1.0.0.RC1
Copyright © 2013-2015 Pivotal Software, Inc.
Table of Contents
The Spring Cloud Data Flow for Apache Yarn reference guide is available as html, pdf and epub documents. The latest copy is available at docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/html/.
Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.
Having trouble with Spring Cloud Data Flow, We’d like to help!
spring-cloud
.Note | |
---|---|
All of Spring Cloud Data Flow is open source, including the documentation! If you find problems with the docs; or if you just want to improve them, please get involved. |
This project provides support for orchestrating long-running (streaming) and short-lived (task/batch) data microservices to Apache YARN.
Spring Cloud Data Flow is a cloud-native orchestration service for composable data microservices on modern runtimes. With Spring Cloud Data Flow, developers can create and orchestrate data pipelines for common use cases such as data ingest, real-time analytics, and data import/export.
The Spring Cloud Data Flow architecture consists of a server that deploys Streams and Tasks. Streams are defined using a DSL or visually through the browser based designer UI. Streams are based on the Spring Cloud Stream programming model while Tasks are based on the Spring Cloud Task programming model. The sections below describe more information about creating your own custom Streams and Tasks
For more details about the core architecture components and the supported features, please review Spring Cloud Data Flow’s core reference guide. There’re several samples available for reference.
Spring Cloud Stream is a framework for building message-driven microservice applications. Spring Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics, consumer groups, and partitions.
For more details about the core framework components and the supported features, please review Spring Cloud Stream’s reference guide.
There’s a rich ecosystem of Spring Cloud Stream Application-Starters that can be used either as standalone data microservice applications or in Spring Cloud Data Flow. For convenience, we have generated RabbitMQ and Apache Kafka variants of these application-starters that are available for use from Maven Repo and Docker Hub as maven artifacts and docker images, respectively.
Do you have a requirement to develop custom applications? No problem. Refer to this guide to create custom stream applications. There’re several samples available for reference.
Spring Cloud Task makes it easy to create short-lived microservices. We provide capabilities that allow short-lived JVM processes to be executed on demand in a production environment.
For more details about the core framework components and the supported features, please review Spring Cloud Task’s reference guide.
There’s a rich ecosystem of Spring Cloud Task Application-Starters that can be used either as standalone data microservice applications or in Spring Cloud Data Flow. For convenience, the generated application-starters are available for use from Maven Repo. There are several samples available for reference.
Data flow runtime can be deployed and used with YARN in two different ways, firstly using it directly with a YARN cluster and secondly letting Apache Ambari deploy it into its cluster as a service.
The server application is run as a standalone application. All apps used for streams and tasks will be deployed on the YARN cluster that is targeted by the server.
These requirements are not something yarn runtime needs but generally what dataflow core needs.
Download the Spring Cloud Data Flow YARN distribution ZIP file which includes the Admin and the Shell apps:
$ wget http://repo.spring.io/milestone/org/springframework/cloud/dist/spring-cloud-dataflow-server-yarn-dist/1.0.0.RC1/spring-cloud-dataflow-server-yarn-dist-1.0.0.RC1.zip
Unzip the distribution ZIP file and change to the directory containing the deployment files.
$ cd spring-cloud-dataflow-server-yarn-1.0.0.RC1
Generic runtime settings can changed in config/servers.yml
. Make
sure Hadoop and Redis are running.
If either one is not running on localhost
you need to configure them in config/servers.yml
If this is the first time deploying make sure the user that runs
the Server app has rights to create and write to /dataflow
directory in hdfs
. If there is an existing deployment on hdfs
remove it using:
$ hdfs dfs -rm -R /dataflow
Start the Spring Cloud Data Flow Server app for YARN
$ ./bin/dataflow-server-yarn
By default, the application registry will be empty. If you would like to register all out-of-the-box stream applications built with the RabbitMQ binder in bulk, you can with the following command. For more details, review how to register applications.
dataflow:>app import --uri http://bit.ly/stream-applications-rabbit-maven
Create a stream:
dataflow:>stream create --name foostream --definition "time|log" --deploy
List streams:
dataflow:>stream list ╔═══════════╤═════════════════╤════════╗ ║Stream Name│Stream Definition│ Status ║ ╠═══════════╪═════════════════╪════════╣ ║foostream │time|log │deployed║ ╚═══════════╧═════════════════╧════════╝
After some time, destroy the stream:
dataflow:>stream destroy --name foostream
The YARN application is pushed and started automatically during a stream deployment process. Once all streams are destroyed the YARN application will exit.
Create and launch task:
dataflow:>task create --name footask --definition "timestamp" Created new task 'footask' dataflow:>task launch --name footask Launched task 'footask'
Overall app status can be seen from YARN Resource Manager UI or using Spring YARN CLI which gives more info about running containers within an app itself.
$ ./bin/dataflow-server-yarn-cli shell
When stream has been submitted YARN shows it as ACCEPTED
before its
turned to RUNNING
state.
$ submitted APPLICATION ID USER NAME QUEUE TYPE STARTTIME FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL ------------------------------ ------------ ----------------------- ------- -------- -------------- ---------- -------- ----------- --------------------- application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16 16:27 N/A ACCEPTED UNDEFINED $ submitted APPLICATION ID USER NAME QUEUE TYPE STARTTIME FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL ------------------------------ ------------ ----------------------- ------- -------- -------------- ---------- ------- ----------- ------------------------- application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16 16:27 N/A RUNNING UNDEFINED http://192.168.1.96:58580
More info about internals for stream apps can be queried by
clustersinfo
and clusterinfo
commands:
$ clustersinfo -a application_1461658614481_0001 CLUSTER ID -------------- foostream:log foostream:time $ clusterinfo -a application_1461658614481_0001 -c foostream:time CLUSTER STATE MEMBER COUNT ------------- ------------ RUNNING 1
After stream is undeployed YARN app should close itself automatically:
$ submitted -v APPLICATION ID USER NAME QUEUE TYPE STARTTIME FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL ------------------------------ ------------ ----------------------- ------- -------- -------------- -------------- -------- ----------- --------------------- application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16 16:27 26/04/16 16:28 FINISHED SUCCEEDED
Launching a task will be shown in RUNNING
state while app is
executing its batch jobs:
$ submitted -v APPLICATION ID USER NAME QUEUE TYPE STARTTIME FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL ------------------------------ ------------ ----------------------- ------- -------- -------------- -------------- -------- ----------- ------------------------- application_1461658614481_0002 jvalkealahti scdtask:timestamp default DATAFLOW 26/04/16 16:29 N/A RUNNING UNDEFINED http://192.168.1.96:39561 application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16 16:27 26/04/16 16:28 FINISHED SUCCEEDED $ submitted -v APPLICATION ID USER NAME QUEUE TYPE STARTTIME FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL ------------------------------ ------------ ----------------------- ------- -------- -------------- -------------- -------- ----------- --------------------- application_1461658614481_0002 jvalkealahti scdtask:timestamp default DATAFLOW 26/04/16 16:29 26/04/16 16:29 FINISHED SUCCEEDED application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16 16:27 26/04/16 16:28 FINISHED SUCCEEDED
Ambari basically automates YARN installation instead of doing it manually. Also a lot of other configuration steps are automated as much as possible to easy overall installation process.
Generally it is only needed to install scdf-plugin-hdp
plugin into
ambari server which adds needed service definitions.
[root@ambari-1 ~]# yum -y install ambari-server [root@ambari-1 ~]# ambari-server setup -s [root@ambari-1 ~]# wget -nv http://repo.spring.io/yum-milestone-local/scdf/1.0/scdf-milestone-1.0.repo -O /etc/yum.repos.d/scdf-milestone-1.0.repo [root@ambari-1 ~]# yum -y install scdf-plugin-hdp [root@ambari-1 ~]# ambari-server start
Note | |
---|---|
Ambari plugin only works for redhat6 based systems for now. |
When you create your cluste and choose a stack, make sure that
redhat6
section contains repository named SCDF-1.0
and that it
points to repo.spring.io/yum-milestone-local/scdf/1.0
.
From services choose Spring Cloud Dataflow
and Kafka
. Hdfs
,
Yarn
and Zookeeper
are forced dependencies.
Then in Customize Services what is really left for user to do is to add address for redis(as it’s required). Everything else is automatically configured. Technically it also allows you to switch to use rabbit by leaving Kafka out and defining rabbit settings there. But generally use of Kafka is a good choice.
Note | |
---|---|
We also install H2 DB as service so that it can be accessed from every node. |
In this section you will learn all about Streams and how to use them with Spring Cloud Data Flow.
In Spring Cloud Data Flow, a basic stream defines the ingestion of event driven data from a source to a sink that passes through any number of processors. Streams are composed of spring-cloud-stream applications and the deployment of stream definitions is done via the Data Flow Server (REST API). The Getting Started section shows you how to start these servers and how to start and use the Spring Cloud Data Flow shell.
A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source and a file sink (with no processors) is shown below
http | file
The DSL mimics a UNIX pipes and filters syntax. Default values for ports and filenames are used in this example but can be overridden using --
options, such as
http --server.port=8091 | file --directory=/tmp/httpdata/
To create these stream definitions you use the shell or make an HTTP POST request to the Spring Cloud Data Flow Server. More details can be found in the sections below.
In the examples above, we connected a source to a sink using the pipe symbol |
. You can also pass properties to the source and sink configurations. The property names will depend on the individual app implementations, but as an example, the http
source app exposes a server.port
setting which allows you to change the data ingestion port from the default value. To create the stream using port 8000, we would use
dataflow:> stream create --definition "http --server.port=8000 | log" --name myhttpstream
The shell provides tab completion for application properties and also the shell command app info
provides some additional documentation.
Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell
app register
command. You must provide a unique name, application type, and a URI that can be
resolved to the app artifact. For the type, specify "source", "processor", or "sink".
Here are a few examples:
dataflow:>app register --name mysource --type source --uri maven://com.example:mysource:0.0.1-SNAPSHOT dataflow:>app register --name myprocessor --type processor --uri file:///Users/example/myprocessor-1.2.3.jar dataflow:>app register --name mysink --type sink --uri http://example.com/mysink-2.0.1.jar
When providing a URI with the maven
scheme, the format should conform to the following:
maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>
For example, if you would like to register the snapshot versions of the http
and log
applications built with the RabbitMQ binder, you could do the following:
dataflow:>app register --name http --type source --uri maven://org.springframework.cloud.stream.app:http-source-rabbit:1.0.0.BUILD-SNAPSHOT dataflow:>app register --name log --type sink --uri maven://org.springframework.cloud.stream.app:http-log-rabbit:1.0.0.BUILD-SNAPSHOT
If you would like to register multiple apps at one time, you can store them in a properties file
where the keys are formatted as <type>.<name>
and the values are the URIs.
For example, if you would like to register the snapshot versions of the http
and log
applications built with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:
source.http=maven://org.springframework.cloud.stream.app:http-source-rabbit:1.0.0.BUILD-SNAPSHOT sink.log=maven://org.springframework.cloud.stream.app:log-sink-rabbit:1.0.0.BUILD-SNAPSHOT
Then to import the apps in bulk, use the app import
command and provide the location of the properties file via --uri
:
dataflow:>app import --uri file:///<YOUR_FILE_LOCATION>/stream-apps.properties
For convenience, we have the static files with application-URIs (for both maven and docker) available for all the out-of-the-box Stream and Task app-starters. You can point to this file and import all the application-URIs in bulk. Otherwise, as explained in previous paragraphs, you can register them individually or have your own custom property file with only the required application-URIs in it. It is recommended, however, to have a "focused" list of desired application-URIs in a custom property file.
List of available static property files:
For example, if you would like to register all out-of-the-box stream applications built with the RabbitMQ binder in bulk, you can with the following command.
dataflow:>app import --uri http://bit.ly/stream-applications-rabbit-maven
You can also pass the --local
option (which is TRUE by default) to indicate whether the
properties file location should be resolved within the shell process itself. If the location should
be resolved from the Data Flow Server process, specify --local false
.
When using either app register
or app import
, if a stream app is already registered with
the provided name and type, it will not be overridden by default. If you would like to override the
pre-existing stream app, then include the --force
option.
Note | |
---|---|
In some cases the Resource is resolved on the server side, whereas in others the URI will be passed to a runtime container instance where it is resolved. Consult the specific documentation of each Data Flow Server for more detail. |
Stream applications are Spring Boot applications which are aware of many common application properties, e.g. server.port
but also families of properties such as those with the prefix spring.jmx
and logging
. When creating your own application it is desirable to whitelist properties so that the shell and the UI can display them first as primary properties when presenting options via TAB completion or in drop-down boxes.
To whitelist application properties create a file named spring-configuration-metadata-whitelist.properties
in the META-INF
resource directory. There are two property keys that can be used inside this file. The first key is named configuration-properties.classes
. The value is a comma separated list of fully qualified @ConfigurationProperty
class names. The second key is configuration-properties.names
whose value is a comma separated list of property names. This can contain the full name of property, such as server.port
or a partial name to whitelist a category of property names, e.g. spring.jmx
.
The Spring Cloud Stream application starters are a good place to look for examples of usage. Here is a simple example of the file source’s spring-configuration-metadata-whitelist.properties
file
configuration.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties
If for some reason we also wanted to add file.prefix
to this file, it would look like
configuration.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties configuration-properties.names=server.port
The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as described in the Getting Started section.
New streams are created by posting stream definitions. The definitions are built from a simple DSL. For example, let’s walk through what happens if we execute the following shell command:
dataflow:> stream create --definition "time | log" --name ticktock
This defines a stream named ticktock
based off the DSL expression time | log
. The DSL uses the "pipe" symbol |
, to connect a source to a sink.
Then to deploy the stream execute the following shell command (or alternatively add the --deploy
flag when creating the stream so that this step is not needed):
dataflow:> stream deploy --name ticktock
The Data Flow Server resolves time
and log
to maven coordinates and uses those to launch the time
and log
applications of the stream.
2016-06-01 09:41:21.728 INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer : deploying app ticktock.log instance 0 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/ticktock-1464788481708/ticktock.log 2016-06-01 09:41:21.914 INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer : deploying app ticktock.time instance 0 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/ticktock-1464788481910/ticktock.time
In this example, the time source simply sends the current time as a message each second, and the log sink outputs it using the logging framework.
You can tail the stdout
log (which has an "_<instance>" suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as shown above.
$ tail -f /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/ticktock-1464788481708/ticktock.log/stdout_0.log 2016-06-01 09:45:11.250 INFO 79194 --- [ kafka-binder-] log.sink : 06/01/16 09:45:11 2016-06-01 09:45:12.250 INFO 79194 --- [ kafka-binder-] log.sink : 06/01/16 09:45:12 2016-06-01 09:45:13.251 INFO 79194 --- [ kafka-binder-] log.sink : 06/01/16 09:45:13
If you would like to have multiple instances of an application in the stream, you can include a property with the deploy command:
dataflow:> stream deploy --name ticktock --properties "app.time.count=3"
Important | |
---|---|
You can delete a stream by issuing the stream destroy
command from the shell:
dataflow:> stream destroy --name ticktock
If the stream was deployed, it will be undeployed before the stream definition is deleted.
Often you will want to stop a stream, but retain the name and definition for future use. In that case you can undeploy
the stream by name and issue the deploy
command at a later time to restart it.
dataflow:> stream undeploy --name ticktock dataflow:> stream deploy --name ticktock
Let’s try something a bit more complicated and swap out the time
source for something else. Another supported source type is http
, which accepts data for ingestion over HTTP POSTs. Note that the http
source accepts data on a different port from the Data Flow Server (default 8080). By default the port is randomly assigned.
To create a stream using an http
source, but still using the same log
sink, we would change the original command above to
dataflow:> stream create --definition "http | log" --name myhttpstream --deploy
which will produce the following output from the server
2016-06-01 09:47:58.920 INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer : deploying app myhttpstream.log instance 0 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/myhttpstream-1464788878747/myhttpstream.log 2016-06-01 09:48:06.396 INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer : deploying app myhttpstream.http instance 0 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/myhttpstream-1464788886383/myhttpstream.http
Note that we don’t see any other output this time until we actually post some data (using a shell command). In order to see the randomly assigned port on which the http source is listening, execute:
dataflow:> runtime apps
You should see that the corresponding http source has a url
property containing the host and port information on which it is listening. You are now ready to post to that url, e.g.:
dataflow:> http post --target http://localhost:1234 --data "hello" dataflow:> http post --target http://localhost:1234 --data "goodbye"
and the stream will then funnel the data from the http source to the output log implemented by the log sink
2016-06-01 09:50:22.121 INFO 79654 --- [ kafka-binder-] log.sink : hello 2016-06-01 09:50:26.810 INFO 79654 --- [ kafka-binder-] log.sink : goodbye
Of course, we could also change the sink implementation. You could pipe the output to a file (file
), to hadoop (hdfs
) or to any of the other sink apps which are available. You can also define your own apps.
As an example of a simple processing step, we can transform the payload of the HTTP posted data to upper case using the stream definitions
http | transform --expression=payload.toUpperCase() | log
To create this stream enter the following command in the shell
dataflow:> stream create --definition "http | transform --expression=payload.toUpperCase() | log" --name mystream --deploy
Posting some data (using a shell command)
dataflow:> http post --target http://localhost:1234 --data "hello"
Will result in an uppercased 'HELLO' in the log
2016-06-01 09:54:37.749 INFO 80083 --- [ kafka-binder-] log.sink : HELLO
To demonstrate the data partitioning functionality, let’s deploy the following stream with Kafka as the binder.
dataflow:>stream create --name words --definition "http --server.port=9900 | splitter --expression=payload.split(' ') | log" Created new stream 'words' dataflow:>stream deploy words --properties "app.splitter.producer.partitionKeyExpression=payload,app.log.count=2" Deployed stream 'words' dataflow:>http post --target http://localhost:9900 --data "How much wood would a woodchuck chuck if a woodchuck could chuck wood" > POST (text/plain;Charset=UTF-8) http://localhost:9900 How much wood would a woodchuck chuck if a woodchuck could chuck wood > 202 ACCEPTED
You’ll see the following in the server logs.
2016-06-05 18:33:24.982 INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer : deploying app words.log instance 0 Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-dataflow-694182453710731989/words-1465176804970/words.log 2016-06-05 18:33:24.988 INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer : deploying app words.log instance 1 Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-dataflow-694182453710731989/words-1465176804970/words.log
Review the words.log instance 0
logs:
2016-06-05 18:35:47.047 INFO 58638 --- [ kafka-binder-] log.sink : How 2016-06-05 18:35:47.066 INFO 58638 --- [ kafka-binder-] log.sink : chuck 2016-06-05 18:35:47.066 INFO 58638 --- [ kafka-binder-] log.sink : chuck
Review the words.log instance 1
logs:
2016-06-05 18:35:47.047 INFO 58639 --- [ kafka-binder-] log.sink : much 2016-06-05 18:35:47.066 INFO 58639 --- [ kafka-binder-] log.sink : wood 2016-06-05 18:35:47.066 INFO 58639 --- [ kafka-binder-] log.sink : would 2016-06-05 18:35:47.066 INFO 58639 --- [ kafka-binder-] log.sink : a 2016-06-05 18:35:47.066 INFO 58639 --- [ kafka-binder-] log.sink : woodchuck 2016-06-05 18:35:47.067 INFO 58639 --- [ kafka-binder-] log.sink : if 2016-06-05 18:35:47.067 INFO 58639 --- [ kafka-binder-] log.sink : a 2016-06-05 18:35:47.067 INFO 58639 --- [ kafka-binder-] log.sink : woodchuck 2016-06-05 18:35:47.067 INFO 58639 --- [ kafka-binder-] log.sink : could 2016-06-05 18:35:47.067 INFO 58639 --- [ kafka-binder-] log.sink : wood
This shows that payload splits that contain the same word are routed to the same application instance.
Taps can be created at various producer endpoints in a stream. For a stream like this:
stream create --definition "http | step1: transform --expression=payload.toUpperCase() | step2: transform --expression=payload+'!' | log" --name mainstream --deploy
taps can be created at the output of http
, step1
and step2
.
To create a stream that acts as a 'tap' on another stream requires to specify the source destination name
for the tap stream. The syntax for source destination name is:
`:<stream-name>.<label/app-name>`
To create a tap at the output of http
in the stream above, the source destination name is mainstream.http
To create a tap at the output of the first transform app in the stream above, the source destination name is mainstream.step1
The tap stream DSL looks like this:
stream create --definition ":mainstream.http > counter" --name tap_at_http --deploy stream create --definition ":mainstream.step1 > jdbc" --name tap_at_step1_transformer --deploy
Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as a destination name instead of an app name.
When a stream is comprised of multiple apps with the same name, they must be qualified with labels:
stream create --definition "http | firstLabel: transform --expression=payload.toUpperCase() | secondLabel: transform --expression=payload+'!' | log" --name myStreamWithLabels --deploy
One can connect to a specific destination name located in the broker (Rabbit, Kafka etc.,) either at the source
or at the sink
position.
The following stream has the destination name at the source
position:
stream create --definition ":myDestination > log" --name ingest_from_broker --deploy
This stream receives messages from the destination myDestination
located at the broker and connects it to the log
app.
The following stream has the destination name at the sink
position:
stream create --definition "http > :myDestination" --name ingest_to_broker --deploy
This stream sends the messages from the http
app to the destination myDestination
located at the broker.
From the above streams, notice that the http
and log
apps are interacting with each other via the broker (through the destination myDestination
) rather than having a pipe directly between http
and log
within a single stream.
It is also possible to connect two different destinations (source
and sink
positions) at the broker in a stream.
stream create --definition ":destination1 > :destination2" --name bridge_destinations --deploy
In the above stream, both the destinations (destination1
and destination2
) are located in the broker. The messages flow from the source destination to the sink destination via a bridge
app that connects them.
If directed graphs are needed instead of the simple linear streams described above, two features are relevant.
First, named destinations may be used as a way to combine the output from multiple streams or for multiple consumers to share the output from a single stream.
This can be done using the DSL syntax http > :mydestination
or :mydestination > log
.
Second, you may need to determine the output channel of a stream based on some information that is only known at runtime. In that case, a router may be used in the sink position of a stream definition. For more information, refer to the Router Sink starter’s README.
In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common properties to all the streaming applications that are launched by it.
This can be done by adding properties prefixed with spring.cloud.dataflow.applicationProperties.stream
when starting the server.
When doing so, the server will pass all the properties, without the prefix, to the instances it launches.
For example, all the launched applications can be configured to use a specific Kafka broker by launching the configuration server with the following options:
--spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.brokers=192.168.1.100:9092 --spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.zkNodes=192.168.1.100:2181
This will cause the properties stream.spring.cloud.stream.kafka.binder.brokers
and spring.cloud.stream.kafka.binder.zkNodes
to be passed to all the launched applications.
Note | |
---|---|
Properties configured using this mechanism have lower precedence than stream deployment properties.
They will be overridden if a property with the same key is specified at stream deployment time (e.g. |
This section goes into more detail about how you can work with Spring Cloud Tasks. It covers topics such as creating and running task applications.
If you’re just starting out with Spring Cloud Data Flow, you should probably read the Getting Started guide before diving into this section.
A task executes a process on demand. In this case a task is a
Spring Boot application that is annotated with
@EnableTask
. Hence a user launches a task that performs a certain process, and once
complete the task ends. An example of a task would be a boot application that exports
data from a JDBC repository to an HDFS instance. Tasks record the start time and the end
time as well as the boot exit code in a relational database. The task implementation is
based on the Spring Cloud Task project.
Before we dive deeper into the details of creating Tasks, we need to understand the typical lifecycle for tasks in the context of Spring Cloud Data Flow:
Register a Task App with the App Registry using the Spring Cloud Data Flow Shell
app register
command. You must provide a unique name and a URI that can be
resolved to the app artifact. For the type, specify "task". Here are a few examples:
dataflow:>app register --name task1 --type task --uri maven://com.example:mytask:1.0.2 dataflow:>app register --name task2 --type task --uri file:///Users/example/mytask-1.0.2.jar dataflow:>app register --name task3 --type task --uri http://example.com/mytask-1.0.2.jar
When providing a URI with the maven
scheme, the format should conform to the following:
maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>
If you would like to register multiple apps at one time, you can store them in a properties file
where the keys are formatted as <type>.<name>
and the values are the URIs. For example, this
would be a valid properties file:
task.foo=file:///tmp/foo.jar task.bar=file:///tmp/bar.jar
Then use the app import
command and provide the location of the properties file via --uri
:
app import --uri file:///tmp/task-apps.properties
You can also pass the --local
option (which is TRUE by default) to indicate whether the
properties file location should be resolved within the shell process itself. If the location should
be resolved from the Data Flow Server process, specify --local false
.
When using either app register
or app import
, if a task app is already registered with
the provided name, it will not be overridden by default. If you would like to override the
pre-existing task app, then include the --force
option.
Note | |
---|---|
In some cases the Resource is resolved on the server side, whereas in others the URI will be passed to a runtime container instance where it is resolved. Consult the specific documentation of each Data Flow Server for more detail. |
Create a Task Definition from a Task App by providing a definition name as well as
properties that apply to the task execution. Creating a task definition can be done via
the restful API or the shell. To create a task definition using the shell, use the
task create
command to create the task definition. For example:
dataflow:>task create mytask --definition "timestamp --format=\"yyyy\"" Created new task 'mytask'
A listing of the current task definitions can be obtained via the restful API or the
shell. To get the task definition list using the shell, use the task list
command.
An adhoc task can be launched via the restful API or via the shell. To launch an ad-hoc
task via the shell use the task launch
command. For Example:
dataflow:>task launch mytask Launched task 'mytask'
Once the task is launched the state of the task is stored in a relational DB. The state includes:
A user can check the status of their task executions via the restful API or by the shell.
To display the latest task executions via the shell use the task execution list
command.
To get a list of task executions for just one task definition, add --name
and
the task definition name, for example task execution list --name foo
. To retrieve full
details for a task execution use the task display
command with the id of the task execution
, for example task display --id 549
.
Destroying a Task Definition will remove the definition from the definition repository.
This can be done via the restful API or via the shell. To destroy a task via the shell
use the task destroy
command. For Example:
dataflow:>task destroy mytask Destroyed task 'mytask'
The task execution information for previously launched tasks for the definition will remain in the task repository.
Note: This will not stop any currently executing tasks for this definition, this just removes the definition.
Out of the box Spring Cloud Data Flow offers an embedded instance of the H2 database. The H2 is good for development purposes but is not recommended for production use.
To add a driver for the database that will store the Task Execution information, a dependency for the driver will need to be added to a maven pom file and the Spring Cloud Data Flow will need to be rebuilt. Since Spring Cloud Data Flow is comprised of an SPI for each environment it supports, please review the SPI’s documentation on which POM should be updated to add the dependency and how to build. This document will cover how to setup the dependency for local SPI.
dependencies
section add the dependency for the database driver required. In
the sample below postgresql has been chosen.<dependencies> ... <dependency> <groupId>org.postgresql</groupId> <artifactId>postgresql</artifactId> </dependency> ... </dependencies>
To configure the datasource Add the following properties to the dataflow-server.yml or via environment variables:
For example adding postgres would look something like this:
export spring_datasource_url=jdbc:postgresql://localhost:5432/mydb export spring_datasource_username=myuser export spring_datasource_password=mypass export spring_datasource_driver-class-name="org.postgresql.Driver"
spring: datasource: url: jdbc:postgresql://localhost:5432/mydb username: myuser password: mypass driver-class-name:org.postgresql.Driver
You can also tap into various task/batch events when the task is launched.
If the task is enabled to generate task and/or batch events (with the additional dependencies spring-cloud-task-stream
and spring-cloud-stream-binder-kafka
, in the case of Kafka as the binder), those events are published during the task lifecycle.
By default, the destination names for those published events on the broker (rabbit, kafka etc.,) are the event names themselves (for instance: task-events
, job-execution-events
etc.,).
dataflow:>task create myTask --definition “myBatchJob" dataflow:>task launch myTask dataflow:>stream create task-event-subscriber1 --definition ":task-events > log" --deploy
You can control the destination name for those events by specifying explicit names when launching the task such as:
dataflow:>task launch myTask --properties "spring.cloud.stream.bindings.task-events.destination=myTaskEvents" dataflow:>stream create task-event-subscriber2 --definition ":myTaskEvents > log" --deploy
The default Task/Batch event and destination names on the broker are enumerated below:
Table 25.1. Task/Batch Event Destinations
Event | Destination |
Task events |
|
Job Execution events |
|
Step Execution events |
|
Item Read events |
|
Item Process events |
|
Item Write events |
|
Skip events |
|
This section describe how to use the Dashboard of Spring Cloud Data Flow.
Spring Cloud Data Flow provides a browser-based GUI which currently has 6 sections:
Upon starting Spring Cloud Data Flow, the Dashboard is available at:
http://<host>:<port>/dashboard
For example: http://localhost:9393/dashboard
If you have enabled https, then it will be located at https://localhost:9393/dashboard
.
If you have enabled security, a login form is available at http://localhost:9393/dashboard/#/login
.
Note: The default Dashboard server port is 9393
The Apps section of the Dashboard lists all the available applications and provides the control to register/unregister them (if applicable). By clicking on the magnifying glass, you will get a listing of available definition properties.
The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with the list of all running applications. For each runtime app the state of the deployment and the number of deployed instances is shown. A list of the used deployment properties is available by clicking on the app id.
The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream definitions. There you have the option to deploy or undeploy those stream definitions. Additionally you can remove the definition by clicking on destroy.
The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the canvas application, offering a interactive graphical interface for creating data pipelines.
In this tab, you can:
Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring Flo wiki includes more detailed content on core Flo capabilities.
The Tasks section of the Dashboard currently has three tabs:
Apps encapsulate a unit of work into a reusable component. Within the Data Flow runtime environment Apps allow users to create definitions for Streams as well as Tasks. Consequently, the Apps tab within the Tasks section allows users to create Task definitions.
Note: You will also use this tab to create Batch Jobs.
On this screen you can perform the following actions:
On this screen you can create a new Task Definition. As a minimum you must provide a name for the new definition. You will also have the option to specify various properties that are used during the deployment of the app.
Note: Each parameter is only included if the Include checkbox is selected.
This page lists the Data Flow Task definitions and provides actions to launch or destroy those tasks.
Once the task definition is created, they can be launched through the Dashboard
as well. Navigate to the Definitions tab. Select the Task you want to launch by
pressing Launch
.
On the following screen, you can define one or more Task parameters by entering:
Task parameters are not typed.
The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job. As such each Job Execution has a back reference to the Task Execution Id (Task Id).
In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you can also request to stop it.
This page lists the Batch Job Executions and provides the option to restart or stop a specific job execution, provided the operation is available. Furthermore, you have the option to view the Job execution details.
The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying definition has been deleted, deleted will be shown.
The Job Execution Details screen also contains a list of the executed steps. You can further drill into the Step Execution Details by clicking onto the magnifying glass.
On the top of the page, you will see progress indicator the respective step, with the option to refresh the indicator. Furthermore, a link is provided to view the step execution history.
The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.
Important | |
---|---|
In case of exceptions, the Exit Description field will contain additional error information. Please be aware, though, that this field can only have a maximum of 2500 characters. Therefore, in case of long exception stacktraces, trimming of error messages may occur. In that case, please refer to the server log files for further details. |
On this screen, you can see a progress bar indicator in regards to the execution of the current step. Under the Step Execution History, you can also view various metrics associated with the selected step such as duration, read counts, write counts etc.
The Analytics section of the Dashboard provided data visualization capabilities for the various analytics applications available in Spring Cloud Data Flow:
For example, if you have created the springtweets
stream and the corresponding
counter in the Counter chapter, you can now easily create the corresponding
graph from within the Dashboard tab:
Metric Type
, select Counters
from the select boxStream
, select tweetcount
Visualization
, select the desired chart option, Bar Chart
Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of created dashboards or remove data visualizations.
To build the source you will need to install JDK 1.7.
The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable the tests for Redis you should run the server before bulding. See below for more information on how run Redis.
The main build command is
$ ./mvnw clean install
You can also add '-DskipTests' if you like, to avoid running the tests.
Note | |
---|---|
You can also install Maven (>=3.3.3) yourself and run the |
Note | |
---|---|
Be aware that you might need to increase the amount of memory
available to Maven by setting a |
The projects that require middleware generally include a
docker-compose.yml
, so consider using
Docker Compose to run the middeware servers
in Docker containers. See the README in the
scripts demo
repository for specific instructions about the common cases of mongo,
rabbit and redis.
There is a "full" profile that will generate documentation. You can build just the documentation by executing
$ ./mvnw clean package -DskipTests -P full -pl {project-artifactId} -am
If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and tools should also work without issue.
We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have m2eclipse installed it is available from the "eclipse marketplace".
Unfortunately m2e does not yet support Maven 3.3, so once the projects
are imported into Eclipse you will also need to tell m2eclipse to use
the .settings.xml
file for the projects. If you do not do this you
may see many different errors related to the POMs in the
projects. Open your Eclipse preferences, expand the Maven
preferences, and select User Settings. In the User Settings field
click Browse and navigate to the Spring Cloud project you imported
selecting the .settings.xml
file in that project. Click Apply and
then OK to save the preference changes.
Note | |
---|---|
Alternatively you can copy the repository settings from |
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard Github development process, using Github tracker for issues and merging pull requests into master. If you want to contribute even something trivial please do not hesitate, but follow the guidelines below.
Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement. Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but it does mean that we can accept your contributions, and you will get an author credit if we do. Active contributors might be asked to join the core team, and given the ability to merge pull requests.
None of these is essential for a pull request, but they will all help. They can also be added after the original pull request but before a merge.
eclipse-code-formatter.xml
file from the
Spring
Cloud Build project. If using IntelliJ, you can use the
Eclipse Code Formatter
Plugin to import the same file..java
files to have a simple Javadoc class comment with at least an
@author
tag identifying you, and preferably at least a paragraph on what the class is
for..java
files (copy from existing files
in the project)@author
to the .java files that you modify substantially (more
than cosmetic changes).Fixes gh-XXXX
at the end of the commit
message (where XXXX is the issue number).