

dir
directory to be listed. (default: .)

summary
whether with summary. (default: f al se, or true if - - sunmary is specified without a value)

hadoop fs expunge

Empty the trash.

hadoop fs expunge

hadoop fs rm

Remove files in the HDFS.

hadoop fs rm[[--path] <path>] [--skipTrash [<skipTrash>]] [--recursive [<recursive>]]

path
path to be deleted. (default: .)

skipTrash
whether to skip trash. (default: f al se, or t rue if - - ski pTr ash is specified without a value)

recursive
whether to recurse. (default: f al se, or true if - -recursi ve is specified without a value)

1.0.0 Spring XD Guide 205

Spring XD

hadoop fs setrep

Change the replication factor of a file.

hadoop fs setrep --path <path> --replica <replica> [--recursive [<recursive>]] [--waiting
[<wai ting>]]

path
path name. (required)

replica
source file names. (required)

recursive
whether with recursion. (default: f al se, ortrue if - -recursi ve is specified without a value)

waiting
whether wait for the replic number is eqal to the number. (default: f al se, ortrue if - -wai ti ng
is specified without a value)

hadoop fs text

Take a source file and output the file in text format.

hadoop fs text [--file] <file>

file
file to be shown. (required)

hadoop fs touchz
Create a file of zero length.

hadoop fs touchz [--file] <file>

file
file to be touched. (required)

hadoop fs get

Copy files to the local file system.

hadoop fs get --from<fronk --to <to> [--ignoreCrc [<ignoreCrc>]] [--crc [<crc>]]

from
source file names. (required)

to

destination path name. (required)
ignoreCrc

whether ignore CRC. (default: f al se, or true if - -i gnor eCr c is specified without a value)
crc

whether copy CRC. (default: f al se, ortrueif --crc is specified without a value)

1.0.0 Spring XD Guide 206

Spring XD

hadoop fs put
Copy single src, or multiple srcs from local file system to the destination file system.

hadoop fs put --from<fronr --to <to>

from
source file names. (required)

to
destination path name. (required)

hadoop fs count

Count the number of directories, files, bytes, quota, and remaining quota.

hadoop fs count [--quota [<quota>]] --path <path>

quota
whether with quta information. (default: f al se, ort rue if - - quot ais specified without a value)

path
path name. (required)

hadoop fs mkdir
Create a new directory.

hadoop fs nkdir [--dir] <dir>

dir
directory name. (required)

hadoop fs tail

Display last kilobyte of the file to stdout.

hadoop fs tail [--file] <file> [--follow [<follow]]

file
file to be tailed. (required)

follow
whether show content while file grow. (default: f al se, ortrueif - - f ol | owis specified without
avalue)

1.0.0 Spring XD Guide 207

	Spring XD Guide
	Table of Contents
	Part I. Reference Guide
	1. Introduction
	1.1 Overview

	2. Getting Started
	3. Requirements
	3.1 Download Spring XD
	3.2 Install Spring XD
	3.3 Start the Runtime and the XD Shell
	3.4 Create a Stream
	3.5 Explore Spring XD
	3.6 OSX Homebrew installation
	3.7 RedHat/CentOS Installation

	4. Running in Distributed Mode
	4.1 Introduction
	XD CommandLine Options
	xd-admin command line args:
	xd-container command line args:

	4.2 Setting up a RDBMS
	4.3 Setting up ZooKeeper
	4.4 Setting up Redis
	Installing Redis
	Troubleshooting
	Redis on Windows
	Redis is not running

	Starting Redis

	4.5 Using RabbitMQ
	Installing RabbitMQ
	Launching RabbitMQ

	4.6 Starting Spring XD in Distributed Mode
	Choosing a Transport
	Choosing an Analytics provider
	Other Options

	4.7 Using Hadoop
	4.8 XD-Shell in Distributed Mode

	5. Running on YARN
	5.1 Introduction
	5.2 What do you need?
	5.3 Download Spring XD on YARN binaries
	5.4 Configure your deployment
	XD options
	Hadoop settings
	Transport options
	Zookeeper settings
	JDBC datasource properties

	5.5 Push and start the jobs
	Push the Spring XD application binaries and config to HDFS
	Submit the Spring XD admin server
	Submit the Spring XD container
	Check the status of the app

	6. Application Configuration
	6.1 Introduction
	6.2 Server Configuration
	Profile support
	Database Configuration
	HSQLDB
	MySQL
	PostgreSQL

	Redis
	RabbitMQ
	Admin Server HTTP Port
	Management Port
	Local transport

	6.3 Module Configuration
	Profiles
	Batch Jobs or modules accessing JDBC

	7. Architecture
	7.1 Introduction
	Runtime Architecture
	DIRT Runtime
	Support for other distributed runtimes

	Single Node Runtime
	Admin Server Architecture
	Container Server Architecture
	Streams
	Stream Deployment

	7.2 Jobs
	7.3 Taps

	8. XD Distributed Runtime
	8.1 Introduction
	8.2 Configuring XD for High Availabilty (HA)
	8.3 ZooKeeper Overview
	8.4 The Admin Server Internals
	Example

	8.5 Module Deployment
	Deployment Manifest
	Deployment Properties
	General Properties
	Bus Properties
	Partition Properties
	Partitioning

	Container Attributes

	8.6 Stream Deployment Examples
	8.7 Partitioned Stream Deployment Examples
	Using SpEL Expressions

	9. Streams
	9.1 Introduction
	9.2 Creating a Simple Stream
	9.3 Deleting a Stream
	9.4 Deploying and Undeploying Streams
	9.5 Other Source and Sink Types
	9.6 Simple Stream Processing
	9.7 DSL Syntax
	9.8 Advanced Features

	10. Modules
	10.1 Introduction
	10.2 Creating a Module
	Modules and Spring
	Integration Modules
	Placeholders available to all modules

	10.3 Registering a Module
	Modules with isolated classpath

	10.4 Composing Modules
	10.5 Getting Information about Modules
	10.6 How module options are resolved

	11. Sources
	11.1 Introduction
	11.2 HTTP
	HTTP with options

	11.3 Tail
	Tail with options
	Tail Status Events

	11.4 File
	File with options

	11.5 Mail
	11.6 Twitter Search
	11.7 Twitter Stream
	11.8 GemFire
	Options
	Example
	Launching the XD GemFire Server

	11.9 GemFire Continuous Query (CQ)
	Options

	11.10 Syslog
	11.11 TCP
	TCP with options
	Available Decoders
	Examples
	Binary Data Example
	Implementing a simple conversation

	11.12 TCP Client
	TCP Client options

	11.13 Reactor IP
	11.14 RabbitMQ
	RabbitMQ with Options

	11.15 JMS
	JMS with Options

	11.16 Time
	11.17 MQTT
	Options

	11.18 Stdout Capture

	12. Processors
	12.1 Introduction
	12.2 Filter
	Filter with SpEL expression
	Filter using jsonPath evaluation
	Filter with Groovy Script

	12.3 Transform
	Transform with SpEL expression
	Transform with Groovy Script

	12.4 Script
	12.5 Splitter
	Extract the value of a specific field

	12.6 Aggregator

	13. Sinks
	13.1 Introduction
	13.2 Log
	13.3 File Sink
	File with Options

	13.4 Hadoop (HDFS)
	HDFS with Options
	Partition Path Expression
	Accessing Properties
	Custom Methods
	path
	dateFormat
	list
	range
	hash

	13.5 HDFS Dataset (Avro/Parquet)
	HDFS Dataset with Options

	13.6 JDBC
	JDBC with Options

	13.7 TCP Sink
	TCP with Options
	Available Encoders
	An Additional Example

	13.8 Mail
	13.9 RabbitMQ
	RabbitMQ with Options

	13.10 GemFire Server
	Launching the XD GemFire Server
	Gemfire sinks
	Example

	13.11 Splunk Server
	Splunk sinks
	Setup Splunk for TCP Input
	Example

	13.12 MQTT Sink
	Options

	13.13 Dynamic Router
	SpEL-based Routing
	Groovy-based Routing
	Options

	14. Taps
	14.1 Introduction
	Example
	Example - tap after a processor has been applied
	Example - using the module index
	Example - using a label

	14.2 Tap Lifecycle

	15. Type Conversion
	15.1 Introduction
	15.2 MIME media types
	Stream Definition examples

	15.3 Media types and Java types
	Caveats

	16. Batch Jobs
	16.1 Introduction
	16.2 Workflow
	16.3 Features
	16.4 Developing your Job
	16.5 Creating a Job
	Creating Jobs - Additional Options

	16.6 Deployment manifest support for job
	16.7 Launching a job
	Ad-hoc
	Launch the Batch using Cron-Trigger
	Launch the Batch using a Fixed-Delay-Trigger
	Launch job as a part of event flow

	16.8 Retrieve job notifications
	To receive aggregated events
	To receive job execution events
	To receive step execution events
	To receive item, skip and chunk events
	To disable the default listeners
	To select specific listeners

	16.9 Removing Batch Jobs
	16.10 Pre-Packaged Batch Jobs
	Note HDFS Configuration
	For Hadoop 1.x
	For Hadoop 2.x

	Poll a Directory and Import CSV Files to HDFS (filepollhdfs)
	Import CSV Files to JDBC (filejdbc)
	HDFS to JDBC Export (hdfsjdbc)
	JDBC to HDFS Import (jdbchdfs)
	HDFS to MongoDB Export (hdfsmongodb)
	FTP to HDFS Export (ftphdfs)

	17. Analytics
	17.1 Introduction
	17.2 Predictive analytics
	17.3 Analytical Models
	Modeling and Evaluation
	Modeling
	Evaluation
	Model Selection

	17.4 Counters and Gauges
	Counter
	Field Value Counter
	Aggregate Counter
	Gauge
	Note:
	Simple Tap Example

	Rich Gauge
	Simple Tap Example
	Stock Price Example
	Improved Stock Price Example

	Accessing Analytics Data over the RESTful API

	18. DSL Reference
	18.1 Introduction
	18.2 Pipes and filters
	18.3 Module parameters
	18.4 Named channels
	18.5 Labels
	18.6 Single quotes, Double quotes, Escaping
	Spring Shell
	XD Syntax
	SpEL syntax and SpEL literals
	Putting it all together

	19. Tuples
	19.1 Introduction
	Creating a Tuple
	Getting Tuple values
	Using SpEL expressions to filter a tuple
	Gradle Dependencies

	20. Samples
	20.1 Syslog ingestion into HDFS
	A sample configuration using syslog-ng

	21. Admin UI
	21.1 Introduction
	21.2 Streams
	21.3 Jobs
	Modules
	List available batch job modules
	Create a Job Definition from a selected Job Module
	View Job Module Details

	List job definitions
	List job deployments
	Launching a batch Job
	Schedule Batch Job Execution

	Job Deployment Details
	List job executions
	Job execution details
	Step execution details
	Step execution history

	Part II. Appendices
	Appendix A. Installing Hadoop
	A.1 Installing Hadoop
	Download
	Java Setup
	Setup SSH
	Setting the Namenode Port
	Further Configuration File Changes

	A.2 Running Hadoop

	Appendix B. Creating a Source Module
	B.1 Introduction
	B.2 Create the module Application Context file
	Make the module configurable

	B.3 Test the module locally
	Create a project
	Create the Spring integration test

	B.4 Deploy the module
	B.5 Test the deployed module

	Appendix C. Creating a Processor Module
	C.1 Introduction
	C.2 Write the Transformer Code
	C.3 Create the module Application Context File
	C.4 Deploy the Module
	C.5 Test the deployed module

	Appendix D. Creating a Sink Module
	D.1 Introduction
	D.2 Create the module Application Context file
	D.3 Make the module configurable
	D.4 Test the module locally
	Create a project
	Create the Spring integration test
	Run the test

	D.5 Deploy the module
	D.6 Test the deployed module

	Appendix E. Providing Module Options Metadata
	E.1 Introduction
	E.2 Using the "Simple" approach
	Declaring and documenting an option
	Advertising default values
	Exposing the option type

	E.3 Using the "POJO" approach
	Declaring options to the module
	Exposing values to the context
	Providing defaults
	Encapsulating options
	Using profiles
	Using validation

	E.4 Metadata style remarks

	Appendix F. Building Spring XD
	F.1 Instructions
	F.2 IDE support
	F.3 Running script tests

	Appendix G. Monitoring and Management
	G.1 Monitoring XD Admin, Container and Single-node servers
	To enable boot provided management endpoints over HTTP
	To disable boot endpoints over HTTP
	Management over JMX
	To disable management over JMX

	G.2 Monitoring deployed modules in XD container
	Streams
	Jobs

	G.3 Using Jolokia to access JMX over http

	Appendix H. XD Shell Command Reference
	H.1 Base Commands
	admin config info
	admin config server

	H.2 Runtime Commands
	runtime containers
	runtime modules

	H.3 Stream Commands
	stream create
	stream destroy
	stream all destroy
	stream deploy
	stream undeploy
	stream all undeploy
	stream list

	H.4 Job Commands
	job create
	job list
	job execution list
	job execution step list
	job execution step progress
	job execution step display
	job execution display
	job execution all stop
	job execution stop
	job execution restart
	job deploy
	job launch
	job undeploy
	job all undeploy
	job instance display
	job destroy
	job all destroy

	H.5 Module Commands
	module info
	module compose
	module delete
	module list
	module display

	H.6 Metrics Commands
	counter display
	counter list
	counter delete
	field-value-counter display
	field-value-counter list
	field-value-counter delete
	aggregate-counter display
	aggregate-counter list
	aggregate-counter delete
	gauge display
	gauge list
	gauge delete
	rich-gauge display
	rich-gauge list
	rich-gauge delete

	H.7 Http Commands
	http post
	http get

	H.8 Hadoop Configuration Commands
	hadoop config info
	hadoop config load
	hadoop config props list
	hadoop config fs
	hadoop config jt
	hadoop config props set
	hadoop config props get

	H.9 Hadoop FileSystem Commands
	hadoop fs ls
	hadoop fs cat
	hadoop fs chgrp
	hadoop fs chown
	hadoop fs chmod
	hadoop fs copyFromLocal
	hadoop fs moveFromLocal
	hadoop fs copyToLocal
	hadoop fs copyMergeToLocal
	hadoop fs cp
	hadoop fs mv
	hadoop fs du
	hadoop fs expunge
	hadoop fs rm
	hadoop fs setrep
	hadoop fs text
	hadoop fs touchz
	hadoop fs get
	hadoop fs put
	hadoop fs count
	hadoop fs mkdir
	hadoop fs tail

