This part of the documentation covers support for reactive-stack web applications built on a
Reactive Streams API to run on non-blocking
servers, such as Netty, Undertow, and Servlet 3.1+ containers. Individual chapters cover
the Spring WebFlux framework,
the reactive WebClient
, support for testing,
and reactive libraries. For Servlet-stack web applications, see
Web on Servlet Stack.
1. Spring WebFlux
The original web framework included in the Spring Framework, Spring Web MVC, was purpose-built for the Servlet API and Servlet containers. The reactive-stack web framework, Spring WebFlux, was added later in version 5.0. It is fully non-blocking, supports Reactive Streams back pressure, and runs on such servers as Netty, Undertow, and Servlet 3.1+ containers.
Both web frameworks mirror the names of their source modules
(spring-webmvc and
spring-webflux)
and co-exist side by side in the Spring Framework. Each module is optional.
Applications can use one or the other module or, in some cases, both — for example, Spring MVC controllers with the reactive WebClient
.
1.1. Motivation
Why was Spring WebFlux created?
Part of the answer is the need for a non-blocking web stack to handle concurrency with a
small number of threads and scale with fewer hardware resources. Servlet 3.1 did provide
an API for non-blocking I/O. However, using it leads away from the rest of the Servlet API,
where contracts are synchronous (Filter
, Servlet
) or blocking (getParameter
,
getPart
). This was the motivation for a new common API to serve as a foundation across
any non-blocking runtime. That is important because of servers (such as Netty) that are
well-established in the async, non-blocking space.
The other part of the answer is functional programming. Much as the addition of annotations
in Java 5 created opportunities (such as annotated REST controllers or unit tests), the addition
of lambda expressions in Java 8 created opportunities for functional APIs in Java.
This is a boon for non-blocking applications and continuation-style APIs (as popularized
by CompletableFuture
and ReactiveX) that allow declarative
composition of asynchronous logic. At the programming-model level, Java 8 enabled Spring
WebFlux to offer functional web endpoints alongside annotated controllers.
1.2. Define “Reactive”
We touched on “non-blocking” and “functional” but what does reactive mean?
The term, “reactive,” refers to programming models that are built around reacting to change — network components reacting to I/O events, UI controllers reacting to mouse events, and others. In that sense, non-blocking is reactive, because, instead of being blocked, we are now in the mode of reacting to notifications as operations complete or data becomes available.
There is also another important mechanism that we on the Spring team associate with “reactive” and that is non-blocking back pressure. In synchronous, imperative code, blocking calls serve as a natural form of back pressure that forces the caller to wait. In non-blocking code, it becomes important to control the rate of events so that a fast producer does not overwhelm its destination.
Reactive Streams is a small spec (also adopted in Java 9) that defines the interaction between asynchronous components with back pressure. For example a data repository (acting as Publisher) can produce data that an HTTP server (acting as Subscriber) can then write to the response. The main purpose of Reactive Streams is to let the subscriber to control how quickly or how slowly the publisher produces data.
Common question: what if a publisher cannot slow down? The purpose of Reactive Streams is only to establish the mechanism and a boundary. If a publisher cannot slow down, it has to decide whether to buffer, drop, or fail. |
1.3. Reactive API
Reactive Streams plays an important role for interoperability. It is of interest to libraries
and infrastructure components but less useful as an application API, because it is too
low-level. Applications need a higher-level and richer, functional API to
compose async logic — similar to the Java 8 Stream
API but not only for collections.
This is the role that reactive libraries play.
Reactor is the reactive library of choice for
Spring WebFlux. It provides the
Mono
and
Flux
API types
to work on data sequences of 0..1 (Mono
) and 0..N (Flux
) through a rich set of operators aligned with the
ReactiveX vocabulary of operators.
Reactor is a Reactive Streams library and, therefore, all of its operators support non-blocking back pressure.
Reactor has a strong focus on server-side Java. It is developed in close collaboration
with Spring.
WebFlux requires Reactor as a core dependency but it is interoperable with other reactive
libraries via Reactive Streams. As a general rule, a WebFlux API accepts a plain Publisher
as input, adapts it to a Reactor type internally, uses that, and returns either a
Flux
or a Mono
as output. So, you can pass any Publisher
as input and you can apply
operations on the output, but you need to adapt the output for use with another reactive library.
Whenever feasible (for example, annotated controllers), WebFlux adapts transparently to the use
of RxJava or another reactive library. See Reactive Libraries for more details.
1.4. Programming Models
The spring-web
module contains the reactive foundation that underlies Spring WebFlux,
including HTTP abstractions, Reactive Streams adapters for supported
servers, codecs, and a core Using the WebHandler
API comparable to
the Servlet API but with non-blocking contracts.
On that foundation, Spring WebFlux provides a choice of two programming models:
-
Annotated Controllers: Consistent with Spring MVC and based on the same annotations from the
spring-web
module. Both Spring MVC and WebFlux controllers support reactive (Reactor and RxJava) return types, and, as a result, it is not easy to tell them apart. One notable difference is that WebFlux also supports reactive@RequestBody
arguments. -
Functional Endpoints: Lambda-based, lightweight, and functional programming model. You can think of this as a small library or a set of utilities that an application can use to route and handle requests. The big difference with annotated controllers is that the application is in charge of request handling from start to finish versus declaring intent through annotations and being called back.
1.5. Applicability
Spring MVC or WebFlux?
A natural question to ask but one that sets up an unsound dichotomy. Actually, both work together to expand the range of available options. The two are designed for continuity and consistency with each other, they are available side by side, and feedback from each side benefits both sides. The following diagram shows how the two relate, what they have in common, and what each supports uniquely:
We suggest that you consider the following specific points:
-
If you have a Spring MVC application that works fine, there is no need to change. Imperative programming is the easiest way to write, understand, and debug code. You have maximum choice of libraries, since, historically, most are blocking.
-
If you are already shopping for a non-blocking web stack, Spring WebFlux offers the same execution model benefits as others in this space and also provides a choice of servers (Netty, Tomcat, Jetty, Undertow, and Servlet 3.1+ containers), a choice of programming models (annotated controllers and functional web endpoints), and a choice of reactive libraries (Reactor, RxJava, or other).
-
If you are interested in a lightweight, functional web framework for use with Java 8 lambdas or Kotlin, you can use the Spring WebFlux functional web endpoints. That can also be a good choice for smaller applications or microservices with less complex requirements that can benefit from greater transparency and control.
-
In a microservice architecture, you can have a mix of applications with either Spring MVC or Spring WebFlux controllers or with Spring WebFlux functional endpoints. Having support for the same annotation-based programming model in both frameworks makes it easier to re-use knowledge while also selecting the right tool for the right job.
-
A simple way to evaluate an application is to check its dependencies. If you have blocking persistence APIs (JPA, JDBC) or networking APIs to use, Spring MVC is the best choice for common architectures at, least. It is technically feasible with both Reactor and RxJava to perform blocking calls on a separate thread but you would not be making the most of a non-blocking web stack.
-
If you have a Spring MVC application with calls to remote services, try the reactive
WebClient
. You can return reactive types (Reactor, RxJava, or other) directly from Spring MVC controller methods. The greater the latency per call or the interdependency among calls, the more dramatic the benefits. Spring MVC controllers can call other reactive components too. -
If you have a large team, keep in mind the steep learning curve in the shift to non-blocking, functional, and declarative programming. A practical way to start without a full switch is to use the reactive
WebClient
. Beyond that, start small and measure the benefits. We expect that, for a wide range of applications, the shift is unnecessary. If you are unsure what benefits to look for, start by learning about how non-blocking I/O works (for example, concurrency on single-threaded Node.js) and its effects.
1.6. Servers
Spring WebFlux is supported on Tomcat, Jetty, Servlet 3.1+ containers, as well as on non-Servlet runtimes such as Netty and Undertow. All servers are adapted to a low-level, common API so that higher-level programming models can be supported across servers.
Spring WebFlux does not have built-in support to start or stop a server. However, it is easy to assemble an application from Spring configuration and WebFlux infrastructure and run it with a few lines of code.
Spring Boot has a WebFlux starter that automates these steps. By default, the starter uses Netty, but it is easy to switch to Tomcat, Jetty, or Undertow by changing your Maven or Gradle dependencies. Spring Boot defaults to Netty, because it is more widely used in the asynchronous, non-blocking space and lets a client and a server share resources.
Tomcat and Jetty can be used with both Spring MVC and WebFlux. Keep in mind, however, that the way they are used is very different. Spring MVC relies on Servlet blocking I/O and lets applications use the Servlet API directly if they need to. Spring WebFlux relies on Servlet 3.1 non-blocking I/O and uses the Servlet API behind a low-level adapter and not exposed for direct use.
For Undertow, Spring WebFlux uses Undertow APIs directly without the Servlet API.
1.7. Performance versus Scale
Performance has many characteristics and meanings. Reactive and non-blocking generally
do not make applications run faster. They can, in some cases, (for example, if using the
WebClient
to execute remote calls in parallel). On the whole, it requires more work to do
things the non-blocking way and that can increase slightly the required processing time.
The key expected benefit of reactive and non-blocking is the ability to scale with a small, fixed number of threads and less memory. That makes applications more resilient under load, because they scale in a more predictable way. In order to observe those benefits, however, you need to have some latency (including a mix of slow and unpredictable network I/O). That is where the reactive stack begins to show its strengths, and the differences can be dramatic.
1.8. Concurrency Model
Both Spring MVC and Spring WebFlux support annotated controllers, but there is a key difference in the concurrency model and the default assumptions for blocking and threads.
In Spring MVC (and servlet applications in general), it is assumed that applications can block the current thread, (for example, for remote calls), and, for this reason, servlet containers use a large thread pool to absorb potential blocking during request handling.
In Spring WebFlux (and non-blocking servers in general), it is assumed that applications do not block, and, therefore, non-blocking servers use a small, fixed-size thread pool (event loop workers) to handle requests.
“To scale” and “small number of threads” may sound contradictory but to never block the current thread (and rely on callbacks instead) means that you do not need extra threads, as there are no blocking calls to absorb. |
What if you do need to use a blocking library? Both Reactor and RxJava provide the
publishOn
operator to continue processing on a different thread. That means there is an
easy escape hatch. Keep in mind, however, that blocking APIs are not a good fit for
this concurrency model.
In Reactor and RxJava, you declare logic through operators, and, at runtime, a reactive pipeline is formed where data is processed sequentially, in distinct stages. A key benefit of this is that it frees applications from having to protect mutable state because application code within that pipeline is never invoked concurrently.
What threads should you expect to see on a server running with Spring WebFlux?
-
On a “vanilla” Spring WebFlux server (for example, no data access nor other optional dependencies), you can expect one thread for the server and several others for request processing (typically as many as the number of CPU cores). Servlet containers, however, may start with more threads (for example, 10 on Tomcat), in support of both servlet (blocking) I/O and servlet 3.1 (non-blocking) I/O usage.
-
The reactive
WebClient
operates in event loop style. So you can see a small, fixed number of processing threads related to that (for example,reactor-http-nio-
with the Reactor Netty connector). However, if Reactor Netty is used for both client and server, the two share event loop resources by default. -
Reactor and RxJava provide thread pool abstractions, called Schedulers, to use with the
publishOn
operator that is used to switch processing to a different thread pool. The schedulers have names that suggest a specific concurrency strategy — for example, “parallel” (for CPU-bound work with a limited number of threads) or “elastic” (for I/O-bound work with a large number of threads). If you see such threads, it means some code is using a specific thread poolScheduler
strategy. -
Data access libraries and other third party dependencies can also create and use threads of their own.
The Spring Framework does not provide support for starting and stopping
servers. To configure the threading model for a server, you
need to use server-specific configuration APIs, or, if you use Spring Boot, check the Spring
Boot configuration options for each server. You can configure The WebClient
directly. For all other
libraries, see their respective documentation.
1.9. Reactive Core
The spring-web
module contains abstractions and infrastructure to build reactive web
applications. For server-side processing, this is organized in two distinct levels:
-
HttpHandler: Basic, common API for HTTP request handling with non-blocking I/O and (Reactive Streams) back pressure, along with adapters for each supported server.
-
Using the
WebHandler
API: Slightly higher level but still general-purpose API for server request handling, which underlies higher-level programming models, such as annotated controllers and functional endpoints.
The reactive core also includes Codecs for client and server side use.
1.9.1. Using HttpHandler
HttpHandler is a simple contract with a single method to handle a request and response. It is intentionally minimal, as its main purpose is to provide an abstraction over different server APIs for HTTP request handling.
The following table describes the supported server APIs:
Server name | Server API used | Reactive Streams support |
---|---|---|
Netty |
Netty API |
|
Undertow |
Undertow API |
spring-web: Undertow to Reactive Streams bridge |
Tomcat |
Servlet 3.1 non-blocking I/O; Tomcat API to read and write ByteBuffers vs byte[] |
spring-web: Servlet 3.1 non-blocking I/O to Reactive Streams bridge |
Jetty |
Servlet 3.1 non-blocking I/O; Jetty API to write ByteBuffers vs byte[] |
spring-web: Servlet 3.1 non-blocking I/O to Reactive Streams bridge |
Servlet 3.1 container |
Servlet 3.1 non-blocking I/O |
spring-web: Servlet 3.1 non-blocking I/O to Reactive Streams bridge |
The following table describes server dependencies (and supported versions):
Server name | Group id | Artifact name |
---|---|---|
Reactor Netty |
io.projectreactor.netty |
reactor-netty |
Undertow |
io.undertow |
undertow-core |
Tomcat |
org.apache.tomcat.embed |
tomcat-embed-core |
Jetty |
org.eclipse.jetty |
jetty-server, jetty-servlet |
The following code snippets adapt HttpHandler
to each server API:
Reactor Netty
HttpHandler handler = ...
ReactorHttpHandlerAdapter adapter = new ReactorHttpHandlerAdapter(handler);
HttpServer.create(host, port).newHandler(adapter).block();
Undertow
HttpHandler handler = ...
UndertowHttpHandlerAdapter adapter = new UndertowHttpHandlerAdapter(handler);
Undertow server = Undertow.builder().addHttpListener(port, host).setHandler(adapter).build();
server.start();
Tomcat
HttpHandler handler = ...
Servlet servlet = new TomcatHttpHandlerAdapter(handler);
Tomcat server = new Tomcat();
File base = new File(System.getProperty("java.io.tmpdir"));
Context rootContext = server.addContext("", base.getAbsolutePath());
Tomcat.addServlet(rootContext, "main", servlet);
rootContext.addServletMappingDecoded("/", "main");
server.setHost(host);
server.setPort(port);
server.start();
Jetty
HttpHandler handler = ...
Servlet servlet = new JettyHttpHandlerAdapter(handler);
Server server = new Server();
ServletContextHandler contextHandler = new ServletContextHandler(server, "");
contextHandler.addServlet(new ServletHolder(servlet), "/");
contextHandler.start();
ServerConnector connector = new ServerConnector(server);
connector.setHost(host);
connector.setPort(port);
server.addConnector(connector);
server.start();
Servlet 3.1+ Container
To deploy as a WAR to any Servlet 3.1+ container, you can extend and include
AbstractReactiveWebInitializer
in the WAR. That class wraps an HttpHandler
with ServletHttpHandlerAdapter
and registers
that as a Servlet
.
1.9.2. Using the WebHandler
API
The WebHandler API is a general-purpose server web API for processing requests through a
chain of WebExceptionHandler
and
WebFilter
components and a target
WebHandler
component. You can assemble the chain
with WebHttpHandlerBuilder
either by adding components to the builder or by having them
detected from a Spring ApplicationContext
. The builder returns an
Using HttpHandler
that you can then use to run on any of the supported servers.
While HttpHandler
aims to be the most minimal contract across HTTP servers, the
WebHandler
API provides essential features commonly used to build web applications.
For example, the ServerWebExchange
available to WebHandler API components provides
access not only to the request and response, but also to request and session attributes,
access to parsed form data, multipart data, and more.
Special bean types
The table below lists the components that WebHttpHandlerBuilder
detects:
Bean name | Bean type | Count | Description |
---|---|---|---|
<any> |
|
0..N |
Provide handling for exceptions from the chain of |
<any> |
|
0..N |
Apply interception style logic to before and after the rest of the filter chain and
the target |
|
|
1 |
The handler for the request. |
|
|
0..1 |
The manager for |
|
|
0..1 |
For access to |
|
|
0..1 |
The resolver for |
|
|
0..1 |
For processing forwarded type headers, either by extracting and removing them or by removing them only. Not used by default. |
Form Data
ServerWebExchange
exposes the following method for access to form data:
Mono<MultiValueMap<String, String>> getFormData();
The DefaultServerWebExchange
uses the configured HttpMessageReader
to parse form data
(application/x-www-form-urlencoded
) into a MultiValueMap
. By default,
FormHttpMessageReader
is configured for use by the ServerCodecConfigurer
bean
(see the Web Handler API).
Multipart Data
ServerWebExchange
exposes the following method for access to multipart data:
Mono<MultiValueMap<String, Part>> getMultipartData();
The DefaultServerWebExchange
uses the configured
HttpMessageReader<MultiValueMap<String, Part>>
to parse multipart/form-data
content
into a MultiValueMap
. At present,
Synchronoss NIO Multipart is the only
third-party library supported and the only library we know for non-blocking parsing of
multipart requests. It is enabled through the ServerCodecConfigurer
bean
(see the Web Handler API).
To parse multipart data in streaming fashion, you can use the Flux<Part>
returned from an
HttpMessageReader<Part>
instead. For example, in an annotated controller, use of
@RequestPart
implies Map
-like access to individual parts by name and, hence, requires
parsing multipart data in full. By contrast, you can use @RequestBody
to decode the
content to Flux<Part>
without collecting to a MultiValueMap
.
Forwarded Headers
As a request goes through proxies (such as load balancers), the host, port, and scheme may change, and that makes it a challenge, from a client perspective, to create links that point to the correct host, port, and scheme.
RFC 7239 defines the Forwarded
HTTP header
that proxies can use to provide information about the original request. There are other
non-standard headers, too, including X-Forwarded-Host
, X-Forwarded-Port
,
X-Forwarded-Proto
, X-Forwarded-Ssl
, and X-Forwarded-Prefix
.
ForwardedHeaderTransformer
is a component that modifies the host, port, and scheme of
the request, based on forwarded headers, and then removes those headers. You can declare
it as a bean with a name of forwardedHeaderTransformer
, and it is
detected and used.
There are security considerations for forwarded headers, since an application cannot know
if the headers were added by a proxy, as intended, or by a malicious client. This is why
a proxy at the boundary of trust should be configured to remove untrusted forwarded traffic coming
from the outside. You can also configure the ForwardedHeaderTransformer
with
removeOnly=true
, in which case it removes but does not use the headers.
In 5.1 ForwardedHeaderFilter was deprecated and superceded by
ForwardedHeaderTransformer so forwarded headers can be processed earlier, before the
exchange is created. If the filter is configured anyway, it is taken out of the list of
filters, and ForwardedHeaderTransformer is used instead.
|
1.9.3. Filters
In the Using the WebHandler
API, you can use a WebFilter
to apply interception-style
logic before and after the rest of the processing chain of filters and the target
WebHandler
. When using the WebFlux Config, registering a WebFilter
is as simple
as declaring it as a Spring bean and (optionally) expressing precedence by using @Order
on
the bean declaration or by implementing Ordered
.
CORS
Spring WebFlux provides fine-grained support for CORS configuration through annotations on
controllers. However, when you use it with Spring Security, we advise relying on the built-in
CorsFilter
, which must be ordered ahead of Spring Security’s chain of filters.
See the section on CORS and the CORS WebFilter
for more details.
1.9.4. Exceptions
In the Using the WebHandler
API, you can use a WebExceptionHandler
to handle
exceptions from the chain of WebFilter
instances and the target WebHandler
. When using the
WebFlux Config, registering a WebExceptionHandler
is as simple as declaring it as a
Spring bean and (optionally) expressing precedence by using @Order
on the bean declaration or
by implementing Ordered
.
The following table describes the available WebExceptionHandler
implementations:
Exception Handler | Description |
---|---|
|
Provides handling for exceptions of type
|
|
Extension of This handler is declared in the WebFlux Config. |
1.9.5. Codecs
HttpMessageReader
and
HttpMessageWriter
are contracts
for encoding and decoding HTTP request and response content through non-blocking I/O with
(Rective Streams) back pressure.
Encoder
and
Decoder
are contracts for encoding and
decoding content, independent of HTTP. They can be wrapped with EncoderHttpMessageWriter
or DecoderHttpMessageReader
and are used for web processing.
All codecs are for client- or server-side use. All build on
DataBuffer
, which abstracts byte
buffer representations, such as the Netty ByteBuf
or java.nio.ByteBuffer
(see
Data Buffers and Codecs for more details). ClientCodecConfigurer
and ServerCodecConfigurer
are typically used to configure and customize the codecs to
use in an application.
The spring-core
module has encoders and decoders for byte[]
, ByteBuffer
, DataBuffer
,
Resource
, and String
. The spring-web
module adds encoders and decoders for Jackson
JSON, Jackson Smile, JAXB2, Protocol Buffers, and other web-specific HTTP message
readers and writers for form data, multipart requests, and server-sent events.
Using Jackson
The decoder relies on Jackson’s non-blocking, byte-array parser to parse a stream of byte
chunks into a TokenBuffer
stream, which can then be turned into objects with Jackson’s
ObjectMapper
. The JSON and Smile
(binary JSON) data formats are currently supported.
The encoder processes a Publisher<?>
, as follows:
-
If the
Publisher
is aMono
(that is, a single value), the value is encoded when available. -
If media type is
application/stream+json
for JSON orapplication/stream+x-jackson-smile
for Smile, each value produced by thePublisher
is encoded individually (and followed by a new line in JSON). -
Otherwise, all items from the
Publisher
are gathered in withFlux#collectToList()
, and the resulting collection is encoded as an array.
As a special case to the preceding rules, the ServerSentEventHttpMessageWriter
feeds items
emitted from its input Publisher
individually into the Jackson2JsonEncoder
as a
Mono<?>
.
Note that both the Jackson JSON encoder and decoder explicitly back out of rendering
elements of type String
. Instead String
instances are treated as low level content (that is,
serialized JSON) and are rendered as-is by the CharSequenceEncoder
. If you want a
Flux<String>
rendered as a JSON array, you have to use Flux#collectToList()
and
provide a Mono<List<String>>
instead.
HTTP Streaming
When a multi-value reactive type such as a Flux
is used for response rendering, it may
be collected to a List
and rendered as a whole (for example, a JSON array), or it may be treated
as an infinite stream with each item flushed immediately. The determination for which is
which is made based on content negotiation and the selected media type, which may imply a
streaming format (for example, text/event-stream
, application/stream+json
) or not
(for example, application/json
).
When streaming to the HTTP response, regardless of the media type (for example, text/event-stream
and
application/stream+json
), it is important to send data periodically, since the write would
fail if the client has disconnected. The send could take the form of an empty
(comment-only) SSE event or any other data that the other side would have to interpret as
a heartbeat and ignore.
1.9.6. Logging
DEBUG level logging in Spring WebFlux is designed to be compact, minimal, and human-friendly. It focuses on high value bits of information that are useful over and over again vs others that are useful only when debugging a specific issue.
TRACE level logging generally follows the same principles as DEBUG (and for example also should not be a firehose) but can be used for debugging any issue. In addition some log messages may show a different level of detail at TRACE vs DEBUG.
Good logging comes from the experience of using the logs. If you spot anything that does not meet the stated goals, please let us know.
Log Id
In WebFlux, a single request can be executed over multiple threads and the thread ID is not useful for correlating log messages that belong to a specific request. This is why WebFlux log messages are prefixed with a request-specific ID by default.
On the server side, the log ID is stored in the ServerWebExchange
attribute
(LOG_ID_ATTRIBUTE
),
while a fully formatted prefix based on that ID is available from
ServerWebExchange#getLogPrefix()
. On the WebClient
side, the log ID is stored in the
ClientRequest
attribute
(LOG_ID_ATTRIBUTE
)
,while a fully formatted prefix is available from ClientRequest#logPrefix()
.
Logging Sensitive Data
DEBUG
and TRACE
logging can log sensitive information. This is why form parameters and
headers are masked by default and you must explicitly enable their logging in full.
The followig example shows how to do so for server-side requests:
@Configuration
@EnableWebFlux
class MyConfig implements WebFluxConfigurer {
@Override
public void configureHttpMessageCodecs(ServerCodecConfigurer configurer) {
configurer.defaultCodecs().enableLoggingRequestDetails(true);
}
}
The following example shows how to do so for client-side requests:
Consumer<ClientCodecConfigurer> consumer = configurer ->
configurer.defaultCodecs().enableLoggingRequestDetails(true);
WebClient webClient = WebClient.builder()
.exchangeStrategies(ExchangeStrategies.builder().codecs(consumer).build())
.build();
1.10. Using DispatcherHandler
Spring WebFlux, similarly to Spring MVC, is designed around the front controller pattern, where a
central WebHandler
, the DispatcherHandler
, provides a shared algorithm for request
processing, while actual work is performed by configurable, delegate components.
This model is flexible and supports diverse workflows.
DispatcherHandler
discovers the delegate components it needs from Spring configuration.
It is also designed to be a Spring bean itself and implements ApplicationContextAware
for access to the context in which it runs. If DispatcherHandler
is declared with a bean
name of webHandler
, it is, in turn, discovered by
WebHttpHandlerBuilder
,
which puts together a request-processing chain, as described in
Using the WebHandler
API.
Spring configuration in a WebFlux application typically contains:
-
DispatcherHandler
with the bean name,webHandler
-
WebFilter
andWebExceptionHandler
beans -
Others
The configuration is given to WebHttpHandlerBuilder
to build the processing chain,
as the following example shows:
ApplicationContext context = ...
HttpHandler handler = WebHttpHandlerBuilder.applicationContext(context);
The resulting HttpHandler
is ready for use with a
server adapter.
1.10.1. Special Bean Types
The DispatcherHandler
delegates to special beans to process requests and render the
appropriate responses. By “special beans,” we mean Spring-managed Object
instances that
implement WebFlux framework contracts. Those usually come with built-in contracts, but
you can customize their properties, extend them, or replace them.
The following table lists the special beans detected by the DispatcherHandler
. Note that
there are also some other beans detected at a lower level (see
Special bean types in the Web Handler API).
Bean type | Explanation |
---|---|
|
Map a request to a handler. The mapping is based on some criteria, the details of
which vary by The main |
|
Help the |
|
Process the result from the handler invocation and finalize the response. See Result Handling. |
1.10.2. WebFlux Config
Applications can declare the infrastructure beans (listed under
Web Handler API and
DispatcherHandler
) that are required to process requests.
However, in most cases, the WebFlux Config is the best starting point. It declares the
required beans and provides a higher-level configuration callback API to customize it.
Spring Boot relies on the WebFlux config to configure Spring WebFlux and also provides many extra convenient options. |
1.10.3. Processing
DispatcherHandler
processes requests as follows:
-
Each
HandlerMapping
is asked to find a matching handler, and the first match is used. -
If a handler is found, it is executed through an appropriate
HandlerAdapter
, which exposes the return value from the execution asHandlerResult
. -
The
HandlerResult
is given to an appropriateHandlerResultHandler
to complete processing by writing to the response directly or by using a view to render.
1.10.4. Result Handling
The return value from the invocation of a handler, through a HandlerAdapter
, is wrapped
as a HandlerResult
, along with some additional context, and passed to the first
HandlerResultHandler
that claims support for it. The following table shows the available
HandlerResultHandler
implementations, all of which are declared in the WebFlux Config:
Result Handler Type | Return Values | Default Order |
---|---|---|
|
|
0 |
|
|
0 |
|
Handle return values from |
100 |
|
See also View Resolution. |
|
1.10.5. Exceptions
The HandlerResult
returned from a HandlerAdapter
can expose a function for error
handling based on some handler-specific mechanism. This error function is called if:
-
The handler (for example,
@Controller
) invocation fails. -
The handling of the handler return value through a
HandlerResultHandler
fails.
The error function can change the response (for example, to an error status), as long as an error signal occurs before the reactive type returned from the handler produces any data items.
This is how @ExceptionHandler
methods in @Controller
classes are supported.
By contrast, support for the same in Spring MVC is built on a HandlerExceptionResolver
.
This generally should not matter. However, keep in mind that, in WebFlux, you cannot use a
@ControllerAdvice
to handle exceptions that occur before a handler is chosen.
See also Managing Exceptions in the “Annotated Controller” section or Exceptions in the WebHandler API section.
1.10.6. View Resolution
View resolution enables rendering to a browser with an HTML template and a model without
tying you to a specific view technology. In Spring WebFlux, view resolution is
supported through a dedicated HandlerResultHandler that uses
ViewResolver
instances to map a String (representing a logical view name) to a View
instance. The View
is then used to render the response.
Handling
The HandlerResult
passed into ViewResolutionResultHandler
contains the return value
from the handler and the model that contains attributes added during request
handling. The return value is processed as one of the following:
-
String
,CharSequence
: A logical view name to be resolved to aView
through the list of configuredViewResolver
implementations. -
void
: Select a default view name based on the request path, minus the leading and trailing slash, and resolve it to aView
. The same also happens when a view name was not provided (for example, model attribute was returned) or an async return value (for example,Mono
completed empty). -
Rendering: API for view resolution scenarios. Explore the options in your IDE with code completion.
-
Model
,Map
: Extra model attributes to be added to the model for the request. -
Any other: Any other return value (except for simple types, as determined by BeanUtils#isSimpleProperty) is treated as a model attribute to be added to the model. The attribute name is derived from the class name by using conventions, unless a handler method
@ModelAttribute
annotation is present.
The model can contain asynchronous, reactive types (for example, from Reactor or RxJava). Prior
to rendering, AbstractView
resolves such model attributes into concrete values
and updates the model. Single-value reactive types are resolved to a single
value or no value (if empty), while multi-value reactive types (for example, Flux<T>
) are
collected and resolved to List<T>
.
To configure view resolution is as simple as adding a ViewResolutionResultHandler
bean
to your Spring configuration. WebFlux Config provides a
dedicated configuration API for view resolution.
See View Technologies for more on the view technologies integrated with Spring WebFlux.
Redirecting
The special redirect:
prefix in a view name lets you perform a redirect. The
UrlBasedViewResolver
(and sub-classes) recognize this as an instruction that a
redirect is needed. The rest of the view name is the redirect URL.
The net effect is the same as if the controller had returned a RedirectView
or
Rendering.redirectTo("abc").build()
, but now the controller itself can
operate in terms of logical view names. A view name such as
redirect:/some/resource
is relative to the current application, while a view name such as
redirect:http://example.com/arbitrary/path
redirects to an absolute URL.
Content Negotiation
ViewResolutionResultHandler
supports content negotiation. It compares the request
media types with the media types supported by each selected View
. The first View
that supports the requested media type(s) is used.
In order to support media types such as JSON and XML, Spring WebFlux provides
HttpMessageWriterView
, which is a special View
that renders through an
HttpMessageWriter. Typically, you would configure these as default
views through the WebFlux Configuration. Default views are
always selected and used if they match the requested media type.
1.11. Annotated Controllers
Spring WebFlux provides an annotation-based programming model, where @Controller
and
@RestController
components use annotations to express request mappings, request input,
handle exceptions, and more. Annotated controllers have flexible method signatures and
do not have to extend base classes nor implement specific interfaces.
The following listing shows a basic example:
@RestController
public class HelloController {
@GetMapping("/hello")
public String handle() {
return "Hello WebFlux";
}
}
In the preceding example, the method returns a String
to be written to the response body.
1.11.1. Using @Controller
You can define controller beans by using a standard Spring bean definition.
The @Controller
stereotype allows for auto-detection and is aligned with Spring general support
for detecting @Component
classes in the classpath and auto-registering bean definitions
for them. It also acts as a stereotype for the annotated class, indicating its role as
a web component.
To enable auto-detection of such @Controller
beans, you can add component scanning to
your Java configuration, as the following example shows:
@Configuration
@ComponentScan("org.example.web") (1)
public class WebConfig {
// ...
}
1 | Scan the org.example.web package. |
@RestController
is a composed annotation that is
itself meta-annotated with @Controller
and @ResponseBody
, indicating a controller whose
every method inherits the type-level @ResponseBody
annotation and, therefore, writes
directly to the response body versus view resolution and rendering with an HTML template.
1.11.2. Request Mapping
The @RequestMapping
annotation is used to map requests to controllers methods. It has
various attributes to match by URL, HTTP method, request parameters, headers, and media
types. You can use it at the class level to express shared mappings or at the method level
to narrow down to a specific endpoint mapping.
There are also HTTP method specific shortcut variants of @RequestMapping
:
-
@GetMapping
-
@PostMapping
-
@PutMapping
-
@DeleteMapping
-
@PatchMapping
The preceding annotations are Custom Annotations that are provided
because, arguably, most controller methods should be mapped to a specific HTTP method versus
using @RequestMapping
, which, by default, matches to all HTTP methods. At the same time, a
@RequestMapping
is still needed at the class level to express shared mappings.
The following example uses type and method level mappings:
@RestController
@RequestMapping("/persons")
class PersonController {
@GetMapping("/{id}")
public Person getPerson(@PathVariable Long id) {
// ...
}
@PostMapping
@ResponseStatus(HttpStatus.CREATED)
public void add(@RequestBody Person person) {
// ...
}
}
URI Patterns
You can map requests by using glob patterns and wildcards:
-
?
matches one character -
*
matches zero or more characters within a path segment -
**
match zero or more path segments
You can also declare URI variables and access their values with @PathVariable
,
as the following example shows:
@GetMapping("/owners/{ownerId}/pets/{petId}")
public Pet findPet(@PathVariable Long ownerId, @PathVariable Long petId) {
// ...
}
You can declare URI variables at the class and method levels, as the following example shows:
@Controller
@RequestMapping("/owners/{ownerId}") (1)
public class OwnerController {
@GetMapping("/pets/{petId}") (2)
public Pet findPet(@PathVariable Long ownerId, @PathVariable Long petId) {
// ...
}
}
1 | Class-level URI mapping. |
2 | Method-level URI mapping. |
URI variables are automatically converted to the appropriate type or a TypeMismatchException
is raised. Simple types (int
, long
, Date
, and so on) are supported by default and you can
register support for any other data type.
See Type Conversion and Using DataBinder
.
URI variables can be named explicitly (for example, @PathVariable("customId")
), but you can
leave that detail out if the names are the same and you compile your code with debugging
information or with the -parameters
compiler flag on Java 8.
The syntax {*varName}
declares a URI variable that matches zero or more remaining
path segments. For example /resources/{*path}
matches all files /resources/
and the
"path"
variable captures the complete relative path.
The syntax {varName:regex}
declares a URI variable with a regular expression that has the
syntax: {varName:regex}
. For example, given a URL of /spring-web-3.0.5 .jar
, the following method
extracts the name, version, and file extension:
@GetMapping("/{name:[a-z-]+}-{version:\\d\\.\\d\\.\\d}{ext:\\.[a-z]+}")
public void handle(@PathVariable String version, @PathVariable String ext) {
// ...
}
URI path patterns can also have embedded ${…}
placeholders that are resolved on startup
through PropertyPlaceHolderConfigurer
against local, system, environment, and other property
sources. You ca use this to, for example, parameterize a base URL based on some external
configuration.
Spring WebFlux uses PathPattern and the PathPatternParser for URI path matching support.
Both classes are located in spring-web and are expressly designed for use with HTTP URL
paths in web applications where a large number of URI path patterns are matched at runtime.
|
Spring WebFlux does not support suffix pattern matching — unlike Spring MVC, where a
mapping such as /person
also matches to /person.*
. For URL-based content
negotiation, if needed, we recommend using a query parameter, which is simpler, more
explicit, and less vulnerable to URL path based exploits.
Pattern Comparison
When multiple patterns match a URL, they must be compared to find the best match. This is done
with PathPattern.SPECIFICITY_COMPARATOR
, which looks for patterns that are more specific.
For every pattern, a score is computed, based on the number of URI variables and wildcards, where a URI variable scores lower than a wildcard. A pattern with a lower total score wins. If two patterns have the same score, the longer is chosen.
Catch-all patterns (for example, **
, {*varName}
) are excluded from the scoring and are always
sorted last instead. If two patterns are both catch-all, the longer is chosen.
Consumable Media Types
You can narrow the request mapping based on the Content-Type
of the request,
as the following example shows:
@PostMapping(path = "/pets", consumes = "application/json")
public void addPet(@RequestBody Pet pet) {
// ...
}
The consumes attribute also supports negation expressions — for example, !text/plain
means any
content type other than text/plain
.
You can declare a shared consumes
attribute at the class level. Unlike most other request
mapping attributes, however, when used at the class level, a method-level consumes
attribute
overrides rather than extends the class-level declaration.
MediaType provides constants for commonly used media types — for example,
APPLICATION_JSON_VALUE and APPLICATION_XML_VALUE .
|
Producible Media Types
You can narrow the request mapping based on the Accept
request header and the list of
content types that a controller method produces, as the following example shows:
@GetMapping(path = "/pets/{petId}", produces = "application/json;charset=UTF-8")
@ResponseBody
public Pet getPet(@PathVariable String petId) {
// ...
}
The media type can specify a character set. Negated expressions are supported — for example,
!text/plain
means any content type other than text/plain
.
For JSON content type, you should specify the UTF-8 charset even if
RFC7159
clearly states that “no charset parameter is defined for this registration,” because some
browsers require it to correctly interpret UTF-8 special characters.
|
You can declare a shared produces
attribute at the class level. Unlike most other request
mapping attributes, however, when used at the class level, a method-level produces
attribute
overrides rather than extend the class level declaration.
MediaType provides constants for commonly used media types — e.g.
APPLICATION_JSON_UTF8_VALUE , APPLICATION_XML_VALUE .
|
Parameters and Headers
You can narrow request mappings based on query parameter conditions. You can test for the
presence of a query parameter (myParam
), for its absence (!myParam
), or for a
specific value (myParam=myValue
). The following examples tests for a parameter with a value:
@GetMapping(path = "/pets/{petId}", params = "myParam=myValue") (1)
public void findPet(@PathVariable String petId) {
// ...
}
1 | Check that myParam equals myValue . |
You can also use the same with request header conditions, as the follwing example shows:
@GetMapping(path = "/pets", headers = "myHeader=myValue") (1)
public void findPet(@PathVariable String petId) {
// ...
}
1 | Check that myHeader equals myValue . |
HTTP HEAD, OPTIONS
@GetMapping
and @RequestMapping(method=HttpMethod.GET)
support HTTP HEAD
transparently for request mapping purposes. Controller methods need not change.
A response wrapper, applied in the HttpHandler
server adapter, ensures a Content-Length
header is set to the number of bytes written without actually writing to the response.
By default, HTTP OPTIONS is handled by setting the Allow
response header to the list of HTTP
methods listed in all @RequestMapping
methods with matching URL patterns.
For a @RequestMapping
without HTTP method declarations, the Allow
header is set to
GET,HEAD,POST,PUT,PATCH,DELETE,OPTIONS
. Controller methods should always declare the
supported HTTP methods (for example, by using the HTTP method specific variants — @GetMapping
, @PostMapping
, and others).
You can explicitly map a @RequestMapping
method to HTTP HEAD and HTTP OPTIONS, but that
is not necessary in the common case.
Custom Annotations
Spring WebFlux supports the use of composed annotations
for request mapping. Those are annotations that are themselves meta-annotated with
@RequestMapping
and composed to redeclare a subset (or all) of the @RequestMapping
attributes with a narrower, more specific purpose.
@GetMapping
, @PostMapping
, @PutMapping
, @DeleteMapping
, and @PatchMapping
are
examples of composed annotations. They are provided, because, arguably, most
controller methods should be mapped to a specific HTTP method versus using @RequestMapping
,
which, by default, matches to all HTTP methods. If you need an example of composed
annotations, look at how those are declared.
Spring WebFlux also supports custom request mapping attributes with custom request matching
logic. This is a more advanced option that requires sub-classing
RequestMappingHandlerMapping
and overriding the getCustomMethodCondition
method, where
you can check the custom attribute and return your own RequestCondition
.
Explicit Registrations
You can programmatically register Handler methods, which can be used for dynamic registrations or for advanced cases, such as different instances of the same handler under different URLs. The following example shows how to do so:
@Configuration
public class MyConfig {
@Autowired
public void setHandlerMapping(RequestMappingHandlerMapping mapping, UserHandler handler) (1)
throws NoSuchMethodException {
RequestMappingInfo info = RequestMappingInfo
.paths("/user/{id}").methods(RequestMethod.GET).build(); (2)
Method method = UserHandler.class.getMethod("getUser", Long.class); (3)
mapping.registerMapping(info, handler, method); (4)
}
}
1 | Inject target handlers and the handler mapping for controllers. |
2 | Prepare the request mapping metadata. |
3 | Get the handler method. |
4 | Add the registration. |
1.11.3. Handler Methods
@RequestMapping
handler methods have a flexible signature and can choose from a range of
supported controller method arguments and return values.
Method Arguments
The following table shows the supported controller method arguments.
Reactive types (Reactor, RxJava, or other) are supported on arguments that require blocking I/O (for example, reading the request body) to be resolved. This is marked in the Description column. Reactive types are not expected on arguments that do not require blocking.
JDK 1.8’s java.util.Optional
is supported as a method argument in combination with
annotations that have a required
attribute (for example, @RequestParam
, @RequestHeader
,
and others) and is equivalent to required=false
.
Controller method argument | Description |
---|---|
|
Access to the full |
|
Access to the HTTP request or response. |
|
Access to the session. This does not force the start of a new session unless attributes are added. Supports reactive types. |
|
The currently authenticated user — possibly a specific |
|
The HTTP method of the request. |
|
The current request locale, determined by the most specific |
|
The time zone associated with the current request, as determined by a |
|
For access to URI template variables. See URI Patterns. |
|
For access to name-value pairs in URI path segments. See Matrix Variables. |
|
For access to Servlet request parameters. Parameter values are converted to the declared
method argument type. See Using Note that use of |
|
For access to request headers. Header values are converted to the declared method argument
type. See Using |
|
For access to cookies. Cookie values are converted to the declared method argument type.
See Using |
|
For access to the HTTP request body. Body content is converted to the declared method
argument type byusing |
|
For access to request headers and body. The body is converted with |
|
For access to a part in a |
|
For access to the model that is used in HTML controllers and is exposed to templates as part of view rendering. |
|
For access to an existing attribute in the model (instantiated if not present) with
data binding and validation applied. See Using Note that use of |
|
For access to errors from validation and data binding for a command object
(that is, a |
|
For marking form processing complete, which triggers cleanup of session attributes
declared through a class-level |
|
For preparing a URL relative to the current request’s host, port, scheme, and path. See URI Links. |
|
For access to any session attribute — in contrast to model attributes stored in the session
as a result of a class-level |
|
For access to request attributes. See Using |
Any other argument |
If a method argument is not matched to any of the above, it is, by default, resolved as
a |
Return Values
The following table shows the supported controller method return values. Note that reactive types from libraries such as Reactor, RxJava, or other are generally supported for all return values.
Controller method return value | Description |
---|---|
|
The return value is encoded through |
|
The return value specifies the full response, including HTTP headers, and the body is encoded
through |
|
For returning a response with headers and no body. |
|
A view name to be resolved with |
|
A |
|
Attributes to be added to the implicit model, with the view name implicitly determined based on the request path. |
|
An attribute to be added to the model, with the view name implicitly determined based on the request path. Note that |
|
An API for model and view rendering scenarios. |
|
A method with a If none of the above is true, a |
|
Emit server-sent events. The |
Any other return value |
If a return value is not matched to any of the above, it is, by default, treated as a view
name, if it is |
Type Conversion
Some annotated controller method arguments that represent String-based request input (for example,
@RequestParam
, @RequestHeader
, @PathVariable
, @MatrixVariable
, and @CookieValue
)
can require type conversion if the argument is declared as something other than String
.
For such cases, type conversion is automatically applied based on the configured converters.
By default, simple types (such as int
, long
, Date
, and others) are supported. Type conversion
can be customized through a WebDataBinder
(see [mvc-ann-initbinder]) or by registering
Formatters
with the FormattingConversionService
(see
Spring Field Formatting).
Matrix Variables
RFC 3986 discusses name-value pairs in path segments. In Spring WebFlux, we refer to those as “matrix variables” based on an “old post” by Tim Berners-Lee, but they can be also be referred to as URI path parameters.
Matrix variables can appear in any path segment, with each variable separated by a semicolon and
multiple values separated by commas — for example, "/cars;color=red,green;year=2012"
. Multiple
values can also be specified through repeated variable names — for example,
"color=red;color=green;color=blue"
.
Unlike Spring MVC, in WebFlux, the presence or absence of matrix variables in a URL does not affect request mappings. In other words, you are not required to use a URI variable to mask variable content. That said, if you want to access matrix variables from a controller method, you need to add a URI variable to the path segment where matrix variables are expected. The following example shows how to do so:
// GET /pets/42;q=11;r=22
@GetMapping("/pets/{petId}")
public void findPet(@PathVariable String petId, @MatrixVariable int q) {
// petId == 42
// q == 11
}
Given that all path segments can contain matrix variables, you may sometimes need to disambiguate which path variable the matrix variable is expected to be in, as the following example shows:
// GET /owners/42;q=11/pets/21;q=22
@GetMapping("/owners/{ownerId}/pets/{petId}")
public void findPet(
@MatrixVariable(name="q", pathVar="ownerId") int q1,
@MatrixVariable(name="q", pathVar="petId") int q2) {
// q1 == 11
// q2 == 22
}
You can define a matrix variable may be defined as optional and specify a default value as the following example shows:
// GET /pets/42
@GetMapping("/pets/{petId}")
public void findPet(@MatrixVariable(required=false, defaultValue="1") int q) {
// q == 1
}
To get all matrix variables, use a MultiValueMap
, as the following example shows:
// GET /owners/42;q=11;r=12/pets/21;q=22;s=23
@GetMapping("/owners/{ownerId}/pets/{petId}")
public void findPet(
@MatrixVariable MultiValueMap<String, String> matrixVars,
@MatrixVariable(pathVar="petId"") MultiValueMap<String, String> petMatrixVars) {
// matrixVars: ["q" : [11,22], "r" : 12, "s" : 23]
// petMatrixVars: ["q" : 22, "s" : 23]
}
Using @RequestParam
You can use the @RequestParam
annotation to bind query parameters to a method argument in a
controller. The following code snippet shows the usage:
@Controller
@RequestMapping("/pets")
public class EditPetForm {
// ...
@GetMapping
public String setupForm(@RequestParam("petId") int petId, Model model) { (1)
Pet pet = this.clinic.loadPet(petId);
model.addAttribute("pet", pet);
return "petForm";
}
// ...
}
1 | Using @RequestParam . |
The Servlet API “request parameter” concept conflates query parameters, form
data, and multiparts into one. However, in WebFlux, each is accessed individually through
ServerWebExchange . While @RequestParam binds to query parameters only, you can use
data binding to apply query parameters, form data, and multiparts to a
command object.
|
Method parameters that use the @RequestParam
annotation are required by default, but
you can specify that a method parameter is optional by setting the required flag of a @RequestParam
to false
or by declaring the argument with a java.util.Optional
wrapper.
Type conversion is applied automatically if the target method parameter type is not
String
. See [mvc-ann-typeconversion].
When a @RequestParam
annotation is declared on a Map<String, String>
or
MultiValueMap<String, String>
argument, the map is populated with all query parameters.
Note that use of @RequestParam
is optional — for example, to set its attributes. By
default, any argument that is a simple value type (as determined by
BeanUtils#isSimpleProperty)
and is not resolved by any other argument resolver is treated as if it were annotated
with @RequestParam
.
Using @RequestHeader
You can use the @RequestHeader
annotation to bind a request header to a method argument in a
controller.
The following example shows a request with headers:
Host localhost:8080 Accept text/html,application/xhtml+xml,application/xml;q=0.9 Accept-Language fr,en-gb;q=0.7,en;q=0.3 Accept-Encoding gzip,deflate Accept-Charset ISO-8859-1,utf-8;q=0.7,*;q=0.7 Keep-Alive 300
The following example gets the value of the Accept-Encoding
and Keep-Alive
headers:
@GetMapping("/demo")
public void handle(
@RequestHeader("Accept-Encoding") String encoding, (1)
@RequestHeader("Keep-Alive") long keepAlive) { (2)
//...
}
1 | Get the value of the Accept-Encoging header. |
2 | Get the value of the Keep-Alive header. |
Type conversion is applied automatically if the target method parameter type is not
String
. See [mvc-ann-typeconversion].
When a @RequestHeader
annotation is used on a Map<String, String>
,
MultiValueMap<String, String>
, or HttpHeaders
argument, the map is populated
with all header values.
Built-in support is available for converting a comma-separated string into an
array or collection of strings or other types known to the type conversion system. For
example, a method parameter annotated with @RequestHeader("Accept") may be of type
String but also of String[] or List<String> .
|
Using @CookieValue
You can use the @CookieValue
annotation to bind the value of an HTTP cookie to a method argument
in a controller.
The following example shows a request with a cookie:
JSESSIONID=415A4AC178C59DACE0B2C9CA727CDD84
The following code sample demonstrates how to get the cookie value:
@GetMapping("/demo")
public void handle(@CookieValue("JSESSIONID") String cookie) { (1)
//...
}
1 | Get the cookie value. |
Type conversion is applied automatically if the target method parameter type is not
String
. See [mvc-ann-typeconversion].
Using @ModelAttribute
You can use the @ModelAttribute
annotation on a method argument to access an attribute from the
model or have it instantiated if not present. The model attribute is also overlain with
the values of query parameters and form fields whose names match to field names. This is
referred to as data binding, and it saves you from having to deal with parsing and
converting individual query parameters and form fields. The following example binds an instance of Pet
:
@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(@ModelAttribute Pet pet) { } (1)
1 | Bind an instance of Pet . |
The Pet
instance in the preceding example is resolved as follows:
-
From the model if already added through Using a Model.
-
From the HTTP session through Using
@SessionAttributes
. -
From the invocation of a default constructor.
-
From the invocation of a “primary constructor” with arguments that match query parameters or form fields. Argument names are determined through JavaBeans
@ConstructorProperties
or through runtime-retained parameter names in the bytecode.
After the model attribute instance is obtained, data binding is applied. The
WebExchangeDataBinder
class matches names of query parameters and form fields to field
names on the target Object
. Matching fields are populated after type conversion is applied
where necessary. For more on data binding (and validation), see
Validation. For more on customizing data binding, see
Using DataBinder
.
Data binding can result in errors. By default, a WebExchangeBindException
is raised, but,
to check for such errors in the controller method, you can add a BindingResult
argument
immediately next to the @ModelAttribute
, as the following example shows:
@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(@ModelAttribute("pet") Pet pet, BindingResult result) { (1)
if (result.hasErrors()) {
return "petForm";
}
// ...
}
1 | Adding a BindingResult . |
You can automatically apply validation after data binding by adding the
javax.validation.Valid
annotation or Spring’s @Validated
annotation (see also
Bean validation and
Spring validation). The following example uses the @Valid
annotation:
@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(@Valid @ModelAttribute("pet") Pet pet, BindingResult result) { (1)
if (result.hasErrors()) {
return "petForm";
}
// ...
}
<1>
Spring WebFlux, unlike Spring MVC, supports reactive types in the model — for example,
Mono<Account>
or io.reactivex.Single<Account>
. You can declare a @ModelAttribute
argument
with or without a reactive type wrapper, and it will be resolved accordingly,
to the actual value if necessary. However, note that, to use a BindingResult
argument, you must declare the @ModelAttribute
argument before it without a reactive
type wrapper, as shown earlier. Alternatively, you can handle any errors through the
reactive type, as the following example shows:
@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public Mono<String> processSubmit(@Valid @ModelAttribute("pet") Mono<Pet> petMono) {
return petMono
.flatMap(pet -> {
// ...
})
.onErrorResume(ex -> {
// ...
});
}
Note that use of @ModelAttribute
is optional — for example, to set its attributes.
By default, any argument that is not a simple value type( as determined by
BeanUtils#isSimpleProperty)
and is not resolved by any other argument resolver is treated as if it were annotated
with @ModelAttribute
.
Using @SessionAttributes
@SessionAttributes
is used to store model attributes in the WebSession
between
requests. It is a type-level annotation that declares session attributes used by a
specific controller. This typically lists the names of model attributes or types of
model attributes that should be transparently stored in the session for subsequent
requests to access.
Consider the following example:
@Controller
@SessionAttributes("pet") (1)
public class EditPetForm {
// ...
}
1 | Using the @SessionAttributes annotation. |
On the first request, when a model attribute with the name, pet
, is added to the model,
it is automatically promoted to and saved in the WebSession
. It remains there until
another controller method uses a SessionStatus
method argument to clear the storage,
as the following example shows:
@Controller
@SessionAttributes("pet") (1)
public class EditPetForm {
// ...
@PostMapping("/pets/{id}")
public String handle(Pet pet, BindingResult errors, SessionStatus status) { (2)
if (errors.hasErrors) {
// ...
}
status.setComplete();
// ...
}
}
}
1 | Using the @SessionAttributes annotation. |
2 | Using a SessionStatus variable. |
Using @SessionAttribute
If you need access to pre-existing session attributes that are managed globally
(that is, outside the controller — for example, by a filter) and may or may not be present,
you can use the @SessionAttribute
annotation on a method parameter, as the following example shows:
@GetMapping("/")
public String handle(@SessionAttribute User user) { (1)
// ...
}
1 | Using @SessionAttribute . |
For use cases that require adding or removing session attributes, consider injecting
WebSession
into the controller method.
For temporary storage of model attributes in the session as part of a controller
workflow, consider using SessionAttributes
, as described in
Using @SessionAttributes
.
Using @RequestAttribute
Similarly to @SessionAttribute
, you can use the @RequestAttribute
annotation to
access pre-existing request attributes created earlier (for example, by a WebFilter
),
as the following example shows:
@GetMapping("/")
public String handle(@RequestAttribute Client client) { (1)
// ...
}
1 | Using @RequestAttribute . |
Multipart Content
As explained in Multipart Data, ServerWebExchange
provides access to multipart
content. The best way to handle a file upload form (for example, from a browser) in a controller
is through data binding to a command object,
as the following example shows:
class MyForm {
private String name;
private MultipartFile file;
// ...
}
@Controller
public class FileUploadController {
@PostMapping("/form")
public String handleFormUpload(MyForm form, BindingResult errors) {
// ...
}
}
You can also submit multipart requests from non-browser clients in a RESTful service scenario. The following example uses a file along with JSON:
POST /someUrl Content-Type: multipart/mixed --edt7Tfrdusa7r3lNQc79vXuhIIMlatb7PQg7Vp Content-Disposition: form-data; name="meta-data" Content-Type: application/json; charset=UTF-8 Content-Transfer-Encoding: 8bit { "name": "value" } --edt7Tfrdusa7r3lNQc79vXuhIIMlatb7PQg7Vp Content-Disposition: form-data; name="file-data"; filename="file.properties" Content-Type: text/xml Content-Transfer-Encoding: 8bit ... File Data ...
You can access individual parts with @RequestPart
, as the following example shows:
@PostMapping("/")
public String handle(@RequestPart("meta-data") Part metadata, (1)
@RequestPart("file-data") FilePart file) { (2)
// ...
}
1 | Using @RequestPart to get the metadata. |
2 | Using @RequestPart to get the file. |
To deserialize the raw part content (for example, to JSON — similar to @RequestBody
),
you can declare a concrete target Object
, instead of Part
, as the following example shows:
@PostMapping("/")
public String handle(@RequestPart("meta-data") MetaData metadata) { (1)
// ...
}
1 | Using @RequestPart to get the metadata. |
You can use @RequestPart
combination with javax.validation.Valid
or Spring’s
@Validated
annotation, which causes Standard Bean Validation to be applied.
By default, validation errors cause a WebExchangeBindException
, which is turned
into a 400 (BAD_REQUEST
) response. Alternatively, you can handle validation errors locally
within the controller through an Errors
or BindingResult
argument, as the following example shows:
@PostMapping("/")
public String handle(@Valid @RequestPart("meta-data") MetaData metadata, (1)
BindingResult result) { (2)
// ...
}
1 | Using a @Valid annotation. |
2 | Using a BindingResult argument. |
To access all multipart data as a MultiValueMap
, you can use @RequestBody
,
as the following example shows:
@PostMapping("/")
public String handle(@RequestBody Mono<MultiValueMap<String, Part>> parts) { (1)
// ...
}
1 | Using @RequestBody . |
To access multipart data sequentially, in streaming fashion, you can use @RequestBody
with
Flux<Part>
instead, as the following example shows:
@PostMapping("/")
public String handle(@RequestBody Flux<Part> parts) { (1)
// ...
}
1 | Using @RequestBody . |
Using @RequestBody
You can use the @RequestBody
annotation to have the request body read and deserialized into an
Object
through an HttpMessageReader.
The following example uses a @RequestBody
argument:
@PostMapping("/accounts")
public void handle(@RequestBody Account account) {
// ...
}
Unlike Spring MVC, in WebFlux, the @RequestBody
method argument supports reactive types
and fully non-blocking reading and (client-to-server) streaming. The following example
uses a Mono
:
@PostMapping("/accounts")
public void handle(@RequestBody Mono<Account> account) {
// ...
}
You can use the HTTP message codecs option of the WebFlux Config to configure or customize message readers.
You can use @RequestBody
in combination with javax.validation.Valid
or Spring’s
@Validated
annotation, which causes Standard Bean Validation to be applied.
By default, validation errors cause a WebExchangeBindException
, which is turned
into a 400 (BAD_REQUEST
) response. Alternatively, you can handle validation errors locally
within the controller through an Errors
or a BindingResult
argument. The following
example uses a BindingResult
argument`:
@PostMapping("/accounts")
public void handle(@Valid @RequestBody Account account, BindingResult result) {
// ...
}
Using HttpEntity
HttpEntity
is more or less identical to using Using @RequestBody
but is based on a
container object that exposes request headers and the body. The following example uses an
HttpEntity
:
@PostMapping("/accounts")
public void handle(HttpEntity<Account> entity) {
// ...
}
Using @ResponseBody
You can use the @ResponseBody
annotation on a method to have the return serialized to the
response body through an HttpMessageWriter. The following example shows how to do so:
@GetMapping("/accounts/{id}")
@ResponseBody
public Account handle() {
// ...
}
@ResponseBody
is also supported at the class level, in which case it is inherited by
all controller methods. This is the effect of @RestController
, which is nothing more
than a meta-annotation marked with @Controller
and @ResponseBody
.
@ResponseBody
supports reactive types, which means you can return Reactor or RxJava
types and have the asynchronous values they produce rendered to the response.
For additional details, see HTTP Streaming and
JSON rendering.
You can combine @ResponseBody
methods with JSON serialization views.
See Jackson JSON for details.
You can use the HTTP message codecs option of the WebFlux Config to configure or customize message writing.
Using ResponseEntity
Using ResponseEntity
is more or less identical to using Using @ResponseBody
but is based
on a container object that specifies request headers and body. The following example uses ResponseEntity
:
@PostMapping("/something")
public ResponseEntity<String> handle() {
// ...
URI location = ...
return new ResponseEntity.created(location).build();
}
Jackson JSON
Spring offers support for the Jackson JSON library.
Jackson Serialization Views
Spring WebFlux provides built-in support for
Jackson’s Serialization Views,
which allows rendering only a subset of all fields in an Object
. To use it with
@ResponseBody
or ResponseEntity
controller methods, you can use Jackson’s
@JsonView
annotation to activate a serialization view class, as the following example shows:
@RestController
public class UserController {
@GetMapping("/user")
@JsonView(User.WithoutPasswordView.class)
public User getUser() {
return new User("eric", "7!jd#h23");
}
}
public class User {
public interface WithoutPasswordView {};
public interface WithPasswordView extends WithoutPasswordView {};
private String username;
private String password;
public User() {
}
public User(String username, String password) {
this.username = username;
this.password = password;
}
@JsonView(WithoutPasswordView.class)
public String getUsername() {
return this.username;
}
@JsonView(WithPasswordView.class)
public String getPassword() {
return this.password;
}
}
@JsonView allows an array of view classes but you can only specify only one per
controller method. Use a composite interface if you need to activate multiple views.
|
1.11.4. Using a Model
You can use the @ModelAttribute
annotation:
-
On a method argument in
@RequestMapping
methods to create or access an Object from the model and to bind it to the request through aWebDataBinder
. -
As a method-level annotation in
@Controller
or@ControllerAdvice
classes, helping to initialize the model prior to any@RequestMapping
method invocation. -
On a
@RequestMapping
method to mark its return value as a model attribute.
This section discusses @ModelAttribute
methods, or the second item from the preceding list.
A controller can have any number of @ModelAttribute
methods. All such methods are
invoked before @RequestMapping
methods in the same controller. A @ModelAttribute
method can also be shared across controllers through @ControllerAdvice
. See the section on
Controller Advice for more details.
@ModelAttribute
methods have flexible method signatures. They support many of the same
arguments as @RequestMapping
methods (except for @ModelAttribute
itself and anything
related to the request body).
The following example uses a @ModelAttribute
method:
@ModelAttribute
public void populateModel(@RequestParam String number, Model model) {
model.addAttribute(accountRepository.findAccount(number));
// add more ...
}
The following example adds one attribute only:
@ModelAttribute
public Account addAccount(@RequestParam String number) {
return accountRepository.findAccount(number);
}
When a name is not explicitly specified, a default name is chosen based on the Object
type, as explained in the Javadoc for
Conventions .
You can always assign an explicit name by using the overloaded addAttribute method or
through the name attribute on @ModelAttribute (for a return value).
|
Spring WebFlux, unlike Spring MVC, explicitly supports reactive types in the model
(for example, Mono<Account>
or io.reactivex.Single<Account>
). Such asynchronous model
attributes can be transparently resolved (and the model updated) to their actual values
at the time of @RequestMapping
invocation, provided a @ModelAttribute
argument is
declared without a wrapper, as the following example shows:
@ModelAttribute
public void addAccount(@RequestParam String number) {
Mono<Account> accountMono = accountRepository.findAccount(number);
model.addAttribute("account", accountMono);
}
@PostMapping("/accounts")
public String handle(@ModelAttribute Account account, BindingResult errors) {
// ...
}
In addition, any model attributes that have a reactive type wrapper are resolved to their actual values (and the model updated) just prior to view rendering.
You can also use @ModelAttribute
as a method-level annotation on @RequestMapping
methods, in which case the return value of the @RequestMapping
method is interpreted as a
model attribute. This is typically not required, as it is the default behavior in HTML
controllers, unless the return value is a String
that would otherwise be interpreted
as a view name. @ModelAttribute
can also help to customize the model attribute name,
as the following example shows:
@GetMapping("/accounts/{id}")
@ModelAttribute("myAccount")
public Account handle() {
// ...
return account;
}
1.11.5. Using DataBinder
@Controller
or @ControllerAdvice
classes can have @InitBinder
methods, to
initialize instances of WebDataBinder
. Those, in turn, are used to:
-
Bind request parameters (that is, form data or query) to a model object.
-
Convert
String
-based request values (such as request parameters, path variables, headers, cookies, and others) to the target type of controller method arguments. -
Format model object values as
String
values when rendering HTML forms.
@InitBinder
methods can register controller-specific java.bean.PropertyEditor
or
Spring Converter
and Formatter
components. In addition, you can use the
WebFlux Java configuration to register Converter
and
Formatter
types in a globally shared FormattingConversionService
.
@InitBinder
methods support many of the same arguments that @RequestMapping
methods
do, except for @ModelAttribute
(command object) arguments. Typically, they are declared
with a WebDataBinder
argument, for registrations, and a void
return value.
The following example uses the @InitBinder
annotation:
@Controller
public class FormController {
@InitBinder (1)
public void initBinder(WebDataBinder binder) {
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
dateFormat.setLenient(false);
binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat, false));
}
// ...
}
1 | Using the @InitBinder annotation. |
Alternatively, when using a Formatter
-based setup through a shared
FormattingConversionService
, you could re-use the same approach and register
controller-specific Formatter
instances, as the following example shows:
@Controller
public class FormController {
@InitBinder
protected void initBinder(WebDataBinder binder) {
binder.addCustomFormatter(new DateFormatter("yyyy-MM-dd")); (1)
}
// ...
}
1 | Adding a custom formatter (a DateFormatter , in this case). |
1.11.6. Managing Exceptions
@Controller
and @ControllerAdvice classes can have
@ExceptionHandler
methods to handle exceptions from controller methods. The following
example includes such a handler method:
@Controller
public class SimpleController {
// ...
@ExceptionHandler (1)
public ResponseEntity<String> handle(IOException ex) {
// ...
}
}
1 | Declaring an @ExceptionHandler : |
The exception can match against a top-level exception being propagated (that is, a direct
IOException
being thrown) or against the immediate cause within a top-level wrapper exception
(for example, an IOException
wrapped inside an IllegalStateException
).
For matching exception types, preferably declare the target exception as a method argument,
as shown in the preceding example. Alternatively, the annotation declaration can narrow the exception types to
match. We generally recommend being as specific as possible in the argument signature and to
declare your primary root exception mappings on a @ControllerAdvice
prioritized with a
corresponding order. See the MVC section for details.
An @ExceptionHandler method in WebFlux supports the same method arguments and
return values as a @RequestMapping method, with the exception of request body-
and @ModelAttribute -related method arguments.
|
Support for @ExceptionHandler
methods in Spring WebFlux is provided by the
HandlerAdapter
for @RequestMapping
methods. See Using DispatcherHandler
for more detail.
REST API exceptions
A common requirement for REST services is to include error details in the body of the
response. The Spring Framework does not automatically do so, because the representation
of error details in the response body is application-specific. However, a
@RestController
can use @ExceptionHandler
methods with a ResponseEntity
return
value to set the status and the body of the response. Such methods can also be declared
in @ControllerAdvice
classes to apply them globally.
Note that Spring WebFlux does not have an equivalent for the Spring MVC
ResponseEntityExceptionHandler , because WebFlux raises only ResponseStatusException
(or subclasses thereof), and those do not need to be translated to
an HTTP status code.
|
1.11.7. Controller Advice
Typically, the @ExceptionHandler
, @InitBinder
, and @ModelAttribute
methods apply within
the @Controller
class (or class hierarchy) in which they are declared. If you want such
methods to apply more globally (across controllers), you can declare them in a class
marked with @ControllerAdvice
or @RestControllerAdvice
.
@ControllerAdvice
is marked with @Component
, which means that such classes can be registered
as Spring beans through component scanning.
@RestControllerAdvice
is also a meta-annotation marked with both @ControllerAdvice
and
@ResponseBody
, which essentially means @ExceptionHandler
methods are rendered to the
response body through message conversion (versus view resolution or template rendering).
On startup, the infrastructure classes for @RequestMapping
and @ExceptionHandler
methods
detect Spring beans of type @ControllerAdvice
and apply their methods at runtime.
Global @ExceptionHandler
methods (from a @ControllerAdvice
) are applied after local
ones (from the @Controller
). By contrast, global @ModelAttribute
and @InitBinder
methods are applied before local ones.
By default @ControllerAdvice
methods apply to every request (that is, all controllers), but
you can narrow that down to a subset of controllers through attributes on the annotation,
as the following example shows:
// Target all Controllers annotated with @RestController
@ControllerAdvice(annotations = RestController.class)
public class ExampleAdvice1 {}
// Target all Controllers within specific packages
@ControllerAdvice("org.example.controllers")
public class ExampleAdvice2 {}
// Target all Controllers assignable to specific classes
@ControllerAdvice(assignableTypes = {ControllerInterface.class, AbstractController.class})
public class ExampleAdvice3 {}
The preceding selectors are evaluated at runtime and may negatively impact
performance if you use them extensively. See the
@ControllerAdvice
Javadoc for more details.
1.12. Functional Endpoints
Spring WebFlux includes a lightweight functional programming model in which functions are used to route and handle requests and contracts are designed for immutability. It is an alternative to the annotation-based programming model but otherwise runs on the same Reactive Core foundation.
1.12.1. Overview
An HTTP request is handled with a HandlerFunction
that takes ServerRequest
and
returns Mono<ServerResponse>
, both of which are immutable contracts that offer
JDK 8-friendly access to the HTTP request and response. HandlerFunction
is the equivalent of
a @RequestMapping
method in the annotation-based programming model.
Requests are routed to a HandlerFunction
with a RouterFunction
that takes
ServerRequest
and returns Mono<HandlerFunction>
. When a request is matched to a
particular route, the HandlerFunction
mapped to the route is used. RouterFunction
is
the equivalent of a @RequestMapping
annotation.
RouterFunctions.route(RequestPredicate, HandlerFunction)
provides a router function
default implementation that can be used with a number of built-in request predicates,
as the following example shows:
import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.server.RequestPredicates.*;
import static org.springframework.web.reactive.function.server.RouterFunctions.route;
PersonRepository repository = ...
PersonHandler handler = new PersonHandler(repository);
RouterFunction<ServerResponse> route =
route(GET("/person/{id}").and(accept(APPLICATION_JSON)), handler::getPerson)
.andRoute(GET("/person").and(accept(APPLICATION_JSON)), handler::listPeople)
.andRoute(POST("/person"), handler::createPerson);
public class PersonHandler {
// ...
public Mono<ServerResponse> listPeople(ServerRequest request) {
// ...
}
public Mono<ServerResponse> createPerson(ServerRequest request) {
// ...
}
public Mono<ServerResponse> getPerson(ServerRequest request) {
// ...
}
}
One way to run a RouterFunction
is to turn it into an HttpHandler
and install it
through one of the built-in server adapters:
-
RouterFunctions.toHttpHandler(RouterFunction)
-
RouterFunctions.toHttpHandler(RouterFunction, HandlerStrategies)
Most applications can run through the WebFlux Java configuration, see Running a Server.
1.12.2. HandlerFunction
ServerRequest
and ServerResponse
are immutable interfaces that offer JDK 8-friendly
access to the HTTP request and response with
Reactive Streams back pressure against the request
and response body stream. The request body is represented with a Reactor Flux
or Mono
.
The response body is represented with any Reactive Streams Publisher
, including Flux
and Mono
. For more on that, see
Reactive Libraries.
Using ServerRequest
ServerRequest
provides access to the HTTP method, URI, headers, and query parameters,
while access to the body is provided through the body
methods.
The following example extracts the request body to a Mono<String>
:
Mono<String> string = request.bodyToMono(String.class);
The following example extracts the body to a Flux<Person>
, where Person
objects are decoded from some
serialized form, such as JSON or XML:
Flux<Person> people = request.bodyToFlux(Person.class);
The preceding examples are shortcuts that use the more general ServerRequest.body(BodyExtractor)
,
which accepts the BodyExtractor
functional strategy interface. The utility class
BodyExtractors
provides access to a number of instances. For example, the preceding examples can
also be written as follows:
Mono<String> string = request.body(BodyExtractors.toMono(String.class));
Flux<Person> people = request.body(BodyExtractors.toFlux(Person.class));
The following example shows how to access form data:
Mono<MultiValueMap<String, String> map = request.body(BodyExtractors.toFormData());
The following example shows how to access multipart data as a map:
Mono<MultiValueMap<String, Part> map = request.body(BodyExtractors.toMultipartData());
The following example shows how to access multiparts, one at a time, in streaming fashion:
Flux<Part> parts = request.body(BodyExtractos.toParts());
Using ServerResponse
ServerResponse
provides access to the HTTP response and, since it is immutable, you can use
a build
method to create it. You can use the builder to set the response status, to add response
headers, or to provide a body. The following example creates a 200 (OK) response with JSON
content:
Mono<Person> person = ...
ServerResponse.ok().contentType(MediaType.APPLICATION_JSON).body(person, Person.class);
The following example shows how to build a 201 (CREATED) response with a Location
header and no body:
URI location = ...
ServerResponse.created(location).build();
Handler Classes
We can write a handler function as a lambda, as the following example shows:
HandlerFunction<ServerResponse> helloWorld =
request -> ServerResponse.ok().body(fromObject("Hello World"));
That is convenient, but, in an application, we need multiple functions, and it is useful to group
related handler functions together into a handler (like a @Controller
). For example,
the following class exposes a reactive Person
repository:
import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.ServerResponse.ok;
import static org.springframework.web.reactive.function.BodyInserters.fromObject;
public class PersonHandler {
private final PersonRepository repository;
public PersonHandler(PersonRepository repository) {
this.repository = repository;
}
public Mono<ServerResponse> listPeople(ServerRequest request) { (1)
Flux<Person> people = repository.allPeople();
return ok().contentType(APPLICATION_JSON).body(people, Person.class);
}
public Mono<ServerResponse> createPerson(ServerRequest request) { (2)
Mono<Person> person = request.bodyToMono(Person.class);
return ok().build(repository.savePerson(person));
}
public Mono<ServerResponse> getPerson(ServerRequest request) { (3)
int personId = Integer.valueOf(request.pathVariable("id"));
return repository.getPerson(personId)
.flatMap(person -> ok().contentType(APPLICATION_JSON).body(fromObject(person)))
.switchIfEmpty(ServerResponse.notFound().build());
}
}
1 | listPeople is a handler function that returns all Person objects found in the repository as
JSON. |
2 | createPerson is a handler function that stores a new Person contained in the request body.
Note that PersonRepository.savePerson(Person) returns Mono<Void> : an empty Mono that emits
a completion signal when the person has been read from the request and stored. So we use the
build(Publisher<Void>) method to send a response when that completion signal is received (that is,
when the Person has been saved). |
3 | getPerson is a handler function that returns a single person, identified by the id path
variable. We retrieve that Person from the repository and create a JSON response, if it is
found. If it is not found, we use switchIfEmpty(Mono<T>) to return a 404 Not Found response. |
1.12.3. Using RouterFunction
RouterFunction
is used to route requests to a HandlerFunction
. Typically, you do not
write router functions yourself, but rather use
RouterFunctions.route(RequestPredicate, HandlerFunction)
. If the predicate applies, the
request is routed to the given HandlerFunction
. Otherwise, no routing is performed,
and that would translate to a 404 (Not Found) response.
Using Predicates
You can write your own RequestPredicate
, but the RequestPredicates
utility class
offers commonly used implementations, based on the request path, HTTP method, content-type,
and so on. The following example creates a request predicate based on a path:
RouterFunction<ServerResponse> route =
RouterFunctions.route(RequestPredicates.path("/hello-world"),
request -> Response.ok().body(fromObject("Hello World")));
You can compose multiple request predicates together by using:
-
RequestPredicate.and(RequestPredicate)
— both must match. -
RequestPredicate.or(RequestPredicate)
— either can match.
Many of the predicates from RequestPredicates
are composed. For example,
RequestPredicates.GET(String)
is composed from RequestPredicates.method(HttpMethod)
and RequestPredicates.path(String)
.
You can compose multiple router functions into one, such that they are evaluated in order, and, if the first route does not match, the second is evaluated. You can declare more specific routes before more general ones.
Routes
You can compose multiple router functions together by using:
-
RouterFunction.and(RouterFunction)
-
RouterFunction.andRoute(RequestPredicate, HandlerFunction)
— shortcut forRouterFunction.and()
with nestedRouterFunctions.route()
.
Using composed routes and predicates, we can then declare the following routes, referring
to methods in the PersonHandler
(shown in [webflux-fn-handler-class]) through
method-references:
import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.server.RequestPredicates.*;
PersonRepository repository = ...
PersonHandler handler = new PersonHandler(repository);
RouterFunction<ServerResponse> personRoute =
route(GET("/person/{id}").and(accept(APPLICATION_JSON)), handler::getPerson)
.andRoute(GET("/person").and(accept(APPLICATION_JSON)), handler::listPeople)
.andRoute(POST("/person"), handler::createPerson);
1.12.4. Running a Server
How do you run a router function in an HTTP server? A simple option is to convert a router
function to an HttpHandler
by using one of the following:
-
RouterFunctions.toHttpHandler(RouterFunction)
-
RouterFunctions.toHttpHandler(RouterFunction, HandlerStrategies)
You can then use the returned HttpHandler
with a number of server adapters by following
HttpHandler for server-specific instructions.
A more advanced option is to run with a
DispatcherHandler
-based setup through the
WebFlux Config, which uses Spring configuration to declare the
components required to process requests. The WebFlux Java configuration declares the following
infrastructure components to support functional endpoints:
-
RouterFunctionMapping
: Detects one or moreRouterFunction<?>
beans in the Spring configuration, combines them throughRouterFunction.andOther
, and routes requests to the resulting composedRouterFunction
. -
HandlerFunctionAdapter
: Simple adapter that letsDispatcherHandler
invoke aHandlerFunction
that was mapped to a request. -
ServerResponseResultHandler
: Handles the result from the invocation of aHandlerFunction
by invoking thewriteTo
method of theServerResponse
.
The preceding components let functional endpoints fit within the DispatcherHandler
request
processing lifecycle and also (potentially) run side by side with annotated controllers, if
any are declared. It is also how functional endpoints are enabled by the Spring Boot WebFlux
starter.
The following example shows a WebFlux Java configuration (see DispatcherHandler for how to run it):
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Bean
public RouterFunction<?> routerFunctionA() {
// ...
}
@Bean
public RouterFunction<?> routerFunctionB() {
// ...
}
// ...
@Override
public void configureHttpMessageCodecs(ServerCodecConfigurer configurer) {
// configure message conversion...
}
@Override
public void addCorsMappings(CorsRegistry registry) {
// configure CORS...
}
@Override
public void configureViewResolvers(ViewResolverRegistry registry) {
// configure view resolution for HTML rendering...
}
}
1.12.5. Using HandlerFilterFunction
You can filter routes mapped by a router function by calling
RouterFunction.filter(HandlerFilterFunction)
, where HandlerFilterFunction
is essentially a
function that takes a ServerRequest
and HandlerFunction
and returns a ServerResponse
.
The handler function parameter represents the next element in the chain. This is typically the
HandlerFunction
that is routed to, but it can also be another FilterFunction
if multiple filters
are applied.
With annotations, you can achieve similar functionality by using @ControllerAdvice
, a ServletFilter
, or both.
Now we can add a simple security filter to our route, assuming that we have a SecurityManager
that
can determine whether a particular path is allowed. The following example shows how to do so:
import static org.springframework.http.HttpStatus.UNAUTHORIZED;
SecurityManager securityManager = ...
RouterFunction<ServerResponse> route = ...
RouterFunction<ServerResponse> filteredRoute =
route.filter((request, next) -> {
if (securityManager.allowAccessTo(request.path())) {
return next.handle(request);
}
else {
return ServerResponse.status(UNAUTHORIZED).build();
}
});
The preceding example demonstrates that invoking the next.handle(ServerRequest)
is optional. We
allow only the handler function to be executed when access is allowed.
CORS support for functional endpoints is provided through a dedicated CorsWebFilter .
|
1.13. URI Links
This section describes various options available in the Spring Framework to prepare URIs.
1.13.1. UriComponents
Spring MVC and Spring WebFlux
UriComponentsBuilder
helps to build URI’s from URI templates with variables, as the following example shows:
UriComponents uriComponents = UriComponentsBuilder
.fromUriString("http://example.com/hotels/{hotel}") (1)
.queryParam("q", "{q}") (2)
.encode() (3)
.build(); (4)
URI uri = uriComponents.expand("Westin", "123").toUri(); (5)
1 | Static factory method with a URI template. |
2 | Add or replace URI components. |
3 | Request to have the URI template and URI variables encoded. |
4 | Build a UriComponents . |
5 | Expand variables and obtain the URI . |
The preceding example can be consolidated into one chain and shortened with buildAndExpand
,
as the following example shows:
URI uri = UriComponentsBuilder
.fromUriString("http://example.com/hotels/{hotel}")
.queryParam("q", "{q}")
.encode()
.buildAndExpand("Westin", "123")
.toUri();
You can shorten it further by going directly to a URI (which implies encoding), as the following example shows:
URI uri = UriComponentsBuilder
.fromUriString("http://example.com/hotels/{hotel}")
.queryParam("q", "{q}")
.build("Westin", "123");
You shorter it further still with a full URI template, as the following example shows:
URI uri = UriComponentsBuilder
.fromUriString("http://example.com/hotels/{hotel}?q={q}")
.build("Westin", "123");
1.13.2. UriBuilder
Spring MVC and Spring WebFlux
UriComponentsBuilder
implements UriBuilder
. You can create a UriBuilder
, in turn,
with a UriBuilderFactory
. Together, UriBuilderFactory
and UriBuilder
provide a pluggable mechanism to build URIs from URI templates, based on shared
configuration, such as a base URL, encoding preferences, and other details.
You can configure RestTemplate
and WebClient
with a UriBuilderFactory
to customize the preparation of URIs. DefaultUriBuilderFactory
is a default
implementation of UriBuilderFactory
that uses UriComponentsBuilder
internally and
exposes shared configuration options.
The following example shows how to configure a RestTemplate
:
// import org.springframework.web.util.DefaultUriBuilderFactory.EncodingMode;
String baseUrl = "http://example.org";
DefaultUriBuilderFactory factory = new DefaultUriBuilderFactory(baseUrl);
factory.setEncodingMode(EncodingMode.TEMPLATE_AND_VARIABLES);
RestTemplate restTemplate = new RestTemplate();
restTemplate.setUriTemplateHandler(factory);
The following example configures a WebClient
:
// import org.springframework.web.util.DefaultUriBuilderFactory.EncodingMode;
String baseUrl = "http://example.org";
DefaultUriBuilderFactory factory = new DefaultUriBuilderFactory(baseUrl);
factory.setEncodingMode(EncodingMode.TEMPLATE_AND_VARIABLES);
WebClient client = WebClient.builder().uriBuilderFactory(factory).build();
In addition, you can also use DefaultUriBuilderFactory
directly. It is similar to using
UriComponentsBuilder
but, instead of static factory methods, it is an actual instance
that holds configuration and preferences, as the following example shows:
String baseUrl = "http://example.com";
DefaultUriBuilderFactory uriBuilderFactory = new DefaultUriBuilderFactory(baseUrl);
URI uri = uriBuilderFactory.uriString("/hotels/{hotel}")
.queryParam("q", "{q}")
.build("Westin", "123");
1.13.3. URI Encoding
Spring MVC and Spring WebFlux
UriComponentsBuilder
exposes encoding options at two levels:
-
UriComponentsBuilder#encode(): Pre-encodes the URI template first and then strictly encodes URI variables when expanded.
-
UriComponents#encode(): Encodes URI components after URI variables are expanded.
Both options replace non-ASCII and illegal characters with escaped octets. However, the first option also replaces characters with reserved meaning that appear in URI variables.
Consider ";", which is legal in a path but has reserved meaning. The first option replaces ";" with "%3B" in URI variables but not in the URI template. By contrast, the second option never replaces ";", since it is a legal character in a path. |
For most cases, the first option is likely to give the expected result, because it treats URI variables as opaque data to be fully encoded, while option 2 is useful only if URI variables intentionally contain reserved characters.
The following example uses the first option:
URI uri = UriComponentsBuilder.fromPath("/hotel list/{city}")
.queryParam("q", "{q}")
.encode()
.buildAndExpand("New York", "foo+bar")
.toUri();
// Result is "/hotel%20list/New%20York?q=foo%2Bbar"
You can shorten the preceding example by going directly to the URI (which implies encoding), as the following example shows:
URI uri = UriComponentsBuilder.fromPath("/hotel list/{city}")
.queryParam("q", "{q}")
.build("New York", "foo+bar")
You can shorten it further still with a full URI template, as the following example shows:
URI uri = UriComponentsBuilder.fromPath("/hotel list/{city}?q={q}")
.build("New York", "foo+bar")
The WebClient
and the RestTemplate
expand and encode URI templates internally through
the UriBuilderFactory
strategy. Both can be configured with a custom strategy.
as the following example shows:
String baseUrl = "http://example.com";
DefaultUriBuilderFactory factory = new DefaultUriBuilderFactory(baseUrl)
factory.setEncodingMode(EncodingMode.TEMPLATE_AND_VALUES);
// Customize the RestTemplate..
RestTemplate restTemplate = new RestTemplate();
restTemplate.setUriTemplateHandler(factory);
// Customize the WebClient..
WebClient client = WebClient.builder().uriBuilderFactory(factory).build();
The DefaultUriBuilderFactory
implementation uses UriComponentsBuilder
internally to
expand and encode URI templates. As a factory, it provides a single place to configure
the approach to encoding, based on one of the below encoding modes:
-
TEMPLATE_AND_VALUES
: UsesUriComponentsBuilder#encode()
, corresponding to the first option in the earlier list, to pre-encode the URI template and strictly encode URI variables when expanded. -
VALUES_ONLY
: Does not encode the URI template and, instead, applies strict encoding to URI variables throughUriUtils#encodeUriUriVariables
prior to expanding them into the template. -
URI_COMPONENTS
: UsesUriComponents#encode()
, corresponding to the second option in the earlier list, to encode URI component value after URI variables are expanded. -
NONE
: No encoding is applied.
The RestTemplate
is set to EncodingMode.URI_COMPONENTS
for historic
reasons and for backwards compatibility. The WebClient
relies on the default value
in DefaultUriBuilderFactory
, which was changed from EncodingMode.URI_COMPONENTS
in
5.0.x to EncodingMode.TEMPLATE_AND_VALUES
in 5.1.
1.14. CORS
Spring WebFlux lets you handle CORS (Cross-Origin Resource Sharing). This section describes how to do so.
1.14.1. Introduction
For security reasons, browsers prohibit AJAX calls to resources outside the current origin. For example, you could have your bank account in one tab and evil.com in another. Scripts from evil.com should not be able to make AJAX requests to your bank API with your credentials — for example, withdrawing money from your account!
Cross-Origin Resource Sharing (CORS) is a W3C specification implemented by most browsers that lets you specify what kind of cross-domain requests are authorized, rather than using less secure and less powerful workarounds based on IFRAME or JSONP.
1.14.2. Processing
The CORS specification distinguishes between preflight, simple, and actual requests. To learn how CORS works, you can read this article, among many others, or see the specification for more details.
Spring WebFlux HandlerMapping
implementations provide built-in support for CORS. After successfully
mapping a request to a handler, a HandlerMapping
checks the CORS configuration for the
given request and handler and takes further actions. Preflight requests are handled
directly, while simple and actual CORS requests are intercepted, validated, and have the
required CORS response headers set.
In order to enable cross-origin requests (that is, the Origin
header is present and
differs from the host of the request), you need to have some explicitly declared CORS
configuration. If no matching CORS configuration is found, preflight requests are
rejected. No CORS headers are added to the responses of simple and actual CORS requests
and, consequently, browsers reject them.
Each HandlerMapping
can be
configured
individually with URL pattern-based CorsConfiguration
mappings. In most cases, applications
use the WebFlux Java configuration to declare such mappings, which results in a single,
global map passed to all HadlerMappping
implementations.
You can combine global CORS configuration at the HandlerMapping
level with more
fine-grained, handler-level CORS configuration. For example, annotated controllers can use
class- or method-level @CrossOrigin
annotations (other handlers can implement
CorsConfigurationSource
).
The rules for combining global and local configuration are generally additive — for example,
all global and all local origins. For those attributes where only a single value can be
accepted, such as allowCredentials
and maxAge
, the local overrides the global value. See
CorsConfiguration#combine(CorsConfiguration)
for more details.
To learn more from the source or to make advanced customizations, see:
|
1.14.3. Using @CrossOrigin
The @CrossOrigin
annotation enables cross-origin requests on annotated controller methods, as the
following example shows:
@RestController
@RequestMapping("/account")
public class AccountController {
@CrossOrigin
@GetMapping("/{id}")
public Mono<Account> retrieve(@PathVariable Long id) {
// ...
}
@DeleteMapping("/{id}")
public Mono<Void> remove(@PathVariable Long id) {
// ...
}
}
By default, @CrossOrigin
allows:
-
All origins.
-
All headers.
-
All HTTP methods to which the controller method is mapped.
allowedCredentials
is not enabled by default, since that establishes a trust level
that exposes sensitive user-specific information (such as cookies and CSRF tokens) and
should be used only where appropriate.
maxAge
is set to 30 minutes.
@CrossOrigin
is supported at the class level, too, and inherited by all methods.
The following example specifies a certain domain and sets maxAge
to an hour:
@CrossOrigin(origins = "http://domain2.com", maxAge = 3600)
@RestController
@RequestMapping("/account")
public class AccountController {
@GetMapping("/{id}")
public Mono<Account> retrieve(@PathVariable Long id) {
// ...
}
@DeleteMapping("/{id}")
public Mono<Void> remove(@PathVariable Long id) {
// ...
}
}
You can use @CrossOrigin
at both the class and the method level,
as the following example shows:
@CrossOrigin(maxAge = 3600) (1)
@RestController
@RequestMapping("/account")
public class AccountController {
@CrossOrigin("http://domain2.com") (2)
@GetMapping("/{id}")
public Mono<Account> retrieve(@PathVariable Long id) {
// ...
}
@DeleteMapping("/{id}")
public Mono<Void> remove(@PathVariable Long id) {
// ...
}
}
1 | Using @CrossOrigin at the class level. |
2 | Using @CrossOrigin at the method level. |
1.14.4. Global Configuration
In addition to fine-grained, controller method-level configuration, you probably want to
define some global CORS configuration, too. You can set URL-based CorsConfiguration
mappings individually on any HandlerMapping
. Most applications, however, use the
WebFlux Java configuration to do that.
By default global configuration enables the following:
-
All origins.
-
All headers.
-
GET
,HEAD
, andPOST
methods.
allowedCredentials
is not enabled by default, since that establishes a trust level
that exposes sensitive user-specific information( such as cookies and CSRF tokens) and
should be used only where appropriate.
maxAge
is set to 30 minutes.
To enable CORS in the WebFlux Java configuration, you can use the CorsRegistry
callback,
as the following example shows:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public void addCorsMappings(CorsRegistry registry) {
registry.addMapping("/api/**")
.allowedOrigins("http://domain2.com")
.allowedMethods("PUT", "DELETE")
.allowedHeaders("header1", "header2", "header3")
.exposedHeaders("header1", "header2")
.allowCredentials(true).maxAge(3600);
// Add more mappings...
}
}
1.14.5. CORS WebFilter
You can apply CORS support through the built-in
CorsWebFilter
, which is a
good fit with functional endpoints.
To configure the filter, you can declare a CorsWebFilter
bean and pass a
CorsConfigurationSource
to its constructor, as the following example shows:
@Bean
CorsWebFilter corsFilter() {
CorsConfiguration config = new CorsConfiguration();
// Possibly...
// config.applyPermitDefaultValues()
config.setAllowCredentials(true);
config.addAllowedOrigin("http://domain1.com");
config.addAllowedHeader("*");
config.addAllowedMethod("*");
UrlBasedCorsConfigurationSource source = new UrlBasedCorsConfigurationSource();
source.registerCorsConfiguration("/**", config);
return new CorsWebFilter(source);
}
1.15. Web Security
The Spring Security project provides support for protecting web applications from malicious exploits. See the Spring Security reference documentation, including:
1.16. View Technologies
The use of view technologies in Spring WebFlux is pluggable. Whether you decide to use Thymeleaf, FreeMarker, or some other view technology is primarily a matter of a configuration change. This chapter covers the view technologies integrated with Spring WebFlux. We assume you are already familiar with View Resolution.
1.16.1. Thymeleaf
Thymeleaf is a modern server-side Java template engine that emphasizes natural HTML templates that can be previewed in a browser by double-clicking, which is very helpful for independent work on UI templates (for example, by a designer) without the need for a running server. Thymeleaf offers an extensive set of features, and it is actively developed and maintained. For a more complete introduction, see the Thymeleaf project home page.
The Thymeleaf integration with Spring WebFlux is managed by the Thymeleaf project. The
configuration involves a few bean declarations, such as
SpringResourceTemplateResolver
, SpringWebFluxTemplateEngine
, and
ThymeleafReactiveViewResolver
. For more details, see
Thymeleaf+Spring and the WebFlux integration
announcement.
1.16.2. FreeMarker
Apache FreeMarker is a template engine for generating any kind of text output from HTML to email and others. The Spring Framework has a built-in integration for using Spring WebFlux with FreeMarker templates.
View Configuration
The following example shows how to configure FreeMarker as a view technology:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public void configureViewResolvers(ViewResolverRegistry registry) {
registry.freemarker();
}
// Configure FreeMarker...
@Bean
public FreeMarkerConfigurer freeMarkerConfigurer() {
FreeMarkerConfigurer configurer = new FreeMarkerConfigurer();
configurer.setTemplateLoaderPath("classpath:/templates");
return configurer;
}
}
Your templates need to be stored in the directory specified by the FreeMarkerConfigurer
,
shown in the preceding example. Given the preceding configuration, if your controller returns the view name,
welcome
, the resolver looks for the
classpath:/templates/freemarker/welcome.ftl
template.
FreeMarker Configuration
You can pass FreeMarker 'Settings' and 'SharedVariables' directly to the FreeMarker
Configuration
object (managed by Spring) by setting the appropriate bean properties on
the FreeMarkerConfigurer
bean. The freemarkerSettings
property requires a
java.util.Properties
object, and the freemarkerVariables
property requires a
java.util.Map
. The following example shows how to use a FreeMarkerConfigurer
:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
// ...
@Bean
public FreeMarkerConfigurer freeMarkerConfigurer() {
Map<String, Object> variables = new HashMap<>();
variables.put("xml_escape", new XmlEscape());
FreeMarkerConfigurer configurer = new FreeMarkerConfigurer();
configurer.setTemplateLoaderPath("classpath:/templates");
configurer.setFreemarkerVariables(variables);
return configurer;
}
}
See the FreeMarker documentation for details of settings and variables as they apply to
the Configuration
object.
1.16.3. Script Views
The Spring Framework has a built-in integration for using Spring WebFlux with any templating library that can run on top of the JSR-223 Java scripting engine. The following table shows the templating libraries that we have tested on different script engines:
Scripting Library | Scripting Engine |
---|---|
The basic rule for integrating any other script engine is that it must implement the
ScriptEngine and Invocable interfaces.
|
Requirements
You need to have the script engine on your classpath, the details of which vary by script engine:
-
The Nashorn JavaScript engine is provided with Java 8+. Using the latest update release available is highly recommended.
-
JRuby should be added as a dependency for Ruby support.
-
Jython should be added as a dependency for Python support.
-
org.jetbrains.kotlin:kotlin-script-util
dependency and aMETA-INF/services/javax.script.ScriptEngineFactory
file containing aorg.jetbrains.kotlin.script.jsr223.KotlinJsr223JvmLocalScriptEngineFactory
line should be added for Kotlin script support. See this example for more detail.
You need to have the script templating library. One way to do that for Javascript is through WebJars.
Script Templates
You can declare a ScriptTemplateConfigurer
bean to specify the script engine to use,
the script files to load, what function to call to render templates, and so on.
The following example uses Mustache templates and the Nashorn JavaScript engine:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public void configureViewResolvers(ViewResolverRegistry registry) {
registry.scriptTemplate();
}
@Bean
public ScriptTemplateConfigurer configurer() {
ScriptTemplateConfigurer configurer = new ScriptTemplateConfigurer();
configurer.setEngineName("nashorn");
configurer.setScripts("mustache.js");
configurer.setRenderObject("Mustache");
configurer.setRenderFunction("render");
return configurer;
}
}
The render
function is called with the following parameters:
-
String template
: The template content -
Map model
: The view model -
RenderingContext renderingContext
: TheRenderingContext
that gives access to the application context, the locale, the template loader, and the URL (since 5.0)
Mustache.render()
is natively compatible with this signature, so you can call it directly.
If your templating technology requires some customization, you can provide a script that implements a custom render function. For example, Handlerbars needs to compile templates before using them and requires a polyfill in order to emulate some browser facilities not available in the server-side script engine. The following example shows how to set a custom render function:
@Configuration
@EnableWebMvc
public class WebConfig implements WebFluxConfigurer {
@Override
public void configureViewResolvers(ViewResolverRegistry registry) {
registry.scriptTemplate();
}
@Bean
public ScriptTemplateConfigurer configurer() {
ScriptTemplateConfigurer configurer = new ScriptTemplateConfigurer();
configurer.setEngineName("nashorn");
configurer.setScripts("polyfill.js", "handlebars.js", "render.js");
configurer.setRenderFunction("render");
configurer.setSharedEngine(false);
return configurer;
}
}
Setting the sharedEngine property to false is required when using non-thread-safe
script engines with templating libraries not designed for concurrency, such as Handlebars or
React running on Nashorn. In that case, Java 8u60 or greater is required, due
to this bug.
|
polyfill.js
defines only the window
object needed by Handlebars to run properly,
as the following snippet shows:
var window = {};
This basic render.js
implementation compiles the template before using it. A production
ready implementation should also store and reused cached templates or pre-compiled templates.
This can be done on the script side, as well as any customization you need (managing
template engine configuration for example).
The following example shows how compile a template:
function render(template, model) {
var compiledTemplate = Handlebars.compile(template);
return compiledTemplate(model);
}
1.16.4. JSON and XML
For Content Negotiation purposes, it is useful to be able to alternate
between rendering a model with an HTML template or as other formats (such as JSON or XML),
depending on the content type requested by the client. To support doing so, Spring WebFlux
provides the HttpMessageWriterView
, which you can use to plug in any of the available
Codecs from spring-web
, such as Jackson2JsonEncoder
,
Jackson2SmileEncoder
, or Jaxb2XmlEncoder
.
Unlike other view technologies, HttpMessageWriterView
does not require a ViewResolver
but is instead configured as a default view. You can
configure one or more such default views, wrapping different HttpMessageWriter
instances or
Encoder
instances. The one that matches the requested content type is used at runtime.
In most cases, a model contains multiple attributes. To determine which one
to serialize, you can configure HttpMessageWriterView
with the name of the model
attribute to use for rendering. If the model contains only one attribute, that one is used.
1.17. HTTP Caching
HTTP caching can significantly improve the performance of a web application. HTTP caching
revolves around the Cache-Control
response header and subsequent conditional request
headers, such as Last-Modified
and ETag
. Cache-Control
advises private (for example, browser)
and public (for example, proxy) caches how to cache and re-use responses. An ETag
header is used
to make a conditional request that may result in a 304 (NOT_MODIFIED) without a body,
if the content has not changed. ETag
can be seen as a more sophisticated successor to
the Last-Modified
header.
This section describes the HTTP caching related options available in Spring WebFlux.
1.17.1. CacheControl
CacheControl
provides support for
configuring settings related to the Cache-Control
header and is accepted as an argument
in a number of places:
While RFC 7234 describes all possible
directives for the Cache-Control
response header, the CacheControl
type takes a
use case-oriented approach that focuses on the common scenarios, as the following example shows:
// Cache for an hour - "Cache-Control: max-age=3600"
CacheControl ccCacheOneHour = CacheControl.maxAge(1, TimeUnit.HOURS);
// Prevent caching - "Cache-Control: no-store"
CacheControl ccNoStore = CacheControl.noStore();
// Cache for ten days in public and private caches,
// public caches should not transform the response
// "Cache-Control: max-age=864000, public, no-transform"
CacheControl ccCustom = CacheControl.maxAge(10, TimeUnit.DAYS).noTransform().cachePublic();
1.17.2. Controllers
Controllers can add explicit support for HTTP caching. We recommend doing so, since the
lastModified
or ETag
value for a resource needs to be calculated before it can be compared
against conditional request headers. A controller can add an ETag
and Cache-Control
settings to a ResponseEntity
, as the following example shows:
@GetMapping("/book/{id}")
public ResponseEntity<Book> showBook(@PathVariable Long id) {
Book book = findBook(id);
String version = book.getVersion();
return ResponseEntity
.ok()
.cacheControl(CacheControl.maxAge(30, TimeUnit.DAYS))
.eTag(version) // lastModified is also available
.body(book);
}
The preceding example sends a 304 (NOT_MODIFIED) response with an empty body if the comparison
to the conditional request headers indicates the content has not changed. Otherwise, the
ETag
and Cache-Control
headers are added to the response.
You can also make the check against conditional request headers in the controller, as the following example shows:
@RequestMapping
public String myHandleMethod(ServerWebExchange exchange, Model model) {
long eTag = ... (1)
if (exchange.checkNotModified(eTag)) {
return null; (2)
}
model.addAttribute(...); (3)
return "myViewName";
}
1 | Application-specific calculation. |
2 | Response has been set to 304 (NOT_MODIFIED). No further processing. |
3 | Continue with request processing. |
There are three variants for checking conditional requests against eTag
values, lastModified
values, or both. For conditional GET
and HEAD
requests, you can set the response to
304 (NOT_MODIFIED). For conditional POST
, PUT
, and DELETE
, you can instead set the response
to 409 (PRECONDITION_FAILED) to prevent concurrent modification.
1.17.3. Static Resources
You should serve static resources with a Cache-Control
and conditional response headers
for optimal performance. See the section on configuring Static Resources.
1.18. WebFlux Config
The WebFlux Java configuration declares the components that are required to process requests with annotated
controllers or functional endpoints, and it offers an API to customize the configuration.
That means you do not need to understand the underlying beans created by the Java configuration.
However, if you want to understand them, you can see them in WebFluxConfigurationSupport
or read more
about what they are in Special Bean Types.
For more advanced customizations, not available in the configuration API, you can gain full control over the configuration through the Advanced Configuration Mode.
1.18.1. Enabling WebFlux Configuration
You can use the @EnableWebFlux
annotation in your Java config, as the following example shows:
@Configuration
@EnableWebFlux
public class WebConfig {
}
The preceding example registers a number of Spring WebFlux infrastructure beans and adapts to dependencies available on the classpath — for JSON, XML, and others.
1.18.2. WebFlux config API
In your Java configuration, you can implement the WebFluxConfigurer
interface,
as the following example shows:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
// Implement configuration methods...
}
1.18.3. Conversion, formatting
By default, formatters for Number
and Date
types are installed, including support for
the @NumberFormat
and @DateTimeFormat
annotations. Full support for the Joda-Time
formatting library is also installed if Joda-Time is present on the classpath.
The following example shows how to register custom formatters and converters:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public void addFormatters(FormatterRegistry registry) {
// ...
}
}
See FormatterRegistrar SPI
and the FormattingConversionServiceFactoryBean for more information on when to use FormatterRegistrar implementations.
|
1.18.4. Validation
By default, if Bean Validation is present
on the classpath (for example, the Hibernate Validator), the LocalValidatorFactoryBean
is registered
as a global validator for use with @Valid
and Validated
on
@Controller
method arguments.
In your Java configuration, you can customize the global Validator
instance,
as the following example shows:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public Validator getValidator(); {
// ...
}
}
Note that you can also register Validator
implementations locally,
as the following example shows:
@Controller
public class MyController {
@InitBinder
protected void initBinder(WebDataBinder binder) {
binder.addValidators(new FooValidator());
}
}
If you need to have a LocalValidatorFactoryBean injected somewhere, create a bean and
mark it with @Primary in order to avoid conflict with the one declared in the MVC config.
|
1.18.5. Content Type Resolvers
You can configure how Spring WebFlux determines the requested media types for
@Controller
instances from the request. By default, only the Accept
header is checked, but you
can also enable a query parameter-based strategy.
The following example shows how to customize the requested content type resolution:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public void configureContentTypeResolver(RequestedContentTypeResolverBuilder builder) {
// ...
}
}
1.18.6. HTTP message codecs
The following example shows how to customize how the request and response body are read and written:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public void configureHttpMessageCodecs(ServerCodecConfigurer configurer) {
// ...
}
}
ServerCodecConfigurer
provides a set of default readers and writers. You can use it to add
more readers and writers, customize the default ones, or replace the default ones completely.
For Jackson JSON and XML, consider using
Jackson2ObjectMapperBuilder
,
which customizes Jackson’s default properties with the following ones:
-
DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES
is disabled. -
MapperFeature.DEFAULT_VIEW_INCLUSION
is disabled.
It also automatically registers the following well-known modules if they are detected on the classpath:
-
jackson-datatype-jdk7
: Support for Java 7 types likejava.nio.file.Path
. -
jackson-datatype-joda
: Support for Joda-Time types. -
jackson-datatype-jsr310
: Support for Java 8 Date and Time API types. -
jackson-datatype-jdk8
: Support for other Java 8 types, such asOptional
.
1.18.7. View Resolvers
The following example shows how to configure view resolution:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public void configureViewResolvers(ViewResolverRegistry registry) {
// ...
}
}
The ViewResolverRegistry
has shortcuts for view technologies with which the Spring Framework
integrates. The following example uses FreeMarker (which also requires configuring the
underlying FreeMarker view technology):
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public void configureViewResolvers(ViewResolverRegistry registry) {
registry.freeMarker();
}
// Configure Freemarker...
@Bean
public FreeMarkerConfigurer freeMarkerConfigurer() {
FreeMarkerConfigurer configurer = new FreeMarkerConfigurer();
configurer.setTemplateLoaderPath("classpath:/templates");
return configurer;
}
}
You can also plug in any ViewResolver
implementation, as the following example shows:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public void configureViewResolvers(ViewResolverRegistry registry) {
ViewResolver resolver = ... ;
registry.viewResolver(resolver);
}
}
To support Content Negotiation and rendering other formats
through view resolution (besides HTML), you can configure one or more default views based
on the HttpMessageWriterView
implementation, which accepts any of the available
Codecs from spring-web
. The following example shows how to do so:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public void configureViewResolvers(ViewResolverRegistry registry) {
registry.freeMarker();
Jackson2JsonEncoder encoder = new Jackson2JsonEncoder();
registry.defaultViews(new HttpMessageWriterView(encoder));
}
// ...
}
See View Technologies for more on the view technologies that are integrated with Spring WebFlux.
1.18.8. Static Resources
This option provides a convenient way to serve static resources from a list of
Resource
-based locations.
In the next example, given a request that starts with /resources
, the relative path is
used to find and serve static resources relative to /static
on the classpath. Resources
are served with a one-year future expiration to ensure maximum use of the browser cache
and a reduction in HTTP requests made by the browser. The Last-Modified
header is also
evaluated and, if present, a 304
status code is returned. The following list shows
the example:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public void addResourceHandlers(ResourceHandlerRegistry registry) {
registry.addResourceHandler("/resources/**")
.addResourceLocations("/public", "classpath:/static/")
.setCacheControl(CacheControl.maxAge(365, TimeUnit.DAYS));
}
}
The resource handler also supports a chain of
ResourceResolver
implementations and
ResourceTransformer
implementations,
which can be used to create a toolchain for working with optimized resources.
You can use the VersionResourceResolver
for versioned resource URLs based on an MD5 hash
computed from the content, a fixed application version, or other information. A
ContentVersionStrategy
(MD5 hash) is a good choice with some notable exceptions (such as
JavaScript resources used with a module loader).
The following example shows how to use VersionResourceResolver
in your Java configuration:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public void addResourceHandlers(ResourceHandlerRegistry registry) {
registry.addResourceHandler("/resources/**")
.addResourceLocations("/public/")
.resourceChain(true)
.addResolver(new VersionResourceResolver().addContentVersionStrategy("/**"));
}
}
You can use ResourceUrlProvider
to rewrite URLs and apply the full chain of resolvers and
transformers (for example, to insert versions). The WebFlux configuration provides a ResourceUrlProvider
so that it can be injected into others.
Unlike Spring MVC, at present, in WebFlux, there is no way to transparently rewrite static
resource URLs, since there are no view technologies that can make use of a non-blocking chain
of resolvers and transformers. When serving only local resources, the workaround is to use
ResourceUrlProvider
directly (for example, through a custom element) and block.
Note that, when using both EncodedResourceResolver
(for example, Gzip, Brotli encoded) and
VersionedResourceResolver
, they must be registered in that order, to ensure content-based
versions are always computed reliably based on the unencoded file.
WebJars is also supported through WebJarsResourceResolver
and is automatically registered when org.webjars:webjars-locator
is present on the
classpath. The resolver can re-write URLs to include the version of the jar and can also
match to incoming URLs without versions (for example, /jquery/jquery.min.js
to
/jquery/1.2.0/jquery.min.js
).
1.18.9. Path Matching
You can customize options related to path matching. For details on the individual options, see the
PathMatchConfigurer
Javadoc.
The following example shows how to use PathMatchConfigurer
:
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Override
public void configurePathMatch(PathMatchConfigurer configurer) {
configurer
.setUseCaseSensitiveMatch(true)
.setUseTrailingSlashMatch(false)
.addPathPrefix("/api",
HandlerTypePredicate.forAnnotation(RestController.class));
}
}
Spring WebFlux relies on a parsed representation of the request path called
Spring WebFlux also does not support suffix pattern matching, unlike in Spring MVC, where we are also recommend moving away from reliance on it. |
1.18.10. Advanced Configuration Mode
@EnableWebFlux
imports DelegatingWebFluxConfiguration
that:
-
Provides default Spring configuration for WebFlux applications
-
detects and delegates to
WebFluxConfigurer
implementations to customize that configuration.
For advanced mode, you can remove @EnableWebFlux
and extend directly from
DelegatingWebFluxConfiguration
instead of implementing WebFluxConfigurer
,
as the following example shows:
@Configuration
public class WebConfig extends DelegatingWebFluxConfiguration {
// ...
}
You can keep existing methods in WebConfig
, but you can now also override bean declarations
from the base class and still have any number of other WebMvcConfigurer
implementations on
the classpath.
1.19. HTTP/2
Servlet 4 containers are required to support HTTP/2, and Spring Framework 5 is compatible with Servlet API 4. From a programming model perspective, there is nothing specific that applications need to do. However, there are considerations related to server configuration. For more details, see the HTTP/2 wiki page.
Currently, Spring WebFlux does not support HTTP/2 with Netty. There is also no support for pushing resources programmatically to the client.
2. WebClient
Spring WebFlux includes a reactive, non-blocking WebClient
for HTTP requests. The client
has a functional, fluent API with reactive types for declarative composition, see
Reactive Libraries. WebFlux client and server rely on the
same non-blocking codecs to encode and decode request
and response content.
Internally WebClient
delegates to an HTTP client library. By default, it uses
Reactor Netty, there is built-in support for
the Jetty reactive HtpClient,
and others can be plugged in through a ClientHttpConnector
.
2.1. Configuration
The simplest way to create a WebClient
is through one of the static factory methods:
-
WebClient.create()
-
WebClient.create(String baseUrl)
The above methods use the Reactor Netty HttpClient
with default settings and expect
io.projectreactor.netty:reactor-netty
to be on the classpath.
You can also use WebClient.builder()
with further options:
-
uriBuilderFactory
: CustomizedUriBuilderFactory
to use as a base URL. -
defaultHeader
: Headers for every request. -
defaultCookie
: Cookies for every request. -
defaultRequest
:Consumer
to customize every request. -
filter
: Client filter for every request. -
exchangeStrategies
: HTTP message reader/writer customizations. -
clientConnector
: HTTP client library settings.
The following example configures HTTP codecs:
ExchangeStrategies strategies = ExchangeStrategies.builder()
.codecs(configurer -> {
// ...
})
.build();
WebClient client = WebClient.builder()
.exchangeStrategies(strategies)
.build();
Once built, a WebClient
instance is immutable. However, you can clone it and build a
modified copy without affecting the original instance, as the following example shows:
WebClient client1 = WebClient.builder()
.filter(filterA).filter(filterB).build();
WebClient client2 = client1.mutate()
.filter(filterC).filter(filterD).build();
// client1 has filterA, filterB
// client2 has filterA, filterB, filterC, filterD
2.1.1. Reactor Netty
To customize Reactor Netty settings, simple provide a pre-configured HttpClient
:
HttpClient httpClient = HttpClient.create().secure(sslSpec -> ...);
WebClient webClient = WebClient.builder()
.clientConnector(new ReactorClientHttpConnector(httpClient))
.build();
Resources
By default, HttpClient
participates in the global Reactor Netty resources held in
reactor.netty.http.HttpResources
, including event loop threads and a connection pool.
This is the recommended mode, since fixed, shared resources are preferred for event loop
concurrency. In this mode global resources remain active until the process exits.
If the server is timed with the process, there is typically no need for an explicit
shutdown. However, if the server can start or stop in-process (for example, a Spring MVC
application deployed as a WAR), you can declare a Spring-managed bean of type
ReactorResourceFactory
with globalResources=true
(the default) to ensure that the Reactor
Netty global resources are shut down when the Spring ApplicationContext
is closed,
as the following example shows:
@Bean
public ReactorResourceFactory reactorResourceFactory() {
return new ReactorResourceFactory();
}
You can also choose not to participate in the global Reactor Netty resources. However, in this mode, the burden is on you to ensure that all Reactor Netty client and server instances use shared resources, as the following example shows:
@Bean
public ReactorResourceFactory resourceFactory() {
ReactorResourceFactory factory = new ReactorResourceFactory();
factory.setGlobalResources(false); (1)
return factory;
}
@Bean
public WebClient webClient() {
Function<HttpClient, HttpClient> mapper = client -> {
// Further customizations...
};
ClientHttpConnector connector =
new ReactorClientHttpConnector(resourceFactory(), mapper); (2)
return WebClient.builder().clientConnector(connector).build(); (3)
}
1 | Create resources independent of global ones. |
2 | Use the ReactorClientHttpConnector constructor with resource factory. |
3 | Plug the connector into the WebClient.Builder . |
Timeouts
To configure a connection timeout:
import io.netty.channel.ChannelOption;
HttpClient httpClient = HttpClient.create()
.tcpConfiguration(client ->
client.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 10000));
To configure a read and/or write timeout values:
import io.netty.handler.timeout.ReadTimeoutHandler;
import io.netty.handler.timeout.WriteTimeoutHandler;
HttpClient httpClient = HttpClient.create()
.tcpConfiguration(client ->
client.doOnConnected(conn -> conn
.addHandlerLast(new ReadTimeoutHandler(10))
.addHandlerLast(new WriteTimeoutHandler(10))));
2.1.2. Jetty
The following example shows how to customize Jetty HttpClient
settings:
HttpClient httpClient = new HttpClient();
httpClient.setCookieStore(...);
ClientHttpConnector connector = new JettyClientHttpConnector(httpClient);
WebClient webClient = WebClient.builder().clientConnector(connector).build();
By default, HttpClient
creates its own resources (Executor
, ByteBufferPool
, Scheduler
),
which remain active until the process exits or stop()
is called.
You can share resources between multiple instances of the Jetty client (and server) and ensure that the
resources are shut down when the Spring ApplicationContext
is closed by declaring a
Spring-managed bean of type JettyResourceFactory
, as the following example shows:
@Bean
public JettyResourceFactory resourceFactory() {
return new JettyResourceFactory();
}
@Bean
public WebClient webClient() {
Consumer<HttpClient> customizer = client -> {
// Further customizations...
};
ClientHttpConnector connector =
new JettyClientHttpConnector(resourceFactory(), customizer); (2)
return WebClient.builder().clientConnector(connector).build(); (3)
}
1 | Create shared resources. |
2 | Use the JettyClientHttpConnector constructor with resource factory. |
3 | Plug the connector into the WebClient.Builder . |
2.2. Using retrieve()
The retrieve()
method is the easiest way to get a response body and decode it.
The following example shows how to do so:
WebClient client = WebClient.create("http://example.org");
Mono<Person> result = client.get()
.uri("/persons/{id}", id).accept(MediaType.APPLICATION_JSON)
.retrieve()
.bodyToMono(Person.class);
You can also get a stream of objects decoded from the response, as the following example shows:
Flux<Quote> result = client.get()
.uri("/quotes").accept(MediaType.TEXT_EVENT_STREAM)
.retrieve()
.bodyToFlux(Quote.class);
By default, responses with 4xx or 5xx status codes result in an
WebClientResponseException
or one of its HTTP status specific sub-classes, such as
WebClientResponseException.BadRequest
, WebClientResponseException.NotFound
, and others.
You can also use the onStatus
method to customize the resulting exception,
as the following example shows:
Mono<Person> result = client.get()
.uri("/persons/{id}", id).accept(MediaType.APPLICATION_JSON)
.retrieve()
.onStatus(HttpStatus::is4xxServerError, response -> ...)
.onStatus(HttpStatus::is5xxServerError, response -> ...)
.bodyToMono(Person.class);
2.3. Using exchange()
The exchange()
method provides more control than the retrieve
method. The following example is equivalent
to retrieve()
but also provides access to the ClientResponse
:
Mono<Person> result = client.get()
.uri("/persons/{id}", id).accept(MediaType.APPLICATION_JSON)
.exchange()
.flatMap(response -> response.bodyToMono(Person.class));
At this level, you can also create a full ResponseEntity
:
Mono<ResponseEntity<Person>> result = client.get()
.uri("/persons/{id}", id).accept(MediaType.APPLICATION_JSON)
.exchange()
.flatMap(response -> response.toEntity(Person.class));
Note that (unlike retrieve()
), with exchange()
, there are no automatic error signals for
4xx and 5xx responses. You have to check the status code and decide how to proceed.
When you use exchange() , you must always use any of the body or toEntity methods of
ClientResponse to ensure resources are released and to avoid potential issues with HTTP
connection pooling. You can use bodyToMono(Void.class) if no response content is
expected. However, if the response does have content, the connection
is closed and is not placed back in the pool.
|
2.4. Request Body
The request body can be encoded from an Object
, as the following example shows:
Mono<Person> personMono = ... ;
Mono<Void> result = client.post()
.uri("/persons/{id}", id)
.contentType(MediaType.APPLICATION_JSON)
.body(personMono, Person.class)
.retrieve()
.bodyToMono(Void.class);
You can also have a stream of objects be encoded, as the following example shows:
Flux<Person> personFlux = ... ;
Mono<Void> result = client.post()
.uri("/persons/{id}", id)
.contentType(MediaType.APPLICATION_STREAM_JSON)
.body(personFlux, Person.class)
.retrieve()
.bodyToMono(Void.class);
Alternatively, if you have the actual value, you can use the syncBody
shortcut method,
as the following example shows:
Person person = ... ;
Mono<Void> result = client.post()
.uri("/persons/{id}", id)
.contentType(MediaType.APPLICATION_JSON)
.syncBody(person)
.retrieve()
.bodyToMono(Void.class);
2.4.1. Form Data
To send form data, you can provide a MultiValueMap<String, String>
as the body. Note that the
content is automatically set to application/x-www-form-urlencoded
by the
FormHttpMessageWriter
. The following example shows how to use MultiValueMap<String, String>
:
MultiValueMap<String, String> formData = ... ;
Mono<Void> result = client.post()
.uri("/path", id)
.syncBody(formData)
.retrieve()
.bodyToMono(Void.class);
You can also supply form data in-line by using BodyInserters
, as the following example shows:
import static org.springframework.web.reactive.function.BodyInserters.*;
Mono<Void> result = client.post()
.uri("/path", id)
.body(fromFormData("k1", "v1").with("k2", "v2"))
.retrieve()
.bodyToMono(Void.class);
2.4.2. Multipart Data
To send multipart data, you need to provide a MultiValueMap<String, ?>
whose values are
either Object
instances that represent part content or HttpEntity
instances that represent the content and
headers for a part. MultipartBodyBuilder
provides a convenient API to prepare a
multipart request. The following example shows how to create a MultiValueMap<String, ?>
:
MultipartBodyBuilder builder = new MultipartBodyBuilder();
builder.part("fieldPart", "fieldValue");
builder.part("filePart", new FileSystemResource("...logo.png"));
builder.part("jsonPart", new Person("Jason"));
MultiValueMap<String, HttpEntity<?>> parts = builder.build();
In most cases, you do not have to specify the Content-Type
for each part. The content
type is determined automatically based on the HttpMessageWriter
chosen to serialize it
or, in the case of a Resource
, based on the file extension. If necessary, you can
explicitly provide the MediaType
to use for each part through one of the overloaded
builder part
methods.
Once a MultiValueMap
is prepared, the easiest way to pass it to the the WebClient
is
through the syncBody
method, as the following example shows:
MultipartBodyBuilder builder = ...;
Mono<Void> result = client.post()
.uri("/path", id)
.syncBody(builder.build())
.retrieve()
.bodyToMono(Void.class);
If the MultiValueMap
contains at least one non-String
value, which could also
represent regular form data (that is, application/x-www-form-urlencoded
), you need not
set the Content-Type
to multipart/form-data
. This is always the case when using
MultipartBodyBuilder
, which ensures an HttpEntity
wrapper.
As an alternative to MultipartBodyBuilder
, you can also provide multipart content,
inline-style, through the built-in BodyInserters
, as the following example shows:
import static org.springframework.web.reactive.function.BodyInserters.*;
Mono<Void> result = client.post()
.uri("/path", id)
.body(fromMultipartData("fieldPart", "value").with("filePart", resource))
.retrieve()
.bodyToMono(Void.class);
2.5. Client Filters
You can register a client filter (ExchangeFilterFunction
) through the WebClient.Builder
in order to intercept and modify requests, as the following example shows:
WebClient client = WebClient.builder()
.filter((request, next) -> {
ClientRequest filtered = ClientRequest.from(request)
.header("foo", "bar")
.build();
return next.exchange(filtered);
})
.build();
This can be used for cross-cutting concerns, such as authentication. The following example uses a filter for basic authentication through a static factory method:
// static import of ExchangeFilterFunctions.basicAuthentication
WebClient client = WebClient.builder()
.filter(basicAuthentication("user", "password"))
.build();
Filters apply globally to every request. To change a filter’s behavior for a specific
request, you can add request attributes to the ClientRequest
that can then be accessed
by all filters in the chain, as the following example shows:
WebClient client = WebClient.builder()
.filter((request, next) -> {
Optional<Object> usr = request.attribute("myAttribute");
// ...
})
.build();
client.get().uri("http://example.org/")
.attribute("myAttribute", "...")
.retrieve()
.bodyToMono(Void.class);
}
You can also replicate an existing WebClient
, insert new filters, or remove already
registered filters. The following example, inserts a basic authentication filter at
index 0:
// static import of ExchangeFilterFunctions.basicAuthentication
WebClient client = webClient.mutate()
.filters(filterList -> {
filterList.add(0, basicAuthentication("user", "password"));
})
.build();
2.6. Testing
To test code that uses the WebClient
, you can use a mock web server, such as the
OkHttp MockWebServer. To see an example
of its use, check
WebClientIntegrationTests
in the Spring Framework tests or the
static-server
sample in the OkHttp repository.
3. WebSockets
This part of the reference documentation covers support for reactive-stack WebSocket messaging.
3.1. Introduction to WebSocket
The WebSocket protocol, RFC 6455, provides a standardized way to establish a full-duplex, two-way communication channel between client and server over a single TCP connection. It is a different TCP protocol from HTTP but is designed to work over HTTP, using ports 80 and 443 and allowing re-use of existing firewall rules.
A WebSocket interaction begins with an HTTP request that uses the HTTP Upgrade
header
to upgrade or, in this case, to switch to the WebSocket protocol. The following example
shows such an interaction:
GET /spring-websocket-portfolio/portfolio HTTP/1.1 Host: localhost:8080 Upgrade: websocket <1> Connection: Upgrade <2> Sec-WebSocket-Key: Uc9l9TMkWGbHFD2qnFHltg== Sec-WebSocket-Protocol: v10.stomp, v11.stomp Sec-WebSocket-Version: 13 Origin: http://localhost:8080
1 | The Upgrade header. |
2 | Using the Upgrade connection. |
Instead of the usual 200 status code, a server with WebSocket support returns output similar to the following:
HTTP/1.1 101 Switching Protocols Upgrade: websocket Connection: Upgrade Sec-WebSocket-Accept: 1qVdfYHU9hPOl4JYYNXF623Gzn0= Sec-WebSocket-Protocol: v10.stomp
After a successful handshake, the TCP socket underlying the HTTP upgrade request remains open for both the client and the server to continue to send and receive messages.
A complete introduction of how WebSockets work is beyond the scope of this document. See RFC 6455, the WebSocket chapter of HTML5, or any of the many introductions and tutorials on the Web.
Note that, if a WebSocket server is running behind a web server (e.g. nginx), you likely need to configure it to pass WebSocket upgrade requests on to the WebSocket server. Likewise, if the application runs in a cloud environment, check the instructions of the cloud provider related to WebSocket support.
3.1.1. HTTP Versus WebSocket
Even though WebSocket is designed to be HTTP-compatible and starts with an HTTP request, it is important to understand that the two protocols lead to very different architectures and application programming models.
In HTTP and REST, an application is modeled as many URLs. To interact with the application, clients access those URLs, request-response style. Servers route requests to the appropriate handler based on the HTTP URL, method, and headers.
By contrast, in WebSockets, there is usually only one URL for the initial connect. Subsequently, all application messages flow on that same TCP connection. This points to an entirely different asynchronous, event-driven, messaging architecture.
WebSocket is also a low-level transport protocol, which, unlike HTTP, does not prescribe any semantics to the content of messages. That means that there is no way to route or process a message unless the client and the server agree on message semantics.
WebSocket clients and servers can negotiate the use of a higher-level, messaging protocol
(for example, STOMP), through the Sec-WebSocket-Protocol
header on the HTTP handshake request.
In the absence of that, they need to come up with their own conventions.
3.1.2. When to Use WebSockets
WebSockets can make a web page be dynamic and interactive. However, in many cases, a combination of Ajax and HTTP streaming or long polling can provide a simple and effective solution.
For example, news, mail, and social feeds need to update dynamically, but it may be perfectly okay to do so every few minutes. Collaboration, games, and financial apps, on the other hand, need to be much closer to real-time.
Latency alone is not a deciding factor. If the volume of messages is relatively low (for example, monitoring network failures) HTTP streaming or polling can provide an effective solution. It is the combination of low latency, high frequency, and high volume that make the best case for the use of WebSocket.
Keep in mind also that over the Internet, restrictive proxies that are outside of your control
may preclude WebSocket interactions, either because they are not configured to pass on the
Upgrade
header or because they close long-lived connections that appear idle. This
means that the use of WebSocket for internal applications within the firewall is a more
straightforward decision than it is for public facing applications.
3.2. WebSocket API
The Spring Framework provides a WebSocket API that you can use to write client- and server-side applications that handle WebSocket messages.
3.2.1. Server
To create a WebSocket server, you can first create a WebSocketHandler
.
The following example shows how to do so:
import org.springframework.web.reactive.socket.WebSocketHandler;
import org.springframework.web.reactive.socket.WebSocketSession;
public class MyWebSocketHandler implements WebSocketHandler {
@Override
public Mono<Void> handle(WebSocketSession session) {
// ...
}
}
Then you can map it to a URL and add a WebSocketHandlerAdapter
, as the following example shows:
@Configuration
static class WebConfig {
@Bean
public HandlerMapping handlerMapping() {
Map<String, WebSocketHandler> map = new HashMap<>();
map.put("/path", new MyWebSocketHandler());
SimpleUrlHandlerMapping mapping = new SimpleUrlHandlerMapping();
mapping.setUrlMap(map);
mapping.setOrder(-1); // before annotated controllers
return mapping;
}
@Bean
public WebSocketHandlerAdapter handlerAdapter() {
return new WebSocketHandlerAdapter();
}
}
3.2.2. Using WebSocketHandler
The handle
method of WebSocketHandler
takes WebSocketSession
and returns Mono<Void>
to indicate when application handling of the session is complete. The session is handled
through two streams, one for inbound and one for outbound messages. The following table
describes the two methods that handle the streams:
WebSocketSession method |
Description |
---|---|
|
Provides access to the inbound message stream and completes when the connection is closed. |
|
Takes a source for outgoing messages, writes the messages, and returns a |
A WebSocketHandler
must compose the inbound and outbound streams into a unified flow and
return a Mono<Void>
that reflects the completion of that flow. Depending on application
requirements, the unified flow completes when:
-
Either the inbound or the outbound message stream completes.
-
The inbound stream completes (that is, the connection closed), while the outbound stream is infinite.
-
At a chosen point, through the
close
method ofWebSocketSession
.
When inbound and outbound message streams are composed together, there is no need to check if the connection is open, since Reactive Streams signals terminate activity. The inbound stream receives a completion or error signal, and the outbound stream receives a cancellation signal.
The most basic implementation of a handler is one that handles the inbound stream. The following example shows such an implementation:
class ExampleHandler implements WebSocketHandler {
@Override
public Mono<Void> handle(WebSocketSession session) {
return session.receive() (1)
.doOnNext(message -> {
// ... (2)
})
.concatMap(message -> {
// ... (3)
})
.then(); (4)
}
}
1 | Access the stream of inbound messages. |
2 | Do something with each message. |
3 | Perform nested asynchronous operations that use the message content. |
4 | Return a Mono<Void> that completes when receiving completes. |
For nested, asynchronous operations, you may need to call message.retain() on underlying
servers that use pooled data buffers (for example, Netty). Otherwise, the data buffer may be
released before you have had a chance to read the data. For more background, see
Data Buffers and Codecs.
|
The following implementation combines the inbound and outbound streams:
class ExampleHandler implements WebSocketHandler {
@Override
public Mono<Void> handle(WebSocketSession session) {
Flux<WebSocketMessage> output = session.receive() (1)
.doOnNext(message -> {
// ...
})
.concatMap(message -> {
// ...
})
.map(value -> session.textMessage("Echo " + value)); (2)
return session.send(output); (3)
}
}
1 | Handle the inbound message stream. |
2 | Create the outbound message, producing a combined flow. |
3 | Return a Mono<Void> that does not complete while we continue to receive. |
Inbound and outbound streams can be independent and be joined only for completion, as the following example shows:
class ExampleHandler implements WebSocketHandler {
@Override
public Mono<Void> handle(WebSocketSession session) {
Mono<Void> input = session.receive() (1)
.doOnNext(message -> {
// ...
})
.concatMap(message -> {
// ...
})
.then();
Flux<String> source = ... ;
Mono<Void> output = session.send(source.map(session::textMessage)); (2)
return Mono.zip(input, output).then(); (3)
}
}
1 | Handle inbound message stream. |
2 | Send outgoing messages. |
3 | Join the streams and return a Mono<Void> that completes when either stream ends. |
3.2.3. Handshake
WebSocketHandlerAdapter
delegates to a WebSocketService
. By default, that is an instance
of HandshakeWebSocketService
, which performs basic checks on the WebSocket request and
then uses RequestUpgradeStrategy
for the server in use. Currently, there is built-in
support for Reactor Netty, Tomcat, Jetty, and Undertow.
HandshakeWebSocketService
exposes a sessionAttributePredicate
property that allows
setting a Predicate<String>
to extract attributes from the WebSession
and insert them
into the attributes of the WebSocketSession
.
3.2.4. Server Configation
The RequestUpgradeStrategy
for each server exposes WebSocket-related configuration
options available for the underlying WebSocket engine. The following example sets
WebSocket options when running on Tomcat:
@Configuration
static class WebConfig {
@Bean
public WebSocketHandlerAdapter handlerAdapter() {
return new WebSocketHandlerAdapter(webSocketService());
}
@Bean
public WebSocketService webSocketService() {
TomcatRequestUpgradeStrategy strategy = new TomcatRequestUpgradeStrategy();
strategy.setMaxSessionIdleTimeout(0L);
return new HandshakeWebSocketService(strategy);
}
}
Check the upgrade strategy for your server to see what options are available. Currently, only Tomcat and Jetty expose such options.
3.2.5. CORS
The easiest way to configure CORS and restrict access to a WebSocket endpoint is to
have your WebSocketHandler
implement CorsConfigurationSource
and return a
CorsConfiguraiton
with allowed origins, headers, and other details. If you cannot do
that, you can also set the corsConfigurations
property on the SimpleUrlHandler
to
specify CORS settings by URL pattern. If both are specified, they are combined by using the
combine
method on CorsConfiguration
.
3.2.6. Client
Spring WebFlux provides a WebSocketClient
abstraction with implementations for
Reactor Netty, Tomcat, Jetty, Undertow, and standard Java (that is, JSR-356).
The Tomcat client is effectively an extension of the standard Java one with some extra
functionality in the WebSocketSession handling to take advantage of the Tomcat-specific
API to suspend receiving messages for back pressure.
|
To start a WebSocket session, you can create an instance of the client and use its execute
methods:
WebSocketClient client = new ReactorNettyWebSocketClient();
URI url = new URI("ws://localhost:8080/path");
client.execute(url, session ->
session.receive()
.doOnNext(System.out::println)
.then());
Some clients, such as Jetty, implement Lifecycle
and need to be stopped and started
before you can use them. All clients have constructor options related to configuration
of the underlying WebSocket client.
4. Testing
The spring-test
module provides mock implementations of ServerHttpRequest
,
ServerHttpResponse
, and ServerWebExchange
.
See Spring Web Reactive for a discussion of mock objects.
WebTestClient
builds on these mock request and
response objects to provide support for testing WebFlux applications without an HTTP
server. You can use the WebTestClient
for end-to-end integration tests, too.
5. Reactive Libraries
spring-webflux
depends on reactor-core
and uses it internally to compose asynchronous
logic and to provide Reactive Streams support. Generally, WebFlux APIs return Flux
or
Mono
(since those are used internally) and leniently accept any Reactive Streams
Publisher
implementation as input. The use of Flux
versus Mono
is important, because it
helps to express cardinality — for example, whether a single or multiple asynchronous values are
expected, and that can be essential for making decisions (for example, when encoding or
decoding HTTP messages).
For annotated controllers, WebFlux transparently adapts to the reactive library chosen by
the application. This is done with the help of the
ReactiveAdapterRegistry
, which
provides pluggable support for reactive library and other asynchronous types. The registry
has built-in support for RxJava and CompletableFuture
, but you can register others, too.
For functional APIs (such as Functional Endpoints, the WebClient
, and others), the general rules
for WebFlux APIs apply — Flux
and Mono
as return values and a Reactive Streams
Publisher
as input. When a Publisher
, whether custom or from another reactive library,
is provided, it can be treated only as a stream with unknown semantics (0..N). If, however,
the semantics are known, you can wrap it with Flux
or Mono.from(Publisher)
instead
of passing the raw Publisher
.
For example, given a Publisher
that is not a Mono
, the Jackson JSON message writer
expects multiple values. If the media type implies an infinite stream (for example,
application/json+stream
), values are written and flushed individually. Otherwise,
values are buffered into a list and rendered as a JSON array.