The Spring Framework provides extensive support for integrating with messaging systems:
from simplified use of the JMS API using JmsTemplate
to a complete infrastructure to
receive messages asynchronously. Spring AMQP provides a similar feature set for the
‘Advanced Message Queuing Protocol’ and Spring Boot also provides auto-configuration
options for RabbitTemplate
and RabbitMQ. There is also support for STOMP messaging
natively in Spring WebSocket and Spring Boot has support for that through starters and a
small amount of auto-configuration.
The javax.jms.ConnectionFactory
interface provides a standard method of creating a
javax.jms.Connection
for interacting with a JMS broker. Although Spring needs a
ConnectionFactory
to work with JMS, you generally won’t need to use it directly yourself
and you can instead rely on higher level messaging abstractions (see the
relevant section of the Spring Framework reference
documentation for details). Spring Boot also auto-configures the necessary infrastructure
to send and receive messages.
Spring Boot can also configure a ConnectionFactory
when it detects that ActiveMQ is
available on the classpath. If the broker is present, an embedded broker is started and
configured automatically (as long as no broker URL is specified through configuration).
ActiveMQ configuration is controlled by external configuration properties in
spring.activemq.*
. For example, you might declare the following section in
application.properties
:
spring.activemq.broker-url=tcp://192.168.1.210:9876 spring.activemq.user=admin spring.activemq.password=secret
See
ActiveMQProperties
for more of the supported options.
By default, ActiveMQ creates a destination if it does not exist yet, so destinations are resolved against their provided names.
Apache Artemis was formed in 2015 when HornetQ was donated to the Apache Foundation. All
the features listed in the Section 33.1.3, “HornetQ support” section below can be applied to
Artemis. Simply replace spring.hornetq.*
properties with spring.artemis.*
and use spring-boot-starter-artemis
instead of spring-boot-starter-hornetq
.
Note | |
---|---|
You should not try and use Artemis and HornetQ and the same time. |
Spring Boot can auto-configure a ConnectionFactory
when it detects that HornetQ is
available on the classpath. If the broker is present, an embedded broker is started and
configured automatically (unless the mode property has been explicitly set). The supported
modes are: embedded
(to make explicit that an embedded broker is required and should
lead to an error if the broker is not available in the classpath), and native
to connect
to a broker using the netty
transport protocol. When the latter is configured, Spring
Boot configures a ConnectionFactory
connecting to a broker running on the local machine
with the default settings.
Note | |
---|---|
If you are using |
HornetQ configuration is controlled by external configuration properties in
spring.hornetq.*
. For example, you might declare the following section in
application.properties
:
spring.hornetq.mode=native spring.hornetq.host=192.168.1.210 spring.hornetq.port=9876
When embedding the broker, you can choose if you want to enable persistence, and the list
of destinations that should be made available. These can be specified as a comma-separated
list to create them with the default options; or you can define bean(s) of type
org.hornetq.jms.server.config.JMSQueueConfiguration
or
org.hornetq.jms.server.config.TopicConfiguration
, for advanced queue and topic
configurations respectively.
See
HornetQProperties
for more of the supported options.
No JNDI lookup is involved at all and destinations are resolved against their names, either using the ‘name’ attribute in the HornetQ configuration or the names provided through configuration.
If you are running your application in an Application Server Spring Boot will attempt to
locate a JMS ConnectionFactory
using JNDI. By default the locations java:/JmsXA
and
java:/XAConnectionFactory
will be checked. You can use the
spring.jms.jndi-name
property if you need to specify an alternative location:
spring.jms.jndi-name=java:/MyConnectionFactory
Spring’s JmsTemplate
is auto-configured and you can autowire it directly into your own
beans:
import org.springframework.beans.factory.annotation.Autowired; import org.springframework.jms.core.JmsTemplate; import org.springframework.stereotype.Component; @Component public class MyBean { private final JmsTemplate jmsTemplate; @Autowired public MyBean(JmsTemplate jmsTemplate) { this.jmsTemplate = jmsTemplate; } // ... }
Note | |
---|---|
|
When the JMS infrastructure is present, any bean can be annotated with @JmsListener
to
create a listener endpoint. If no JmsListenerContainerFactory
has been defined, a
default one is configured automatically.
The default factory is transactional by default. If you are running in an infrastructure
where a JtaTransactionManager
is present, it will be associated to the listener container
by default. If not, the sessionTransacted
flag will be enabled. In that latter scenario,
you can associate your local data store transaction to the processing of an incoming message
by adding @Transactional
on your listener method (or a delegate thereof). This will make
sure that the incoming message is acknowledged once the local transaction has completed. This
also includes sending response messages that have been performed on the same JMS session.
The following component creates a listener endpoint on the someQueue
destination:
@Component public class MyBean { @JmsListener(destination = "someQueue") public void processMessage(String content) { // ... } }
Tip | |
---|---|
Check the Javadoc of |
The Advanced Message Queuing Protocol (AMQP) is a platform-neutral, wire-level protocol for message-oriented middleware. The Spring AMQP project applies core Spring concepts to the development of AMQP-based messaging solutions.
RabbitMQ is a lightweight, reliable, scalable and portable message broker based on the
AMQP protocol. Spring uses RabbitMQ
to communicate using the AMQP protocol.
RabbitMQ configuration is controlled by external configuration properties in
spring.rabbitmq.*
. For example, you might declare the following section in
application.properties
:
spring.rabbitmq.host=localhost spring.rabbitmq.port=5672 spring.rabbitmq.username=admin spring.rabbitmq.password=secret
See RabbitProperties
for more of the supported options.
Tip | |
---|---|
Check Understanding AMQP, the protocol used by RabbitMQ for more details. |
Spring’s AmqpTemplate
and AmqpAdmin
are auto-configured and you can autowire them
directly into your own beans:
import org.springframework.amqp.core.AmqpAdmin; import org.springframework.amqp.core.AmqpTemplate; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; @Component public class MyBean { private final AmqpAdmin amqpAdmin; private final AmqpTemplate amqpTemplate; @Autowired public MyBean(AmqpAdmin amqpAdmin, AmqpTemplate amqpTemplate) { this.adminTemplate = adminTemplate; this.amqpTemplate = amqpTemplate; } // ... }
Note | |
---|---|
|
Any org.springframework.amqp.core.Queue
that is defined as a bean will be automatically
used to declare a corresponding queue on the RabbitMQ instance if necessary.
When the Rabbit infrastructure is present, any bean can be annotated with
@RabbitListener
to create a listener endpoint. If no RabbitListenerContainerFactory
has been defined, a default one is configured automatically.
The following component creates a listener endpoint on the someQueue
queue:
@Component public class MyBean { @RabbitListener(queues = "someQueue") public void processMessage(String content) { // ... } }
Tip | |
---|---|
Check the Javadoc of |