This part of the reference documentation details the various components that comprise Spring for Apache Kafka. The main chapter covers the core classes to develop a Kafka application with Spring.
If you define a KafkaAdmin
bean in your application context, it can automatically add topics to the broker.
Simply add a NewTopic
@Bean
for each topic to the application context.
@Bean public KafkaAdmin admin() { Map<String, Object> configs = new HashMap<>(); configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, StringUtils.arrayToCommaDelimitedString(embeddedKafka().getBrokerAddresses())); return new KafkaAdmin(configs); } @Bean public NewTopic topic1() { return new NewTopic("foo", 10, (short) 2); } @Bean public NewTopic topic2() { return new NewTopic("bar", 10, (short) 2); }
By default, if the broker is not available, a message will be logged, but the context will continue to load.
You can programmatically invoke the admin’s initialize()
method to try again later.
If you wish this condition to be considered fatal, set the admin’s fatalIfBrokerNotAvailable
property to true
and the context will fail to initialize.
Note | |
---|---|
If the broker supports it (1.0.0 or higher), the admin will increase the number of partitions if it is found that an existing topic has fewer partitions than the |
For more advanced features, such as assigning partitions to replicas, you can use the AdminClient
directly:
@Autowired private KafkaAdmin admin; ... AdminClient client = AdminClient.create(admin.getConfig()); ... client.close();
The KafkaTemplate
wraps a producer and provides convenience methods to send data to kafka topics.
ListenableFuture<SendResult<K, V>> sendDefault(V data); ListenableFuture<SendResult<K, V>> sendDefault(K key, V data); ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, K key, V data); ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, Long timestamp, K key, V data); ListenableFuture<SendResult<K, V>> send(String topic, V data); ListenableFuture<SendResult<K, V>> send(String topic, K key, V data); ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, K key, V data); ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, Long timestamp, K key, V data); ListenableFuture<SendResult<K, V>> send(ProducerRecord<K, V> record); ListenableFuture<SendResult<K, V>> send(Message<?> message); Map<MetricName, ? extends Metric> metrics(); List<PartitionInfo> partitionsFor(String topic); <T> T execute(ProducerCallback<K, V, T> callback); // Flush the producer. void flush(); interface ProducerCallback<K, V, T> { T doInKafka(Producer<K, V> producer); }
The sendDefault
API requires that a default topic has been provided to the template.
The API which take in a timestamp
as a parameter will store this timestamp in the record.
The behavior of the user provided timestamp is stored is dependent on the timestamp type configured on the Kafka topic.
If the topic is configured to use CREATE_TIME
then the user specified timestamp will be recorded or generated if not specified.
If the topic is configured to use LOG_APPEND_TIME
then the user specified timestamp will be ignored and broker will add in the local broker time.
The metrics
and partitionsFor
methods simply delegate to the same methods on the underlying Producer
.
The execute
method provides direct access to the underlying Producer
.
To use the template, configure a producer factory and provide it in the template’s constructor:
@Bean public ProducerFactory<Integer, String> producerFactory() { return new DefaultKafkaProducerFactory<>(producerConfigs()); } @Bean public Map<String, Object> producerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class); // See https://kafka.apache.org/documentation/#producerconfigs for more properties return props; } @Bean public KafkaTemplate<Integer, String> kafkaTemplate() { return new KafkaTemplate<Integer, String>(producerFactory()); }
The template can also be configured using standard <bean/>
definitions.
Then, to use the template, simply invoke one of its methods.
When using the methods with a Message<?>
parameter, topic, partition and key information is provided in a message
header:
KafkaHeaders.TOPIC
KafkaHeaders.PARTITION_ID
KafkaHeaders.MESSAGE_KEY
KafkaHeaders.TIMESTAMP
with the message payload being the data.
Optionally, you can configure the KafkaTemplate
with a ProducerListener
to get an async callback with the
results of the send (success or failure) instead of waiting for the Future
to complete.
public interface ProducerListener<K, V> { void onSuccess(String topic, Integer partition, K key, V value, RecordMetadata recordMetadata); void onError(String topic, Integer partition, K key, V value, Exception exception); boolean isInterestedInSuccess(); }
By default, the template is configured with a LoggingProducerListener
which logs errors and does nothing when the
send is successful.
onSuccess
is only called if isInterestedInSuccess
returns true
.
For convenience, the abstract ProducerListenerAdapter
is provided in case you only want to implement one of the
methods.
It returns false
for isInterestedInSuccess
.
Notice that the send methods return a ListenableFuture<SendResult>
.
You can register a callback with the listener to receive the result of the send asynchronously.
ListenableFuture<SendResult<Integer, String>> future = template.send("foo"); future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() { @Override public void onSuccess(SendResult<Integer, String> result) { ... } @Override public void onFailure(Throwable ex) { ... } });
The SendResult
has two properties, a ProducerRecord
and RecordMetadata
; refer to the Kafka API documentation
for information about those objects.
If you wish to block the sending thread, to await the result, you can invoke the future’s get()
method.
You may wish to invoke flush()
before waiting or, for convenience, the template has a constructor with an autoFlush
parameter which will cause the template to flush()
on each send.
Note, however that flushing will likely significantly reduce performance.
Non Blocking (Async).
public void sendToKafka(final MyOutputData data) { final ProducerRecord<String, String> record = createRecord(data); ListenableFuture<SendResult<Integer, String>> future = template.send(record); future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() { @Override public void onSuccess(SendResult<Integer, String> result) { handleSuccess(data); } @Override public void onFailure(Throwable ex) { handleFailure(data, record, ex); } }); }
Blocking (Sync).
public void sendToKafka(final MyOutputData data) { final ProducerRecord<String, String> record = createRecord(data); try { template.send(record).get(10, TimeUnit.SECONDS); handleSuccess(data); } catch (ExecutionException e) { handleFailure(data, record, e.getCause()); } catch (TimeoutException | InterruptedException e) { handleFailure(data, record, e); } }
The 0.11.0.0 client library added support for transactions. Spring for Apache Kafka adds support in several ways.
KafkaTransactionManager
- used with normal Spring transaction support (@Transactional
, TransactionTemplate
etc).
KafkaMessageListenerContainer
KafkaTemplate
Transactions are enabled by providing the DefaultKafkaProducerFactory
with a transactionIdPrefix
.
In that case, instead of managing a single shared Producer
, the factory maintains a cache of transactional producers.
When the user close()
s a producer, it is returned to the cache for reuse instead of actually being closed.
The transactional.id
property of each producer is transactionIdPrefix
+ n
, where n
starts with 0
and is incremented for each new producer, unless the transaction is started by a listener container with a record-based listener.
In that case, the transactional.id
is <transactionIdPrefix>.<group.id>.<topic>.<partition>
; this is to properly support fencing zombies as described here.
This new behavior was added in versions 1.3.7, 2.0.6, 2.1.10, and 2.2.0.
If you wish to revert to the previous behavior, set the producerPerConsumerPartition
property on the DefaultKafkaProducerFactory
to false
.
Note | |
---|---|
While transactions are supported with batch listeners, zombie fencing cannot be supported because a batch may contain records from multiple topics/partitions. |
The KafkaTransactionManager
is an implementation of Spring Framework’s PlatformTransactionManager
; it is provided with a reference to the producer factory in its constructor.
If you provide a custom producer factory, it must support transactions - see ProducerFactory.transactionCapable()
.
You can use the KafkaTransactionManager
with normal Spring transaction support (@Transactional
, TransactionTemplate
etc).
If a transaction is active, any KafkaTemplate
operations performed within the scope of the transaction will use the transaction’s Producer
.
The manager will commit or rollback the transaction depending on success or failure.
The KafkaTemplate
must be configured to use the same ProducerFactory
as the transaction manager.
You can provide a listener container with a KafkaAwareTransactionManager
instance; when so configured, the container will start a transaction before invoking the listener.
Any KafkaTemplate
operations performed by the listener will participate in the transaction.
If the listener successfully processes the record (or records when using a BatchMessageListener
), the container will send the offset(s) to the transaction using producer.sendOffsetsToTransaction()
), before the transaction manager commits the transaction.
If the listener throws an exception, the transaction is rolled back and the consumer is repositioned so that the rolled-back record(s) will be retrieved on the next poll.
See the section called “After Rollback Processor” for more information and for handling records that repeatedly fail.
If you need to synchronize a Kafka transaction with some other transaction; simply configure the listener container with the appropriate transaction manager (one that supports synchronization, such as the DataSourceTransactionManager
).
Any operations performed on a transactional KafkaTemplate
from the listener will participate in a single transaction.
The Kafka transaction will be committed (or rolled back) immediately after the controlling transaction.
Before exiting the listener, you should invoke one of the template’s sendOffsetsToTransaction
methods (unless you use a ChainedKafkaTransactionManager
- see below).
For convenience, the listener container binds its consumer group id to the thread so, generally, you can use the first method:
void sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets); void sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets, String consumerGroupId);
For example:
@Bean KafkaMessageListenerContainer container(ConsumerFactory<String, String> cf, final KafkaTemplate template) { ContainerProperties props = new ContainerProperties("foo"); props.setGroupId("group"); props.setTransactionManager(new SomeOtherTransactionManager()); ... props.setMessageListener((MessageListener<String, String>) m -> { template.send("foo", "bar"); template.send("baz", "qux"); template.sendOffsetsToTransaction( Collections.singletonMap(new TopicPartition(m.topic(), m.partition()), new OffsetAndMetadata(m.offset() + 1))); }); return new KafkaMessageListenerContainer<>(cf, props); }
Note | |
---|---|
The offset to be committed is one greater than the offset of the record(s) processed by the listener. |
Important | |
---|---|
This should only be called when using transaction synchronization.
When a listener container is configured to use a |
The ChainedKafkaTransactionManager
was introduced in version 2.1.3.
This is a subclass of ChainedTransactionManager
that can have exactly one KafkaTransactionManager
.
Since it is a KafkaAwareTransactionManager
, the container can send the offsets to the transaction in the same way as when the container is configured with a simple KafkaTransactionManager
.
This provides another mechanism for synchronizing transactions without having to send the offsets to the transaction in the listener code.
Chain your transaction managers in the desired order and provide the ChainedTransactionManager
in the ContainerProperties
.
You can use the KafkaTemplate
to execute a series of operations within a local transaction.
boolean result = template.executeInTransaction(t -> { t.sendDefault("foo", "bar"); t.sendDefault("baz", "qux"); return true; });
The argument in the callback is the template itself (this
).
If the callback exits normally, the transaction is committed; if an exception is thrown, the transaction is rolled-back.
Note | |
---|---|
If there is a |
Version 2.1.3 introduced a subclass of KafkaTemplate
to provide request/reply semantics; the class is named ReplyingKafkaTemplate
and has one method (in addition to those in the superclass):
RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record);
The result is a ListenableFuture
that will asynchronously be populated with the result (or an exception, for a timeout).
The result also has a property sendFuture
which is the result of calling KafkaTemplate.send()
; you can use this future to determine the result of the send operation.
The following Spring Boot application is an example of how to use the feature:
@SpringBootApplication public class KRequestingApplication { public static void main(String[] args) { SpringApplication.run(KRequestingApplication.class, args).close(); } @Bean public ApplicationRunner runner(ReplyingKafkaTemplate<String, String, String> template) { return args -> { ProducerRecord<String, String> record = new ProducerRecord<>("kRequests", "foo"); RequestReplyFuture<String, String, String> replyFuture = template.sendAndReceive(record); SendResult<String, String> sendResult = replyFuture.getSendFuture().get(); System.out.println("Sent ok: " + sendResult.getRecordMetadata()); ConsumerRecord<String, String> consumerRecord = replyFuture.get(); System.out.println("Return value: " + consumerRecord.value()); }; } @Bean public ReplyingKafkaTemplate<String, String, String> kafkaTemplate( ProducerFactory<String, String> pf, KafkaMessageListenerContainer<String, String> replyContainer) { return new ReplyingKafkaTemplate<>(pf, replyContainer); } @Bean public KafkaMessageListenerContainer<String, String> replyContainer( ConsumerFactory<String, String> cf) { ContainerProperties containerProperties = new ContainerProperties("kReplies"); return new KafkaMessageListenerContainer<>(cf, containerProperties); } @Bean public NewTopic kRequests() { return new NewTopic("kRequests", 10, (short) 2); } @Bean public NewTopic kReplies() { return new NewTopic("kReplies", 10, (short) 2); } }
The template sets a header KafkaHeaders.CORRELATION_ID
which must be echoed back by the server side.
In this case, simple @KafkaListener
application responds:
@SpringBootApplication public class KReplyingApplication { public static void main(String[] args) { SpringApplication.run(KReplyingApplication.class, args); } @KafkaListener(id="server", topics = "kRequests") @SendTo // use default replyTo expression public String listen(String in) { System.out.println("Server received: " + in); return in.toUpperCase(); } @Bean public NewTopic kRequests() { return new NewTopic("kRequests", 10, (short) 2); } @Bean // not required if Jackson is on the classpath public MessagingMessageConverter simpleMapperConverter() { MessagingMessageConverter messagingMessageConverter = new MessagingMessageConverter(); messagingMessageConverter.setHeaderMapper(new SimpleKafkaHeaderMapper()); return messagingMessageConverter; } }
The @KafkaListener
infrastructure echoes the correlation id and determines the reply topic.
See the section called “Forwarding Listener Results using @SendTo” for more information about sending replies; the template uses the default header KafKaHeaders.REPLY_TOPIC
to indicate which topic the reply goes to.
Starting with version 2.2, the template will attempt to detect the reply topic/partition from the configured reply container.
If the container is configured to listen to a single topic or a single TopicPartitionInitialOffset
, it will be used to set the reply headers.
If the container is configured otherwise, the user must set up the reply header(s); in this case, an INFO log is written during initialization.
record.headers().add(new RecordHeader(KafkaHeaders.REPLY_TOPIC, "kReplies".getBytes()));
When configuring with a single reply TopicPartitionInitialOffset
, you can use the same reply topic for multiple templates, as long as each instance listens on a different partition.
When configuring with a single reply topic, each instance must use a different group.id
- in this case, all instances will receive each reply, but only the instance that sent the request will find the correlation id.
This may be useful for auto-scaling, but with the overhead of additional network traffic and the small cost of discarding each unwanted reply.
When using this setting, it is recommended that you set the template’s sharedReplyTopic
to true, which will reduce the logging level of unexpected replies to DEBUG instead of the default ERROR.
Important | |
---|---|
If you have multiple client instances, and you don’t configure them as discussed in the paragraphe above, each instance will need a dedicated reply topic.
An alternative is to set the |
Note | |
---|---|
The |
Messages can be received by configuring a MessageListenerContainer
and providing a Message Listener, or by
using the @KafkaListener
annotation.
When using a Message Listener Container you must provide a listener to receive data. There are currently eight supported interfaces for message listeners:
public interface MessageListener<K, V> { void onMessage(ConsumerRecord<K, V> data); } public interface AcknowledgingMessageListener<K, V> { void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment); } public interface ConsumerAwareMessageListener<K, V> extends MessageListener<K, V> { void onMessage(ConsumerRecord<K, V> data, Consumer<?, ?> consumer); } public interface AcknowledgingConsumerAwareMessageListener<K, V> extends MessageListener<K, V> { void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment, Consumer<?, ?> consumer); } public interface BatchMessageListener<K, V> { void onMessage(List<ConsumerRecord<K, V>> data); } public interface BatchAcknowledgingMessageListener<K, V> { void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment); } public interface BatchConsumerAwareMessageListener<K, V> extends BatchMessageListener<K, V> { void onMessage(List<ConsumerRecord<K, V>> data, Consumer<?, ?> consumer); } public interface BatchAcknowledgingConsumerAwareMessageListener<K, V> extends BatchMessageListener<K, V> { void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment, Consumer<?, ?> consumer); }
Use this for processing individual | |
Use this for processing individual | |
Use this for processing individual | |
Use this for processing individual | |
Use this for processing all | |
Use this for processing all | |
Use this for processing all | |
Use this for processing all |
Important | |
---|---|
The |
Two MessageListenerContainer
implementations are provided:
KafkaMessageListenerContainer
ConcurrentMessageListenerContainer
The KafkaMessageListenerContainer
receives all message from all topics/partitions on a single thread.
The ConcurrentMessageListenerContainer
delegates to 1 or more KafkaMessageListenerContainer
s to provide
multi-threaded consumption.
The following constructors are available.
public KafkaMessageListenerContainer(ConsumerFactory<K, V> consumerFactory, ContainerProperties containerProperties) public KafkaMessageListenerContainer(ConsumerFactory<K, V> consumerFactory, ContainerProperties containerProperties, TopicPartitionInitialOffset... topicPartitions)
Each takes a ConsumerFactory
and information about topics and partitions, as well as other configuration in a ContainerProperties
object.
The second constructor is used by the ConcurrentMessageListenerContainer
(see below) to distribute TopicPartitionInitialOffset
across the consumer instances.
ContainerProperties
has the following constructors:
public ContainerProperties(TopicPartitionInitialOffset... topicPartitions) public ContainerProperties(String... topics) public ContainerProperties(Pattern topicPattern)
The first takes an array of TopicPartitionInitialOffset
arguments to explicitly instruct the container which partitions to use
(using the consumer assign()
method), and with an optional initial offset: a positive value is an absolute offset by default; a negative value is relative to the current last offset within a partition by default.
A constructor for TopicPartitionInitialOffset
is provided that takes an additional boolean
argument.
If this is true
, the initial offsets (positive or negative) are relative to the current position for this consumer.
The offsets are applied when the container is started.
The second takes an array of topics and Kafka allocates the partitions based on the group.id
property - distributing
partitions across the group.
The third uses a regex Pattern
to select the topics.
To assign a MessageListener
to a container, use the ContainerProps.setMessageListener
method when creating the Container:
ContainerProperties containerProps = new ContainerProperties("topic1", "topic2"); containerProps.setMessageListener(new MessageListener<Integer, String>() { ... }); DefaultKafkaConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory<Integer, String>(consumerProps()); KafkaMessageListenerContainer<Integer, String> container = new KafkaMessageListenerContainer<>(cf, containerProps); return container;
Refer to the JavaDocs for ContainerProperties
for more information about the various properties that can be set.
Since version 2.1.1, a new property logContainerConfig
is available; when true, and INFO logging is enabled, each listener container will write a log message summarizing its configuration properties.
By default, logging of topic offset commits is performed with the DEBUG logging level.
Starting with version 2.1.2, there is a new property in ContainerProperties
called commitLogLevel
which allows you to specify the log level for these messages.
For example, to change the log level to INFO, use containerProperties.setCommitLogLevel(LogIfLevelEnabled.Level.INFO);
.
Starting with version 2.2, a new container property missingTopicsFatal
has been added (default true
).
This prevents the container from starting if any of the configured topics are not present on the broker; it does not apply if the container is configured to listen to a topic pattern (regex).
Previously, the container threads looped within the consumer.poll()
method waiting for the topic to appear, while logging many messages; aside from the logs, there was no indication that there was a problem.
To restore the previous behavior, set the property to false
.
The single constructor is similar to the first KafkaListenerContainer
constructor:
public ConcurrentMessageListenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)
It also has a property concurrency
, e.g. container.setConcurrency(3)
will create 3 KafkaMessageListenerContainer
s.
For the first constructor, kafka will distribute the partitions across the consumers using its group management capabilities.
Important | |
---|---|
When listening to multiple topics, the default partition distribution may not be what you expect.
For example, if you have 3 topics with 5 partitions each and you want to use When using Spring Boot: spring.kafka.consumer.properties.partition.assignment.strategy=\ org.apache.kafka.clients.consumer.RoundRobinAssignor |
For the second constructor, the ConcurrentMessageListenerContainer
distributes the TopicPartition
s across the
delegate KafkaMessageListenerContainer
s.
If, say, 6 TopicPartition
s are provided and the concurrency
is 3; each container will get 2 partitions.
For 5 TopicPartition
s, 2 containers will get 2 partitions and the third will get 1.
If the concurrency
is greater than the number of TopicPartitions
, the concurrency
will be adjusted down such that
each container will get one partition.
Note | |
---|---|
The |
Starting with version 1.3, the MessageListenerContainer
provides an access to the metrics of the underlying KafkaConsumer
.
In case of ConcurrentMessageListenerContainer
the metrics()
method returns the metrics for all the target KafkaMessageListenerContainer
instances.
The metrics are grouped into the Map<MetricName, ? extends Metric>
by the client-id
provided for the underlying KafkaConsumer
.
Several options are provided for committing offsets.
If the enable.auto.commit
consumer property is true, kafka will auto-commit the offsets according to its
configuration.
If it is false, the containers support the following AckMode
s.
The consumer poll()
method will return one or more ConsumerRecords
; the MessageListener
is called for each record;
the following describes the action taken by the container for each AckMode
:
poll()
have been processed.
poll()
have been processed as long as the ackTime
since the last commit has been exceeded.
poll()
have been processed as long as ackCount
records have been received since the last commit.
acknowledge()
the Acknowledgment
;
after which, the same semantics as BATCH
are applied.
Acknowledgment.acknowledge()
method is called by the
listener.
Note | |
---|---|
|
The commitSync()
or commitAsync()
method on the consumer is used, depending on the syncCommits
container property.
The Acknowledgment
has this method:
public interface Acknowledgment { void acknowledge(); }
This gives the listener control over when offsets are committed.
The listener containers implement SmartLifecycle
and autoStartup
is true
by default; the containers are started in a late phase (Integer.MAX-VALUE - 100
).
Other components that implement SmartLifecycle
, that handle data from listeners, should be started in an earlier phase.
The - 100
leaves room for later phases to enable components to be auto-started after the containers.
The @KafkaListener
annotation provides a mechanism for simple POJO listeners:
public class Listener { @KafkaListener(id = "foo", topics = "myTopic", clientIdPrefix = "myClientId") public void listen(String data) { ... } }
This mechanism requires an @EnableKafka
annotation on one of your @Configuration
classes and a listener container factory, which is used to configure the underlying
ConcurrentMessageListenerContainer
: by default, a bean with name kafkaListenerContainerFactory
is expected.
@Configuration @EnableKafka public class KafkaConfig { @Bean KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.setConcurrency(3); factory.getContainerProperties().setPollTimeout(3000); return factory; } @Bean public ConsumerFactory<Integer, String> consumerFactory() { return new DefaultKafkaConsumerFactory<>(consumerConfigs()); } @Bean public Map<String, Object> consumerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka.getBrokersAsString()); ... return props; } }
Notice that to set container properties, you must use the getContainerProperties()
method on the factory.
It is used as a template for the actual properties injected into the container.
Starting with version 2.1.1, it is now possible to set the client.id
property for consumers created by the annotation.
The clientIdPrefix
is suffixed with -n
where n
is an integer representing the container number when using concurrency.
Starting with version 2.2, you can now override the container factory’s concurrency
and autoStartup
properties using properties on the annotation itself.
The properties can be simple values, property placeholders or SpEL expressions.
@KafkaListener(id = "myListener", topics = "myTopic", autoStartup = "${listen.auto.start:true}", concurrency = "${listen.concurrency:3}") public void listen(String data) { ... }
You can also configure POJO listeners with explicit topics and partitions (and, optionally, their initial offsets):
@KafkaListener(id = "bar", topicPartitions = { @TopicPartition(topic = "topic1", partitions = { "0", "1" }), @TopicPartition(topic = "topic2", partitions = "0", partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100")) }) public void listen(ConsumerRecord<?, ?> record) { ... }
Each partition can be specified in the partitions
or partitionOffsets
attribute, but not both.
When using manual AckMode
, the listener can also be provided with the Acknowledgment
; this example also shows
how to use a different container factory.
@KafkaListener(id = "baz", topics = "myTopic", containerFactory = "kafkaManualAckListenerContainerFactory") public void listen(String data, Acknowledgment ack) { ... ack.acknowledge(); }
Finally, metadata about the message is available from message headers, the following header names can be used for retrieving the headers of the message:
KafkaHeaders.RECEIVED_MESSAGE_KEY
KafkaHeaders.RECEIVED_TOPIC
KafkaHeaders.RECEIVED_PARTITION_ID
KafkaHeaders.RECEIVED_TIMESTAMP
KafkaHeaders.TIMESTAMP_TYPE
@KafkaListener(id = "qux", topicPattern = "myTopic1") public void listen(@Payload String foo, @Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) Integer key, @Header(KafkaHeaders.RECEIVED_PARTITION_ID) int partition, @Header(KafkaHeaders.RECEIVED_TOPIC) String topic, @Header(KafkaHeaders.RECEIVED_TIMESTAMP) long ts ) { ... }
Starting with version 1.1, @KafkaListener
methods can be configured to receive the entire batch of consumer records received from the consumer poll.
To configure the listener container factory to create batch listeners, set the batchListener
property:
@Bean public KafkaListenerContainerFactory<?> batchFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.setBatchListener(true); // <<<<<<<<<<<<<<<<<<<<<<<<< return factory; }
To receive a simple list of payloads:
@KafkaListener(id = "list", topics = "myTopic", containerFactory = "batchFactory") public void listen(List<String> list) { ... }
The topic, partition, offset etc are available in headers which parallel the payloads:
@KafkaListener(id = "list", topics = "myTopic", containerFactory = "batchFactory") public void listen(List<String> list, @Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) List<Integer> keys, @Header(KafkaHeaders.RECEIVED_PARTITION_ID) List<Integer> partitions, @Header(KafkaHeaders.RECEIVED_TOPIC) List<String> topics, @Header(KafkaHeaders.OFFSET) List<Long> offsets) { ... }
Alternatively you can receive a List of Message<?>
objects with each offset, etc in each message, but it must be the only parameter (aside from optional Acknowledgment
, when using manual commits, and/or Consumer<?, ?>
parameters) defined on the method:
@KafkaListener(id = "listMsg", topics = "myTopic", containerFactory = "batchFactory") public void listen14(List<Message<?>> list) { ... } @KafkaListener(id = "listMsgAck", topics = "myTopic", containerFactory = "batchFactory") public void listen15(List<Message<?>> list, Acknowledgment ack) { ... } @KafkaListener(id = "listMsgAckConsumer", topics = "myTopic", containerFactory = "batchFactory") public void listen16(List<Message<?>> list, Acknowledgment ack, Consumer<?, ?> consumer) { ... }
No conversion is performed on the payloads in this case.
If the BatchMessagingMessageConverter
is configured with a RecordMessageConverter
, you can also add a generic type to the Message
parameter and the payloads will be converted.
See the section called “Payload Conversion with Batch Listeners” for more information.
You can also receive a list of ConsumerRecord<?, ?>
objects but it must be the only parameter (aside from optional Acknowledgment
, when using manual commits, and/or Consumer<?, ?>
parameters) defined on the method:
@KafkaListener(id = "listCRs", topics = "myTopic", containerFactory = "batchFactory") public void listen(List<ConsumerRecord<Integer, String>> list) { ... } @KafkaListener(id = "listCRsAck", topics = "myTopic", containerFactory = "batchFactory") public void listen(List<ConsumerRecord<Integer, String>> list, Acknowledgment ack) { ... }
Starting with version 2.2, the listener can receive the complete ConsumerRecords<?, ?>
object returned by the poll()
method, allowing the listener to access additional methods such as partitions()
which returns the TopicPartition
s in the list and records(TopicPartition)
to get selective records.
Again, this must be the only parameter (aside from optional Acknowledgment
, when using manual commits, and/or Consumer<?, ?>
parameters) on the method:
@KafkaListener(id = "pollResults", topics = "myTopic", containerFactory = "batchFactory") public void pollResults(ConsumerRecords<?, ?> records) { ... }
Important | |
---|---|
If the container factory has a |
Starting with version 2.0, the id
attribute (if present) is used as the Kafka group.id
property, overriding the configured property in the consumer factory, if present.
You can also set groupId
explicitly, or set idIsGroup
to false, to restore the previous behavior of using the consumer factory group.id
.
You can use property placeholders or SpEL expressions within annotation properties, for example…
@KafkaListener(topics = "${some.property}") @KafkaListener(topics = "#{someBean.someProperty}", groupId = "#{someBean.someProperty}.group")
Starting with version 2.1.2, the SpEL expressions support a special token __listener
which is a pseudo bean name which represents the current bean instance within which this annotation exists.
For example, given…
@Bean public Listener listener1() { return new Listener("topic1"); } @Bean public Listener listener2() { return new Listener("topic2"); }
…we can use…
public class Listener { private final String topic; public Listener(String topic) { this.topic = topic; } @KafkaListener(topics = "#{__listener.topic}", groupId = "#{__listener.topic}.group") public void listen(...) { ... } public String getTopic() { return this.topic; } }
If, in the unlikely event that you have an actual bean called __listener
, you can change the expression token using the beanRef
attribute…
@KafkaListener(beanRef = "__x", topics = "#{__x.topic}", groupId = "#{__x.topic}.group")
Listener containers currently use two task executors, one to invoke the consumer and another which will be used to invoke the listener, when the kafka consumer property enable.auto.commit
is false
.
You can provide custom executors by setting the consumerExecutor
and listenerExecutor
properties of the container’s ContainerProperties
.
When using pooled executors, be sure that enough threads are available to handle the concurrency across all the containers in which they are used.
When using the ConcurrentMessageListenerContainer
, a thread from each is used for each consumer (concurrency
).
If you don’t provide a consumer executor, a SimpleAsyncTaskExecutor
is used; this executor creates threads with names <beanName>-C-1
(consumer thread).
For the ConcurrentMessageListenerContainer
, the <beanName>
part of the thread name becomes <beanName>-m
, where m
represents the consumer instance.
n
increments each time the container is started.
So, with a bean name of container
, threads in this container will be named container-0-C-1
, container-1-C-1
etc., after the container is started the first time; container-0-C-2
, container-1-C-2
etc., after a stop/start.
Starting with version 2.2, you can now use @KafkaListener
as a meta annotation.
For example:
@Target(ElementType.METHOD) @Retention(RetentionPolicy.RUNTIME) @KafkaListener public @interface MyThreeConsumersListener { @AliasFor(annotation = KafkaListener.class, attribute = "id") String id(); @AliasFor(annotation = KafkaListener.class, attribute = "topics") String[] topics(); @AliasFor(annotation = KafkaListener.class, attribute = "concurrency") String concurrency() default "3"; }
You must alias at least one of topics
, topicPattern
, or topicPartitions
(and, usually, id
or groupId
unless you have specified a group.id
in the consumer factory configuration).
@MyThreeConsumersListener(id = "my.group", topics = "my.topic") public void listen1(String in) { ... }
When using @KafkaListener
at the class-level, you specify @KafkaHandler
at the method level.
When messages are delivered, the converted message payload type is used to determine which method to call.
@KafkaListener(id = "multi", topics = "myTopic") static class MultiListenerBean { @KafkaHandler public void listen(String foo) { ... } @KafkaHandler public void listen(Integer bar) { ... } @KafkaHandler(isDefault = true`) public void listenDefault(Object object) { ... } }
Starting with version 2.1.3, a @KafkaHandler
method can be designated as the default method which is invoked if there is no match on other methods.
At most one method can be so designated.
When using @KafkaHandler
methods, the payload must have already been converted to the domain object (so the match can be performed).
Use a custom deserializer, the JsonDeserializer
or the (String|Bytes)JsonMessageConverter
with its TypePrecedence
set to TYPE_ID
- see Section 4.1.5, “Serialization/Deserialization and Message Conversion” for more information.
The listener containers created for @KafkaListener
annotations are not beans in the application context.
Instead, they are registered with an infrastructure bean of type KafkaListenerEndpointRegistry
.
This bean is automatically declared by the framework and manages the containers' lifecycles; it will auto-start any containers that have autoStartup
set to true
.
All containers created by all container factories must be in the same phase
- see the section called “Listener Container Auto Startup” for more information.
You can manage the lifecycle programmatically using the registry; starting/stopping the registry will start/stop all the registered containers.
Or, you can get a reference to an individual container using its id
attribute; you can set autoStartup
on the annotation, which will override the default setting configured into the container factory.
Simply get a reference to the bean from the application context, such as auto wiring, to manage its registered containers:
@KafkaListener(id = "myContainer", topics = "myTopic", autoStartup = "false") public void listen(...) { ... }
@Autowired private KafkaListenerEndpointRegistry registry; ... this.registry.getListenerContainer("myContainer").start(); ...
Starting with version 2.2, it is now easier to add a Validator
to validate @KafkaListener
@Payload
arguments.
Previously, you had to configure a custom DefaultMessageHandlerMethodFactory
and add it to the registrar.
Now, you can simply add the validator to the registrar itself.
@Configuration @EnableKafka public class Config implements KafkaListenerConfigurer { ... @Override public void configureKafkaListeners(KafkaListenerEndpointRegistrar registrar) { registrar.setValidator(new MyValidator()); } }
Note | |
---|---|
When using Spring Boot with the validation starter, a |
@Configuration @EnableKafka public class Config implements KafkaListenerConfigurer { @Autowired private LocalValidatorFactoryBean validator; ... @Override public void configureKafkaListeners(KafkaListenerEndpointRegistrar registrar) { registrar.setValidator(this.validator); } }
To validate:
public static class ValidatedClass { @Max(10) private int bar; public int getBar() { return this.bar; } public void setBar(int bar) { this.bar = bar; } }
and
@KafkaListener(id="validated", topics = "annotated35", errorHandler = "validationErrorHandler", containerFactory = "kafkaJsonListenerContainerFactory") public void validatedListener(@Payload @Valid ValidatedClass val) { ... } @Bean public KafkaListenerErrorHandler validationErrorHandler() { return (m, e) -> { ... }; }
ContainerProperties
has a property consumerRebalanceListener
which takes an implementation of the Kafka client’s ConsumerRebalanceListener
interface.
If this property is not provided, the container will configure a simple logging listener that logs rebalance events under the INFO
level.
The framework also adds a sub-interface ConsumerAwareRebalanceListener
:
public interface ConsumerAwareRebalanceListener extends ConsumerRebalanceListener { void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer, Collection<TopicPartition> partitions); void onPartitionsRevokedAfterCommit(Consumer<?, ?> consumer, Collection<TopicPartition> partitions); void onPartitionsAssigned(Consumer<?, ?> consumer, Collection<TopicPartition> partitions); }
Notice that there are two callbacks when partitions are revoked: the first is called immediately; the second is called after any pending offsets are committed. This is useful if you wish to maintain offsets in some external repository; for example:
containerProperties.setConsumerRebalanceListener(new ConsumerAwareRebalanceListener() { @Override public void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer, Collection<TopicPartition> partitions) { // acknowledge any pending Acknowledgments (if using manual acks) } @Override public void onPartitionsRevokedAfterCommit(Consumer<?, ?> consumer, Collection<TopicPartition> partitions) { // ... store(consumer.position(partition)); // ... } @Override public void onPartitionsAssigned(Collection<TopicPartition> partitions) { // ... consumer.seek(partition, offsetTracker.getOffset() + 1); // ... } });
Starting with version 2.0, if you also annotate a @KafkaListener
with a @SendTo
annotation and the method invocation returns a result, the result will be forwarded to the topic specified by the @SendTo
.
The @SendTo
value can have several forms:
@SendTo("someTopic")
routes to the literal topic
@SendTo("#{someExpression}")
routes to the topic determined by evaluating the expression once during application context initialization.
@SendTo("!{someExpression}")
routes to the topic determined by evaluating the expression at runtime.
The #root
object for the evaluation has 3 properties:
ConsumerRecord
(or ConsumerRecords
object for a batch listener))
org.springframework.messaging.Message<?>
converted from the request
.
@SendTo
(no properties) - this is treated as !{source.headers['kafka_replyTopic']}
(since version 2.1.3).
The result of the expression evaluation must be a String
representing the topic name.
@KafkaListener(topics = "annotated21") @SendTo("!{request.value()}") // runtime SpEL public String replyingListener(String in) { ... } @KafkaListener(topics = "annotated22") @SendTo("#{myBean.replyTopic}") // config time SpEL public Collection<String> replyingBatchListener(List<String> in) { ... } @KafkaListener(topics = "annotated23", errorHandler = "replyErrorHandler") @SendTo("annotated23reply") // static reply topic definition public String replyingListenerWithErrorHandler(String in) { ... } ... @KafkaListener(topics = "annotated25") @SendTo("annotated25reply1") public class MultiListenerSendTo { @KafkaHandler public String foo(String in) { ... } @KafkaHandler @SendTo("!{'annotated25reply2'}") public String bar(@Payload(required = false) KafkaNull nul, @Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) int key) { ... } }
Starting with version 2.2, you can add a ReplyHeadersConfigurer
to the listener container factory.
This is consulted to determine which headers you want to set in the reply message.
@Bean public ConcurrentKafkaListenerContainerFactory<Integer, String> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(cf()); factory.setReplyTemplate(template()); factory.setReplyHeadersConfigurer((k, v) -> k.equals("baz")); return factory; }
You can also add more headers if you wish
@Bean public ConcurrentKafkaListenerContainerFactory<Integer, String> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(cf()); factory.setReplyTemplate(template()); factory.setReplyHeadersConfigurer(new ReplyHeadersConfigurer() { @Override public boolean shouldCopy(String headerName, Object headerValue) { return false; } @Override public Map<String, Object> additionalHeaders() { return Collections.singletonMap("qux", "fiz"); } }); return factory; }
When using @SendTo
, the ConcurrentKafkaListenerContainerFactory
must be configured with a KafkaTemplate
in its replyTemplate
property, to perform the send.
NOTE: unless you are using request/reply semantics only the simple send(topic, value)
method is used, so you may wish to create a subclass to generate the partition and/or key:
@Bean public KafkaTemplate<String, String> myReplyingTemplate() { return new KafkaTemplate<Integer, String>(producerFactory()) { @Override public ListenableFuture<SendResult<String, String>> send(String topic, String data) { return super.send(topic, partitionForData(data), keyForData(data), data); } ... }; }
Important | |
---|---|
If the listener method returns |
@KafkaListener(id = "messageReturned", topics = "someTopic") public Message<?> listen(String in, @Header(KafkaHeaders.REPLY_TOPIC) byte[] replyTo, @Header(KafkaHeaders.CORRELATION_ID) byte[] correlation) { return MessageBuilder.withPayload(in.toUpperCase()) .setHeader(KafkaHeaders.TOPIC, replyTo) .setHeader(KafkaHeaders.MESSAGE_KEY, 42) .setHeader(KafkaHeaders.CORRELATION_ID, correlation) .setHeader("someOtherHeader", "someValue") .build(); }
When using request/reply semantics, the target partition can be requested by the sender.
Note | |
---|---|
You can annotate a |
@KafkaListener(id = "voidListenerWithReplyingErrorHandler", topics = "someTopic", errorHandler = "voidSendToErrorHandler") @SendTo("failures") public void voidListenerWithReplyingErrorHandler(String in) { throw new RuntimeException("fail"); } @Bean public KafkaListenerErrorHandler voidSendToErrorHandler() { return (m, e) -> { return ... // some information about the failure and input data }; }
See Section 4.1.8, “Handling Exceptions” for more information.
In certain scenarios, such as rebalancing, a message may be redelivered that has already been processed. The framework cannot know whether such a message has been processed or not, that is an application-level function. This is known as the Idempotent Receiver pattern and Spring Integration provides an implementation thereof.
The Spring for Apache Kafka project also provides some assistance by means of the FilteringMessageListenerAdapter
class, which can wrap your MessageListener
.
This class takes an implementation of RecordFilterStrategy
where you implement the filter
method to signal
that a message is a duplicate and should be discarded. This has an additional property ackDiscarded
which indicates
whether the adapter should acknowledge the discarded record; it is false
by default.
When using @KafkaListener
, set the RecordFilterStrategy
(and optionally ackDiscarded
) on the container factory and the listener will be wrapped in the appropriate filtering adapter.
In addition, a FilteringBatchMessageListenerAdapter
is provided, for when using a batch message listener.
If your listener throws an exception, the default behavior is to invoke the ErrorHandler
, if configured, or logged otherwise.
Note | |
---|---|
Two error handler interfaces are provided |
To retry deliveries, a convenient listener adapter RetryingMessageListenerAdapter
is provided.
It can be configured with a RetryTemplate
and RecoveryCallback<Void>
- see the spring-retry
project for information about these components.
If a recovery callback is not provided, the exception is thrown to the container after retries are exhausted.
In that case, the ErrorHandler
will be invoked, if configured, or logged otherwise.
When using @KafkaListener
, set the RetryTemplate
(and optionally recoveryCallback
) on the container factory and the listener will be wrapped in the appropriate retrying adapter.
The contents of the RetryContext
passed into the RecoveryCallback
will depend on the type of listener.
The context will always have an attribute record
which is the record for which the failure occurred.
If your listener is acknowledging and/or consumer aware, additional attributes acknowledgment
and/or consumer
will be available.
For convenience, the RetryingMessageListenerAdapter
provides static constants for these keys.
See its javadocs for more information.
A retry adapter is not provided for any of the batch message listeners because the framework has no knowledge of where, in a batch, the failure occurred.
Users wishing retry capabilities, when using a batch listener, are advised to use a RetryTemplate
within the listener itself.
It is important to understand that the retry discussed above suspends the consumer thread (if a BackOffPolicy
is used); there are no calls to Consumer.poll()
during the retries.
Kafka has two properties to determine consumer health; the session.timeout.ms
is used to determine if the consumer is active.
Since version 0.10.1.0
heartbeats are sent on a background thread so a slow consumer no longer affects that.
max.poll.interval.ms
(default 5 minutes) is used to determine if a consumer appears to be hung (taking too long to process records from the last poll).
If the time between poll()
s exceeds this, the broker will revoke the assigned partitions and perform a rebalance.
For lengthy retry sequences, with back off, this can easily happen.
Since version 2.1.3, you can avoid this problem by using stateful retry in conjunction with a SeekToCurrentErrorHandler
.
In this case, each delivery attempt will throw the exception back to the container and the error handler will re-seek the unprocessed offsets and the same message will be redelivered by the next poll()
.
This avoids the problem of exceeding the max.poll.interval.ms
property (as long as an individual delay between attempts does not exceed it).
So, when using an ExponentialBackOffPolicy
, it’s important to ensure that the maxInterval
is rather less than the max.poll.interval.ms
property.
To enable stateful retry, use the RetryingMessageListenerAdapter
constructor that takes a stateful
boolean
argument (set it to true
).
When configuring using the listener container factory (for @KafkaListener
s), set the factory’s statefulRetry
property to true
.
While efficient, one problem with asynchronous consumers is detecting when they are idle - users might want to take some action if no messages arrive for some period of time.
You can configure the listener container to publish a ListenerContainerIdleEvent
when some time passes with no message delivery.
While the container is idle, an event will be published every idleEventInterval
milliseconds.
To configure this feature, set the idleEventInterval
on the container:
@Bean public KafkaMessageListenerContainer(ConsumerFactory<String, String> consumerFactory) { ContainerProperties containerProps = new ContainerProperties("topic1", "topic2"); ... containerProps.setIdleEventInterval(60000L); ... KafkaMessageListenerContainer<String, String> container = new KafKaMessageListenerContainer<>(...); return container; }
Or, for a @KafkaListener
…
@Bean public ConcurrentKafkaListenerContainerFactory kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); ... factory.getContainerProperties().setIdleEventInterval(60000L); ... return factory; }
In each of these cases, an event will be published once per minute while the container is idle.
In addition, if the broker is unreachable (at the time of writing), the consumer poll()
method does not exit, so no messages are received, and idle events can’t be generated.
To solve this issue, the container will publish a NonResponsiveConsumerEvent
if a poll does not return within 3x the pollInterval
property.
By default, this check is performed once every 30 seconds in each container.
You can modify the behavior by setting the monitorInterval
and noPollThreshold
properties in the ContainerProperties
when configuring the listener container.
Receiving such an event will allow you to stop the container(s), thus waking the consumer so it can terminate.
You can capture these events by implementing ApplicationListener
- either a general listener, or one narrowed to only receive this specific event.
You can also use @EventListener
, introduced in Spring Framework 4.2.
The following example combines the @KafkaListener
and @EventListener
into a single class.
It’s important to understand that the application listener will get events for all containers so you may need to
check the listener id if you want to take specific action based on which container is idle.
You can also use the @EventListener
condition
for this purpose.
The events have 5 properties:
source
- the listener container instance
id
- the listener id (or container bean name)
idleTime
- the time the container had been idle when the event was published
topicPartitions
- the topics/partitions that the container was assigned at the time the event was generated
consumer
- a reference to the kafka Consumer
object; for example, if the consumer was previously pause()
d, it can be resume()
d when the event is received.
Starting with version 2.1.5, the idle event has a boolean property paused
which indicates whether the consumer is currently paused; see Section 4.1.4, “Pausing/Resuming Listener Containers” for more information.
The event is normally published on the consumer thread, so it is safe to interact with the Consumer
object.
public class Listener { @KafkaListener(id = "qux", topics = "annotated") public void listen4(@Payload String foo, Acknowledgment ack) { ... } @EventListener(condition = "event.listenerId.startsWith('qux-')") public void eventHandler(ListenerContainerIdleEvent event) { ... } }
Important | |
---|---|
Event listeners will see events for all containers; so, in the example above, we narrow the events received based on the listener ID.
Since containers created for the |
Caution | |
---|---|
If you wish to use the idle event to stop the lister container, you should not call |
Note that you can obtain the current positions when idle is detected by implementing ConsumerSeekAware
in your listener; see onIdleContainer()
in `the section called “Seeking to a Specific Offset”.
There are several ways to set the initial offset for a partition.
When manually assigning partitions, simply set the initial offset (if desired) in the configured TopicPartitionInitialOffset
arguments (see the section called “Message Listener Containers”).
You can also seek to a specific offset at any time.
When using group management where the broker assigns partitions:
group.id
, the initial offset is determined by the auto.offset.reset
consumer property (earliest
or latest
).
In order to seek, your listener must implement ConsumerSeekAware
which has the following methods:
void registerSeekCallback(ConsumerSeekCallback callback); void onPartitionsAssigned(Map<TopicPartition, Long> assignments, ConsumerSeekCallback callback); void onIdleContainer(Map<TopicPartition, Long> assignments, ConsumerSeekCallback callback);
The first is called when the container is started; this callback should be used when seeking at some arbitrary time after initialization.
You should save a reference to the callback; if you are using the same listener in multiple containers (or in a ConcurrentMessageListenerContainer
) you should store the callback in a ThreadLocal
or some other structure keyed by the listener Thread
.
When using group management, the second method is called when assignments change.
You can use this method, for example, for setting initial offsets for the partitions, by calling the callback; you must use the callback argument, not the one passed into registerSeekCallback
.
This method will never be called if you explicitly assign partitions yourself; use the TopicPartitionInitialOffset
in that case.
The callback has these methods:
void seek(String topic, int partition, long offset); void seekToBeginning(String topic, int partition); void seekToEnd(String topic, int partition);
You can also perform seek operations from onIdleContainer()
when an idle container is detected; see the section called “Detecting Idle and Non-Responsive Consumers” for how to enable idle container detection.
To arbitrarily seek at runtime, use the callback reference from the registerSeekCallback
for the appropriate thread.
As discussed in the section called “@KafkaListener Annotation” a ConcurrentKafkaListenerContainerFactory
is used to create containers for annotated methods.
Starting with version 2.2, the same factory can be used to create any ConcurrentMessageListenerContainer
.
This might be useful if you want to create several containers with similar properties, or you wish to use some externally configured factory, such as the one provided by Spring Boot auto configuration.
Once the container is created, you can further modify its properties, many of which are set by using container.getContainerProperties()
.
@Bean public ConcurrentMessageListenerContainer<String, String>( ConcurrentKafkaListenerContainerFactory<String, String> factory) { ConcurrentMessageListenerContainer<String, String> container = factory.createContainer("topic1", "topci2"); container.setMessageListener(m -> { ... } ); return container; }
Important | |
---|---|
Containers created this way are not added to the endpoint registry.
They should be created as |
When using a concurrent message listener container, a single listener instance is invoked on all consumer threads. Listeners, therefore, need to be thread-safe; and it is preferable to use stateless listeners. If it is not possible to make your listener thread-safe, or adding synchronization would significantly reduce the benefit of adding concurreny, there are several techniques you can use.
n
containers with concurrency=1
with a prototype scoped MessageListener
bean so each container gets its own instance (this is not possible when using @KafkaListener
).
ThreadLocal<?>
s.
SimpleThreadScope
or similar.
To facilitate cleaning up thread state (for 2 and 3), starting with version 2.2, the listener container will publish ConsumerStoppedEvent
s when each thread exits.
Consume these events with an ApplicationListener
or @EventListener
method to remove ThreadLocal<?>
s, or remove()
thread-scoped beans from the scope.
Note that SimpleThreadScope
does not destroy beans that have a destruction interface (e.g. DisposableBean
) so you should destroy()
the instance yourself.
Important | |
---|---|
By default, the application context’s event multicaster invokes event listeners on the calling thread. If you change the multicaster to use an async executor, thread cleanup will not be effective. |
Version 2.1.3 added pause()
and resume()
methods to listener containers.
Previously, you could pause a consumer within a ConsumerAwareMessageListener
and resume it by listening for ListenerContainerIdleEvent
s, which provide access to the Consumer
object.
While you could pause a consumer in an idle container via an event listener, in some cases this was not thread-safe since there is no guarantee that the event listener is invoked on the consumer thread.
To safely pause/resume consumers, you should use the methods on the listener containers.
pause()
takes effect just before the next poll()
; resume
takes effect, just after the current poll()
returns.
When a container is paused, it continues to poll()
the consumer, avoiding a rebalance if group management is being used, but will not retrieve any records; refer to the Kafka documentation for more information.
Starting with version 2.1.5, you can call isPauseRequested()
to see if pause()
has been called.
However, the consumers might not have actually paused yet; isConsumerPaused()
will return true if all Consumer
s have actually paused.
In addition, also since 2.1.5, ConsumerPausedEvent
s and ConsumerResumedEvent
s are published with the container as the source
property and the TopicPatition
s involved in the partitions
s property.
This simple Spring Boot application demonstrates using the container registry to get a reference to a @KafkaListener
method’s container and pausing/resuming its consumers, as well as receiving the corresponding events.
@SpringBootApplication public class Application implements ApplicationListener<KafkaEvent> { public static void main(String[] args) { SpringApplication.run(Application.class, args).close(); } @Override public void onApplicationEvent(KafkaEvent event) { System.out.println(event); } @Bean public ApplicationRunner runner(KafkaListenerEndpointRegistry registry, KafkaTemplate<String, String> template) { return args -> { template.send("pause.resume.topic", "foo"); Thread.sleep(10_000); System.out.println("pausing"); registry.getListenerContainer("pause.resume").pause(); Thread.sleep(10_000); template.send("pause.resume.topic", "bar"); Thread.sleep(10_000); System.out.println("resuming"); registry.getListenerContainer("pause.resume").resume(); Thread.sleep(10_000); }; } @KafkaListener(id = "pause.resume", topics = "pause.resume.topic") public void listen(String in) { System.out.println(in); } @Bean public NewTopic topic() { return new NewTopic("pause.resume.topic", 2, (short) 1); } }
With results:
partitions assigned: [pause.resume.topic-1, pause.resume.topic-0] foo pausing ConsumerPausedEvent [partitions=[pause.resume.topic-1, pause.resume.topic-0]] resuming ConsumerResumedEvent [partitions=[pause.resume.topic-1, pause.resume.topic-0]] bar
Apache Kafka provides a high-level API for serializing/deserializing record values as well as their keys.
It is present with the org.apache.kafka.common.serialization.Serializer<T>
and
org.apache.kafka.common.serialization.Deserializer<T>
abstractions with some built-in implementations.
Meanwhile we can specify simple (de)serializer classes using Producer and/or Consumer configuration properties, e.g.:
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class); props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); ... props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
For more complex or particular cases, the KafkaConsumer
, and therefore KafkaProducer
, provides overloaded
constructors to accept (De)Serializer
instances for keys
and/or values
, respectively.
Using this API, the DefaultKafkaProducerFactory
and DefaultKafkaConsumerFactory
also provide properties (via constructors or setter methods) to inject custom (De)Serializer
s to the target Producer
/Consumer
.
Spring for Apache Kafka also provides JsonSerializer
/JsonDeserializer
implementations based on the
Jackson JSON object mapper.
The JsonSerializer
is quite simple and just allows writing any Java object as a JSON byte[]
, the JsonDeserializer
requires an additional Class<?> targetType
argument to allow the deserialization of a consumed byte[]
to the proper target
object.
JsonDeserializer<Bar> barDeserializer = new JsonDeserializer<>(Bar.class);
Both JsonSerializer
and JsonDeserializer
can be customized with an ObjectMapper
.
You can also extend them to implement some particular configuration logic in the
configure(Map<String, ?> configs, boolean isKey)
method.
Starting with version 2.1, type information can be conveyed in record Headers
, allowing the handling of multiple types.
In addition, the serializer/deserializer can be configured using Kafka properties.
JsonSerializer.ADD_TYPE_INFO_HEADERS
(default true
); set to false
to disable this feature on the JsonSerializer
(sets the addTypeInfo
property).
JsonSerializer.TYPE_MAPPINGS
(default empty
); see below.
JsonDeserializer.REMOVE_TYPE_INFO_HEADERS
(default true
); set to false
to retain headers set by the serializer.
JsonDeserializer.KEY_DEFAULT_TYPE
; fallback type for deserialization of keys if no header information is present.
JsonDeserializer.VALUE_DEFAULT_TYPE
; fallback type for deserialization of values if no header information is present.
JsonDeserializer.TRUSTED_PACKAGES
(default java.util
, java.lang
); comma-delimited list of package patterns allowed for deserialization; *
means deserialize all.
JsonDeserializer.TYPE_MAPPINGS
(default empty
); see below.
Starting with version 2.2, the type information headers (if added by the serializer) will be removed by the deserializer.
You can revert to the previous behavior by setting the removeTypeHeaders
property to false, either directly on the deserializer, or with the configuration property described above.
Mapping Types
Starting with version 2.2, you can now provide type mappings using the properties in the above list; previously you had to customize the type mapper within the serializer, deserializer.
Mappings consist of a comma-delimited list of token:className
pairs; on outbound, the payload’s class name is mapped to the corresponding token and, on inbound, the token in the type header is mapped to the corresponding class name.
For example:
senderProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, JsonSerializer.class); senderProps.put(JsonSerializer.TYPE_MAPPINGS, "foo:com.myfoo.Foo, bar:com.mybar.bar"); ... consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, JsonDeserializer.class); consumerProps.put(JsonDeSerializer.TYPE_MAPPINGS, "foo:com.yourfoo.Foo, bar:com.yourbar.bar");
Of course, the corresponding objects must be compatible.
Spring Boot, these properties can be provided in the application.properties
(or yaml) file:
spring.kafka.producer.value-serializer=org.springframework.kafka.support.serializer.JsonSerializer spring.kafka.producer.properties.spring.json.type.mapping=foo:com.myfoo.Foo,bar:com.mybar.Bar
Important | |
---|---|
Only simple configuration can be performed with properties; for more advanced configuration (such as using a custom |
@Bean public ConsumerFactory<Foo, Bar> kafkaConsumerFactory(KafkaProperties properties, JsonDeserializer customDeserializer) { return new DefaultKafkaConsumerFactory<>(properties.buildConsumerProperties(), customDeserializer, customDeserializer); } @Bean public ProducererFactory<Foo, Bar> kafkaProducerFactory(KafkaProperties properties, JsonSserializer customSerializer) { return new DefaultKafkaConsumerFactory<>(properties.buildProducerProperties(), customSerializer, customSerializer); }
Setters are also provided, as an alternative to using these constructors.
Starting with version 2.2, you can explicitly configure the deserializer to use the supplied target type and ignore type information in headers, using one of the overloaded constructors that have a boolean useHeadersIfPresent
(which is true
by default):
DefaultKafkaConsumerFactory<Integer, Foo1> cf = new DefaultKafkaConsumerFactory<>(props, new IntegerDeserializer(), new JsonDeserializer<>(Foo1.class, false));
Although the Serializer
/Deserializer
API is quite simple and flexible from the low-level Kafka Consumer
and
Producer
perspective, you might need more flexibility at the Spring Messaging level, either when using @KafkaListener
or Spring Integration.
To easily convert to/from org.springframework.messaging.Message
, Spring for Apache Kafka provides a MessageConverter
abstraction with the MessagingMessageConverter
implementation and its StringJsonMessageConverter
and BytesJsonMessageConverter
customization.
The MessageConverter
can be injected into KafkaTemplate
instance directly and via
AbstractKafkaListenerContainerFactory
bean definition for the @KafkaListener.containerFactory()
property:
@Bean public KafkaListenerContainerFactory<?> kafkaJsonListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.setMessageConverter(new StringJsonMessageConverter()); return factory; } ... @KafkaListener(topics = "jsonData", containerFactory = "kafkaJsonListenerContainerFactory") public void jsonListener(Foo foo) { ... }
When using a @KafkaListener
, the parameter type is provided to the message converter to assist with the conversion.
Note | |
---|---|
This type inference can only be achieved when the |
Note | |
---|---|
When using the |
When a deserializer fails to deserialize a message, Spring has no way to handle the problem because it occurs before the poll()
returns.
To solve this problem, version 2.2 introduced the ErrorHandlingDeserializer
.
This deserializer delegates to a real deserializer (key or value).
If the delegate fails to deserialize the record content, the ErrorHandlingDeserializer
returns a DeserializationException
instead, containing the cause and raw bytes.
When using a record-level MessageListener
, if either the key or value contains a DeserializationException
, the container’s ErrorHandler
is called with the failed ConsumerRecord
.
When using a BatchMessageListener
, the failed record is passed to the application along with the remaining records in the batch, so it is the responsibility of the application listener to check whether the key or value in a particular record is a DeserializationException
.
You can use the DefaultKafkaConsumerFactory
constructor that takes key and value Deserializer
objects and wire in appropriate ErrorHandlingDeserializer
configured with the proper delegates.
Alternatively, you can use consumer configuration properties which are used by the ErrorHandlingDeserializer
to instantiate the delegates.
The property names are ErrorHandlingDeserializer.KEY_DESERIALIZER_CLASS
and ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS
; the property value can be a class or class name.
For example:
... // other props props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, ErrorHandlingDeserializer.class); props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, ErrorHandlingDeserializer.class); props.put(ErrorHandlingDeserializer.KEY_DESERIALIZER_CLASS, JsonDeserializer.class); props.put(JsonDeserializer.KEY_DEFAULT_TYPE, "com.example.MyKey") props.put(ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS, JsonDeserializer.class.getName()); props.put(JsonDeserializer.VALUE_DEFAULT_TYPE, "com.example.MyValue") props.put(JsonDeserializer.TRUSTED_PACKAGES, "com.example") return new DefaultKafkaConsumerFactory<>(props);
Starting with version 1.3.2, you can also use a StringJsonMessageConverter
or BytesJsonMessageConverter
within a BatchMessagingMessageConverter
for converting batch messages, when using a batch listener container factory.
See Section 4.1.5, “Serialization/Deserialization and Message Conversion” for more information.
By default, the type for the conversion is inferred from the listener argument.
If you configure the (Bytes|String)JsonMessageConverter
with a DefaultJackson2TypeMapper
that has its TypePrecedence
set to TYPE_ID
(instead of the default INFERRED
), then the converter will use type information in headers (if present) instead.
This allows, for example, listener methods to be declared with interfaces instead of concrete classes.
Also, the type converter supports mapping so the deserialization can be to a different type than the source (as long as the data is compatible).
This is also useful when using class-level @KafkaListener
s where the payload must have already been converted, to determine which method to invoke.
@Bean public KafkaListenerContainerFactory<?> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.setBatchListener(true); factory.setMessageConverter(new BatchMessagingMessageConverter(converter())); return factory; } @Bean public StringJsonMessageConverter converter() { return new StringJsonMessageConverter(); }
Note that for this to work, the method signature for the conversion target must be a container object with a single generic parameter type, such as:
@KafkaListener(topics = "blc1") public void listen(List<Foo> foos, @Header(KafkaHeaders.OFFSET) List<Long> offsets) { ... }
Notice that you can still access the batch headers too.
If the batch converter has a record converter that supports it, you can also receive a list of messages where the payloads are converted according to the generic type:
@KafkaListener(topics = "blc3", groupId = "blc3") public void listen1(List<Message<Foo>> fooMessages) { ... }
Starting with version 2.1.1, the org.springframework.core.convert.ConversionService
used by the default
o.s.messaging.handler.annotation.support.MessageHandlerMethodFactory
to resolve parameters for the invocation
of a listener method is supplied with all beans implementing any of the following interfaces:
org.springframework.core.convert.converter.Converter
org.springframework.core.convert.converter.GenericConverter
org.springframework.format.Formatter
This allows you to further customize listener deserialization without changing the default configuration for
ConsumerFactory
and KafkaListenerContainerFactory
.
Important | |
---|---|
Setting a custom |
The 0.11.0.0 client introduced support for headers in messages.
Spring for Apache Kafka version 2.0 now supports mapping these headers to/from spring-messaging
MessageHeaders
.
Note | |
---|---|
Previous versions mapped |
Apache Kafka headers have a simple API:
public interface Header { String key(); byte[] value(); }
The KafkaHeaderMapper
strategy is provided to map header entries between Kafka Headers
and MessageHeaders
:
public interface KafkaHeaderMapper { void fromHeaders(MessageHeaders headers, Headers target); void toHeaders(Headers source, Map<String, Object> target); }
The DefaultKafkaHeaderMapper
maps the key to the MessageHeaders
header name and, in order to support rich header types, for outbound messages, JSON conversion is performed.
A "special" header, with key, spring_json_header_types
contains a JSON map of <key>:<type>
.
This header is used on the inbound side to provide appropriate conversion of each header value to the original type.
On the inbound side, all Kafka Header
s are mapped to MessageHeaders
.
On the outbound side, by default, all MessageHeaders
are mapped except id
, timestamp
, and the headers that map to ConsumerRecord
properties.
You can specify which headers are to be mapped for outbound messages, by providing patterns to the mapper.
public DefaultKafkaHeaderMapper() { ... } public DefaultKafkaHeaderMapper(ObjectMapper objectMapper) { ... } public DefaultKafkaHeaderMapper(String... patterns) { ... } public DefaultKafkaHeaderMapper(ObjectMapper objectMapper, String... patterns) { ... }
The first constructor will use a default Jackson ObjectMapper
and map most headers, as discussed above.
The second constructor will use the provided Jackson ObjectMapper
and map most headers, as discussed above.
The third constructor will use a default Jackson ObjectMapper
and map headers according to the provided patterns.
The third constructor will use the provided Jackson ObjectMapper
and map headers according to the provided patterns.
Patterns are rather simple and can contain either a leading or trailing wildcard *
, or both, e.g. *.foo.*
.
Patterns can be negated with a leading !
.
The first pattern that matches a header name wins (positive or negative).
When providing your own patterns, it is recommended to include !id
and !timestamp
since these headers are read-only on the inbound side.
Important | |
---|---|
By default, the mapper will only deserialize classes in |
The DefaultKafkaHeaderMapper
is used in the MessagingMessageConverter
and BatchMessagingMessageConverter
by default, as long as Jackson is on the class path.
With the batch converter, the converted headers are available in the KafkaHeaders.BATCH_CONVERTED_HEADERS
as a List<Map<String, Object>>
where the map in a position of the list corresponds to the data position in the payload.
If the converter has no converter (either because Jackson is not present, or it is explicitly set to null
), the headers from the consumer record are provided unconverted in the KafkaHeaders.NATIVE_HEADERS
header (a Headers
object, or a List<Headers>
in the case of the batch converter, where the position in the list corresponds to the data position in the payload).
Important | |
---|---|
Certain types are not suitable for JSON serialization and a simple |
When using Log Compaction, it is possible to send and receive messages with null
payloads which identifies the deletion of a key.
It is also possible to receive null
values for other reasons - such as a Deserializer
that might return null
when it can’t deserialize a value.
To send a null
payload using the KafkaTemplate
simply pass null into the value argument of the send()
methods.
One exception to this is the send(Message<?> message)
variant.
Since spring-messaging
Message<?>
cannot have a null
payload, a special payload type KafkaNull
is used and the framework will send null
.
For convenience, the static KafkaNull.INSTANCE
is provided.
When using a message listener container, the received ConsumerRecord
will have a null
value()
.
To configure the @KafkaListener
to handle null
payloads, you must use the @Payload
annotation with required = false
; if it’s a tombstone message for a compacted log, you will usually also need the key so your application can determine which key was "deleted":
@KafkaListener(id = "deletableListener", topics = "myTopic") public void listen(@Payload(required = false) String value, @Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) String key) { // value == null represents key deletion }
When using a class-level @KafkaListener
with multiple @KafkaHandler
methods, some additional configuration is needed - a @KafkaHandler
method with a KafkaNull
payload:
@KafkaListener(id = "multi", topics = "myTopic") static class MultiListenerBean { @KafkaHandler public void listen(String foo) { ... } @KafkaHandler public void listen(Integer bar) { ... } @KafkaHandler public void delete(@Payload(required = false) KafkaNull nul, @Header(KafkaHeaders.RECEIVED_MESSAGE_KEY) int key) { ... } }
Note that the argument will be null
not a KafkaNull
.
Starting with version 2.0, the @KafkaListener
annotation has a new attribute: errorHandler
.
This attribute is not configured by default.
Use the errorHandler
to provide the bean name of a KafkaListenerErrorHandler
implementation.
This functional interface has one method:
@FunctionalInterface public interface KafkaListenerErrorHandler { Object handleError(Message<?> message, ListenerExecutionFailedException exception) throws Exception; }
As you can see, you have access to the spring-messaging Message<?>
object produced by the message converter and the exception that was thrown by the listener, wrapped in a ListenerExecutionFailedException
.
The error handler can throw the original or a new exception which will be thrown to the container. Anything returned by the error handler is ignored.
It has a sub-interface ConsumerAwareListenerErrorHandler
that has access to the consumer object, via the method:
Object handleError(Message<?> message, ListenerExecutionFailedException exception, Consumer<?, ?> consumer);
If your error handler implements this interface you can, for example, adjust the offsets accordingly. For example, to reset the offset to replay the failed message, you could do something like the following; note however, these are simplistic implementations and you would probably want more checking in the error handler.
@Bean public ConsumerAwareListenerErrorHandler listen3ErrorHandler() { return (m, e, c) -> { this.listen3Exception = e; MessageHeaders headers = m.getHeaders(); c.seek(new org.apache.kafka.common.TopicPartition( headers.get(KafkaHeaders.RECEIVED_TOPIC, String.class), headers.get(KafkaHeaders.RECEIVED_PARTITION_ID, Integer.class)), headers.get(KafkaHeaders.OFFSET, Long.class)); return null; }; }
And for a batch listener:
@Bean public ConsumerAwareListenerErrorHandler listen10ErrorHandler() { return (m, e, c) -> { this.listen10Exception = e; MessageHeaders headers = m.getHeaders(); List<String> topics = headers.get(KafkaHeaders.RECEIVED_TOPIC, List.class); List<Integer> partitions = headers.get(KafkaHeaders.RECEIVED_PARTITION_ID, List.class); List<Long> offsets = headers.get(KafkaHeaders.OFFSET, List.class); Map<TopicPartition, Long> offsetsToReset = new HashMap<>(); for (int i = 0; i < topics.size(); i++) { int index = i; offsetsToReset.compute(new TopicPartition(topics.get(i), partitions.get(i)), (k, v) -> v == null ? offsets.get(index) : Math.min(v, offsets.get(index))); } offsetsToReset.forEach((k, v) -> c.seek(k, v)); return null; }; }
This resets each topic/partition in the batch to the lowest offset in the batch.
You can specify a global error handler used for all listeners in the container factory.
@Bean public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); ... factory.getContainerProperties().setErrorHandler(myErrorHandler); ... return factory; }
or
@Bean public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); ... factory.getContainerProperties().setBatchErrorHandler(myBatchErrorHandler); ... return factory; }
By default, if an annotated listener method throws an exception, it is thrown to the container, and the message will be handled according to the container configuration.
The container-level error handlers (ErrorHandler
and BatchErrorHandler
) have sub-interfaces ConsumerAwareErrorHandler
and ConsumerAwareBatchErrorHandler
with method signatures:
void handle(Exception thrownException, ConsumerRecord<?, ?> data, Consumer<?, ?> consumer); void handle(Exception thrownException, ConsumerRecords<?, ?> data, Consumer<?, ?> consumer);
respectively.
Similar to the @KafkaListener
error handlers, you can reset the offsets as needed based on the data that failed.
Note | |
---|---|
Unlike the listener-level error handlers, however, you should set the container property |
If an ErrorHandler
implements RemainingRecordsErrorHandler
, the error handler is provided with the failed record and any unprocessed records retrieved by the previous poll()
.
Those records will not be passed to the listener after the handler exits.
@FunctionalInterface public interface RemainingRecordsErrorHandler extends ConsumerAwareErrorHandler { void handle(Exception thrownException, List<ConsumerRecord<?, ?>> records, Consumer<?, ?> consumer); }
This allows implementations to seek all unprocessed topic/partitions so the current record (and the others remaining) will be retrieved by the next poll.
The SeekToCurrentErrorHandler
does exactly this.
The container will commit any pending offset commits before calling the error handler.
To configure the listener container with this handler, add it to the ContainerProperties
.
For example, with the @KafkaListener
container factory:
@Bean public ConcurrentKafkaListenerContainerFactory<String, String> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory(); factory.setConsumerFactory(consumerFactory()); factory.getContainerProperties().setAckOnError(false); factory.getContainerProperties().setErrorHandler(new SeekToCurrentErrorHandler()); factory.getContainerProperties().setAckMode(AckMode.RECORD); return factory; }
As an example; if the poll
returns 6 records (2 from each partition 0, 1, 2) and the listener throws an exception on the fourth record, the container will have acknowledged the first 3 by committing their offsets.
The SeekToCurrentErrorHandler
will seek to offset 1 for partition 1 and offset 0 for partition 2.
The next poll()
will return the 3 unprocessed records.
If the AckMode
was BATCH
, the container commits the offsets for the first 2 partitions before calling the error handler.
Starting with version 2.2, the SeekToCurrentErrorHandler
can now recover (skip) a record that keeps failing.
By default, after 10 failures, the failed record will be logged (ERROR).
You can configure the handler with a custom recoverer (BiConsumer
) and/or max failures.
SeekToCurrentErrorHandler errorHandler = new SeekToCurrentErrorHandler((record, exception) -> { // recover after 3 failures - e.g. send to a dead-letter topic }, 3);
Also see the section called “Publishing Dead-Letter Records”.
When using transactions, similar functionality is provided by the DefaultAfterRollbackProcessor
; see the section called “After Rollback Processor”.
The SeekToCurrentBatchErrorHandler
seeks each partition to the first record in each partition in the batch so the whole batch is replayed.
This error handler does not support recovery because the framework cannot know which message in the batch is failing.
After seeking, an exception wrapping the ListenerExecutionFailedException
is thrown.
This is to cause the transaction to roll back (if transactions are enabled).
The ContainerStoppingErrorHandler
(used with record listeners) will stop the container if the listener throws an exception.
When the AckMode
is RECORD
, offsets for already processed records will be committed.
When the AckMode
is any manual, offsets for already acknowledged records will be committed.
When the AckMode
is BATCH
, the entire batch will be replayed when the container is restarted, unless transactions are enabled in which case only the unprocessed records will be re-fetched.
The ContainerStoppingBatchErrorHandler
(used with batch listeners) will stop the container and the entire batch will be replayed when the container is restarted.
After the container stops, an exception wrapping the ListenerExecutionFailedException
is thrown.
This is to cause the transaction to roll back (if transactions are enabled).
When using transactions, if the listener throws an exception (and an error handler, if present, throws an exception), the transaction is rolled back.
By default, any unprocessed records (including the failed record) will be re-fetched on the next poll.
This is achieved by performing seek
operations in the DefaultAfterRollbackProcessor
.
With a batch listener, the entire batch of records will be reprocessed (the container has no knowledge of which record in the batch failed).
To modify this behavior, configure the listener container with a custom AfterRollbackProcessor
.
For example, with a record-based listener, you might want to keep track of the failed record and give up after some number of attempts - perhaps by publishing it to a dead-letter topic.
Starting with version 2.2, the DefaultAfterRollbackProcessor
can now recover (skip) a record that keeps failing.
By default, after 10 failures, the failed record will be logged (ERROR).
You can configure the processor with a custom recoverer (BiConsumer
) and/or max failures.
AfterRollbackProcessor<String, String> processor = new DefaultAfterRollbackProcessor((record, exception) -> { // recover after 3 failures - e.g. send to a dead-letter topic }, 3);
When not using transactions, similar functionality can be achieved by configuring a SeekToCurrentErrorHandler
; see the section called “Seek To Current Container Error Handlers”.
Important | |
---|---|
Recovery is not possible with a batch listener since the framework has no knowledge about which record in the batch keeps failing. In such cases, the application listener must handle a record that keeps failing. |
Also see the section called “Publishing Dead-Letter Records”.
As discussed above, the SeekToCurrentErrorHandler
and DefaultAfterRollbackProcessor
can be configured with a record recoverer when the maximum number of failures is reached for a record.
The framework provides the DeadLetterPublishingRecoverer
which will publish the failed message to another topic.
The recoverer requires a KafkaTemplate<Object, Object>
which is used to send the record.
It also, optionally, can be configured with a BiFunction<ConsumerRecord<?, ?>, Exception, TopicPartition>
which is called to resolve the destination topic and partition.
By default, the dead-letter record is sent to a topic named <originalTopic>.DLT
(the original topic name suffixed with .DLT
) and to the same partition as the original record.
Therefore, when using the default resolver, the dead-letter topic must have at least as many partitions as the original topic.
If the returned TopicPartition
has a negative partition, the partition is not set in the ProducerRecord
and so the partition will be selected by Kafka.
The following is an example of wiring a custom destination resolver.
DeadLetterPublishingRecoverer recoverer = new DeadLetterPublishingRecoverer(template, (r, e) -> { if (e instanceof FooException) { return new TopicPartition(r.topic() + ".Foo.failures", r.partition()); } else { return new TopicPartition(r.topic() + ".other.failures", r.partition()); } }); ErrorHandler errorHandler = new SeekToCurrentErrorHandler(recoverer, 3);
The record sent to the dead-letter topic is enhanced with the following headers:
KafkaHeaders.DLT_EXCEPTION_FQCN
- Exception class name.
KafkaHeaders.DLT_EXCEPTION_STACKTRACE
- Exception stack trace.
KafkaHeaders.DLT_EXCEPTION_MESSAGE
- Exception message.
KafkaHeaders.DLT_ORIGINAL_TOPIC
- Original topic.
KafkaHeaders.DLT_ORIGINAL_PARTITION
Original partition.
KafkaHeaders.DLT_ORIGINAL_OFFSET
- Original offset.
KafkaHeaders.DLT_ORIGINAL_TIMESTAMP
- Original timestamp.
KafkaHeaders.DLT_ORIGINAL_TIMESTAMP_TYPE
- Original timestamp type.
Starting with version 2.0 a KafkaJaasLoginModuleInitializer
class has been added to assist with Kerberos configuration.
Simply add this bean, with the desired configuration, to your application context.
@Bean public KafkaJaasLoginModuleInitializer jaasConfig() throws IOException { KafkaJaasLoginModuleInitializer jaasConfig = new KafkaJaasLoginModuleInitializer(); jaasConfig.setControlFlag("REQUIRED"); Map<String, String> options = new HashMap<>(); options.put("useKeyTab", "true"); options.put("storeKey", "true"); options.put("keyTab", "/etc/security/keytabs/kafka_client.keytab"); options.put("principal", "[email protected]"); jaasConfig.setOptions(options); return jaasConfig; }
Starting with version 1.1.4, Spring for Apache Kafka provides first class support for Kafka Streams.
For using it from a Spring application, the kafka-streams
jar must be present on classpath.
It is an optional dependency of the spring-kafka
project and isn’t downloaded transitively.
The reference Apache Kafka Streams documentation suggests this way of using the API:
// Use the builders to define the actual processing topology, e.g. to specify // from which input topics to read, which stream operations (filter, map, etc.) // should be called, and so on. StreamsBuilder builder = ...; // when using the Kafka Streams DSL // Use the configuration to tell your application where the Kafka cluster is, // which serializers/deserializers to use by default, to specify security settings, // and so on. StreamsConfig config = ...; KafkaStreams streams = new KafkaStreams(builder, config); // Start the Kafka Streams instance streams.start(); // Stop the Kafka Streams instance streams.close();
So, we have two main components: StreamsBuilder
with an API to build KStream
(or KTable
) instances and KafkaStreams
to manage their lifecycle.
Note: all KStream
instances exposed to a KafkaStreams
instance by a single StreamsBuilder
will be started and stopped at the same time, even if they have a fully different logic.
In other words all our streams defined by a StreamsBuilder
are tied with a single lifecycle control.
Once a KafkaStreams
instance has been closed via streams.close()
it cannot be restarted, and a new KafkaStreams
instance to restart stream processing must be created instead.
To simplify the usage of Kafka Streams from the Spring application context perspective and utilize the lifecycle management via container, the Spring for Apache Kafka introduces StreamsBuilderFactoryBean
.
This is an AbstractFactoryBean
implementation to expose a StreamsBuilder
singleton instance as a bean:
@Bean public FactoryBean<StreamsBuilderFactoryBean> myKStreamBuilder(KafkaStreamsConfiguration streamsConfig) { return new StreamsBuilderFactoryBean(streamsConfig); }
Important | |
---|---|
Starting with version 2.2, the stream configuration is now provided as a |
The StreamsBuilderFactoryBean
also implements SmartLifecycle
to manage lifecycle of an internal KafkaStreams
instance.
Similar to the Kafka Streams API, the KStream
instances must be defined before starting the KafkaStreams
, and that also applies for the Spring API for Kafka Streams.
Therefore we have to declare KStream
s on the StreamsBuilder
before the application context is refreshed, when we use default autoStartup = true
on the StreamsBuilderFactoryBean
.
For example, KStream
can be just as a regular bean definition, meanwhile the Kafka Streams API is used without any impacts:
@Bean public KStream<?, ?> kStream(StreamsBuilder kStreamBuilder) { KStream<Integer, String> stream = kStreamBuilder.stream(STREAMING_TOPIC1); // Fluent KStream API return stream; }
If you would like to control lifecycle manually (e.g. stop and start by some condition), you can reference the StreamsBuilderFactoryBean
bean directly using factory bean (&
) prefix.
Since StreamsBuilderFactoryBean
utilize its internal KafkaStreams
instance, it is safe to stop and restart it again - a new KafkaStreams
is created on each start()
.
Also consider using different StreamsBuilderFactoryBean
s, if you would like to control lifecycles for KStream
instances separately.
You also can specify KafkaStreams.StateListener
, Thread.UncaughtExceptionHandler
and StateRestoreListener
options on the StreamsBuilderFactoryBean
which are delegated to the internal KafkaStreams
instance.
Also apart from setting those options indirectly on StreamsBuilderFactoryBean
, starting with version 2.1.5, a KafkaStreamsCustomizer
callback interface can be used to configure inner KafkaStreams
instance.
Note that KafkaStreamsCustomizer
will override the options which are given via StreamsBuilderFactoryBean
.
That internal KafkaStreams
instance can be accessed via StreamsBuilderFactoryBean.getKafkaStreams()
if you need to perform some KafkaStreams
operations directly.
You can autowire StreamsBuilderFactoryBean
bean by type, but you should be sure that you use full type in the bean definition, for example:
@Bean public StreamsBuilderFactoryBean myKStreamBuilder(KafkaStreamsConfiguration streamsConfig) { return new StreamsBuilderFactoryBean(streamsConfig); } ... @Autowired private StreamsBuilderFactoryBean myKStreamBuilderFactoryBean;
Or add @Qualifier
for injection by name if you use interface bean definition:
@Bean public FactoryBean<StreamsBuilder> myKStreamBuilder(KafkaStreamsConfiguration streamsConfig) { return new StreamsBuilderFactoryBean(streamsConfig); } ... @Autowired @Qualifier("&myKStreamBuilder") private StreamsBuilderFactoryBean myKStreamBuilderFactoryBean;
For serializing and deserializing data when reading or writing to topics or state stores in JSON format, Spring Kafka provides a JsonSerde
implementation using JSON, delegating to the JsonSerializer
and JsonDeserializer
described in the serialization/deserialization section.
The JsonSerde
provides the same configuration options via its constructor (target type and/or ObjectMapper
).
In the following example we use the JsonSerde
to serialize and deserialize the Foo
payload of a Kafka stream - the JsonSerde
can be used in a similar fashion wherever an instance is required.
stream.through(Serdes.Integer(), new JsonSerde<>(Foo.class), "foos");
Important | |
---|---|
Since Kafka Streams do not support headers, the |
To configure the Kafka Streams environment, the StreamsBuilderFactoryBean
requires a KafkaStreamsConfiguration
instance.
See Apache Kafka documentation for all possible options.
Important | |
---|---|
Starting with version 2.2, the stream configuration is now provided as a |
To avoid boilerplate code for most cases, especially when you develop micro services, Spring for Apache Kafka provides the @EnableKafkaStreams
annotation, which should be placed on a @Configuration
class.
All you need is to declare a KafkaStreamsConfiguration
bean with the name defaultKafkaStreamsConfig
.
A StreamsBuilder
bean, with the name defaultKafkaStreamsBuilder
, will be declared in the application context automatically.
Any additional StreamsBuilderFactoryBean
beans can be declared and used as well.
By default, when the factory bean is stopped, the KafkaStreams.cleanUp()
method is called.
Starting with version 2.1.2, the factory bean has additional constructors, taking a CleanupConfig
object that has properties to allow you to control whether the cleanUp()
method is called during start()
, stop()
, or neither.
Putting it all together:
@Configuration @EnableKafka @EnableKafkaStreams public static class KafkaStreamsConfig { @Bean(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME) public KafkaStreamsConfiguration kStreamsConfigs() { Map<String, Object> props = new HashMap<>(); props.put(StreamsConfig.APPLICATION_ID_CONFIG, "testStreams"); props.put(StreamsConfig.KEY_SERDE_CLASS_CONFIG, Serdes.Integer().getClass().getName()); props.put(StreamsConfig.VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName()); props.put(StreamsConfig.TIMESTAMP_EXTRACTOR_CLASS_CONFIG, WallclockTimestampExtractor.class.getName()); return new KafkaStreamsConfiguration(props); } @Bean public KStream<Integer, String> kStream(StreamsBuilder kStreamBuilder) { KStream<Integer, String> stream = kStreamBuilder.stream("streamingTopic1"); stream .mapValues(String::toUpperCase) .groupByKey() .reduce((String value1, String value2) -> value1 + value2, TimeWindows.of(1000), "windowStore") .toStream() .map((windowedId, value) -> new KeyValue<>(windowedId.key(), value)) .filter((i, s) -> s.length() > 40) .to("streamingTopic2"); stream.print(); return stream; } }
The spring-kafka-test
jar contains some useful utilities to assist with testing your applications.
Note | |
---|---|
See ??? if you wish to use the 1.1.x |
o.s.kafka.test.utils.KafkaTestUtils
provides some static methods to set up producer and consumer properties:
/** * Set up test properties for an {@code <Integer, String>} consumer. * @param group the group id. * @param autoCommit the auto commit. * @param embeddedKafka a {@link EmbeddedKafkaBroker} instance. * @return the properties. */ public static Map<String, Object> consumerProps(String group, String autoCommit, EmbeddedKafkaBroker embeddedKafka) { ... } /** * Set up test properties for an {@code <Integer, String>} producer. * @param embeddedKafka a {@link EmbeddedKafkaBroker} instance. * @return the properties. */ public static Map<String, Object> senderProps(EmbeddedKafkaBroker embeddedKafka) { ... }
A JUnit 4 @Rule
wrapper for the EmbeddedKafkaBroker
is provided that creates an embedded Kafka and an embedded Zookeeper server.
(See Section 4.3.5, “@EmbeddedKafka Annotation” about using @EmbeddedKafka
with JUnit 5).
/** * Create embedded Kafka brokers. * @param count the number of brokers. * @param controlledShutdown passed into TestUtils.createBrokerConfig. * @param topics the topics to create (2 partitions per). */ public EmbeddedKafkaRule(int count, boolean controlledShutdown, String... topics) { ... } /** * * Create embedded Kafka brokers. * @param count the number of brokers. * @param controlledShutdown passed into TestUtils.createBrokerConfig. * @param partitions partitions per topic. * @param topics the topics to create. */ public EmbeddedKafkaRule(int count, boolean controlledShutdown, int partitions, String... topics) { ... }
The EmbeddedKafkaBroker
class has a utility method allowing you to consume for all the topics it created:
Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT", "false", embeddedKafka); DefaultKafkaConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory<Integer, String>( consumerProps); Consumer<Integer, String> consumer = cf.createConsumer(); embeddedKafka.consumeFromAllEmbeddedTopics(consumer);
The KafkaTestUtils
has some utility methods to fetch results from the consumer:
/** * Poll the consumer, expecting a single record for the specified topic. * @param consumer the consumer. * @param topic the topic. * @return the record. * @throws org.junit.ComparisonFailure if exactly one record is not received. */ public static <K, V> ConsumerRecord<K, V> getSingleRecord(Consumer<K, V> consumer, String topic) { ... } /** * Poll the consumer for records. * @param consumer the consumer. * @return the records. */ public static <K, V> ConsumerRecords<K, V> getRecords(Consumer<K, V> consumer) { ... }
Usage:
... template.sendDefault(0, 2, "bar"); ConsumerRecord<Integer, String> received = KafkaTestUtils.getSingleRecord(consumer, "topic"); ...
When the embedded Kafka and embedded Zookeeper server are started by by the EmbeddedKafkaBroker
, a system property spring.embedded.kafka.brokers
is set to the address of the Kafka broker(s) and a system property spring.embedded.zookeeper.connect
is set to the address of Zookeeper.
Convenient constants EmbeddedKafkaBroker.SPRING_EMBEDDED_KAFKA_BROKERS
and EmbeddedKafkaBroker.SPRING_EMBEDDED_ZOOKEEPER_CONNECT
are provided for this property.
With the EmbeddedKafkaBroker.brokerProperties(Map<String, String>)
you can provide additional properties for the Kafka server(s).
See Kafka Config for more information about possible broker properties.
public class MyTests { @ClassRule private static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1, false, 5, "foo", "bar"); @Test public void test() { embeddedKafkaRule.getEmbeddedKafka() .addTopics(new NewTopic("baz", 10, (short) 1), new NewTopic("qux", 15, (short) 1)); ... } }
The above configuration will create topics foo
and bar
with 5 partitions, baz
with 10 and qux
with 15.
There is no built-in support for this, but it can be achieved with something similar to the following:
public final class EmbeddedKafkaHolder { private static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1, false); private static boolean started; public static EmbeddedKafkaRule getEmbeddedKafka() { if (!started) { try { embeddedKafka.before(); } catch (Exception e) { throw new KafkaException(e); } started = true; } return embeddedKafka; } private EmbeddedKafkaHolder() { super(); } }
And then, in each test class:
static { EmbeddedKafkaHolder.getEmbeddedKafka().addTopics(topic1, topic2); } private static EmbeddedKafkaRule embeddedKafka = EmbeddedKafkaHolder.getEmbeddedKafka();
Important | |
---|---|
This example provides no mechanism for shutting down the broker(s) when all tests are complete.
This could be a problem if, say, you run your tests in a Gradle daemon.
You should not use this technique in such a situation, or use something to call |
It is generally recommended to use the rule as a @ClassRule
to avoid starting/stopping the broker between tests (and use a different topic for each test).
Starting with version 2.0, if you are using Spring’s test application context caching, you can also declare a EmbeddedKafkaBroker
bean, so a single broker can be used across multiple test classes.
For convenience a test class level @EmbeddedKafka
annotation is provided with the purpose to register EmbeddedKafkaBroker
bean:
@RunWith(SpringRunner.class) @DirtiesContext @EmbeddedKafka(partitions = 1, topics = { KafkaStreamsTests.STREAMING_TOPIC1, KafkaStreamsTests.STREAMING_TOPIC2 }) public class KafkaStreamsTests { @Autowired private EmbeddedKafkaBroker embeddedKafka; @Test public void someTest() { Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testGroup", "true", this.embeddedKafka); consumerProps.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest"); ConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory<>(consumerProps); Consumer<Integer, String> consumer = cf.createConsumer(); this.embeddedKafka.consumeFromAnEmbeddedTopic(consumer, KafkaStreamsTests.STREAMING_TOPIC2); ConsumerRecords<Integer, String> replies = KafkaTestUtils.getRecords(consumer); assertThat(replies.count()).isGreaterThanOrEqualTo(1); } @Configuration @EnableKafkaStreams public static class KafkaStreamsConfiguration { @Value("${" + EmbeddedKafkaBroker.SPRING_EMBEDDED_KAFKA_BROKERS + "}") private String brokerAddresses; @Bean(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME) public StreamsConfig kStreamsConfigs() { Map<String, Object> props = new HashMap<>(); props.put(StreamsConfig.APPLICATION_ID_CONFIG, "testStreams"); props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddresses); return new StreamsConfig(props); } } }
The topics
, brokerProperties
, and brokerPropertiesLocation
attributes of @EmbeddedKafka
support property placeholder resolutions:
@TestPropertySource(locations = "classpath:/test.properties") @EmbeddedKafka(topics = { "any-topic", "${kafka.topics.another-topic}" }, brokerProperties = { "log.dir=${kafka.broker.logs-dir}", "listeners=PLAINTEXT://localhost:${kafka.broker.port}", "auto.create.topics.enable=${kafka.broker.topics-enable:true}" } brokerPropertiesLocation = "classpath:/broker.properties")
In the example above, the property placeholders ${kafka.topics.another-topic}
, ${kafka.broker.logs-dir}
, and ${kafka.broker.port}
are resolved from the Spring Environment
.
In addition the broker properties are loaded from the broker.properties
classpath resource specified by the brokerPropertiesLocation
.
Property placeholders are resolved for the brokerPropertiesLocation
URL and for any property placeholders found in the resource.
Properties defined by brokerProperties
override properties found in brokerPropertiesLocation
.
The @EmbeddedKafka
annotation can be used with JUnit 4 or JUnit 5.
The o.s.kafka.test.hamcrest.KafkaMatchers
provides the following matchers:
/** * @param key the key * @param <K> the type. * @return a Matcher that matches the key in a consumer record. */ public static <K> Matcher<ConsumerRecord<K, ?>> hasKey(K key) { ... } /** * @param value the value. * @param <V> the type. * @return a Matcher that matches the value in a consumer record. */ public static <V> Matcher<ConsumerRecord<?, V>> hasValue(V value) { ... } /** * @param partition the partition. * @return a Matcher that matches the partition in a consumer record. */ public static Matcher<ConsumerRecord<?, ?>> hasPartition(int partition) { ... } /** * Matcher testing the timestamp of a {@link ConsumerRecord} asssuming the topic has been set with * {@link org.apache.kafka.common.record.TimestampType#CREATE_TIME CreateTime}. * * @param ts timestamp of the consumer record. * @return a Matcher that matches the timestamp in a consumer record. */ public static Matcher<ConsumerRecord<?, ?>> hasTimestamp(long ts) { return hasTimestamp(TimestampType.CREATE_TIME, ts); } /** * Matcher testing the timestamp of a {@link ConsumerRecord} * @param type timestamp type of the record * @param ts timestamp of the consumer record. * @return a Matcher that matches the timestamp in a consumer record. */ public static Matcher<ConsumerRecord<?, ?>> hasTimestamp(TimestampType type, long ts) { return new ConsumerRecordTimestampMatcher(type, ts); }
/** * @param key the key * @param <K> the type. * @return a Condition that matches the key in a consumer record. */ public static <K> Condition<ConsumerRecord<K, ?>> key(K key) { ... } /** * @param value the value. * @param <V> the type. * @return a Condition that matches the value in a consumer record. */ public static <V> Condition<ConsumerRecord<?, V>> value(V value) { ... } /** * @param partition the partition. * @return a Condition that matches the partition in a consumer record. */ public static Condition<ConsumerRecord<?, ?>> partition(int partition) { ... } /** * @param value the timestamp. * @return a Condition that matches the timestamp value in a consumer record. */ public static Condition<ConsumerRecord<?, ?>> timestamp(long value) { return new ConsumerRecordTimestampCondition(TimestampType.CREATE_TIME, value); } /** * @param type the type of timestamp * @param value the timestamp. * @return a Condition that matches the timestamp value in a consumer record. */ public static Condition<ConsumerRecord<?, ?>> timestamp(TimestampType type, long value) { return new ConsumerRecordTimestampCondition(type, value); }
Putting it all together:
public class KafkaTemplateTests { private static final String TEMPLATE_TOPIC = "templateTopic"; @ClassRule public static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1, true, TEMPLATE_TOPIC); @Test public void testTemplate() throws Exception { Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT", "false", embeddedKafka); DefaultKafkaConsumerFactory<Integer, String> cf = new DefaultKafkaConsumerFactory<Integer, String>(consumerProps); ContainerProperties containerProperties = new ContainerProperties(TEMPLATE_TOPIC); KafkaMessageListenerContainer<Integer, String> container = new KafkaMessageListenerContainer<>(cf, containerProperties); final BlockingQueue<ConsumerRecord<Integer, String>> records = new LinkedBlockingQueue<>(); container.setupMessageListener(new MessageListener<Integer, String>() { @Override public void onMessage(ConsumerRecord<Integer, String> record) { System.out.println(record); records.add(record); } }); container.setBeanName("templateTests"); container.start(); ContainerTestUtils.waitForAssignment(container, embeddedKafka.getEmbeddedKafka().getPartitionsPerTopic()); Map<String, Object> senderProps = KafkaTestUtils.senderProps(embeddedKafka.getEmbeddedKafka().getBrokersAsString()); ProducerFactory<Integer, String> pf = new DefaultKafkaProducerFactory<Integer, String>(senderProps); KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf); template.setDefaultTopic(TEMPLATE_TOPIC); template.sendDefault("foo"); assertThat(records.poll(10, TimeUnit.SECONDS), hasValue("foo")); template.sendDefault(0, 2, "bar"); ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit.SECONDS); assertThat(received, hasKey(2)); assertThat(received, hasPartition(0)); assertThat(received, hasValue("bar")); template.send(TEMPLATE_TOPIC, 0, 2, "baz"); received = records.poll(10, TimeUnit.SECONDS); assertThat(received, hasKey(2)); assertThat(received, hasPartition(0)); assertThat(received, hasValue("baz")); } }
The above uses the hamcrest matchers; with AssertJ
, the final part looks like this…
assertThat(records.poll(10, TimeUnit.SECONDS)).has(value("foo")); template.sendDefault(0, 2, "bar"); ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit.SECONDS); assertThat(received).has(key(2)); assertThat(received).has(partition(0)); assertThat(received).has(value("bar")); template.send(TEMPLATE_TOPIC, 0, 2, "baz"); received = records.poll(10, TimeUnit.SECONDS); assertThat(received).has(key(2)); assertThat(received).has(partition(0)); assertThat(received).has(value("baz"));